
Working Model2DW
orking

M
odel2

D
 W

orking M
odel Basic

User’s M
anual

Working Model Basic™

User’s Manual

®

Information in this document is subject to change without notice. No part of this document
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for
any purpose, without the express written permission of Knowledge Revolution.

© 1995 Knowledge Revolution. All rights reserved.
Portions © 1992-1995 Summit Software Company.

Working Model is a registered trademark of Knowledge Revolution. Working Model Basic
and WM Basic are trademarks of Knowledge Revolution. All other trademarks are the
property of their respective holders.

Introduction...1
Using the WM Basic Language Reference...1
Tables... .2
Language Elements By Category..2

Chapter 1: Getting Started with Working Model Basic... . . .17
What is Working Model Basic?..18
WM Basic Objects...29
Putting it All Together: A Simple WM Basic Program..37
Where to Go from Here .. .39

Chapter 2: A–Z Reference ..40

Chapter 3: Working Model Basic Extensions Reference.517

Chapter 4: Editing and Debugging Scripts641
Script Editor Basics..642
Editing Your Scripts .. .649
Running Your Scripts..658
Debugging Your Scripts...659
Exiting from Script Editor...667
Menu Reference667

Chapter 5: Editing Custom Dialog Boxes (Windows
Only) ...673

Overview........ .674
Using the Dialog Editor..674
Creating a Custom Dialog Box678
Editing a Custom Dialog Box...683

Contents

Editing an Existing Dialog Box...695
Testing an Edited Dialog Box...697
Incorporating a Dialog Box Template into Your Script..699
Exiting from Dialog Editor..700
Menu/Tools Reference...700
Using a Custom Dialog..706
Using a Dynamic Dialog Box...709

Chapter 6: Controlling Working Model from Another
Application..713

Sending a WM Basic Program via DDE...714
Sending a WMBasic Program via Apple Events..716

Appendix A: Runtime Error Messages719
Visual Basic Compatible Error Messages719
WM Basic-Specific Error Messages722
Error Messages in Working Model Operations...724

Appendix B: Compiler Error Messages725

Appendix C: Language Elements by Platform731

Appendix D: WM Basic Limitations747

Appendix E: WM Basic/Visual Basic Differences749

Index ...757

1

Welcome to the Working Model Basic User’s Manual. This manual contains both an alphabetic listing of all
WM Basic language keywords as well as chapters describing how to use the WM Basic tools such as the
Dialog Editor and Script Editor.

Contents
The Working Model Basic User’s Manual contains the following sections:

Chapter 1, Getting Started with Working Model Basic, provides a brief but
comprehensive introduction to this powerful feature.
Chapter 2, A-Z Reference, contains an alphabetical list of all language keywords,
including all functions, subroutines, keywords, constants, and so on. This chapter can
be used to look up a function’s parameters or to understand the purpose of a language
element.
Chapter 3, Working Model Basic Extensions Reference, contains an alphabetical
list of extensions to the Basic language that are specific to Working Model.
Chapter 4, Editing and Debugging Scripts, explains how to use the Script Editor, a
tool that allows you to edit and debug WM Basic scripts.
Chapter 5, Editing Custom Dialog Boxes, explains how to use the Dialog Editor, a
tool that enables you to create and modify custom dialog boxes for use within your
WM Basic scripts.
Chapter 6, Controlling Working Model from Another Application, describes how
to use Working Model as a DDE or Apple events server.
Appendix A, Runtime Error Messages, provides a complete listing of WM Basic
runtime error messages, including the error numbers and error text.
Appendix B, Compiler Error Messages, provides a complete listing of WM Basic
compiler error messages, including the error numbers and error text.
Appendix C, Language Elements by Platform, provides a listing of all WM Basic
language keywords and on which platforms those keywords are supported.
Appendix D, WM Basic Limitations, describes some limits of the WM Basic
runtime and compiler.
Appendix E, WM Basic/Visual Basic Differences, describes the differences
between WM Basic and Visual Basic 3.0 and Visual Basic for Applications 1.0.

Using the WM Basic Language Reference
The Reference section is organized like a dictionary containing an entry for each language element. In the
Reference section, the language elements are categorized as follows:

Category Description

data type Any of the supported data types, such as Integer,
String, and so on.

function Language element that takes zero or more parameters,
performs an action, and returns a value.

Introduction

2 Working Model Basic User's Manual

statement Language element that takes zero or more parameters and
performs an action.

operator Language elements that cause an evaluation to be
performed either on one or two operands.

topic Describes information about a topic rather than a language
element.

keyword Language element that does not fit into any of the other
categories.

Each entry in the Reference section contains the following headings:
Heading Description

Syntax The syntax of the language element. The conventions used
in describing the syntax are described in Chapter 1.

Description Contains a one-line description of that language element.

Comments Contains any other important information about that
language keyword.

Example Contains an example of that language keyword in use. The
language keyword to which the example applies always
appears in bold within the example. An example is
provided for every language keyword.

See Also Contains a list of other entries in the Reference section
that relate either directly or indirectly to that language
element.

Platforms Contains a list of platforms that support that language
keyword. The word All indicates that the language
keyword is supported by all platforms on which WM
Basic runs.

Platform
Notes

Contains information about that language keyword
specific to a given platform.

Tables
Included in the Working Model Basic User’s Manual are a number of tables used for cross-referencing the
language elements. The following tables are included:

Language Elements by Category. This table lists the language elements by category,
providing a one line description for each one. This table appears later in this section.
Language Elements by Platform. This table lists all WM Basic language elements and
on which platforms these elements are supported. This table appears in Appendix C.

Language Elements By Category
The following subsections list WM Basic language elements by category.

Arrays

ArrayDims Return the number of dimensions of an
array

ArraySort Sort an array
Erase Erase the elements in one or more arrays
LBound Return the lower bound of a given array

dimension
Option Base Change the default lower bound for array

 Language Elements By Category 3

declarations
ReDim Re-establish the dimensions of an array
UBound Return the upper bound of a dimension of

an array

Clipboard

Clipboard$ (function) Return the content of the clipboard as a
string

Clipboard$ (statement) Set the content of the clipboard
Clipboard.Clear Clear the clipboard
Clipboard.GetFormat Get the type of data stored in the clipboard
Clipboard.GetText Get text from the clipboard
Clipboard.SetText Set the content of the clipboard to text

Comments

' Comment to end-of-line
REM Add a comment

Comparison operators

< Less than
<= Less than or equal to
<> Not equal
= Equal
> Greater than
>= Greater than or equal to

Controlling other programs

AppActivate Activate an application
AppClose Close an application
AppFileName$ Return the filename corresponding to an

application
AppFind Return the full name of an application
AppGetActive$ Return the name of the active application
AppGetPosition Get the position and size of an application
AppGetState Get the window state of an application
AppHide Hide an application
AppList Fill an array with a list of running

applications
AppMaximize Maximize an application
AppMinimize Minimize an application
AppMove Move an application
AppRestore Restore an application
AppSetState Set the state of an application’s window
AppShow Show an application
AppSize Change the size of an application
AppType Return the type of an application
DoKeys Simulate keystrokes in another application
HLine Scroll the active window left/right by a

specified number of lines
HPage Scroll the active window left/right by a

specified number of pages
HScroll Scroll the active window left/right to a

4 Working Model Basic User's Manual

specified absolute position
HWND.Value Return the operating system value of a

window
Menu Execute a menu command in another

application
MenuItemChecked Determine if a menu item is checked in

another application
MenuItemEnabled Determine if a menu item is enabled in

another application
MenuItemExists Determine if a menu item exists in another

application
QueEmpty Empty a queue
QueFlush Play back all events stored in a queue
QueKeyDn Add key down event to the queue
QueKeys Add key down/up events to the queue
QueKeyUp Add key up event to the queue
QueMouseClick Add mouse click to the queue
QueMouseDblClk Add mouse double-click to the queue
QueMouseDblDn Add mouse down/up/down events to the

queue
QueMouseDn Add mouse down event to the queue
QueMouseMove Add mouse move event to the queue
QueMouseMoveBatch Add many mouse move events to the queue
QueMouseUp Add mouse up event to the queue
QueSetRelativeWindow Make all mouse positions in a queue

relative to a window
SendKeys Send keystrokes to another application
Shell Execute another application
VLine Scroll the active window up/down by a

specified number of lines
VPage Scroll the active window up/down by a

specified number of pages
VScroll Scroll the active window up/down to a

specified absolute position
WinActivate Activate a window
WinClose Close a window
WinFind Find a window given its name
WinList Fill an array with window objects, one for

each top-level window
WinMaximize Maximize a window
WinMinimize Minimize a window
WinMove Move a window
WinRestore Restore a window
WinSize Size a window

Controlling program flow

Call Call a subroutine
Choose Return a value at a given index
Do...Loop Execute a group of statements repeatedly
DoEvents (function) Yield control to other applications

 Language Elements By Category 5

DoEvents (statement) Yield control to other applications
End Stop execution of a script
Exit Do Exit a Do loop
Exit For Exit a For loop
For...Next Repeat a block of statement a specified

number of times
GoSub Execute at a specific label, allowing control

to return later
Goto Execute at a specific label
If...Then...Else Conditionally execute one or more

statements
IIf Return one of two values depending on a

condition
Main Define a subroutine where execution begins
Return Continue execution after the most recent

GoSub
Select...Case Execute one of a series of statements
Sleep Pause for a specified number of

milliseconds
Stop Suspend execution, returning to a debugger

(if present)
Switch Return one of a series of expressions

depending on a condition
While...Wend Repeat a group of statements while a

condition is True

Controlling the operating environment

Command, Command$ Return the command line
Desktop.ArrangeIcons Arrange the icons on the desktop
Desktop.Cascade Cascades all non-minimized applications
Desktop.SetColors Set the desktop colors
Desktop.SetWallpaper Set the desktop wallpaper
Desktop.Snapshot Capture an image, placing it in the

clipboard
Desktop.Tile Tiles all non-minimized applications
Environm Environ$ Return a string from the environment
PrinterGetOrientation Retrieve the current printer orientation
PrinterSetOrientation Set the printer orientation
Screen.DlgBaseUnitsX Return the x dialog base units
Screen.DlgBaseUnitsY Return the y dialog base units
Screen.Height Return the height of the display, in pixels
Screen.TwipsPerPixelX Return the number of twips per pixel in the

x direction
Screen.TwipsPerPixelY Return the number of twips per pixel in the

y direction
Screen.Width Return the width of the display, in pixels
System.Exit Exit the operating environment
System.FreeMemory Return the free memory in the operating

environment
System.FreeResources Return the free resources in the operating

environment
System.MouseTrails Toggle mouse trails on or off

6 Working Model Basic User's Manual

System.Restart Restart the operating environment
System.TotalMemory Return the total available memory in the

operating environment
System.WindowsDirector
y$

Return the directory containing Windows

System.WindowsVersion
$

Return the Windows version

Conversion

Asc Return the value of a character
CBool Convert a value to a Boolean
CCur Convert a value to Currency
CDate Convert a value to a Date
CDbl Convert a value to a Double
Chr, Chr$ Convert a character value to a string
CInt Convert a value to an Integer
CLng Convert a value to a Long
CSng Convert a value to a Single
CStr Convert a value to a String
CVar Convert a value to a Variant
CVDate Convert a value to a Date
CVErr Convert a value to an error
Hex, Hex$ Convert a number to a hexadecimal string
IsDate Determine if an expression is convertible to

a date
IsError Determine if a variant contains a user-

defined error value
IsNumeric Determine if an expression is convertible to

a number
Oct. Oct$ Convert a number to an octal string
Str, Str$ Convert a number to a string
Val Convert a string to a number

Data types

Boolean Data type representing True of False values
Currency Data type used to hold monitary values
Date Data type used to hold dates and times
Double Data type used to hold real number with

15-16 digits of precision
HWND Data type used to hold windows
Integer Data type used to hold whole numbers with

4 digits of precision
Long Data type used to hold whole numbers with

10 digits of precision
Object Data type used to hold OLE automation

objects
Single Data type used to hold real number with 7

digits of precision
String Data type used to hold sequences of

characters

 Language Elements By Category 7

Variant Data type that holds a number, string, or
OLE automation object

Database

SQLBind Specify where to place results with
SQLRetrieve

SQLClose Close a connection to a database
SQLError Return error information when an SQL

function fails
SQLExecQuery Execute a query on a database
SQLGetSchema Return information about the structure of a

database
SQLOpen Establishes a connection with a database
SQLRequest Run a query on a database
SQLRetrieve Retrieve all or part of a query
SQLRetrieveToFile Retrieve all or part of a query, placing

results in a file

Date/time

Date, Date$ (functions) Return the current date
Date, Date$ (statements) Change the system date
DateAdd Add a number of date intervals to a date
DateDiff Subtract a number of date intervals from a

date
DatePart Return a portion of a date
DateSerial Assemble a date from date parts
DateValue Convert a string to a date
Day Return the day component of a date value
Hour Return the hour part of a date value
Minute Return the minute part of a date value
Month Return the month part of a date value
Now Return the date and time
Second Return the seconds part of a date value
Time, Time$ (functions) Return the current system time
Time, Time$ (statements) Set the system time
Timer Return the number of elapsed seconds since

midnight
TimeSerial Assemble a date/time value from time

components
TimeValue Convert a string to a date/time value
Weekday Return the day of the week of a date value
Year Return the year part of a date value

DDE

DDEExecute Execute a command in another application
DDEInitiate Initiate a DDE conversation with another

application
DDEPoke Set a value in another application
DDERequest,
DDERequest$

Return a value from another application

DDESend Establishe a DDE conversation, then sets a
value in another application

8 Working Model Basic User's Manual

DDETerminate Terminate a conversation with another
application

DDETerminateAll Terminate all conversations
DDETimeOut Set the timeout used for non-responding

applications

Dialog manipulation

ActivateControl Activate a control
ButtonEnabled Determine if a button in another

application’s dialog is enabled
ButtonExists Determine if a button in another

application’s dialog exists
CheckBoxEnabled Determine if a check box in another

application’s dialog is enabled
CheckBoxExists Determine if a check box in another

application’s dialog exists
ComboBoxEnabled Determine if a combo box in another

application’s dialog is enabled
ComboBoxExists Determine if a combo box in another

application’s dialog exists
EditEnabled Determine if a text box in another

application’s dialog is enabled
EditExists Determine if a text box in another

application’s dialog exists
GetCheckBox Get the state of a check box in another

application’s dialog box
GetComboBoxItem$ Get an item from a combo box item in

another application’s dialog box
GetComboBoxItemCount Get the number of items in a combo box on

another application’s dialog box
GetEditText$ Get the content of a text box in another

application’s dialog box
GetListBoxItem$ Get an item from a list box in another

application’s dialog box
GetListBoxItemCount Get the number of items from a list box in

another application’s dialog box
GetOption Get the state of an option button in another

application’s dialog box
ListBoxEnabled Determine if a list box in another

application’s dialog box is enabled
ListBoxExists Determine if a list box in another

application’s dialog box exists
OptionEnabled Determine if an option button in another

application’s dialog is enabled
OptionExists Determine if an option button in another

application’s dialog exists
SelectButton Select a push button in another

application’s dialog box
SelectComboboxItem Select an item from a combo box in another

application’s dialog box
SelectListboxItem Select an item from a list box in another

application’s dialog box

 Language Elements By Category 9

SetCheckbox Set the state of a check box in another
application’s dialog box

SetEditText Set the content of a text box in another
application’s dialog box

SetOption Set the state of an option button in another
application’s dialog box

Error handling

Erl Return the line with the error
Err (function) Return the error that caused the current

error trap
Err (statement) Set the value of the error
Error Simulate a trappable runtime error
Error, Error$ Return the text of a given error
On Error Trap an error
Resume Continue execution after an error trap

File I/O

Close Close one or more files
Eof Determine if the end-of-file has been

reached
FreeFile Return the next available file number
Get Read data from a random or binary file
Input# Read data from a sequential file into

variables
Input, Input$ Read a specified number of bytes from a

file
Line Input # Read a line of text from a sequential file
Loc Return the record position of the file

pointer within a file
Lock Lock a section of a file
Lof Return the number of bytes in an open file
Open Open a file for reading or writing
Print # Print data to a file
Put Write data to a binary or random file
Reset Close all open files
Seek Return the byte position of the file pointer

within a file
Seek Set the byte position of the file pointer

which a file
UnLock Unlock part of a file
Width# Specify the line width for sequential files
Write # Write data to a sequential file

File system

ChDir Change the current directory
ChDrive Change the current drive
CurDir, CurDir$ Return the current directory
Dir, Dir$ Return files in a directory
DiskDrives Fill an array with valid disk drive letters
DiskFree Return the free space on a given disk drive
FileAttr Return the mode in which a file is open

10 Working Model Basic User's Manual

FileCopy Copy a file
FileDateTime Return the date and time when a file was

last modified
FileDirs Fill an array with a subdirectory list
FileExists Determine if a file exists
FileLen Return the length of a file in bytes
FileList Fill an array with a list of files
FileParse$ Return a portion of a filename
FileType Return the type of a file
GetAttr Return the attributes of a file
Kill Delete files from disk
MacID Return a value representing a collection of

same-type files on the Macintosh
MkDir Create a subdirectory
Name Rename a file
RmDir Remove a subdirectory
SetAttr Change the attributes of a file

Financial

DDB Return depreciation of an asset using
double-declining balance method

Fv Return the future value of an annuity
IPmt Return the interest payment for a given

period of an annuity
IRR Return the internal rate of return for a

series of payments and receipts
MIRR Return the modified internal rate of return
NPer Return the number of periods of an annuity
Npv Return the net present value of an annuity
Pmt Return the payment for an annuity
PPmt Return the principal payment for a given

period of an annuity
Pv Return the present value of an annuity
Rate Return the interest rate for each period of

an annuity
Sln Return the straight-line depreciation of an

asset
SYD Return the Sum of Years’ Digits

depreciation of an asset

Getting information from WM Basic

Basic.Capability Return capabilities of the platform
Basic.Eoln$ Return the end-of-line character for the

platform
Basic.FreeMemory Return the available memory
Basic.HomeDir$ Return the directory where WM Basic is

located
Basic.OS Return the platform id
Basic.PathSeparator$ Return the path separator character for the

platform

 Language Elements By Category 11

Basic.Version$ Return the version of WM Basic

INI Files

ReadIni$ Read a string from an INI file
ReadIniSection Read all the item names from a given

section of an INI file
WriteIni Write a new value to an INI file

Logical/binary operators

And Logical or binary conjunction
Eqv Logical or binary equivalence
Imp Logical or binary implication
Not Logical or binary negation
Or Logical or binary disjunction
Xor Logical or binary exclusion

Math

Abs Return the absolute value of a number
Atn Return the arc tangent of a number
Cos Return the cosine of an angle
Exp Return e raised to a given power
Fix Return the integer part of a number
Int Return the integer portion of a number
Log Return the natural logarithm of a number
Random Return a random number between two

values
Randomize Initialize the random number generator
Rnd Generate a random number between 0 and

1
Sgn Return the sign of a number
Sin Return the sine of an angle
Sqr Return the square root of a number
Tan Return the tangent of an angle

Miscellaneous

() Force parts of an expression to be evaluated
before others

_ Line continuation
Beep Make a sound
Inline Allow execution or interpretation of a

block of text
MacScript Execute an AppleScript script
Mci Execute an MCI command
PrintFile Print a file using the application to which

the file belongs

Networks

Net.AddCon$ Redirect a local device to a shared device
on a network

Net.Browse$ Display a dialog requesting a network
directory or printer resource

Net.CancelCon Cancel a network connection

12 Working Model Basic User's Manual

Net.Dialog Display a dialog allowing configuration of
the network

Net.GetCaps Return information about the capabilities of
the network

Net.GetCon$ Return the name of the network resource
associated with a local device

Net.User$ Return the name of the user on the network

Numeric operators

* Multiply
+ Add
- Subtract
/ Divide
\ Integer divide
^ Power
Mod Remainder

Objects

CreateObject Instantiate an OLE automation object
GetObject Return an OLE automation object from a

file, or returns a previously instantiated
OLE automation object

Is Compare two object variables
Nothing Value indicating no valid object

Parsing

Item$ Return a range of items from a string
ItemCount Return the number of items in a string
Line$ Retrieve a line from a string
LineCount Return the number of lines in a string
Word$ Return a sequence of words from a string
WordCount Return the number of words in a string

Predefined dialogs

AnswerBox Display a dialog asking a question
AskBox$ Display a dialog allowing the user to type a

response
AskPassword$ Display a dialog allowing the user to type a

password
InputBox, InputBox$ Display a dialog allowing the user to type a

response
MsgBox (function) Display a dialog containing a message and

some buttons
MsgBox (statement) Display a dialog containing a message and

some buttons
MsgClose Close a modeless message box
MsgOpen Open a modeless message box
MsgSetText Set the message contained within a

modeless message box
MsgSetThermometer Set the percentage of the thermometer in a

modeless message box

 Language Elements By Category 13

OpenFilename$ Display a dialog requesting a file to open
PopupMenu Display a popup menu containing items

from an array
SaveFilename$ Display a dialog requesting the name of a

new file
SelectBox Display a dialog allowing selection of an

item from an array

Printing

Print Print data to the screen
Spc Print a number of spaces within a Print

statement
Tab Used with Print to print spaces up to a

column position
ViewportClear Clear the contents of the viewport
ViewportClose Close the viewport
ViewportOpen Open a viewport

Procedures

Declare Define an external routine or a forward
reference

Exit Function Exit a function
Exit Sub Exit a subroutine
Function...End Create a user-defined function
Sub...End Create a user-defined subroutine

String operators

& Concetenate two strings
Like Compare a string against a pattern

Strings

Format, Format$ Return a string formatted to a given
specification

InStr Return the position of one string within
another

LCase, LCase$ Convert a string to lower case
Left, Left$ Return the left portion of a string
Len Return the length of a string or the size of a

data item
LSet Left align a string or user-defined type

within another
LTrim, LTrim$ Remove leading spaces from a string
Mid, Mid$ Return a substring from a string
Mid, Mid$ Replace one part of a string with another
Option Compare Change the default comparison between

text and binary
Option CStrings Allow interpretation of C-style escape

sequences in strings
Right, Right$ Return the right portion of a string
RSet Right align a string within another
RTrim, RTrim$ Remove trailing spaces from a string
Space, Space$ Return a string os spaces

14 Working Model Basic User's Manual

StrComp Compare two strings
String, String$ Return a string consisting of a repeated

character
Trim, Trim$ Trim leading and trailing spaces from a

string
UCase, UCase$ Return the upper case of a string

User dialogs

Begin Dialog Begin definition of a dialog template
CancelButton Define a Cancel button within a dialog

template
CheckBox Define a combo box in a dialog template
ComboBox Define a combo box in a dialog template
Dialog (function) Invoke a user-dialog, returning which

button was selected
Dialog (statement) Invoke a user-dialog
DlgControlId Return the id of a control in a dynamic

dialog
DlgEnable Determine if a control is enabled in a

dynamic dialog
DlgEnable Enable or disables a control in a dynamic

dialog
DlgFocus Return the control with the focus in a

dynamic dialog
DlgFocus Set focus to a control in a dynamic dialog
DlgListBoxArray Set the content of a list box or combo box

in a dynamic dialog
DlgListBoxArray Set the content of a list box or combo box

in a dynamic dialog
DlgSetPicture Set the picture of a control in a dynamic

dialog
DlgText (statement) Set the content of a control in a dynamic

dialog
DlgText$ (function) Return the content of a control in a

dynamic dialog
DlgValue (function) Return the value of a control in a dynamic

dialog
DlgValue (statement) Set the value of a control in a dynamic

dialog
DlgVisible (function) Determine if a control is visible in a

dynamic dialog
DlgVisible (statement) Set the visibility of a control in a dynamic

dialog
DropListBox Define a drop list box in a dialog template
GroupBox Define a group box in a dialog template
ListBox Add a list box to a dialog template
OKButton Add an OK button to a dialog template
OptionButton Add an option button to a dialog template
OptionGroup Add an option group to a dialog template
Picture Add a picture control to a dialog template
PictureButton Add a picture button to a dialog template

 Language Elements By Category 15

PushButton Add a push button to a dialog template
Text Add a text control to a dialog template
TextBox Add a text box to a dialog template

Variables and constants

= Assignment
Const Define a constant
DefBool Set the default data type to Boolean
DefCur Set the default data type to Currency
DefDate Set the default data type to Date
DefDbl Set the default data type to Double
DefInt Set the default data type to Integer
DefLng Set the default data type to Long
DefObj Set the default data type to Object
DefSng Set the default data type to Single
DefStr Set the default data type to String
DefVar Set the default data type to Variant
Dim Declare a local variable
Global Declare variables for sharing between

scripts
Let Assign a value to a variable
Private Declare variables accessible to all routines

in a script
Public Declare variables accessible to all routines

in all scripts
Set Assign an object variable
Type Declare a user-defined data type

Variants

IsEmpty Determine if a variant has been initialized
IsError Determine if a variant contains a user-

defined error
IsMissing Determine if an optional parameter was

specified
IsNull Determine if a variant contains valid data
IsObject Determine if an expression contains an

object
VarType Return the type of data stored in a variant

17

C H A P T E R 1

This chapter is an introduction to Working Model Basic (WM Basic), a powerful
programming language embedded in Working Model. An overview of the language will be
provided, followed by simple programming examples using Working Model Basic.

Contents
What is Working Model Basic?
Working Model Basic Objects
Putting it All Together: Simple WM Basic Program

Notes: This documentation, Working Model Basic User's Manual, is not designed as a guide
for those who are new to programming. The documentation assumes that you have some
experience in programming and that you have functional knowledge of Microsoft Visual
Basic. Although this document serves as the complete reference for the Working Model
Basic language, you may find the literature on Visual Basic useful in more advanced
programming.
The documentation also assumes that you are somewhat familiar with Working Model. If
you have never used Working Model, we strongly recommend that you go through several
tutorial exercises in the accompanying Working Model Tutorial. The Guided Tour chapter in
the Working Model User's Manual will also help you become familiar with Working Model.

Getting Started with Working
Model Basic

18 Working Model Basic User's Manual

What is Working Model Basic?
WM Basic (short for Working Model Basic) is an object-oriented programming language
based on Visual Basic. Visual Basic is a multi-purpose, industry-standard programming
language developed by Microsoft Corporation. WM Basic is a combination of the versatile
features available in Visual Basic and special extensions that allow easy access to unique
simulation features of Working Model.
As a result, WM Basic has all the following characteristics combined:

traditional high-level programming language features (e.g., English-
like syntax, conditional flow control, subroutines), inherited from the
original BASIC programming language
object-oriented language structure and simple interface design tools
(e.g., creating dialog boxes and buttons), inherited from Visual Basic
a complete set of language extensions specific to Working Model

Using WM Basic, you can write programs to create and run simulations in Working Model.
This mode of operation—called scripting—expands the capability of Working Model
enormously. Below are but a few examples of what you can accomplish with WM Basic.

Run a four-bar linkage simulation repeatedly. Each time, modify the
geometry of the links, plot the trajectory of the coupled link, and
export the data to a file. Also, save each simulation with a complete
simulation history to a hard disk for future reviews.
Develop a simulation environment using custom-made dialog boxes.
The user only needs to specify a set of parameters through graphical
user interface controls (such as buttons and menus), and Working
Model will automatically create a model that satisfies the parameters.
The user does not need to be familiar with Working Model.
Develop an analysis program on your own and link it with Working
Model. You can write a signal processing program to perform
frequency-domain analysis on time-domain simulation data.

Scripting and Interactive Operations
To introduce the idea of scripting, let us show you two ways of creating five rectangles of
size 10” (width) by 20” (height) located at (0, 0), (20,0), (40,0), (60,0), and (80,0).

Interactive Operation
One way of accomplishing this task is by using the mouse with click-and-drag operations.
You would normally perform the task by using the mouse, the toolbar, and the Properties and
Geometry windows.

Scripting Operation
Another, easier way of accomplishing this task is by scripting through WM Basic. Shown
below is a program, or script, which performs the task (characters following the single quote
(') are comments and not part of the program):

Sub Main()
Dim Rect as WMBody 'Declare the rectangle.
For I = 0 to 4

Set Rect = WM.ActiveDocument.NewBody("rectangle")

Chapter 1 What is Working Model Basic? 19
Rect.Height.Value = 20
Rect.Width.Value = 10
Rect.PX.Value = I*20 ' position increments by 20
Rect.PY.Value = 0

Next
End Sub

The result of executing this script is as follows:

Later, we will show you how to save and run a script.

Advantages of Scripting
Advantages of WM Basic over the interactive use of Working Model include:

You can pack a frequently-performed series of operations into a
macro. You can quickly execute these macros as often as you like;
scripts can be put under the Script menu of Working Model. You can,
of course, share your macros with other users.
You can combine a set of commands and operations already available
in Working Model and write a large program. The new program
works as if it were one of the Working Model features, because other
users need not understand or be aware of the mechanism of the
program.
You can create a customized simulation/modeling environment using
dialog boxes and informative messages. The environment can guide a
novice user swiftly through Working Model without fully
understanding the application or reading the manuals.
You can instruct Working Model to perform a series of simulations.
Given a carefully written script, Working Model will autonomously
repeat simulations while fine-tuning simulation parameters based on
the previous results each time, until desired results can be obtained.

Shown above are but few examples of what you can do with scripting. You will realize the
unlimited potential using WM Basic as you read through this chapter.

20 Working Model Basic User's Manual

Please note that you are not forced to choose either Interactive or Scripting operation.
Rather, depending on your application needs, you may wish to operate Working Model
completely from scripting level, or you may wish to use scripting as a small macro which
accelerates your day-to-day modeling effort. You have enormous flexibility in customizing
how you use Working Model.

Objects, Properties, and Methods
This section introduces you to objects, properties, and methods, which are the crucial
concepts of WM Basic.
These concepts are common to most object-oriented programming languages, such as C++.
If you are experienced in object-oriented programming, you may be already familiar with
these terms and concepts.

Objects
Objects are arguably the most basic elements of WM Basic programs. An object is a special
data type which holds a set of information (called properties) and actions (called methods).
If you have programmed in another high-level language such as C or PASCAL, you may be
familiar with data types called structures or records. You can think of an object in WM
Basic as an abstraction similar to a structure or record, except an object has its own functions
and commands (methods) in addition to data members such as integers and strings.
Since an object already has data members and methods built-in, you do not need to define
functions and procedures once you define an object in your program. You can immediately
start calling the methods associated with the object. For example, once you define a
WMDocument object, you do not need to define functions or procedures that will create a new
body; they are all built-in, as soon as you define the WMDocument object.
WM Basic has predefined object types which represent elements of Working Model. Shown
below are relationships between objects available in the WM Basic programming language
and elements of the Working Model application.

Chapter 1 What is Working Model Basic? 21

WMInput object WMBody object

WMPoint object

WMDocument object

WMOutput object

WMConstraint object

Most objects in WM Basic are direct equivalents of physical objects in Working Model, and
they feature very similar, if not identical, functionality. For example, most menu commands
are implemented as part of a WMDocument object, which represents a Working Model
document. Likewise, all the entries in Properties, Geometry, and Appearance windows are
available to a WMBody object which represents a body in Working Model.

Properties of an Object
A property describes a state of the object. A WMBody object, for example, has mass as one of
its properties.
To access the information contained in the properties, you need to specify the object name
and add a period (.) followed by the name of the property. For example, if you want to
access the mass property of the WMBody object called Wheel, type:

Wheel.Mass.Value
Most of the properties can be modified as well, for example, in an assignment statement. If
you want to change the mass of the Wheel to 10, simply type:

Wheel.Mass.Value = 10
(The quantity 10 is interpreted in the current unit system.) Note that the result of this
assignment statement is equivalent to that of typing the number "10" in the mass field of the
Properties utility window.

Methods of an Object
Besides having properties, objects also know how to perform certain actions. These actions
are called methods. A WMDocument object, for example, has a method called Run, which runs
the Working Model simulation.
As with properties, if you want to use methods associated with an object, you need to specify
the object and add a period (.), followed by the name of the method. For example, suppose

22 Working Model Basic User's Manual

you have a WMDocument object called MyModel. If you want to run the simulation for 200
frames, type:

MyModel.Run 200
and the simulation on the document (represented by a WMDocument object called MyModel)
will run for 200 frames, at which point Working Model will automatically pause.

Statements and Functions

Methods can be further subdivided into two categories: statements and functions. Statements
simply execute the given instruction and do not return anything. The Reset method shown
above is an example of a statement.
On the other hand, functions have a return value. For example, the WMDocument object has a
method called Body, which takes the name of a body and looks for an object with a matching
name. The Body method is a function and therefore has a return value; Body either returns
the object requested, or returns a special value called Nothing, if no object matching the
description is found (see “Comparing Objects” on page 26).
For example, you would set the object Cam1 to a body called “cam lobe” in Doc1 as follows:

Set Cam1 = Doc1.Body("cam lobe")
When you browse through Chapters 2 and 3 of this manual for references, you can easily
distinguish between statements and functions by looking at the syntax section of each entry.
Functions must be used with trailing parentheses at all times, whereas statements must be
used without parentheses. For example, the syntaxes for the following methods indicate that
they are functions (note that a pair of parentheses always follow the keyword, whether or not
a parameter is provided):

Syntax WM.GetMenuItem(Index [, PathString])

Syntax WMConstraint.Point(index)

Syntax WMDocument.Input(name | id)

Syntax WMDocument.NewOutput()

On the other hand, the syntaxes for the following methods indicate that they are statements.

Syntax WM.DeleteMenuItem Index

Syntax WMConstraint.GetVertex index, x, y

Syntax WMDocument.Run [frames]

Parameters and Return Values for Methods
Most methods take parameters, which are values or objects passed as necessary information
to invoke the method. The return value of a method is yielded as the result of the method.
For example, the NewBody method (of a WMDocument object) takes a String parameter which
specifies the type of the body to be created. If you typed:

Dim MyCircle as WMBody ' declare MyCircle as a WMBody object
Set MyCircle = Doc1.NewBody("circle")

then Working Model would create a circle. Note that parameters are provided to functions
with a pair of parentheses.

Chapter 1 What is Working Model Basic? 23

Since the NewBody method is a function, it has a return value. In order to invoke any
function, you need to store the return value. In the above example, an object of type
MyCircle is used to store the return value of the NewBody method. You cannot simply type:

Doc1.NewBody("circle") ' incorrect usage of a statement.
and expect it to be accepted; the return value has to be stored.
On the other hand, when you invoke a statement, you need to specify parameters without
using parentheses. For example, when you save a document under a specified name (Save
As), type:

Doc1.SaveAs "c:\mymodel.wm"
on Windows, or

Doc1.SaveAs "Macintosh HD:Model 1"
on Macintosh.
Another example would be to run a simulation. For instance:

Doc1.Run 25
will run the simulation for 25 frames and pause.
Note that neither SaveAs nor Run have a return value since both are statements and not
functions.

Declaring Objects
Object types, such as WMDocument, define an object and its properties and methods. The
type names (e.g., WMDocument) are not actual variables but a definition of an object type.
To create an object variable, you use the Dim statement.1 For example, to declare Doc1 as a
WMDocument object variable, use:

Dim Doc1 as WMDocument
Likewise, if you want to declare aBody as a WMBody object variable:

Dim aBody as WMBody
Now you can use the Doc1 and aBody as WMDocument and WMBody object variables,
respectively.

Creating, Assigning, and Deleting Objects
In most high-level programming languages, you can assign a value to a variable using the
equal (=) sign. This rule is true in WM Basic as well. For example:

I = 5
assigns 5 to the variable I. You can use the equal sign to assign variables of types Integer
(integers), Double (floating point numbers) and String (character strings).
The only exceptions to this rule are objects. When you want to assign one object to another,
you need to use the Set statement. For example, the following code segment:

Dim BaseMount as WMBody
Set BaseMount = WM.ActiveDocument.NewBody("square")

creates a new body (square) in Working Model and assigns the body to the object variable
called BaseMount. When created with the NewBody method, squares have a default
dimension (its side is equal to the grid size) and are located at the origin.
The assignment statement using Set only assigns pointers to actual objects. For example, if
the above example is followed by:

1 Dim stands for “dimension” because it needs to allocate a certain space in memory to
declare these objects.

24 Working Model Basic User's Manual
Dim SubMount as WMBody
Set SubMount = BaseMount

then SubMount also “points to” the same square that BaseMount refers to. Therefore, if you
modify the property of BaseMount as follows:

BaseMount.Width.Value = 1.5
then the property SubMount.Width.Value also becomes 1.5.
Likewise, if you delete BaseMount by:

WM.ActiveDocument.Delete BaseMount
(Delete is a method of a WMDocument object)
then the object SubMount becomes Nothing as well (see “Comparing Objects” below);
accessing properties such as SubMount.Mass results in a run-time error.
Please see the section on Objects in Chapter 2 for more information.

Comparing Objects
When you compare objects in WM Basic, you can use an English-like syntax. For example,
the following script searches through the active document for a body called "wheel".

Sub Main()
If WM.ActiveDocument.Body("wheel") is Nothing then

MsgBox "The wheel cannot be found in the document"
Else

MsgBox "There is a wheel"
End If

End Sub
The method Body (of WMDocument objects) returns a special value called Nothing when a
specified object could not be found in the document. (Other methods of a WMDocument
objectsuch as Constraint, Point, Input, and Outputwork the same way; each method
looks for a specific type of objects, such as a constraint, point, input, or output.)
The following code segment checks to see if a WMPoint object (called MyPoint) is attached
to a WMBody object (called MyBody).2 If not, the code will attach MyPoint to MyBody.

If MyPoint.Body is not MyBody then
MsgBox "MyPoint is not attached to MyBody"
Set MyPoint.Body = MyBody

End If
Note the use of the "is not" operator for objects.

Your First WM Basic Program
This section will walk you through creating and running a simple WM Basic program. The
program will create a projectile and a meter to measure the position of the projectile.
The sole purpose of this program is to give you an overview of how a WM Basic program
might be structured. This program is not designed to make you master the WM Basic
programming language—just yet. Do not be alarmed if you cannot understand all the details.
If you are experienced in programming in another language, you may wish to try making
modifications to the program and test your understanding.

2 For more information on WMPoint objects, please refer to the section titled WMPoint (object)
in Chapter 3 of this manual.

Chapter 1 What is Working Model Basic? 25

To Launch the Editor:
You start writing programs by launching the Script Editor within Working Model. (Start
Working Model if you have not already done so.)

1. Choose Editor from the Scripts menu.
The Script Editor appears as shown below. The figure shows the
Windows version of Script Editor; the Macintosh version is virtually
identical.

Start (run script)
End (stop script)

Toolbar

Procedure Step

Single Step

Calls (show call stack)

Add Watch

Toggle Breakpoint

For details on the
Script Editor, please
refer to Chapter 4.

All WM Basic programs must have at least these two statements as shown in the blank Script
Editor window. Sub Main() indicates the starting point of the program, so that Working
Model knows where to start. End Sub indicates that the program ends there. The content of
the program is to be "sandwiched" between these two statements.
The Script Editor can stay open while you are running Working Model. At times, Working
Model window may cover the Script Editor window. In such cases, either click anywhere in
the Script Editor, or choose “Editor” in the Script menu of Working Model; this action will
bring the Editor window to the front.
When you no longer need the Script Editor while using Working Model, you can close the
window by simply double-clicking on the top left corner of the Script Editor.

To enter the sample program:
1. Start Working Model.

A blank, untitled document appears.
2. Open the Script Editor (see "To Launch the Editor:" above).

Shown below is the code, followed by explanations. A few remarks about WM Basic code
should be provided here:

The single quotation mark (') indicates the beginning of a comment.
Any character beyond the comment symbol in each line is ignored by
Working Model.

26 Working Model Basic User's Manual

WM Basic language is not case-sensitive. You can use lower- or
upper-case letters in the program and they will be interpreted as
identical. Therefore, when you define or declare two variables such as
doc and Doc, they will be treated as the same variable.
You can concatenate two lines of WM Basic using a colon (:).

Enter the following program.
Sub Main() ' Line 1

Dim Doc as WMDocument ' Line 2
Dim Sphere as WMBody ' Line 3
Dim Meter as WMOutput ' Line 4
Set Doc = WM.ActiveDocument ' Line 5
Set Sphere = Doc.NewBody("circle") ' Line 6
Sphere.PX.Value = 0: Sphere.PY.Value = 0 ' Line 7
Sphere.Radius.Value = 0.5 ' Line 8
Set Meter = Doc.NewOutput() ' Line 9
Meter.Column(1).Cell.Formula = "body[1].p.y" ' Line 10
Doc.Run 30 ' Line 11

End Sub ' Line 12
Each line means the following:

Line 1 serves as the entry point (where the program starts) for any
WM Basic program. When you start writing programs using functions
and procedures, the starting point of a program may not always be
located at the first line. The code Sub Main() needs to be there to
clearly indicate that this line is where the main program starts.
Lines 2 through 4 are simply declaring object variables to be used for
the rest of the program, as Working Model needs to know the types of
each object variable before it is used. WMDocument, WMBody, and
WMOutput are all (pre-defined) object type names. From here on,
objects Doc, Sphere, and Meter have all the properties and methods
associated with each object types. (But you cannot use them just yet,
because you need to assign objects to these object variables first!)
Line 5 assigns the object Doc to be the current (active) document of the
Working Model application. WM is a special pre-defined object that
represents the Working Model application.
Line 6 creates a new body (circle) within Doc, and assigns the new
body to the variable Sphere. NewBody is a method of any WMDocument
object. Since the object variable Doc has already been defined as a
valid WMDocument object (in Line 5), Doc has access to the method as
well.
Line 7 specifies the position of the circle to be at the origin (0, 0). PX
and PY are properties of B (a WMBody object). Note how the colon (:) is
used to separate two statements on the same line.
Line 8 specifies the radius of the circle to be 0.5. By default, a circle
created by the NewBody method has a diameter equal to the current grid
size.
Line 9 creates a new output within Doc, and assigns it to the object
Meter.

Chapter 1 What is Working Model Basic? 27

Line 10 defines the first field of the output Meter so that it displays the
y position of the body. We typed "body[1]" for simplicity, because
we know the body created in Line 6 is body[1] (this is the first object
created in the document).
Note that the columns of a meter need to be specified using Working
Model’s formula language. The expression "body[1].p.y" means the
y position of body[1]. Please refer to Working Model User’s Manual
for more information.
Line 11 runs the simulation for 30 frames, after which Working Model
will automatically pause.
Line 12 indicates the exit point of the program. The statement End
Sub could indicate the end of any program module (such as a
subroutine, function, or the main program). In this example, line 12
has the matching entry point Sub Main().

Note how each line of the program uses object methods and creates, assigns, or modifies the
object properties.

To run the Sample Program
1. Choose Run under the Run menu of the Script Editor, or simply press

the Run button on the Script Editor’s toolbar.
Working Model will immediately execute the program. The result
resembles the following picture.

To Run the Program Step By Step
Running a program step by step can be an effective tool for debugging. You can run the
program one line at a time and watch each line execute. To run a WM Basic script step by
step, simply press the F8 key, or choose Step in the Debug menu of the Script Editor. The
source code line that is about to be executed appears highlighted in the Script Editor.
For more information on debugging scripts, please see Chapter 4 of this manual.

28 Working Model Basic User's Manual

Saving Your Scripts
You can save the script you have just written to a file.

To Save a Script
1. In the Script Editor, choose Save As in the File menu. The following

dialog box appears.

Choose the desired option (source or object).
On the Macintosh version, a check box appears instead.

2. On Windows, choose the Source Code Only option. On Macintosh,
leave the check box titled “Save script object code only” blank.
A script can be saved as source code (text file) or as object code
(compiled). Please see below for implications. On the Windows
version, you can choose either option from the pop-up menu. On the
Macintosh version, you can click the check box titled “Save script
object code only”, if you choose to save scripts as object code only.

3. Specify the filename.
4. Click OK.

Saving as Source Code
When a script is saved as text, you are saving exactly what you typed. You can later open,
modify, and debug the code. The debugger (please see Chapter 4 for more details) shows the
lines of the source code that is being executed.
When a text script is executed, however, Working Model needs to compile the source code
before executing it. The compile time is almost negligible for small files, but will increase as
the script becomes larger.
By default, a source code text is saved with the .wbs suffix on Windows.

Saving as Object Code
When a script is saved as object code, Working Model will compile the code first and store
the result in binary format. You can run the compiled script at a later time, but you will not
be able to see or edit the source code. The debugger will not be able to show exact lines of
code being executed. If you choose to let other Working Model users run your script but do
not want them to see the code, you should distribute the script in the object code format.

Chapter 1 WM Basic Objects 29

WM Basic programs saved as object code are cross-platform; you can run them on both
Macintosh and Windows Working Model, provided that the program does not use platform-
specific features. See Appendix C for the list of platform-specific features.
Since the code is already compiled, a binary script does not require any additional
compilation before being executed.
By default, object-only scripts are saved with the .wbx suffix on Windows.

WM Basic Objects
Since Working Model handles sophisticated and complex data such as bodies, constraints,
and the simulation setup, you need more than integers and strings which are standard data
types of a high level programming language. WM Basic has implemented the following
object types to make writing simulation scripts simple and easy. This section will show you
how WM Basic objects interact with entities in Working Model.
The following objects are discussed in this section:
Object Description

WMApplication Represents the Working Model application itself.

WMDocument Represents a Working Model document.

WMBody Represents a body in a Working Model document (such as a rectangle,
square, circle, and polygon).

WMPoint Represents a point element in a Working Model document (such as a
square point element or an endpoint of a constraint).

WMConstraint Represents a constraint object in a Working Model document (such as a
spring, pin joint, and actuator).

WMOutput Represents an output object (meter) in a Working Model document.

WMInput Represents a control object in a Working Model document (such as a
slider).

Please refer to Chapter 3, "Working Model Basic Extensions Reference" for complete
descriptions on objects, properties, and methods available in WM Basic. The following
sections provide brief descriptions of these object types.

WMApplication Object
A WMApplication object is the representation of the Working Model application itself.
Below are some examples of what you can accomplish using the WMApplication object.
To simplify your work, Working Model has already defined a built-in WMApplication object
called WM. You cannot define any other WMApplication object. Please refer to the section on
“WM (constant)” in Chapter 3 of this document for its complete description.

Creating a New Document
A WM Basic code to create a new document would be:

Dim Doc as WMDocument
Set Doc = WM.New() ' Creates a new document

30 Working Model Basic User's Manual

Recall that you need a Set statement to assign objects (see “Creating, Assigning, and
Deleting Objects” on page 25).
Note that New method has a pair of trailing parentheses because New is a function (see
“Statements and Functions” on page 24).

Choosing and Setting the Active Document
WM Basic provides a facility to access the active document. The active document is the
document that appears in the foreground of the Working Model application window.
To set a WMObject object Doc to the currently active Working Model document, type:

Set Doc = WM.ActiveDocument
When Working Model has multiple documents open, you can control which document
should be the active document (document that appears foreground). You simply need to
assign the property to the desired document. Suppose Working Model has two documents
Doc1 and Doc2 open, and you want to set the active document to Doc2. You can type:

Set WM.ActiveDocument = Doc2 ' brings Doc2 to foreground

Opening a Working Model File
To open a file is saved as "c:\wm30\model1.wm" on Windows, type:

Set Doc = WM.Open("c:\wm30\model1.wm")
On Macintosh, use a colon (:) to specify the folder hierarchy. For example, suppose you
have a file called Simulation, your hard disk is called Macintosh HD, and the file is located
in Working Model 3.0. Then type:

Set Doc = WM.Open("Macintosh HD:Working Model 3.0:Simulation")

WMDocument Object
A WMDocument object is the representation of a Working Model document. Shown below are
some examples of the operations you can accomplish using a WMDocument object. Please
refer to the section WMDocument in Chapter 3 for the complete description.

Saving the Document Under a Specific Name
To save the document Doc under a specific name, you would type:

Doc.SaveAs "c:\mydir\model1.wm" (on Windows)
Doc.SaveAs "Hard Disk:My Folder:Model 1" (on Macintosh)

Since SaveAs is a statement, it has no return value.
You can also store the time history of the simulation. Please refer to the section on
WMDocument.SaveAs in Chapter 3.

Changing the Simulation Mode
To change the simulation mode, modify the SimulationMode property of the WMDocument
object. For example, if you want to set the current simulation mode of Doc to Fast mode
(assume Doc has been declared and defined as a valid WMDocument object):

Doc.SimulationMode = "fast" ' set to Fast simulation mode
You could also type "FAST", "Fast", or any lower- or upper-case combination. For other
simulation modes, please refer to the section WMDocument.SimulationMode in Chapter 3.

Chapter 1 WM Basic Objects 31

Changing the Unit System
To change the unit system, simply modify the UnitSystem property. For example, if you
want to set the current unit system of the document Doc (assume it has been declared and
defined as a valid WMDocument object) to English with pounds:

Doc.UnitSystem = "English (earth pounds)"
For the complete description, please refer to the section WMDocument.UnitSystem in Chapter
3.

Showing and Hiding the Toolbar
You can show or hide the Toolbar by modifying the ShowToolPalette property of the
WMDocument object. The property is of type Boolean; you can set it to either True or False
(no quotation marks (") are necessary). By default, ShowToolPalette is set to True,
indicating that the Toolbar is shown. To hide the Toolbar of the document D (assume it is
declared as a WMDocument object):

Doc.ShowToolPalette = False ' Hide the Toolbar
Setting it to True will show the Toolbar again.

Running and Resetting a Simulation
You can run, pause, and reset the simulation using methods available to WMDocument objects.
For example, to run a simulation of the document Doc (assume it is declared as a WMDocument
object):

Doc.Run ' runs the simulation indefinitely
The simulation runs indefinitely, until stopped by the user through Working Model's
graphical interface (such as the Stop button on the toolbar or Pause Control).
If you want to run the simulation for 25 frames and pause, type:

Doc.Run 25 ' runs the simulation for 25 frames
To reset the simulation:

Doc.Reset ' resets the simulation (has no return code)
(Please note that the Run method runs the simulation but not the script. For the Run method
to take effect, you still need to execute the script itself, which can be accomplished by
pressing the F5 key.)

WMBody Object
A WMBody object is the representation of a physical body in Working Model (such as a circle
or a rectangle). The following sections show examples of what you can accomplish using a
WMBody object. Please refer to the section on WMBody in Chapter 3 for the complete
description.

Creating a New Body
To create a new body within a document:

1. Declare an object variable of type WMBody.
2. Assign the variable by using NewBody, which is a method of the

WMDocument object.
To create a rectangle, for example, type:

' Suppose the object Doc is set as a valid WMDocument object.
Dim Rect as WMBody
Set Rect = Doc.NewBody("rectangle")

32 Working Model Basic User's Manual

The NewBody method takes a string parameter—either "rectangle", "square", "circle", or
"polygon"—and creates the body within the document.
Initially, the properties of the body are set to default values. For example, squares and
rectangles are initially located at (0, 0), and their width and height are equal to the current
grid size. The grid size can be viewed by activating the grid lines (either from the
Workspace submenu in the World menu, or by modifying WMDocument.ShowGridLines
property).
The code shown above will create a rectangle (which looks like a square) at (0, 0). Please
proceed to the next section to modify these properties.

Specifying Dimensions and Position of a Body
Once the object is created, you can change its dimensions and position by modifying its
properties. For example, suppose you want to set the rectangle just created to be 1 1/2"
(width) by 2" (height), located at (1.0, 0). Simply type:

Rect.PX.Value = 1.0 ' x-position
Rect.PY.Value = 0 ' y-position
Rect.Width.Value = 1.5 ' width
Rect.Height.Value = 2 ' height

Note: the numerical values are interpreted in the current unit system. See “Changing the
Unit System” on page 33 for more information.
Note that the properties such as PX, PY, Width, and Height are all WMCell objects. See the
section on WMCell in Chapter 3 for more information.

WMPoint Object
WMPoint objects represent point elements in Working Model. A WMPoint object has
properties such as position (local and global), and you can modify them. In addition, a
WMPoint object contains information regarding which body the point is attached to, and
which constraint the point is part of. The following sections show examples of using
WMPoint objects.

Creating a New Point Element
To create a new point element within a document, declare a WMPoint object and use
NewPoint, a method of WMDocument.
To create a point element, for example, type:

Dim Pt as WMPoint ' Declare a WMPoint object
Set Pt = WM.ActiveDocument.NewPoint("point")

The NewPoint method takes a String parameter—"point", "squarepoint", or
"anchor"—and creates the corresponding point element within the document. The position
of the new point element defaults to (0, 0). Upon creation, the point attaches itself to the
background, regardless of whether a body may exist near (0, 0) or not.

Modifying the Position of a Point Element
To modify the position of a point element, simply modify the PX and PY properties of the
WMPoint object. For example:

' Create a point at (2.0, 3.5).
Dim Pt as WMPoint
Set Pt = WM.ActiveDocument.NewPoint("point")
Pt.PX.Value = 2.0

Chapter 1 WM Basic Objects 33
Pt.PY.Value = 3.5

If you have already attached a point to a body, then the properties PX and PY hold the local
coordinates, given with respect to the frame of reference of the body. You can still access
global position of the point as well. See the section “Attaching Points to Bodies” below for
more information.

Attaching Points to Bodies
To attach a point to a body, simply assign the Body property of the WMPoint object to the
desired body. For example, you can create a point and a body (both will default to the
position (0, 0) when created), and attach the point to the body in the following fashion:

' Create a point and a square. Attach the point to the square.
Dim Pt as WMPoint
Dim Square as WMBody
Set Square = WM.ActiveDocument.NewBody("square") ' at (0, 0)
Square.Width.Value = 1.0 ' specify the dimension of the square
Set Pt = WM.ActiveDocument.NewPoint("point") ' at (0, 0)
Set Pt.Body = Square ' attaches the point to Square.
Pt.PX.Value = 0.0: Pt.PY.Value = 0.0

The last line is not necessary; it is there to emphasize that the position of the point element is
now (0, 0) (with respect to the square).
After executing this code, your screen should look like the following:

Square is
located at (0, 0)

Point is attached at
(0, 0) of the square

From then on , the position properties of the WMPoint object will be based on the frame of
reference of the WMBody object. For example, suppose you added the following code segment
to the above example:

' Move the square just created to (6.0, 4.0)
B.PX.Value = 6.0
B.PY.Value = 4.0

Then the point element P, previously attached to the square, would move together with the
square. Since the point element is still attached at (0, 0) of the square, the properties
P.PX.Value and P.PY.Value both remain 0.

34 Working Model Basic User's Manual

Accessing Global Position of a Point Element
On the other hand, the global position of this point element is (6.0, 4.0), since the square was
moved to that position. To access the global position of the point element, use the
expressions P.GlobalPX and P.GlobalPY.
Note: GlobalPX and GlobalPY are not accessible if formula expressions are used to specify
PX and PY properties of the point element. This is because any formula expressions in PX and
PY override any specifications in GlobalPX and GlobalPY. For example, if you are using
geometry-based expressions (e.g. body[3].width, body[4].radius) to define the point
coordinates on a body, GlobalPX and GlobalPY are not accessible (i.e., you can neither
modify them or read them; they always return 0).

WMConstraint Object
WMConstraint objects represent constraints used in Working Model. A WMConstraint
object has type-dependent properties and information regarding its endpoint(s), and you can
modify them. The following sections show examples of what you can accomplish with
WMConstraint objects.

Creating Constraints
To create a new constraint, declare a WMConstraint object and use NewConstraint, a
method of a WMDocument object. You need to specify which type of constraint you wish to
create as a parameter to the NewConstraint method.
To create a spring, for example, type:

Dim Spring as WMConstraint ' Declare WMconstraint object
Set Spring = WM.ActiveDocument.NewConstraint("spring")

The NewConstraint method takes a String parameter, which specifies the type of the
constraint to be created. Once a constraint is created, you cannot change its type. Please see
the section on WMConstraint in Chapter 3 for the full descriptions of the type parameters.
The above code segment simply creates a spring, and by default, both endpoints are attached
to the background and located at (0, 0). Please see the following sections to attach the
endpoints properly to desired bodies and to change properties of the constraint.

Attaching Constraints to Bodies
To attach a constraint to a body,

1. Attach the endpoints of the constraint object to the desired body (a
WMBody object) using the Point method of the WMConstraint.

2. Modify the positions of the endpoints so that the they are attached to
the desired location on the body.

For example, suppose Square is a body (as created in “WMBody Object” on page 33). Then
you can create a spring and attach it to the body as follows.

' Assume Doc is a valid WMDocument object.
' Assume Square is a valid WMBody object.
Dim Spring as WMConstraint ' Declare WMconstraint object
Set Spring = Doc.NewConstraint("spring") ' Create spring
' At this point, both endpoints of the spring are attached
' to the background and located at (0, 0).
' Attach one of the endpoints to B and position the point to

Chapter 1 WM Basic Objects 35
' (3, 5) on the body.
Set Spring.Point(1).Body = Square
' From here on, the PX/PY fields of Point(1) are measured
' with respect to the FOR of the body.
Spring.Point(1).PX.Value = 0.2
Spring.Point(1).PY.Value = 0.5
' Set the position of the other endpoint to (3, 0) (global)
Spring.Point(2).PX.Value = 3.0
Spring.Point(2).PY.Value = 0.0

The result of the above code segment results in the following:

Point(1) located at (0.2,
0.5) on the square

Point(2) located at (3.0, 0.0)

Modifying Constraint Properties
Every constraint has properties that may or may not be unique to its type. For example, a
spring has properties such as spring constant and rest length, but these properties are not
meaningful for a motor. The section on WMConstraint in Chapter 3 describes exactly which
properties are available for each type of constraints.
For example, to modify the spring constant to 120, simply type (assume MySpring is a valid
WMConstraint object whose type is spring):

MySpring.K.Value = 120 ' Change the spring constant to 120
To change the natural length of the spring to 2.5 (again, assume MySpring is a valid spring
constraint):

MySpring.Length.Value = 2.5 ' Change the rest length to 2.5
Again, please refer to individual sections (such as WMConstraint.K and
WMConstraint.Length) in Chapter 3 for the complete descriptions of these properties.

