
Revisiting Fletcher and Adler Checksums

Theresa Maxino
Carnegie Mellon University

Pittsburgh, PA 15213
maxino@cmu.edu

Abstract

Checksums are routinely used to detect data transmis-
sion errors. However, design decisions about which check-
sum to use are difficult because of a lack of information
about relative effectiveness of available options. We study
the error detection effectiveness of the Fletcher and Adler
checksums for random independent bit errors and burst er-
rors. Our study reveals that in most cases the Fletcher
checksum should be used instead of the Adler checksum.

1. Introduction

Checksums are a common way to ensure data integrity
(e.g., TCP[1][8], ZLIB[2]). This paper examines two of the
most commonly used checksum approaches, the Fletcher
checksum and the Adler checksum, and evaluates their
comparative error detection and compute cost effectiveness.
Our results indicate that the Fletcher checksum should be
used instead of the Adler checksum for most applications.

In the balance of this paper, we describe the Fletcher and
Adler algorithms and their performance for random inde-
pendent bit errors and burst errors. Error detection effec-
tiveness is evaluated via simulation results. We give insight
into the strengths and weaknesses of both checksums, with
an emphasis on particular vulnerabilities to undetected er-
rors based on data values and bit error patterns. We also
examine the cost effectiveness of both, and clarify a mis-
conception regarding their relative effectiveness.

2. Background and Related Work

A checksum is created by adding all the bytes or words in
a data word to create a checksum value. In a Frame Check
Sequence (FCS), the checksum is appended to the data word
and transmitted with it. Receivers recompute the checksum
of the received data word and compare it to the received
checksum value. If the computed and received checksum

match, then it is unlikely that there was an error. Of course
it is possible that some pattern of altered bits in a message
results in an erroneous data word matching the transmitted
(and also potentially erroneous) checksum value. There is
a tradeoff between the computing power used on the check-
sum calculation, size of the FCS field, and probability of
such undetected errors.

The Fletcher checksum [3] and the later Adler check-
sum [2] are both designed to give error detection properties
almost as good as CRCs with significantly reduced compu-
tational cost. [4] and [6] present efficient implementations
for the Fletcher checksum.

Although both the Fletcher and Adler checksums have
been around for years, little is published about their error
detection performance. Fletcher published error detection
information in his original paper [3], and [2] states that
the Adler checksum is an improvement over the Fletcher
checksum. However, [5] presents an analytic comparison of
CRC-32, Fletcher-32, and Adler-32 (for a code word length
of 8KB) that seemingly contradicts [2]. This apparent con-
tradiction encouraged us to look deeper into this matter.

3. Effectiveness Evaluation

3.1. Methodology

Performance evaluation of both checksum algorithms
was via simulated fault injection. Each experiment gen-
erated a data word with a specific data value, then com-
puted a checksum across that data word. The resultant code
word (data word plus checksum) was subjected to a spe-
cific number of bit inversion faults. The checksum of the
faulty data word was then computed and compared against
the (potentially also faulty) FCS value of the faulty code-
word. If the FCS value of the faulty code word matched the
checksum computed across the faulty data word, that par-
ticular set of bit inversions was undetected by the checksum
algorithm used. Identical data word values were used for
both checksums. Data word lengths were always multiples
of the checksum size. The data used in each experiment var-

DSN 2006 Student Forum Maxino

1



ied, including random data, all zeros, all ones, and repeated
data patterns.

The Hamming Distance (HD) of a checksum is the
smallest number of bit errors for which there is at least one
undetected case. With the assumption of random indepen-
dent bit errors in a binary symmetric channel, the main con-
tributing factor to checksum effectiveness is the fraction of
undetected errors at the HD, since the probability of more
errors occurring is significantly less likely. The faults in-
jected in each experiment included all possible 1-, 2-, and
3-bit errors in the code word for each data word value ex-
amined. The number of undetected errors at the HD of a
given checksum algorithm was then used to come up with
the probability of undetected errors (Pud) at a certain bit
error rate (BER) for that particular checksum.