WMOutput Object
WMOutput objects represent meter objects used in Working Model. A WMOutput object has
properties describing the meter columns, as well as its own position and size in the document
window.

Creating Meters
To create a new meter in a document, declare a WMOutput object and use NewOutput, a
method of WMDocument. Please see the section on WMOutput for more information.

36 Working Model Basic User's Manual

To create a meter, for example, type:
Dim Meter as WMOutput ' Declare WMOutput object
Set Meter = WM.ActiveDocment.NewOutput()

By default, the NewOutput method will create a time meter. You can customize the meter to
measure desired properties, change the meter type to graph plots, and move it to an arbitrary
position on the document as well.
Each WMOutput object has X, Y (for x- and y-positions), Width, and Height (width and
height) properties. You can modify these properties to position and size the meter arbitrarily.

Specifying Quantities to be Measured
Just like every meter in Working Model, one WMOutput object can measure up to four
quantities.
Each measured quantity is specified using the Column method of the WMOutput object. For
example, in order to measure the y-position of body[1], you would use the following code
segment:

Dim Meter as WMOutput ' Declare WMOutput object
Set Meter = WM.ActiveDocument.NewOutput()
' Modify the column y1 to measure the y position of body[1]
Meter.Column(1).Cell.Formula = "body[1].p.y"
Meter.Column(1).Label = "Y-pos of body[1]" ' optional

The parameter "1" passed to the Column method accesses the first column of the meter
(labeled y1 in the Properties window of the meter). The property Cell returns to a WMCell
object, hence the subsequent property Formula (please see the section on WMCell in Chapter
3 for more information). The Label property is used as an informative label for the user
(appears as the column label on the meter) and therefore optional.
Note: You must specify the columns using Working Model's formula expressions or numeric
constants. You cannot apply WM Basic expressions such as "Body.PY.Value", since the
meter columns are designed to accept only formula expressions or numeric constants.
For the complete descriptions of WMOutput objects, please see the section on WMOutput in
Chapter 3.

WMInput Object
WMInput objects represent controls (input objects) used in Working Model. A WMInput
object has properties regarding its style (e.g., slider, button, textbox), position, and
dimensions on the screen.

Creating Inputs
To create a new input in a document, declare a WMInput object and use NewInput, a method
of WMDocument. Inputs default to the slider type.
The following example shows how to create a slider in a document. This code segment
corresponds to choosing “Generic Control” in the Define -> Control menu.

Dim I as WMInput ' Declare a WMInput object
Set I = D.NewInput() ' Assume D is a WMDocument

Each WMInput object has X, Y (for x- and y-positions), Width, and Height (width and height),
just like a WMOutput object. You can modify these properties to position and size the
WMInput object arbitrarily. Please see the section on WMInput for more information.

Chapter 1 Putting it All Together: A Simple WM Basic Program 37

Specifying Objects to be Controlled
To link WMInput to other objects in Working Model, you simply need to assign the input ID
to the desired property to be controlled.
For example, the following code segment shows how to create a new control to specify the
initial x-velocity of a body called Circle (assume Circle has been declared and defined as a
valid WMBody object):

Dim Slider as WMInput
Set Slider = WM.ActiveDocument.NewInput()
Circle.VX.Formula = "input["+str$(Slider.ID)+"]"

The third line above warrants an explanation. Typically, you would specify an expression
such as "input[5]", but the ID number of the Input just created may not be necessarily 5.
The ID property of the WMInput object retains the number, and the number is converted to a
string by the str$ function. Finally, the number is concatenated with "input[" followed
by "]" to create a valid Working Model formula expression.

Changing the Input Value
An input control in Working Model is a flexible tool which allows you to change its value
while the simulation is running. In interactive operation, the user moves the slider bar to
change the input values. In scripting operation, you can simply modify the Value property of
the WMInput object to change the value. The Value property holds values of type Double.
For example, the following line sets the slider value of a WMInput object called Slider to be
5.5.

Slider.Value = 5.5

Putting it All Together: A Simple WM Basic
Program
Now that you know the fundamental elements of Working Model Basic, we will walk you
through a simple WM Basic program.

Spring-Mass Simulation
The following code performs the following tasks:

1. Creates a new Working Model document.
2. Creates a disk.
3. Attaches a spring to the disk.
4. Creates an input slider to specify the downward initial velocity of the

disk.
4. Creates a meter to measure the y position and velocity of the disk.
5. Runs the simulation for 50 frames and exports the meter data to a file.
6. Closes and saves the document.

Most of the functions are derived from examples provided in the preceding sections in the
current chapter.

Sub Main()
' Declare objects
Dim Doc as WMDocument
Dim Disk as WMBody
Dim Spring1 as WMConstraint

38 Working Model Basic User's Manual
Dim Slider as WMInput
Dim Meter1 as WMOutput

' Create a new document
Set Doc = WM.New()

' Change the unit system and view size
Doc.UnitSystem = "si degrees"
Doc.ViewWidth = 20.0
Doc.ScrollTo 0, 0

' Create a circle
Set Disk = Doc.NewBody("circle")
Disk.Radius.Value = 2.0

' Create a spring and attach it to the body
Set Spring1 = Doc.NewConstraint("spring") ' Create spring
Set Spring1.Point(1).Body = Disk ' Attach to Disk
Spring1.Point(1).PX.Value = 0.0
Spring1.Point(1).PY.Value = 0.0
Spring1.Point(2).PX.Value = 0.0
Spring1.Point(2).PY.Value = 5.0

 ' Create a new meter
Set Meter1 = Doc.NewOutput()
Dim DiskID as Integer
DiskID = Disk.ID
Meter1.Column(1).Cell.Formula =

"body["+str$(DiskID)+"].p.y"
Meter1.Column(1).Label = "Py"
Meter1.Column(2).Cell.Formula =

"body["+str$(DiskID)+"].v.y"
Meter1.Column(2).Label = "Vy"
Meter1.Column(2).AutoScale = True
Meter1.Format = "Graph"
Meter1.X = 10: Meter1.Y = 10

' Create a new input
Set Slider = Doc.NewInput()
Slider.X = 50: Slider.Y = 150
Disk.VY.Formula = "input["+str$(Slider.ID)+"]"
Slider.Min = -20: Slider.Max = 20 ' set input range
Slider.Value = -5 ' set current value
Slider.Name = "Initial Y-velocity"

' Run the simulation for 100 frames and reset
Doc.Run 100
Doc.Reset

' Exports the meter data to a file
Doc.ExportStartFrame = 0
Doc.ExportStopFrame = 100
Doc.ExportMeterData "data1.txt"
Doc.Reset

' Saves the simulation file with history

 Where to Go from Here 39
Doc.SaveAs "pendulum.wm", True
Doc.Close

End Sub

Where to Go from Here
Now that you know the fundamentals of WM Basic, you are ready to take full advantage of
the scripting feature.
If you are interested in more about the Script Editor and its flexible debugging feature. You
should consult Chapter 4, Editing and Debugging Scripts. As you write longer and longer
scripts, you will find the debugging feature tremendously useful.
Chapter 2 and Chapter 3 provide complete references for all the keywords, functions,
methods, and objects available in WM Basic. The chapters show not only syntax and usage
but also small examples.
To tie in dialog boxes and other graphical user interface tools of WM Basic, consult Chapter
5 for details. You can create a whole new simulation environment using custom dialog boxes
and scripts.
Chapter 6 provides an overview for those interested in using Working Model as a DDE or
Apple event server. Other applications such as Excel or MATLAB can control Working
Model by sending commands written in WM Basic.

40 Working Model Basic User's Manual

C H A P T E R 2

This chapter of the Working Model Basic User's Manual contains a complete, alphabetical
listing of all keywords in the Working Model Basic (WM Basic) language. When syntax is
described, the following notations are used:

Notation Description

While...Wend Elements belonging to the WM Basic language,
referred to in this manual as keywords, appear in the
typeface shown to the left.

variable Items that are to be replaced with information that you
supply appear in italics. The type of replacement is
indicated in the following description.

text$ The presence of a type-declaration character following
a parameter signifies that the parameter must be a
variable of that type or an expression that evaluates to
that type.

If a parameter does not appear with a type-declaration
character, then its type is described in the text.

[parameter] Square brackets indicate that the enclosed items are
optional.

Note: In WM Basic, you cannot end a statement with a
comma, even if the parameters are optional:

MsgBox "Hello",,"Message" 'OK

MsgBox "Hello",, 'Not valid

{Input | Binary} Braces indicate that you must choose one of the
enclosed items, which are separated by a vertical bar.

... Ellipses indicate that the preceeding expression can be
repeated any number of times.

A–Z Reference

Chapter 2 & (operator) 41

& (operator)
Syntax expression1 & expression2

Description Returns the concatenation of expression1 and expression2.

Comments If both expressions are strings, then the type of the result is String.
Otherwise, the type of the result is a String variant.

When nonstring expressions are encountered, each expression is converted to a
String variant. If both expressions are Null, then a Null variant is
returned. If only one expression is Null, then it is treated as a zero-length
string. Empty variants are also treated as zero-length strings.

In many instances, the plus (+) operator can be used in place of &. The
difference is that + attempts addition when used with at least one numeric
expression, whereas & always concatenates.

Example 'This example assigns a concatenated string to variable s$ and a
string to
's2$, then concatenates the two variables and displays the result in a
'dialog box.

Sub Main()
s$ = "This string" & " is concatenated"
s2$ = " with the & operator."
MsgBox s$ & s2$

End Sub

See Also + (operator); Operator Precedence (topic).

Platform(s) Windows and Macintosh.

' (keyword)
Syntax 'text

Description Causes the compiler to skip all characters between this character and the end of
the current line.

Comments This is very useful for commenting your code to make it more readable.

Example Sub Main()
'This whole line is treated as a comment.
i$ = "Strings" 'This is a valid assignment with a comment.
This line will cause an error (the apostrophe is missing).

End Sub

See Also Rem (statement); Comments (topic).

Platform(s) Windows and Macintosh.

42 Working Model Basic User's Manual

() (keyword)
Syntax 1 ...(expression)...

Syntax 2 ...,(parameter),...

Description Forces parts of an expression to be evaluated before others or forces a
parameter to be passed by value.

Comments Parentheses within Expressions

Parentheses override the normal precedence order of WM Basic operators,
forcing a subexpression to be evaluated before other parts of the expression.
For example, the use of parentheses in the following expressions causes
different results:

i = 1 + 2 * 3 'Assigns 7.
i = (1 + 2) * 3 'Assigns 9.

Use of parentheses can make your code easier to read, removing any
ambiguity in complicated expressions.

Parentheses Used in Parameter Passing

Parentheses can also be used when passing parameters to functions or
subroutines to force a given parameter to be passed by value, as shown below:

ShowForm i 'Pass i by reference.
ShowForm (i) 'Pass i by value.

Enclosing parameters within parentheses can be misleading. For example, the
following statement appears to be calling a function called ShowForm without
assigning the result:

ShowForm(i)

The above statement actually calls a subroutine called ShowForm, passing it the
variable i by value. It may be clearer to use the ByVal keyword in this case,
which accomplishes the same thing:

ShowForm ByVal i

Note: The result of an expression is always passed by value.

Chapter 2 * (operator) 43

Example 'This example uses parentheses to clarify an expression.

Sub Main()
bill = False
dave = True
jim = True

If (dave And bill) Or (jim And bill) Then
Msgbox "The required parties for the meeting are here."

Else
MsgBox "Someone is late again!"

End If
End Sub

See Also ByVal (keyword); Operator Precedence (topic).

Platform(s) Windows and Macintosh.

* (operator)
Syntax expression1 * expression2

Description Returns the product of expression1 and expression2.

Comments The result is the same type as the most precise expression, with the following
exceptions:

If one and the other then the type
expression is expression is of the result is

Single Long Double

Boolean Boolean Integer

Date Date Double

When the * operator is used with variants, the following additional rules apply:

Empty is treated as 0.

If the type of the result is an Integer variant that overflows, then the
result is automatically promoted to a Long variant.

If the type of the result is a Single, Long, or Date variant that
overflows, then the result is automatically promoted to a Double variant.

If expression1 is Null and expression2 is Boolean, then the result is
Empty. Otherwise, If either expression is Null, then the result is Null.

44 Working Model Basic User's Manual

Example 'This example assigns values to two variables and their product to
'a third variable, then displays the product of s# * t#.

Sub Main()
s# = 123.55
t# = 2.55
u# = s# * t#
MsgBox s# & " * " & t# & " = " & s# * t#

End Sub

See Also Operator Precedence (topic).

Platform(s) Windows and Macintosh.

+ (operator)
Syntax expression1 + expression2

Description Adds or concatenates two expressions.

Comments Addition operates differently depending on the type of the two expressions:

If one and the other
expression is expression is then

Numeric Numeric Perform a numeric add (see below).

String String Concatenate, returning a string.

Numeric String A runtime error is generated.

Variant String Concatenate, returning a String
variant.

Variant Numeric Perform a variant add (see below).

Empty variant Empty variant Return an Integer variant, value 0.

Empty variant Boolean variant Return an Integer variant (value 0 or -
1)

Empty variant Any data type Return the non-Empty expression
unchanged.

Null variant Any data type Return Null.

Variant Variant If either is numeric, add; otherwise,
concatenate.

When using + to concatenate two variants, the result depends on the types of
each variant at runtime. You can remove any ambiguity by using the &
operator.

Chapter 2 – (operator) 45

Numeric Add

A numeric add is performed when both expressions are numeric (i.e., not
variant or string). The result is the same type as the most precise expression,
with the following exceptions:

If one and the other then the type
expression is expression is of the result is

Single Long Double

Boolean Boolean Integer

A runtime error is generated if the result overflows its legal range.

Variant Add

If both expressions are variants, or one expression is numeric and the other
expression is Variant, then a variant add is performed. The rules for variant
add are the same as those for normal numeric add, with the following
exceptions:

If the type of the result is an Integer variant that overflows, then the
result is a Long variant.

If the type of the result is a Long, Single, or Date variant that
overflows, then the result is a Double variant.

Example 'This example assigns string and numeric variable values and
'then uses the + operator to concatenate the strings and form the
'sums of numeric variables.

Sub Main()
i$ = "Concatenation" + " is fun!"
j% = 120 + 5 'Addition of numeric literals
k# = j% + 2.7 'Addition of numeric variable
MsgBox "This concatenation becomes: '" i$ + Str(j%) + Str(k#) & "'"

End Sub

See Also & (operator); Operator Precedence (topic).

Platform(s) Windows and Macintosh.

– (operator)
Syntax 1 expression1 – expression2

Syntax 2 –expression

Description Returns the difference between expression1 and expression2 or, in the second
syntax, returns the negation of expression.

46 Working Model Basic User's Manual

Comments Syntax 1

The type of the result is the same as that of the most precise expression, with
the following exceptions:

If one and the other then the type
expression is expression is of the result is

Long Single Double

Boolean Boolean Integer

A runtime error is generated if the result overflows its legal range.

When either or both expressions are Variant, then the following additional
rules apply:

If expression1 is Null and expression2 is Boolean, then the result is
Empty. Otherwise, if either expression is Null, then the result is Null.

Empty is treated as an Integer of value 0.

If the type of the result is an Integer variant that overflows, then the
result is a Long variant.

If the type of the result is a Long, Single, or Date variant that
overflows, then the result is a Double variant.

Syntax 2

If expression is numeric, then the type of the result is the same type as
expression, with the following exception:

If expression is Boolean, then the result is Integer.

Note: In 2's compliment arithmetic, unary minus may result in an overflow
with Integer and Long variables when the value of expression is the largest
negative number representable for that data type. For example, the following
generates an overflow error:

Sub Main()
Dim a As Integer
a = -32768
a = -a 'Generates overflow here.

End Sub

When negating variants, overflow will never occur because the result will be
automatically promoted: integers to longs and longs to doubles.

Chapter 2 . (keyword) 47

Example 'This example assigns values to two numeric variables and their
'difference to a third variable, then displays the result.

Sub Main()
i% = 100
j# = 22.55
k# = i% - j#
MsgBox "The difference is: " & k#

End Sub

See Also Operator Precedence (topic).

Platform(s) Windows and Macintosh.

. (keyword)
Syntax 1 object.property

Syntax 2 structure.member

Description Separates an object from a property or a structure from a structure member.

Examples 'This example uses the period to separate an object from a property.

Sub Main()
MsgBox Clipboard.GetText()

End Sub

'This example uses the period to separate a structure from a member.

Type Rect
left As Integer
top As Integer
right As Integer
bottom As Integer

End Type

Sub Main()
Dim r As Rect
r.left = 10
r.right = 12

End Sub

See Also Objects (topic).

Platform(s) Windows and Macintosh.

/ (operator)
Syntax expression1 / expression2

Description Returns the quotient of expression1 and expression2.

48 Working Model Basic User's Manual

Comments The type of the result is Double, with the following exceptions:

If one and the other then the type
expression is expression is of the result is

Integer Integer Single

Single Single Single

Boolean Boolean Single

A runtime error is generated if the result overflows its legal range.

When either or both expressions is Variant, then the following additional
rules apply:

If expression1 is Null and expression2 is Boolean, then the result is Empty.
Otherwise, if either expression is Null, then the result is Null.

Empty is treated as an Integer of value 0.

If both expressions are either Integer or Single variants and the result
overflows, then the result is automatically promoted to a Double variant.

Example 'This example assigns values to two variables and their quotient to a
'third variable, then displays the result.

Sub Main()
i% = 100
j# = 22.55
k# = i% / j#
MsgBox "The quotient of i/j is: " & k#

End Sub

See Also \ (operator); Operator Precedence (topic).

Platform(s) Windows and Macintosh.

< (operator)
See Comparison Operators (topic).

<= (operator)
See Comparison Operators (topic).

<> (operator)
See Comparison Operators (topic).

Chapter 2 = (statement) 49

= (statement)
Syntax variable = expression

Description Assigns the result of an expression to a variable.

Comments When assigning expressions to variables, internal type conversions are
performed automatically between any two numeric quantities. Thus, you can
freely assign numeric quantities without regard to type conversions. However,
it is possible for an overflow error to occur when converting from larger to
smaller types. This occurs when the larger type contains a numeric quantity that
cannot be represented by the smaller type. For example, the following code will
produce a runtime error:

Dim amount As Long
Dim quantity As Integer

amount = 400123 'Assign a value out of range for int.
quantity = amount 'Attempt to assign to Integer.

When performing an automatic data conversion, underflow is not an error.

The assignment operator (=) cannot be used to assign objects. Use the Set
statement instead.

Example Sub Main()
a$ = "This is a string"
b% = 100
c# = 1213.3443
MsgBox a$ & "," & b% & "," & c#

End Sub

See Also Let (statement); Operator Precedence (topic); Set (statement); Expression
Evaluation (topic).

Platform(s) Windows and Macintosh.

= (operator)
See Comparison Operators (topic).

> (operator)
See Comparison Operators (topic).

>= (operator)
See Comparison Operators (topic).

\ (operator)
Syntax expression1 \ expression2

50 Working Model Basic User's Manual

Description Returns the integer division of expression1 and expression2.

Comments Before the integer division is performed, each expression is converted to the
data type of the most precise expression. If the type of the expressions is either
Single, Double, Date, or Currency, then each is rounded to Long.

If either expression is a Variant, then the following additional rules apply:

If either expression is Null, then the result is Null.

Empty is treated as an Integer of value 0.

Example 'This example assigns the quotient of two literals to a variable and
'displays the result.

Sub Main()
s% = 100.99 \ 2.6
MsgBox "Integer division of 100.99\2.6 is: " & s%

End Sub

See Also / (operator); Operator Precedence (topic).

Platform(s) Windows and Macintosh.

^ (operator)
Syntax expression1 ^ expression2

Description Returns expression1 raised to the power specified in expression2.

Comments The following are special cases:

Special Case Value

n^0 1

0^-n Undefined

0^+n 0

1^n 1

The type of the result is always Double, except with Boolean expressions,
in which case the result is Boolean. Fractional and negative exponents are
allowed.

If either expression is a Variant containing Null, then the result is Null.

It is important to note that raising a number to a negative exponent produces a
fractional result.

Chapter 2 _ (keyword) 51

Example Sub Main()
s# = 2 ^ 5 'Returns 2 to the 5th power.
r# = 16 ^ .5 'Returns the square root of 16.
MsgBox "2 to the 5th power is: " & s#
MsgBox "The square root of 16 is: " & r#

End Sub

See Also Operator Precedence (topic).

Platform(s) Windows and Macintosh.

_ (keyword)
Syntax s$ = "This is a very long line that I want to split " + _

"onto two lines"

Description Line-continuation character, which allows you to split a single WM Basic
statement onto more than one line.

Comments The line-continuation character cannot be used within strings and must be
preceded by white space (either a space or a tab).

The line-continuation character can be followed by a comment, as shown
below:

i = 5 + 6 & _ 'Continue on the next line.
"Hello"

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main()
'The line-continuation operator is useful when concatenating
'long strings.

msg = "This line is a line of text that" + crlf + "extends beyond "
_

+ "the borders of the editor" + crlf + "so it is split into
" _

+ "multiple lines"

'It is also useful for separating and continuing long calculation
lines.

b# = .124
a# = .223
s# = ((((Sin(b#) ^ 2) + (Cos(a#) ^ 2)) ^ .5) / _

 (((Sin(a#) ^ 2) + (Cos(b#) ^ 2)) ^ .5)) * 2.00
MsgBox msg & crlf & "The value of s# is: " & s#

End Sub

Platform(s) Windows and Macintosh.

Abs (function)
Syntax Abs(expression)

52 Working Model Basic User's Manual

Description Returns the absolute value of expression.

Comments If expression is Null, then Null is returned. Empty is treated as 0.

The type of the result is the same as that of expression, with the following
exceptions:

If expression is an Integer that overflows its legal range, then the result is
returned as a Long. This only occurs with the largest negative Integer:

Dim a As Variant
Dim i As Integer
i = -32768
a = Abs(i) 'Result is a Long.
i = Abs(i) 'Overflow!

If expression is a Long that overflows its legal range, then the result is
returned as a Double. This only occurs with the largest negative Long:

Dim a As Variant
Dim l As Long
l = -2147483648
a = Abs(l) 'Result is a Double.
l = Abs(l) 'Overflow!

If expression is a Currency value that overflows its legal range, an
overflow error is generated.

Example 'This example assigns absolute values to variables of four types and
'displays the result.

Sub Main()
s1% = Abs(- 10.55)
s2& = Abs(- 10.55)
s3! = Abs(- 10.55)
s4# = Abs(- 10.55)
MsgBox "The absolute values are: " & s1% & "," & s2& & "," & s3! &

"," & s4#
End Sub

See Also Sgn (function).

Platform(s) Windows and Macintosh.

ActivateControl (statement)
Syntax ActivateControl control

Description Sets the focus to the control with the specified name or ID.

Chapter 2 And (operator) 53

Comments The control parameter specifies either the name or the ID of the control to be
activated, as shown in the following table:

If control is Then

String A control associated with that name is activated.

For push buttons, option buttons, or check boxes, the control with this name is
activated. For list boxes, combo boxes, and text boxes, the control that
immediately follows the text control with this name is activated.

Numeric A control with this ID is activated. The ID is first converted to an Integer.

The ActivateControl statement generates a runtime error if the dialog
control referenced by control cannot be found.

You can use the ActivateControl statement to set the focus to a custom
control within a dialog box. First, set the focus to the control that immediately
precedes the custom control, then simulate a Tab keypress, as in the following
example:

ActivateControl "Portrait"
DoKeys "{TAB}"

Note: The ActivateControl statement is used to activate a control in another
application's dialog box. Use the DlgFocus statement to activate a control in a
dynamic dialog box.

Example 'This example runs Notepad using Program Manager's Run command. It uses
the
'ActivateControl command to switch focus between the different controls
of
'the Run dialog box.

Sub Main()
If AppFind$("Program Manager") = "" Then Exit Sub
AppActivate "Program Manager"
Menu "File.Run"
SendKeys "Notepad"
ActivateControl "Run minimized"
SendKeys " "
ActivateControl "OK"
SendKeys "{Enter}"

End Sub

See Also DlgFocus (statement).

Platform(s) Windows.

And (operator)
Syntax expression1 And expression2

54 Working Model Basic User's Manual

Description Performs a logical or binary conjunction on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants,
then a logical conjunction is performed as follows:

If the first and the second then the
expression is expression is result is

True True True
True False False
True Null Null
False True False
False False False
False Null Null
Null True Null
Null False False
Null Null Null

Binary Conjunction

If the two expressions are Integer, then a binary conjunction is performed,
returning an Integer result. All other numeric types (including Empty
variants) are converted to Long, and a binary conjunction is then performed,
returning a Long result.

Binary conjunction forms a new value based on a bit-by-bit comparison of the
binary representations of the two expressions according to the following table:

1 And 1 = 1 Example:
0 And 1 = 0 5 00001001
1 And 0 = 0 6 00001010
0 And 0 = 0 And 00001000

Chapter 2 AnswerBox (function) 55

Example Sub Main()
n1 = 1001
n2 = 1000
b1 = True
b2 = False
'This example performs a numeric bitwise And operation and stores

the
'result in N3.
n3 = n1 And n2

'This example performs a logical And comparing B1 and B2 and
displays the

'result.
If b1 And b2 Then

MsgBox "b1 and b2 are True; n3 is: " & n3
Else

MsgBox "b1 and b2 are False; n3 is: " & n3
End If

End Sub

See Also Operator Precedence (topic); Or (operator); Xor (operator); Eqv (operator); Imp
(operator).

Platform(s) Windows and Macintosh.

AnswerBox (function)
Syntax AnswerBox(prompt [,[button1] [,[button2] [,button3]]]]])

Description Displays a dialog box prompting the user for a response and returns an
Integer indicating which button was clicked (1 for the first button, 2 for the
second, and so on).

Comments The AnswerBox function takes the following parameters:

Parameter Description

prompt Text to be displayed above the text box. The prompt parameter can be any
expression convertible to a String.

WM Basic resizes the dialog box to hold the entire contents of prompt, up to a
maximum width of 5/8 of the width of the screen and a maximum height of 5/8
of the height of the screen. WM Basic word-wraps any lines too long to fit
within the dialog box and truncates all lines beyond the maximum number of
lines that fit in the dialog box.

You can insert a carriage-return/line-feed character in a string to cause a line
break in your message.

A runtime error is generated if this parameter is Null.

button1 Text for the first button. If omitted, then "OK" and "Cancel" are used. A
runtime error is generated if this parameter is Null.

56 Working Model Basic User's Manual

button2 Text for the second button. A runtime error is generated if this parameter is
Null.

button3 Text for the third button. A runtime error is generated if this parameter is Null.

The width of each button is determined by the width of the widest button.

The AnswerBox function returns 0 if the user selects Cancel.

r% = AnswerBox("Copy files?")

r% = AnswerBox("Copy files?", "Save", "Restore", "Cancel")

Example 'This example displays a dialog box containing three buttons. It
displays
'an additional message based on which of the three buttons is selected.

Sub Main()
r% = AnswerBox("Copy files?", "Save", "Restore", "Cancel")
Select Case r%

Case 1
MsgBox "Files will be saved."

Case 2
MsgBox "Files will be restored."

Case Else
MsgBox "Operation canceled."

End Select
End Sub

See Also MsgBox (statement); AskBox$ (function); AskPassword$ (function); InputBox,
InputBox$ (functions); OpenFilename$ (function); SaveFilename$ (function);
SelectBox (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

AnswerBox displays all text in its dialog box in 8-point MS Sans Serif.

Chapter 2 Any (data type) 57

Any (data type)
Description Used with the Declare statement to indicate that type checking is not to be

performed with a given argument.

Comments Given the following declaration:

Declare Sub Foo Lib "FOO.DLL" (a As Any)

the following calls are valid:

Foo 10
Foo "Hello, world."

Example 'The following example calls the FindWindow to determine if Program
Manager
'is running. This example will only run under Windows.

'This example uses the Any keyword to pass a NULL pointer, which is
accepted
'by the FindWindow function.

Declare Function FindWindow16 Lib "user" Alias "FindWindow" (ByVal
Class _

As Any,ByVal Title As Any) As Integer

Sub Main()
Dim hWnd As Variant

If Basic.Os = ebWin16 Then
hWnd = FindWindow16("PROGMAN",0&)

Else
hWnd = 0

End If

If hWnd <> 0 Then
MsgBox "Program manager is running, window handle is " & hWnd

End If
End Sub

See Also Declare (statement).

Platform(s) Windows and Macintosh.

AppActivate (statement)
Syntax AppActivate name$ | taskID

Description Activates an application given its name or task ID.

58 Working Model Basic User's Manual

Comments The AppActivate statement takes the following parameters:

Parameter Description

name$ String containing the name of the application to be activated.

taskID Number specifying the task ID of the application to be activated. Acceptable
task IDs are returned by the Shell function.

Note: When activating applications using the task ID, it is important to declare
the variable used to hold the task ID as a Variant. The type of the ID
depends on the platform on which WM Basic is running.

Examples 'This example activates Program Manager.

Sub Main()
AppActivate "Program Manager"

End Sub

'This example runs another application, then activates it.

Sub Main()
Dim id as variant
id = Shell("Notepad",7) 'Run Notepad minimized.
AppActivate "Program Manager" 'Activate Program Manager.
AppActivate id 'Now activate Notepad.

End Sub

See Also Shell (function); SendKeys (statement); WinActivate (statement).

Platform(s) Windows and Macintosh..

Platform
Notes:

Windows

The name$ parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly
matches name$, then a second search is performed for applications whose title
string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used.

Minimized applications are not restored before activation. Thus, activating a
minimized DOS application will not restore it; rather, it will highlight its icon.

A runtime error results if the window being activated is not enabled, as is the
case if that application is currently displaying a modal dialog box.

Chapter 2 AppClose (statement) 59

Platform
Notes:

Macintosh

On the Macintosh, the name$ parameter specifies the title of the desired
application. The MacID function can be used to specify the application
signature of the application to be activated:

AppActivate MacID(text$) | task

The text$ parameter is a four-character string containing an application
signature. A runtime error occurs if the MacID function is used on platforms
other than the Macintosh.

AppClose (statement)
Syntax AppClose [name$]

Description Closes the named application.

Comments The name$ parameter is a String containing the name of the application. If
the name$ parameter is absent, then the AppClose statement closes the active
application.

Example 'This example activates Excel, then closes it.

Sub Main()
If AppFind$("Microsoft Excel") = "" Then 'Make sure Excel is

there.
MsgBox "Excel is not running."
Exit Sub

End If
AppActivate "Microsoft Excel" 'Activate it (unnecessary).
AppClose "Microsoft Excel" 'Close it.

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppRestore (statement);
AppMove (statement); AppSize (statement).

Platform(s) Windows.

Platform
Notes:

Windows

A runtime error results if the application being closed is not enabled, as is the
case if that application is currently displaying a modal dialog box.

The name$ parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly
matches name$, then a second search is performed for applications whose title
string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used.

AppFilename$ (function)
Syntax AppFilename$([name$])

60 Working Model Basic User's Manual

Description Returns the filename of the named application.

Comments The name$ parameter is a String containing the name of the desired
application. If the name$ parameter is omitted, then the AppFilename$
function returns the filename of the active application.

Example 'This example switches the focus to Excel, then changes the current
directory
'to be the same as that of Excel.

Sub Main()
If AppFind$("Microsoft Excel") = "" Then 'Make sure Excel is

there.
MsgBox "Excel is not running."
Exit Sub

End If
AppActivate "Microsoft Excel" 'Activate Excel.
s$ = AppFilename$ 'Find where the Excel executable is.
d$ = FileParse$(s$,2) 'Get the path portion of the

filename.
MsgBox d$ 'Display directory name.

End Sub

See Also AppFind$ (function).

Platform(s) Windows.

Platform
Notes:

Windows

For DOS applications launched from Windows, the AppFilename function
returns the name of the DOS program, not winoldap.exe.

The name$ parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly
matches name$, then a second search is performed for applications whose title
string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used.

AppFind$ (function)
Syntax AppFind$(partial_name$)

Description Returns a String containing the full name of the application matching the
partial_name$.

Chapter 2 AppGetActive$ (function) 61

Comments The partial_name$ parameter specifies the title of the application to find. If
there is no exact match, WM Basic will find an application whose title begins
with partial_name$.

AppFind$ returns a zero-length string if the specified application cannot be
found.

AppFind$ is generally used to determine whether a given application is
running. The following expression returns True if Microsoft Word is running:

AppFind$("Microsoft Word")

Example 'This example checks to see whether Excel is running before activating
it.

Sub Main()
If AppFind$("Microsoft Excel") <> "" Then

AppActivate "Microsoft Excel"
Else

MsgBox "Excel is not running."
End If

End Sub

See Also AppFileName$ (function).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, this function returns a String containing the exact text
appearing in the title bar of the active application's main window.

AppGetActive$ (function)
Syntax AppGetActive$()

Description Returns a String containing the name of the application.

Comments If no application is active, the AppGetActive$ function returns a zero-length
string.

You can use AppGetActive$ to retrieve the name of the active application.
You can then use this name in calls to routines that require an application name.

Example Sub Main()
n$ = AppGetActive$()
AppMinimize n$

End Sub

See Also AppActivate (statement); WinFind (function).

Platform(s) Windows.

62 Working Model Basic User's Manual

Platform
Notes:

Windows

Under Windows, this function returns a String containing the exact text
appearing in the title bar of the active application's main window.

AppGetPosition (statement)
Syntax AppGetPosition X,Y,width,height [,name$]

Description Retrieves the position of the named application.

Comments The AppGetPosition statement takes the following parameters:

Parameter Description

X, Y Names of Integer variables to receive the position of the application's
window.

width, height Names of Integer variables to receive the size of the application's window.

name$ String containing the name of the application. If the name$ parameter is
omitted, then the active application is used.

The x, y, width, and height variables are filled with the position and size of the
application's window. If an argument is not a variable, then the argument is
ignored, as in the following example, which only retrieves the x and y
parameters and ignores the width and height parameters:

Dim x as integer, y as integer
AppGetPosition x,y,0,0,"Program Manager"

Example Sub Main()
Dim x As Integer, y As Integer
Dim cx As Integer, cy As Integer
AppGetPosition x,y,cx,cy,"Program Manager"

End Sub

See Also AppMove (statement); AppSize (statement).

Platform(s) Windows.

Platform
Notes:

Windows

The position and size of the window are returned in twips.

The name$ parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly
matches name$, then a second search is performed for applications whose title
string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used.

Chapter 2 AppGetState (function) 63

AppGetState (function)
Syntax AppGetState[([name$])]

Description Returns an Integer specifying the state of the top-level window.

Comments The AppGetState function returns any of the following values:

If the window is then AppGetState returns

Maximized ebMaximized

Minimized ebMinimized

Restored ebRestored

The name$ parameter is a String containing the name of the desired
application. If it is omitted, then the AppGetState function returns the name
of the active application.

Examples 'This example saves the state of Program Manager, changes it, then
restores
'it to its original setting.

Sub Main()
If AppFind$("Program Manager") = "" Then

MsgBox "Can't find Program Manager."
Exit Sub

End If
AppActivate "Program Manager" 'Activate Program Manager.
state = AppGetState 'Save its state.
AppMinimize 'Minimize it.
MsgBox "Program Manager is now minimized. Select OK to restore it."
AppActivate "Program Manager"
AppSetState state 'Restore it.

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppRestore (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the name$ parameter is the exact string appearing in the title
bar of the named application's main window. If no application is found whose
title exactly matches name$, then a second search is performed for applications
whose title string begins with name$. If more than one application is found that
matches name$, then the first application encountered is used.

AppHide (statement)
Syntax AppHide [name$]

Description Hides the named application.

64 Working Model Basic User's Manual

Comments If the named application is already hidden, the AppHide statement will have
no effect.

The name$ parameter is a String containing the name of the desired
application. If it is omitted, then the AppHide statement hides the active
application.

AppHide generates a runtime error if the named application is not enabled, as
is the case if that application is displaying a modal dialog box.

Example 'This example hides Program Manager.

Sub Main()
'See whether Program Manager is running.
If AppFind$("Program Manager") = "" Then Exit Sub
AppHide "Program Manager"
MsgBox "Program Manager is now hidden. Press OK to show it once

again."
AppShow "Program Manager"

End Sub

See Also AppShow (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the name$ parameter is the exact string appearing in the title
bar of the named application's main window. If no application is found whose
title exactly matches name$, then a second search is performed for applications
whose title string begins with name$. If more than one application is found that
matches name$, then the first application encountered is used.

AppList (statement)
Syntax AppList AppNames$()

Description Fills an array with the names of all open applications.

Comments The AppNames$ parameter must specify either a zero- or one-dimensioned
dynamic String array or a one-dimensional fixed String array. If the array
is dynamic, then it will be redimensioned to match the number of open
applications. For fixed arrays, AppList first erases each array element, then
begins assigning application names to the elements in the array. If there are
fewer elements than will fit in the array, then the remaining elements are
unused. WM Basic returns a runtime error if the array is too small to hold the
new elements.

After calling this function, you can use LBound and UBound to determine the
new size of the array.

Chapter 2 AppMaximize (statement) 65

Example 'This example minimizes all applications on the desktop.

Sub Main()
Dim apps$()
AppList apps

'Check to see whether any applications were found.
If ArrayDims(apps) = 0 Then Exit Sub

For i = LBound(apps) To UBound(apps)
AppMinimize apps(i)

Next i
End Sub

See Also WinList (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the name of an application is considered to be the exact text
that appears in the title bar of the application's main window.

AppMaximize (statement)
Syntax AppMaximize [name$]

Description Maximizes the named application.

Comments The name$ parameter is a String containing the name of the desired
application. If it is omitted, then the AppMaximize function maximizes the
active application.

Example Sub Main()
AppMaximize "Program Manager" 'Maximize Program Manager.

If AppFind$("NotePad") <> "" Then
AppActivate "NotePad" 'Set the focus to NotePad.
AppMaximize 'Maximize it.

End If
End Sub

See Also AppMinimize (statement); AppRestore (statement); AppMove (statement);
AppSize (statement); AppClose (statement).

Platform(s) Windows.

66 Working Model Basic User's Manual

Platform
Notes:

Windows

If the named application is maximized or hidden, the AppMaximize statement
will have no effect.

The name$ parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly
matches name$, then a second search is performed for applications whose title
string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used.

AppMaximize generates a runtime error if the named application is not
enabled, as is the case if that application is displaying a modal dialog box.

AppMinimize (statement)
Syntax AppMinimize [name$]

Description Minimizes the named application.

Comments The name$ parameter is a String containing the name of the desired
application. If it is omitted, then the AppMinimize function minimizes the
active application.

Example Sub Main()
AppMinimize "Program Manager" 'Maximize Program Manager.

If AppFind$("NotePad") <> "" Then
AppActivate "NotePad" 'Set the focus to NotePad.
AppMinimize 'Maximize it.

End If
End Sub

See Also AppMaximize (statement); AppRestore (statement); AppMove (statement);
AppSize (statement); AppClose (statement).

Platform(s) Windows.

Platform
Notes:

Windows

If the named application is minimized or hidden, the AppMinimize statement
will have no effect.

The name$ parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly
matches name$, then a second search is performed for applications whose title
string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used.

AppMinimize generates a runtime error if the named application is not
enabled, as is the case if that application is displaying a modal dialog box.

Chapter 2 AppMove (statement) 67

AppMove (statement)
Syntax AppMove X, Y [,name$]

Description Sets the upper left corner of the named application to a given location.

Comments The AppMove statement takes the following parameters:

Parameter Description

X, Y Integer coordinates specifying the upper left corner of the new location of the
application, relative to the upper left corner of the display.

name$ String containing the name of the application to move. If this parameter is
omitted, then the active application is moved.

Example 'This example activates Program Manager, then moves it 10 pixels to the
'right.

Sub Main()
Dim x%,y%
AppActivate "Program Manager" 'Activate Program Manager.
AppGetPosition x%,y%,0,0 'Retrieve its position.
x% = x% + Screen.TwipsPerPixelX * 10 'Add 10 pixels.
AppMove x% + 10,y% 'Nudge it 10 pixels to the right.

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppRestore (statement);
AppSize (statement); AppClose (statement).

Platform(s) Windows.

Platform
Notes:

Windows

If the named application is maximized or hidden, the AppMove statement will
have no effect.

The X and Y parameters are specified in twips.

AppMove will accept X and Y parameters that are off the screen.

The name$ parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly
matches name$, then a second search is performed for applications whose title
string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used.

AppMove generates a runtime error if the named application is not enabled, as
is the case if that application is currently displaying a modal dialog box.

AppRestore (statement)
Syntax AppRestore [name$]

68 Working Model Basic User's Manual

Description Restores the named application.

Comments The name$ parameter is a String containing the name of the application to
restore. If this parameter is omitted, then the active application is restored.

Example 'This example minimizes Program Manager, then restores it.

Sub Main()
If AppFind$("Program Manager") = "" Then Exit Sub
AppActivate "Program Manager"
AppMinimize "Program Manager"
MsgBox "Program Manager is now minimized. Press OK to restore it."
AppRestore "Program Manager"

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppMove (statement);
AppSize (statement); AppClose (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the name$ parameter is the exact string appearing in the title
bar of the named application's main window. If no application is found whose
title exactly matches name$, then a second search is performed for applications
whose title string begins with name$. If more than one application is found that
matches name$, then the first application encountered is used.

AppRestore will have an effect only if the main window of the named
application is either maximized or minimized.

AppRestore will have no effect if the named window is hidden.

AppRestore generates a runtime error if the named application is not
enabled, as is the case if that application is currently displaying a modal dialog
box.

AppSetState (statement)
Syntax AppSetState newstate [,name$]

Description Maximizes, minimizes, or restores the named application, depending on the
value of newstate.

Chapter 2 AppShow (statement) 69

Comments The AppSetState statement takes the following parameters:

Parameter Description

newstate Integer specifying the new state of the window. It can be any of the following
values:

Value Description

ebMaximized The named application is maximized.

ebMinimized The named application is minimized.

ebRestored The named application is restored.

name$ String containing the name of the application to change. If this parameter is
omitted, then the active application is used.

Example See AppGetState (function).

See Also AppGetState (function); AppMinimize (statement); AppMaximize (statement);
AppRestore (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the name$ parameter is the exact string appearing in the title
bar of the named application's main window. If no application is found whose
title exactly matches name$, then a second search is performed for applications
whose title string begins with name$. If more than one application is found that
matches name$, then the first application encountered is used.

AppShow (statement)
Syntax AppShow [name$]

Description Makes the named application visible.

Comments The name$ parameter is a String containing the name of the application to
show. If this parameter is omitted, then the active application is shown.

Example See AppHide (statement).

See Also AppHide (statement).

Platform(s) Windows.

70 Working Model Basic User's Manual

Platform
Notes:

Windows

If the named application is already visible, AppShow will have no effect.

The name$ parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly
matches name$, then a second search is performed for applications whose title
string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used.

AppShow generates a runtime error if the named application is not enabled, as
is the case if that application is displaying a modal dialog box.

AppSize (statement)
Syntax AppSize width,height [,name$]

Description Sets the width and height of the named application.

Comments The AppSize statement takes the following parameters:

Parameter Description

width, height Integer coordinates specifying the new size of the application.

name$ String containing the name of the application to resize. If this parameter is
omitted, then the active application is used.

Example 'This example enlarges the active application by 10 pixels in both the
'vertical and horizontal directions.

Sub Main()
Dim w%,h%
AppGetPosition 0,0,w%,h% 'Get current width/height.
x% = x% + Screen.TwipsPerPixelX * 10 'Add 10 pixels.
y% = y% + Screen.TwipsPerPixelY * 10 'Add 10 pixels.
AppSize w%,h% 'Change to new size.

End Sub

See Also AppMaximize (statement); AppMinimize (statement); AppRestore (statement);
AppMove (statement); AppClose (statement).

Platform(s) Windows.

Chapter 2 AppType (function) 71

Platform
Notes:

Windows

The width and height parameters are specified in twips.

This statement will only work if the named application is restored (i.e., not
minimized or maximized).

The name$ parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly
matches name$, then a second search is performed for applications whose title
string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used.

A runtime error results if the application being resized is not enabled, which is
the case if that application is displaying a modal dialog box when an AppSize
statement is executed.

AppType (function)
Syntax AppType [(name$)]

Description Returns an Integer indicating the executable file type of the named
application:

ebDos DOS executable

ebWindows Windows executable

Comments The name$ parameter is a String containing the name of the application. If
this parameter is omitted, then the active application is used.

72 Working Model Basic User's Manual

Example 'This example creates an array of strings containing the names of all
the
'running Windows applications. It uses the AppType command to determine
'whether an application is a Windows application or a DOS application.

Sub Main()
Dim apps$(),wapps$()

AppList apps 'Retrieve a list of all Windows and DOS apps.
If ArrayDims(apps) = 0 Then

MsgBox "There are no running applications."
Exit Sub

End If

'Create an array to hold only the Windows apps.
ReDim wapps$(UBound(apps))
n = 0 'Copy the Windows apps from one array to the target array.
For i = LBound(apps) to UBound(apps)

If AppType(apps(i)) = ebWindows Then
wapps(n) = apps(i)
n = n + 1

End If
Next i

If n = 0 Then'Make sure at least one Windows app was found.
MsgBox "There are no running Windows applications."
Exit Sub

End If

ReDim Preserve wapps(n - 1) 'Resize to hold the exact number.
'Let the user pick one.
index% = SelectBox("Windows Applications","Select a Windows

application:",wapps)
End Sub

See Also AppFilename$ (function).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the name$ parameter is the exact string appearing in the title
bar of the named application's main window. If no application is found whose
title exactly matches name$, then a second search is performed for applications
whose title string begins with name$. If more than one application is found that
matches name$, then the first application encountered is used.

ArrayDims (function)
Syntax ArrayDims(arrayvariable)

Description Returns an Integer containing the number of dimensions of a given array.

Chapter 2 ArrayDims (function) 73

Comments This function can be used to determine whether a given array contains any
elements or if the array is initially created with no dimensions and then
redimensioned by another function, such as the FileList function, as shown
in the following example.

Example 'This example allocates an empty (null-dimensioned) array; fills the
array
'with a list of filenames, which resizes the array; then tests the
array
'dimension and displays an appropriate message.

Sub Main()
Dim f$()
FileList f$,"c:*.bat"
If ArrayDims(f$) = 0 Then

MsgBox "The array is empty."
Else

MsgBox "The array size is: " & (UBound(f$) - UBound(f$) + 1)
End If

End Sub

See Also LBound (function); UBound (function); Arrays (topic).

Platform(s) Windows and Macintosh.

74 Working Model Basic User's Manual

Arrays (topic)
Declaring Array Variables

Arrays in WM Basic are declared using any of the following statements:

Dim
Public
Private

For example:

Dim a(10) As Integer
Public LastNames(1 to 5,-2 to 7) As Variant
Private

Arrays of any data type can be created, including Integer, Long, Single,
Double, Boolean, Date, Variant, Object, user-defined structures, and
data objects.

The lower and upper bounds of each array dimension must be within the
following range:

-32768 <= bound <= 32767

Arrays can have up to 60 dimensions.

Arrays can be declared as either fixed or dynamic, as described below.

Fixed Arrays

The dimensions of fixed arrays cannot be adjusted at execution time. Once
declared, a fixed array will always require the same amount of storage. Fixed
arrays can be declared with the Dim, Private, or Public statement by
supplying explicit dimensions. The following example declares a fixed array of
ten strings:

Dim a(10) As String

Fixed arrays can be used as members of user-defined data types. The following
example shows a structure containing fixed-length arrays:

Type Foo
rect(4) As Integer
colors(10) As Integer

End Type

Only fixed arrays can appear within structures.

Chapter 2 Arrays (topic) 75

Dynamic Arrays

Dynamic arrays are declared without explicit dimensions, as shown below:

Public Ages() As Integer

Dynamic arrays can be resized at execution time using the Redim statement:

Redim Ages$(100)

Subsequent to their initial declaration, dynamic arrays can be redimensioned
any number of times. When redimensioning an array, the old array is first
erased unless you use the Preserve keyword, as shown below:

Redim Preserve Ages$(100)

Dynamic arrays cannot be members of user-defined data types.

Passing Arrays

Arrays are always passed by reference.

Querying Arrays

The following table describes the functions used to retrieve information about
arrays.

Use this function to

LBound Retrieve the lower bound of an array. A runtime error is generated if the array
has no dimensions.

UBound Retrieve the upper bound of an array. A runtime error is generated if the array
has no dimensions.

ArrayDims Retrieve the number of dimensions of an array. This function returns 0 if the
array has no dimensions.

Operations on Arrays

The following table describes the function that operate on arrays:

Use this command to

ArraySort Sort an array of integers, longs, singles, doubles, currency, Booleans, dates, or
variants.

FileList Fill an array with a list of files in a given directory.

DiskDrives Fill an array with a list of valid drive letters.

AppList Fill an array with a list of running applications.

WinList Fill an array with a list of top-level windows.

SelectBox Display the contents of an array in a list box.

76 Working Model Basic User's Manual

PopupMenu Display the contents of an array in a pop-up menu.

ReadIniSection Fill an array with the item names from a section in an ini file.

FileDirs Fill an array with a list of subdirectories.

Erase Erase all the elements of an array.

ReDim Establish the bounds and dimensions of an array.

Dim Declare an array.

ArraySort (statement)
Syntax ArraySort array()

Description Sorts a single-dimensioned array in ascending order.

Comments If a string array is specified, then the routine sorts alphabetically in ascending
order using case-sensitive string comparisons. If a numeric array is specified,
the ArraySort statement sorts smaller numbers to the lowest array index
locations.

WM Basic generates a runtime error if you specify an array with more than one
dimension.

When sorting an array of variants, the following rules apply:

A runtime error is generated if any element of the array is an object.

String is greater than any numeric type.

Null is less than String and all numeric types.

Empty is treated as a number with the value 0.

String comparison is case-sensitive (this function is not affected by the
Option Compare setting).

Example 'This example dimensions an array and fills it with filenames using
FileList,
'then sorts the array and displays it in a select box.

Sub Main()
Dim f$()
FileList f$,"c:*.*"
ArraySort f$
r% = SelectBox("Files","Choose one:",f$)

End Sub

See Also ArrayDims (function); LBound (function); UBound (function).

Platform(s) Windows and Macintosh.

Chapter 2 Asc (function) 77

Asc (function)
Syntax Asc(text$)

Description Returns an Integer containing the numeric code for the first character of
text$.

Comments The return value is an integer between 0 and 255.

Example 'This example fills an array with the ASCII values of the string s
components
'and displays the result.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
s$ = InputBox("Please enter a string.","Enter String")
If s$ = "" Then End 'Exit if no string entered.
For i = 1 To Len(s$)

msg = msg & Asc(Mid$(s$,i,1)) & crlf
Next i
MsgBox "The Asc values of the string are:" & msg

End Sub

See Also Chr, Chr$ (functions).

Platform(s) Windows and Macintosh.

AskBox$ (function)
Syntax AskBox$(prompt$ [,default$])

Description Displays a dialog box requesting input from the user and returns that input as a
String.

78 Working Model Basic User's Manual

Comments The AskBox$ function takes the following parameters:

Parameter Description

prompt$ String containing the text to be displayed above the text box. The dialog box is
sized to the appropriate width depending on the width of prompt$. A runtime
error is generated if prompt$ is Null.

default$ String containing the initial content of the text box. The user can return the
default by immediately selecting OK. A runtime error is generated if default$ is
Null.

The AskBox$ function returns a String containing the input typed by the
user in the text box. A zero-length string is returned if the user selects Cancel.

When the dialog box is displayed, the text box has the focus.

The user can type a maximum of 255 characters into the text box displayed by
AskBox$.

s$ = AskBox$("Type in the filename:")

s$ = AskBox$("Type in the filename:","filename.txt")

Example 'This example asks the user to enter a filename and then displays what
'he or she has typed.

Sub Main()
s$ = AskBox$("Type in the filename:")
MsgBox "The filename was: " & s$

End Sub

See Also MsgBox (statement); AskPassword$ (function); InputBox, InputBox$
(functions); OpenFilename$ (function); SaveFilename$ (function); SelectBox
(function).

Chapter 2 AskPassword$ (function) 79

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

The text in the dialog box is displayed in 8-point MS Sans Serif.

AskPassword$ (function)
Syntax AskPassword$(prompt$)

Description Returns a String containing the text that the user typed.

Comments Unlike the AskBox$ function, the user sees asterisks in place of the characters
that are actually typed. This allows the hidden input of passwords.

The prompt$ parameter is a String containing the text to appear above the
text box. The dialog box is sized to the appropriate width depending on the
width of prompt$.

When the dialog box is displayed, the text box has the focus.

A maximum of 255 characters can be typed into the text box.

A zero-length string is returned if the user selects Cancel.

s$ = AskPassword$("Type in the password:")

Example Sub Main()
s$ = AskPassword$("Type in the password:")
MsgBox "The password entered is: " & s$

End Sub

See Also MsgBox (statement); AskBox$ (function); InputBox, InputBox$ (functions);
OpenFilename$ (function); SaveFilename$ (function); SelectBox (function);
AnswerBox (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

The text in the dialog box is displayed in 8-point MS Sans Serif.

80 Working Model Basic User's Manual

Atn (function)
Syntax Atn(number)

Description Returns the angle (in radians) whose tangent is number.

Comments Some helpful conversions:

Pi (3.1415926536) radians = 180 degrees.

1 radian = 57.2957795131 degrees.

1 degree = .0174532925 radians.

Example 'This example finds the angle whose tangent is 1 (45 degrees) and
displays
'the result.

Sub Main()
a# = Atn(1.00)
MsgBox "1.00 is the tangent of " & a# & " radians (45 degrees)."

End Sub

See Also Tan (function); Sin (function); Cos (function).

Platform(s) Windows and Macintosh.

Basic.Capability (method)
Syntax Basic.Capability(which)

Description Returns True if the specified capability exists on the current platform; returns
False otherwise.

Comments The which parameter is an Integer specifying the capability for which to
test. It can be any of the following values:

Value Returns True If the Platform Supports

1 Disk drives

2 System file attribute (ebSystem)

3 Hidden file attribute (ebHidden)

4 Volume label file attribute (ebVolume)

5 Archive file attribute (ebArchive)

6 Denormalized floating-point math

7 File locking (i.e., the Lock and Unlock statements)

8 Big endian byte ordering

Chapter 2 Basic.Eoln$ (property) 81

Example 'This example tests to see whether your current platform supports disk
'drives and hidden file attributes and displays the result.

Sub Main()
msg = "This operating system "

If Basic.Capability(1) Then
msg = msg & "supports disk drives."

Else
msg = msg & "does not support disk drives."

End If

MsgBox msg
End Sub

See Also Cross-Platform Scripting (topic); Basic.OS (property).

Platform(s) Windows and Macintosh.

Basic.Eoln$ (property)
Syntax Basic.Eoln$

Description Returns a String containing the end-of-line character sequence appropriate to
the current platform.

Comments This string will be either a carriage return, a carriage return/line feed, or a line
feed.

Example 'This example writes two lines of text in a message box.

Sub Main()
MsgBox "This is the first line of text." & Basic.Eoln$ & "This is

the second line of text."
End Sub

See Also Cross-Platform Scripting (topic); Basic.PathSeparator$ (property).

Platform(s) Windows and Macintosh.

Basic.FreeMemory (property)
Syntax Basic.FreeMemory

Description Returns a Long representing the number of bytes of free memory in WM
Basic's data space.

Comments This function returns the size of the largest free block in WM Basic's data
space. Before this number is returned, the data space is compacted,
consolidating free space into a single contiguous free block.

WM Basic's data space contains strings and dynamic arrays.

82 Working Model Basic User's Manual

Example 'This example displays free memory in a dialog box.

Sub Main()
MsgBox "The largest free memory block is: " & Basic.FreeMemory

End Sub

See Also System.TotalMemory (property); System.FreeMemory (property);
System.FreeResources (property); Basic.FreeMemory (property).

Platform(s) Windows and Macintosh.

Basic.HomeDir$ (property)
Syntax Basic.HomeDir$

Description Returns a String specifying the directory containing WM Basic.

Comments This method is used to find the directory in which the WM Basic files are
located.

Example 'This example assigns the home directory to HD and displays it.

Sub Main()
hd$ = Basic.HomeDir$
MsgBox "The WM Basic home directory is: " & hd$

End Sub

See Also System.WindowsDirectory$ (property).

Platform(s) Windows and Macintosh.

Basic.OS (property)
Syntax Basic.OS

Description Returns an Integer indicating the current platform.

Comments Value Constant Platform
0 ebWin16 Microsoft Windows
10 ebMacintosh Apple Macintosh
The value returned is not necessarily the platform under which WM Basic is
running but rather an indicator of the platform for which WM Basic was
created. For example, it is possible to run WM Basic for Windows under
Windows NT Workstation. In this case, Basic.OS will return 0.

Chapter 2 Basic.PathSeparator$ (property) 83

Example 'This example determines the operating system for which this version
was
'created and displays the appropriate message.