3.2. One’s Complement Fletcher Checksum

The Fletcher checksum [3][8] is only defined for 16-bit
and 32-bit checksums, but in principle could be computed
for any block size with an even number of bits. We use
the one’s complement addition version, which provides bet-
ter error detection than the two’s complement addition ver-
sion. This was confirmed experimentally and agrees with
[4]. (Throughout this paper “Fletcher checksum” means
“one’s complement addition Fletcher checksum.”)

A Fletcher checksum is computed with a block size that
is half the checksum size (e.g., a 32-bit Fletcher checksum
is computed with a block size of 16 bits across the data
word). The algorithm used to compute the checksum it-
erating across a set of blocks D0 to Dn is:

Initial values: sumA = sumB = 0;
For all i : { sumA = sumA + Di;

sumB = sumB + sumA; }
sumA and sumB are both computed using the same block

size. The resulting checksum is sumB concatenated with
sumA to form a checksum that is twice the block size. The
accumulation of sumB makes the checksum sensitive to the
order in which blocks are processed.

Fletcher checksum error detection properties are data-
dependent. For all zero data the only undetected error is one
in which all bits are changed from zeros to ones. (Recall that
0xFF also represents zero in one’s complement notation.)

The Fletcher checksum has HD=3 up to a certain,
modulo-dependent, code word length and HD=2 for all re-
maining code word lengths. All 2-bit errors are detected for
data word lengths less than (2k/2 − 1) ∗ (k/2) bits where k
is the checksum size and (2k/2 − 1) is equal to the Fletcher
checksum modulus. [3] states further that all 2-bit errors
are detected provided that they are separated by fewer than
(2k/2 − 1) ∗ (k/2) bits, k being the checksum size.

The highest Pud occurs when data in each bit position of
the blocks is equally divided between zeros and ones. Ran-

dom data word values give approximately worst case error
detection performance due to a relatively equal distribution
of zeros and ones in each bit position.

The Fletcher checksum detects all burst errors less than
k/2 bits long, k being the checksum size. It is vulnerable
to burst errors that invert bits from all zero to all one since
those values are both equal to zero in one’s complement
notation (the Adler checksum has the same vulnerability).

Figure 1 shows Fletcher checksum performance. A BER
of 10−5 is used, assuming random independent bit inver-
sions.

Figure 1. Fletcher and Adler Checksum Per-
formance for Random Data (mean of 10 trials)

3.3. Adler Checksum

The Adler checksum [2] is only defined for 32-bit check-
sums, but in principle could be computed for any block size
with an even number of bits. The Adler checksum is sim-
ilar to the Fletcher checksum and can be thought of in the
following way. By using one’s complement addition, the
Fletcher checksum is performing integer addition modulo
65535 for 16-bit blocks. The Adler checksum instead uses
a prime modulus in an attempt to get better mixing of the
checksum bits. The algorithm is identical to the Fletcher
algorithm, except sumA is initialized to 1 and each addition
is done modulo 65521 (for 32-bit Adler checksum) instead
of modulo 65535.

Although the Adler checksum is not officially defined for
other data word lengths, we used the largest prime integers
less than 24=16 and less than 28=256 to implement 8- and
16-bit Adler checksums for comparison purposes. Having
a similar algorithm, the Adler checksum has similar perfor-
mance properties to the Fletcher checksum. All 2-bit errors
are detected for data word lengths less than M ∗ (k/2) bits
where k is the checksum size and M is equal to the Adler

DSN 2006 Student Forum Maxino

2



checksum modulus. As with the Fletcher checksum, the
worst case Pud is with an equal number of zeros and ones
in each data block bit position, meaning that random data
has nearly worst-case undetected error performance.

Adler-8 and Adler-16 detect all burst errors less than k/2
bits long. Adler-32 detects all burst errors up to 7-bits long.
([2] defines Adler-32 blocks to be 1 byte or 8 bits wide.)

Figure 1 shows Adler checksum performance. A BER of
10−5 is used, assuming random independent bit inversions.