Sub Main()
Select Case Basic.OS

Case ebWin16
s = "Windows"

Case ebMacintosh
s = "Macintosh"

Case Else
s = "neither Windows nor Macintosh"

End Select
MsgBox "You are currently running " & s

End Sub

See Also Cross-Platform Scripting (topic).

Platform(s) Windows and Macintosh.

Basic.PathSeparator$ (property)
Syntax Basic.PathSeparator$

Description Returns a String containing the path separator appropriate for the current
platform.

Comments The returned string is any one of the following characters: / (slash), \ (back
slash), : (colon)

Example Sub Main()
MsgBox "The path separator for this platform is: " &

Basic.PathSeparator$
End Sub

See Also Basic.Eoln$ (property); Cross-Platform Scripting (topic).

Platform(s) Windows and Macintosh.

Basic.Version$ (property)
Syntax Basic.Version$

Description Returns a String containing the version of WM Basic.

Comments This function returns the major and minor version numbers in the format
major.minor.BuildNumber, as in "2.00.30."

Example 'This example displays the current version of WM Basic.

Sub Main()
MsgBox "Version " & Basic.Version$ & " of WM Basic is running"

End Sub

84 Working Model Basic User's Manual

Platform(s) Windows and Macintosh.

Beep (statement)
Syntax Beep

Description Makes a single system beep.

Example 'This example causes the system to beep five times and displays a
reminder
'message.

Sub Main()
For i = 1 To 5

Beep
Sleep(200)

Next i
MsgBox "You have an upcoming appointment!"

End Sub

See Also Mci (function).

Platform(s) Windows and Macintosh.

Begin Dialog (statement)
Syntax Begin Dialog DialogName [x],[y],width,height,title$ [,[.DlgProc] [,[PicName$]

[,style]]]
Dialog Statements

End Dialog

Description Defines a dialog box template for use with the Dialog statement and function.

Comments A dialog box template is constructed by placing any of the following statements
between the Begin Dialog and End Dialog statements (no other
statements besides comments can appear within a dialog box template):

Picture OptionButton OptionGroup
CancelButton Text TextBox
GroupBox DropListBox ListBox
ComboBox CheckBox PictureButton
PushButton OKButton

Chapter 2 Begin Dialog (statement) 85

The Begin Dialog statement requires the following parameters:

Parameter Description

x, y Integer coordinates specifying the position of the upper left corner of the
dialog box relative to the parent window. These coordinates are in dialog units.

If either coordinate is unspecified, then the dialog box will be centered in that
direction on the parent window.

width, height Integer coordinates specifying the width and height of the dialog box (in
dialog units).

DialogName Name of the dialog box template. Once a dialog box template has been created,
a variable can be dimensioned using this name.

title$ String containing the name to appear in the title bar of the dialog box. If this
parameter specifies a zero-length string, then the name "WM Basic" is used.

.DlgProc Name of the dialog function. The routine specified by .DlgProc will be called
by WM Basic when certain actions occur during processing of the dialog box.
(See DlgProc [prototype] for additional information about dialog functions.)

If this omitted, then WM Basic processes the dialog box using the default
dialog box processing behavior.

PicName$ String specifying the name of a DLL containing pictures. This DLL is used as
the origin for pictures when the picture type is 10. If omitted, then no picture
library will be used.

style Specifies extra styles for the dialog. It can be any of the following values:

Value Meaning

0 Dialog does not contain a title or close box.

1 Dialog contains a title and no close box.

2 (or omitted) Dialog contains both the title and close box.

WM Basic generates an error if the dialog box template contains no controls.

A dialog box template must have at least one PushButton, OKButton, or
CancelButton statement. Otherwise, there will be no way to close the
dialog box.

Dialog units are defined as 1/4 the width of the font in the horizontal direction
and 1/8 the height of the font in the vertical direction.

Any number of user dialog boxes can be created, but each one must be created
using a different name as the DialogName. Only one user dialog box may be
invoked at any time.

86 Working Model Basic User's Manual

Expression Evaluation within the Dialog Box Template

The Begin Dialog statement creates the template for the dialog box. Any
expression or variable name that appears within any of the statements in the
dialog box template is not evaluated until a variable is dimensioned of type
DialogName. The following example shows this behavior:

MyTitle$ = "Hello, World"
Begin Dialog MyTemplate 16,32,116,64,MyTitle$

OKButton 12,40,40,14
End Dialog
MyTitle$ = "Sample Dialog"
Dim Dummy As MyTemplate
rc% = Dialog(Dummy)

The above example creates a dialog box with the title "Sample Dialog".

Expressions within dialog box templates cannot reference external subroutines
or functions.

All controls within a dialog box use the same font. The fonts used for text and
text box control can be changed explicitly by setting the font parameters in the
Text and TextBox statements. A maximum of 128 fonts can be used within a
single dialog, although the practical limitation may be less.

Example 'This example creates an exit dialog box.

Sub Main()
Begin Dialog QuitDialogTemplate 16,32,116,64,"Quit"

Text 4,8,108,8,"Are you sure you want to exit?"
CheckBox 32,24,63,8,"Save Changes",.SaveChanges
OKButton 12,40,40,14
CancelButton 60,40,40,14

End Dialog
Dim QuitDialog As QuitDialogTemplate
rc% = Dialog(QuitDialog)

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement);
Dialog (function); Dialog (statement); DropListBox (statement); GroupBox
(statement); ListBox (statement); OKButton (statement); OptionButton
(statement); OptionGroup (statement); Picture (statement); PushButton
(statement); Text (statement); TextBox (statement); DlgProc (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Within user dialog boxes, the default font is 8-point MS Sans Serif.

Chapter 2 Boolean (data type) 87

Platform
Notes:

Macintosh

Within user dialog boxes, the default font is 10-point Geneva.

Boolean (data type)
Syntax Boolean

Description A data type capable of representing the logical values True and False.

Comments Boolean variables are used to hold a binary value—either True or False.
Variables can be declared as Boolean using the Dim, Public, or Private
statement.

Variants can hold Boolean values when assigned the results of comparisons
or the constants True or False.

Internally, a Boolean variable is a 2-byte value holding –1 (for True) or 0
(for False).

Any type of data can be assigned to Boolean variables. When assigning, non-
0 values are converted to True, and 0 values are converted to False.

When appearing as a structure member, Boolean members require 2 bytes of
storage.

When used within binary or random files, 2 bytes of storage are required.

When passed to external routines, Boolean values are sign-extended to the
size of an integer on that platform (either 16 or 32 bits) before pushing onto the
stack.

There is no type-declaration character for Boolean variables.

Boolean variables that have not yet been assigned are given an initial value of
False.

See Also Currency (data type); Date (data type); Double (data type); Integer (data
type); Long (data type); Object (data type); Single (data type); String (data
type); Variant (data type); DefType (statement); CBool (function); True
(constant); False (constant).

Platform(s) Windows and Macintosh.

ButtonEnabled (function)
Syntax ButtonEnabled(name$ | id)

88 Working Model Basic User's Manual

Description Returns True if the specified button within the current window is enabled;
returns False otherwise.

Comments The ButtonEnabled function takes the following parameters:

Parameter Description

name$ String containing the name of the push button.

id Integer specifying the ID of the push button.

When a button is enabled, it can be clicked using the SelectButton
statement.

Note: The ButtonEnabled function is used to determine whether a push button
is enabled in another application's dialog box. Use the DlgEnable function to
retrieve the enabled state of a push button in a dynamic dialog box.

Example 'This code fragment checks to see whether a button is enabled before
'clicking it.

Sub Main()
If ButtonEnabled("Browse...") Then

SelectButton "Browse..."
Else

MsgBox "Can't browse right now."
End If

End Sub

See Also ButtonExists (function); SelectButton (statement).

Platform(s) Windows.

ButtonExists (function)
Syntax ButtonExists(name$ | id)

Description Returns True if the specified button exists within the current window; returns
False otherwise.

Comments The ButtonExists function takes the following parameters:

Parameter Description

name$ String containing the name of the push button.

id Integer specifying the ID of the push button.

Note: The ButtonExists function is used to determine whether a push button
exists in another application's dialog box. There is no equivalent function for
use with dynamic dialog boxes.

Chapter 2 ByRef (keyword) 89

Example 'This code fragment selects the More button if it exists. If it does
not
'exist, then this code fragment does nothing.

Sub Main()
If ButtonExists("More >>") Then

SelectButton "More >>" 'Display more stuff.
End If

End Sub

See Also ButtonEnabled (function); SelectButton (statement).

Platform(s) Windows.

ByRef (keyword)
Syntax ...,ByRef parameter,...

Description Used within the Sub...End Sub, Function...End Function, or Declare
statement to specify that a given parameter can be modified by the called
routine.

Comments Passing a parameter by reference means that the caller can modify that
variable's value.

Unlike the ByVal keyword, the ByRef keyword cannot be used when passing a
parameter. The absence of the ByVal keyword is sufficient to force a parameter
to be passed by reference:

MySub ByVal i 'Pass i by value.
MySub ByRef i 'Illegal (will not compile).
MySub i 'Pass i by reference.

Example Sub Test(ByRef a As Variant)
a = 14

End Sub

Sub Main()
b = 12
Test b
MsgBox "The ByRef value is: " & b 'Displays 14.

End Sub

See Also () (keyword), ByVal (keyword).

Platform(s) Windows and Macintosh.

ByVal (keyword)
Syntax ...ByVal parameter...

Description Forces a parameter to be passed by value rather than by reference.

90 Working Model Basic User's Manual

Comments The ByVal keyword can appear before any parameter passed to any function,
statement, or method to force that parameter to be passed by value. Passing a
parameter by value means that the caller cannot modify that variable's value.

Enclosing a variable within parentheses has the same effect as the ByVal
keyword:

Foo ByVal i 'Forces i to be passed by value.
Foo(i) 'Forces i to be passed by value.

When calling external statements and functions (i.e., routines defined using the
Declare statement), the ByVal keyword forces the parameter to be passed by
value regardless of the declaration of that parameter in the Declare statement.
The following example shows the effect of the ByVal keyword used to passed
an Integer to an external routine:

Declare Sub Foo Lib "MyLib" (ByRef i As Integer)

i% = 6
Foo ByVal i% 'Pass a 2-byte Integer.
Foo i% 'Pass a 4-byte pointer to an Integer.

Since the Foo routine expects to receive a pointer to an Integer, the first call to
Foo will have unpredictable results.

Example 'This example demonstrates the use of the ByVal keyword.

Sub Foo(a As Integer)
a = a + 1

End Sub

Sub Main()
Dim i As Integer
i = 10
Foo i
MsgBox "The ByVal value is: " & i 'Displays 11 (Foo changed the

value).
Foo ByVal i
MsgBox "The Byval value is still: " & i 'Displays 11 (Foo did

not change the value).
End Sub

See Also () (keyword), ByRef (keyword).

Platform(s) Windows and Macintosh.

Call (statement)
Syntax Call subroutine_name [(arguments)]

Description Transfers control to the given subroutine, optionally passing the specified
arguments.

Chapter 2 CancelButton (statement) 91

Comments Using this statement is equivalent to:

subroutine_name [arguments]

Use of the Call statement is optional. The Call statement can only be used to
execute subroutines; functions cannot be executed with this statement. The
subroutine to which control is transferred by the Call statement must be
declared outside of the Main procedure, as shown in the following example.

Example 'This example demonstrates the use of the Call statement to pass
control to
'another function.

Sub Example_Call(s$)
'This subroutine is declared externally to Main and displays the

text
'passed in the parameter s$.
MsgBox "Call: " & s$

End Sub

Sub Main()
'This example assigns a string variable to display, then calls

subroutine
'Example_Call, passing parameter S$ to be displayed in a message

box
'within the subroutine.
s$ = "DAVE"
Example_Call s$
Call Example_Call("SUSAN")

End Sub

See Also Goto (statement); GoSub (statement); Declare (statement).

Platform(s) Windows and Macintosh.

CancelButton (statement)
Syntax CancelButton X, Y, width, height [,.Identifier]

Description Defines a Cancel button that appears within a dialog box template.

92 Working Model Basic User's Manual

Comments This statement can only appear within a dialog box template (i.e., between the
Begin Dialog and End Dialog statements).

Selecting the Cancel button (or pressing Esc) dismisses the user dialog box,
causing the Dialog function to return 0. (Note: A dialog function can redefine
this behavior.) Pressing the Esc key or double-clicking the close box will have
no effect if a dialog box does not contain a CancelButton statement.

The CancelButton statement requires the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

.Identifier Optional parameter specifying the name by which this control can be referenced
by statements in a dialog function (such as DlgFocus and DlgEnable). If
omitted, then the word Cancel is used.

A dialog box must contain at least one OKButton, CancelButton, or
PushButton statement; otherwise, the dialog box cannot be dismissed.

Example 'This example creates a dialog box with OK and Cancel buttons.

Sub Main()
Begin Dialog SampleDialogTemplate 37,32,48,52,"Sample"

OKButton 4,12,40,14,.OK
CancelButton 4,32,40,14,.Cancel

End Dialog
Dim SampleDialog As SampleDialogTemplate
r% = Dialog(SampleDialog)
If r% = 0 Then MsgBox "Cancel was pressed!"

End Sub

See Also CheckBox (statement); ComboBox (statement); Dialog (function); Dialog
(statement); DropListBox (statement); GroupBox (statement); ListBox
(statement); OKButton (statement); OptionButton (statement); OptionGroup
(statement); Picture (statement); PushButton (statement); Text (statement);
TextBox (statement); Begin Dialog (statement), PictureButton (statement).

Platform(s) Windows and Macintosh.

CBool (function)
Syntax CBool(expression)

Description Converts expression to True or False, returning a Boolean value.

Chapter 2 CCur (function) 93

Comments The expression parameter is any expression that can be converted to a
Boolean. A runtime error is generated if expression is Null.

All numeric data types are convertible to Boolean. If expression is zero, then
the CBool returns False; otherwise, CBool returns True. Empty is treated as
False.

If expression is a String, then CBool first attempts to convert it to a number,
then converts the number to a Boolean. A runtime error is generated if
expression cannot be converted to a number.

A runtime error is generated if expression cannot be converted to a Boolean.

Example 'This example uses CBool to determine whether a string is numeric
'or just plain text.

Sub Main()
Dim IsNumericOrDate As Boolean
s$ = "34224.54"
IsNumericOrDate = CBool(IsNumeric(s$) Or IsDate(s$))
If IsNumericOrDate = True Then

MsgBox s$ & " is either a valid date or number!"
Else

MsgBox s$ & " is not a valid date or number!"
End If

End Sub

See Also CCur (function); CDate, CVDate (functions); CDbl (function); CInt (function);
CLng (function); CSng (function); CStr (function); CVar (function); CVErr
(function); Boolean (data type).

Platform(s) Windows and Macintosh.

CCur (function)
Syntax CCur(expression)

Description Converts any expression to a Currency.

Comments This function accepts any expression convertible to a Currency, including
strings. A runtime error is generated if expression is Null or a String not
convertible to a number. Empty is treated as 0.

When passed a numeric expression, this function has the same effect as
assigning the numeric expression number to a Currency.

When used with variants, this function guarantees that the variant will be
assigned a Currency (VarType 6).

94 Working Model Basic User's Manual

Example 'This example displays the value of a String converted into a Currency
value.

Sub Main()
i$ = "100.44"
MsgBox "The currency value is: " & CCur(i$)

End Sub

See Also CBool (function); CDate, CVDate (functions); CDbl (function); CInt
(function); CLng (function); CSng (function); CStr (function); CVar (function);
CVErr (function); Currency (data type).

Platform(s) Windows and Macintosh.

CDate, CVDate (functions)
Syntax CDate(expression)

CVDate(expression)

Description Converts expression to a date, returning a Date value.

Comments The expression parameter is any expression that can be converted to a Date. A
runtime error is generated if expression is Null.

If expression is a String, an attempt is made to convert it to a Date using the
current country settings. If expression does not represent a valid date, then an
attempt is made to convert expression to a number. A runtime error is generated
if expression cannot be represented as a date.

These functions are sensitive to the date and time formats of your computer.

The CDate and CVDate functions are identical.

Example 'This example takes two dates and computes the difference between them.

Sub Main()
Dim date1 As Date
Dim date2 As Date
Dim diff As Date

date1 = CDate(#1/1/1994#)
date2 = CDate("February 1, 1994")
diff = DateDiff("d",date1,date2)

MsgBox "The date difference is " & CInt(diff) & " days."
End Sub

See Also CCur (function); CBool (function); CDbl (function); CInt (function); CLng
(function); CSng (function); CStr (function); CVar (function); CVErr (function);
Date (data type).

Platform(s) Windows and Macintosh.

Chapter 2 CDbl (function) 95

CDbl (function)
Syntax CDbl(expression)

Description Converts any expression to a Double.

Comments This function accepts any expression convertible to a Double, including strings.
A runtime error is generated if expression is Null. Empty is treated as 0.0.

When passed a numeric expression, this function has the same effect as
assigning the numeric expression number to a Double.

When used with variants, this function guarantees that the variant will be
assigned a Double (VarType 5).

Example 'This example displays the result of two numbers as a Double.

Sub Main()
i% = 100
j! = 123.44
MsgBox "The double value is: " & CDbl(i% * j!)

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CInt
(function); CLng (function); CSng (function); CStr (function); CVar (function);
CVErr (function); Double (data type).

Platform(s) Windows and Macintosh.

ChDir (statement)
Syntax ChDir newdir$

Description Changes the current directory of the specified drive to newdir$.

This routine will not change the current drive. (See ChDrive [statement].)

Example 'This example saves the current directory, then changes to the root
'directory, displays the old and new directories, restores the old
directory,
'and displays it.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
save$ = CurDir$
ChDir (Basic.PathSeparator$)
MsgBox "Old: " & save$ & crlf & "New: " & CurDir$
ChDir (save$)
MsgBox "Directory restored to: " & CurDir$

End Sub

See Also ChDrive (statement); CurDir, CurDir$ (functions); Dir, Dir$ (functions);
MkDir (statement); RmDir (statement); DirList (statement).

96 Working Model Basic User's Manual

Platform(s) Windows and Macintosh.

Platform
Notes:

Macintosh

The Macintosh does not support drive letters.

The Macintosh uses the colon (":") as the path separator. A double colon ("::")
specifies the parent directory.

ChDrive (statement)
Syntax ChDrive DriveLetter$

Description Changes the default drive to the specified drive.

Comments Only the first character of DriveLetter$ is used.

DriveLetter$ is not case-sensitive.

If DriveLetter$ is empty, then the current drive is not changed.

Example 'This example saves the current directory in CD, then extracts the
current
'drive letter and saves it in Save$. If the current drive is D, then it
is
'changed to C; otherwise, it is changed to D. Then the saved drive is
'restored and displayed.

Const crlf$ = Chr$(13) + Chr$(10)

Sub Main()
cd$ = CurDir$
save$ = Mid$(CurDir$,1,1)
If save$ = "D" Then

ChDrive("C")
Else

ChDrive("D")
End If
MsgBox "Old: " & save$ & crlf & "New: " & CurDir$
ChDrive (save$)
MsgBox "Directory restored to: " & CurDir$

End Sub

See Also ChDir (statement); CurDir, CurDir$ (functions); Dir, Dir$ (functions);
MkDir (statement); RmDir (statement); DiskDrives (statement).

Platform(s) Windows.

Platform
Notes:

Macintosh

Macintosh does not support drive letters.

CheckBox (statement)
Syntax CheckBox X, Y, width, height, title$, .Identifier

Chapter 2 CheckBox (statement) 97

Description Defines a check box within a dialog box template.

Comments Check box controls are either on or off, depending on the value of .Identifier.

This statement can only appear within a dialog box template (i.e., between the
Begin Dialog and End Dialog statements).

The CheckBox statement requires the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

title$ String containing the text that appears within the check box. This text may
contain an ampersand character to denote an accelerator letter, such as "&Font"
for Font (indicating that the Font control may be selected by pressing the F
accelerator key).

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates an
integer variable whose value corresponds to the state of the check box (1 =
checked; 0 = unchecked). This variable can be accessed using the syntax:

DialogVariable.Identifier.

When the dialog box is first created, the value referenced by .Identifier is used
to set the initial state of the check box. When the dialog box is dismissed, the
final state of the check box is placed into this variable. By default, the
.Identifier variable contains 0, meaning that the check box is unchecked.

Example 'This example displays a dialog box with two check boxes in different
states.

Sub Main()
Begin Dialog SaveOptionsTemplate 36,32,151,52,"Save"

GroupBox 4,4,84,40,"GroupBox"
CheckBox 12,16,67,8,"Include heading",.IncludeHeading
CheckBox 12,28,73,8,"Expand keywords",.ExpandKeywords
OKButton 104,8,40,14,.OK
CancelButton 104,28,40,14,.Cancel

End Dialog
Dim SaveOptions As SaveOptionsTemplate
SaveOptions.IncludeHeading = 1 'Check box initially on.
SaveOptions.ExpandKeywords = 0 'Check box initially off.
r% = Dialog(SaveOptions)
If r% = -1 Then

MsgBox "OK was pressed."
End If

End Sub

98 Working Model Basic User's Manual

See Also CancelButton (statement); Dialog (function); Dialog (statement);
DropListBox (statement); GroupBox (statement); ListBox (statement);
OKButton (statement); OptionButton (statement); OptionGroup (statement);
Picture (statement); PushButton (statement); Text (statement); TextBox
(statement); Begin Dialog (statement), PictureButton (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

On Windows, accelerators are underlined, and the accelerator combination
Alt+letter is used.

Platform
Notes:

Macintosh

On the Macintosh, accelerators are normal in appearance, and the accelerator
combination Command+letter is used.

CheckBoxEnabled (function)
Syntax CheckBoxEnabled(name$ | id)

Description Returns True if the specified check box within the current window is enabled;
returns False otherwise.

Comments The CheckBoxEnabled function takes the following parameters:

Parameter Description

name$ String containing the name of the check box.

id Integer specifying the ID of the check box.

When a check box is enabled, its state can be set using the SetCheckBox
statement.

Note: The CheckBoxEnabled function is used to determine whether a check
box is enabled in another application's dialog box. Use the DlgEnable function
within dynamic dialog boxes.

Example 'This code checks to see whether a check box is enabled.

Sub Main()
If CheckBoxEnabled("Portrait") Then

SetCheckBox "Portrait",1
End If

End Sub

See Also CheckBoxExists (function); GetCheckBox (function); SetCheckBox
(statement).

Platform(s) Windows.

Chapter 2 CheckBoxExists (function) 99

CheckBoxExists (function)
Syntax CheckBoxExists(name$ | id)

Description Returns True if the specified check box exists within the current window;
returns False otherwise.

Comments The CheckBoxExists function takes the following parameters:

Parameter Description

name$ String containing the name of the check box.

id Integer specifying the ID of the check box.

Note: The CheckBoxExists function is used to determine whether a check box
exists in another application's dialog box. There is no equivalent function for
use with dynamic dialog boxes.

Example 'This code fragment checks to ensure that the Portrait check box is
'selectable before selecting it.

Sub Main()
If CheckBoxExists("Portrait") Then

If CheckBoxEnabled("Portrait") Then
SetCheckBox "Portrait",1

End If
End If

End Sub

See Also CheckBoxEnabled (function); GetCheckBox (function); SetCheckBox
(statement).

Platform(s) Windows.

Choose (function)
Syntax Choose(index,expression1,expression2,...,expression13)

Description Returns the expression at the specified index position.

Comments The index parameter specifies which expression is to be returned. If index is 1,
then expression1 is returned; if index is 2, then expression2 is returned, and so
on. If index is less than 1 or greater than the number of supplied expressions,
then Null is returned.

The Choose function returns the expression without converting its type. Each
expression is evaluated before returning the selected one.

100 Working Model Basic User's Manual

Example 'This example assigns a variable of indeterminate type to a.

Sub Main()
Dim a As Variant
Dim c As Integer
c% = 2
a = Choose(c%,"Hello, world",#1/1/94#,5.5,False)
MsgBox "Item " & c% & " is '" & a & "'" 'Displays the date

passed as parameter 2.
End Sub

See Also Switch (function); IIf (function); If...Then...Else (statement);
Select...Case (statement).

Platform(s) Windows and Macintosh.

Chr, Chr$ (functions)
Syntax Chr[$](Code)

Description Returns the character whose value is Code.

Comments Code must be an Integer between 0 and 255.

Chr$ returns a string, whereas Chr returns a String variant.

The Chr$ function can be used within constant declarations, as in the
following example:

Const crlf = Chr$(13) + Chr$(10)

Some common uses of this function are:

Chr$(9) Tab
Chr$(13) + Chr$(10) End-of-line (carriage return, linefeed)
Chr$(26) End-of-file
Chr$(0) Null

Chapter 2 CInt (function) 101

Example Sub Main()
'Concatenates carriage return (13) and line feed (10) to CRLF$,
'then displays a multiple-line message using CRLF$ to separate

lines.
crlf$ = Chr$(13) + Chr$(10)
MsgBox "First line." & crlf$ & "Second line."

'Fills an array with the ASCII characters for ABC and displays
their

'corresponding characters.
Dim a%(2)
For i = 0 To 2

a%(i) = (65 + i)
Next i
MsgBox "The first three elements of the array are: " & Chr$(a%(0))

& Chr$(a%(1)) & Chr$(a%(2))
End Sub

See Also Asc (function); Str, Str$ (functions).

Platform(s) Windows and Macintosh.

CInt (function)
Syntax CInt(expression)

Description Converts expression to an Integer.

Comments This function accepts any expression convertible to an Integer, including
strings. A runtime error is generated if expression is Null. Empty is treated as 0.

The passed numeric expression must be within the valid range for integers:

–32768 <= expression <= 32767

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as
assigning a numeric expression to an Integer. Note that integer variables are
rounded before conversion.

When used with variants, this function guarantees that the expression is
converted to an Integer variant (VarType 2).

102 Working Model Basic User's Manual

Example 'This example demonstrates the various results of integer manipulation
'with CInt.

Sub Main()

'(1) Assigns i# to 100.55 and displays its integer representation
(101).

i# = 100.55
MsgBox "The value of CInt(i) = " & CInt(i#)

'(2) Sets j# to 100.22 and displays the CInt representation (100).
j# = 100.22
MsgBox "The value of CInt(j) = " & CInt(j#)

'(3) Assigns k% (integer) to the CInt sum of j# and k% and displays
k% (201).

k% = CInt(i# + j#)
 MsgBox "The integer sum of 100.55 and 100.22 is: " & k%

'(4) Reassigns i# to 50.35 and recalculates k%, then displays the
result

'(note rounding).
i# = 50.35
k% = CInt(i# + j#)
MsgBox "The integer sum of 50.35 and 100.22 is: " & k%

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl
(function); CLng (function); CSng (function); CStr (function); CVar (function);
CVErr (function); Integer (data type).

Platform(s) Windows and Macintosh.

Clipboard$ (function)
Syntax Clipboard$[()]

Description Returns a String containing the contents of the Clipboard.

Comments If the Clipboard doesn't contain text or the Clipboard is empty, then a zero-
length string is returned.

Example 'This example puts text on the Clipboard, displays it, clears the
Clipboard,
'and displays the Clipboard again.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Clipboard$ "Hello out there!"
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$
Clipboard.Clear
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$

End Sub

Chapter 2 Clipboard$ (statement) 103

See Also Clipboard$ (statement); Clipboard.GetText (method); Clipboard.SetText
(method).

Platform(s) Windows and Macintosh.

Clipboard$ (statement)
Syntax Clipboard$ NewContent$

Description Copies NewContent$ into the Clipboard.

Example 'This example puts text on the Clipboard, displays it, clears the
Clipboard,
'and displays the Clipboard again.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Clipboard$ "Hello out there!"
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$
Clipboard.Clear
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$

End Sub

See Also Clipboard$ (function); Clipboard.GetText (method); Clipboard.SetText
(method).

Platform(s) Windows and Macintosh.

Clipboard.Clear (method)
Syntax Clipboard.Clear

Description This method clears the Clipboard by removing any content.

Example 'This example puts text on the Clipboard, displays it, clears the
Clipboard,
'and displays the Clipboard again.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Clipboard$ "Hello out there!"
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$
Clipboard.Clear
MsgBox "The text in the Clipboard is:" & crlf & Clipboard$

End Sub

Platform(s) Windows and Macintosh.

Clipboard.GetFormat (method)
Syntax WhichFormat = Clipboard.GetFormat(format)

104 Working Model Basic User's Manual

Description Returns True if data of the specified format is available in the Clipboard;
returns False otherwise.

Comments This method is used to determine whether the data in the Clipboard is of a
particular format. The format parameter is an Integer representing the
format to be queried:

Format Description
1 Text
2 Bitmap
3 Metafile
8 Device-independent bitmap (DIB)
9 Color palette

Example 'This example puts text on the Clipboard, checks whether there is text
on
'the Clipboard, and if there is, displays it.

Sub Main()
Clipboard$ "Hello out there!"
If Clipboard.GetFormat(1) Then
 MsgBox Clipboard$
Else

MsgBox "There is no text in the Clipboard."
End If

End Sub

See Also Clipboard$ (function); Clipboard$ (statement).

Platform(s) Windows and Macintosh.

Clipboard.GetText (method)
Syntax text$ = Clipboard.GetText([format])

Description Returns the text contained in the Clipboard.

Comments The format parameter, if specified, must be 1.

Chapter 2 Clipboard.SetText (method) 105

Example 'This example retrieves the text from the Clipboard and checks to
'make sure that it contains the word "dog."

Option Compare Text

Sub Main()
If Clipboard.GetFormat(1) Then

If Instr(Clipboard.GetText(1),"dog",1) = 0 Then
MsgBox "The Clipboard doesn't contain the word ""dog."""

Else
MsgBox "The Clipboard contains the word ""dog""."

End If
Else

MsgBox "The Clipboard does not contain text."
End If

End Sub

See Also Clipboard$ (statement); Clipboard$ (function); Clipboard.SetText
(method).

Platform(s) Windows and Macintosh.

Clipboard.SetText (method)
Syntax Clipboard.SetText data$ [,format]

Description Copies the specified text string to the Clipboard.

Comments The data$ parameter specifies the text to be copied to the Clipboard. The
format parameter, if specified, must be 1.

Example 'This example gets the contents of the Clipboard and uppercases it.

Sub Main()
If Not Clipboard.GetFormat(1) Then Exit Sub
Clipboard.SetText UCase$(Clipboard.GetText(1)),1

End Sub

See Also Clipboard$ (statement); Clipboard.GetText (method); Clipboard$
(function).

Platform(s) Windows and Macintosh.

CLng (function)
Syntax CLng(expression)

Description Converts expression to a Long.

106 Working Model Basic User's Manual

Comments This function accepts any expression convertible to a Long, including strings.
A runtime error is generated if expression is Null. Empty is treated as 0.

The passed expression must be within the following range:

–2147483648 <= expression <= 2147483647

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as
assigning the numeric expression to a Long. Note that long variables are
rounded before conversion.

When used with variants, this function guarantees that the expression is
converted to a Long variant (VarType 3).

Example 'This example displays the results for various conversions of i and j
(note
'rounding).

Sub Main()
i% = 100
j& = 123.666
MsgBox "The result is: " & CLng(i% * j&) 'Displays 12367.
MsgBox "The variant type is: " & Vartype(CLng(i%))

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl
(function); CInt (function); CSng (function); CStr (function); CVar (function);
CVErr (function); Long (data type).

Platform(s) Windows and Macintosh.

Close (statement)
Syntax Close [[#] filenumber [,[#] filenumber]...]

Description Closes the specified files.

Comments If no arguments are specified, then all files are closed.

Example 'This example opens four files and closes them in various combinations.

Sub Main()
Open "test1" For Output As #1
Open "test2" For Output As #2
Open "test3" For Random As #3
Open "test4" For Binary As #4
MsgBox "The next available file number is :" & FreeFile()
Close #1 'Closes file 1 only.
Close #2, #3 'Closes files 2 and 3.
Close 'Closes all remaining files(4).
MsgBox "The next available file number is :" & FreeFile()

End Sub

Chapter 2 ComboBox (statement) 107

See Also Open (statement); Reset (statement); End (statement).

Platform(s) Windows and Macintosh.

ComboBox (statement)
Syntax ComboBox X,Y,width,height,ArrayVariable,.Identifier

Description This statement defines a combo box within a dialog box template.

Comments When the dialog box is invoked, the combo box will be filled with the elements
from the specified array variable.

This statement can only appear within a dialog box template (i.e., between the
Begin Dialog and End Dialog statements).

The ComboBox statement requires the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

ArrayVariable Single-dimensioned array used to initialize the elements of the combo box. If
this array has no dimensions, then the combo box will be initialized with no
elements. A runtime error results if the specified array contains more than one
dimension.

ArrayVariable can specify an array of any fundamental data type (structures are
not allowed). Null and Empty values are treated as zero-length strings.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates a
string variable whose value corresponds to the content of the edit field of the
combo box. This variable can be accessed using the syntax:

DialogVariable.Identifier.

When the dialog box is invoked, the elements from ArrayVariable are placed
into the combo box. The .Identifier variable defines the initial content of the
edit field of the combo box. When the dialog box is dismissed, the .Identifier
variable is updated to contain the current value of the edit field.

108 Working Model Basic User's Manual

Example 'This example creates a dialog box that allows the user to select a day
of
'the week.

Sub Main()
Dim days$(6)
days$(0) = "Monday"
days$(1) = "Tuesday"
days$(2) = "Wednesday"
days$(3) = "Thursday"
days$(4) = "Friday"
days$(5) = "Saturday"
days$(6) = "Sunday"

Begin Dialog DaysDialogTemplate 16,32,124,96,"Days"
OKButton 76,8,40,14,.OK
Text 8,10,39,8,"&Weekdays:"
ComboBox 8,20,60,72,days$,.Days

End Dialog
Dim DaysDialog As DaysDialogTemplate
DaysDialog.Days = "Tuesday"
r% = Dialog(DaysDialog)
MsgBox "You selected: " & DaysDialog.Days

End Sub

See Also CancelButton (statement); CheckBox (statement); Dialog (function); Dialog
(statement); DropListBox (statement); GroupBox (statement); ListBox
(statement); OKButton (statement); OptionButton (statement); OptionGroup
(statement); Picture (statement); PushButton (statement); Text (statement);
TextBox (statement); Begin Dialog (statement), PictureButton (statement).

Platform(s) Windows and Macintosh.

ComboBoxEnabled (function)
Syntax ComboBoxEnabled(name$ | id)

Description Returns True if the specified combo box is enabled within the current window
or dialog box; returns False otherwise.

Chapter 2 ComboBoxExists (function) 109

Comments The ComboBoxEnabled function takes the following parameters:

Parameter Description

name$ String containing the name of the combo box.

The name of a combo box is determined by scanning the window list looking
for a text control with the given name that is immediately followed by a combo
box. A runtime error is generated if a combo box with that name cannot be
found within the active window.

id Integer specifying the ID of the combo box.

A runtime error is generated if the specified combo box does not exist.

Note: The ComboBoxEnabled function is used to determine whether a combo
box is enabled in another application's dialog box. Use the DlgEnable function
in dynamic dialog boxes.

Example 'This example checks to see whether a combo box is active. If it is,
'then it inserts some text into it.

Sub Main()
If ComboBoxEnabled("Filename:") Then

SelectComboBoxItem "Filename:","sample.txt"
End If
If ComboBoxEnabled(365) Then

SelectComboBoxItem 365,3 'Select the third item.
End If

End Sub

See Also ComboBoxExists (function); GetComboBoxItem$ (function);
GetComboBoxItemCount (function); SelectComboBoxItem (statement).

Platform(s) Windows.

ComboBoxExists (function)
Syntax ComboBoxExists(name$ | id)

Description Returns True if the specified combo box exists within the current window or
dialog box; returns False otherwise.

110 Working Model Basic User's Manual

Comments The ComboBoxExists function takes the following parameters:

Parameter Description

name$ String containing the name of the combo box.

The name of a combo box is determined by scanning the window list looking
for a text control with the given name that is immediately followed by a combo
box. A runtime error is generated if a combo box with that name cannot be
found within the active window.

id Integer specifying the ID of the combo box.

Note: The ComboBoxExists function is used to determine whether a combo
box exists in another application's dialog box. There is no equivalent function
for use with dynamic dialog boxes.

Example 'This code fragment checks to ensure that a combo box exists and is
enabled
'before selecting the last item.

Sub Main()
If ComboBoxExists("Filename:") Then

If ComboBoxEnabled("Filename:") Then
NumItems = GetComboBoxItemCount("Filename:")
SelectComboBoxItem "Filename:",NumItems

End If
End If

End Sub

See Also ComboBoxEnabled (function); GetComboBoxItem$ (function);
GetComboBoxItemCount (function); SelectComboBoxItem (statement).

Platform(s) Windows.

Command, Command$ (functions)
Syntax Command[$][()]

Description Returns the argument from the command line used to start the application.

Comments Command$ returns a string, whereas Command returns a String variant.

Chapter 2 Comments (topic) 111

Example 'This example gets the command line and parameters, checks to see
whether
'the string "/s" is present, and displays the result.

Sub Main()
cmd$ = Command$
If (InStr(cmd$,"/s")) <> 0 Then

MsgBox "Application was started with the /s switch."
Else

MsgBox "Application was started without the /s switch."
End If

If cmd$ <> "" Then
MsgBox "The command line startup options were: " & cmd$

Else
MsgBox "No command line startup options were used!"

End If
End Sub

See Also Environ, Environ$ (functions).

Platform(s) Windows and Macintosh.

Comments (topic)
Comments can be added to WM Basic code in the following manner:

All text between a single quotation mark and the end of the line is ignored:

MsgBox "Hello" 'Displays a message box.

The REM statement causes the compiler to ignore the entire line:

REM This is a comment.

WM Basic supports C-style multiline comment blocks /*...*/, as shown in
the following example:

MsgBox "Before comment"
/* This stuff is all commented out.
This line, too, will be ignored.
This is the last line of the comment. */
MsgBox "After comment"

Note: C-style comments can be nested.

Comparison Operators (topic)
Syntax expression1 [< | > | <= | >= | <> | =] expression2

DescriptionComparison operators return True or False depending on the operator.

112 Working Model Basic User's Manual

Comments The comparison operators are listed in the following table:

Operator Returns True If

> expression1 is greater than expression2

< expression1 is less than expression2

<= expression1 is less than or equal to expression2

>= expression1 is greater than or equal to expression2

<> expression1 is not equal to expression2

= expression1 is equal to expression2

This operator behaves differently depending on the types of the expressions, as
shown in the following table:

If one and the other
expression is expression is then

Numeric Numeric A numeric comparison is performed (see
below).

String String A string comparison is performed (see
below).

Numeric String A compile error is generated.

Variant String A string comparison is performed (see
below).

Variant Numeric A variant comparison is performed (see
below).

Null variant Any data type Returns Null.

Variant Variant A variant comparison is performed (see
below).

String Comparisons

If the two expressions are strings, then the operator performs a text comparison
between the two string expressions, returning True if expression1 is less than
expression2. The text comparison is case-sensitive if Option Compare is
Binary; otherwise, the comparison is case-insensitive.

When comparing letters with regard to case, lowercase characters in a string
sort greater than uppercase characters, so a comparison of "a" and "A" would
indicate that "a" is greater than "A".

Chapter 2 Comparison Operators (topic) 113

Numeric Comparisons

When comparing two numeric expressions, the less precise expression is
converted to be the same type as the more precise expression.

Dates are compared as doubles. This may produce unexpected results as it is
possible to have two dates that, when viewed as text, display as the same date
when, in fact, they are different. This can be seen in the following example:

Sub Main()
Dim date1 As Date
Dim date2 As Date

date1 = Now
date2 = date1 + 0.000001 'Adds a fraction of a second.

MsgBox date2 = date1 'Prints False (the dates are
different).

MsgBox date1 & "," & date2 'Prints two dates that are the
same.

End Sub

Variant Comparisons

When comparing variants, the actual operation performed is determined at
execution time according to the following table:

If one and the other
variant is variant is then

Numeric Numeric The variants are compared as numbers.

String String The variants are compared as text.

Numeric String The number is less than the string.

Null Any other data type Null.

Numeric Empty The number is compared with 0.

String Empty The string is compared with a zero-length
string.

114 Working Model Basic User's Manual

Example Sub Main()
'Tests two literals and displays the result.
If 5 < 2 Then

MsgBox "5 is less than 2."
Else

MsgBox "5 is not less than 2."
End If

'Tests two strings and displays the result.
If "This" < "That" Then

MsgBox "'This' is less than 'That'."
Else

MsgBox "'That' is less than 'This'."
End If

End Sub

See Also Operator Precedence (topic); Is (operator); Like (operator); Option Compare
(statement).

Platform(s) Windows and Macintosh.

Const (statement)
Syntax Const name [As type] = expression [,name [As type] = expression]...

Description Declares a constant for use within the current script.

Comments The name is only valid within the current WM Basic script. Constant names
must follow these rules:

1. Must begin with a letter.

2. May contain only letters, digits, and the underscore character.

3. Must not exceed 80 characters in length.

4. Cannot be a reserved word.

Constant names are not case-sensitive.

The expression must be assembled from literals or other constants. Calls to
functions are not allowed except calls to the Chr$ function, as shown below:

Const s$ = "Hello, there" + Chr(44)

Constants can be given an explicit type by declaring the name with a type-
declaration character, as shown below:

Const a% = 5 'Constant Integer whose value is 5
Const b# = 5 'Constant Double whose value is 5.0
Const c$ = "5" 'Constant String whose value is "5"
Const d! = 5 'Constant Single whose value is 5.0
Const e& = 5 'Constant Long whose value is 5

Chapter 2 Const (statement) 115

The type can also be given by specifying the As type clause:

Const a As Integer = 5 'Constant Integer whose value is 5
Const b As Double = 5 'Constant Double whose value is 5.0
Const c As String = "5" 'Constant String whose value is "5"
Const d As Single = 5 'Constant Single whose value is 5.0
Const e As Long = 5 'Constant Long whose value is 5

You cannot specify both a type-declaration character and the type:

Const a% As Integer = 5 'THIS IS ILLEGAL.

If an explicit type is not given, then WM Basic will choose the most imprecise
type that completely represents the data, as shown below:

Const a = 5 'Integer constant
Const b = 5.5 'Single constant
Const c = 5.5E200 'Double constant

Constants defined within a Sub or Function are local to that subroutine or
function. Constants defined outside of all subroutines and function can be used
anywhere within that script. The following example demonstrates the scoping
of constants:

Const DefFile = "default.txt"

Sub Test1
Const DefFile = "foobar.txt"
MsgBox DefFile 'Displays "foobar.txt".

End Sub

Sub Test2
MsgBox DefFile 'Displays

"default.txt".
End Sub

Example 'This example displays the declared constants in a dialog box (crlf
produces
'a new line in the dialog box).

Const crlf = Chr$(13) + Chr$(10)
Const s As String = "This is a constant."

Sub Main()
MsgBox s$ & crlf & "The constants are shown above."

End Sub

See Also DefType (statement); Let (statement); = (statement); Constants (topic).

Platform(s) Windows and Macintosh.

116 Working Model Basic User's Manual

Constants (topic)
Constants are variables that cannot change value during script execution. The
following constants are predefined by WM Basic:

True False Empty
Pi ebRightButton ebLeftButton
ebPortrait ebLandscape ebEmpty
ebWindows ebMaximized ebMinimized
ebRestored ebNormal ebReadOnly
ebHidden ebSystem ebVolume
ebDirectory ebArchive ebNone
ebOKOnly ebOKCancel ebAbortRetryIgnore
ebYesNoCancel ebYesNo ebRetryCancel
ebCritical ebQuestion ebExclamation
ebInformation ebApplicationModal
ebDefaultButton1
ebDefaultButton2 ebDefaultButton3 ebSystemModal
ebOK ebCancel ebAbort
ebRetry ebIgnore ebYes
ebNo ebWin16 ebMacintosh
ebInteger ebLong ebSingle
ebDouble ebDate ebBoolean
ebObject ebDataObject ebVariant
ebCurrency ebNull

You can define your own constants using the Const statement.

Cos (function)
Syntax Cos(angle)

Description Returns a Double representing the cosine of angle.

Comments The angle parameter is a Double specifying an angle in radians.

Example 'This example assigns the cosine of pi/4 radians (45 degrees) to C# and
'displays its value.

Sub Main()
c# = Cos(3.14159 / 4)
MsgBox "The cosine of 45 degrees is: " & c#

End Sub

See Also Tan (function); Sin (function); Atn (function).

Platform(s) Windows and Macintosh.

Chapter 2 CreateObject (function) 117

CreateObject (function)
Syntax CreateObject(class$)

Description Creates an OLE automation object and returns a reference to that object.

Comments The class$ parameter specifies the application used to create the object and the
type of object being created. It uses the following syntax:

"application.class",

where application is the application used to create the object and class is the
type of the object to create.

At runtime, CreateObject looks for the given application and runs that
application if found. Once the object is created, its properties and methods can
be accessed using the dot syntax (e.g., object.property = value).

There may be a slight delay when an automation server is loaded (this depends
on the speed with which a server can be loaded from disk). This delay is
reduced if an instance of the automation server is already loaded.

Examples 'This first example instantiates Microsoft Excel. It then uses the
'resulting object to make Excel visible and then close Excel.

Sub Main()
Dim Excel As Object

On Error GoTo Trap1 'Set error trap.
Set Excel = CreateObject("excel.application") 'Instantiate object.
Excel.Visible = True 'Make Excel visible.
Sleep 5000 'Wait 5 seconds.
Excel.Quit 'Close Excel.

Exit Sub 'Exit before error trap.

Trap1:
MsgBox "Can't create Excel object." 'Display error message.
Exit Sub 'Reset error handler.

End Sub

118 Working Model Basic User's Manual

'This second example uses CreateObject to instantiate a Visio object.
It
'then uses the resulting object to create a new document.

Sub Main()
Dim Visio As Object
Dim doc As Object
Dim page As Object
Dim shape As Object

Set Visio = CreateObject("visio.application") 'Create Visio object.
Set doc = Visio.Documents.Add("") 'Create a new document.
Set page = doc.Pages(1) 'Get first page.
Set shape = page.DrawRectangle(1,1,4,4) 'Create a new shape.
shape.text = "Hello, world." 'Set text within

shape.
End Sub

See Also GetObject (function); Object (data type).

Platform(s) Windows and Macintosh..

Cross-Platform Scripting (topic)
This section discusses different techniques that can be used to ensure that a
given script runs on all platforms that support WM Basic.

Querying the Platform

A script can query the platform in order to take appropriate actions for that
platform. This is done using the Basic.OS property. The following example
uses this method to display a message to the user:

Sub Main()
If Basic.OS = ebWin16 Then

MsgBox "Running on Windows"
Else

Print "Not running on Windows"
End If

End Sub

Chapter 2 Cross-Platform Scripting (topic) 119

Querying the Capabilities of a Platform

Some capabilities of the current platform can be determined using the
Basic.Capability method. This method takes a number indicating which
capability is being queried and returns either True or False depending on
whether that capability is or is not supported on the current platform. The
following example uses this technique to read hidden files:

Sub Main()
If Basic.Capability(3) Then

f$ = Dir$("*",ebHidden)'This platform supports hidden files.
Else

f$ = Dir$("*") 'This platform doesn't support
hidden files.

End If

'Print all the files.
While f$ <> ""

x = x + 1
Msgbox "Matching file " & x & " is: " & f$
f$ = Dir$

WEnd
End Sub

Byte Ordering with Files

One of the main differences between platforms is byte ordering. On some
platforms, the processor requires that the bytes that make up a given data item
be reversed from their expected ordering.

Byte ordering becomes problematic if binary data is transferred from one
platform to another. This can only occur when writing data to files. For this
reason, it is strongly recommended that files that are to be transported to a
different platform with different byte ordering be sequential (i.e., do not use
Binary and Random files).

If a Binary or Random file needs to be transported to another platform, you
will have to take into consideration the following:

1. You must either decide on a byte ordering for your file or write information
to the file indicating its byte ordering so that it can be queried by the script
that is to read the file.

2. When reading a file on a platform in which the byte ordering matches,
nothing further needs to be done. If the byte ordering is different, then the
bytes of each data item read from a file need to be reversed. This is a
difficult proposition.

Byte Ordering with Structures

Due to byte ordering differences between platforms, structure copying using the
LSet statement produces different results. Consider the following example:

120 Working Model Basic User's Manual

Type TwoInts
first As Integer
second As Integer

End Type

Type OneLong
first As Long

End Type

Sub Main()
Dim l As OneLong
Dim i As TwoInts
l.First = 4
LSet i = l
MsgBox "First integer: " & i.first
MsgBox "Second integer: " & i.second

End Sub

On Intel-based platforms, bytes are stored in memory with the most significant
byte first (known as little-endian format). Thus, the above example displays two
dialog boxes, the first one displaying the number 4 and the second displaying
the number 0.

On Macintosh platforms, bytes are stored in memory with the least significant
byte first (known as big-endian format). Thus, the above example displays two
dialog boxes, the first one displaying the number 0 and the second displaying
the number 4.

Script that rely on binary images of data must take the byte ordering of the
current platform into account.

Reading Text Files and Writing to Them

Different platforms use different characters to represent end-of-line in a file.
For example, under Windows, a carriage-return/line-feed pair is used. On the
Macintosh, a carriage return is used.

WM Basic takes this into account when reading text files. The following
combinations are recognized and interpreted as end-of-line:

Carriage return Chr(13)
Carriage return/line feed Chr(13) + Chr(10)
Line feed Chr(10)

When writing to text files, WM Basic uses the end-of-line appropriate to that
platform. You can retrieve the same end-of-line used by WM Basic using the
Basic.Eoln$ property:

crlf = Basic.Eoln$
Print #1,"Line 1." & crlf & "Line 2."

Alignment

A major difference between platforms supported by WM Basic is the forced
alignment of data. WM Basic handles most alignment issues itself.

Chapter 2 Cross-Platform Scripting (topic) 121

Portability of Compiled Code

Scripts compiled under WM Basic can be executed without recompilation on
any platform supported by WM Basic.

Unsupported Language Elements

A compiled WM Basic script is portable to any platform on which WM Basic
runs. Because of this, it is possible to execute a script that was compiled on
another platform and contains calls to language elements not supported by the
current platform.

WM Basic generates a runtime error when unsupported language elements are
encountered during execution.

If you trap a call to an unsupported function, the function will return one of the
following values:

Data Type Skipped Function Returns

Integer 0
Double 0.0
Single 0.0
Long 0
Date December 31, 1899
Boolean False
Variant Empty
Object Nothing

Path Separators

Different file systems use different characters to separate parts of a pathname.
For example, under Windows, the backslash character is used:

s$ = "c:\sheets\bob.xls"

When creating scripts that operate on any of these platforms, WM Basic
recognizes the forward slash universally as a valid path separator. Thus, the
following file specification is valid on all these platforms:

s$ = "/sheets/bob.xls"

On the Macintosh, the slashes are valid filename characters. Instead, WM Basic
recognizes the colon as the valid file separator character:

s$ = "sheets:bob.xls"

You can find out the path separator character for your platform using the
Basic.PathSeparator$ property:

s$ = "sheets" & Basic.PathSeparator$ & "bob.xls"

122 Working Model Basic User's Manual

Relative Paths

Specifying relative paths is different across platforms. Under Windows, a
period (.) is used to specify the current directory, and two periods (..) are used
to indicate the parent directory, as shown below:

s$ = ".\bob.xls" 'File in the current directory
s$ = "..\bob.xls" 'File in the parent directory

On the Macintosh, double colons are used to specify the parent folder:

s$ = "::bob.xls" 'File in the parent folder

Drive Letters

Not all platforms support drive letters. For example, considering the following
file specification:

c:\test.txt

Under Windows, this specifies a file called test.txt in the root directory of
drive c. On the Macintosh, this specifies a file called \test.txt in a folder
called c. You can use the Basic.Capability method to determine whether
your platform supports drive letters:

Sub Main()
If Basic.Capability(1) Then s$ = "c:/" Else s$ = ""
s$ = s$ & "test.xls"
MsgBox "The platform-specific filename is: " & s$

End Sub

CSng (function)
Syntax CSng(expression)

Description Converts expression to a Single.

Comments This function accepts any expression convertible to a Single, including
strings. A runtime error is generated if expression is Null. Empty is treated as
0.0.

A runtime error results if the passed expression is not within the valid range for
Single.

When passed a numeric expression, this function has the same effect as
assigning the numeric expression to a Single.

When used with variants, this function guarantees that the expression is
converted to a Single variant (VarType 4).

Chapter 2 CStr (function) 123

Example 'This example displays the value of a String converted to a Single.

Sub Main()
s$ = "100"
MsgBox "The single value is: " & CSng(s$)

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl
(function); CInt (function); CLng (function); CStr (function); CVar (function);
CVErr (function); Single (data type).

Platform(s) Windows and Macintosh.

CStr (function)
Syntax CStr(expression)

Description Converts expression to a String.

Comments Unlike Str$ or Str, the string returned by CStr will not contain a leading
space if the expression is positive. Further, the CStr function correctly
recognizes thousands and decimal separators for your locale.

Different data types are converted to String in accordance with the following
rules:

Data Type CStr Returns

Any numeric type A string containing the number without the leading space for positive values.

Date A string converted to a date using the short date format.

Boolean A string containing either "True" or "False".

Null variant A runtime error.

Empty variant A zero-length string.

Example 'This example displays the value of a Double converted to a String. Sub
Main()

s# = 123.456
MsgBox "The string value is: " & CStr(s#)

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl
(function); CInt (function); CLng (function); CSng (function); CVar (function);
CVErr (function); String (data type); Str, Str$ (functions).

Platform(s) Windows and Macintosh.

CurDir, CurDir$ (functions)
Syntax CurDir[$][(drive$)]

124 Working Model Basic User's Manual

Description Returns the current directory on the specified drive. If no drive$ is specified or
drive$ is zero-length, then the current directory on the current drive is returned.

Comments CurDir$ returns a String, whereas CurDir returns a String variant.

WM Basic generates a runtime error if drive$ is invalid.

Example 'This example saves the current directory, changes to the next higher
'directory, and displays the change; then restores the original
directory
'and displays the change. Note: The dot designators will not work with
'all platforms.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
save$ = CurDir$
ChDir ("..")
MsgBox "Old directory: " & save$ & crlf & "New directory: " &

CurDir$
ChDir (save$)
MsgBox "Directory restored to: " & CurDir$

End Sub

See Also ChDir (statement); ChDrive (statement); Dir, Dir$ (functions); MkDir
(statement); RmDir (statement).

Platform(s) Windows and Macintosh.

Currency (data type)
Syntax Currency

Description A data type used to declare variables capable of holding fixed-point numbers
with 15 digits to the left of the decimal point and 4 digits to the right.

Comments Currency variables are used to hold numbers within the following range:

–922,337,203,685,477.5808 <= currency <= 922,337,203,685,477.5807

Due to their accuracy, Currency variables are useful within calculations
involving money.

The type-declaration character for Currency is @.

Storage

Internally, currency values are 8-byte integers scaled by 10000. Thus, when
appearing within a structure, currency values require 8 bytes of storage. When
used with binary or random files, 8 bytes of storage are required.

See Also Date (data type); Double (data type); Integer (data type); Long (data type);
Object (data type); Single (data type); String (data type); Variant (data
type); Boolean (data type); DefType (statement); CCur (function).

Chapter 2 CVar (function) 125

Platform(s) Windows and Macintosh.

CVar (function)
Syntax CVar(expression)

Description Converts expression to a Variant.

Comments This function is used to convert an expression into a variant. Use of this
function is not necessary (except for code documentation purposes) because
assignment to variant variables automatically performs the necessary
conversion:

Sub Main()
Dim v As Variant
v = 4 & "th" 'Assigns "4th" to v.
MsgBox "You came in: " & v
v = CVar(4 & "th") 'Assigns "4th" to v.
MsgBox "You came in: " & v

End Sub

Example 'This example converts an expression into a Variant.

Sub Main()
Dim s As String
Dim a As Variant
s = CStr("The quick brown fox ")
msg = CVar(s & "jumped over the lazy dog.")
MsgBox msg

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl
(function); CInt (function); CLng (function); CSng (function); CStr (function);
CVErr (function); Variant (data type).

Platform(s) Windows and Macintosh.

CVErr (function)
Syntax CVErr(expression)

Description Converts expression to an error.

126 Working Model Basic User's Manual

Comments This function is used to convert an expression into a user-defined error number.

A runtime error is generated under the following conditions:

If expression is Null.

If expression is a number outside the legal range for errors, which is as
follows:

0 <= expression <= 65535

If expression is Boolean.

If expression is a String that can't be converted to a number within the
legal range.

Empty is treated as 0.

Example 'This example simulates a user-defined error and displays the error
number.

Sub Main()
MsgBox "The error is: " & CStr(CVErr(2046))

End Sub

See Also CCur (function); CBool (function); CDate, CVDate (functions); CDbl
(function); CInt (function); CLng (function); CSng (function); CStr (function);
CVar (function), IsError (function).

Platform(s) Windows and Macintosh.

127

Date (data type)
Syntax Date

Description A data type capable of holding date and time values.

Comments Date variables are used to hold dates within the following range:

January 1, 100 00:00:00 <= date <= December 31, 9999 23:59:59

–6574340 <= date <= 2958465.99998843

Internally, dates are stored as 8-byte IEEE double values. The integer part holds
the number of days since December 31, 1899, and the fractional part holds the
number of seconds as a fraction of the day. For example, the number 32874.5
represents January 1, 1990 at 12:00:00.

When appearing within a structure, dates require 8 bytes of storage. Similarly,
when used with binary or random files, 8 bytes of storage are required.

There is no type-declaration character for Date.

Date variables that haven't been assigned are given an initial value of 0 (i.e.,
December 31, 1899).

Date Literals

Literal dates are specified using number signs, as shown below:

Dim d As Date
d = #January 1, 1990#

The interpretation of the date string (i.e., January 1, 1990 in the above
example) occurs at runtime, using the current country settings. This is a
problem when interpreting dates such as 1/2/1990. If the date format is M/D/Y,
then this date is January 2, 1990. If the date format is D/M/Y, then this date is
February 1, 1990. To remove any ambiguity when interpreting dates, use the
universal date format:

date_variable = #YY/MM/DD HH:MM:SS#

The following example specifies the date June 3, 1965 using the universal date
format:

Dim d As Date
d = #1965/6/3 10:23:45#

See Also Currency (data type); Double (data type); Integer (data type); Long (data
type); Object (data type); Single (data type); String (data type); Variant
(data type); Boolean (data type); DefType (statement); CDate, CVDate
(functions).

Platform(s) Windows and Macintosh.

128 Working Model Basic User's Manual

Date, Date$ (functions)
Syntax Date[$][()]

Description Returns the current system date.

Comments The Date$ function returns the date using the short date format. The Date
function returns the date as a Date variant.

Use the Date/Date$ statements to set the system date.

Note: In prior versions of WM Basic, the Date$ function returned the date
using a fixed date format. The date is now returned using the current short date
format (defined by the operating system), which may differ from the previous
fixed format.

Example 'This example saves the current date to Cdate$, then changes the
'date and displays the result. It then changes the date back to the
'saved date and displays the result.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
TheDate$ = Date$()
Date$ = "01/01/95"
MsgBox "Saved date is: " & TheDate$ & crlf & "Changed date is: " &

Date$()
Date$ = TheDate$
MsgBox "Restored date to: " & TheDate$

End Sub

See Also CDate, CVDate (functions); Time, Time$ (functions); Date, Date$
(statements); Now (function); Format, Format$ (functions); DateSerial
(function); DateValue (function).

Platform(s) Windows and Macintosh.

Date, Date$ (statements)
Syntax Date[$] = newdate

Description Sets the system date to the specified date.

Chapter 2 Date, Date$ (statements) 129

Comments The Date$ statement requres a string variable using one of the following
formats:

MM-DD-YYYY
MM-DD-YY
MM/DD/YYYY
MM/DD/YY,

where MM is a two-digit month between 1 and 31, DD is a two-digit day
between 1 and 31, and YYYY is a four-digit year between 1/1/100 and
12/31/9999.

The Date statement converts any expression to a date, including string and
numeric values. Unlike the Date$ statement, Date recognizes many different
date formats, including abbreviated and full month names and a variety of
ordering options. If newdate contains a time component, it is accepted, but the
time is not changed. An error occurs if newdate cannot be interpreted as a valid
date.

Example 'This example saves the current date to Cdate$, then changes the
'date and displays the result. It then changes the date back to the
'saved date and displays the result.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
TheDate$ = Date$()
Date$ = "01/01/95"
MsgBox "Saved date is: " & TheDate$ & crlf & "Changed date is: " &

Date$()
Date$ = TheDate$
MsgBox "Restored date to: " & TheDate$

End Sub

See Also Date, Date$ (functions); Time, Time$ (statements).

Platform(s) Windows and Macintosh.

Platform
Notes

On some platforms, you may not have permission to change the date, causing
runtime error 70 to be generated. This can occur on Win32 and OS/2.

The range of valid dates varies from platform to platform. The following table
describes the minimum and maximum dates accepted by various platforms:

Platform Minimum Date Maximum Date

Macintosh January 1, 1904 February 6, 2040

Windows January 1, 1980 December 31, 2099

Windows 95 January 1, 1980 December 31, 2099

OS/2 January 1, 1980 December 31, 2079

130 Working Model Basic User's Manual

DateAdd (function)
Syntax DateAdd(interval$, increment&, date)

Description Returns a Date variant representing the sum of date and a specified number
(increment) of time intervals (interval$).

Comments This function adds a specified number (increment) of time intervals (interval$)
to the specified date (date). The following table describes the parameters to the
DateAdd function:

Parameter Description

interval$ String expression indicating the time interval used in the addition.

increment Integer indicating the number of time intervals you wish to add. Positive
values result in dates in the future; negative values result in dates in the past.

date Any expression convertible to a Date.

The interval$ parameter specifies what unit of time is to be added to the given
date. It can be any of the following:

Time Interval
"y" Day of the year
"yyyy" Year
"d" Day
"m" Month
"q" Quarter
"ww" Week
"h" Hour
"n" Minute
"s" Second
"w" Weekday

To add days to a date, you may use either day, day of the year, or weekday, as
they are all equivalent ("d", "y", "w").

The DateAdd function will never return an invalid date/time expression. The
following example adds two months to December 31, 1992:

s# = DateAdd("m", 2, "December 31, 1992")

In this example, s is returned as the double-precision number equal to
"February 28, 1993", not "February 31, 1993".

WM Basic generates a runtime error if you try subtracting a time interval that is
larger than the time value of the date.

Chapter 2 DateDiff (function) 131

Example 'This example gets today's date using the Date$ function; adds three
'years, two months, one week, and two days to it; and then displays the
'result in a dialog box.

Sub Main()
Dim sdate$
sdate$ = Date$
NewDate# = DateAdd("yyyy", 4, sdate$)
NewDate# = DateAdd("m", 3, NewDate#)
NewDate# = DateAdd("ww", 2, NewDate#)
NewDate# = DateAdd("d", 1, NewDate#)
s$ = "Four years, three months, two weeks, and one day from now

will be: "
s$ = s$ & Format(NewDate#, "long date")
MsgBox s$

End Sub

See Also DateDiff (function).

Platform(s) Windows and Macintosh.

DateDiff (function)
Syntax DateDiff(interval$,date1,date2)

Description Returns a Date variant representing the number of given time intervals
between date1 and date2.

Comments The following table describes the parameters:

Parameter Description

interval$ String expression indicating the specific time interval you wish to find the
difference between.

date1 Any expression convertible to a Date. An example of a valid date/time string
would be "January 1, 1994".

date2 Any expression convertible to a Date. An example of a valid date/time string
would be "January 1, 1994".

132 Working Model Basic User's Manual

The following table lists the valid time interval strings and the meanings of
each. The Format$ function uses the same expressions.

Time Interval
"y" Day of the year
"yyyy" Year
"d" Day
"m" Month
"q" Quarter
"ww" Week
"h" Hour
"n" Minute
"s" Second
"w" Weekday

To find the number of days between two dates, you may use either day or day
of the year, as they are both equivalent ("d", "y").

The time interval weekday ("w") will return the number of weekdays occurring
between date1 and date2, counting the first occurrence but not the last.
However, if the time interval is week ("ww"), the function will return the
number of calendar weeks between date1 and date2, counting the number of
Sundays. If date1 falls on a Sunday, then that day is counted, but if date2 falls
on a Sunday, it is not counted.

The DateDiff function will return a negative date/time value if date1 is a
date later in time than date2.

Example 'This example gets today's date and adds ten days to it. It then
'calculates the difference between the two dates in days and weeks
'and displays the result.

Sub Main()
today$ = Format(Date$,"Short Date")
NextWeek = Format(DateAdd("d", 14, today$),"Short Date")
DifDays# = DateDiff("d", today$, NextWeek)
DifWeek# = DateDiff("w", today$, NextWeek)
s$ = "The difference between " & today$ & " and " & NextWeek
s$ = s$ & " is: " & DifDays# & " days or " & DifWeek# & " weeks"
MsgBox s$

End Sub

See Also DateAdd (function).

Platform(s) Windows and Macintosh.

DatePart (function)
Syntax DatePart(interval$,date)

Chapter 2 DatePart (function) 133

Description Returns an Integer representing a specific part of a date/time expression.

Comments The DatePart function decomposes the specified date and returns a given
date/time element. The following table describes the parameters:

Parameter Description

interval$ String expression that indicates the specific time interval you wish to identify
within the given date.

date Any expression convertible to a Date. An example of a valid date/time string
would be "January 1, 1995".

The following table lists the valid time interval strings and the meanings of
each. The Format$ function uses the same expressions.

Time Interval
"y" Day of the year
"yyyy" Year
"d" Day
"m" Month
"q" Quarter
"ww" Week
"h" Hour
"n" Minute
"s" Second
"w" Weekday

The weekday expression starts with Sunday as 1 and ends with Saturday as 7.

Example 'This example displays the parts of the current date.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
today$ = Date$
qtr = DatePart("q",today$)
yr = DatePart("yyyy",today$)
mo = DatePart("m",today$)
wk = DatePart("ww",today$)
da = DatePart("d",today$)
s$ = "Quarter: " & qtr & crlf
s$ = s$ & "Year : " & yr & crlf
s$ = s$ & "Month : " & mo & crlf
s$ = s$ & "Week : " & wk & crlf
s$ = s$ & "Day : " & da & crlf
MsgBox s$

End Sub

See Also Day (function); Minute (function); Second (function); Month (function); Year
(function); Hour (function); Weekday (function), Format (function).

Platform(s) Windows and Macintosh.

134 Working Model Basic User's Manual

DateSerial (function)
Syntax DateSerial(year,month,day)

Description Returns a Date variant representing the specified date.

Comments The DateSerial function takes the following parameters:

Parameter Description

year Integer between 100 and 9999

month Integer between 1 and 12

day Integer between 1 and 31

Example 'This example converts a date to a real number representing the
'serial date in days since December 30, 1899 (which is day 0).

Sub Main()
tdate# = DateSerial(1993,08,22)
MsgBox "The DateSerial value for August 22, 1993, is: " & tdate#

End Sub

See Also DateValue (function); TimeSerial (function); TimeValue (function); CDate,
CVDate (functions).

Platform(s) Windows and Macintosh.

DateValue (function)
Syntax DateValue(date_string$)

Description Returns a Date variant representing the date contained in the specified string
argument.

Example 'This example returns the day of the month for today's date.

Sub Main()
tdate$ = Date$
tday = DateValue(tdate$)
MsgBox tdate & " date value is: " & tday$

End Sub

See Also TimeSerial (function); TimeValue (function); DateSerial (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Under Windows, date specifications vary depending on the international
settings contained in the "intl" section of the win.ini file. The date items must
follow the ordering determined by the current date format settings in use by
Windows.

Chapter 2 Day (function) 135

Day (function)
Syntax Day(date)

Description Returns the day of the month specified by date.

Comments The value returned is an Integer between 0 and 31 inclusive.

The date parameter is any expression that converts to a Date.

Example 'This example gets the current date and then displays it.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
CurDate = Now()
MsgBox "Today is day " & Day(CurDate) & " of the month." & crlf &

"Tomorrow is day " & Day(CurDate + 1)
End Sub

See Also Minute (function); Second (function); Month (function); Year (function); Hour
(function); Weekday (function); DatePart (function).

Platform(s) Windows and Macintosh.

DDB (function)
Syntax DDB(Cost, Salvage, Life, Period)

Description Calculates the depreciation of an asset for a specified Period of time using the
double-declining balance method.

136 Working Model Basic User's Manual

Comments The double-declining balance method calculates the depreciation of an asset at
an accelerated rate. The depreciation is at its highest in the first period and
becomes progressively lower in each additional period. DDB uses the following
formula to calculate the depreciation:

DDB =((Cost – Total_depreciation_from_all_other_periods) * 2)/Life

The DDB function uses the following parameters:

Parameter Description

Cost Double representing the initial cost of the asset

Salvage Double representing the estimated value of the asset at the end of its predicted
useful life

Life Double representing the predicted length of the asset's useful life

Period Double representing the period for which you wish to calculate the depreciation

Life and Period must be expressed using the same units. For example, if Life is
expressed in months, then Period must also be expressed in months.

Example 'This example calculates the depreciation for capital equipment
'that cost $10,000, has a service life of ten years, and is worth
'$2,000 as scrap. The dialog box displays the depreciation for each
'of the first four years.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
s$ = "Depreciation Table" & crlf & crlf
For yy = 1 To 4

CurDep# = DDB(10000.0,2000.0,10,yy)
s$ = s$ & "Year " & yy & " : " & CurDep# & crlf

Next yy
MsgBox s$

End Sub

See Also Sln (function); SYD (function).

Platform(s) Windows and Macintosh.

DDEExecute (statement)
Syntax DDEExecute channel, command$

Description Executes a command in another application.

Chapter 2 DDEInitiate (function) 137

Comments The DDEExecute statement takes the following parameters:

Parameter Description

channel Integer containing the DDE channel number returned from DDEInitiate. An
error will result if channel is invalid.

command$ String containing the command to be executed. The format of command$
depends on the receiving application.

If the receiving application does not execute the instructions, WM Basic
generates a runtime error.

Example 'This example selects a cell in an Excel spreadsheet.

Sub Main()
q$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"
DDEExecute ch%,cmd$
DDETerminate ch%

End Sub

See Also DDEInitiate (function); DDEPoke (statement); DDERequest, DDERequest$
(functions); DDESend (function); DDETerminate (statement); DDETerminateAll
(statement); DDETimeout (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the DDEML library is required for DDE support. This library
is loaded when the first DDEInitiate statement is encountered and remains
loaded until the WM Basic system is terminated. Thus, the DDEML library is
required only if DDE statements are used within a script.

DDEInitiate (function)
Syntax DDEInitiate(application$, topic$)

Description Initializes a DDE link to another application and returns a unique number
subsequently used to refer to the open DDE channel.

138 Working Model Basic User's Manual

Comments The DDEInitiate statement takes the following parameters:

Parameter Description

application$ String containing the name of the application (the server) with which a DDE
conversation will be established.

topic$ String containing the name of the topic for the conversation. The possible
values for this parameter are described in the documentation for the server
application.

This function returns 0 if WM Basic cannot establish the link. This will occur
under any of the following circumstances:

• The specified application is not running.

• The topic was invalid for that application.

• Memory or system resources are insufficient to establish the DDE link.

Example 'This example selects a range of cells in an Excel spreadsheet.

Sub Main()
q$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"
DDEExecute ch%,cmd$
DDETerminate ch%

End Sub

See Also DDEExecute (statement); DDEPoke (statement); DDERequest, DDERequest$
(functions); DDESend (function); DDETerminate (statement); DDETerminateAll
(statement); DDETimeout (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the DDEML library is required for DDE support. This library
is loaded when the first DDEInitiate statement is encountered and remains
loaded until the WM Basic system is terminated. Thus, the DDEML library is
required only if DDE statements are used within a script.

DDEPoke (statement)
Syntax DDEPoke channel, DataItem, value

Description Sets the value of a data item in the receiving application associated with an
open DDE link.

Chapter 2 DDERequest, DDERequest$ (functions) 139

Comments The DDEPoke statement takes the following parameters:

Parameter Description

channel Integer containing the DDE channel number returned from DDEInitiate. An
error will result if channel is invalid.

DataItem Data item to be set. This parameter can be any expression convertible to a
String. The format depends on the server.

value The new value for the data item. This parameter can be any expression
convertible to a String. The format depends on the server. A runtime error is
generated if value is Null.

Example 'This example pokes a value into an Excel spreadsheet.

Sub Main()
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
DDEPoke ch%,"R1C1","980"
DDETerminate ch%

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDERequest, DDERequest$
(functions); DDESend (function); DDETerminate (statement); DDETerminateAll
(statement); DDETimeout (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the DDEML library is required for DDE support. This library
is loaded when the first DDEInitiate statement is encountered and remains
loaded until the WM Basic system is terminated. Thus, the DDEML library is
required only if DDE statements are used within a script.

DDERequest, DDERequest$ (functions)
Syntax DDERequest[$](channel,DataItem$)

Description Returns the value of the given data item in the receiving application associated
with the open DDE channel.

140 Working Model Basic User's Manual

Comments DDERequest$ returns a String, whereas DDERequest returns a String
variant.

The DDERequest/DDERequest$ functions take the following parameters:

Parameter Description

channel Integer containing the DDE channel number returned from DDEInitiate. An
error will result if channel is invalid.

DataItem$ String containing the name of the data item to request. The format for this
parameter depends on the server.

The format for the returned value depends on the server.

Example 'This example gets a value from an Excel spreadsheet.

Sub Main()
ch% = DDEInitiate("Excel","c:\excel\test.xls")
s$ = DDERequest$(ch%,"R1C1")
DDETerminate ch%
MsgBox s$

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement);
DDESend (function); DDETerminate (statement); DDETerminateAll (statement);
DDETimeout (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the DDEML library is required for DDE support. This library
is loaded when the first DDEInitiate statement is encountered and remains
loaded until the WM Basic system is terminated. Thus, the DDEML library is
required only if DDE statements are used within a script.

DDESend (statement)
Syntax DDESend application$, topic$, DataItem, value

Description Initiates a DDE conversation with the server as specified by application$ and
topic$ and sends that server a new value for the specified item.

Chapter 2 DDETerminate (statement) 141

CommentsThe DDESend statement takes the following parameters:

Parameter Description

application$ String containing the name of the application (the server) with which a DDE
conversation will be established.

topic$ String containing the name of the topic for the conversation. The possible
values for this parameter are described in the documentation for the server
application.

DataItem Data item to be set. This parameter can be any expression convertible to a
String. The format depends on the server.

value New value for the data item. This parameter can be any expression convertible
to a String. The format depends on the server. A runtime error is generated if
value is Null.

The DDESend statement performs the equivalent of the following statements:

ch% = DDEInitiate(application$, topic$)
DDEPoke ch%, item, data
DDETerminate ch%

Example 'This code fragment sets the content of the first cell in
'an Excel spreadsheet.

Sub Main()
On Error Goto Trap1
DDESend "Excel","c:\excel\test.xls","R1C1","Hello, world."
On Error Goto 0
'Add more lines here.

Trap1:
MsgBox "Error sending data to Excel."
Exit Sub 'Reset error handler.

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement);
DDERequest, DDERequest$ (functions); DDETerminate (statement);
DDETerminateAll (statement); DDETimeout (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the DDEML library is required for DDE support. This library
is loaded when the first DDEInitiate statement is encountered and remains
loaded until the WM Basic system is terminated. Thus, the DDEML library is
required only if DDE statements are used within a script.

DDETerminate (statement)
Syntax DDETerminate channel

142 Working Model Basic User's Manual

Description Closes the specified DDE channel.

Comments The channel parameter is an Integer containing the DDE channel number
returned from DDEInitiate. An error will result if channel is invalid.

All open DDE channels are automatically terminated when the script ends.

Example 'This code fragment sets the content of the first cell in
'an Excel spreadsheet.

Sub Main()
q$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"
DDEExecute ch%,cmd$
DDETerminate ch%

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement);
DDERequest, DDERequest$ (functions); DDESend (function);
DDETerminateAll (statement); DDETimeout (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the DDEML library is required for DDE support. This library
is loaded when the first DDEInitiate statement is encountered and remains
loaded until the WM Basic system is terminated. Thus, the DDEML library is
required only if DDE statements are used within a script.

DDETerminateAll (statement)
Syntax DDETerminateAll

Description Closes all open DDE channels.

Comments All open DDE channels are automatically terminated when the script ends.

Example 'This code fragment selects the contents of the first cell in
'an Excel spreadsheet.

Sub Main()
q$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"
DDEExecute ch%,cmd$
DDETerminateAll

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement);
DDERequest, DDERequest$ (functions); DDESend (function); DDETerminate
(statement); DDETimeout (statement).

Platform(s) Windows.

Chapter 2 DDETimeout (statement) 143

Platform
Notes:

Windows

Under Windows, the DDEML library is required for DDE support. This library
is loaded when the first DDEInitiate statement is encountered and remains
loaded until the WM Basic system is terminated. Thus, the DDEML library is
required only if DDE statements are used within a script.

DDETimeout (statement)
Syntax DDETimeout milliseconds

Description Sets the number of milliseconds that must elapse before any DDE command
times out.

Comments The milliseconds parameter is a Long and must be within the following range:

0 <= milliseconds <= 2,147,483,647

The default is 10,000 (10 seconds).

Example Sub Main()
q$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
DDETimeout(20000)
cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"
DDEExecute ch%,cmd$
DDETerminate ch%

End Sub

See Also DDEExecute (statement); DDEInitiate (function); DDEPoke (statement);
DDERequest, DDERequest$ (functions); DDESend (function); DDETerminate
(statement); DDETerminateAll (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the DDEML library is required for DDE support. This library
is loaded when the first DDEInitiate statement is encountered and remains
loaded until the WM Basic system is terminated. Thus, the DDEML library is
required only if DDE statements are used within a script.

Declare (statement)
Syntax Declare {Sub | Function} name[TypeChar] [CDecl | Pascal | System |

StdCall] _
[Lib "LibName$" [Alias "AliasName$"]] [([ParameterList])] [As type]

Where ParameterList is a comma-separated list of the following (up to 30
parameters are allowed):

[Optional] [ByVal | ByRef] ParameterName[()] [As ParameterType]

Description Creates a prototype for either an external routine or a WM Basic routine that
occurs later in the source module or in another source module.

144 Working Model Basic User's Manual

Comments Declare statements must appear outside of any Sub or Function
declaration.

Declare statements are only valid during the life of the script in which they
appear.

The Declare statement uses the following parameters:

Parameter Description

name Any valid WM Basic name. When you declare functions, you can include a
type-declaration character to indicate the return type.

This name is specified as a normal WM Basic keyword—i.e., it does not appear
within quotes.

TypeChar An optional type-declaration character used when defining the type of data
returned from functions. It can be any of the following characters: #, !, $, @, %,
or &. For external functions, the @ character is not allowed.

Type-declaration characters can only appear with function declarations, and
take the place of the As type clause.

Note: Currency data cannot be returned from external functions. Thus, the @
type-declaration character cannot be used when declaring external functions.

CDecl Optional keyword indicating that the external subroutine or function uses the C
calling convention. With C routines, arguments are pushed right to left on the
stack and the caller performs stack cleanup.

Pascal Optional keyword indicating that this external subroutine or function uses the
Pascal calling convention. With Pascal routines, arguments are pushed left to
right on the stack and the called function performs stack cleanup.

System Optional keyword indicating that the external subroutine or function uses the
System calling convention. With System routines, arguments are pushed right
to left on the stack, the caller performs stack cleanup, and the number of
arguments is specified in the AL register.

StdCall Optional keyword indicating that the external subroutine or function uses the
StdCall calling convention. With StdCall routines, arguments are pushed right
to left on the stack and the called function performs stack cleanup.

LibName$ Must be specified if the routine is external. This parameter specifies the name
of the library or code resource containing the external routine and must appear
within quotes.

The LibName$ parameter can include an optional path specifying the exact
location of the library or code resource..

Chapter 2 Declare (statement) 145

AliasName$ Alias name that must be given to provide the name of the routine if the name
parameter is not the routine's real name. For example, the following two
statements declare the same routine:

Declare Function GetCurrentTime Lib "user" () As
Integer

Declare Function GetTime Lib "user" Alias
"GetCurrentTime" _
As Integer

Use an alias when the name of an external routine conflicts with the name of a
WM Basic internal routine or when the external routine name contains invalid
characters.

The AliasName$ parameter must appear within quotes.

type Indicates the return type for functions.

For external functions, the valid return types are: Integer, Long, String,
Single, Double, Date, Boolean, and data objects.

Note: Currency, Variant, fixed-length strings, arrays, user-defined types, and
OLE automation objects cannot be returned by external functions.

Optional Keyword indicating that the parameter is optional. All optional parameters must
be of type Variant. Furthermore, all parameters that follow the first optional
parameter must also be optional.

If this keyword is omitted, then the parameter being defined is required when
calling this subroutine or function.

ByVal Optional keyword indicating that the caller will pass the parameter by value.
Parameters passed by value cannot be changed by the called routine.

ByRef Optional keyword indicating that the caller will pass the parameter by
reference. Parameters passed by reference can be changed by the called routine.
If neither ByVal or ByRef are specified, then ByRef is assumed.

146 Working Model Basic User's Manual

ParameterName Name of the parameter, which must follow WM Basic naming conventions:

1. Must start with a letter.

2. May contain letters, digits, and the underscore character
(_). Punctuation and type-declaration characters are not
allowed. The exclamation point (!) can appear within the
name as long as it is not the last character, in which case
it is interpreted as a type-declaration character.

3. Must not exceed 80 characters in length.

Additionally, ParameterName can end with an optional type-declaration
character specifying the type of that parameter (i.e., any of the following
characters: %, &, !, #, @).

() Indicates that the parameter is an array.

ParameterType Specifies the type of the parameter (e.g., Integer, String, Variant, and so
on). The As ParameterType clause should only be included if ParameterName
does not contain a type-declaraction character.

In addition to the default WM Basic data types, ParameterType can specify any
user-defined structure, data object, or OLE automation object. If the data type
of the parameter is not known in advance, then the Any keyword can be used.
This forces the WM Basic compiler to relax type checking, allowing any data
type to be passed in place of the given argument.

Declare Sub Convert Lib "mylib" (a As Any)

The Any data type can only be used when passing parameters to external
routines.

Passing Parameters

By default, WM Basic passes arguments by reference. Many external routines
require a value rather than a reference to a value. The ByVal keyword does
this. For example, this C routine

void MessageBeep(int);

would be declared as follows:

Declare Sub MessageBeep Lib "user" (ByVal n As Integer)

Chapter 2 Declare (statement) 147

As an example of passing parameters by reference, consider the following C
routine which requires a pointer to an integer as the third parameter:

int SystemParametersInfo(int,int,int *,int);

This routine would be declared as follows (notice the ByRef keyword in the
third parameter):

Declare Function SystemParametersInfo Lib "user" (ByVal action As
Integer, _

ByVal uParam As Integer,ByRef pInfo As Integer, _
ByVal updateINI As Integer) As Integer

Strings can be passed by reference or by value. When they are passed by
reference, a pointer to the internal handle to the WM Basic string is passed.
When they are passed by value, WM Basic passes a 32-bit pointer to a null-
terminated string (i.e., a C string). If an external routine modifies a passed
string variable, then there must be sufficient space within the string to hold the
returned characters. This can be accomplished using the Space function, as
shown in the following example:

Declare Sub GetWindowsDirectory Lib "kernel" (ByVal dirname$, ByVal
length%)

:
Dim s As String
s = Space(128)
GetWindowsDirectory s,128

Another alternative to ensure that a string has sufficient space is to declare the
string with a fixed length:

Declare Sub GetWindowsDirectory Lib "kernel" (ByVal dirname$, ByVal
length%)

:
Dim s As String * 128 'Declare a fixed-length string.
GetWindowsDirectory s,len(s) 'Pass it to an external subroutine.

Calling Conventions with External Routines

For external routines, the argument list must exactly match that of the
referenced routine. When calling an external subroutine or function, WM Basic
needs to be told how that routine expects to receive its parameters and who is
responsible for cleanup of the stack.

The following table describes which calling conventions are supported on
which platform, and indicates what the default calling convention is when no
explicit calling convention is specified in the Declare statement.

Supported Calling Default Calling
Platform Conventions Convention

Windows Pascal, CDecl Pascal

Macintosh Pascal, CDecl Pascal

148 Working Model Basic User's Manual

Passing Null Pointers

To pass a null pointer to an external procedure, declare the parameter that is to
receive the null pointer as type Any, then pass a long value 0 by value:

Declare Sub Foo Lib "sample" (ByVal lpName As Any)

Sub Main()
Sub Foo "Hello" 'Pass a 32-bit pointer to a null-terminated

string
Sub Foo ByVal 0& 'Pass a null pointer

End Sub

Passing Data to External Routines

The following table shows how the different data types are passed to external
routines:

Data Type Is Passed As

ByRef Boolean A 32-bit pointer to a 2-byte value containing –1 or 0.

ByVal Boolean A 2-byte value containing –1 or 0.

ByVal Integer A 32-bit pointer to a 2-byte short integer.

ByRef Integer A 2-byte short integer.

ByVal Long A 32-bit pointer to a 4-byte long integer.

ByRef Long A 4-byte long integer.

ByRef Single A 32-bit pointer to a 4-byte IEEE floating-point value (a float).

ByVal Single A 4-byte IEEE floating-point value (a float).

ByRef Double A 32-bit pointer to an 8-byte IEEE floating-point value (a double).

ByVal Double An 8-byte IEEE floating-point value (a double).

ByVal String A 32-bit pointer to a null-terminated string. With strings containing embedded
nulls (Chr$(0)), it is not possible to determine which null represents the end of
the string. Therefore, the first null is considered the string terminator.

An external routine can freely change the content of a string. It cannot,
however, write beyond the end of the null terminator.

ByRef String A 32-bit pointer to a 2-byte internal value representing the string. This value
can only be used by external routines written specifically for WM Basic.

ByRef Date A 32-bit pointer to an 8-byte IEEE floating-point value (a double).

ByVal Date An 8-byte IEEE floating-point value (a double).

ByRef Currency A 32-bit pointer to an 8-byte integer scaled by 10000.

ByVal Currency An 8-byte integer scaled by 10000.

Chapter 2 Declare (statement) 149

ByRef Variant A 32-bit pointer to a 16-byte internal variant structure. This structure contains a
2-byte type (the same as that returned by the VarType function), followed by 6
bytes of slop (for alignment), followed by 8 bytes containing the value.

ByVal Variant A 16-byte variant structure. This structure contains a 2-byte type (the same as
that returned by the VarType function), followed by 6 bytes of slop (for
alignment), followed by 8 bytes containing the value.

ByVal Object For data objects, a 32-bit pointer to a 4-byte unsigned long integer. This value
can only be used by external routines written specifically for WM Basic.

For OLE automation objects, a 32-bit pointer to an LPDISPATCH handle is
passed.

ByRef Object For data objects, a 32-bit pointer to a 4-byte unsigned long integer that
references the object. This value can only be used by external routines written
specifically for BasicScript.

For OLE automation objects, a 32-bit pointer to a 4-byte internal ID is passed.
This value can only be used by external routines written specifically for WM
Basic.

User-defined type A 32-bit pointer to the structure. User-defined types can only be passed by
reference.

It is important to remember that structures in WM Basic are packed on 2-byte
boundaries, meaning that the individual structure members may not be aligned
consistently with similar structures declared in C.

Arrays A 32-bit pointer to a packed array of elements of the given type. Arrays can
only be passed by reference.

Dialogs Dialogs cannot be passed to external routines.

Only variable-length strings can be passed to external routines; fixed-length
strings are automatically converted to variable-length strings.

150 Working Model Basic User's Manual

WM Basic passes data to external functions consistent with that routine's
prototype as defined by the Declare statement. There is one exception to this
rule: you can override ByRef parameters using the ByVal keyword when
passing individual parameters. The following example shows a number of
different ways to pass an Integer to an external routine called Foo:

Declare Sub Foo Lib "MyLib" (ByRef i As Integer)

Sub Main
Dim i As Integer
i = 6
Foo 6 'Passes a temporary integer (value 6) by reference
Foo i 'Passes variable "i" by reference
Foo (i) 'Passes a temporary integer (value 6) by reference
Foo i + 1 'Passes temporary integer (value 7) by reference
Foo ByVal i 'Passes i by value

End Sub

The above example shows that the only way to override passing a value by
reference is to use the ByVal keyword.

Note: Use caution when using the ByVal keyword in this way. The external
routine Foo expects to receive a pointer to an Integer—a 32-bit value; using
ByVal causes WM Basic to pass the Integer by value—a 16-bit value. Passing
data of the wrong size to any external routine will have unpredictable results.

Example Declare Function IsLoaded% Lib "Kernel" Alias "GetModuleHandle" (ByVal
name$)

Declare Function GetProfileString Lib "Kernel" (ByVal SName$,ByVal
KName$,_

ByVal Def$,ByVal Ret$,ByVal Size%) As Integer

Sub Main()
SName$ = "Intl" 'Win.ini section name.
KName$ = "sCountry" 'Win.ini country setting.
ret$ = String$(255, 0) 'Initialize return string.

If GetProfileString(SName$,KName$,"",ret$,Len(ret$)) Then
MsgBox "Your country setting is: " & ret$

Else
MsgBox "There is no country setting in your win.ini file."

End If

If IsLoaded("Progman") Then
MsgBox "Progman is loaded."

Else
MsgBox "Progman is not loaded."

End If
End Sub

See Also Call (statement), Sub...End Sub (statement), Function...End Function
(statement).

Chapter 2 Declare (statement) 151

Platform(s) All platforms support Declare for forward referencing.

You can also use of Declare for referencing external routines. See below for
details.

Platform
Notes:

Windows

Under Windows, external routines are contained in DLLs. The libraries
containing the routines are loaded when the routine is called for the first time
(i.e., not when the script is loaded). This allows a script to reference external
DLLs that potentially do not exist.

All the Windows API routines are contained in DLLs, such as "user", "kernel",
and "gdi". The file extension ".exe" is implied if another extension is not given.

If the libname$ parameter does not contain an explicit path to the DLL, the
following search will be performed for the DLL (in this order):

1. The current directory

2. The Windows directory

3. The Windows system directory

4. The directory containing WM Basic

5. All directories listed in the path environment variable

If the first character of aliasname$ is #, then the remainder of the characters
specify the ordinal number of the routine to be called. For example, the
following two statements are equivalent (under Windows, GetCurrentTime is
defined as ordinal 15 in the user.exe module):

Declare Function GetTime Lib "user" Alias "GetCurrentTime" () As
Integer

Declare Function GetTime Lib "user" Alias "#15" () As Integer

Under Windows, the names of external routines declared using the CDecl
keyword are usually preceeded with an underscore character. When WM Basic
searches for your external routine by name, it first attempts to load the routine
exactly as specified. If unsuccessful, WM Basic makes a second attempt by
prepending an underscore character to the specified name. If both attempts fail,
then WM Basic generates a runtime error.

Windows has a limitation that prevents Double, Single, and Date values from
being returned from routines declared with the CDecl keyword. Routines that
return data of these types should be declared Pascal.

152 Working Model Basic User's Manual

Platform
Notes:

Macintosh

On the Macintosh, external routines are implemented in code resources. If a
code resource does not contain an explicit folder name, then WM Basic looks in
the following areas:

1. The current folder

2. The folder containing the application

3. The Extension folder within the System folder

When using the C calling convention (with the CDecl keyword), WM Basic
assumes 4-byte integers (the int data type in C). This may be problematic, as
some compilers on the Macintosh assume 2-byte integers.

On the Macintosh, the code resource type is specified in aliasname$ as follows:

"[ResourceType]$[ResourceName]"

Parameter Description

ResourceType Any valid four-character name containing the type of the resource. If this
parameter is omitted, then CODE is assumed.

ResourceName Name of the procedure in the code resource. If this parameter is omitted, then
ResourceName is assumed to be the same as name.

On the Macintosh, the format for parameters passed to external code resources
is different than on other platforms. The differences only occur when using the
Pascal calling convention (i.e., when the CDecl keyword is omitted). The
following list describes these differences:

Singles, doubles, and dates passed by value or by reference are passed as a
32-bit pointer to a 10-byte value—an extended type. When passed by value,
modification of the extended type does not change the original value in WM
Basic.

Variants passed by value are passed as a 32-bit pointer to the internal
variant structure used by WM Basic. Modifications to this internal structure
do not affect the original value of the variable in WM Basic.

Currencies passed by value are passed as a 32-bit pointer to an 8-byte
integer scaled by 10000.

Chapter 2 DefType (statement) 153

DefType (statement)
Syntax DefInt letterrange

DefLng letterrange
DefStr letterrange
DefSng letterrange
DefDbl letterrange
DefCur letterrange
DefObj letterrange
DefVar letterrange
DefBool letterrange
DefDate letterrange

Description Establishes the default type assigned to undeclared or untyped variables.

Comments The DefType statement controls automatic type declaration of variables.
Normally, if a variable is encountered that hasn't yet been declared with the
Dim, Public, or Private statement or does not appear with an explicit
type-declaration character, then that variable is declared implicitly as a variant
(DefVar A–Z). This can be changed using the DefType statement to specify
starting letter ranges for type other than integer. The letterrange parameter is
used to specify starting letters. Thus, any variable that begins with a specified
character will be declared using the specified Type.

The syntax for letterrange is:

letter [-letter] [,letter [-letter]]...

DefType variable types are superseded by an explicit type declarationusing
either a type-declaration character or the Dim, Public, or Private
statement.

The DefType statement only affects how WM Basic compiles scripts and has
no effect at runtime.

The DefType statement can only appear outside all Sub and Function declarations.

154 Working Model Basic User's Manual

The following table describes the data types referenced by the different
variations of the DefType statement:

Statement Data Type

DefInt Integer
DefLng Long
DefStr String
DefSng Single
DefDbl Double
DefCur Currency
DefObj Object
DefVar Variant
DefBool Boolean
DefDate Date

Example DefStr a-l
DefLng m-r
DefSng s-u
DefDbl v-w
DefInt x-z

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a = 100.52
m = 100.52
s = 100.52
v = 100.52
x = 100.52
msg = "The values are:"
msg = msg & "(String) a: " & a
msg = msg & "(Long) m: " & m
msg = msg & "(Single) s: " & s
msg = msg & "(Double) v: " & v
msg = msg & "(Integer) x: " & x
MsgBox msg

End Sub

See Also Currency (data type); Date (data type); Double (data type); Long (data type);
Object (data type); Single (data type); String (data type); Variant (data
type); Boolean (data type); Integer (data type).

Platform(s) Windows and Macintosh.

Desktop.ArrangeIcons (method)
Syntax Desktop.ArrangeIcons

Description Reorganizes the minimized applications on the desktop.

Chapter 2 Desktop.Cascade (method) 155

Example Sub Main()
Desktop.ArrangeIcons

End Sub

See Also Desktop.Cascade (method); Desktop.Tile (method).

Platform(s) Windows.

Desktop.Cascade (method)
Syntax Desktop.Cascade

Description Cascades all nonminimized windows.

Example 'This example cascades all the windows on the desktop. It first
'restores any minimized applications so that they are included in the
'cascade.

Sub Main()
Dim apps$()
AppList apps$
For i = LBound(apps) To UBound(apps)

AppRestore apps(i)
Next i
Desktop.Cascade

End Sub

See Also Desktop.Tile (method); Desktop.ArrangeIcons (method).

Platform(s) Windows.

Desktop.SetColors (method)
Syntax Desktop.SetColors ControlPanelItemName$

Description Changes the system colors to one of a predefined color set.

Example 'This example allows the user to select any of the available Windows
'color schemes.

Sub Main()
'Get color schemes from Windows
Dim names$()
ReadINISection "color schemes",names$,"CONTROL.INI"

SelectAgain: 'Allow user to select color scheme
item = SelectBox("Set Colors","Available Color Sets:",names$)
If item <> -1 Then

Desktop.SetColors names$(item)
Goto SelectAgain

End If
End Sub

See Also Desktop.SetWallpaper (method).

156 Working Model Basic User's Manual

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the names of the color sets are contained in the control.ini file.

Desktop.SetWallpaper (method)
Syntax Desktop.SetWallpaper filename$, isTile

Description Changes the desktop wallpaper to the bitmap specified by filename$.

Comments The wallpaper will be tiled if isTile is True; otherwise, the bitmap will be
centered on the desktop.

To remove the wallpaper, set the filename$ parameter to "", as in the following
example:

Desktop.SetWallpaper "",True

Chapter 2 Desktop.Snapshot (method) 157

Example 'This example reads a list of .BMP files from the Windows directory
'and allows the user to select any of these as wallpaper.

Sub Main()
Dim list$()

' Create the prefix for the bitmap filenames
d$ = System.WindowsDirectory$
If Right(d$,1) <> "\" Then d$ = d$ & "\"
f$ = d$ & "*.BMP"

FileList list$,f$ 'Get list of bitmaps from Windows directory

' Were there any bitmaps?
If ArrayDims(list$) = 0 Then

MsgBox "There aren't any bitmaps in the Windows directory"
Exit Sub

End If

'Add "(none)"
ReDim Preserve list$ (UBound(list$) + 1)
list$(UBound(list$)) = "(none)"

SelectAgain: 'Allow user to select item
item = SelectBox("Set Wallpaper","Available Wallpaper:",list$)

Select Case item
Case -1

End
Case UBound(list$)

Desktop.SetWallPaper "",True
Goto SelectAgain

Case Else
Desktop.SetWallPaper d$ & list$(item),True
Goto SelectAgain

End Select
End Sub

See Also Desktop.SetColors (method).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the Desktop.SetWallpaper method makes permanent
changes to the wallpaper by writing the new wallpaper information to the
win.ini file.

Desktop.Snapshot (method)
Syntax Desktop.Snapshot [spec]

Description Takes a snapshot of a particular section of the screen and saves it to the
Clipboard.

158 Working Model Basic User's Manual

Comments The spec parameter is an Integer specifying the screen area to be saved. It
can be any of the following:

0 Entire screen

1 Client area of the active application

2 Entire window of the active application

3 Client area of the active window

4 Entire window of the active window

Before the snapshot is taken, each application is updated. This ensures that any
application that is in the middle of drawing will have a chance to finish before
the snapshot is taken.

There is a slight delay if the specified window is large.

Example 'This example takes a snapshot of Program Manager and pastes the
'resulting bitmap into Windows Paintbrush.

Sub Main()
AppActivate "Program Manager" 'Activate Program Manager.
Desktop.Snapshot 2 'Place snapshot into Clipboard.
id = Shell("pbrush") 'Run Paintbrush.
Menu "Edit.Paste" 'Paste snapshot into Paintbrush.

End Sub

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, pictures are placed into the Clipboard in bitmap format.

Desktop.Tile (method)
Syntax Desktop.Tile

Description Tiles all nonminimized windows.

Example 'This example tiles all the windows on the desktop. It first
'restores any minimized applications so that they are included in the
'tile.

Sub Main()
Dim apps$()
AppList apps$
For i = LBound(apps) To UBound(apps)

AppRestore apps(i)
Next i
Desktop.Tile

End Sub

See Also Desktop.Cascade (method); Desktop.ArrangeIcons (method).

Chapter 2 Dialog (function) 159

Platform(s) Windows.

Dialog (function)
Syntax Dialog(DialogVariable [,[DefaultButton] [,Timeout]])

Description Displays the dialog box associated with DialogVariable, returning an
Integer indicating which button was clicked.

Comments The Dialog function returns any of the following values:

-1 The OK button was clicked.

0 The Cancel button was clicked.

>0 A push button was clicked. The returned number represents which button was
clicked based on its order in the dialog box template (1 is the first push button,
2 is the second push button, and so on).

The Dialog function accepts the following parameters:

Parameter Description

DialogVariable Name of a variable that has previously been dimensioned as a user dialog box.
This is accomplished using the Dim statement:

Dim MyDialog As MyTemplate

All dialog variables are local to the Sub or Function in which they are defined.
Private and public dialog variables are not allowed.

160 Working Model Basic User's Manual

DefaultButton An Integer specifying which button is to act as the default button in the dialog
box. The value of DefaultButton can be any of the following:

_2 This value indicates that there is no default
button.

_1 This value indicates that the OK button, if
present, should be used as the default.

0 This value indicates that the Cancel button, if
present, should be used as the default.

>0 This value indicates that the Nth button
should be used as the default. This number is
the index of a push button within the dialog
box template.

If DefaultButton is not specified, then _1 is used. If the number specified by
DefaultButton does not correspond to an existing button, then there will be no
default button.

The default button appears with a thick border and is selected when the user
presses Enter on a control other than a push button.

Timeout An Integer specifying the number of milliseconds to display the dialog box
before automatically dismissing it. If TimeOut is not specified or is equal to 0,
then the dialog box will be displayed until dismissed by the user.

If a dialog box has been dismissed due to a timeout, the Dialog function returns
0.

Example 'This example displays an abort/retry/ignore disk error dialog box.

Sub Main()
Begin Dialog DiskErrorTemplate 16,32,152,48,"Disk Error"

Text 8,8,100,8,"The disk drive door is open."
PushButton 8,24,40,14,"Abort",.Abort
PushButton 56,24,40,14,"Retry",.Retry
PushButton 104,24,40,14,"Ignore",.Ignore

End Dialog
Dim DiskError As DiskErrorTemplate
r% = Dialog(DiskError,3,0)
MsgBox "You selected button: " & r%

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement);
Dialog (statement); DropListBox (statement); GroupBox (statement); ListBox
(statement); OKButton (statement); OptionButton (statement); OptionGroup
(statement); Picture (statement); PushButton (statement); Text (statement);
TextBox (statement); Begin Dialog (statement), PictureButton (statement).

Chapter 2 Dialog (statement) 161

Platform(s) Windows and Macintosh.

Dialog (statement)
Syntax Dialog DialogVariable [,[DefaultButton] [,Timeout]]

Description Same as the Dialog function, except that the Dialog statement does not
return a value. (See Dialog [function].)

Example 'This example displays an abort/retry/ignore disk error dialog box.

Sub Main()
Begin Dialog DiskErrorTemplate 16,32,152,48,"Disk Error"

Text 8,8,100,8,"The disk drive door is open."
PushButton 8,24,40,14,"Abort",.Abort
PushButton 56,24,40,14,"Retry",.Retry
PushButton 104,24,40,14,"Ignore",.Ignore

End Dialog
Dim DiskError As DiskErrorTemplate
Dialog DiskError,3,0

End Sub

See Also Dialog (function).

Platform(s) Windows and Macintosh.

Dim (statement)
Syntax Dim name [(<subscripts>)] [As [New] type] [,name [(<subscripts>)] [As [New]

type]]...

Description Declares a list of local variables and their corresponding types and sizes.

Comments If a type-declaration character is used when specifying name (such as %, @, &, $,
or !), the optional [As type] expression is not allowed. For example, the
following are allowed:

Dim Temperature As Integer
Dim Temperature%

The subscripts parameter allows the declaration of dynamic and fixed arrays.
The subscripts parameter uses the following syntax:

[lower to] upper [,[lower to] upper]...

The lower and upper parameters are integers specifying the lower and upper
bounds of the array. If lower is not specified, then the lower bound as specified
by Option Base is used (or 1 if no Option Base statement has been
encountered). WM Basic supports a maximum of 60 array dimensions.

The total size of an array (not counting space for strings) is limited to 64K.

162 Working Model Basic User's Manual

Dynamic arrays are declared by not specifying any bounds:

Dim a()

The type parameter specifies the type of the data item being declared. It can be
any of the following data types: String, Integer, Long, Single,
Double, Currency, Object, data object, built-in data type, or any user-
defined data type.

A Dim statement within a subroutine or function declares variables local to that
subroutine or function. If the Dim statement appears outside of any subroutine
or function declaration, then that variable has the same scope as variables
declared with the Private statement.

Fixed-Length Strings

Fixed-length strings are declared by adding a length to the String type-
declaration character:

Dim name As String * length

where length is a literal number specifying the string's length.

Implicit Variable Declaration

If WM Basic encounters a variable that has not been explicitly declared with
Dim, then the variable will be implicitly declared using the specified type-
declaration character (#, %, @, $, or &). If the variable appears without a type-
declaration character, then the first letter is matched against any pending
DefType statements, using the specified type if found. If no DefType
statement has been encountered corresponding to the first letter of the variable
name, then Variant is used.

Creating New Objects

The optional New keyword is used to declare a new instance of the specified
data object. This keyword can only be used with data object types. Furthermore,
this keyword cannot be used when declaring arrays.

At runtime, the application or extension that defines that object type is notified
that a new object is being defined. The application responds by creating a new
physical object (within the appropriate context) and returning a reference to that
object, which is immediately assigned to the variable being declared.

When that variable goes out of scope (i.e., the Sub or Function procedure in
which the variable is declared ends), the application is notified. The application
then performs some appropriate action, such as destroying the physical object.

Chapter 2 Dim (statement) 163

Initial Values

All declared variables are given initial values, as described in the following
table:

Data Type Initial Value

Integer 0

Long 0

Double 0.0

Single 0.0

Date December 31, 1899 00:00:00

Currency 0.0

Boolean False

Object Nothing

Variant Empty

String "" (zero-length string)

User-defined type Each element of the structure is given an initial value, as described above.

Arrays Each element of the array is given an initial value, as described above.

Naming Conventions

Variable names must follow these naming rules:

1. Must start with a letter.

2. May contain letters, digits, and the underscore character (_); punctuation is
not allowed. The exclamation point (!) can appear within the name as long
as it is not the last character, in which case it is interpreted as a type-
declaration character.

The last character of the name can be any of the following type-declaration
characters: #, @, %, !, &, and $.

3. Must not exceed 80 characters in length.

4. Cannot be a reserved word.

164 Working Model Basic User's Manual

Examples 'The following examples use the Dim statement to declare various
'variable types.

Sub Main()
 Dim i As Integer

Dim l& 'long
Dim s As Single
Dim d# 'double
Dim c$ 'string
Dim MyArray(10) As Integer '10 element integer array
Dim MyStrings$(2,10) '2-10 element string arrays
Dim Filenames$(5 to 10) '6 element string array
Dim Values(1 to 10, 100 to 200) '111 element variant array

End Sub

See Also Redim (statement); Public (statement); Private (statement); Option Base
(statement).

Platform(s) Windows and Macintosh.

Dir, Dir$ (functions)
Syntax Dir$[(filespec$ [,attributes])]

Description Returns a String containing the first or next file matching filespec$.

If filespec$ is specified, then the first file matching that filespec$ is returned. If
filespec$ is not specified, then the next file matching the initial filespec$ is
returned.

Comments Dir$ returns a String, whereas Dir returns a String variant.

The Dir$/Dir functions take the following parameters:

Parameter Description

filespec$ String containing a file specification.

If this parameter is specified, then Dir$ returns the first file matching this file
specification. If this parameter is omitted, then the next file matching the initial
file specification is returned.

If no path is specified in filespec$, then the current directory is used.

attributes Integer specifying attributes of files you want included in the list, as described
below. If omitted, then only the normal, read-only, and archive files are
returned.

An error is generated if Dir$ is called without first calling it with a valid
filespec$.

If there is no matching filespec$, then a zero-length string is returned.

Chapter 2 Dir, Dir$ (functions) 165

Wildcards

The filespec$ argument can include wildcards, such as * and ?. The * character
matches any sequence of zero or more characters, whereas the ? character
matches any single character. Multiple *'s and ?'s can appear within the
expression to form complete searching patterns. The following table shows
some examples:

This pattern Matches these files Doesn't match these files

S.TXT SAMPLE.TXT SAMPLE
GOOSE.TXT SAMPLE.DAT
SAMS.TXT

C*T.TXT CAT.TXT CAP.TXT
ACATS.TXT

C*T CAT CAT.DOC
CAP.TXT

C?T CAT CAT.TXT
CUT CAPIT

CT

* (All files)

Attributes

You can control which files are included in the search by specifying the
optional attributes parameter. The Dir, Dir$ functions always return all
normal, read-only, and archive files (ebNormal Or ebReadOnly Or
ebArchive). To include additional files, you can specify any combination of
the following attributes (combined with the Or operator):

Constant Value Includes

ebNormal 0 Normal, Read-only, and archive files
ebHidden 2 Hidden files
ebSystem 4 System files
ebVolume 8 Volume label
ebDirectory 16 DOS subdirectories

166 Working Model Basic User's Manual

Example 'This example dimensions a null array and fills it with directory
'entries. The result is displayed in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim a$(10)
a(1) = Dir$("*.*")
i% = 1
While (a(i%) <> "") And (i% < 10)

i% = i% + 1
a(i%) = Dir$

Wend
MsgBox a(1) & crlf & a(2) & crlf & a(3) & crlf & a(4)

End Sub

See Also ChDir (statement); ChDrive (statement); CurDir, CurDir$ (functions); MkDir
(statement); RmDir (statement); FileList (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Macintosh

The Macintosh does not support wildcard characters such as * and ?. These are
valid filename characters. Instead of wildcards, the Macintosh uses the MacID
function to specify a collection of files of the same type. The syntax for this
function is:

Dir$(filespec$,MacID(text$))

The text$ parameter is a four-character string containing a file type, a resource
type, an application signature, or an Apple event. A runtime error occurs if the
MacID function is used on platforms other than the Macintosh.

When the MacID function is used, the filespec$ parameter specifies the
directory in which to search for files of the indicated type.

Platform
Notes:

Windows

Notice that WM Basic's filename matching is different than DOS's. The pattern
"*.*" under DOS matches all files. With WM Basic, this pattern matches only
files that have file extensions.

DiskDrives (statement)
Syntax DiskDrives array()

Description Fills the specified String or Variant array with a list of valid drive letters.

Chapter 2 DiskFree (function) 167

Comments The array() parameter specifies either a zero- or a one-dimensioned array of
strings or variants. The array can be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new
number of elements. If there are no elements, then the array will be
redimensioned to contain no dimensions. You can use the LBound, UBound, and
ArrayDims functions to determine the number and size of the new array's
dimensions.

If the array is fixed, each array element is first erased, then the new elements
are placed into the array. If there are fewer elements than will fit in the array,
then the remaining elements are initialized to zero-length strings (for String
arrays) or Empty (for Variant arrays). A runtime error results if the array is too
small to hold the new elements.

Example 'This example builds and displays an array containing the first three
'available disk drives.

Sub Main()
Dim drive$()
DiskDrives drive$
r% = SelectBox("Available Disk Drives",,drive$)

End Sub

See Also ChDrive (statement); DiskFree (function).

Platform(s) Windows.

DiskFree (function)
Syntax DiskFree&([drive$])

Description Returns a Long containing the free space (in bytes) available on the specified
drive.

Comments If drive$ is zero-length or not specified, then the current drive is assumed.

Only the first character of the drive$ string is used.

Example 'This example uses DiskFree to set the value of i and then displays the
'result in a message box.

Sub Main()
s$ = "c"
i# = DiskFree(s$)
MsgBox "Free disk space on drive '" & s$ & "' is: " & i#

End Sub

See Also ChDrive (statement); DiskDrives (statement).

Platform(s) Windows and Macintosh.

168 Working Model Basic User's Manual

Platform
Notes:

On systems that do not support drive letters, the drive$ parameter specifies the
name of the path from which to retrieve the free disk space.

DlgControlId (function)
Syntax DlgControlId(ControlName$)

Description Returns an Integer containing the index of the specified control as it appears
in the dialog box template.

Comments The first control in the dialog box template is at index 0, the second is at index
1, and so on.

The ControlName$ parameter contains the name of the .Identifier parameter
associated with that control in the dialog box template.

The WM Basic statements and functions that dynamically manipulate dialog
box controls identify individual controls using either the .Identifier name of the
control or the control's index. Using the index to refer to a control is slightly
faster but results in code that is more difficult to maintain.

Example Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
'If a control is clicked, disable the next three controls.
If Action% = 2 Then

'Enable the next three controls.
start% = DlgControlId(ControlName$)

For i = start% + 1 To start% + 3
DlgEnable i,True

Next i
DlgProc = 1 'Don't close the dialog box.

End If
End Function

See Also DlgEnable (function); DlgEnable (statement); DlgFocus (function); DlgFocus
(statement); DlgListBoxArray (function); DlgListBoxArray (statement);
DlgSetPicture (statement); DlgText (statement); DlgText (function);
DlgValue (function); DlgValue (statement); DlgVisible (statement);
DlgVisible (function).

Platform(s) Windows and Macintosh.

DlgEnable (function)
Syntax DlgEnable(ControlName$ | ControlIndex)

Description Returns True if the specified control is enabled; returns False otherwise.

Chapter 2 DlgEnable (statement) 169

Comments Disabled controls are dimmed and cannot receive keyboard or mouse input.

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive
comparison is used to locate the specific control within the template.
Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog box template (0 is the first control in the
template, 1 is the second, and so on).

You cannot disable the control with the focus.

Example If DlgEnable("SaveOptions") Then
MsgBox "The Save Options are enabled."

End If
If DlgEnable(10) And DlgVisible(12) Then code = 1 Else code = 2

See Also DlgControl (statement); DlgEnable (statement); DlgFocus (function);
DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (statement); DlgText
(function); DlgValue (function); DlgValue (statement); DlgVisible
(statement); DlgVisible (function).

Platform(s) Windows and Macintosh.

DlgEnable (statement)
Syntax DlgEnable {ControlName$ | ControlIndex} [,isOn]

Description Enables or disables the specified control.

Comments Disabled controls are dimmed and cannot receive keyboard or mouse input.

The isOn parameter is an Integer specifying the new state of the control. It
can be any of the following values:

0 The control is disabled.

1 The control is enabled.

Omitted Toggles the control between enabled and disabled.

Option buttons can be manipulated individually (by specifying an individual
option button) or as a group (by specifying the name of the option group).

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. Alternatively, by
specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog box template (0 is the first control in the template, 1 is the
second, and so on).

170 Working Model Basic User's Manual

Example DlgEnable "SaveOptions", False 'Disable the Save Options control.

DlgEnable "EditingOptions" 'Toggle a group of option buttons.

For i = 0 To 5
DlgEnable i,True 'Enable six controls.

Next i

See Also DlgControl (statement); DlgEnable (function); DlgFocus (function);
DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (statement); DlgText
(function); DlgValue (function); DlgValue (statement); DlgVisible
(statement); DlgVisible (function).

Platform(s) Windows and Macintosh.

DlgFocus (function)
Syntax DlgFocus$[()]

Description Returns a String containing the name of the control with the focus.

Comments The name of the control is the .Identifier parameter associated with the control
in the dialog box template.

Example 'This code fragment makes sure that the control being disabled does not
'currently have the focus (otherwise, a runtime error would occur).

If DlgFocus$ = "Files" Then 'Does it have the focus?
DlgFocus "OK" 'Change the focus to another control.

End If
DlgEnable "Files", False 'Now we can disable the control.