4. One’s Complement Fletcher Checksum vs.
Adler Checksum

The Adler checksum has been put forward as an im-
provement of the Fletcher checksum [2], and it is commonly
believed that the Adler checksum is unconditionally supe-
rior to the Fletcher checksum [7]. (In private communica-
tion, Mark Adler stated that what [2] meant was that Adler-
32 is an improvement over Fletcher-16. At that time, he was
not aware of Fletcher-32, but this point is not widely known
and is not apparent in [2].)

The better mixing of bits that the Adler checksum pro-
vides due to its prime modulus has been claimed to provide
better error detection capabilities than the Fletcher check-
sum. We have found that this is often not the case. [5] also
shows that Fletcher-32 is better than Adler-32 at 8KB.

The Adler checksum outperforms the Fletcher check-
sum only for 16-bit checksums, and only in that checksum’s
HD=3 performance region. The issue is that while the prime
modulus in the Adler checksum results in better mixing,
there are fewer “bins” (i.e., valid FCS values) available for
code words. In most cases, this reduction in bins outweighs
the gains made by better mixing. Thus, the Fletcher check-
sum is superior to the Adler checksum in all cases except
for Adler-16 used on short data word lengths. Even then the
improvement in error detection effectiveness might not be
worth the increase in complexity and computational cost of
performing modular addition.

5. Compute Costs

Selection of the best checksum for a given application
is usually not based on error detection properties alone.
Other factors such as computational cost frequently come
into play as well.

To determine the compute cost, we examined the actual
code that was used in our experiments. We found that the
Adler checksum has a compute cost that is 1.25 times that
of the Fletcher checksum. This agrees with our expectations
since the prime modulo used by the Adler checksum results
in additional computations. Of course these performance
numbers are just approximate ratios and many factors de-
termine the best choice for a particular application.

6. Future Work

We plan to look into the performance of other commonly
used checksums, namely, exclusive or (XOR), two’s com-
plement addition, one’s complement addition, and cyclic
redundancy codes (CRC). We also plan to re-examine com-
monly held notions regarding Pud, and the relative effec-
tiveness of the Fletcher and Adler checksums compared to
CRCs.

7. Conclusions

The error detection properties of the Fletcher and Adler
checksums are very similar. However, based on our studies
of undetected error probabilities, the Fletcher checksum is
often a better choice. It has a lower computational cost than
the Adler checksum and, contrary to popular belief, is also
more effective in most situations.

8. Acknowledgements

We would like to thank Prof. Philip Koopman for the
invaluable insights, help, and guidance he has provided us.
This research was supported in part by a grant from Bom-
bardier Transportation and the General Motors Collabora-
tive Research Laboratory at Carnegie Mellon University.

References

[1] R. Braden, D. Borman, and C. Partridge. Computing the in-
ternet checksum. Network Working Group Request for Com-
ments (RFC) 1071, Sept. 1988.

[2] P. Deutsch and J.-L. Gailly. ZLIB compressed data format
specification version 3.3. Network Working Group Request
for Comments (RFC) 1950, May 1996.

[3] J. G. Fletcher. An arithmetic checksum for serial trans-
missions. IEEE Transactions on Communications, COM-
30(1):247–252, Jan. 1982.

[4] A. Nakassis. Fletcher’s error detection algorithm: How to
implement it efficiently and how to avoid the most common
pitfalls. Computer Communication Review, 18(5):63–88, Oct.
1988.

[5] D. Sheinwald, J. Satran, P. Thaler, and V. Cavanna. Internet
protocol small computer system interface (iSCSI) cyclic re-
dundancy check (CRC) / checksum considerations. Network
Working Group Request for Comments (RFC) 3385, Sept.
2002.

[6] K. Sklower. Improving the efficiency of the OSI checksum
calculation. Computer Communication Review, 19(5):44–55,
Oct. 1989.

[7] Wikipedia. Adler-32. http://en.wikipedia.org/wiki/Adler-32.
[8] J. Zweig and C. Partridge. TCP alternate checksum options.

Network Working Group Request for Comments (RFC) 1146,
Mar. 1990.

DSN 2006 Student Forum Maxino

3