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement);
DlgFocus (statement); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (statement); DlgText
(function); DlgValue (function); DlgValue (statement); DlgVisible
(statement); DlgVisible (function).

Platform(s) Windows and Macintosh.

DlgFocus (statement)
Syntax DlgFocus ControlName$ | ControlIndex

Description Sets focus to the specified control.

Chapter 2 DlgListBoxArray (function) 171

Comments A runtime error results if the specified control is hidden, disabled, or
nonexistent.

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive
comparison is used to locate the specific control within the template.
Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog box template (0 is the first control in the
template, 1 is the second, and so on).

Example 'This code fragment makes sure that the control being disabled does
'not currently have the focus (otherwise, a runtime error would occur).

If DlgFocus$ = "Files" Then 'Does it have the focus?
DlgFocus "OK" 'Change the focus to another control.

End If
DlgEnable "Files", False 'Now we can disable the control.

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement);
DlgFocus (function); DlgListBoxArray (function); DlgListBoxArray
(statement); DlgSetPicture (statement); DlgText (statement); DlgText
(function); DlgValue (function); DlgValue (statement); DlgVisible
(statement); DlgVisible (function).

Platform(s) Windows and Macintosh.

DlgListBoxArray (function)
Syntax DlgListBoxArray({ControlName$ | ControlIndex}, ArrayVariable)

Description Fills a list box, combo box, or drop list box with the elements of an array,
returning an Integer containing the number of elements that were actually
set into the control.

Comments The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive
comparison is used to locate the specific control within the template.
Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog box template (0 is the first control in the
template, 1 is the second, and so on).

The ArrayVariable parameter specifies a single-dimensioned array used to
initialize the elements of the control. If this array has no dimensions, then the
control will be initialized with no elements. A runtime error results if the
specified array contains more than one dimension. ArrayVariable can specify
an array of any fundamental data type (structures are not allowed). Null and
Empty values are treated as zero-length strings.

172 Working Model Basic User's Manual

Example 'This dialog function refills an array with files.

Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
If Action% = 2 And ControlName$ = "Files" Then

Dim NewFiles$() 'Create a new dynamic array.
FileList NewFiles$,"*.txt" 'Fill the array with files.
r% = DlgListBoxArray "Files",NewFiles$ 'Set items in the list

box.
DlgValue "Files",0 'Set the selection to the first item.
DlgProc = 1 'Don't close the dialog box.

End If
MsgBox r% & " items were added to the list box."

End Function

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement);
DlgFocus (function); DlgFocus (statement); DlgListBoxArray (statement);
DlgSetPicture (statement); DlgText (statement); DlgText (function);
DlgValue (function); DlgValue (statement); DlgVisible (statement);
DlgVisible (function).

Platform(s) Windows and Macintosh.

DlgListBoxArray (statement)
Syntax DlgListBoxArray {ControlName$ | ControlIndex}, ArrayVariable

Description Fills a list box, combo box, or drop list box with the elements of an array.

Comments The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive
comparison is used to locate the specific control within the template.
Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog box template (0 is the first control in the
template, 1 is the second, and so on).

The ArrayVariable parameter specifies a single-dimensioned array used to
initialize the elements of the control. If this array has no dimensions, then the
control will be initialized with no elements. A runtime error results if the
specified array contains more than one dimension. ArrayVariable can specify
an array of any fundamental data type (structures are not allowed). Null and
Empty values are treated as zero-length strings.

Chapter 2 DlgProc (function) 173

Example 'This dialog function refills an array with files.

Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
If Action% = 2 And ControlName$ = "Files" Then

Dim NewFiles$() 'Create a new dynamic
array.

FileList NewFiles$,"*.txt" 'Fill the array with files.
DlgListBoxArray "Files",NewFiles$ 'Set items in the list box.
DlgValue "Files",0 'Set the selection to the

first item.
End If

End Function

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement);
DlgFocus (function); DlgFocus (statement); DlgListBoxArray (function);
DlgSetPicture (statement); DlgText (statement); DlgText (function);
DlgValue (function); DlgValue (statement); DlgVisible (statement);
DlgVisible (function).

Platform(s) Windows and Macintosh.

DlgProc (function)
Syntax Function DlgProc(ControlName$, Action, SuppValue) As Integer

Description Describes the syntax, parameters, and return value for dialog functions.

Comments Dialog functions are called by WM Basic during the processing of a custom
dialog box. The name of a dialog function (DlgProc) appears in the Begin
Dialog statement as the .DlgProc parameter.

Dialog functions require the following parameters:

Parameter Description

ControlName$ String containing the name of the control associated with Action.

Action Integer containing the action that called the dialog function.

SuppValue Integer of extra information associated with Action. For some actions, this
parameter is not used.

When WM Basic displays a custom dialog box, the user may click on buttons,
type text into edit fields, select items from lists, and perform other actions.
When these actions occur, WM Basic calls the dialog function, passing it the
action, the name of the control on which the action occurred, and any other
relevent information associated with the action.

174 Working Model Basic User's Manual

The following table describes the different actions sent to dialog functions:

Action Description

1 This action is sent immediately before the dialog box is shown for the first time.
This gives the dialog function a chance to prepare the dialog box for use. When
this action is sent, ControlName$ contains a zero-length string, and SuppValue
is 0.

The return value from the dialog function is ignored in this case.

Before Showing the Dialog Box

After action 1 is sent, WM Basic performs additional processing before the
dialog box is shown. Specifically, it cycles though the dialog box controls
checking for visible picture or picture button controls. For each visible picture
or picture button control, WM Basic attempts to load the associated picture.

In addition to checking picture or picture button controls, WM Basic will
automatically hide any control outside the confines of the visible portion of the
dialog box. This prevents the user from tabbing to controls that cannot be seen.
However, it does not prevent you from showing these controls with the
DlgVisible statement in the dialog function.

2 This action is sent when:

A button is clicked, such as OK, Cancel, or a push
button. In this case, ControlName$ contains the name of
the button. SuppValue contains 1 if an OK button was
clicked and 2 if a Cancel button was clicked; SuppValue
is undefined otherwise.

If the dialog function returns 0 in response to this action,
then the dialog box will be closed. Any other value
causes WM Basic to continue dialog processing.

A check box's state has been modified. In this case,
ControlName$ contains the name of the check box, and
SuppValue contains the new state of the check box (1 if
on, 0 if off).

An option button is selected. In this case, ControlName$
contains the name of the option button that was clicked,
and SuppValue contains the index of the option button
within the option button group (0-based).

The current selection is changed in a list box, drop list
box, or combo box. In this case, ControlName$ contains
the name of the list box, combo box, or drop list box, and
SuppValue contains the index of the new item (0 is the
first item, 1 is the second, and so on).

Chapter 2 DlgProc (function) 175

3 This action is sent when the content of a text box or combo box has been
changed. This action is only sent when the control loses focus. When this action
is sent, ControlName$ contains the name of the text box or combo box, and
SuppValue contains the length of the new content.

The dialog function's return value is ignored with this action.

4 This action is sent when a control gains the focus. When this action is sent,
ControlName$ contains the name of the control gaining the focus, and
SuppValue contains the index of the control that lost the focus (0-based).

The dialog function's return value is ignored with this action.

5 This action is sent continuously when the dialog box is idle. If the dialog
function returns 1 in response to this action, then the idle action will continue to
be sent. If the dialog function returns 0, then WM Basic will not send any
additional idle actions.

When the idle action is sent, ControlName$ contains a zero-length string, and
SuppValue contains the number of times the idle action has been sent so far.

6 This action is sent when the dialog box is moved. The ControlName$ parameter
contains a zero-length string, and SuppValue is 0.

The dialog function's return value is ignored with this action.

User-defined dialog boxes cannot be nested. In other words, the dialog function
of one dialog box cannot create another user-defined dialog box. You can,
however, invoke any built-in dialog box, such as MsgBox or InputBox$.

Within dialog functions, you can use the following additional WM Basic
statements and functions. These statements allow you to manipulate the dialog
box controls dynamically.

DlgVisible DlgText$ DlgText
DlgSetPicture DlgListBoxArray DlgFocus
DlgEnable DlgControlId

For compatibility with previous versions of WM Basic, the dialog function can
optionally be declared to return a Variant. When returning a variable, WM
Basic will attempt to convert the variant to an Integer. If the returned variant
cannot be converted to an Integer, then 0 is assumed to be returned from the
dialog function.

176 Working Model Basic User's Manual

Example 'This dialog function enables/disables a group of option buttons
'when a check box is clicked.

Function SampleDlgProc(ControlName$, Action%, SuppValue%)
If Action% = 2 And ControlName$ = "Printing" Then

DlgEnable "PrintOptions",SuppValue%
SampleDlgProc = 1 'Don't close the dialog box.

End If
End Function

Sub Main()
Begin Dialog SampleDialogTemplate

34,39,106,45,"Sample",.SampleDlgProc
OKButton 4,4,40,14
CancelButton 4,24,40,14
CheckBox 56,8,38,8,"Printing",.Printing
OptionGroup .PrintOptions

OptionButton 56,20,51,8,"Landscape",.Landscape
OptionButton 56,32,40,8,"Portrait",.Portrait

End Dialog
Dim SampleDialog As SampleDialogTemplate
SampleDialog.Printing = 1
r% = Dialog(SampleDialog)

End Sub

See Also Begin Dialog (statement).

Platform(s) Windows and Macintosh.

DlgSetPicture (statement)
Syntax DlgSetPicture {ControlName$ | ControlIndex},PictureName$,PictureType

Description Changes the content of the specified picture or picture button control.

Chapter 2 DlgSetPicture (statement) 177

Comments The DlgSetPicture statement accepts the following parameters:

Parameter Description

ControlName$ String containing the name of the .Identifier parameter associated with a
control in the dialog box template. A case-insensitive comparison is used to
locate the specified control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the
dialog box template (0 is the first control in the template, 1 is the second, and so
on).

PictureName$ String containing the name of the picture. If PictureType is 0, then this
parameter specifies the name of the file containing the image. If PictureType is
10, then PictureName$ specifies the name of the image within the resource of
the picture library.

If PictureName$ is empty, then the current picture associated with the specified
control will be deleted. Thus, a technique for conserving memory and resources
would involve setting the picture to empty before hiding a picture control.

PictureType Integer specifying the source for the image. The following sources are
supported:

0 The image is contained in a file on disk.

10 The image is contained in the picture library
specified by the Begin Dialog statement.
When this type is used, the PictureName$
parameter must be specified with the Begin
Dialog statement.

Examples DlgSetPicture "Picture1","\windows\checks.bmp",0 'Set picture from a
file.

DlgSetPicture 27,"FaxReport",10 'Set control 10's
image

'from a library.

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement);
DlgFocus (function); DlgFocus (statement); DlgListBoxArray (function);
DlgListBoxArray (statement); DlgText (statement); DlgText (function);
DlgValue (function); DlgValue (statement); DlgVisible (statement);
DlgVisible (function), Picture (statement), PictureButton (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Under Windows, picture controls can contain either bitmaps or WMFs
(Windows metafiles). When extracting images from a picture library, WM
Basic assumes that the resource type for metafiles is 256.

Picture libraries are implemented as DLLs on the Windows.

178 Working Model Basic User's Manual

Platform
Notes:

Macintosh

Picture controls on the Macintosh can contain only PICT images. These are
contained in files of type PICT.

Picture libraries on the Macintosh are files with collections of named PICT
resources. The PictureName$ parameter corresponds to the name of one the
resources as it appears within the file.

DlgText (statement)
Syntax DlgText {ControlName$ | ControlIndex}, NewText$

Description Changes the text content of the specified control.

Comments The effect of this statement depends on the type of the specified control:

Control Type Effect of DlgText

Picture Runtime error.

Option group Runtime error.

Drop list box Sets the current selection to the item matching NewText$. If an exact match
cannot be found, the DlgText statement searches from the first item looking
for an item that starts with NewText$. If no match is found, then the selection is
removed.

OK button Sets the label of the control to NewText$.

Cancel button Sets the label of the control to NewText$.

Push button Sets the label of the control to NewText$.

List box Sets the current selection to the item matching NewText$. If an exact match
cannot be found, the DlgText statement searches from the first item looking
for an item that starts with NewText$. If no match is found, then the selection is
removed.

Combo box Sets the content of the edit field of the combo box to NewText$.

Text Sets the label of the control to NewText$.

Text box Sets the content of the text box to NewText$.

Group box Sets the label of the control to NewText$.

Option button Sets the label of the control to NewText$.

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive
comparison is used to locate the specific control within the template.
Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog box template (0 is the first control in the
template, 1 is the second, and so on).

Chapter 2 DlgText$ (function) 179

Example DlgText "GroupBox1","Save Options" 'Change text of group box 1.

If DlgText$(9) = "Save Options" Then
DlgText 9,"Editing Options" 'Change text to "Editing

Options".
End If

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement);
DlgFocus (function); DlgFocus (statement); DlgListBoxArray (function);
DlgListBoxArray (statement); DlgSetPicture (statement); DlgText
(function); DlgValue (function); DlgValue (statement); DlgVisible
(statement); DlgVisible (function).

Platform(s) Windows and Macintosh.

DlgText$ (function)
Syntax DlgText$(ControlName$ | ControlIndex)

Description Returns the text content of the specified control.

Comments The text returned depends on the type of the specified control:

Control Type Value Returned by DlgText$

Picture No value is returned. A runtime error occurs.

Option group No value is returned. A runtime error occurs.

Drop list box Returns the currently selected item. A zero-length string is returned if no item is
currently selected.

OK button Returns the label of the control.

Cancel button Returns the label of the control.

Push button Returns the label of the control.

List box Returns the currently selected item. A zero-length string is returned if no item is
currently selected.

Combo box Returns the content of the edit field portion of the combo box.

Text Returns the label of the control.

Text box Returns the content of the control.

Group box Returns the label of the control.

Option button Returns the label of the control.

180 Working Model Basic User's Manual

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive
comparison is used to locate the specific control within the template.
Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog box template (0 is the first control in the
template, 1 is the second, and so on).

Example MsgBox DlgText$(10) 'Display the text in the tenth control.

If DlgText$("SaveOptions") = "EditingOptions" Then
MsgBox "You are currently viewing the editing options."

End If

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement);
DlgFocus (function); DlgFocus (statement); DlgListBoxArray (function);
DlgListBoxArray (statement); DlgSetPicture (statement); DlgText
(statement); DlgValue (function); DlgValue (statement); DlgVisible
(statement); DlgVisible (function).

Platform(s) Windows and Macintosh.

DlgValue (function)
Syntax DlgValue(ControlName$ | ControlIndex)

Description Returns an Integer indicating the value of the specified control.

Comments The value of any given control depends on its type, according to the following
table:

Control Type DlgValue Returns

Option group The index of the selected option button within the group (0 is the first option
button, 1 is the second, and so on).

List box The index of the selected item.

Drop list box The index of the selected item.

Check box 1 if the check box is checked; 0 otherwise.

A runtime error is generated if DlgValue is used with controls other than
those listed in the above table.

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. Alternatively, by
specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog box template (0 is the first control in the template, 1 is the
second, and so on).

ExampleSee DlgValue (statement).

Chapter 2 DlgValue (statement) 181

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement);
DlgFocus (function); DlgFocus (statement); DlgListBoxArray (function);
DlgListBoxArray (statement); DlgSetPicture (statement); DlgText
(statement); DlgText (function); DlgValue (statement); DlgVisible
(statement); DlgVisible (function).

Platform(s) Windows and Macintosh.

DlgValue (statement)
Syntax DlgValue {ControlName$ | ControlIndex},Value

Description Changes the value of the given control.

Comments The value of any given control is an Integer and depends on its type,
according to the following table:

Control Type Description of Value

Option group The index of the new selected option button within the group (0 is the first
option button, 1 is the second, and so on).

List box The index of the new selected item.

Drop list box The index of the new selected item.

Check box 1 if the check box is to be checked; 0 if the check is to be removed.

A runtime error is generated if DlgValue is used with controls other than
those listed in the above table.

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive
comparison is used to locate the specific control within the template.
Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog box template (0 is the first control in the
template, 1 is the second, and so on).

Example 'This code fragment toggles the value of a check box.

If DlgValue("MyCheckBox") = 1 Then
DlgValue "MyCheckBox",0

Else
DlgValue "MyCheckBox",1

End If

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement);
DlgFocus (function); DlgFocus (statement); DlgListBoxArray (function);
DlgListBoxArray (statement); DlgSetPicture (statement); DlgText
(statement); DlgText (function); DlgValue (function); DlgVisible
(statement); DlgVisible (function).

Platform(s) Windows and Macintosh.

182 Working Model Basic User's Manual

DlgVisible (function)
Syntax DlgVisible(ControlName$ | ControlIndex)

Description Returns True if the specified control is visible; returns False otherwise.

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. Alternatively, by
specifying the ControlIndex parameter, a control can be referred to using its
index in the template (0 is the first control in the template, 1 is the second, and
so on).

A runtime error is generated if DlgVisible is called with no user dialog is
active.

Example If DlgVisible("Portrait") Then Beep

If DlgVisible(10) And DlgVisible(12) Then
MsgBox "The 10th and 12th controls are visible."

End If

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement);
DlgFocus (function); DlgFocus (statement); DlgListBoxArray (function);
DlgListBoxArray (statement); DlgSetPicture (statement); DlgText
(statement); DlgText (function); DlgValue (function); DlgValue (statement);
DlgVisible (function).

Platform(s) Windows and Macintosh.

DlgVisible (statement)
Syntax DlgVisible {ControlName$ | ControlIndex} [,isOn]

Description Hides or shows the specified control.

Comments Hidden controls cannot be seen in the dialog box and cannot receive the focus
using Tab.

The isOn parameter is an Integer specifying the new state of the control. It
can be any of the following values:

1 The control is shown.

0 The control is hidden.

Omitted Toggles the visibility of the control.

Option buttons can be manipulated individually (by specifying an individual
option button) or as a group (by specifying the name of the option group).

Chapter 2 DlgVisible (statement) 183

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive
comparison is used to locate the specific control within the template.
Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog box template (0 is the first control in the
template, 1 is the second, and so on).

Picture Caching

When the dialog box is first created and before it is shown, WM Basic calls the
dialog function with action set to 1. At this time, no pictures have been loaded
into the picture controls contained in the dialog box template. After control
returns from the dialog function and before the dialog box is shown, WM Basic
will load the pictures of all visible picture controls. Thus, it is possible for the
dialog function to hide certain picture controls, which prevents the associated
pictures from being loaded and causes the dialog box to load faster. When a
picture control is made visible for the first time, the associated picture will then
be loaded.

184 Working Model Basic User's Manual

Example 'This example creates a dialog box with two panels. The DlgVisible
'statement is used to show or hide the controls of the different
'panels.

Sub EnableGroup(start%, finish%)
For i = 6 To 13 'Disable all options.

DlgVisible i, False
Next i
For i = start% To finish% 'Enable only the right ones.

DlgVisible i, True
Next i

End Sub

Function DlgProc(ControlName$, Action%, SuppValue%)
If Action% = 1 Then

DlgValue "WhichOptions",0 'Set to save options.
EnableGroup 6, 8 'Enable the save options.

End If
If Action% = 2 And ControlName$ = "SaveOptions" Then

EnableGroup 6, 8 'Enable the save options.
DlgProc = 1 'Don't close the dialog box.

End If
If Action% = 2 And ControlName$ = "EditingOptions" Then

EnableGroup 9, 13 'Enable the editing options.
DlgProc = 1 'Don't close the dialog box.

End If
End Function

Sub Main()
Begin Dialog OptionsTemplate 33, 33, 171, 134, "Options", .DlgProc

'Background (controls 0-5)
GroupBox 8, 40, 152, 84, ""
OptionGroup .WhichOptions

OptionButton 8, 8, 59, 8, "Save Options",.SaveOptions
OptionButton 8, 20, 65, 8, "Editing Options",.EditingOptions

OKButton 116, 7, 44, 14
CancelButton 116, 24, 44, 14

'Save options (controls 6-8)
CheckBox 20, 56, 88, 8, "Always create backup",.CheckBox1
CheckBox 20, 68, 65, 8, "Automatic save",.CheckBox2
CheckBox 20, 80, 70, 8, "Allow overwriting",.CheckBox3

'Editing options (controls 9-13)
CheckBox 20, 56, 65, 8, "Overtype mode",.OvertypeMode
CheckBox 20, 68, 69, 8, "Uppercase only",.UppercaseOnly
CheckBox 20, 80, 105, 8, "Automatically check

syntax",.AutoCheckSyntax
CheckBox 20, 92, 73, 8, "Full line selection",.FullLineSelection
CheckBox 20, 104, 102, 8, "Typing replaces

selection",.TypingReplacesText
End Dialog

Dim OptionsDialog As OptionsTemplate
Dialog OptionsDialog

End Sub

Chapter 2 Do...Loop (statement) 185

See Also DlgControl (statement); DlgEnable (function); DlgEnable (statement);
DlgFocus (function); DlgFocus (statement); DlgListBoxArray (function);
DlgListBoxArray (statement); DlgSetPicture (statement); DlgText
(statement); DlgText (function); DlgValue (function); DlgValue (statement);
DlgVisible (statement).

Platform(s) Windows and Macintosh.

Do...Loop (statement)
Syntax 1 Do {While | Until} condition statements Loop

Syntax 2 Do
statements

Loop {While | Until} condition

Syntax 3 Do
statements

Loop

Description Repeats a block of WM Basic statements while a condition is True or until a
condition is True.

Comments If the {While | Until} conditional clause is not specified, then the loop
repeats the statements forever (or until WM Basic encounters an Exit Do
statement).

The condition parameter specifies any Boolean expression.

Examples Sub Main()
'This first example uses the Do...While statement, which performs
'the iteration, then checks the condition, and repeats if the
'condition is True.

Dim a$(100)
i% = -1
Do

i% = i% + 1
If i% = 0 Then

a(i%) = Dir$("*")
Else

a(i%) = Dir$
End If

Loop While (a(i%) <> "" And i% <= 99)
r% = SelectBox(i% & " files found",,a)

186 Working Model Basic User's Manual

'This second example uses the Do While...Loop, which checks the
'condition and then repeats if the condition is True.

Dim a$(100)
i% = 0
a(i%) = Dir$("*")
Do While a(i%) <> "" And i% <= 99

i% = i% + 1
a(i%) = Dir$

Loop
r% = SelectBox(i% & " files found",,a)

'This third example uses the Do Until...Loop, which does the
'iteration and then checks the condition and repeats if the
'condition is True.

Dim a$(100)
i% = 0
a(i%) = Dir$("*")
Do Until a(i%) = "" Or i% = 100

i% = i% + 1
a(i%) = Dir$

Loop
r% = SelectBox(i% & " files found",,a)

'This last example uses the Do...Until Loop, which performs the
'iteration first, checks the condition, and repeats if the
'condition is True.

Dim a$(100)
i% = -1
Do

i% = i% + 1
If i% = 0 Then

a(i%) = Dir$("*")
Else

a(i%) = Dir$
End If

Loop Until (a(i%) = "" Or i% = 100)
r% = SelectBox(i% & " files found",,a)

End Sub

See Also For...Next (statement); While ...WEnd (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Due to errors in program logic, you can inadvertently create infinite loops in
your code. Under Windows, you can break out of infinite loops using
Ctrl+Break.

Platform
Notes:

Macintosh

Due to errors in program logic, you can inadvertently create infinite loops in
your code. On the Macintosh, you can break out of infinite loops using
Command+Period.

Chapter 2 DoEvents (function) 187

DoEvents (function)
Syntax DoEvents[()]

Description Yields control to other applications, returning an Integer 0.

Comments This statement yields control to the operating system, allowing other
applications to process mouse, keyboard, and other messages.

If a SendKeys statement is active, this statement waits until all the keys in the
queue have been processed.

Example See DoEvents (statement).

See Also DoEvents (statement).

Platform(s) Windows and Macintosh.

DoEvents (statement)
Syntax DoEvents

Description Yields control to other applications.

Comments This statement yields control to the operating system, allowing other
applications to process mouse, keyboard, and other messages.

If a SendKeys statement is active, this statement waits until all the keys in the
queue have been processed.

Examples 'This first example shows a script that takes a long time and hogs the
'system. The subroutine explicitly yields to allow other applications
'to execute.

Sub Main()
Open "test.txt" For Output As #1
For i = 1 To 10000

Print #1,"This is a test of the system and stuff."
DoEvents

Next i
Close #1

End Sub

'In this second example, the DoEvents statement is used to wait until
'the queue has been completely flushed.

Sub Main()
AppActivate "Notepad" 'Activate Notepad.
SendKeys "This is a test.",False 'Send some keys.
DoEvents 'Wait for the keys to play back.

End Sub

See Also DoEvents (function).

Platform(s) Windows and Macintosh.

188 Working Model Basic User's Manual

DoKeys (statement)
Syntax DoKeys KeyString$ [,time]

Description Simulates the pressing of the specified keys.

Comments The DoKeys statement accepts the following parameters:

Parameter Description

KeyString$ String containing the keys to be sent. The format for KeyString$ is described
under the SendKeys statement.

time Integer specifying the number of milliseconds devoted for the output of the
entire KeyString$ parameter. It must be within the following range:

0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$ parameter contains
ten keys, then a key will be output every 1/2 second. If unspecified (or 0), the
keys will play back at full speed.

Example 'This code fragment plays back the time and date into Notepad.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
id = Shell("Notepad",4) 'Run Notepad.
AppActivate "Notepad"
t$ = time$
d$ = date$
DoKeys "The time is: " & t$ & "." & crlf
DoKeys "The date is: " & d$ & "."

End Sub

See Also SendKeys (statement); QueKeys (statement); QueKeyDn (statement); QueKeyUp
(statement).

Platform(s) Windows.

Platform
Notes:

Windows

This statement uses the Windows journalizing mechanism to play keystrokes
into the Windows environment.

Double (data type)
Syntax Double

Description A data type used to declare variables capable of holding real numbers with 15–
16 digits of precision.

Chapter 2 DropListBox (statement) 189

Comments Double variables are used to hold numbers within the following ranges:

Sign Range

Negative –1.797693134862315E308 <= double <=
-4.94066E-324

Positive 4.94066E-324 <= double <= 1.797693134862315E308

The type-declaration character for Double is #.

Storage

Internally, doubles are 8-byte (64-bit) IEEE values. Thus, when appearing
within a structure, doubles require 8 bytes of storage. When used with binary or
random files, 8 bytes of storage are required.

Each Double consists of the following

A 1-bit sign

An 11-bit exponent

A 53-bit significand (mantissa)

See Also Currency (data type); Date (data type); Integer (data type); Long (data type);
Object (data type); Single (data type); String (data type); Variant (data
type); Boolean (data type); DefType (statement); CDbl (function).

Platform(s) Windows and Macintosh.

DropListBox (statement)
Syntax DropListBox X, Y, width, height, ArrayVariable, .Identifier

Description Creates a drop list box within a dialog box template.

Comments When the dialog box is invoked, the drop list box will be filled with the
elements contained in ArrayVariable. Drop list boxes are similar to combo
boxes, with the following exceptions:

The list box portion of a drop list box is not opened by default. The user
must open it by clicking the down arrow.

The user cannot type into a drop list box. Only items from the list box may
be selected. With combo boxes, the user can type the name of an item from
the list directly or type the name of an item that is not contained within the
combo box.

This statement can only appear within a dialog box template (i.e., between the
Begin Dialog and End Dialog statements).

190 Working Model Basic User's Manual

The DropListBox statement requires the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

ArrayVariable Single-dimensioned array used to initialize the elements of the drop list box. If
this array has no dimensions, then the drop list box will be initialized with no
elements. A runtime error results if the specified array contains more than one
dimension.

ArrayVariable can specify an array of any fundamental data type (structures are
not allowed). Null and Empty values are treated as zero-length strings.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates
an integer variable whose value corresponds to the index of the drop list box's
selection (0 is the first item, 1 is the second, and so on). This variable can be
accessed using the following syntax:

DialogVariable.Identifier

Example 'This example allows the user to choose a field name from a drop
'list box.

Sub Main()
Dim FieldNames$(4)
FieldNames$(0) = "Last Name"
FieldNames$(1) = "First Name"
FieldNames$(2) = "Zip Code"
FieldNames$(3) = "State"
FieldNames$(4) = "City"
Begin Dialog FindTemplate 16,32,168,48,"Find"

Text 8,8,37,8,"&Find what:"
DropListBox 48,6,64,80,FieldNames,.WhichField
OKButton 120,7,40,14
CancelButton 120,27,40,14

End Dialog
Dim FindDialog As FindTemplate
FindDialog.WhichField = 1
Dialog FindDialog

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement);
Dialog (function); Dialog (statement); GroupBox (statement); ListBox
(statement); OKButton (statement); OptionButton (statement); OptionGroup
(statement); Picture (statement); PushButton (statement); Text (statement);
TextBox (statement); Begin Dialog (statement), PictureButton (statement).

Platform(s) Windows and Macintosh.

Chapter 2 DropListBox (statement) 191

192

ebAbort (constant)
Description Returned by the MsgBox function when the Abort button is chosen.

Comments This constant is equal to 3.

Example 'This example displays a dialog box with Abort, Retry, and Ignore
'buttons.

Sub Main()
Again:

rc% = MsgBox("Do you want to continue?",ebAbortRetryIgnore)
If rc% = ebAbort Then

End
Else

Goto Again:
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebAbortRetryIgnore (constant)
Description Used by the MsgBox statement and function.

Comments This constant is equal to 2.

Example 'This example displays a dialog box with Abort, Retry, and Ignore
'buttons.

Sub Main()
rc% = MsgBox("Wicked disk error!",ebAbortRetryIgnore)

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebApplicationModal (constant)
Description Used with the MsgBox statement and function.

Comments This constant is equal to 0.

Example 'This example displays an application-modal dialog box (which is the
'default).

Sub Main()
MsgBox "This is application-modal.",ebOKOnly Or ebApplicationModal

End Sub

Chapter 2 ebArchive (constant) 193

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebArchive (constant)
Description Bit position of a file attribute indicating that a file hasn't been backed up.

Comments This constant is equal to 32.

Example 'This example dimensions an array and fills it with filenames with the
'Archive bit set.

Sub Main()
Dim s$()
FileList s$,"*",ebArchive
a% = SelectBox("Archived Files", "Choose one", s$)
If a% >= 0 Then 'If a% is -1, then the user pressed Cancel.

MsgBox "You selected Archive file: " & s$(a)
Else

MsgBox "No selection made."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr
(function); FileAttr (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

This constant only applies to Windows.

ebBold (constant)
Description Used with the Text and TextBox statement to specify a bold font.

Comments This constant is equal to 2.

Example Sub Main()
Begin Dialog UserDialog 16,32,232,132,"Bold Font Demo"

Text 10,10,200,20,"Hello, world.",,"Helv",24,ebBold
TextBox 10,35,200,20,.Edit,,"Times New Roman",16,ebBold
OKButton 96,110,40,14

End Dialog
Dim a As UserDialog
Dialog a

End Sub

See Also Text (statement), TextBox (statement).

Platform(s) Windows and Macintosh.

194 Working Model Basic User's Manual

ebBoldItalic (constant)
Description Used with the Text and TextBox statement to specify a bold-italic font.

Comments This constant is equal to 6.

Example Sub Main()
Begin Dialog UserDialog 16,32,232,132,"Bold-Italic Font Demo"

Text 10,10,200,20,"Hello, world.",,"Helv",24,ebBoldItalic
TextBox 10,35,200,20,.Edit,,"Times New Roman",16,ebBoldItalic
OKButton 96,110,40,14

End Dialog
Dim a As UserDialog
Dialog a

End Sub

See Also Text (statement), TextBox (statement).

Platform(s) Windows and Macintosh.

ebBoolean (constant)
Description Number representing the type of a Boolean variant.

Comments This constant is equal to 11.

Example Sub Main()
Dim MyVariant as variant
MyVariant = True
If VarType(MyVariant) = ebBoolean Then

MyVariant = 5.5
End If

End Sub

See Also VarType (function); Variant (data type).

Platform(s) Windows and Macintosh.

ebCancel (constant)
Description Returned by the MsgBox function when the Cancel button is chosen.

Comments This constant is equal to 2.

Example Sub Main()
'Invoke MsgBox and check whether the Cancel button was pressed.
rc% = MsgBox("Are you sure you want to quit?",ebOKCancel)
If rc% = ebCancel Then

MsgBox "The user clicked Cancel."
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

Chapter 2 ebCritical (constant) 195

Platform(s) Windows and Macintosh.

ebCritical (constant)
Description Used with the MsgBox statement and function.

Comments This constant is equal to 16.

Example Sub Main()
'Invoke MsgBox with Abort, Retry, and Ignore buttons and a Stop icon.

rc% = MsgBox("Disk drive door is open.",ebAbortRetryIgnore Or
ebCritical)
 If rc% = 3 Then

'The user selected Abort from the dialog box.
MsgBox "The user clicked Abort."

End If
End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebCurrency (constant)
Description Number representing the type of a Currency variant.

Comments This constant is equal to 6.

Example 'This example checks to see whether a variant is of type Currency.

Sub Main()
Dim MyVariant
If VarType(MyVariant) = ebCurrency Then

MsgBox "Variant is Currency."
End If

End Sub

See Also VarType (function); Variant (data type).

Platform(s) Windows and Macintosh.

ebDataObject (constant)
Description Number representing the type of a data object variant.

Comments This constant is equal to 13.

196 Working Model Basic User's Manual

Example 'This example checks to see whether a variable is a data object.

Sub Main()
Dim MyVariant as Variant
If VarType(MyVariant) = ebDataObject Then

MsgBox "Variant contains a data object."
End If

End Sub

See Also VarType (function); Variant (data type).

Platform(s) Windows and Macintosh.

ebError (constant)
Description Number representing the type of an error variant.

Comments This constant is equal to 10.

Example 'This example checks to see whether a variable is an error.

Function Div(ByVal a As Variant,ByVal b As Variant) As Variant
If b = 0 Then

Div = CVErr(20000)
Else

Div = a / b
End If

End Function

Sub Main()
Dim Result as Variant
Randomize
Result = Div(10,Random(0,2))
If VarType(Result) = ebError Then

MsgBox "An error occurred"
Else

MsgBox "The result of the division is: " & Result
End If

End Sub

See Also VarType (function); Variant (data type).

Platform(s) Windows and Macintosh.

ebDate (constant)
Description Number representing the type of a Date variant.

Comments This constant is equal to 7.

Chapter 2 ebDefaultButton1 (constant) 197

Example Sub Main()
Dim MyVariant as Variant
If VarType(MyVariant) = ebDate Then

MsgBox "This variable is a Date type!"
Else

MsgBox "This variable is not a Date type!"
End If

End Sub

See Also VarType (function); Variant (data type).

Platform(s) Windows and Macintosh.

ebDefaultButton1 (constant)
Description Used with the MsgBox statement and function.

Comments This constant is equal to 0.

Example 'This example invokes MsgBox with the focus on the OK button by
default.

Sub Main()
rc% = MsgBox("Are you sure you want to quit?",ebOKCancel Or
ebDefaultButton1)

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebDefaultButton2 (constant)
Description Used with the MsgBox statement and function.

Comments This constant is equal to 256.

Example 'This example invokes MsgBox with the focus on the Cancel button by
'default.

Sub Main()
rc% = MsgBox("Are you sure you want to quit?",ebOKCancel Or
ebDefaultButton2)

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebDefaultButton3 (constant)
Description Used with the MsgBox statement and function.

Comments This constant is equal to 512.

198 Working Model Basic User's Manual

Example 'This example invokes MsgBox with the focus on the Ignore button by
'default.

Sub Main()
rc% = MsgBox("Disk drive door open.",ebAbortRetryIgnore Or
ebDefaultButton3)

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebDirectory (constant)
Description Bit position of a file attribute indicating that a file is a directory entry.

Comments This constant is equal to 16.

Example 'This example dimensions an array and fills it with directory names
'using the ebDirectory constant.

Sub Main()
Dim s$()
FileList s$, "c:*", ebDirectory
a% = SelectBox("Directories", "Choose one:", s$)
If a% >= 0 Then

MsgBox "You selected directory: " & s(a%)
Else

MsgBox "No selection made."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr
(function); FileAttr (function).

Platform(s) Windows and Macintosh.

ebDouble (constant)
Description Number representing the type of a Double variant.

Comments This constant is equal to 5.

Example See ebSingle (constant).

See Also MsgBox (function); MsgBox (statement); VarType (function); Variant (data
type).

Platform(s) Windows and Macintosh.

ebEmpty (constant)
Description Number representing the type of an Empty variant.

Chapter 2 ebExclamation (constant) 199

Comments This constant is equal to 0.

Example Sub Main()
Dim MyVariant as Variant

If VarType(MyVariant) = ebEmpty Then
MsgBox "No data has been input yet!"

End If
End Sub

See Also VarType (function); Variant (data type).

Platform(s) Windows and Macintosh.

ebExclamation (constant)
Description Used with the MsgBox statement and function.

Comments This constant is equal to 48.

Example 'This example displays a dialog box with an OK button and an
'exclamation icon.

Sub Main()
MsgBox "Out of memory saving to disk.",ebOKOnly Or ebExclamation

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebHidden (constant)
Description Bit position of a file attribute indicating that a file is hidden.

Comments This constant is equal to 2.

Example 'This example dimensions an array and fills it with filenames using
'the ebHidden attribute.

Sub Main()
Dim s$()
FileList s$,"*",ebHidden
If ArrayDims(s$) = 0 Then

MsgBox "No hidden files found!"
End

End If
a% = SelectBox("Hidden Files","Choose one", s$)
If a% >= 0 Then

MsgBox "You selected hidden file " & s(a%)
Else

MsgBox "No selection made."
End If

End Sub

200 Working Model Basic User's Manual

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr
(function); FileAttr (function).

Platform(s) Windows and Macintosh.

ebIgnore (constant)
Description Returned by the MsgBox function when the Ignore button is chosen.

Comments This constant is equal to 5.

Example 'This example displays a critical error dialog box and sees what the
'user wants to do.

Sub Main()
rc% = MsgBox("Printer out of paper.",ebAbortRetryIgnore)
If rc% = ebIgnore Then

'Continue printing here.
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebInformation (constant)
Description Used with the MsgBox statement and function.

Comments This constant is equal to 64.

Example 'This example displays a dialog box with the Information icon.

Sub Main()
MsgBox "You just deleted your file!",ebOKOnly Or ebInformation

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebInteger (constant)
Description Number representing the type of an Integer variant.

Comments This constant is equal to 2.

Chapter 2 ebItalic (constant) 201

Example 'This example defines a function that returns True if a variant
'contains an Integer value (either a 16-bit or 32-bit Integer).

Function IsInteger(v As Variant) As Boolean
If VarType(v) = ebInteger Or VarType(v) = ebLong Then

IsInteger = True
Else

IsInteger = False
End If

End Function

Sub Main()
Dim i as Integer
i = 123
If IsInteger(i) then

Msgbox "i is an Integer."
End If

End Sub

See Also VarType (function); Variant (data type).

Platform(s) Windows and Macintosh.

ebItalic (constant)
Description Used with the Text and TextBox statement to specify an italic font.

Comments This constant is equal to 4.

Example Sub Main()
Begin Dialog UserDialog 16,32,232,132,"Italic Font Demo"

Text 10,10,200,20,"Hello, world.",,"Helv",24,ebItalic
TextBox 10,35,200,20,.Edit,,"Times New Roman",16,ebItalic
OKButton 96,110,40,14

End Dialog

Dim a As UserDialog
Dialog a

End Sub

See Also Text (statement), TextBox (statement).

Platform(s) Windows and Macintosh.

ebLandscape (constant)
Description Used with the PrinterSetOrientation statement to align the paper

horizontally.

Comments This constant is equal to 2.

202 Working Model Basic User's Manual

Example 'This example sets the printer orientation to landscape.

Sub Main()
PrinterSetOrientation ebLandscape
Msgbox "Printer set to landscape."

End Sub

See Also PrinterSetOrientation (statement); PrinterGetOrientation (function).

Platform(s) Windows.

ebLeftButton (constant)
Description Used with the QueMouseXX commands to represent the left button.

Comments This constant is equal to 1.

Example 'This example double-clicks the left mouse button.

Sub Main()
QueMouseClick ebLeftButton,1000,1875

End Sub

See Also QueButtonDn (statement); QueButtonUp (statement); QueMouseClick
(statement); QueMouseDblClk (statement); QueMouseDblDn (statement).

Platform(s) Windows.

ebLong (constant)
Description Number representing the type of a Long variant.

Comments This constant is equal to 3.

Example See ebInteger (constant).

See Also VarType (function); Variant (data type).

Platform(s) Windows and Macintosh.

ebMacintosh (constant)
Description Used with the Basic.OS property to indicate the Macintosh version of WM

Basic.

Comments This constant is equal to 10.

The Basic.OS property returns this value when WM Basic is running under the
Macintosh operating system

Example Sub Main()
If Basic.OS = ebMacintosh Then MsgBox "Running on Macintosh."

End Sub

Chapter 2 ebMaximized (constant) 203

See Also Basic.OS (property).

Platform(s) Windows and Macintosh.

ebMaximized (constant)
Description Used with the AppSetState and AppGetState statements to indicate a

maximized window state.

Comments This constant is equal to 1.

Example 'This example minimizes the current application if it is maximized.

Sub Main()
If AppGetState = ebMaximized Then AppMinimize

End Sub

See Also AppSetState (statement); AppGetState (function).

Platform(s) Windows.

ebMinimized (constant)
Description Used with the AppSetState and AppGetState statements to indicate a

minimized window state.

Comments This constant is equal to 2.

Example 'This example restores the current application if it is minimized.

Sub Main()
If AppGetState = ebMinimized Then

AppMaximize
Else

AppMinimize
End If

End Sub

See Also AppSetState (statement); AppGetState (function).

Platform(s) Windows.

ebNo (constant)
Description Returned by the MsgBox function when the No button is chosen.

Comments This constant is equal to 7.

204 Working Model Basic User's Manual

Example 'This example asks a question and queries the user's response.

Sub Main()
rc% = MsgBox("Do you want to update the glossary?",ebYesNo)
If rc% = ebNo Then

MsgBox "The user clicked 'No'." 'Don't update glossary.
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebNone (constant)
Description Bit value used to select files with no other attributes.

Comments This value can be used with the Dir$ and FileList commands. These
functions will return only files with no attributes set when used with this
constant. This constant is equal to 64.

Example 'This example dimensions an array and fills it with filenames with no
'attributes set.

Sub Main()
Dim s$()
FileList s$,"*",ebNone
If ArrayDims(s$) = 0 Then

MsgBox "No files found without attributes!"
End

End If
a% = SelectBox("No Attributes", "Choose one", s$)
If a% >= 0 Then

MsgBox "You selected file " & s(a%)
Else

MsgBox "No selection made."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr
(function); FileAttr (function).

Platform(s) Windows and Macintosh.

ebNormal (constant)
Description Used to search for "normal" files.

Comments This value can be used with the Dir$ and FileList commands and will
return files with the Archive, Volume, ReadOnly, or no attributes set. It will not
match files with Hidden, System, or Directory attributes. This constant is equal
to 0.

Chapter 2 ebNull (constant) 205

Example 'This example dimensions an array and fills it with filenames with
'Normal attributes.

Sub Main()
Dim s$()
FileList s$,"*", ebNormal
If ArrayDims(s$) = 0 Then

MsgBox "No filesfound!"
End

End If
a% = SelectBox("Normal Files", "Choose one", s$)
If a% >= 0 Then

MsgBox "You selected file " & s(a%)
Else

MsgBox "No selection made."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr
(function); FileAttr (function).

Platform(s) Windows and Macintosh.

ebNull (constant)
Description Number representing the type of a Null variant.

Comments This constant is equal to 1.

Example Sub Main()
Dim MyVariant
MyVariant = Null
If VarType(MyVariant) = ebNull Then

MsgBox "This variant is Null"
End If

End Sub

See Also VarType (function); Variant (data type).

Platform(s) Windows and Macintosh.

ebObject (constant)
Description Number representing the type of an Object variant (an OLE automation

object).

Comments This constant is equal to 9.

Example Sub Main()
If VarType(MyVariant) = ebObject Then

MsgBox MyVariant.Value
End If

End Sub

206 Working Model Basic User's Manual

See Also VarType (function); Variant (data type).

Platform(s) Windows and Macintosh.

ebOK (constant)
Description Returned by the MsgBox function when the OK button is chosen.

Comments This constant is equal to 1.

Example 'This example displays a dialog box that allows the user to cancel.

Sub Main()
rc% = MsgBox("Are you sure you want to exit Windows?",ebOKCancel)
If rc% = ebOK Then System.Exit

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebOKCancel (constant)
Description Used with the MsgBox statement and function.

Comments This constant is equal to 1.

Example 'This example displays a dialog box that allows the user to cancel.

Sub Main()
rc% = MsgBox("Are you sure you want to exit Windows?",ebOKCancel)
If rc% = ebOK Then System.Exit

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebOKOnly (constant)
Description Used with the MsgBox statement and function.

Comments This constant is equal to 0.

Example 'This example informs the user of what is going on (no options).

Sub Main()
MsgBox "Windows will now shut down.",ebOKOnly

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

Chapter 2 ebPortrait (constant) 207

ebPortrait (constant)
Description Used with the PrinterSetOrientation statement to align the paper

vertically.

Comments This constant is equal to 1.

Example 'This example changes the printer's orientation to portrait.

Sub Main()
PrinterSetOrientation ebPortrait

End Sub

See Also PrinterSetOrientation (statement); PrinterGetOrientation (function).

Platform(s) Windows.

ebQuestion (constant)
Description Used with the MsgBox statement and function.

Comments This constant is equal to 32.

Example 'This example displays a dialog box with OK and Cancel buttons and a
'question icon.

Sub Main()
rc% = MsgBox("OK to delete file?",ebOKCancel Or ebQuestion)

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebReadOnly (constant)
Description Bit position of a file attribute indicating that a file is read-only.

Comments This constant is equal to 1.

208 Working Model Basic User's Manual

Example 'This example dimensions an array and fills it with filenames with
'ReadOnly attributes.

Sub Main()
Dim s$()
FileList s$, "*", ebReadOnly
If ArrayDims(s$) = 0 Then

MsgBox "No read only files found!"
End

End If
a% = SelectBox("ReadOnly", "Choose one", s$)
If a% >= 0 Then

MsgBox "You selected file " & s(a%)
Else

MsgBox "No selection made."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr
(function); FileAttr (function).

Platform(s) Windows and Macintosh.

ebRegular (constant)
Description Used with the Text and TextBox statement to specify an normal-styled font

(i.e., neither bold or italic).

Comments This constant is equal to 1.

Example Sub Main()
Begin Dialog UserDialog 16,32,232,132,"Regular Font Demo"

Text 10,10,200,20,"Hello, world.",,"Helv",24,ebRegular
TextBox 10,35,200,20,.Edit,,"Times New Roman",16,ebRegular
OKButton 96,110,40,14

End Dialog
Dim a As UserDialog
Dialog a

End Sub

See Also Text (statement), TextBox (statement).

Platform(s) Windows and Macintosh.

ebRestored (constant)
Description Used with the AppSetState and AppGetState statements to indicate a

normal window state.

Comments This constant is equal to 3.

Chapter 2 ebRetry (constant) 209

Example 'This example minimizes the current application only if it is
'restored.

Sub Main()
state% = AppGetState
If state% = ebRestored Then

AppMinimize
End If

End Sub

See Also AppSetState (statement); AppGetState (function).

Platform(s) Windows.

ebRetry (constant)
Description Returned by the MsgBox function when the Retry button is chosen.

Comments This constant is equal to 4.

Example 'This example displays a Retry message box.

Sub Main()
rc% = MsgBox("Unable to open file.",ebRetryCancel)
If rc% = ebRetry Then

MsgBox "User selected Retry."
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebRetryCancel (constant)
Description Used with the MsgBox statement and function.

Comments This constant is equal to 5.

Example 'This example invokes a dialog box with Retry and Cancel buttons.

Sub Main()
rc% = MsgBox("Unable to open file.",ebRetryCancel)

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebRightButton (constant)
Description Used with the QueMouseXX commands to represent the right button.

Comments This constant is equal to 2.

210 Working Model Basic User's Manual

Example 'This example clicks the right mouse button at 1000,1200.

Sub Main()
QueMouseClick ebRightButton,1000,1200

End Sub

See Also QueButtonDn (statement); QueButtonUp (statement); QueMouseClick
(statement); QueMouseDblClk (statement); QueMouseDblDn (statement).

Platform(s) Windows.

ebSingle (constant)
Description Number representing the type of a Single variant.

Comments This constant is equal to 4.

Example 'This example defines a function that returns True if the passed
'variant is a Real number.

Function IsReal(v As Variant) As Boolean
If VarType(v) = ebSingle Or VarType(v) = ebDouble Then

IsReal = True
Else

IsReal = False
End If

End Function

Sub Main()
Dim i as Integer
i = 123
If IsReal(i) then

Msgbox "i is Real."
End If

End Sub

See Also VarType (function); Variant (data type).

Platform(s) Windows and Macintosh.

ebString (constant)
Description Number representing the type of a String variant.

Comments This constant is equal to 8.

Example Sub Main()
Dim MyVariant as variant
MyVariant = "This is a test."
If VarType(MyVariant) = ebString Then

MsgBox "Variant is a string."
End If

End Sub

See Also VarType (function); Variant (data type).

Chapter 2 ebSystem (constant) 211

Platform(s) Windows and Macintosh.

ebSystem (constant)
Description Bit position of a file attribute indicating that a file is a system file.

Comments This constant is equal to 4.

Example 'This example dimensions an array and fills it with filenames with
'System attributes.

Sub Main()
Dim s$()
FileList s$,"*",ebSystem
a% = SelectBox("System Files", "Choose one", s$)
If a% >= 0 Then

MsgBox "You selected file " & s(a%)
Else

MsgBox "No selection made."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr
(function); FileAttr (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

This constant only applies to Windows.

ebSystemModal (constant)
Description Used with the MsgBox statement and function.

Comments This constant is equal to 4096.

Example Sub Main()
MsgBox "All applications are halted!",ebSystemModal

End Sub

See Also ebApplicationModal (constant); Constants (topic); MsgBox (function); MsgBox
(statement).

Platform(s) Windows and Macintosh.

ebVariant (constant)
Description Number representing the type of a Variant.

Comments Currently, it is not possible for variants to use this subtype. This constant is
equal to 12.

212 Working Model Basic User's Manual

See Also VarType (function); Variant (data type).

Platform(s) Windows and Macintosh.

ebVolume (constant)
Description Bit position of a file attribute indicating that a file is the volume label.

Comments This constant is equal to 8.

Example 'This example dimensions an array and fills it with filenames with
'Volume attributes.

Sub Main()
Dim s$()
FileList s$, "*", ebVolume
If ArrayDims(s$) > 0 Then

MsgBox "The volume name is: " & s(1)
Else

MsgBox "No volumes found."
End If

End Sub

See Also Dir, Dir$ (functions); FileList (statement); SetAttr (statement); GetAttr
(function); FileAttr (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

This constant only applies to Windows.

ebWin16 (constant)
Description Used with the Basic.OS property to indicate the 16-bit Windows version of

WM Basic.

Comments This constant is equal to 0.

The Basic.OS property returns this value when WM Basic is running under the
Windows 3.1 operating system

Example Sub Main()
If Basic.OS = ebWin16 Then MsgBox "Running under Windows 3.1."

End Sub

See Also Basic.OS (property).

Platform(s) Windows and Macintosh.

ebWindows (constant)
Description Used with the AppType function to indicate a Windows application.

Chapter 2 ebYes (constant) 213

Comments This constant is equal to 2.

Example 'This example determines whether a Windows application was selected.

Sub Main()
s$ = OpenFilename$("Run","Programs:*.exe")
If s$ <> "" Then

If FileType(s$) = ebWindows Then
MsgBox "You selected a Windows .exe file."

End If
End If

End Sub

See Also AppGetType (function); AppFileType (function).

Platform(s) Windows.

ebYes (constant)
Description Returned by the MsgBox function when the Yes button is chosen.

Comments This constant is equal to 6.

Example 'This example queries the user for a response.

Sub Main()
rc% = MsgBox("Overwrite file?",ebYesNoCancel)
If rc% = ebYes Then

MsgBox "You elected to overwrite the file."
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

ebYesNo (constant)
Description Used with the MsgBox statement and function.

Comments This constant is equal to 4.

Example 'This example displays a dialog box with Yes and No buttons.

Sub Main()
rc% = MsgBox("Are you sure you want to remove all

formatting?",ebYesNo)
End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

214 Working Model Basic User's Manual

ebYesNoCancel (constant)
Description Used with the MsgBox statement and function.

Comments This constant is equal to 3.

Example 'This example displays a dialog box with Yes, No, and Cancel buttons.

Sub Main()
rc% = MsgBox("Format drive C:?",ebYesNoCancel)
If rc% = ebYes Then

MsgBox "The user chose Yes."
End If

End Sub

See Also MsgBox (function); MsgBox (statement).

Platform(s) Windows and Macintosh.

EditEnabled (function)
Syntax EditEnabled(name$ | id)

Description Returns True if the given text box is enabled within the active window or
dialog box; returns False otherwise.

Comments The EditEnabled function takes the following parameters:

Parameter Description

name$ String containing the name of the text box.

The name of a text box is determined by scanning the window list looking for a
text control with the given name that is immediately followed by a text box.

id Integer specifying the ID of the text box.

A runtime error is generated if a text box control with the given name or ID
cannot be found within the active window.

If enabled, the text box can be given the focus using the ActivateControl
statement.

Note: The EditEnabled function is used to determine whether a text box is
enabled in another application's dialog box. Use the DlgEnable function in
dynamic dialog boxes.

Chapter 2 EditExists (function) 215

Example 'This example adjusts the left margin if this control is enabled.

Sub Main()
Menu "Format.Paragraph"
If EditEnabled("Left:") Then

SetEditText "Left:","5 pt"
End If

End Sub

See Also EditExists (function); GetEditText$ (function); SetEditText (statement).

Platform(s) Windows.

EditExists (function)
Syntax EditExists(name$ | id)

Description Returns True if the given text box exists within the active window or dialog
box; returns False otherwise.

Comments The EditExists function takes the following parameters:

Parameter Description

name$ String containing the name of the text box.

The name of a text box is determined by scanning the window list looking for a
text control with the given name that is immediately followed by a text box.

id Integer specifying the ID of the text box.

A runtime error is generated if a text box control with the given name or ID
cannot be found within the active window.

If there is no active window, False will be returned.

Note: The EditExists function is used to determine whether a text box exists
in another application's dialog box. There is no equivalent function for use with
dynamic dialog boxes.

Example 'This example adjusts the left margin if this control exists and is
'enabled.

Sub Main()
Menu "Format.Paragraph"
If EditExists("Left:") Then

If EditEnabled("Left:") Then
SetEditText "Left:","5 pt"

End If
End If

End Sub

See Also EditEnabled (function); GetEditText$ (function); SetEditText (statement).

216 Working Model Basic User's Manual

Platform(s) Windows.

Empty (constant)
Description Constant representing a variant of type 0.

Comments The Empty value has special meaning indicating that a Variant is
uninitialized.

When Empty is assigned to numbers, the value 0 is assigned. When Empty is
assigned to a String, the string is assigned a zero-length string.

Example Sub Main()
Dim a As Variant
a = Empty

End Sub

See Also Null (constant); Variant (data type); VarType (function).

Platform(s) Windows and Macintosh.

End (statement)
Syntax End

Description Terminates execution of the current script, closing all open files.

Example 'This example uses the End statement to stop execution.

Sub Main()
MsgBox "The next line will terminate the script."
End

End Sub

See Also Close (statement); Stop (statement); Exit For (statement); Exit Do
(statement); Exit Function (statement); Exit Sub (function).

Platform(s) Windows and Macintosh.

Environ, Environ$ (functions)
Syntax Environ[$](variable$ | VariableNumber)

Description Returns the value of the specified environment variable.

Chapter 2 EOF (function) 217

Comments Environ$ returns a String, whereas Environ returns a String variant.

If variable$ is specified, then this function looks for that variable$ in the
environment. If the variable$ name cannot be found, then a zero-length string
is returned.

If VariableNumber is specified, then this function looks for the Nth variable
within the environment (the first variable being number 1). If there is no such
environment variable, then a zero-length string is returned. Otherwise, the
entire entry from the environment is returned in the following format:

variable = value

Example 'This example looks for the DOS Comspec variable and displays the
'value in a dialog box.

Sub Main()
Dim a$(1)
a$(1) = Environ$("COMSPEC")
MsgBox "The DOS Comspec variable is set to: " & a$(1)

End Sub

See Also Command, Command$ (functions).

Platform(s) Windows and Macintosh.

EOF (function)
Syntax EOF(filenumber)

Description Returns True if the end-of-file has been reached for the given file; returns
False otherwise.

Comments The filenumber parameter is an Integer used by WM Basic to refer to the
open file—the number passed to the Open statement.

With sequential files, EOF returns True when the end of the file has been
reached (i.e., the next file read command will result in a runtime error).

With Random or Binary files, EOF returns True after an attempt has been
made to read beyond the end of the file. Thus, EOF will only return True when
Get was unable to read the entire record.

218 Working Model Basic User's Manual

Example 'This example opens the autoexec.bat file and reads lines from the
'file until the end-of-file is reached.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim s$
Open "c:\autoexec.bat" For Input As #1
Do While Not EOF(1)

Input #1,s$
Loop
Close

 MsgBox "The last line was:" & crlf & s$
End Sub

See Also Open (statement); LOF (function).

Platform(s) Windows and Macintosh.

Eqv (operator)
Syntax expression1 Eqv expression2

Description Performs a logical or binary equivalence on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants,
then a logical equivalence is performed as follows:

If the first and the second then the
expression is expression is result is

True True True
True False False
False True False
False False True

If either expression is Null, then Null is returned.

Binary Equivalence

If the two expressions are Integer, then a binary equivalence is performed,
returning an Integer result. All other numeric types (including Empty
variants) are converted to Long and a binary equivalence is then performed,
returning a Long result.

Binary equivalence forms a new value based on a bit-by-bit comparison of the
binary representations of the two expressions, according to the following table:

1 Eqv1 = 1 Example:
0 Eqv1 = 0 5 01101001
1 Eqv0 = 0 6 10101010
0 Eqv0 = 1 Eqv00101000

Chapter 2 Erase (statement) 219

Example 'This example assigns False to A, performs some equivalent operations,
'and displays a dialog box with the result. Since A is equivalent to
'False, and False is equivalent to 0, and by definition, A = 0, then
'the dialog box will display "A is False."

Sub Main()
a = False
If ((a Eqv False) And (False Eqv 0) And (a = 0)) Then

MsgBox "a is False."
Else

MsgBox "a is True."
End If

End Sub

See Also Operator Precedence (topic); Or (operator); Xor (operator); Imp (operator); And
(operator).

Platform(s) Windows and Macintosh.

Erase (statement)
Syntax Erase array1 [,array2]...

Description Erases the elements of the specified arrays.

Comments For dynamic arrays, the elements are erased, and the array is redimensioned to
have no dimensions (and therefore no elements). For fixed arrays, only the
elements are erased; the array dimensions are not changed.

After a dynamic array is erased, the array will contain no elements and no
dimensions. Thus, before the array can be used by your program, the
dimensions must be reestablished using the Redim statement.

Up to 32 parameters can be specified with the Erase statement.

220 Working Model Basic User's Manual

The meaning of erasing an array element depends on the type of the element
being erased:

Element Type What Erase Does to That Element

Integer Sets the element to 0.

Boolean Sets the element to False.

Long Sets the element to 0.

Double Sets the element to 0.0.

Date Sets the element to December 30, 1899.

Single Sets the element to 0.0.

String (variable-length)Frees the string, then sets the element to a zero-length
string.

String (fixed-length) Sets every character of each element to zero
(Chr$(0)).

Object Decrements the reference count and sets the element
to Nothing.

Variant Sets the element to Empty.

User-defined type Sets each structure element as a separate variable.

Example 'This example puts a value into an array and displays it.
'Then it erases the value and displays it again.

Sub Main()
Dim a$(10) 'Declare an array.
a$(1) = Dir$("*") 'Fill element 1 with a filename.
MsgBox "Array before Erase: " & a$(1) 'Display element 1.
Erase a$ 'Erase all elements in the array.
MsgBox "Array after Erase: " & a$(1) 'Display element 1 again

(should be erased).
End Sub

See Also Redim (statement); Arrays (topic).

Platform(s) Windows and Macintosh.

Erl (function)
Syntax Erl[()]

Description Returns the line number of the most recent error.

Chapter 2 Err (function) 221

Comments The first line of the script is 1, the second line is 2, and so on.

The internal value of Erl is reset to 0 with any of the following statements:
Resume, Exit Sub, Exit Function. Thus, if you want to use this value outside
an error handler, you must assign it to a variable.

Example 'This example generates an error and then determines the line
'on which the error occurred.

Sub Main()
Dim i As Integer
On Error Goto Trap1
i = 32767 'Generate an error--overflow.
i = i + 1
Exit Sub

Trap1:
MsgBox "Error on line: " & Erl
Exit Sub 'Reset the error handler.

End Sub

See Also Err (function); Error, Error$ (functions); Error Handling (topic).

Platform(s) Windows and Macintosh.

Err (function)
Syntax Err[()]

Description Returns an Integer representing the error that caused the current error trap.

Comments The Err function can only be used while within an error trap.

The internal value of Err is reset to 0 with any of the following statements:
Resume, Exit Sub, Exit Function. Thus, if you want to use this value outside
an error handler, you must assign it to a variable.

222 Working Model Basic User's Manual

Example 'This example forces error 10, with a subsequent transfer to
'the TestError label. TestError tests the error and, if not
'error 55, resets Err to 999 (user-defined error) and returns to
'the Main subroutine.

Sub Main()
On Error Goto TestError
Error 10
MsgBox "The returned error is: '" & Err() & " - " & Error$ & "'"
Exit Sub

TestError:
If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."
Else

MsgBox "Error '" & Err & "' has occurred!"
Err = 999

End If
Resume Next

End Sub

See Also Erl (function); Error, Error$ (functions); Error Handling (topic).

Platform(s) Windows and Macintosh.

Err (statement)
Syntax Err = value

Description Sets the value returned by the Err function to a specific Integer value.

Comments Only positive values less than or equal to 32767 can be used.

Setting value to _1 has the side effect of resetting the error state. This allows
you to perform error trapping within an error handler. The ability to reset the
error handler while within an error trap is not standard Basic. Normally, the
error handler is reset only with the Resume, Exit Sub, or Exit
Function statement.

Chapter 2 Error (statement) 223

Example 'This example forces error 10, with a subsequent transfer to
'the TestError label. TestError tests the error and, if not
'error 55, resets Err to 999 (user-defined error) and returns to
'the Main subroutine.

Sub Main()
On Error Goto TestError
Error 10
MsgBox "The returned error is: '" & Err() & " - " & Error$ & "'"
Exit Sub

TestError:
If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."
Else

MsgBox "Error '" & Err & "' has occurred."
Err = 999

End If
Resume Next

End Sub

See Also Error (statement); Error Handling (topic).

Platform(s) Windows and Macintosh.

Error (statement)
Syntax Error errornumber

Description Simulates the occurrence of the given runtime error.

Comments The errornumber parameter is any Integer containing either a built-in error
number or a user-defined error number. The Err function can be used within
the error trap handler to determine the value of the error.

Example 'This example forces error 10, with a subsequent transfer to
'the TestError label. TestError tests the error and, if not
'error 55, resets Err to 999 (user-defined error) and returns to
'the Main subroutine.

Sub Main()
On Error Goto TestError
Error 10
MsgBox "The returned error is: '" & Err() & " - " & Error$ & "'"
Exit Sub

TestError:
If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."
Else

MsgBox "Error '" & Err & "' has occurred."
Err = 999

End If
Resume Next

End Sub

224 Working Model Basic User's Manual

See Also Err (statement); Error Handling (topic).

Platform(s) Windows and Macintosh.

Error Handling (topic)
Error Handlers

WM Basic supports nested error handlers. When an error occurs within a
subroutine, WM Basic checks for an On Error handler within the currently
executing subroutine or function. An error handler is defined as follows:

Sub foo()
On Error Goto catch
'Do something here.
Exit Sub

catch:
'Handle error here.

End Sub

Error handlers have a life local to the procedure in which they are defined. The
error is reset when (1) another On Error statement is encountered, (2) an
error occurs, or (3) the procedure returns.

Cascading Errors

If a runtime error occurs and no On Error handler is defined within the
currently executing procedure, then WM Basic returns to the calling procedure
and executes the error handler there. This process repeats until a procedure is
found that contains an error handler or until there are no more procedures. If an
error is not trapped or if an error occurs within the error handler, then WM
Basic displays an error message, halting execution of the script.

Once an error handler has control, it must address the condition that caused the
error and resume execution with the Resume statement. This statement resets
the error handler, transferring execution to an appropriate place within the
current procedure. An error is displayed if a procedure exits without first
executing Resume or Exit.

Visual Basic Compatibility

Where possible, WM Basic has the same error numbers and error messages as
Visual Basic. This is useful for porting scripts between environments.

Handling errors in WM Basic involves querying the error number or error text
using the Error$ or Err function. Since this is the only way to handle errors
in WM Basic, compatibility with Visual Basic's error numbers and messages is
essential.

Chapter 2 Error, Error$ (functions) 225

WM Basic errors fall into three categories:

1. Visual Basic–compatible errors: These errors, numbered between 0 and
799, are numbered and named according to the errors supported by Visual
Basic.

2. WM Basic errors: These errors, numbered from 800 to 999, are unique to
WM Basic.

3. User-defined errors: These errors, equal to or greater than 1,000, are
available for use by extensions or by the script itself.

You can intercept trappable errors using WM Basic's On Error construct.
Almost all errors in WM Basic are trappable except for various system errors.

Error, Error$ (functions)
Syntax Error[$][(errornumber)]

Description Returns a String containing the text corresponding to the given error number
or the most recent error.

Comments Error$ returns a String, whereas Error returns a String variant.

The errornumber parameter is an Integer containing the number of the error
message to retrieve. If this parameter is omitted, then the function returns the
text corresponding to the most recent runtime error. If no runtime error has
occurred, then a zero-length string is returned.

If the Error statement was used to generate a user-defined runtime error, then
this function will return a zero-length string ("").

Example 'This example forces error 10, with a subsequent transfer to
'the TestError label. TestError tests the error and, if not
'error 55, resets Err to 999 (user-defined error) and returns to
'the Main subroutine.

Sub Main()
On Error Goto TestError
Error 10
MsgBox "The returned error is: '" & Err() & " - " & Error$ & "'"
Exit Sub

TestError:
If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."
Else

MsgBox "Error '" & Err & "' has occurred."
Err = 999

End If
Resume Next

End Sub

226 Working Model Basic User's Manual

See Also Erl (function); Err (function); Error Handling (topic).

Platform(s) Windows and Macintosh.

Exit Do (statement)
Syntax Exit Do

Description Causes execution to continue on the statement following the Loop clause.

Comments This statement can only appear within a Do...Loop statement.

Example 'This example will load an array with directory entries unless there
'are more than ten entries--in which case, the Exit Do terminates
'the loop.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim a$(5)
Do
 i% = i% + 1

If i% = 1 Then
a(i%) = Dir$("*")

Else
 a(i%) = Dir$
End If
If i% >= 10 Then Exit Do

Loop While (a(i%) <> "")

If i% = 10 Then
MsgBox i% & " entries processed!"

Else
MsgBox "Less than " & i% & " entries processed!"

End If
End Sub

See Also Stop (statement); Exit For (statement); Exit Function (statement); Exit
Sub (statement); End (function); Do...Loop (statement).

Platform(s) Windows and Macintosh.

Exit For (statement)
Syntax Exit For

Description Causes execution to exit the innermost For loop, continuing execution on the
line following the Next statement.

Comments This statement can only appear within a For...Next block.

Chapter 2 Exit Function (statement) 227

Example 'This example will fill an array with directory entries until a null
'entry is encountered or 100 entries have been processed--at which
'time, the loop is terminated by an Exit For statement. The dialog box
'displays a count of files found and then some entries from the array.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim a$(100)
For i = 1 To 100

If i = 1 Then
a$(i) = Dir$("*")

Else
a$(i) = Dir$

End If
If (a$(i) = "") Or (i >= 100) Then Exit For

Next i
msg = "There are " & i & " files found." & crlf
MsgBox msg & a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(10)

End Sub

See Also Stop (statement); Exit Do (statement); Exit Function (statement); Exit Sub
(statement); End (statement); For...Next (statement).

Platform(s) Windows and Macintosh.

Exit Function (statement)
Syntax Exit Function

Description Causes execution to exit the current function, continuing execution on the
statement following the call to this function.

Comments This statement can only appear within a function.

Example 'This function displays a message and then terminates with Exit
'Function.

Function Test_Exit() As Integer
MsgBox "Testing function exit, returning to Main()."
Test_Exit = 0
Exit Function
MsgBox "This line should never execute."

End Function

Sub Main()
a% = Test_Exit()
MsgBox "This is the last line of Main()."

End Sub

See Also Stop (statement); Exit For (statement); Exit Do (statement); Exit Sub
(statement); End (statement); Function...End Function (statement).

Platform(s) Windows and Macintosh.

228 Working Model Basic User's Manual

Exit Sub (statement)
Syntax Exit Sub

Description Causes execution to exit the current subroutine, continuing execution on the
statement following the call to this subroutine.

Comments This statement can appear anywhere within a subroutine. It cannot appear
within a function.

Example 'This example displays a dialog box and then exits. The last line
'should never execute because of the Exit Sub statement.

Sub Main()
MsgBox "Terminating Main()."
Exit Sub
MsgBox "Still here in Main()."

End Sub

See Also Stop (statement); Exit For (statement); Exit Do (statement); Exit Function
(statement); End (function); Sub...End Sub (statement).

Platform(s) Windows and Macintosh.

Exp (function)
Syntax Exp(value)

Description Returns the value of e raised to the power of value.

Comments The value parameter is a Double within the following range:

0 <= value <= 709.782712893.

A runtime error is generated if value is out of the range specified above.

The value of e is 2.71828.

Example 'This example assigns a to e raised to the 12.4 power and displays it
'in a dialog box.

Sub Main()
a# = Exp(12.40)
MsgBox "e to the 12.4 power is: " & a#

End Sub

See Also Log (function).

Platform(s) Windows and Macintosh.

Chapter 2 Expression Evaluation (topic) 229

Expression Evaluation (topic)
WM Basic allows expressions to involve data of different types. When this
occurs, the two arguments are converted to be of the same type by promoting
the less precise operand to the same type as the more precise operand. For
example, WM Basic will promote the value of i% to a Double in the
following expression:

result# = i% * d#

In some cases, the data type to which each operand is promoted is different than
that of the most precise operand. This is dependent on the operator and the data
types of the two operands and is noted in the description of each operator.

If an operation is performed between a numeric expression and a String
expression, then the String expression is usually converted to be of the same
type as the numeric expression. For example, the following expression converts
the String expression to an Integer before performing the multiplication:

result = 10 * "2" 'Result is equal to 20.

There are exceptions to this rule as noted in the description of the indicidual
operators.

Type Coercion

WM Basic performs numeric type conversion automatically. Automatic
conversions sometimes result in overflow errors, as shown in the following
example:

d# = 45354
i% = d#

In this example, an overflow error is generated because the value contained in
d# is larger than the maximum size of an Integer.

230 Working Model Basic User's Manual

Rounding

When floating-point values (Single or Double) are converted to integer
values (Integer or Long), the fractional part of the floating-point number is
lost, rounding to the nearest integer value. WM Basic uses Baker's rounding:

If the fractional part is larger than .5, the number is rounded up.

If the fractional part is smaller than .5, the number is rounded down.

If the fractional part is equal to .5, then the number is rounded up if it is odd
and down if it is even.

The following table shows sample values before and after rounding:

Before Rounding After Rounding to Whole Number

2.1 2

4.6 5

2.5 2

3.5 4

Default Properties

When an OLE object variable or an Object variant is used with numerical
operators such as addition or subtraction, then the default property of that obect
is automatically retrieved. For example, consider the following:

Dim Excel As Object
Set Excel = GetObject(,"Excel.Application")
MsgBox "This application is " & Excel

The above example displays This application is Microsoft Excel in a
dialog box. When the variable Excel is used within the expression, the default
property is automatically retrieved, which, in this case, is the string Microsoft
Excel. Considering that the default property of the Excel object is .Value,
then the following two statements are equivalent:

MsgBox "This application is " & Excel
MsgBox "This application is " & Excel.Value

231

False (constant)
Description Boolean constant whose value is False.

Comments Used in conditionals and Boolean expressions.

Example 'This example assigns False to A, performs some equivalent operations,
'and displays a dialog box with the result. Since A is equivalent to
'False, and False is equivalent to 0, and by definition, A = 0, then
'the dialog box will display "A is False."

Sub Main()
a = False
If ((a = False) And (False Eqv 0) And (a = 0)) Then

MsgBox "a is False."
Else

MsgBox "a is True."
End If

End Sub

See Also True (constant); Constants (topic); Boolean (data type).

Platform(s) Windows and Macintosh.

FileAttr (function)
Syntax FileAttr(filenumber, attribute)

Description Returns an Integer specifying the file mode (if attribute is 1) or the
operating system file handle (if attribute is 2).

Comments The FileAttr function takes the following parameters:

Parameter Description

filenumber Integer value used by WM Basic to refer to the open file—the number passed
to the Open statement.

attribute Integer specifying the type of value to be returned. If attribute is 1, then one
of the following values is returned:

1 Input
2 Output
4 Random
8 Append
32 Binary

If attribute is 2, then the operating system file handle is returned. On most
systems, this is a special Integer value identifying the file.

232 Working Model Basic User's Manual

Example 'This example opens a file for input, reads the file attributes, and
'determines the file mode for which it was opened. The result is
'displayed in a dialog box.

Sub Main()
Open "c:\autoexec.bat" For Input As #1
a% = FileAttr(1,1)
Select Case a%

Case 1
MsgBox "Opened for input."

Case 2
MsgBox "Opened for output."

Case 4
MsgBox "Opened for random."

Case 8
MsgBox "Opened for append."

Case 32
MsgBox "Opened for binary."

Case Else
MsgBox "Unknown file mode."

End Select
a% = FileAttr(1,2)
MsgBox "File handle is: " & a%
Close

End Sub

See Also FileLen (function); GetAttr (function); FileType (function); FileExists
(function); Open (statement); SetAttr (statement).

Platform(s) Windows and Macintosh.

FileCopy (statement)
Syntax FileCopy source$, destination$

Description Copies a source$ file to a destination$ file.

Comments The FileCopy function takes the following parameters:

Parameter Description

source$ String containing the name of a single file to copy.

The source$ parameter cannot contain wildcards (? or *) but may contain path
information.

destination$ String containing a single, unique destination file, which may contain a drive
and path specification.

The file will be copied and renamed if the source$ and destination$ filenames
are not the same.

Some platforms do not support drive letters and may not support dots to
indicate current and parent directories.

Chapter 2 FileDateTime (function) 233

Example 'This example copies the autoexec.bat file to "autoexec.sav", then
'opens the copied file and tries to copy it again--which generates an
'error.

Sub Main()
On Error Goto ErrHandler
FileCopy "c:\autoexec.bat", "c:\autoexec.sav"
Open "c:\autoexec.sav" For Input As # 1
FileCopy "c:\autoexec.sav", "c:\autoexec.sv2"
Close
Exit Sub

ErrHandler:
If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."
Else

MsgBox "An unspecified file copy error has occurred."
End If
Resume Next

End Sub

See Also Kill (statement); Name (statement).

Platform(s) Windows and Macintosh.

FileDateTime (function)
Syntax FileDateTime(filename$)

Description Returns a Date variant representing the date and time of the last modification
of a file.

Comments This function retrieves the date and time of the last modification of the file
specified by filename$ (wildcards are not allowed). A runtime error results if
the file does not exist. The value returned can be used with the date/time
functions (i.e., Year, Month, Day, Weekday, Minute, Second, Hour) to
extract the individual elements.

Example 'This example gets the file date/time of the autoexec.bat file and
'displays it in a dialog box.

Sub Main()
If FileExists("c:\autoexec.bat") Then

a# = FileDateTime("c:\autoexec.bat")
MsgBox "The date/time information for the file is: " & Year(a#)

& "-" & Month(a#) & "-" & Day(a#)
Else

MsgBox "The file does not exist."
End If

End Sub

See Also FileLen (function); GetAttr (function); FileType (function); FileAttr
(function); FileExists (function).

234 Working Model Basic User's Manual

Platform(s) Windows and Macintosh.

FileDirs (statement)
Syntax FileDirs array() [,dirspec$]

Description Fills a String or Variant array with directory names from disk.

Comments The FileDirs statement takes the following parameters:

Parameter Description

array() Either a zero- or a one-dimensioned array of strings or variants. The array can
be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new
number of elements. If there are no elements, then the array will be
redimensioned to contain no dimensions. You can use the LBound, UBound, and
ArrayDims functions to determine the number and size of the new array's
dimensions.

If the array is fixed, each array element is first erased, then the new elements
are placed into the array. If there are fewer elements than will fit in the array,
then the remaining elements are initialized to zero-length strings (for String
arrays) or Empty (for Variant arrays). A runtime error results if the array is too
small to hold the new elements.

dirspec$ String containing the file search mask, such as:
t*.
c:*.*

If this parameter is omitted, then * is used, which fills the array with all the
subdirectory names within the current directory.

Example 'This example fills an array with directory entries and displays the
'first one.

Sub Main()
Dim a$()
FileDirs a$,"c:*.*"
MsgBox "The first directory is: " & a$(0)

End Sub

See Also FileList (statement); Dir, Dir$ (functions); CurDir, CurDir$ (functions);
ChDir (statement).

Platform(s) Windows and Macintosh.

FileExists (function)
Syntax FileExists(filename$)

Chapter 2 FileLen (function) 235

Description Returns True if filename$ exists; returns False otherwise.

Comments This function determines whether a given filename$ is valid.

This function will return False if filename$ specifies a subdirectory.

Example 'This example checks to see whether there is an autoexec.bat file in
'the root directory of the C drive, then displays either its date and
'time of creation or the fact that it does not exist.

Sub Main()
If FileExists("c:\autoexec.bat") Then

Msgbox "This file exists!"
Else

MsgBox "File does not exist."
End If

End Sub

See Also FileLen (function); GetAttr (function); FileType (function); FileAttr
(function); FileParse$ (function).

Platform(s) Windows and Macintosh.

FileLen (function)
Syntax FileLen(filename$)

Description Returns a Long representing the length of filename$ in bytes.

Comments This function is used in place of the LOF function to retrieve the length of a file
without first opening the file. A runtime error results if the file does not exist.

Example 'This example checks to see whether there is a c:\autoexec.bat file
'and, if there is, displays the length of the file.

Sub Main()
If (FileExists("c:\autoexec.bat") And (FileLen("c:\autoexec.bat")

<> 0)) Then
b% = FileLen("c:\autoexec.bat")
MsgBox "The length of autoexec.bat is: " & b%

Else
MsgBox "File does not exist."

End If
End Sub

See Also GetAttr (function); FileType (function); FileAttr (function); FileParse$
(function); FileExists (function); Loc (function).

Platform(s) Windows and Macintosh.

FileList (statement)
Syntax FileList array() [,[filespec$] [,[include_attr] [,exclude_attr]]]

236 Working Model Basic User's Manual

Description Fills a String or Variant array with filenames from disk.

Comments The FileList function takes the following parameters:

Parameter Description

array() Either a zero- or a one-dimensioned array of strings or variants. The array can
be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new
number of elements. If there are no elements, then the array will be
redimensioned to contain no dimensions. You can use the LBound, UBound, and
ArrayDims functions to determine the number and size of the new array's
dimensions.

If the array is fixed, each array element is first erased, then the new elements
are placed into the array. If there are fewer elements than will fit in the array,
then the remaining elements are initialized to zero-length strings (for String
arrays) or Empty (for Variant arrays). A runtime error results if the array is too
small to hold the new elements.

filespec$ String specifying which filenames are to be included in the list.

The filespec$ parameter can include wildcards, such as * and ?. If this
parameter is omitted, then * is used.

include_attr Integer specifying attributes of files you want included in the list. It can be
any combination of the attributes listed below.

If this parameter is omitted, then the value 97 is used (ebReadOnly Or
ebArchive Or ebNone).

exclude_attr Integer specifying attributes of files you want excluded from the list. It can be
any combination of the attributes listed below.

If this parameter is omitted, then the value 18 is used (ebHidden Or
ebDirectory). In other words, hidden files and subdirectories are excluded
from the list.

Chapter 2 FileList (statement) 237

Wildcards

The * character matches any sequence of zero or more characters, whereas the
? character matches any single character. Multiple *'s and ?'s can appear
within the expression to form complete searching patterns. The following table
shows some examples:

This Pattern Matches These Files Doesn't Match These Files

S.TXT SAMPLE.TXT SAMPLE
GOOSE.TXT SAMPLE.DAT
SAMS.TXT

C*T.TXT CAT.TXT CAP.TXT
ACATS.TXT

C*T CAT CAT.DOC
CAP.TXT

C?T CAT CAT.TXT
CUT CAPIT

CT

* (All files)

File Attributes

These numbers can be any combination of the following:

Constant Value Includes

ebNormal 0 Read-only, archive, subdir, none
ebReadOnly 1 Read-only files
ebHidden 2 Hidden files
ebSystem 4 System files
ebVolume 8 Volume label
ebDirectory 16 DOS subdirectories
ebArchive 32 Files that have changed since the last
backup
ebNone 64 Files with no attributes

238 Working Model Basic User's Manual

Example 'This example fills an array a with the directory of the current drive
'for all files that have normal or no attributes and excludes those
'with system attributes. The dialog box displays four filenames from
'the array.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim a$()
FileList a$,"*.*", (ebNormal + ebNone), ebSystem
If ArrayDims(a$) > 0 Then

 MsgBox a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(4)
Else

MsgBox "No files found."
End If

End Sub

See Also FileDirs (statement); Dir, Dir$ (functions).

Platform(s) Windows and Macintosh.

 Platform
Notes:

Windows

Notice that WM Basic’s filename matching is different than DOS's. The pattern
"*.*" under DOS matches all files. With WM Basic, this pattern matches only
files that have file extensions.

FileParse$ (function)
Syntax FileParse$(filename$[, operation])

Description Returns a String containing a portion of filename$ such as the path, drive, or
file extension.

Chapter 2 FileParse$ (function) 239

Comments The filename$ parameter can specify any valid filename (it does not have to
exist). For example:

..\test.dat
c:\sheets\test.dat
test.dat

A runtime error is generated if filename$ is a zero-length string.

The optional operation parameter is an Integer specifying which portion of
the filename$ to extract. It can be any of the following values.

Value Meaning Example

0 Full name c:\sheets\test.dat
1 Drive c
2 Path c:\sheets
3 Name test.dat
4 Root test
5 Extension dat

If operation is not specified, then the full name is returned. A runtime error will
result if operation is not one of the above values.

A runtime error results if filename$ is empty.

Example 'This example parses the file string "c:\testsub\autoexec.bat" into its
'component parts and displays them in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim a$(6)
For i = 1 To 5

a$(i) = FileParse$("c:\testsub\autoexec.bat",i - 1)
Next i
MsgBox a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(4) & crlf &

a$(5)
End Sub

See Also FileLen (function); GetAttr (function); FileType (function); FileAttr
(function); FileExists (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

On systems that do not support drive letters, operation 1 will return a zero-
length string.

The path separator is different on different platforms. Under Windows, the
backslash and forward slash can be used interchangeably. For example,
"c:\test.dat" is the same as "c:/test.dat".

240 Working Model Basic User's Manual

Platform
Notes:

Macintosh

On the Macintosh, all characters are valid within filenames except colons,
which are seen as path separators.

FileType (function)
Syntax FileType(filename$)

Description Returns the type of the specified file.

Comments One of the following Integer constants is returned:

Constant Value Description

ebDos 1 A DOS executable file (exe files only; com
files are not recognized).

ebWindows 2 A Windows executable file.

If one of the above values is not returned, then the file type is unknown.

Example 'This example looks at c:\windows\winfile.exe and determines whether
'it is a DOS or a Windows file. The result is displayed in a dialog
'box.

Sub Main()
a = FileType("c:\windows\winfile.exe")
If a = ebDos Then

MsgBox "This is a DOS file."
Else

MsgBox "This is a Windows file of type '" & a & "'"
End If

End Sub

See Also FileLen (function); GetAttr (function); FileAttr (function); FileExists
(function).

Platform(s) Windows.

Platform
Notes:

Windows

Currently, only files with a ".exe" extension can be used with this function.
Files with a ".com" or ".bat" extension will return 3 (unknown).

Fix (function)
Syntax Fix(number)

Description Returns the integer part of number.

Chapter 2 For...Next (statement) 241

Comments This function returns the integer part of the given value by removing the
fractional part. The sign is preserved.

The Fix function returns the same type as number, with the following
exceptions:

If number is Empty, then an Integer variant of value 0 is returned.

If number is a String, then a Double variant is returned.

If number contains no valid data, then a Null variant is returned.

Example 'This example returns the fixed part of a number and assigns it to b,
'then displays the result in a dialog box.

Sub Main()
a# = -19923.45
b% = Fix(a#)
MsgBox "The fixed portion of -19923.45 is: " & b%

End Sub

See Also Int (function); CInt (function).

Platform(s) Windows and Macintosh.

For...Next (statement)
Syntax For counter = start To end [Step increment]

[statements]
[Exit For]
[statements]

Next [counter [,nextcounter]...]

Description Repeats a block of statements a specified number of times, incrementing a loop
counter by a given increment each time through the loop.

242 Working Model Basic User's Manual

Comments The For statement takes the following parameters:

Parameter Description

counter Name of a numeric variable. Variables of the following types can be used:
Integer, Long, Single, Double, Variant.

start Initial value for counter. The first time through the loop, counter is assigned
this value.

end Final value for counter. The statements will continue executing until counter is
equal to end.

increment Amount added to counter each time through the loop. If end is greater than
start, then increment must be positive. If end is less than start, then increment
must be negative.

If increment is not specified, then 1 is assumed. The expression given as
increment is evaluated only once. Changing the step during execution of the
loop will have no effect.

statements Any number of WM Basic statements.

The For...Next statement continues executing until an Exit For
statement is encountered when counter is greater than end.

For...Next statements can be nested. In such a case, the Next [counter]
statement applies to the innermost For...Next.

The Next clause can be optimized for nested next loops by separating each
counter with a comma. The ordering of the counters must be consistent with the
nesting order (innermost counter appearing before outermost counter). The
following example shows two equivalent For statements:

For i = 1 To 10 For i = 1 To 10
For j = 1 To 10 For j = 1 To 10
Next j Next j,i

Next i

A Next clause appearing by itself (with no counter variable) matches the
innermost For loop.

The counter variable can be changed within the loop but will have no effect on
the number of times the loop will execute.

Chapter 2 Format, Format$ (functions) 243

Example Sub Main()
'This example constructs a truth table for the OR statement
'using nested For...Next loops.
For x = -1 To 0

For y = -1 To 0
Z = x Or y
msg = msg & Format(Abs(x%),"0") & " Or "
msg = msg & Format(Abs(y%),"0") & " = "
msg = msg & Format(Z,"True/False") & Basic.Eoln$

Next y
Next x
MsgBox msg

End Sub

See Also Do...Loop (statement); While...WEnd (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Due to errors in program logic, you can inadvertently create infinite loops in
your code. Under Windows, you can break out of infinite loops using
Ctrl+Break.

Platform
Notes:

Macintosh

Due to errors in program logic, you can inadvertently create infinite loops in
your code. On the Macintosh, you can break out of infinite loops using
Command+Period.

Format, Format$ (functions)
Syntax Format[$](expression [,Userformat$])

Descriptio
n

Returns a String formatted to user specification.

244 Working Model Basic User's Manual

Comments Format$ returns a String, whereas Format returns a String variant.

The Format$/Format functions take the following parameters:

Parameter Description

expression String or numeric expression to be formatted.

Userformat$ Format expression that can be either one of the built-in WM Basic formats or
a user-defined format consisting of characters that specify how the expression
should be displayed.

String, numeric, and date/time formats cannot be mixed in a single
Userformat$ expression.

If Userformat$ is omitted and the expression is numeric, then these functions
perform the same function as the Str$ or Str statements, except that they
do not preserve a leading space for positive values.

If expression is Null, then a zero-length string is returned.

Built-In Formats

To format numeric expressions, you can specify one of the built-in formats.
There are two categories of built-in formats: one deals with numeric
expressions and the other with date/time values.The following tables list the
built-in numeric and date/time format strings, followed by an explanation of
what each does.

Numeric Formats
Format Description

General number Display the numeric expression as is, with no additional formatting.

Currency Displays the numeric expression as currency, with thousands separator if
necessary.

Fixed Displays at least one digit to the left of the decimal separator and two digits
to the right.

Standard Displays the numeric expression with thousands separator if necessary.
Displays at least one digit to the left of the decimal separator and two digits
to the right.

Percent Displays the numeric expression multiplied by 100. A percent sign (%) will
appear at the right of the formatted output. Two digits are displayed to the
right of the decimal separator.

Scientific Displays the number using scientific notation. One digit appears before the
decimal separator and two after.

Yes/No Displays No if the numeric expression is 0. Displays Yes for all other values.

Chapter 2 Format, Format$ (functions) 245

True/False Displays False if the numeric expression is 0. Displays True for all other
values.

On/Off Displays Off if the numeric expression is 0. Displays On for all other values.

Date/Time Formats
Format Description

General date Displays the date and time. If there is no fractional part in the numeric
expression, then only the date is displayed. If there is no integral part in the
numeric expression, then only the time is displayed. Output is in the
following form: 1/1/95 01:00:00 AM.

Long date Displays a long date.

Medium date Displays a medium date—prints out only the abbreviated name of the month.

Short date Displays a short date.

Long time Displays the long time. The default is: h:mm:ss.

Medium time Displays the time using a 12-hour clock. Hours and minutes are displayed,
and the AM/PM designator is at the end.

Short time Displays the time using a 24-hour clock. Hours and minutes are displayed.

User-Defined Formats

In addition to the built-in formats, you can specify a user-defined format by
using characters that have special meaning when used in a format expression.
The following tables list the characters you can use for numeric, string, and
date/time formats and explain their functions.

Numeric Formats
Character Meaning

Empty string Displays the numeric expression as is, with no additional formatting.

0 This is a digit placeholder.

Displays a number or a 0. If a number exists in the numeric expression in the
position where the 0 appears, the number will be displayed. Otherwise, a 0
will be displayed. If there are more 0s in the format string than there are
digits, the leading and trailing 0s are displayed without modification.

This is a digit placeholder.

Displays a number or nothing. If a number exists in the numeric expression in
the position where the number sign appears, the number will be displayed.
Otherwise, nothing will be displayed. Leading and trailing 0s are not
displayed.

246 Working Model Basic User's Manual

. This is the decimal placeholder.

Designates the number of digits to the left of the decimal and the number of
digits to the right. The character used in the formatted string depends on the
decimal placeholder, as specified by your locale.

% This is the percentage operator.

The numeric expression is multiplied by 100, and the percent character is
inserted in the same position as it appears in the user-defined format string.

, This is the thousand separator.

The common use for the thousands separator is to separate thousands from
hundreds. To specify this use, the thousands separator must be surrounded by
digit placeholders. Commas appearing before any digit placeholders are
specified are just displayed. Adjacent commas with no digit placeholders
specified between them and the decimal mean that the number should be
divided by 1,000 for each adjacent comma in the format string. A comma
immediately to the left of the decimal has the same function. The actual
thousands separator character used depends on the character specified by
your locale.

E-E+e-e+ These are the scientific notation operators, which display the number in
scientific notation. At least one digit placeholder must exist to the left of E-,
E+, e-, or e+. Any digit placeholders displayed to the left of E-, E+, e-, or e+
determine the number of digits displayed in the exponent. Using E+ or e+
places a + in front of positive exponents and a – in front of negative
exponents. Using E- or e- places a – in front of negative exponents and
nothing in front of positive exponents.

: This is the time separator.

Separates hours, minutes, and seconds when time values are being formatted.
The actual character used depends on the character specified by your locale.

/ This is the date separator.

Separates months, days, and years when date values are being formatted. The
actual character used depends on the character specified by your locale.

-+$()space These are the literal characters you can display.

To display any other character, you should precede it with a backslash or
enclose it in quotes.

\ This designates the next character as a displayed character.

To display characters, precede them with a backslash. To display a backslash,
use two backslashes. Double quotation marks can also be used to display
characters. Numeric formatting characters, date/time formatting characters,
and string formatting characters cannot be displayed without a preceding
backslash.

Chapter 2 Format, Format$ (functions) 247

"ABC" Displays the text between the quotation marks, but not the quotation marks.
To designate a double quotation mark within a format string, use two
adjacent double quotation marks.

* This will display the next character as the fill character.

Any empty space in a field will be filled with the specified fill character.

Numeric formats can contain one to three parts. Each part is separated by a
semicolon. If you specify one format, it applies to all values. If you specify
two formats, the first applies to positive values and the second to negative
values. If you specify three formats, the first applies to positive values, the
second to negative values, and the third to 0s. If you include semicolons with
no format between them, the format for positive values is used.

String Formats
Character Meaning

@ This is a character placeholder.

Displays a character if one exists in the expression in the same position;
otherwise, displays a space. Placeholders are filled from right to left unless
the format string specifies left to right.

& This is a character placeholder.

Displays a character if one exists in the expression in the same position;
otherwise, displays nothing. Placeholders are filled from right to left unless
the format string specifies left to right.

< This character forces lowercase.

Displays all characters in the expression in lowercase.

> This character forces uppercase.

Displays all characters in the expression in uppercase.

! This character forces placeholders to be filled from left to right. The default
is right to left.

Date/Time Formats
Character Meaning

c Displays the date as ddddd and the time as ttttt. Only the date is displayed
if no fractional part exists in the numeric expression. Only the time is
displayed if no integral portion exists in the numeric expression.

d Displays the day without a leading 0 (1–31).

dd Displays the day with a leading 0 (01–31).

ddd Displays the day of the week abbreviated (Sun–Sat).

248 Working Model Basic User's Manual

dddd Displays the day of the week (Sunday–Saturday).

ddddd Displays the date as a short date.

dddddd Displays the date as a long date.

w Displays the number of the day of the week (1–7). Sunday is 1; Saturday is 7.

ww Displays the week of the year (1–53).

m Displays the month without a leading 0 (1–12). If m immediately follows h or
hh, m is treated as minutes (0–59).

mm Displays the month with a leading 0 (01–12). If mm immediately follows h or
hh, mm is treated as minutes with a leading 0 (00–59).

mmm Displays the month abbreviated (Jan–Dec).

mmmm Displays the month (January–December).

q Displays the quarter of the year (1–4).

y Displays the day of the year (1–366).

yy Displays the year, not the century (00–99).

yyyy Displays the year (1000–9999).

h Displays the hour without a leading 0 (0–24).

hh Displays the hour with a leading 0 (00–24).

n Displays the minute without a leading 0 (0–59).

nn Displays the minute with a leading 0 (00–59).

s Displays the second without a leading 0 (0–59).

ss Displays the second with a leading 0 (00–59).

ttttt Displays the time. A leading 0 is displayed if specified by your locale.

AM/PM Displays the time using a 12-hour clock. Displays an uppercase AM for time
values before 12 noon. Displays an uppercase PM for time values after 12
noon and before 12 midnight.

am/pm Displays the time using a 12-hour clock. Displays a lowercase am or pm at the
end.

A/P Displays the time using a 12-hour clock. Displays an uppercase A or P at the
end.

a/p Displays the time using a 12-hour clock. Displays a lowercase a or p at the
end.

Chapter 2 FreeFile (function) 249

AMPM Displays the time using a 12-hour clock. Displays the string s1159 for values
before 12 noon and s2359 for values after 12 noon and before 12 midnight.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a# = 1199.234
msg = "Some general formats for '" & a# & "' are:"
msg = msg & Format$(a#,"General Number") & crlf
msg = msg & Format$(a#,"Currency") & crlf
msg = msg & Format$(a#,"Standard") & crlf
msg = msg & Format$(a#,"Fixed") & crlf
msg = msg & Format$(a#,"Percent") & crlf
msg = msg & Format$(a#,"Scientific") & crlf
msg = msg & Format$(True,"Yes/No") & crlf
msg = msg & Format$(True,"True/False") & crlf
msg = msg & Format$(True,"On/Off") & crlf
msg = msg & Format$(a#,"0,0.00") & crlf
msg = msg & Format$(a#,"##,###,###.###") & crlf
MsgBox msg

da$ = Date$
msg = "Some date formats for '" & da$ & "' are:"
msg = msg & Format$(da$,"General Date") & crlf
msg = msg & Format$(da$,"Long Date") & crlf
msg = msg & Format$(da$,"Medium Date") & crlf
msg = msg & Format$(da$,"Short Date") & crlf
MsgBox msg

ti$ = Time$
msg = "Some time formats for '" & ti$ & "' are:"
msg = msg & Format$(ti$,"Long Time") & crlf
msg = msg & Format$(ti$,"Medium Time") & crlf
msg = msg & Format$(ti$,"Short Time") & crlf
MsgBox msg

End Sub

See Also Str, Str$ (functions); CStr (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Under Windows, default date/time formats are read from the [Intl]
section of the win.ini file.

FreeFile (function)
Syntax FreeFile[()]

Description Returns an Integer containing the next available file number.

Comments The number returned is suitable for use in the Open statement and will always
be between 1 and 255 inclusive.

250 Working Model Basic User's Manual

Example 'This example assigns A to the next free file number and displays it
'in a dialog box.

Sub Main()
a = FreeFile
MsgBox "The next free file number is: " & a

End Sub

See Also FileAttr (function); Open (statement).

Platform(s) Windows and Macintosh.

Function...End Function (statement)
Syntax [Private | Public] [Static] Function name[(arglist)] [As ReturnType]

[statements]
End Sub

where arglist is a comma-separated list of the following (up to 30 arguments
are allowed):

[Optional] [ByVal | ByRef] parameter [()] [As type]

Description Creates a user-defined function.

Chapter 2 Function...End Function (statement) 251

Comments The Function statement has the following parts:

Part Description

Private Indicates that the function being defined cannot be called from other scripts.

Public Indicates that the function being defined can be called from other scripts. If
both the Private and Public keywords are missing, then Public is assumed.

Static Recognized by the compiler but currently has no effect.

name Name of the function, which must follow WM Basic naming conventions:

1. Must start with a letter.

2. May contain letters, digits, and the underscore character
(_). Punctuation and type-declaration characters are not
allowed. The exclamation point (!) can appear within the
name as long as it is not the last character, in which case
it is interpreted as a type-declaration character.

3. Must not exceed 80 characters in length.

Additionally, the name parameter can end with an optional type-declaration
character specifying the type of data returned by the function (i.e., any of the
following characters: %, &, !, #, @).

Optional Keyword indicating that the parameter is optional. All optional parameters must
be of type Variant. Furthermore, all parameters that follow the first optional
parameter must also be optional.

If this keyword is omitted, then the parameter is required.

Note: You can use the IsMissing function to determine if an optional
parameter was actually passed by the caller.

ByVal Keyword indicating that parameter is passed by value.

252 Working Model Basic User's Manual

ByRef Keyword indicating that parameter is passed by reference. If neither the ByVal
nor the ByRef keyword is given, then ByRef is assumed.

parameter Name of the parameter, which must follow the same naming conventions as
those used by variables. This name can include a type-declaration character,
appearing in place of As type.

type Type of the parameter (i.e., Integer, String, and so on). Arrays are indicated
with parentheses. For example, an array of integers would be declared as
follows:

Function Test(a() As Integer)
End Function

ReturnType Type of data returned by the function. If the return type is not given, then
Variant is assumed. The ReturnType can only be specified if the function
name (i.e., the name parameter) does not contain an explicit type-declaration
character.

A function returns to the caller when either of the following statements is
encountered:

End Function
Exit Function

Functions can be recursive.

Returning Values from Functions

To assign a return value, an expression must be assigned to the name of the
function, as shown below:

Function TimesTwo(a As Integer) As Integer
TimesTwo = a * 2

End Function

If no assignment is encountered before the function exits, then one of the
following values is returned:

Value Data Type Returned by the Function

0 Integer, Long, Single, Double, Currency

Zero-length string String

Nothing Object (or any data object)

Empty Variant

December 30, 1899 Date

False Boolean

Chapter 2 Function...End Function (statement) 253

The type of the return value is determined by the As ReturnType clause on the
Function statement itself. As an alternative, a type-declaration character can
be added to the Function name. For example, the following two definitions
of Test both return String values:

Function Test() As String
Test = "Hello, world"

End Function

Function Test$()
Test = "Hello, world"

End Function

Passing Parameters to Functions

Parameters are passed to a function either by value or by reference, depending
on the declaration of that parameter in arglist. If the parameter is declared using
the ByRef keyword, then any modifications to that passed parameter within the
function change the value of that variable in the caller. If the parameter is
declared using the ByVal keyword, then the value of that variable cannot be
changed in the called function. If neither the ByRef or ByVal keywords are
specified, then the parameter is passed by reference.

You can override passing a parameter by reference by enclosing that parameter
within parentheses. For instance, the following example passes the variable j
by reference, regardless of how the third parameter is declared in the arglist of
UserFunction:

i = UserFunction(10,12,(j))

254 Working Model Basic User's Manual

Optional Parameters

WM Basic allows you to skip parameters when calling functions, as shown in
the following example:

Function Test(a%,b%,c%) As Variant
End Function

Sub Main
a = Test(1,,4) 'Parameter 2 was skipped.

End Sub

You can skip any parameter with the following restrictions:

1. The call cannot end with a comma. For instance, using the above example,
the following is not valid:

a = Test(1,,)

2. The call must contain the minimum number of parameters as requred by the
called function. For instance, using the above example, the following are
invalid:

a = Test(,1) 'Only passes two out of three required parameters.
a = Test(1,2)'Only passes two out of three required parameters.

When you skip a parameter in this manner, WM Basic creates a temporary
variable and passes this variable instead. The value of this temporary variable
depends on the data type of the corresponding parameter in the argument list of
the called function, as described in the following table:

Value Data Type

0 Integer, Long, Single, Double, Currency

Zero-length string String

Nothing Object (or any data object)

Error Variant

December 30, 1899 Date

False Boolean

Within the called function, you will be unable to determine if a parameter was
skipped unless the parameter was declared as a variant in the argument list of
the function. In this case, you can use the IsMissing function to determine if
the parameter was skipped:

Function Test(a,b,c)
If IsMissing(a) Or IsMissing(b) Then Exit Sub

End Function

Chapter 2 Fv (function) 255

Example Function Factorial(n%) As Integer
'This function calculates N! (N-factoral).
f% = 1
For i = n To 2 Step -1

f = f * i
Next i
Factorial = f

End Function

Sub Main()
'This example calls user-defined function Factoral and displays the
'result in a dialog box.
a% = 0
Do While a% < 2

a% = Val(InputBox$("Enter an integer number greater than
2.","Compute Factorial"))

Loop
b# = Factorial(a%)
MsgBox "The factoral of " & a% & " is: " & b#

End Sub

See Also Sub...End Sub (statement)

Platform(s) Windows and Macintosh.

Fv (function)
Syntax Fv(Rate, Nper, Pmt,Pv,Due)

Description Calculates the future value of an annuity based on periodic fixed payments and
a constant rate of interest.

256 Working Model Basic User's Manual

Comments An annuity is a series of fixed payments made to an insurance company or
other investment company over a period of time. Examples of annuities are
mortgages and monthly savings plans.

The Fv function requires the following parameters:

Parameter Description

Rate Double representing the interest rate per period. Make sure that annual rates are
normalized for monthly periods (divided by 12).

NPer Double representing the total number of payments (periods) in the annuity.

Pmt Double representing the amount of each payment per period. Payments are
entered as negative values, whereas receipts are entered as positive values.

Pv Double representing the present value of your annuity. In the case of a loan, the
present value would be the amount of the loan, whereas in the case of a
retirement annuity, the present value would be the amount of the fund.

Due Integer indicating when payments are due for each payment period. A 0
specifies payment at the end of each period, whereas a 1 indicates payment at
the start of each period.

Rate and NPer values must be expressed in the same units. If Rate is expressed
as a percentage per month, then NPer must also be expressed in months. If Rate
is an annual rate, then the NPer must also be given in years.

Positive numbers represent cash received, whereas negative numbers represent
cash paid out.

Example 'This example calculates the future value of 100 dollars paid
'periodically for a period of 10 years (120 months) at a rate of 10%
'per year (or .10/12 per month) with payments made on the first of the
'month. The value is displayed in a dialog box. Note that payments are
'negative values.

Sub Main()
a# = Fv((.10/12),120,-100.00,0,1)
MsgBox "Future value is: " & Format(a#,"Currency")

End Sub

See Also IRR (function); MIRR (function); Npv (function); Pv (function).

Platform(s) Windows and Macintosh.

Get (statement)
Syntax Get [#] filenumber, [recordnumber], variable

Description Retrieves data from a random or binary file and stores that data into the
specified variable.

Chapter 2 Get (statement) 257

Comments The Get statement accepts the following parameters:

Parameter Description

filenumber Integer used by WM Basic to identify the file. This is the same number passed
to the Open statement.

recordnumber Long specifying which record is to be read from the file.

For binary files, this number represents the first byte to be read starting with
the beginning of the file (the first byte is 1). For random files, this number
represents the record number starting with the beginning of the file (the first
record is 1). This value ranges from 1 to 2147483647.

If the recordnumber parameter is omitted, the next record is read from the file
(if no records have been read yet, then the first record in the file is read). When
this parameter is omitted, the commas must still appear, as in the following
example:

Get #1,,recvar

If recordnumber is specified, it overrides any previous change in file position
specified with the Seek statement.

variable Variable into which data will be read. The type of the variable determines how
the data is read from the file, as described below.

With random files, a runtime error will occur if the length of the data being read
exceeds the reclen parameter specified with the Open statement. If the length
of the data being read is less than the record length, the file pointer is advanced
to the start of the next record. With binary files, the data elements being read
are contiguousthe file pointer is never advanced.

Variable Types

The type of the variable parameter determines how data will be read from the
file. It can be any of the following types:

Variable Type File Storage Description

Integer 2 bytes are read from the file.

Long 4 bytes are read from the file.

258 Working Model Basic User's Manual

String (variable-length)In binary files, variable-length strings are read by first
determining the specified string variable's length and
then reading that many bytes from the file. For
example, to read a string of eight characters:

s$ = String$(8," ")
Get #1,,s$

In random files, variable-length strings are read by
first reading a 2-byte length and then reading that
many characters from the file.

String (fixed-length) Fixed-length strings are read by reading a fixed
number of characters from the file equal to the string's
declared length.

Double 8 bytes are read from the file (IEEE format).

Single 4 bytes are read from the file (IEEE format).

Date 8 bytes are read from the file (IEEE double format).

Boolean 2 bytes are read from the file. Nonzero values are
True, and zero values are False.

Variant A 2-byte VarType is read from the file, which
determines the format of the data that follows. Once
the VarType is known, the data is read individually, as
described above. With user-defined errors, after the 2-
byte VarType, a 2-byte unsigned integer is read and
assigned as the value of the user-defined error,
followed by 2 additional bytes of information about
the error.

The exception is with strings, which are always
preceded by a 2-byte string length.

User-defined types Each member of a user-defined data type is read
individually.

In binary files, variable-length strings within user-
defined types are read by first reading a 2-byte length
followed by the string's content. This storage is
different from variable-length strings outside of user-
defined types.

When reading user-defined types, the record length
must be greater than or equal to the combined size of
each element within the data type.

Arrays Arrays cannot be read from a file using the Get
statement.

Chapter 2 GetAttr (function) 259

Objects Object variables cannot be read from a file using the
Get statement.

Example 'This example opens a file for random write, then writes ten
'records into the file with the values 10...50. Then the file
'is closed and reopened in random mode for read, and the
'records are read with the Get statement. The result is displayed
'in a message box.

Sub Main()
Open "test.dat" For Random Access Write As #1
For x = 1 to 10

y% = x * 10
Put #1,x,y

Next x
Close

Open "test.dat" For Random Access Read As #1
For y = 1 to 5

Get #1,y,x%
msg = msg & "Record " & y & ": " & x% & Basic.Eoln$

Next y

MsgBox msg
Close

End Sub

See Also Open (statement); Put (statement); Input# (statement); Line Input#
(statement); Input, Input$ (functions).

Platform(s) Windows and Macintosh.

GetAttr (function)
Syntax GetAttr(filename$)

Description Returns an Integer containing the attributes of the specified file.

260 Working Model Basic User's Manual

Comments The attribute value returned is the sum of the attributes set for the file. The
value of each attribute is as follows:

Constant Value Includes

ebNormal 0 Read-only files, archive files,
subdirectories,

and files with no attributes.
ebReadOnly 1 Read-only files
ebHidden 2 Hidden files
ebSystem 4 System files
ebVolume 8 Volume label
ebDirectory 16 DOS subdirectories
ebArchive 32 Files that have changed since the last
backup
ebNone 64 Files with no attributes

To deterimine whether a particular attribute is set, you can And the values
shown above with the value returned by GetAttr. If the result is True, the
attribute is set, as shown below:

Dim w As Integer
w = GetAttr("sample.txt")
If w And ebReadOnly Then MsgBox "This file is read-only."

Example 'This example tests to see whether the file test.dat exists.
'If it does not, then it creates the file. The file attributes are
'then retrieved with the GetAttr function, and the result is
'displayed.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
If Not FileExists("test.dat") Then

Open "test.dat" For Random Access Write As #1
Close

End If

y% = GetAttr("test.dat")
If y% And ebNone Then msg = msg & "No archive bit is set." & crlf
If y% And ebReadOnly Then msg = msg & "The read-only bit is set." &

crlf
If y% And ebHidden Then msg = msg & "The hidden bit is set." & crlf
If y% And ebSystem Then msg = msg & "The system bit is set." & crlf
If y% And ebVolume Then msg = msg & "The volume bit is set." & crlf
If y% And ebDirectory Then msg = msg & "The directory bit is set."

& crlf
If y% And ebArchive Then msg = msg & "The archive bit is set."

MsgBox msg
Kill "test.dat"

End Sub

Chapter 2 GetCheckBox (function) 261

See Also SetAttr (statement); FileAttr (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Under Windows, these attributes are the same as those used by DOS.

GetCheckBox (function)
Syntax GetCheckBox(name$ | id)

Description Returns an Integer representing the state of the specified check box.

Comments This function is used to determine the state of a check box, given its name or
ID. The returned value will be one of the following:

Returned Value Description

0 Check box contains no check.

1 Check box contains a check.

2 Check box is grayed.

The GetCheckBox function takes the following parameters:

Parameter Description

name$ String containing the name of the check box.

id Integer specifying the ID of the check box.

Note: The GetCheckBox function is used to retrieve the state of a check box in
another application's dialog box. Use the DlgValue function to retrieve the state
of a check box in a dynamic dialog box.

Example 'This example toggles the Match Case check box in the Find dialog box.

Sub Main()
Menu "Search.Find"
If GetCheckBox("Match Case") = 0 Then

SetCheckBox "Match Case",1
Else

SetCheckBox "Match Case",0
End If

End Sub

See Also CheckBoxExists (function); CheckBoxEnabled (function); SetCheckBox
(statement); DlgValue (function).

Platform(s) Windows.

262 Working Model Basic User's Manual

GetComboBoxItem$ (function)
Syntax GetComboBoxItem$(name$ | id [,ItemNumber])

Description Returns a String containing the text of an item within a combo box.

Comments The GetComboBoxItem$ function takes the following parameters:

Parameter Description

name$ String specifying the name of the combo box containing the item to be
returned.

The name of a combo box is determined by scanning the window list looking
for a text control with the given name that is immediately followed by a combo
box. A runtime error is generated if a combo box with that name cannot be
found within the active window.

id Integer specifying the ID of the combo box containing the item to be returned.

ItemNumber Integer containing the line number of the desired combo box item to be
returned. If omitted, then the currently selected item in the combo box is
returned.

The combo box must exist within the current window or dialog box; otherwise,
a runtime error is generated.

A zero-length string will be returned if the combo box does not contain textual
items.

Note: The GetComboBoxItem$ function is used to retrieve the current item of a
combo box in another application's dialog box. Use the DlgText function to
retrieve the current item of a combo box in a dynamic dialog box.

Example 'This example retrieves the last item from a combo box.

Sub Main()
last% = GetComboBoxItemCount("Directories:")
s$ = GetComboBoxItem$("Directories:",last% - 1) 'Number is 0-

based
MsgBox "The last item in the combo box is " & s$

End Sub

See Also ComboBoxEnabled (function); ComboBoxExists (function);
GetComboBoxItemCount (function); SelectComboBoxItem (statement).

Platform(s) Windows.

GetComboBoxItemCount (function)
Syntax GetComboBoxItemCount(name$ | id)

Chapter 2 GetEditText$ (function) 263

Description Returns an Integer containing the number of items in the specified combo
box.

Comments The GetComboBoxItemCount function takes the following parameters:

Parameter Description

name$ String containing the name of the combo box.

The name of a combo box is determined by scanning the window list looking
for a text control with the given name that is immediately followed by a combo
box. A runtime error is generated if a combo box with that name cannot be
found within the active window.

id Integer specifying the ID of the combo box.

A runtime error is generated if the specified combo box does not exist within
the current window or dialog box.

Note: The GetComboBoxItemCount function is used to determine the number
of items in a combo box in another application's dialog box. There is no
equivalent function for use with dynamic dialog boxes.

Example 'This example copies all the items out of a combo box and into an
'array.

Sub Main()
Dim MyList$()
last% = GetComboBoxItemCount("Directories:")
ReDim MyList$(0 To last - 1)
For i = 0 To last - 1

MyList$(i) = GetComboBoxItem$("Directories:",i)
Next i

End Sub

See Also ComboBoxEnabled (function); ComboBoxExists (function); GetComboBoxItem$
(function); SelectComboBoxItem (statement).

Platform(s) Windows.

GetEditText$ (function)
Syntax GetEditText$(name$ | id)

Description Returns a String containing the content of the specified text box control.

264 Working Model Basic User's Manual

Comments The GetEditText$ function takes the following parameters:

Parameter Description

name$ String containing the name of the text box whose content will be returned.

The name of a text box is determined by scanning the window list looking for a
text control with the given name that is immediately followed by a text box. A
runtime error is generated if a text box with that name cannot be found within
the active window.

id Integer specifying the ID of the text box whose content will be returned.

A runtime error is generated if a text box control with the given name or ID
cannot be found within the active window.

Note: The GetEditText$ function is used to retrieve the content of a text box
in another application's dialog box. Use the DlgText$ function to retrieve the
content of a text box in a dynamic dialog box.

Example 'This example retrieves the filename and prepends it with the current
'directory.

Sub Main()
s$ = GetEditText$("Filename:") 'Retrieve the content of

the edit control.
s$ = CurDir$ & Basic.PathSeparator & s$ 'Prepend the current

directory.
SetEditText "Filename:",s$ 'Put it back.

End Sub

See Also EditEnabled (function); EditExists (function); SetEditText (statement).

Platform(s) Windows.

GetListBoxItem$ (function)
Syntax GetListBoxItem$(name$ | id,[item])

Description Returns a String containing the specified item in a list box.

Chapter 2 GetListBoxItemCount (function) 265

Comments The GetListBoxItem$ function takes the following parameters:

Parameter Description

name$ String specifying the name of the list box containing the item to be returned.

The name of a list box is determined by scanning the window list looking for a
text control with the given name that is immediately followed by a list box. A
runtime error is generated if a list box with that name cannot be found within
the active window.

id Integer specifying the ID of the list box containing the item to be returned.

item Integer containing the line number of the desired list box item to be returned.
This number must be between 1 and the number of items in the list box.

If omitted, then the currently selected item in the list box is returned.

A runtime error is generated if the specified list box cannot be found within the
active window.

Note: The GetListBoxItem$ function is used to retreive an item from a list
box in another application's dialog box. There is no equivalent function for use
with dynamic dialog boxes.

Example 'This example sees whether my name appears as an item in the "Users"
'list box.

Sub Main()
last% = GetListBoxItemCount("Users")
IsThere = False
For i = 0 To last% - 1 'Number is zero-based.

If GetListBoxItem$("Users",i) = Net.User$ Then isThere = True
Next i
If IsThere Then MsgBox "I am a member!",ebOKOnly

End Sub

See Also GetListBoxItemCount (function); ListBoxEnabled (function);
ListBoxExists (function); SelectListBoxItem (statement).

Platform(s) Windows.

GetListBoxItemCount (function)
Syntax GetListBoxItemCount(name$ | id)

Description Returns an Integer containing the number of items in a specified list box.

266 Working Model Basic User's Manual

Comments The GetListBoxItemCount function takes the following parameters:

Parameter Description

name$ String containing the name of the list box.

The name of a list box is determined by scanning the window list looking for a
text control with the given name that is immediately followed by a list box. A
runtime error is generated if a list box with that name cannot be found within
the active window.

id Integer specifying the ID of the list box.

A runtime error is generated if the specified list box cannot be found within the
active window.

Note: The GetListBoxItemCount function is used to retrieve the number of
items in a list box in another application's dialog box. There is no equivalent
function for use with dynamic dialog boxes.

Example See GetListBoxItem$ (function).

See Also GetListBoxItem$ (function); ListBoxEnabled (function); ListBoxExists
(function); SelectListBoxItem (statement).

Platform(s) Windows.

GetObject (function)
Syntax GetObject(filename$ [,class$])

Description Returns the object specified by filename$ or returns a previously instantiated
object of the given class$.

Chapter 2 GetObject (function) 267

Comments This function is used to retrieve an existing OLE automation object, either one
that comes from a file or one that has previously been instantiated.

The filename$ argument specifies the full pathname of the file containing the
object to be activated. The application associated with the file is determined by
OLE at runtime. For example, suppose that a file called
c:\docs\resume.doc was created by a word processor called
wordproc.exe. The following statement would invoke wordproc.exe,
load the file called c:\docs\resume.doc, and assign that object to a
variable:

Dim doc As Object
Set doc = GetObject("c:\docs\resume.doc")

To activate a part of an object, add an exclamation point to the filename
followed by a string representing the part of the object that you want to activate.
For example, to activate the first three pages of the document in the previous
example:

Dim doc As Object
Set doc = GetObject("c:\docs\resume.doc!P1-P3")

The GetObject function behaves differently depending on whether the first
parameter is omitted. The following table summarizes the different beheviors of
GetObject:

Filename$ Class$ GetObject Returns

Omitted Specified Reference to an existing instance of the specified
object. A runtime error results if the object is not
already loaded.

"" Specified Reference to a new object (as specified by
class$). A runtime error occurs if an object of
the specified class cannot be found.

This is the same as CreateObject.

Specified Omitted Default object from filename$. The application
to activate is determined by OLE based on the
given filename.

Specified Specified Object given by class$ from the file given by
filename$. A runtime error occurs if an object of
the given class cannot be found in the given file.

268 Working Model Basic User's Manual

Examples 'This first example instantiates the existing copy of Excel.

Dim Excel As Object
Set Excel = GetObject(,"Excel.Application")

'This second example loads the OLE server associated with a document.

Dim MyObject As Object
Set MyObject = GetObject("c:\documents\resume.doc",)

See Also CreateObject (function); Object (data type).

Platform(s) Windows and Macintosh.

GetOption (function)
Syntax GetOption(name$ | id)

Description Returns True if the option is set; returns False otherwise.

Comments The GetOption function takes the following parameters:

Parameter Description

name$ String containing the name of the option button.

id Integer containing the ID of the option button. The id must be used when the
name of the option button is not known in advance.

The option button must exist within the current window or dialog box.

A runtime error will be generated if the specified option button does not exist.

Note: The GetOption function is used to retrieve the state of an option button
in another application's dialog box. Use the DlgValue function to retrieve the
state of an option button in a dynamic dialog box.

Example 'This example figures out which option is set in the Desktop dialog
'box of the Control Panel.

Sub Main()
id = Shell("control",7) 'Run the Control Panel.
WinActivate "Control Panel" 'Activate the Control Panel

window.
Menu "Settings.Desktop" 'Select Desktop dialog box.
WinActivate "Control Panel|Desktop" 'Activate it.
If GetOption("Tile") Then 'Retrieve which option is

set.
MsgBox "Your wallpaper is tiled." 'The Tile option is

currently set.
Else

MsgBox "Your wallpaper is centered." 'The Centered option is
currently set.

End If
End Sub

Chapter 2 Global (statement) 269

See Also OptionEnabled (function); OptionExists (function); SetOption (statement).

Platform(s) Windows.

Global (statement)
DescriptionSee Public (statement).

Platform(s) Windows and Macintosh.

GoSub (statement)
Syntax GoSub label

Description Causes execution to continue at the specified label.

Comments Execution can later be returned to the statement following the GoSub by using
the Return statement.

The label parameter must be a label within the current function or subroutine.
GoSub outside the context of the current function or subroutine is not allowed.

270 Working Model Basic User's Manual

Example 'This example gets a name from the user and then branches to a
'subroutine to check the input. If the user clicks Cancel or enters a
'blank name, the program terminates; otherwise, the name is set to
'MICHAEL, and a message is displayed.

Sub Main()
uname$ = Ucase$(InputBox$("Enter your name:","Enter Name"))
GoSub CheckName
MsgBox "Hello, " & uname$
Exit Sub

CheckName:
If (uname$ = "") Then

GoSub BlankName
ElseIf uname$ = "MICHAEL" Then

GoSub RightName
Else

GoSub OtherName
End If
Return

BlankName:
MsgBox "No name? Clicked Cancel? I'm shutting down."
Exit Sub

RightName:
Return

OtherName:
MsgBox "I am renaming you MICHAEL!"
uname$ = "MICHAEL"
Return

End Sub

See Also Goto (statement); Return (statement).

Platform(s) Windows and Macintosh.

Goto (statement)
Syntax Goto label

Description Transfers execution to the line containing the specified label.

Chapter 2 Goto (statement) 271

Comments The compiler will produce an error if label does not exist.

The label must appear within the same subroutine or function as the Goto.

Labels are identifiers that follow these rules:

1. Must begin with a letter.

2. May contain letters, digits, and the underscore character.

3. Must not exceed 80 characters in length.

4. Must be followed by a colon (:).

Labels are not case-sensitive.

Example 'This example gets a name from the user and then branches to a
'statement, depending on the input name. If the name is not MICHAEL,
'it is reset to MICHAEL unless it is null or the user clicks Cancel--
'in which case, the program displays a message and terminates.

Sub Main()
uname$ = Ucase$(InputBox$("Enter your name:","Enter Name"))
If uname$ = "MICHAEL" Then

Goto RightName
Else

Goto WrongName
End If

WrongName:
If (uname$ = "") Then

MsgBox "No name? Clicked Cancel? I'm shutting down."
Else

MsgBox "I am renaming you MICHAEL!"
uname$ = "MICHAEL"
Goto RightName

End If
Exit Sub

RightName:
MsgBox "Hello, MICHAEL!"

End Sub

See Also GoSub (statement); Call (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

To break out of an infinite loop, press Ctrl+Break.

Platform
Notes:

Macintosh

To break out of an infinite loop, press Ctrl+Period.

272 Working Model Basic User's Manual

GroupBox (statement)
Syntax GroupBox X,Y,width,height,title$ [,.Identifier]

Description Defines a group box within a dialog box template.

Comments This statement can only appear within a dialog box template (i.e., between the
Begin Dialog and End Dialog statements).

The group box control is used for static display onlythe user cannot interact
with a group box control.

Separator lines can be created using group box controls. This is accomplished
by creating a group box that is wider than the width of the dialog box and
extends below the bottom of the dialog boxi.e., three sides of the group box
are not visible.

If title$ is a zero-length string, then the group box is drawn as a solid rectangle
with no title.

The GroupBox statement requires the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

title$ String containing the label of the group box. If title$ is a zero-length string,
then no title will appear.

.Identifier Optional parameter that specifies the name by which this control can be
referenced by statements in a dialog function (such as DlgFocus and
DlgEnable). If omitted, then the first two words of title$ are used.

Example 'This example shows the GroupBox statement being used both for grouping
'and as a separator line.

Sub Main()
Begin Dialog OptionsTemplate 16,32,128,84,"Options"

GroupBox 4,4,116,40,"Window Options"
CheckBox 12,16,60,8,"Show &Toolbar",.ShowToolbar
CheckBox 12,28,68,8,"Show &Status Bar",.ShowStatusBar
GroupBox -12,52,152,48," ",.SeparatorLine
OKButton 16,64,40,14,.OK
CancelButton 68,64,40,14,.Cancel

End Dialog
Dim OptionsDialog As OptionsTemplate
Dialog OptionsDialog

End Sub

Chapter 2 Hex, Hex$ (functions) 273

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement);
Dialog (function); Dialog (statement); DropListBox (statement); ListBox
(statement); OKButton (statement); OptionButton (statement); OptionGroup
(statement); Picture (statement); PushButton (statement); Text (statement);
TextBox (statement); Begin Dialog (statement), PictureButton (statement).

Platform(s) Windows and Macintosh.

Hex, Hex$ (functions)
Syntax Hex[$](number)

Description Returns a String containing the hexadecimal equivalent of number.

Comments Hex$ returns a String, whereas Hex returns a String variant.

The returned string contains only the number of hexadecimal digits necessary to
represent the number, up to a maximum of eight.

The number parameter can be any type but is rounded to the nearest whole
number before converting to hex. If the passed number is an integer, then a
maximum of four digits are returned; otherwise, up to eight digits can be
returned.

The number parameter can be any expression convertible to a number. If
number is Null, then Null is returned. Empty is treated as 0.

Example 'This example inputs a number and displays it in decimal and
'hex until the input number is 0 or an invalid input.

Sub Main()
Do

xs$ = InputBox$("Enter a number to convert:","Hex Convert")
x = Val(xs$)
If x <> 0 Then

MsgBox "Dec: " & x & " Hex: " & Hex$(x)
Else

MsgBox "Goodbye."
End If

Loop While x <> 0
End Sub

See Also Oct, Oct$ (functions).

Platform(s) Windows and Macintosh.

HLine (statement)
Syntax HLine [lines]

Description Scrolls the window with the focus left or right by the specified number of lines.

274 Working Model Basic User's Manual

Comments The lines parameter is an Integer specifying the number of lines to scroll. If
this parameter is omitted, then the window is scrolled right by one line.

Example 'This example scrolls the Notepad window to the left by three
'"amounts." Each "amount" is equivalent to clicking the right arrow
'of the horizontal scroll bar once.

Sub Main()
AppActivate "Notepad"
HLine 3 'Move 3 lines in.

End Sub

See Also HPage (statement); HScroll (statement).

Platform(s) Windows.

Hour (function)
Syntax Hour(time)

Description Returns the hour of the day encoded in the specified time parameter.

Comments The value returned is as an Integer between 0 and 23 inclusive.

The time parameter is any expression that converts to a Date.

Example 'This example takes the current time; extracts the hour,
'minute, and second; and displays them as the current time.

Sub Main()
xt# = TimeValue(Time$())
xh# = Hour(xt#)
xm# = Minute(xt#)
xs# = Second(xt#)
MsgBox "The current time is: " & xh# & ":" & xm# & ":" & xs#

End Sub

See Also Day (function); Minute (function); Second (function); Month (function); Year
(function); Weekday (function); DatePart (function).

Platform(s) Windows and Macintosh.

HPage (statement)
Syntax HPage [pages]

Description Scrolls the window with the focus left or right by the specified number of
pages.

Comments The pages parameter is an Integer specifying the number of pages to scroll.
If this parameter is omitted, then the window is scrolled right by one page.

Chapter 2 HScroll (statement) 275

Example 'This example scrolls the Notepad window to the left by three
'"amounts." Each "amount" is equivalent to clicking within the
'horizontal scroll bar on the right side of the thumb mark.

Sub Main()
AppActivate "Notepad"
HPage 3 'Move 3 pages down.

End Sub

See Also HLine (statement); HScroll (statement).

Platform(s) Windows.

HScroll (statement)
Syntax HScroll percentage

Description Sets the thumb mark on the horizontal scroll bar attached to the current
window.

Comments The position is given as a percentage of the total range associated with that
scroll bar. For example, if the percentage parameter is 50, then the thumb mark
is positioned in the middle of the scroll bar.

Example 'This example centers the thumb mark on the horizontal scroll bar of
'the Notepad window.

Sub Main()
AppActivate "Notepad"
HScroll 50 'Jump to the middle of the document.

End Sub

See Also HLine (statement); HPage (statement).

Platform(s) Windows.

HWND (object)
Syntax Dim name As HWND

Description A data type used to hold window objects.

Comments This data type is used to hold references to physical windows in the operating
environment. The following commands operate on HWND objects:

WinActivate WinClose WinFind WinList
WinMaximize WinMinimize WinMove WinRestore
WinSize

The above language elements support both string and HWND window
specifications.

276 Working Model Basic User's Manual

Example 'This example activates the "Main" MDI window within Program Manager.

Sub Main()
Dim ProgramManager As HWND
Dim ProgramManagerMain As HWND
Set ProgramManager = WinFind("Program Manager")
If ProgramManager Is Not Nothing Then

WinActivate ProgramManager
WinMaximize ProgramManager
Set ProgramManagerMain = WinFind("Program Manager|Main")
If ProgramManagerMain Is Not Nothing Then

WinActivate ProgramManagerMain
WinRestore ProgramManagerMain

Else
MsgBox "Your Program Manager doesn't have a Main group."

End If
Else

MsgBox "Program Manager is not running."
End If

End Sub

See Also HWND.Value (property); WinFind (function); WinActivate (function).

Platform(s) Windows.

HWND.Value (property)
Syntax window.Value

Description The default property of an HWND object that returns a Variant containing a
HANDLE to the physical window of an HWND object variable.

Comments The Value property is used to retrieve the operating environment–specific
value of a given HWND object. The size of this value depends on the operating
environment in which the script is executing and thus should always be placed
into a Variant variable.

This property is read-only.

Example 'This example displays a dialog box containing the class name of
'Program Manager's Main window. It does so using the .Value property,
'passing it directly to a Windows' external routine.

Declare Sub GetClassName Lib "user" (ByVal Win%,ByVal ClsName$,ByVal
ClsNameLen%)

Sub Main()
Dim ProgramManager As HWND
Set ProgramManager = WinFind("Program Manager")
ClassName$ = Space(40)
GetClassName ProgramManager.Value,ClassName$,Len(ClassName$)
MsgBox "The program classname is: " & ClassName$

End Sub

Chapter 2 If...Then...Else (statement) 277

See Also HWND (data type).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, this value is an Integer.

If...Then...Else (statement)
Syntax 1 If condition Then statements [Else else_statements]

Syntax 2 If condition Then
 [statements]
[ElseIf else_condition Then
 [elseif_statements]]
[Else
 [else_statements]]
End If

Description Conditionally executes a statement or group of statements.

Comments The single-line conditional statement (syntax 1) has the following parameters:

Parameter Description

condition Any expression evaluating to a Boolean value.

statements One or more statements separated with colons. This group of statements is
executed when condition is True.

else_statements One or more statements separated with colons. This group of statements is
executed when condition is False.

278 Working Model Basic User's Manual

The multiline conditional statement (syntax 2) has the following parameters:

Parameter Description

condition Any expression evaluating to a Boolean value.

statements One or more statements to be executed when condition is True.

else_condition Any expression evaluating to a Boolean value. The else_condition is evaluated
if condition is False.

elseif_statements One or more statements to be exected when condition is False and
else_condition is True.

else_statements One or more statements to be executed when both condition and else_condition
are False.

There can be as many ElseIf conditions as required.

Example 'This example inputs a name from the user and checks to see whether it
'is MICHAEL or MIKE using three forms of the If...Then...Else
'statement. It then branches to a statement that displays a welcome
'message depending on the user's name.

Sub Main()
uname$ = UCase$(InputBox$("Enter your name:","Enter Name"))
If uname$ = "MICHAEL" Then GoSub MikeName

If uname$ = "MIKE" Then
GoSub MikeName
Exit Sub

End If

If uname$ = "" Then
MsgBox "Since you don't have a name, I'll call you MIKE!"
uname$ = "MIKE"
GoSub MikeName

ElseIf uname$ = "MICHAEL" Then
GoSub MikeName

Else
GoSub OtherName

End If
Exit Sub

MikeName:
MsgBox "Hello, MICHAEL!"
Return

OtherName:
MsgBox "Hello, " & uname$ & "!"
Return

End Sub

See Also Choose (function); Switch (function); IIf (function); Select...Case
(statement).

Chapter 2 IIf (function) 279

Platform(s) Windows and Macintosh.

IIf (function)
Syntax IIf(condition,TrueExpression,FalseExpression)

Description Returns TrueExpression if condition is True; otherwise, returns
FalseExpression.

Comments Both expressions are calculated before IIf returns.

The IIf function is shorthand for the following construct:

If condition Then
variable = TrueExpression

Else
variable = FalseExpression

End If

Example Sub Main()
s$ = "Car"
MsgBox IIf(s$ = "Car","Nice Car","Nice Automobile")

End Sub

See Also Choose (function); Switch (function); If...Then...Else (statement);
Select...Case (statement).

Platform(s) Windows and Macintosh.

Imp (operator)
Syntax expression1 Imp expression2

Description Performs a logical or binary implication on two expressions.

280 Working Model Basic User's Manual

Comments If both expressions are either Boolean, Boolean variants, or Null variants,
then a logical implication is performed as follows:

If the first and the second then the
expression is expression is result is

True True True
True False False
True Null Null
False True True
False False True
False Null True
Null True True
Null False Null
Null Null Null

Binary Implication

If the two expressions are Integer, then a binary implication is performed,
returning an Integer result. All other numeric types (including Empty
variants) are converted to Long and a binary implication is then performed,
returning a Long result.

Binary implication forms a new value based on a bit-by-bit comparison of the
binary representations of the two expressions, according to the following table:

1 Imp1 = 1 Example:
0 Imp1 = 1 5 01101001
1 Imp0 = 0 6 10101010
0 Imp0 = 1 Imp10111110

Example 'This example compares the result of two expressions to determine
'whether one implies the other.

Sub Main()
a = 10 : b = 20 : c = 30 : d = 40

If (a < b) Imp (c < d) Then
MsgBox "a is less than b implies that c is less than d."

Else
MsgBox "a is less than b does not imply that c is less than d."

End If

If (a < b) Imp (c > d) Then
MsgBox "a is less than b implies that c is greater than d."

Else
MsgBox "a is less than b does not imply that c is greater than

d."
End If

End Sub

Chapter 2 Inline (statement) 281

See Also Operator Precedence (topic); Or (operator); Xor (operator); Eqv (operator); And
(operator).

Platform(s) Windows and Macintosh.

Inline (statement)
Syntax Inline name [parameters]

anytext
End Inline

Description Allows execution or interpretation of a block of text.

Comments The Inline statement takes the following parameters:

Parameter Description

name Identifier specifying the type of inline statement.

parameters Comma-separated list of parameters.

anytext Text to be executed by the Inline statement. This text must be in a format
appropriate for execution by the Inline statement.

The end of the text is assumed to be the first occurrence of the words End
Inline appearing on a line.

Example Sub Main()
Inline MacScript

-- This is an AppleScript comment.
Beep
Display Dialog "AppleScript" buttons "OK" default button "OK"
Display Dialog Current Date

End Inline
End Sub

See Also MacScript (statement).

Platform(s) Windows and Macintosh.

Input# (statement)
Syntax Input [#]filenumber%,variable[,variable]...

Description Reads data from the file referenced by filenumber into the given variables.

Comments Each variable must be type-matched to the data in the file. For example, a
String variable must be matched to a string in the file.

The following parsing rules are observed while reading each variable in the
variable list:

1. Leading white space is ignored (spaces and tabs).

282 Working Model Basic User's Manual

2. When reading String variables, if the first character on the line is a
quotation mark, then characters are read up to the next quoation mark or the
end of the line, whichever comes first. Blank lines are read as empty strings.
If the first character read is not a quoation mark, then characters are read up
to the first comma or the end of the line, whichever comes first. String
delimiters (quotes, comma, end-of-line) are not included in the returned
string.

3. When reading numeric variables, scanning of the number stops when the
first nonnumber character (such as a comma, a letter, or any other
unexpected character) is encountered. Numeric errors are ignored while
reading numbers from a file. The resultant number is automatically
converted to the same type as the variable into which the value will be
placed. If there is an error in conversion, then 0 is stored into the variable.

After reading the number, input is skipped up to the next delimiter—a
comma, an end-of-line, or an end-of-file.

Numbers must adhere to any of the following syntaxes:

[-|+]digits[.digits][E[-|+]digits][!|#|%|&|@]

&Hhexdigits[!|#|%|&]

&[O]octaldigits[!|#|%|&|@]

4. When reading Boolean variables, the first character must be #; otherwise,
a runtime error occurs. If the first character is #, then input is scanned up to
the next delimiter (a comma, an end-of-line, or an end-of-file). If the input
matches #FALSE#, then False is stored in the Boolean; otherwise True
is stored.

5. When reading Date variables, the first character must be #; otherwise, a
runtime error occurs. If the first character is #, then the input is scanned up
to the next delimiter (a comma, an end-of-line, or an end-of-file). If the
input ends in a # and the text between the #'s can be correctly interpreted as
a date, then the date is stored; otherwise, December 31, 1899, is stored.

Normally, dates that follow the universal date format are input from
sequential files. These dates use this syntax:

#YYYY-MM-DD HH:MM:SS#

where YYYY is a year between 100 and 9999, MM is a month between 1 and
12, DD is a day between 1 and 31, HH is an hour between 0 and 23, MM is
a minute between 0 and 59, and SS is a second between 0 and 59.

Chapter 2 Input# (statement) 283

6. When reading Variant variables, if the data begins with a quotation
mark, then a string is read consisting of the characters between the opening
quotation mark and the closing quoation mark, end-of-line, or end-of-file.

If the input does not begin with a quotation mark, then input is scanned up
to the next comma, end-of-line, or end-of-file and a determination is made
as to what data is being represented. If the data cannot be represented as a
number, Date, Error, Boolean, or Null, then it is read as a string.

The following table describes how special data is interpreted as variants:

Blank line Read as an Empty variant.

#NULL# Read as a Null variant.

#TRUE# Read as a Boolean variant.

#FALSE# Read as a Boolean variant.

#ERROR code# Read as a user-defined error.

#date# Read as a Date variant.

"text" Read as a String variant.

If an error occurs in interpretation of the data as a particular type, then that
data is read as a String variant.

When reading numbers into variants, the optional type-declaration character
determines the VarType of the resulting variant. If no type-declaration
character is specified, then WM Basic will read the number according to the
following rules:

Rule 1: If the number contains a decimal point or an exponent, then the
number is read as Currency. If there is an error converting to Currency,
then the number is treated as a Double.

Rule 2: If the number does not contain a decimal point or an exponent, then
the number is stored in the smallest of the following data types that most
accurately represents that value: Integer, Long, Currency, Double.

7. End-of-line is interpreted as either a single line feed, a single carriage
return, or a carriage-return/line-feed pair. Thus, text files from any platform
can be interpreted using this command.

284 Working Model Basic User's Manual

The filenumber parameter is a number that is used by WM Basic to refer to the
open filethe number passed to the Open statement.

The filenumber must reference a file opened in Input mode. It is good
practice to use the Write statement to write date elements to files read with
the Input statement to ensure that the variable list is consistent between the
input and output routines.

Example 'This example creates a file called test.dat and writes a series of
'variables into it. Then the variables are read using the Input#
'function.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Open "test.dat" For Output As #1
Write #1,2112,"David","McCue","123-45-6789"
Close

Open "test.dat" For Input As #1
Input #1,x%,st1$,st2$,st3$
msg = "Employee " & x% & " Information" & crlf & crlf
msg = msg & "First Name: " & st1$ & crlf
msg = msg & "Last Name: "& st2$ & crlf
msg = msg & "Social Security Number: " & sy3$
MsgBox msg
Close

Kill "test.dat"
End Sub

See Also Open (statement); Get (statement); Line Input# (statement); Input, Input$
(functions).

Platform(s) Windows and Macintosh.

Input, Input$ (functions)
Syntax Input[$](numbytes,[#] filenumber)

Description Returns numbytes characters read from a given sequential file.

Chapter 2 InputBox, InputBox$ (functions) 285

Comments Input$ returns a String, whereas Input returns a String variant.

The Input/Input$ functions require the following parameters:

Parameter Description

numbytes Integer containing the number of bytes to be read from the file.

filenumber Integer referencing a file opened in either Input or Binary mode. This is the
same number passed to the Open statement.

This function reads all characters, including spaces and end-of-lines.

Example 'This example opens the autoexec.bat file and displays it in a
'dialog box.

Const crlf = Chr$(13) & Chr$(10)

Sub Main()
x& = FileLen("c:\autoexec.bat")
If x& > 0 Then

Open "c:\autoexec.bat" For Input As #1
Else

MsgBox "File not found or empty."
Exit Sub

End If

If x& > 80 Then
ins = Input(80,#1)

Else
ins = Input(x,#1)

End If
Close
MsgBox "File length: " & x& & crlf & ins

End Sub

See Also Open (statement); Get (statement); Input# (statement); Line Input#
(statement).

Platform(s) Windows and Macintosh.

InputBox, InputBox$ (functions)
Syntax InputBox[$](prompt [,[title] [,[default] [,X,Y]]])

Description Displays a dialog box with a text box into which the user can type.

286 Working Model Basic User's Manual

Comments The content of the text box is returned as a String (in the case of
InputBox$) or as a String variant (in the case of InputBox). A zero-
length string is returned if the user selects Cancel.

The InputBox/InputBox$ functions take the following parameters:

Parameter Description

prompt Text to be displayed above the text box. The prompt parameter can contain
multiple lines, each separated with an end-of-line (a carriage return, line feed,
or carriage-return/line-feed pair). A runtime error is generated if prompt is
Null.

title Caption of the dialog box. If this parameter is omitted, then no title appears as
the dialog box's caption. A runtime error is generated if title is Null.

default Default response. This string is initially displayed in the text box. A runtime
error is generated if default is Null.

X, Y Integer coordinates, given in twips (twentieths of a point), specifying the
upper left corner of the dialog box relative to the upper left corner of the screen.
If the position is omitted, then the dialog box is positioned on or near the
application executing the script.

Example Sub Main()
s$ = InputBox$("File to copy:","Copy","sample.txt")

End Sub

See Also MsgBox (statement); AskBox$ (function); AskPassword$ (function);
OpenFilename$ (function); SaveFilename$ (function); SelectBox (function);
AnswerBox (function).

Platform(s) Windows and Macintosh.

InStr (function)
Syntax InStr([start,] search, find [,compare])

Description Returns the first character position of string find within string search.

Chapter 2 Int (function) 287

Comments The InStr function takes the following parameters:

Parameter Description

start Integer specifying the character position where searching begins. The start
parameter must be between 1 and 32767.

If this parameter is omitted, then the search starts at the beginning (start = 1).

search Text to search. This can be any expression convertible to a String.

find Text for which to search. This can be any expression convertible to a String.

compare Integer controlling how string comparisons are performed:

0 String comparisons are case-sensitive.

1 String comparisons are case-
insensitive.

Any other value A runtime error is produced.

If this parameter is omitted, then string comparisons use the current Option
Compare setting. If no Option Compare statement has been encountered, then
Binary is used (i.e., string comparisons are case-sensitive).

If the string is found, then its character position within search is returned, with
1 being the character position of the first character. If find is not found, or start
is greater than the length of search, or search is zero-length, then 0 is returned.

Example 'This example checks to see whether one string is in another and,
'if it is, then it copies the string to a variable and displays the
'result.

Sub Main()
a$ = "This string contains the name Stuart and other characters."
x% = InStr(a$,"Stuart",1)
If x% <> 0 Then

b$ = Mid$(a$,x%,6)
MsgBox b$ & " was found."
Exit Sub

Else
MsgBox "Stuart not found."

End If
End Sub

See Also Mid, Mid$ (functions); Option Compare (statement); Item$ (function); Word$
(function); Line$ (function).

Platform(s) Windows and Macintosh.

Int (function)

288 Working Model Basic User's Manual

Syntax Int(number)

Description Returns the integer part of number.

Comments This function returns the integer part of a given value by returning the first
integer less than the number. The sign is preserved.

The Int function returns the same type as number, with the following
exceptions:

If number is Empty, then an Integer variant of value 0 is returned.

If number is a String, then a Double variant is returned.

If number is Null, then a Null variant is returned.

Example 'This example extracts the integer part of a number.

Sub Main()
a# = -1234.5224
b% = Int(a#)
MsgBox "The integer part of -1234.5224 is: " & b%

End Sub

See Also Fix (function); CInt (function).

Platform(s) Windows and Macintosh.

Integer (data type)
Syntax Integer

Description A data type used to declare whole numbers with up to four digits of precision.

Comments Integer variables are used to hold numbers within the following range:

–32768 <= integer <= 32767

Internally, integers are 2-byte short values. Thus, when appearing within a
structure, integers require 2 bytes of storage. When used with binary or random
files, 2 bytes of storage are required.

When passed to external routines, Integer values are sign-extended to the
size of an integer on that platform (either 16 or 32 bits) before pushing onto the
stack.

The type-declaration character for Integer is %.

See Also Currency (data type); Date (data type); Double (data type); Long (data type),
Object (data type), Single (data type), String (data type), Variant (data
type), Boolean (data type), DefType (statement), CInt (function).

Platform(s) Windows and Macintosh.

Chapter 2 IPmt (function) 289

IPmt (function)
Syntax IPmt(Rate, Per, Nper, Pv, Fv, Due)

Description Returns the interest payment for a given period of an annuity based on periodic,
fixed payments and a fixed interest rate.

Comments An annuity is a series of fixed payments made to an insurance company or
other investment company over a period of time. Examples of annuities are
mortgages, monthly savings plans, and retirement plans.

The following table describes the different parameters:

Parameter Description

Rate Double representing the interest rate per period. If the payment periods are
monthly, be sure to divide the annual interest rate by 12 to get the monthly rate.

Per Double representing the payment period for which you are calculating the
interest payment. If you want to know the interest paid or received during
period 20 of an annuity, this value would be 20.

Nper Double representing the total number of payments in the annuity. This is
usually expressed in months, and you should be sure that the interest rate given
above is for the same period that you enter here.

Pv Double representing the present value of your annuity. In the case of a loan, the
present value would be the amount of the loan because that is the amount of
cash you have in the present. In the case of a retirement plan, this value would
be the current value of the fund because you have a set amount of principal in
the plan.

Fv Double representing the future value of your annuity. In the case of a loan, the
future value would be zero because you will have paid it off. In the case of a
savings plan, the future value would be the balance of the account after all
payments are made.

Due Integer indicating when payments are due. If this parameter is 0, then
payments are due at the end of each period (usually, the end of the month). If
this value is 1, then payments are due at the start of each period (the beginning
of the month).

Rate and Nper must be in expressed in the same units. If Rate is expressed in
percentage paid per month, then Nper must also be expressed in months. If Rate
is an annual rate, then the period given in Nper should also be in years or the
annual Rate should be divided by 12 to obtain a monthly rate.

If the function returns a negative value, it represents interest you are paying out,
whereas a positive value represents interest paid to you.

290 Working Model Basic User's Manual

Example 'This example calculates the amount of interest paid on a $1,000.00
'loan financed over 36 months with an annual interest rate of 10%.
'Payments are due at the beginning of the month. The interest paid
'during the first 10 months is displayed in a table.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
For x = 1 to 10

ipm# = IPmt((.10/12),x,36,1000,0,1)
msg = msg & Format(x,"00") & " : " & Format(ipm#," 0,0.00") &

crlf
Next x
MsgBox msg

End Sub

See Also NPer (function); Pmt (function); PPmt (function); Rate (function).

Platform(s) Windows and Macintosh.

IRR (function)
Syntax IRR(ValueArray(),Guess)

Description Returns the internal rate of return for a series of periodic payments and receipts.

Comments The internal rate of return is the equivalent rate of interest for an investment
consisting of a series of positive and/or negative cash flows over a period of
regular intervals. It is usually used to project the rate of return on a business
investment that requires a capital investment up front and a series of
investments and returns on investment over time.

The IRR function requires the following parameters:

Parameter Description

ValueArray() Array of Double numbers that represent payments and receipts. Positive values
are payments, and negative values are receipts.

There must be at least one positive and one negative value to indicate the initial
investment (negative value) and the amount earned by the investment (positive
value).

Guess Double containing your guess as to the value that the IRR function will return.
The most common guess is .1 (10 percent).

The value of IRR is found by iteration. It starts with the value of Guess and
cycles through the calculation adjusting Guess until the result is accurate within
0.00001 percent. After 20 tries, if a result cannot be found, IRR fails, and the
user must pick a better guess.

Chapter 2 Is (operator) 291

Example 'This example illustrates the purchase of a lemonade stand for $800
'and a series of incomes from the sale of lemonade over 12 months.
'The projected incomes for this example are generated in two
'For...Next Loops, and then the internal rate of return is calculated
'and displayed. (Not a bad investment!)

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim valu#(12)
valu(1) = -800 'Initial investment
msg = valu#(1) & ", "

'Calculate the second through fifth months' sales.
For x = 2 To 5

valu(x) = 100 + (x * 2)
msg = msg & valu(x) & ", "

Next x

'Calcluate the sixth through twelfth months' sales.
For x = 6 To 12

valu(x) = 100 + (x * 10)
msg = msg & valu(x) & ", "

Next x

'Calcluate the equivalent investment return rate.
retrn# = IRR(valu,.1)
msg = "The values: " & crlf & msg & crlf & crlf
MsgBox msg & "Return rate: " & Format(retrn#,"Percent")

End Sub

See Also Fv (function); MIRR (function); Npv (function); Pv (function).

Platform(s) Windows and Macintosh.

Is (operator)
Syntax object Is [object | Nothing]

Description Returns True if the two operands refer to the same object; returns False
otherwise.

Comments This operator is used to determine whether two object variables refer to the
same object. Both operands must be object variables of the same type (i.e., the
same data object type or both of type Object).

The Nothing constant can be used to determine whether an object variable is
uninitialized:

If MyObject Is Nothing Then MsgBox "MyObject is uninitialized."

Uninitialized object variables reference no object.

292 Working Model Basic User's Manual

Example 'This function inserts the date into a Microsoft Word document.

Sub InsertDate(ByVal WinWord As Object)
If WinWord Is Nothing Then

MsgBox "Object variant is not set."
Else

WinWord.Insert Date$
End If

End Sub

Sub Main()
Dim WinWord As Object
On Error Resume Next
WinWord = CreateObject("word.basic")
InsertDate WinWord

End Sub

See Also Operator Precedence (topic); Like (operator).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows,
Macintosh

When comparing OLE automation objects, the Is operator will only return
True if the operands reference the same OLE automation object. This is
different from data objects. For example, the following use of Is (using the
object class called excel.application) returns True:

Dim a As Object
Dim b As Object
a = CreateObject("excel.application")
b = a
If a Is b Then Beep

The following use of Is will return False, even though the actual objects may
be the same:

Dim a As Object
Dim b As Object
a = CreateObject("excel.application")
b = GetObject(,"excel.application")
If a Is b Then Beep

The Is operator may return False in the above case because, even though a
and b reference the same object, they may be treated as different objects by
OLE 2.0 (this is dependent on the OLE 2.0 server application).

IsDate (function)
Syntax IsDate(expression)

Description Returns True if expression can be legally converted to a date; returns False
otherwise.

Chapter 2 IsEmpty (function) 293

Example Sub Main()
Dim a As Variant

Retry:
a = InputBox("Enter a date.", "Enter Date")
If IsDate(a) Then

MsgBox Format(a,"long date")
Else

Msgbox "Not quite, please try again!"
Goto Retry

End If
End Sub

See Also Variant (data type); IsEmpty (function); IsError (function); IsObject
(function); VarType (function); IsNull (function).

Platform(s) Windows and Macintosh.

IsEmpty (function)
Syntax IsEmpty(expression)

Description Returns True if expression is a Variant variable that has never been
initialized; returns False otherwise.

Comments The IsEmpty function is the same as the following:

(VarType(expression) = ebEmpty)

Example Sub Main()
Dim a As Variant
If IsEmpty(a) Then

a = 1.0# 'Give uninitialized data a Double value 0.0.
MsgBox "The variable has been initialized to: " & a

Else
MsgBox "The variable was already initialized!"

End If
End Sub

See Also Variant (data type); IsDate (function); IsError (function); IsObject
(function); VarType (function); IsNull (function).

Platform(s) Windows and Macintosh.

IsError (function)
Syntax IsError(expression)

Description Returns True if expression is a user-defined error value; returns False
otherwise.

294 Working Model Basic User's Manual

Example 'This example creates a function that divides two numbers. If there
'is an error dividing the numbers, then a variant of type "error" is
'returned. Otherwise, the function returns the result of the division.
'The IsError function is used to determine whether the function
'encountered an error.

Function Div(ByVal a,ByVal b) As Variant
If b = 0 Then

Div = CVErr(2112) 'Return a special error value.
Else

Div = a / b 'Return the division.
End If

End Function

Sub Main()
Dim a As Variant
a = Div(10,12)
If IsError(a) Then

MsgBox "The following error occurred: " & CStr(a)
Else

MsgBox "The result is: " & a
End If

End Sub

See Also Variant (data type); IsEmpty (function); IsDate (function); IsObject
(function); VarType (function); IsNull (function).

Platform(s) Windows and Macintosh.

IsMissing (function)
Syntax IsMissing(variable)

Description Returns True if variable was passed to the current subroutine or function;
returns False if omitted.

Comments The IsMissing is used with variant variables passed as optional parameters
(using the Optional keyword) to the current subroutine or function. For non-
variant variables or variables that were not declared with the Optional
keyword, IsMissing will always return True.

Chapter 2 IsNull (function) 295

Example 'The following function runs an application and optionally minimizes
it. If
'the optional isMinimize parameter is not specified by the caller, then
the
'application is not minimized.

Sub Test(AppName As String,Optional isMinimize As Variant)
app = Shell(AppName)
If Not IsMissing(isMinimize) Then

AppMinimize app
Else

AppMaximize app
End If

End Sub

Sub Main
Test "Notepad" 'Maximize this application
Test "Notepad",True 'Mimimize this application

End Sub

See Also Declare (statement), Sub...End Sub (statement), Function...End Function
(statement)

Platform(s) Windows and Macintosh.

IsNull (function)
Syntax IsNull(expression)

Description Returns True if expression is a Variant variable that contains no valid data;
returns False otherwise.

Comments The IsNull function is the same as the following:

(VarType(expression) = ebNull)

Example Sub Main()
Dim a As Variant 'Initialized as Empty
If IsNull(a) Then MsgBox "The variable contains no valid data."
a = Empty * Null
If IsNull(a) Then MsgBox "Null propagated through the expression."

End Sub

See Also Empty (constant); Variant (data type); IsEmpty (function); IsDate (function);
IsError (function); IsObject (function); VarType (function).

Platform(s) Windows and Macintosh.

IsNumeric (function)
Syntax IsNumeric(expression)

Description Returns True if expression can be converted to a number; returns False
otherwise.

296 Working Model Basic User's Manual

Comments If passed a number or a variant containing a number, then IsNumeric always
returns True.

If a String or String variant is passed, then IsNumeric will return True
only if the string can be converted to a number. The following syntaxes are
recognized as valid numbers:

&Hhexdigits[&|%|!|#|@]

&[O]octaldigits[&|%|!|#|@]

[-|+]digits[.[digits]][E[-|+]digits][!|%|&|#|@]

If an Object variant is passed, then the default property of that object is
retrieved and one of the above rules is applied.

IsNumeric returns False if expression is a Date.

Example Sub Main()
Dim s$ As String
s$ = InputBox("Enter a number.","Enter Number")

If IsNumeric(s$) Then
MsgBox "You did good!"

Else
MsgBox "You didn't do so good!"

End If
End Sub

See Also Variant (data type); IsEmpty (function); IsDate (function); IsError
(function); IsObject (function); VarType (function); IsNull (function).

Platform(s) Windows and Macintosh.

IsObject (function)
Syntax IsObject(expression)

Description Returns True if expression is a Variant variable containing an Object;
returns False otherwise.

Chapter 2 Item$ (function) 297

Example 'This example will attempt to find a running copy of Excel and create
'a Excel object that can be referenced as any other object in 'WM
Basic.

Sub Main()
Dim v As Variant
On Error Resume Next
Set v = GetObject(,"Excel.Application")

If IsObject(v) Then
MsgBox "The default object value is: " & v = v.Value 'Access

value property of the object.
Else

MsgBox "Excel not loaded."
End If

End Sub

See Also Variant (data type); IsEmpty (function); IsDate (function); IsError
(function); VarType (function); IsNull (function).

Platform(s) Windows and Macintosh.

Item$ (function)
Syntax Item$(text$,first,last [,delimiters$])

Description Returns all the items between first and last within the specified formatted text
list.

Comments The Item$ function takes the following parameters:

Parameter Description

text$ String containing the text from which a range of items is returned.

first Integer containing the index of the first item to be returned. If first is greater
than the number of items in text$, then a zero-length string is returned.

last Integer containing the index of the last item to be returned. All of the items
between first and last are returned. If last is greater than the number of items in
text$, then all items from first to the end of text are returned.

delimiters$ String containing different item delimiters.

By default, items are separated by commas and end-of-lines. This can be
changed by specifying different delimiters in the delimiters$ parameter.

298 Working Model Basic User's Manual

Example 'This example creates two delimited lists and extracts a range from
'each, then displays the result in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
ilist$ = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"
slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15"
list1$ = Item$(ilist$,5,12)
list2$ = Item$(slist$,2,9,"/")
MsgBox "The returned lists are: " & crlf & list1$ & crlf & list2$

End Sub

See Also ItemCount (function); Line$ (function); LineCount (function); Word$
(function); WordCount (function).

Platform(s) Windows and Macintosh.

ItemCount (function)
Syntax ItemCount(text$ [,delimiters$])

Description Returns an Integer containing the number of items in the specified delimited
text.

Comments Items are substrings of a delimited text string. Items, by default, are separated
by commas and/or end-of-lines. This can be changed by specifying different
delimiters in the delimiters$ parameter. For example, to parse items using a
backslash:

n = ItemCount(text$,"\")

Example 'This example creates two delimited lists and then counts the number
'of items in each. The counts are displayed in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
ilist$ = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"
slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19"

l1% = ItemCount(ilist$)
l2% = ItemCount(slist$,"/")
msg = "The first lists contains: " & l1% & " items." & crlf
msg = msg & "The second list contains: " & l2% & " items."
MsgBox msg

End Sub

See Also Item$ (function); Line$ (function); LineCount (function); Word$ (function);
WordCount (function).

Platform(s) Windows and Macintosh.

299

Keywords (topic)
A keyword is any word or symbol recognized by WM Basic as part of the
language. All of the following are keywords:

Built-in subroutine names, such as MsgBox and Print.

Built-in function names, such as Str$, CDbl, and Mid$.

Special keywords, such as To, Next, Case, and Binary.

Names of any extended language elements.

Restrictions

All keywords are reserved by WM Basic, in that you cannot create a variable,
function, constant, or subroutine with the same name as a keyword. However,
you are free to use all keywords as the names of structure members.

Platform(s) Windows and Macintosh.

Kill (statement)
Syntax Kill filespec$

Description Deletes all files matching filespec$.

300 Working Model Basic User's Manual

Comments The filespec$ argument can include wildcards, such as * and ?. The * character
matches any sequence of zero or more characters, whereas the ? character
matches any single character. Multiple *'s and ?'s can appear within the
expression to form complex searching patterns. The following table shows
some examples.

This Pattern Matches These Files Doesn't Match These Files

S.TXT SAMPLE.TXT SAMPLE
GOOSE.TXT SAMPLE.DAT
SAMS.TXT

C*T.TXT CAT.TXT CAP.TXT
ACATS.TXT

C*T CAT CAT.DOC
CAP.TXT

C?T CAT CAT.TXT
CUT CAPIT

CT

* (All files)

Example 'This example looks to see whether file test1.dat exists. If it does
not,
'then it creates both test1.dat and test2.dat. The existence of the
files
'is tested again; if they exist, a message is generated, and then
'they are deleted. The final test looks to see whether they are still
'there and displays the result.

Sub Main()
If Not FileExists("test1.dat") Then

Open "test1.dat" For Output As #1
Open "test2.dat" For Output As #2
Close

End If

If FileExists ("test1.dat") Then
MsgBox "File test1.dat exists."
Kill "test?.dat"

End If

If FileExists ("test1.dat") Then
MsgBox "File test1.dat still exists."

Else
MsgBox "test?.dat sucessfully deleted."

End If
End Sub

See Also Name (statement).

Chapter 2 LBound (function) 301

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Notice that WM Basic’s filename matching is different than DOS's. The pattern
"*.*" under DOS matches all files. With WM Basic, this pattern matches only
files that have file extensions.

This function behaves the same as the "del" command in DOS.

Platform
Notes:

Macintosh

The Macintosh does not support wildcard characters such as * and ?. These are
valid filename characters. Instead of wildcards, the Macintosh uses the MacID
function to specify a collection of files of the same type. The syntax for this
function is:

Kill MacID(text$)

The text$ parameter is a four-character string containing a file type, a resource
type, an application signature, or an Apple event. A runtime error occurs if the
MacID function is used on platforms other than the Macintosh.

LBound (function)
Syntax LBound(ArrayVariable() [,dimension])

Description Returns an Integer containing the lower bound of the specified dimension of
the specified array variable.

Comments The dimension parameter is an integer specifying the desired dimension. If this
parameter is not specified, then the lower bound of the first dimension is
returned.

The LBound function can be used to find the lower bound of a dimension of an
array returned by an OLE automation method or property:

LBound(object.property [,dimension])

LBound(object.method [,dimension])

302 Working Model Basic User's Manual

Examples Sub Main()
'This example dimensions two arrays and displays their lower

bounds.

Dim a(5 To 12)
Dim b(2 To 100, 9 To 20)

lba = LBound(a)
lbb = LBound(b,2)
MsgBox "The lower bound of a is: " & lba & " The lower bound of b

is: " & lbb

'This example uses LBound and UBound to dimension a dynamic array
to

'hold a copy of an array redimmed by the FileList statement.

Dim fl$()
FileList fl$,"*.*"
count = UBound(fl$)
If ArrayDims(a) Then

Redim nl$(LBound(fl$) To UBound(fl$))
For x = 1 To count

nl$(x) = fl$(x)
Next x
MsgBox "The last element of the new array is: " & nl$(count)

End If
End Sub

See Also UBound (function); ArrayDims (function); Arrays (topic).

Platform(s) Windows and Macintosh.

LCase, LCase$ (functions)
Syntax LCase[$](text)

Description Returns the lowercase equivalent of the specified string.

Comments LCase$ returns a String, whereas LCase returns a String variant.

Null is returned if text is Null.

Example 'This example shows the LCase function used to change uppercase names
'to lowercase with an uppercase first letter.

Sub Main()
lname$ = "WILLIAMS"
fl$ = Left$(lname$,1)
rest$ = Mid$(lname$,2,Len(lname$))
lname$ = fl$ & LCase$(rest$)
MsgBox "The converted name is: " & lname$

End Sub

See Also UCase, UCase$ (functions).

Platform(s) Windows and Macintosh.

Chapter 2 Left, Left$ (functions) 303

Left, Left$ (functions)
Syntax Left[$](text,NumChars)

Description Returns the leftmost NumChars characters from a given string.

Comments Left$ returns a String, whereas Left returns a String variant.

NumChars is an Integer value specifying the number of character to return.
If NumChars is 0, then a zero-length string is returned. If NumChars is greater
than or equal to the number of characters in the specified string, then the entire
string is returned.

Null is returned if text is Null.

Example 'This example shows the Left$ function used to change uppercase names
'to lowercase with an uppercase first letter.

Sub Main()
lname$ = "WILLIAMS"
fl$ = Left$(lname$,1)
rest$ = Mid$(lname$,2,Len(lname$))
lname$ = fl$ & LCase$(rest$)
MsgBox "The converted name is: " & lname$

End Sub

See Also Right, Right$ (functions).

Platform(s) Windows and Macintosh.

Len (function)
Syntax Len(expression)

Description Returns the number of characters in expression or the number of bytes required
to store the specified variable.

Comments If expression evaluates to a string, then Len returns the number of characters in
a given string or 0 if the string is empty. When used with a Variant variable,
the length of the variant when converted to a String is returned. If expression
is a Null, then Len returns a Null variant.

If used with a non-String or non-Variant variable, the function returns the
number of bytes occupied by that data element.

304 Working Model Basic User's Manual

When used with user-defined data types, the function returns the combined size
of each member within the structure. Since variable-length strings are stored
elsewhere, the size of each variable-length string within a structure is 2 bytes.

The following table describes the sizes of the individual data elements:

Data Element Size

Integer 2 bytes.

Long 4 bytes.

Float 4 bytes.

Double 8 bytes.

Currency 8 bytes.

String (variable-length)Number of characters in the string.

String (fixed-length) The length of the string as it appears in the string's
declaration.

Objects 0 bytes. Both data object variables and variables of
type Object are always returned as 0 size.

User-defined type Combined size of each structure member.

Variable-length strings within structures require 2
bytes of storage.

Arrays within structures are fixed in their dimensions.
The elements for fixed arrays are stored within the
structure and therefore require the number of bytes for
each array element multiplied by the size of each array
dimension:

 element_size * dimension1 * dimension2...

The Len function always returns 0 with object variables or any data object
variable.

Chapter 2 Let (statement) 305

Examples Const crlf = Chr$(13) + Chr$(10)

Sub Main()
'This example shows the Len function used in a routine to change
'uppercase names to lowercase with an uppercase first letter.

lname$ = "WILLIAMS"
fl$ = Left$(lname$,1)
ln% = Len(lname$)
rest$ = Mid$(lname$,2,ln%)
lname$ = fl$ & LCase$(rest$)
MsgBox "The converted name is: " & lname$

'This example returns a table of lengths for standard numeric
types.

Dim lns(4)
a% = 100 : b& = 200 : c! = 200.22 : d# = 300.22
lns(1) = Len(a%)
lns(2) = Len(b&)
lns(3) = Len(c!)
lns(4) = Len(d#)
msg = "Lengths of standard types:" & crlf
msg = msg & "Integer: " & lns(1) & crlf
msg = msg & "Long: " & lns(2) & crlf
msg = msg & "Single: " & lns(3) & crlf
msg = msg & "Double: " & lns(4) & crlf
MsgBox msg

End Sub

See Also InStr (function).

Platform(s) Windows and Macintosh.

Let (statement)
Syntax [Let] variable = expression

Description Assigns the result of an expression to a variable.

306 Working Model Basic User's Manual

Comments The use of the word Let is supported for compatibility with other
implementations of WM Basic. Normally, this word is dropped.

When assigning expressions to variables, internal type conversions are
performed automatically between any two numeric quantities. Thus, you can
freely assign numeric quantities without regard to type conversions. However,
it is possible for an overflow error to occur when converting from larger to
smaller types. This happens when the larger type contains a numeric quantity
that cannot be represented by the smaller type. For example, the following code
will produce a runtime error:

Dim amount As Long
Dim quantity As Integer

amount = 400123 'Assign a value out of range for int.
quantity = amount 'Attempt to assign to Integer.

When performing an automatic data conversion, underflow is not an error.

Example Sub Main()
Let a$ = "This is a string."
Let b% = 100
Let c# = 1213.3443

End Sub

See Also = (keyword); Expression Evaluation (topic).

Platform(s) Windows and Macintosh.

Like (operator)
Syntax expression Like pattern

Description Compares two strings and returns True if the expression matches the given
pattern; returns False otherwise.

Comments Case sensitivity is controlled by the Option Compare setting.

The pattern expression can contain special characters that allow more flexible
matching:

Character Evaluates To

? Matches a single character.

* Matches one or more characters.

Matches any digit.

[range] Matches if the character in question is within the specified range.

[!range] Matches if the character in question is not within the specified range.

Chapter 2 Line Input# (statement) 307

A range specifies a grouping of characters. To specify a match of any of a
group of characters, use the syntax [ABCDE]. To specify a range of characters,
use the syntax [A-Z]. Special characters must appear within brackets, such as
[]*?#.

If expression or pattern is not a string, then both expression and pattern are
converted to String variants and compared, returning a Boolean variant. If
either variant is Null, then Null is returned.

The following table shows some examples:

expression True If pattern Is False If pattern Is

"EBW" "E*W", "E*" "E*B"

"Version" "V[e]?s*n" "V[r]?s*N"

"2.0" "#.#", "#?#" "###", "#?[!0-9]"

"[ABC]" "[[]*]" "[ABC]", "[*]"

Example 'This example demonstrates various uses of the Like function.

Sub Main()
a$ = "This is a string variable of 123456 characters"
b$ = "123.45"
If a$ Like "[A-Z][g-i]*" Then MsgBox "The first comparison is

True."
If b$ Like "##3.##" Then MsgBox "The second comparison is True."
If a$ Like "*variable*" Then MsgBox "The third comparison is True."

End Sub

See Also Operator Precedence (topic); Is (operator); Option Compare (statement).

Platform(s) Windows and Macintosh.

Line Input# (statement)
Syntax Line Input [#]filenumber,variable

Description Reads an entire line into the given variable.

308 Working Model Basic User's Manual

Comments The filenumber parameter is a number that is used by WM Basic to refer to the
open filethe number passed to the Open statement. The filenumber must
reference a file opened in Input mode.

The file is read up to the next end-of-line, but the end-of-line character(s) is
(are) not returned in the string. The file pointer is positioned after the
terminating end-of-line.

The variable parameter is any string or variant variable reference. This
statement will automatically declare the variable if the specified variable has
not yet been used or dimensioned.

This statement recognizes either a single line feed or a carriage-return/line-feed
pair as the end-of-line delimiter.

Example 'This example reads five lines of the autoexec.bat file and displays
'them in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Open "c:\autoexec.bat" For Input As #1
For x = 1 To 5

Line Input #1,lin$
msg = msg & lin$ & crlf

Next x
MsgBox "The first 5 lines of your autoexec.bat are:" & crlf & Msg

End Sub

See Also Open (statement); Get (statement); Input# (statement); Input, Input$
(functions).

Platform(s) Windows and Macintosh.

Line Numbers (topic)
Line numbers are not supported by WM Basic.

As an alternative to line numbers, you can use meaningful labels as targets for
absolute jumps, as shown below:

Sub Main()
Dim i As Integer
On Error Goto MyErrorTrap

i = 0
LoopTop:

i = i + 1
If i < 10 Then Goto LoopTop

MyErrorTrap:
MsgBox "An error occurred."

End Sub

Chapter 2 Line$ (function) 309

Line$ (function)
Syntax Line$(text$,first[,last])

Description Returns a String containing a single line or a group of lines between first and
last.

Comments Lines are delimited by carriage return, line feed, or carriage-return/line-feed
pairs.

The Line$ function takes the following parameters:

Parameter Description

text$ String containing the text from which the lines will be extracted.

first Integer representing the index of the first line to return. If last is omitted, then
this line will be returned. If first is greater than the number of lines in text$,
then a zero-length string is returned.

last Integer representing the index of the last line to return.

Example 'This example reads five lines of the autoexec.bat file, extracts the
'third and fourth lines with the Line$ function, and displays them in a
'dialog box.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()

Open "c:\autoexec.bat" For Input As #1
For x = 1 To 5

Line Input #1,lin$
txt = txt & lin$ & crlf

Next x
lines$ = Line$(txt,3,4)
MsgBox lines$

End Sub

See Also Item$ (function); ItemCount (function); LineCount (function); Word$
(function); WordCount (function).

Platform(s) Windows and Macintosh.

LineCount (function)
Syntax LineCount(text$)

Description Returns an Integer representing the number of lines in text$.

Comments Lines are delimited by carriage return, line feed, or both.

310 Working Model Basic User's Manual

Example 'This example reads the first ten lines of your autoexec.bat file,
'uses the LineCount function to determine the number of lines,
'and then displays them in a message box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
x = 1
Open "c:\autoexec.bat" For Input As #1
While (x < 10) And Not EOF(1)

Line Input #1,lin$
txt = txt & lin$ & crlf
x = x + 1

Wend
lines! = LineCount(txt)
MsgBox "The number of lines in txt is: " & lines! & crlf & crlf &

txt
End Sub

See Also Item$ (function); ItemCount (function); Line$ (function); Word$ (function);
WordCount (function).

Platform(s) Windows and Macintosh.

ListBox (statement)
Syntax ListBox X,Y,width,height,ArrayVariable,.Identifier

Description Creates a list box within a dialog box template.

Chapter 2 ListBox (statement) 311

Comments When the dialog box is invoked, the list box will be filled with the elements
contained in ArrayVariable.

This statement can only appear within a dialog box template (i.e., between the
Begin Dialog and End Dialog statements).

The ListBox statement requires the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

ArrayVariable Specifies a single-dimensioned array of strings used to initialize the elements of
the list box. If this array has no dimensions, then the list box will be initialized
with no elements. A runtime error results if the specified array contains more
than one dimension.

ArrayVariable can specify an array of any fundamental data type (structures are
not allowed). Null and Empty values are treated as zero-length strings.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates an
integer variable whose value corresponds to the index of the list box's selection
(0 is the first item, 1 is the second, and so on). This variable can be accessed
using the following syntax:

DialogVariable.Identifier

Example 'This example creates a dialog box with two list boxes, one
'containing files and the other containing directories.

Sub Main()
Dim files() As String
Dim dirs() As String
Begin Dialog ListBoxTemplate 16,32,184,96,"Sample"

Text 8,4,24,8,"&Files:"
ListBox 8,16,60,72,files$,.Files
Text 76,4,21,8,"&Dirs:"
ListBox 76,16,56,72,dirs$,.Dirs
OKButton 140,4,40,14
CancelButton 140,24,40,14

End Dialog
FileList files
FileDirs dirs

Dim ListBoxDialog As ListBoxTemplate
rc% = Dialog(ListBoxDialog)

End Sub

312 Working Model Basic User's Manual

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement);
Dialog (function); Dialog (statement); DropListBox (statement); GroupBox
(statement); OKButton (statement); OptionButton (statement); OptionGroup
(statement); Picture (statement); PushButton (statement); Text (statement);
TextBox (statement); Begin Dialog (statement), PictureButton (statement).

Platform(s) Windows and Macintosh.

ListBoxEnabled (function)
Syntax ListBoxEnabled(name$ | id)

Description Returns True if the given list box is enabled within the active window or
dialog box; returns False otherwise.

Comments This function is used to determine whether a list box is enabled within the
current window or dialog box. If there is no active window, False will be
returned.

The ListBoxEnabled function takes the following parameters:

Parameter Description

name$ String containing the name of the list box.

The name of a list box is determined by scanning the window list looking for a
text control with the given name that is immediately followed by a list box. A
runtime error is generated if a list box with that name cannot be found within
the active window.

id Integer specifying the ID of the list box.

Note: The ListBoxEnabled function is used to determine whether a list box is
enabled in another application's dialog box. Use the DlgEnable function in
dynamic dialog boxes.

Example 'This example checks to see whether the list box is enabled before
'setting the focus to it.

Sub Main()
If ListBoxEnabled("Files:") Then ActivateControl "Files:"

End Sub

See Also GetListBoxItem$ (function); GetListBoxItemCount (function);
ListBoxExists (function); SelectListBoxItem (statement).

Platform(s) Windows.

ListBoxExists (function)
Syntax ListBoxExists(name$ | id)

Chapter 2 ListBoxExists (function) 313

Description Returns True if the given list box exists within the active window or dialog
box; returns False otherwise.

Comments This function is used to determine whether a list box exists within the current
window or dialog box. If there is no active window, False will be returned.

The ListBoxExists function takes the following parameters:

Parameter Description

name$ String containing the name of the list box.

The name of a list box is determined by scanning the window list looking for a
text control with the given name that is immediately followed by a list box. A
runtime error is generated if a list box with that name cannot be found within
the active window.

id Integer specifying the ID of the list box.

Note: The ListBoxExists function is used to determine whether a list box
exists in another application's dialog box. There is no equivalent function for
use with dynamic dialog boxes.

Example 'This example checks to see whether the list box exists and is enabled
'before setting the focus to it.

Sub Main()
If ListBoxExists("Files:") Then

If ListBoxEnabled("Files:") Then
ActivateControl "Files:"

End If
End If

End Sub

See Also GetListBoxItem$ (function); GetListBoxItemCount (function);
ListBoxEnabled (function); SelectListBoxItem (statement).

Platform(s) Windows.

314 Working Model Basic User's Manual

Literals (topic)
Literals are values of a specific type. The following table shows the different
types of literals supported by WM Basic:

Literal Description

10 Integer whose value is 10.

43265 Long whose value is 43,265.

5# Double whose value is 5.0. A number's type can be explicitly set using any of
the following type-declaration characters:

% Integer

& Long

Double

! Single

5.5 Double whose value is 5.5. Any number with decimal point is considered a
double.

5.4E100 Double expressed in scientific notation.

&HFF Integer expressed in hexadecimal.

&O47 Integer expressed in octal.

&HFF# Double expressed in hexadecimal.

"hello" String of five characters: hello.

"""hello""" String of seven characters: "hello". Quotation marks can be embedded
within strings by using two consecutive quotation marks.

#1/1/1994# Date value whose internal representation is 34335.0. Any valid date can appear
with #'s. Date literals are interpreted at execution time using the locale settings
of the host environment. To ensure that date literals are correctly interpreted for
all locales, use the international date format:

#YYYY-MM-DD HH:MM:SS#

Chapter 2 Loc (function) 315

Constant Folding

WM Basic supports constant folding where constant expressions are calculated
by the compiler at compile time. For example, the expression

i% = 10 + 12

is the same as:

i% = 22

Similarly, with strings, the expression

s$ = "Hello," + " there" + Chr(46)

is the same as:

s$ = "Hello, there."

Loc (function)
Syntax Loc(filenumber)

Description Returns a Long representing the position of the file pointer in the given file.

Comments The filenumber parameter is an Integer used by WM Basic to refer to the
number passed by the Open statement to WM Basic.

The Loc function returns different values depending on the mode in which the
file was opened:

File Mode Returns

Input Current byte position divided by 128
Output Current byte position divided by 128
Append Current byte position divided by 128
Binary Position of the last byte read or written
Random Number of the last record read or written

Example 'This example reads 5 lines of the autoexec.bat file, determines the
'current location of the file pointer, and displays it in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Open "c:\autoexec.bat" For Input As #1
For x = 1 To 5

If Not EOF(1) Then Line Input #1,lin$
Next x
lc% = Loc(1)
Close
MsgBox "The file location is: " & lc%

End Sub

316 Working Model Basic User's Manual

See Also Seek (function); Seek (statement); FileLen (function).

Platform(s) Windows and Macintosh.

Lock (statement)
Syntax Lock [#] filenumber [,{record | [start] To end}]

Description Locks a section of the specified file, preventing other processes from accessing
that section of the file until the Unlock statement is issued.

Comments The Lock statement requires the following parameters:

Parameter Description

filenumber Integer used by WM Basic to refer to the open file—the number passed to the
Open statement.

record Long specifying which record to lock.

start Long specifying the first record within a range to be locked.

end Long specifying the last record within a range to be locked.

For sequential files, the record, start, and end parameters are ignored. The
entire file is locked.

The section of the file is specified using one of the following:

Syntax Description

No parameters Locks the entire file (no record specification is given).

record Locks the specified record number (for Random files) or byte (for Binary files).

to end Locks from the beginning of the file to the specified record (for Random files) or
byte (for Binary files).

start to end Locks the specified range of records (for Random files) or bytes (for Binary
files).

The lock range must be the same as that used to subsequently unlock the file
range, and all locked ranges must be unlocked before the file is closed. Ranges
within files are not unlocked automatically by WM Basic when your script
terminates, which can cause file access problems for other processes. It is a
good idea to group the Lock and Unlock statements close together in the
code, both for readability and so subsequent readers can see that the lock and
unlock are performed on the same range. This practice also reduces errors in
file locks.

Chapter 2 Lof (function) 317

Example 'This example creates test.dat and fills it with ten string variable
'records. These are displayed in a dialog box. The file is then
reopened
'for read/write, and each record is locked, modified, rewritten, and
'unlocked. The new records are then displayed in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = "This is record number: "
b$ = "0"
rec$ = ""

msg = ""
Open "test.dat" For Random Access Write Shared As #1
For x = 1 To 10

rec$ = a$ & x
Lock #1,x
Put #1,,rec$
Unlock #1,x
msg = msg & rec$ & crlf

Next x
Close
MsgBox "The records are:" & crlf & msg

msg = ""
Open "test.dat" For Random Access Read Write Shared As #1
For x = 1 To 10

rec$ = Mid$(rec$,1,23) & (11 - x)
Lock #1,x
Put #1,x,rec$
Unlock #1,x
msg = msg & rec$ & crlf

Next x
MsgBox "The records are: " & crlf & msg
Close

Kill "test.dat"
End Sub

See Also Unlock (statement); Open (statement).

Platform(s) Windows and Macintosh.

Lof (function)
Syntax Lof(filenumber)

Description Returns a Long representing the number of bytes in the given file.

Comments The filenumber parameter is an Integer used by WM Basic to refer to the

open filethe number passed to the Open statement.

The file must currently be open.

318 Working Model Basic User's Manual

Example 'This example creates a test file, writes ten records into it,
'then finds the length of the file and displays it in a message box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = "This is record number: "

Open "test.dat" For Random Access Write Shared As #1
For x = 1 To 10

rec$ = a$ & x
put #1,,rec$
msg = msg & rec$ & crlf

Next x
Close

Open "test.dat" For Random Access Read Write Shared As #1
r% = Lof(1)
Close
MsgBox "The length of test.dat is: " & r%

End Sub

See Also Loc (function); Open (statement); FileLen (function).

Platform(s) Windows and Macintosh.

Log (function)
Syntax Log(number)

Description Returns a Double representing the natural logarithm of a given number.

Comments The value of number must be a Double greater than 0.

The value of e is 2.71828.

Example 'This example calculates the natural log of 100 and displays it in
'a message box.

Sub Main()
x# = Log(100)
MsgBox "The natural logarithm of 100 is: " & x#

End Sub

See Also Exp (function).

Platform(s) Windows and Macintosh.

Long (data type)
Syntax Long

Chapter 2 LSet (statement) 319

Description Long variables are used to hold numbers (with up to ten digits of precision)
within the following range:

–2,147,483,648 <= Long <= 2,147,483,647

Internally, longs are 4-byte values. Thus, when appearing within a structure,
longs require 4 bytes of storage. When used with binary or random files, 4
bytes of storage are required.

The type-declaration character for Long is &.

See Also Currency (data type); Date (data type); Double (data type); Integer (data
type); Object (data type); Single (data type); String (data type); Variant
(data type); Boolean (data type); DefType (statement); CLng (function).

Platform(s) Windows and Macintosh.

LSet (statement)
Syntax 1 LSet dest = source

Syntax 2 LSet dest_variable = source_variable

Description Left-aligns the source string in the destination string or copies one user-defined
type to another.

Comments Syntax 1

The LSet statement copies the source string source into the destination string
dest. The dest parameter must be the name of either a String or Variant
variable. The source parameter is any expression convertible to a string.

If source is shorter in length than dest, then the string is left-aligned within dest,
and the remaining characters are padded with spaces. If source$ is longer in
length than dest, then source is truncated, copying only the leftmost number of
characters that will fit in dest.

The destvariable parameter specifies a String or Variant variable. If
destvariable is a Variant containing Empty, then no characters are copied. If
destvariable is not convertible to a String, then a runtime error occurs. A
runtime error results if destvariable is Null.

Syntax 2

The source structure is copied byte for byte into the destination structure. This
is useful for copying structures of different types. Only the number of bytes of
the smaller of the two structures is copied. Neither the source structure nor the
destination structure can contain strings.

320 Working Model Basic User's Manual

Example 'This example replaces a 40-character string of asterisks (*) with
'an RSet and LSet string and then displays the result.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim msg, tmpstr$
tmpstr$ = String$(40, "*")
msg = "Here are two strings that have been right-" + crlf
msg = msg & "and left-justified in a 40-character string."
msg = msg & crlf & crlf
RSet tmpstr$ = "Right->"
msg = msg & tmpstr$ & crlf
LSet tmpstr$ = "<-Left"
msg = msg & tmpstr$ & crlf
MsgBox msg

End Sub

See Also RSet (function).

Platform(s) Windows and Macintosh.

LTrim, LTrim$ (functions)
Syntax LTrim[$](text)

Description Returns text with the leading spaces removed.

Comments LTrim$ returns a String, whereas LTrim returns a String variant.

Null is returned if text is Null.

Example 'This example displays a right-justified string and its LTrim result.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = " <= This is a right-justified string"
b$ = LTrim$(a$)
MsgBox a$ & crlf & b$

End Sub

See Also RTrim, RTrim$ (functions); Trim, Trim$ (functions).

Platform(s) Windows and Macintosh.

MacID (function)
Syntax MacID(text$)

Description Returns a value representing a collection of same-type files on the Macintosh.

Chapter 2 MacScript (statement) 321

Comments Since this platform does not support wildcards (i.e., * or ?), this function is the
only way to specify a group of files. This function can only be used with the
following statements:

Kill Dir$ Shell AppActivate

The text$ parameter is a four-character string containing a file type, a resource
type, an application signature, or an Apple event. A runtime error occurs if the
MacID function is used on platforms other than the Macintosh.

Example 'This example retrieves the names of all the text files.

Sub Main()
s$ = Dir$(MacID("TEXT")) 'Get the first text file.
While s$ <> ""

MsgBox s$ 'Display it.
s$ = Dir$ 'Get the next text file in the list.

Wend

'Delete all the text files.
Kill MacID("TEXT")

End Sub

See Also Kill (statement); Dir, Dir$ (functions); Shell (statement); AppActivate
(statement).

Platform(s) Macintosh.

MacScript (statement)
Syntax MacScript script$

Description Executes the specified AppleScript script.

Comments When using the MacScript statement, you can separate multiple lines by
embedding carriage returns:

MacScript "Beep" + Chr(13) + "Display Dialog ""Hello"""

If embedding carriage returns proves cumbersome, you can use the Inline
statement. The following Inline statement is equivalent to the above example:

Inline MacScript
Beep
Display Dialog "Hello"

End Inline

Example Sub Main()
MacScript "display dialog ""AppleScript"""

End Sub

See Also Inline (statement).

Platform(s) Macintosh.

322 Working Model Basic User's Manual

Platform
Notes:

Macintosh

Requires Macintosh System 7.0 or later.

Main (statement)
Syntax Sub Main()

End Sub

Description Defines the subroutine where execution begins.

Example Sub Main()
MsgBox "This is the Main() subroutine and entry point."

End Sub

Platform(s) Windows and Macintosh.

Mci (function)
Syntax Mci(command$,result$ [,error$])

Description Executes an Mci command, returning an Integer indicating whether the
command was successful.

Comments The Mci function takes the following parameters:

Parameter Description

command$ String containing the command to be executed.

result$ String variable into which the result is placed. If the command doesn't return
anything, then a zero-length string is returned.

To ignore the returned string, pass a zero-length string:
r% = Mci("open chimes.wav type waveaudio","")

error$ Optional String variable into which an error string will be placed. A zero-
length string will be returned if the function is successful.

Chapter 2 Mci (function) 323

Example 'This first example plays a wave file. The wave file is played to
'completion before execution can continue.

Sub Main()
Dim result As String
Dim ErrorMessage As String
Dim Filename As String
Dim rc As Integer

'Establish name of file in the Windows directory.
Filename = FileParse$(System.WindowsDirectory$ + "\" +

"chimes.wav")

'Open the file and driver.
rc = Mci("open " & Filename & " type waveaudio alias

CoolSound","",ErrorMessage)
If (rc) Then

'Error occurred--display error message to user.
MsgBox ErrorMessage
Exit Sub

End If

rc = Mci("play CoolSound wait","","") 'Wait for sound to
finish.

rc = Mci("close CoolSound","","") 'Close driver and file.
End Sub

324 Working Model Basic User's Manual

Example 'This next example shows how to query an Mci device and play an MIDI
file in
'the background.

Sub Main()
Dim result As String
Dim ErrMsg As String
Dim Filename As String
Dim rc As Integer

'Check to see whether MIDI device can play for us.
rc = Mci("capability sequencer can play",result,ErrorMessage)

'Check for error.
If rc Then

MsgBox ErrorMessage
Exit Sub

End If

'Can it play?
If result <> "true" Then

MsgBox "MIDI device is not capable of playing."
Exit Sub

End If

'Assemble a filename from the Windows directory.
Filename = FileParse$(System.WindowsDirectory$ & "\" &

"canyon.mid")

'Open the driver and file.
rc = Mci("open " & Filename & " type sequencer alias

song",result$,ErrMsg)
If rc Then

MsgBox ErrMsg
Exit Sub

End If

rc = Mci("play song","","") 'Play in the background.
MsgBox "Press OK to stop the music.",ebOKOnly
rc = Mci("close song","","")

End Sub

See Also Beep (statement).

Platform(s) Windows.

Platform
Notes:

Windows

The Mci function accepts any Mci command as defined in the Multimedia
Programmers Reference in the Windows 3.1 SDK.

Menu (statement)
Syntax Menu MenuItem$

Description Issues the specified menu command from the active window of the active
application.

Chapter 2 MenuItemChecked (function) 325

Comments The MenuItem$ parameter specifies the complete menu item name, with each
menu level being separated by a period. For example, the "Open" command on
the "File" menu is represented by "File.Open". Cascading menu items
may have multiple periods, one for each pop-up menu, such as
"File.Layout.Vertical". Menu items can also be specified using
numeric index values. For example, to select the third menu item from the File
menu, use "File.#3". To select the fourth item from the third menu, use
"#3.#4".

Items from an application's system menu can be selected by beginning the
menu item specification with a period, such as ".Restore" or
".Minimize".

A runtime error will result if the menu item specification does not specify a
menu item. For example, "File" specifies a menu pop-up rather than a menu
item, and "File.Blah Blah" is not a valid menu item.

When comparing menu item names, this statement removes periods (.), spaces,
and the ampersand. Furthermore, all characters after a backspace or tab are
removed. Thus, the menu item "&Open...\aCtrl+F12" translates simply to
"Open".

A runtime error is generated if the menu item cannot be found or is not enabled
at the time that this statement is encountered.

Examples Sub Main()
Menu "File.Open"
Menu "Format.Character.Bold"
Menu ".Restore" 'Command from system menu
Menu "File.#2"

End Sub

See Also MenuItemChecked (function); MenuItemEnabled (function); MenuItemExists
(function).

Platform(s) Windows.

MenuItemChecked (function)
Syntax MenuItemChecked(MenuItemName$)

Description Returns True if the given menu item exists and is checked; returns False
otherwise.

Comments The MenuItemName$ parameter specifies a complete menu item or menu item
pop-up following the same format as that used by the Menu statement.

326 Working Model Basic User's Manual

Example 'This example turns the ruler off if it is on.

Sub Main()
If MenuItemChecked("View.Ruler") Then Menu "View.Ruler"

End Sub

See Also Menu (statement); MenuItemEnabled (function); MenuItemExists (function).

Platform(s) Windows.

MenuItemEnabled (function)
Syntax MenuItemEnabled(MenuItemName$)

Description Returns True if the given menu item exists and is enabled; returns False
otherwise.

Comments The MenuItemName$ parameter specifies a complete menu item or menu item
pop-up following the same format as that used by the Menu statement.

Example 'This example only pastes if there is something in the Clipboard.

Sub Main()
If MenuItemEnabled("Edit.Paste") Then

Menu "Edit.Paste"
Else

MsgBox "There is nothing in the Clipboard.",ebOKOnly
End If

End Sub

See Also Menu (statement); MenuItemChecked (function); MenuItemExists (function).

Platform(s) Windows.

MenuItemExists (function)
Syntax MenuItemExists(MenuItemName$)

Description Returns True if the given menu item exists; returns False otherwise.

Comments The MenuItemName$ parameter specifies a complete menu item or menu item
pop-up following the same format as that used by the Menu statement.

Examples Sub Main()
If MenuItemExists("File.Open") Then Beep
If MenuItemExists("File") Then MsgBox "There is a File menu."

End Sub

See Also Menu (statement); MenuItemChecked (function); MenuItemEnabled (function).

Platform(s) Windows.

Chapter 2 Mid, Mid$ (functions) 327

Mid, Mid$ (functions)
Syntax Mid[$](text,start [,length])

Description Returns a substring of the specified string, beginning with start, for length
characters.

Comments The returned substring starts at character position start and will be length
characters long.

Mid$ returns a String, whereas Mid returns a String variant.

The Mid/Mid$ functions take the following parameters:

Parameter Description

text Any String expression containing the text from which characters are returned.

start Integer specifying the character position where the substring begins. If start is
greater than the length of text$, then a zero-length string is returned.

length Integer specifying the number of characters to return. If this parameter is
omitted, then the entire string is returned, starting at start.

The Mid function will return Null text is Null.

Example 'This example displays a substring from the middle of a string variable
'using the Mid$ function and replaces the first four characters with
'"NEW " using the Mid$ statement.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = "This is the Main string containing text."
b$ = Mid$(a$,13,Len(a$))
Mid$ (b$,1) = "NEW "
MsgBox a$ & crlf & b$

End Sub

See Also InStr (function); Option Compare (statement); Mid, Mid$ (statements).

Platform(s) Windows and Macintosh.

Mid, Mid$ (statements)
Syntax Mid[$](variable,start[,length]) = newvalue

Description Replaces one part of a string with another.

328 Working Model Basic User's Manual

Comments The Mid/Mid$ statements take the following parameters:

Parameter Description

variable String or Variant variable to be changed.

start Integer specifying the character position within variable where replacement
begins. If start is greater than the length of variable, then variable remains
unchanged.

length Integer specifying the number of characters to change. If this parameter is
omitted, then the entire string is changed, starting at start.

newvalue Expression used as the replacement. This expression must be convertible to a
String.

The resultant string is never longer than the original length of variable.

With Mid, variable must be a Variant variable convertible to a String,
and newvalue is any expression convertible to a string. A runtime error is
generated if either variant is Null.

Example 'This example displays a substring from the middle of a string
'variable using the Mid$ function, replacing the first four characters
'with "NEW " using the Mid$ statement.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = "This is the Main string containing text."
b$ = Mid$(a$,13,Len(a$))
Mid$(b$,1) = "NEW "
MsgBox a$ & crlf & b$

End Sub

See Also Mid, Mid$ (functions); Option Compare (statement).

Platform(s) Windows and Macintosh.

Minute (function)
Syntax Minute(time)

Description Returns the minute of the day encoded in the specified time parameter.

Comments The value returned is as an Integer between 0 and 59 inclusive.

The time parameter is any expression that converts to a Date.

Chapter 2 MIRR (function) 329

Example 'This example takes the current time; extracts the hour, minute,
'and second; and displays them as the current time.

Sub Main()
xt# = TimeValue(Time$())
xh# = Hour(xt#)
xm# = Minute(xt#)
xs# = Second(xt#)
MsgBox "The current time is: " & xh# & ":" & xm# & ":" & xs#

End Sub

See Also Day (function); Second (function); Month (function); Year (function); Hour
(function); Weekday (function); DatePart (function).

Platform(s) Windows and Macintosh.

MIRR (function)
Syntax MIRR(ValueArray(),FinanceRate,ReinvestRate)

Description Returns a Double representing the modified internal rate of return for a series
of periodic payments and receipts.

Comments The modified internal rate of return is the equivalent rate of return on an
investment in which payments and receipts are financed at different rates. The
interest cost of investment and the rate of interest received on the returns on
investment are both factors in the calculations.

The MIRR function requires the following parameters:

Parameter Description

ValueArray() Array of Double numbers representing the payments and receipts. Positive
values are payments (invested capital), and negative values are receipts (returns
on investment).

There must be at least one positive (investment) value and one negative (return)
value.

FinanceRate Double representing the interest rate paid on invested monies (paid out).

ReinvestRate Double representing the rate of interest received on incomes from the
investment (receipts).

FinanceRate and ReinvestRate should be expressed as percentages. For
example, 11 percent should be expressed as 0.11.

To return the correct value, be sure to order your payments and receipts in the
correct sequence.

330 Working Model Basic User's Manual

Example 'This example illustrates the purchase of a lemonade stand for $800
'financed with money borrowed at 10%. The returns are estimated to
'accelerate as the stand gains popularity. The proceeds are placed
'in a bank at 9 percent interest. The incomes are estimated (generated)
'over 12 months. This program first generates the income stream array
'in two For...Next loops, and then the modified internal rate of return
is
'calculated and displayed. Notice that the annual rates are normalized
'to monthly rates by dividing them by 12.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim valu#(12)
valu(1) = -800 'Initial investment
msg = valu(1) & ", "
For x = 2 To 5

valu(x) = 100 + (x * 2) 'Incomes months 2-5
msg = msg & valu(x) & ", "

Next x
For x = 6 To 12

valu(x) = 100 + (x * 10) 'Incomes months 6-12
msg = msg & valu(x) & ", "

Next x
retrn# = MIRR(valu,.1/12,.09/12) 'Note: normalized annual

rates

msg = "The values: " & crlf & msg & crlf & crlf
MsgBox msg & "Modified rate: " & Format(retrn#,"Percent")

End Sub

See Also Fv (function); IRR (function); Npv (function); Pv (function).

Platform(s) Windows and Macintosh.

MkDir (statement)
Syntax MkDir dir$

Description Creates a new directory as specified by dir$.

Example 'This example creates a new directory on the default drive. If
'this causes an error, then the error is displayed and the program
'terminates. If no error is generated, the directory is removed with
'the RmDir statement.

Sub Main()
On Error Resume Next
MkDir "TestDir"
If Err <> 0 Then

MsgBox "The following error occurred: " & Error(Err)
Else

MsgBox "Directory was created and is about to be removed."
RmDir "TestDir"

End If
End Sub

Chapter 2 Mod (operator) 331

See Also ChDir (statement); ChDrive (statement); CurDir, CurDir$ (functions); Dir,
Dir$ (functions); RmDir (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

This command behaves the same as the DOS "mkdir" command.

Mod (operator)
Syntax expression1 Mod expression2

Description Returns the remainder of expression1 / expression2 as a whole number.

Comments If both expressions are integers, then the result is an integer. Otherwise, each
expression is converted to a Long before performing the operation, returning a
Long.

A runtime error occurs if the result overflows the range of a Long.

If either expression is Null, then Null is returned. Empty is treated as 0.

Example 'This example uses the Mod operator to determine the value of a
randomly
'selected card where card 1 is the ace (1) of clubs and card 52 is the
'king (13) of spades. Since the values recur in a sequence of 13 cards
'within 4 suits, we can use the Mod function to determine the value of
'any given card number.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
cval$ =

"ACE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE,TEN,JACK,QUEEN,KING"
Randomize
card% = Random(1,52)
value = card% Mod 13
If value = 0 Then value = 13
CardNum$ = Item$(cval,value)
If card% < 53 Then suit$ = "spades"
If card% < 40 Then suit$ = "hearts"
If card% < 27 Then suit$ = "diamonds"
If card% < 14 Then suit$ = "clubs"
msg = "Card number " & card% & " is the "
msg = msg & CardNum & " of " & suit$
MsgBox msg

End Sub

See Also / (operator); \ (operator).

Platform(s) Windows and Macintosh.

332 Working Model Basic User's Manual

Month (function)
Syntax Month(date)

Description Returns the month of the date encoded in the specified date parameter.

Comments The value returned is as an Integer between 1 and 12 inclusive.

The date parameter is any expression that converts to a Date.

Example 'This example returns the current month in a dialog box.

Sub Main()
mons$ = "Jan., Feb., Mar., Apr., May, Jun., Jul., Aug., Sep., Oct.,

Nov., Dec."
tdate$ = Date$
tmonth! = Month(DateValue(tdate$))
MsgBox "The current month is: " & Item$(mons$,tmonth!)

End Sub

See Also Day (function); Minute (function); Second (function); Year (function); Hour
(function); Weekday (function); DatePart (function).

Platform(s) Windows and Macintosh.

MsgBox (function)
Syntax MsgBox(msg [,[type] [, title]])

Description Displays a message in a dialog box with a set of predefined buttons, returning
an Integer representing which button was selected.

Comments The MsgBox function takes the following parameters:

Parameter Description

msg Message to be displayed—any expression convertible to a String.

End-of-lines can be used to separate lines (either a carriage return, line feed, or
both). If a given line is too long, it will be word-wrapped. If msg contains
character 0, then only the characters up to the character 0 will be displayed.

The width and height of the dialog box are sized to hold the entire contents of
msg.

A runtime error is generated if msg is Null.

type Integer specifying the type of dialog box (see below).

title Caption of the dialog box. This parameter is any expression convertible to a
String. If it is omitted, then BasicScript is used.

A runtime error is generated if title is Null.

Chapter 2 MsgBox (function) 333

The MsgBox function returns one of the following values:

Constant Value Description

ebOK 1 OK was clicked.

ebCancel 2 Cancel was clicked.

ebAbort 3 Abort was clicked.

ebRetry 4 Retry was clicked.

ebIgnore 5 Ignore was clicked.

ebYes 6 Yes was clicked.

ebNo 7 No was clicked.

334 Working Model Basic User's Manual

The type parameter is the sub of any of the following values:

Constant Value Description

ebOKOnly 0 Displays OK button only.

ebOKCancel 1 Displays OK and Cancel buttons.

ebAbortRetryIgnore 2 Displays
Abort, Retry, and Ignore buttons.

ebYesNoCancel 3 Displays Yes, No, and Cancel buttons.

ebYesNo 4 Displays Yes and No buttons.

ebRetryCancel 5 Displays Retry and Cancel buttons.

ebCritical 16 Displays "stop" icon.

ebQuestion 32 Displays "question mark" icon.

ebExclamation 48 Displays "exclamation point" icon.

ebInformation 64 Displays "information" icon.

ebDefaultButton1 0 First button is the default button.

ebDefaultButton2 256 Second button is the default button.

ebDefaultButton3 512 Third button is the default button.

ebApplicationModal 0
Applicati

on modal—the current application is
suspended until the dialog box is closed.

ebSystemModal 4096 System modal—all applications are
suspended until the dialog box is closed.

The default value for type is 0 (display only the OK button, making it the
default).

Chapter 2 MsgBox (function) 335

Breaking Text across Lines

The msg parameter can contain end-of-line characters, forcing the text that
follows to start on a new line. The following example shows how to display a
string on two lines:

MsgBox "This is on" + Chr(13) + Chr(10) + "two lines."

The carriage-return or line-feed characters can be used by themselves to
designate an end-of-line.

r = MsgBox("Hello, World")

r = MsgBox("Hello, World",ebYesNoCancel Or ebDefaultButton1)

r = MsgBox("Hello, World",ebYesNoCancel Or ebDefaultButton1 Or
ebCritical)

Example Sub Main
MsgBox "This is a simple message box."
MsgBox "This is a message box with a title and an

icon.",ebExclamation,"Simple"
MsgBox "This message box has OK and Cancel

buttons.",ebOkCancel,"MsgBox"
MsgBox "This message box has Abort, Retry, and Ignore buttons.", _

ebAbortRetryIgnore,"MsgBox"
MsgBox "This message box has Yes, No, and Cancel buttons.", _

ebYesNoCancel Or ebDefaultButton2,"MsgBox"
MsgBox "This message box has Yes and No buttons.",ebYesNo,"MsgBox"
MsgBox "This message box has Retry and Cancel

buttons.",ebRetryCancel,"MsgBox"
MsgBox "This message box is system modal!",ebSystemModal

End Sub

336 Working Model Basic User's Manual

See Also AskBox$ (function); AskPassword$ (function); InputBox, InputBox$
(functions); OpenFilename$ (function); SaveFilename$ (function); SelectBox
(function); AnswerBox (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

The appearance of the MsgBox dialog box and its icons differs slightly
depending on the platform.

Platform
Notes:

Windows

MsgBox displays all text in its dialog box in 8-point MS Sans Serif.

MsgBox (statement)
Syntax MsgBox msg [,[type] [, title]]

Description This command is the same as the MsgBox function, except that the statement
form does not return a value. See MsgBox (function).

Example Sub Main()
MsgBox "This is text displayed in a message box." 'Display text.
MsgBox "The result is: " & (10 * 45) 'Display a number.

End Sub

See Also AskBox$ (function); AskPassword$ (function); InputBox, InputBox$
(functions); OpenFilename$ (function); SaveFilename$ (function); SelectBox
(function); AnswerBox (function).

Platform(s) Windows and Macintosh.

MsgClose (statement)
Syntax MsgClose

Description Closes the modeless message dialog box.

Comments Nothing will happen if there is no open message dialog box.

Example Sub Main()
MsgOpen "Printing. Please wait...",0,True,True
Sleep 3000
MsgClose

End Sub

See Also MsgOpen (statement); MsgSetThermometer (statement); MsgSetText
(statement).

Platform(s) Windows.

Chapter 2 MsgOpen (statement) 337

MsgOpen (statement)
Syntax MsgOpen msg$,timeout,isCancel,isThermometer [,X,Y]

Description This statement displays a message in a dialog box with an optional Cancel
button and thermometer.

Comments The MsgOpen statement takes the following parameters:

Parameter Description

msg$ String containing the text to be displayed.

The text can be changed using the MsgSetText statement.

timeout Integer specifying the number of seconds before the dialog box is
automatically removed. The timeout parameter has no effect if its value is 0.

isCancel Boolean controlling whether or not a Cancel button appears within the dialog
box beneath the displayed message. If this parameter is True, then a Cancel
button appears. If it is not specified or False, then no Cancel button is created.

If a user chooses the Cancel button at runtime, a trappable runtime error is
generated (error number 809). In this manner, a message dialog box can be
displayed and processing can continue as normal, aborting only when the user
cancels the process by choosing the Cancel button.

isThermometer Boolean controlling whether the dialog box contains a thermometer. If this
parameter is True, then a thermometer is created between the text and the
optional Cancel button. The thermometer initially indicates 0% complete and
can be changed using the MsgSetThermometer statement.

X, Y Integer coordinates specifying the location of the upper left corner of the
message box, in twips (twentieths of a point). If these parameters are not
specified, then the window is centered on top of the application.

Unlike other dialog boxes, a message dialog box remains open until the user
selects Cancel, the timeout has expired, or the MsgClose statement is
executed (this is sometimes referred to as modeless).

Only a single message window can be opened at any one time. The message
window is removed automatically when a script terminates.

338 Working Model Basic User's Manual

MsgOpen "Printing. Please wait...",0,False,False

MsgOpen "Printing. Please wait...",0,True,False

MsgOpen "Printing. Please wait...",0,True,True
MsgSetThermometer 75

Example 'The following example displays several types of message boxes.

Sub Main()
MsgOpen "Printing. Please wait...",0,True,False
Sleep 3000
MsgClose
MsgOpen "Printing. Please wait...",0,True,True
For x = 1 to 100

MsgSetThermometer x
Next x
Sleep 1000
Msgclose

End Sub

See Also MsgClose (statement); MsgSetThermometer (statement); MsgSetText
(statement).

Platform(s) Windows.

MsgSetText (statement)
Syntax MsgSetText newtext$

Description Changes the text within an open message dialog box (one that was previously
opened with the MsgOpen statement).

Chapter 2 MsgSetThermometer (statement) 339

Comments The message dialog box is not resized to accommodate the new text.

A runtime error will result if a message dialog box is not currently open (using
MsgOpen).

Example 'This example creates a modeless message box, leaving room in the
message
'text for the record number. This box contains a Cancel button.

Sub Main()
MsgOpen "Reading Record",0,True,False
For i = 1 To 100

'Read a record here.
'Update the modeless message box.
Sleep 100
MsgSetText "Reading record " & i

Next i
MsgClose

End Sub

See Also MsgClose (statement); MsgOpen (statement); MsgSetThermometer (statement).

Platform(s) Windows.

MsgSetThermometer (statement)
Syntax MsgSetThermometer percentage

Description Changes the percentage filled indicated within the thermometer of a message
dialog box (one that was previously opened with the MsgOpen statement).

Comments A runtime error will result if a message box is not currently open (using
MsgOpen) or if the value of percentage is not between 0 and 100 inclusive.

340 Working Model Basic User's Manual

Example 'This example create a modeless message box with a thermometer and a
Cancel
'button. This example also shows how to process the clicking of the
Cancel
'button.

Sub Main()
On Error Goto ErrorTrap
MsgOpen "Reading records from file...",0,True,True
For i = 1 To 100

'Read a record here.
'Update the modeless message box.
MsgSetThermometer i
DoEvents
Sleep 50

Next i
MsgClose
On Error Goto 0 'Turn error trap off.
Exit Sub

ErrorTrap:
If Err = 809 Then

MsgBox "Cancel was pressed!"
Exit Sub 'Reset error handler.

End If
End Sub

See Also MsgClose (statement); MsgOpen (statement); MsgSetText (statement).

Platform(s) Windows.

Name (statement)
Syntax Name oldfile$ As newfile$

Description Renames a file.

Chapter 2 Net.AddCon (method) 341

Comments Each parameter must specify a single filename. Wildcard characters such as *
and ? are not allowed.

Some platforms allow naming of files to different directories on the same
physical disk volume. For example, the following rename will work under
Windows:

Name "c:\samples\mydoc.txt" As "c:\backup\doc\mydoc.bak"

You cannot rename files across physical disk volumes. For example, the
following will error under Windows:

Name "c:\samples\mydoc.txt" As "a:\mydoc.bak" 'This will error!

To rename a file to a different physical disk, you must first copy the file, then
erase the original:

FileCopy "c:\samples\mydoc.txt","a:\mydoc.bak" 'Make a copy
Kill "c:\samples\mydoc.txt" 'Delete the original

Example 'This example creates a file called test.dat and then renames
'it to test2.dat.

Sub Main()
On Error Resume Next
If FileExists("test.dat") Then

Name "test.dat" As "test2.dat"
If Err <> 0 Then

msg = "File exists and cannot be renamed! Error: " & Err
Else

msg = "File exists and renamed to test2.dat."
End If

Else
Open "test.dat" For Output As #1
Close
Name "test.dat" As "test2.dat"
If Err <> 0 Then

msg = "File created but not renamed! Error: " & Err
Else

msg = "File created and renamed to test2.dat."
End If

End If
MsgBox msg

End Sub

See Also Kill (statement), FileCopy (statement).

Platform(s) Windows and Macintosh.

Net.AddCon (method)
Syntax Net.AddCon netpath$,password$,localname$

Description Redirects a local device (a disk drive or printer queue) to the specified shared
device or remote server.

342 Working Model Basic User's Manual

Comments The Net.AddCon method takes the following parameters:

Parameter Description

netpath$ String containing the name of the shared device or the name of a remote
server. This parameter can contain the name of a shared printer queue (such as
that returned by Net.Browse[1]) or the name of a network path (such as that
returned by Net.Browse[0]).

password$ String containing the password for the given device or server. This parameter
is mainly used to specify the password on a remote server.

localname$ String containing the name of the local device being redirected, such as
"LPT1" or "D:".

A runtime error will result if no network is present.

Example 'This example sets N: so that it refers to the network path
SYS:\PUBLIC.

Sub Main()
Net.AddCon "SYS:\PUBLIC","","N:"

End Sub

See Also Net.CancelCon (method); Net.GetCon$ (method).

Platform(s) Windows.

Net.Browse$ (method)
Syntax Net.Browse$(type)

Description Calls the currently installed network's browse dialog box, requesting a
particular type of information.

Comments The type parameter is an Integer specifying the type of dialog box to
display:

Type Description

0 If type is 0, then this method displays a dialog box that allows the user to
browse network volumes and directories. Choosing OK returns the completed
pathname as a String.

1 If type is 1, then this function displays a dialog box that allows the user to
browse the network's printer queues. Choosing OK returns the complete name
of that printer queue as a String. This string is the same format as required by
the Net.AddCon method.

This dialog box differs depending on the type of network installed.

A runtime error will result if no network is present.

Chapter 2 Net.CancelCon (method) 343

Example 'This second example retrieves a valid network path.

Sub Main()
s$ = Net.Browse$(0)
If s$ <> "" Then

MsgBox "The following network path was selected: " & s$
Else

MsgBox "Dialog box was canceled."
End If

End Sub

See Also Net.Dialog (method).

Platform(s) Windows.

Net.CancelCon (method)
Syntax Net.CancelCon connection$ [,isForce]

Description Cancels a network connection.

Comments The Net.CancelCon method takes the following parameters:

Parameter Description

connection$ String containing the name of the device to cancel, such as "LPT1" or "D:".

isForce Boolean specifying whether to force the cancellation of the connection if there
are open files or open print jobs. If this parameter is True, then this method will
close all open files and open print jobs before the connection is closed. If this
parameter is False, this the method will issue a runtime error if there are any
open files or open print jobs.

A runtime error will result if no network is present.

Example 'This example deletes the drive mapping associated with drive N:.

Sub Main()
Net.CancelCon "N:"

End Sub

See Also Net.AddCon (method); Net.GetCon$ (method).

Platform(s) Windows.

Net.Dialog (method)
Syntax Net.Dialog

Description Displays the dialog box that allows configuration of the currently installed
network.

344 Working Model Basic User's Manual

Comments The displayed dialog box depends on the currently installed network. The
dialog box is modal—script execution will be paused until the dialog box is
completed.

A runtime error will result if no network is present.

Example 'This example invokes the network driver dialog box.

Sub Main()
Net.Dialog

End Sub

See Also Net.Browse$ (method).

Platform(s) Windows.

Net.GetCaps (method)
Syntax Net.GetCaps(type)

Description Returns an Integer specifying information about the network and its
capabilities.

Comments The type parameter specifies what type of information to retrieve:

Value of type Description

1 Returns the version of the driver specification to which the currently installed
network driver conforms. The high byte of the returned value contains the
major version number and the low byte contains the minor version number.
These values can be retrieved using the following code:

MajorVersionNumber = Net.GetCaps(1) \ 256
MinorVersionNumber = Net.GetCaps(1) And &H00FF

2 Returns the type of network. The network type is returned in the high byte and
the sub-network type is returned in the low byte. These values can be obtained
using the following code:

NetType = Net.GetCaps(2) \ 256
SubNetType = Net.GetCaps(2) And &H00FF

Chapter 2 Net.GetCaps (method) 345

Using the above values, NetType can be any of the following values:

0 No network is installed.
1 Microsoft Network.
2 Microsoft LAN Manager.
3 Novell NetWare.
4 Banyan Vines.
5 10Net.
6 Locus.
7 SunSoft PC NFS.
8 LanStep.
9 9 Titles.
10 Articom Lantastic.
11 IBM AS/400.
12 FTP Software FTP NFS.
13 DEC Pathworks.

If NetType is is 128, then SubNetType is any of the following values (you can
test for any of these values using the And operator):

0 None.
bit &H0001 Microsoft Network.
bit &H0002 Microsoft LAN Manager.
bit &H0004 Windows for Workgroups.
bit &H0008 Novell NetWare.
bit &H0010 Banyan Vines.
bit &H0080 Other unspecified network.

3 Returns the network driver version number.

4 Returns 1 if the Net.User$ property is supported, 0 otherwise.

6 Returns any of the following values indicating which connections are supported
(you can test for these values using the And operator):

bit &H0001 Driver supports Net.AddCon.
bit &H0002 Driver supports Net.CancelCon.
bit &H0004 Driver supports Net.GetCon.
bit &H0008 Driver supports auto connect.
bit &H0010 Driver supports Net.Browse$.

346 Working Model Basic User's Manual

7 Returns a value indicating which printer function are available (you can test for
these values using the And operator):

bit &H0002 Driver supports open print job.
bit &H0004 Driver supports close print job.
bit &H0010 Driver supports hold print job.
bit &H0020 Driver supports release print job.
bit &H0040 Driver supports cancel print job.
bit &H0080 Driver supports setting the number of print
copies.
bit &H0100 Driver supports watch print queue.
bit &H0200 Driver supports unwatch print queue.
bit &H0400 Driver supports locking queue data.
bit &H0800 Driver supports unlocking queue data.
bit &H1000 Driver supports queue change message.
bit &H2000 Driver supports abort print job.
bit &H4000 Driver supports no arbitrary lock.
bit &H8000 Driver supports write print job.

8 Returns a value indicating which dialog functions are available (you can test for
these values using the And operator):

bit &H0001 Driver supports device mode dialog.
bit &H0002 Driver supports the Browse dialog.
bit &H0004 Driver supports the Connect dialog.
bit &H0008 Driver supports the Disconnect dialog.
bit &H0010 Driver supports the View Queue dialog.
bit &H0020 Driver supports the Property dialog.
bit &H0040 Driver supports the Connection dialog.
bit &H0080 Driver supports the Printer Connect dialog.
bit &H0100 Driver supports the Shares dialog.
bit &H0200 Driver supports the Share As dialog.

A runtime error will result if no network is present.

Examples Sub Main()
'This example checks the type of network.
If Net.GetCaps(2) = 768 Then MsgBox "This is a Novell network."

'This checks whether the net supports retrieval of the user name.
If Net.GetCaps(4) And 1 Then MsgBox "User name is: " + Net.User$

'This checks whether this net supports the Browse dialog boxes.
If Net.GetCaps(6) And &H0010 Then MsgBox Net.Browse$(1)

End Sub

Platform(s) Windows.

Net.GetCon$ (method)
Syntax Net.GetCon$(localname$)

Chapter 2 Net.User$ (property) 347

Description Returns the name of the network resource associated with the specified
redirected local device.

Comments The localname$ parameter specifies the name of the local device, such as
"LPT1" or "D:".

The function returns a zero-length string if the specified local device is not
redirected.

A runtime error will result if no network is present.

Example 'This example finds out where drive Z is mapped.

Sub Main()
NetPath$ = Net.GetCon$("Z:")
MsgBox "Drive Z is mapped as " & NetPath$

End Sub

See Also Net.CancelCon (method); Net.AddCon (method).

Platform(s) Windows.

Net.User$ (property)
Syntax Net.User$

Description Returns the name of the user on the network.

Comments A runtime error is generated if the network is not installed.

Examples Sub Main()
'This example tells the user who he or she is.
MsgBox "You are " & Net.User$

'This example makes sure this capability is supported.
If Net.GetCaps(4) And 1 Then MsgBox "You are " & Net.User$

End Sub

Platform(s) Windows.

New (keyword)
Syntax 1 Dim ObjectVariable As New ObjectType

Syntax 2 Set ObjectVariable = New ObjectType

Description Creates a new instance of the specified object type, assigning it to the specified
object variable.

348 Working Model Basic User's Manual

Comments The New keyword is used to declare a new instance of the specified data object.
This keyword can only be used with data object types.

At runtime, the application or extension that defines that object type is notified
that a new object is being defined. The application responds by creating a new
physical object (within the appropriate context) and returning a reference to that
object, which is immediately assigned to the variable being declared.

When that variable goes out of scope (i.e., the Sub or Function procedure in
which the variable is declared ends), the application is notified. The application
then performs some appropriate action, such as destroying the physical object.

See Also Dim (statement); Set (statement).

Platform(s) Windows and Macintosh.

Not (operator)
Syntax Not expression

Description Returns either a logical or binary negation of expression.

Comments The result is determined as shown in the following table:

If the Expression Is Then the Result Is

True False

False True

Null Null

Any numeric type A binary negation of the number. If the number is an Integer, then an Integer
is returned. Otherwise, the expression is first converted to a Long, then a binary
negation is performed, returning a Long.

Empty Treated as a Long value 0.

Chapter 2 Nothing (constant) 349

Example 'This example demonstrates the use of the Not operator in comparing
'logical expressions and for switching a True/False toggle variable.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a = False
b = True
If (Not a and b) Then msg = "a = False, b = True" & crlf

toggle% = True
msg = msg & "toggle% is now " & Format(toggle%,"True/False") & crlf
toggle% = Not toggle%
msg = msg & "toggle% is now " & Format(toggle%,"True/False") & crlf
toggle% = Not toggle%
msg = msg & "toggle% is now " & Format(toggle%,"True/False")
MsgBox msg

End Sub

See Also Boolean (data type); Comparison Operators (topic).

Platform(s) Windows and Macintosh.

Nothing (constant)
Description A value indicating that an object variable no longer references a valid object.

Example Sub Main()
Dim a As Object
If a Is Nothing Then

MsgBox "The object variable references no object."
Else

MsgBox "The object variable references: " & a.Value
End If

End Sub

See Also Set (statement); Object (data type).

Platform(s) Windows and Macintosh.

Now (function)
Syntax Now[()]

Description Returns a Date variant representing the current date and time.

350 Working Model Basic User's Manual

Example 'This example shows how the Now function can be used as an elapsed-
'time counter.

Sub Main()
t1# = Now()
MsgBox "Wait a while and click OK."
t2# = Now()
t3# = Second(t2#) - Second(t1#)
MsgBox "Elapsed time was: " & t3# & " seconds."

End Sub

See Also Date, Date$ (functions); Time, Time$ (functions).

Platform(s) Windows and Macintosh.

NPer (function)
Syntax NPer(Rate,Pmt,Pv,Fv,Due)

Description Returns the number of periods for an annuity based on periodic fixed payments
and a constant rate of interest.

Comments An annuity is a series of fixed payments paid to or received from an investment
over a period of time. Examples of annuities are mortgages, retirement plans,
monthly savings plans, and term loans.

The NPer function requires the following parameters:

Parameter Description

Rate Double representing the interest rate per period. If the periods are monthly, be
sure to normalize annual rates by dividing them by 12.

Pmt Double representing the amount of each payment or income. Income is
represented by positive values, whereas payments are represented by negative
values.

Pv Double representing the present value of your annuity. In the case of a loan, the
present value would be the amount of the loan, and the future value (see below)
would be zero.

Fv Double representing the future value of your annuity. In the case of a loan, the
future value would be zero, and the present value would be the amount of the
loan.

Due Integer indicating when payments are due for each payment period. A 0
specifies payment at the end of each period, whereas a 1 indicates payment at
the start of each period.

Positive numbers represent cash received, whereas negative numbers represent
cash paid out.

Chapter 2 Npv (function) 351

Example 'This example calculates the number of $100.00 monthly payments
necessary
'to accumulate $10,000.00 at an annual rate of 10%. Payments are made
at the
'beginning of the month.

Sub Main()
ag# = NPer((.10/12),100,0,10000,1)
MsgBox "The number of monthly periods is: " &

Format(ag#,"Standard")
End Sub

See Also IPmt (function); Pmt (function); PPmt (function); Rate (function).

Platform(s) Windows and Macintosh.

Npv (function)
Syntax Npv(Rate,ValueArray())

Description Returns the net present value of an annuity based on periodic payments and
receipts, and a discount rate.

Comments The Npv function requires the following parameters:

Parameter Description

Rate Double that represents the interest rate over the length of the period. If the
values are monthly, annual rates must be divided by 12 to normalize them to
monthly rates.

ValueArray() Array of Double numbers representing the payments and receipts. Positive
values are payments, and negative values are receipts.

There must be at least one positive and one negative value.

Positive numbers represent cash received, whereas negative numbers represent
cash paid out.

For accurate results, be sure to enter your payments and receipts in the correct
order because Npv uses the order of the array values to interpret the order of
the payments and receipts.

If your first cash flow occurs at the beginning of the first period, that value
must be added to the return value of the Npv function. It should not be included
in the array of cash flows.

Npv differs from the Pv function in that the payments are due at the end of the
period and the cash flows are variable. Pv's cash flows are constant, and
payment may be made at either the beginning or end of the period.

352 Working Model Basic User's Manual

Example 'This example illustrates the purchase of a lemonade stand for $800
'financed with money borrowed at 10%. The returns are estimated to
'accelerate as the stand gains popularity. The incomes are estimated
'(generated) over 12 months. This program first generates the income
'stream array in two For...Next loops, and then the net present value
'(Npv) is calculated and displayed. Note normalization of the annual
10%
'rate.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim valu#(12)
valu(1) = -800 'Initial investment
msg = valu(1) & ", "
For x = 2 To 5 'Months 2-5

valu(x) = 100 + (x * 2)
msg = msg & valu(x) & ", "

Next x
For x = 6 To 12 'Months 6-12

valu(x) = 100 + (x * 10) 'Accelerated income
msg = msg & valu(x) & ", "

Next x
NetVal# = NPV((.10/12),valu)
msg = "The values:" & crlf & msg & crlf & crlf
MsgBox msg & "Net present value: " & Format(NetVal#,"Currency")

End Sub

See Also Fv (function); IRR (function); MIRR (function); Pv (function).

Platform(s) Windows and Macintosh.

Null (constant)
Description Represents a variant of VarType 1.

Comments The Null value has special meaning indicating that a variable contains no data.

Most numeric operators return Null when either of the arguments is Null.
This "propagation" of Null makes it especially useful for returning error
values through a complex expression. For example, you can write functions that
return Null when an error occurs, then call this function within an expression.
You can then use the IsNull function to test the final result to see whether an
error occurred during calculation.

Since variants are Empty by default, the only way for Null to appear within a
variant is for you to explicitly place it there. Only a few BasicScript functions
return this value.

Chapter 2 Object (data type) 353

Example Sub Main()
Dim a As Variant
a = Null
If IsNull(a) Then MsgBox "The variable is Null."
MsgBox "The VarType of a is: " & VarType(a)'Should display 1.

End Sub

Platform(s) Windows and Macintosh.

Object (data type)
Syntax Object

Description A data type used to declare OLE automation variables.

Comments The Object type is used to declare variables that reference objects within an
application using OLE automation.

Each object is a 4-byte (32-bit) value that references the object internally. The
value 0 (or Nothing) indicates that the variable does not reference a valid
object, as is the case when the object has not yet been given a value. Accessing
properties or methods of such Object variables generates a runtime error.

Using Objects

Object variables are declared using the Dim, Public, or Private
statement:

Dim MyApp As Object

Object variables can be assigned values (thereby referencing a real physical
object) using the Set statement:

Set MyApp = CreateObject("phantom.application")
Set MyApp = Nothing

Properties of an Object are accessed using the dot (.) separator:

MyApp.Color = 10
i% = MyApp.Color

Methods of an Object are also accessed using the dot (.) separator:

MyApp.Open "sample.txt"
isSuccess = MyApp.Save("new.txt",15)

354 Working Model Basic User's Manual

Automatic Destruction

BasicScript keeps track of the number of variables that reference a given object
so that the object can be destroyed when there are no longer any references to
it:

Sub Main() 'Number of references to object
Dim a As Object '0
Dim b As Object '0
Set a = CreateObject("phantom.application) '1
Set b = a '2
Set a = Nothing '1

End Sub '0 (object destroyed)

Note: An OLE automation object is instructed by BasicScript to destroy itself
when no variables reference that object. However, it is the responsibility of the
OLE automation server to destroy it. Some servers do not destroy their
objects—usually when the objects have a visual component and can be
destroyed manually by the user.

See Also Currency (data type); Date (data type); Double (data type); Integer (data
type); Long (data type); Single (data type); String (data type); Variant (data
type); Boolean (data type); DefType (statement).

Platform(s) Windows and Macintosh.

Objects (topic)
BasicScript defines two types of objects: data objects and OLE automation
objects.

Syntactically, these are referenced in the same way.

What Is an Object

An object in BasicScript is an encapsulation of data and routines into a single
unit. The use of objects in WM Basic has the effect of grouping together a set
of functions and data items that apply only to a specific object type.

Objects expose data items for programmability called properties. For example,
a sheet object may expose an integer called NumColumns. Usually,
properties can be both retrieved (get) and modified (set).

Objects also expose internal routines for programmability called methods. In
WM Basic, an object method can take the form of a function or a subroutine.
For example, a OLE automation object called MyApp may contain a method
subroutine called Open that takes a single argument (a filename), as shown
below:

MyApp.Open "c:\files\sample.txt"

Chapter 2 Objects (topic) 355

Declaring Object Variables

In order to gain access to an object, you must first declare an object variable
using either Dim, Public, or Private:

Dim o As Object 'OLE automation object

Initially, objects are given the value 0 (or Nothing). Before an object can be
accessed, it must be associated with a physical object.

Assigning a Value to an Object Variable

An object variable must reference a real physical object before accessing any
properties or methods of that object. To instantiate an object, use the Set
statement.

Dim MyApp As Object
Set MyApp = CreateObject("Server.Application")

Accessing Object Properties

Once an object variable has been declared and associated with a physical
object, it can be modified using WM Basic code. Properties are syntactically
accessible using the dot operator, which separates an object name from the
property being accessed:

MyApp.BackgroundColor = 10
i% = MyApp.DocumentCount

Properties are set using WM Basic's normal assignment statement:

MyApp.BackgroundColor = 10

Object properties can be retrieved and used within expressions:

i% = MyApp.DocumentCount + 10
MsgBox "Number of documents = " & MyApp.DocumentCount

Accessing Object Methods

Like properties, methods are accessed via the dot operator. Object methods that
do not return values behave like subroutines in WM Basic (i.e., the arguments
are not enclosed within parentheses):

MyApp.Open "c:\files\sample.txt",True,15

Object methods that return a value behave like function calls in WM Basic.
Any arguments must be enclosed in parentheses:

If MyApp.DocumentCount = 0 Then MsgBox "No open documents."
NumDocs = app.count(4,5)

There is no syntactic difference between calling a method function and
retrieving a property value, as shown below:

variable = object.property(arg1,arg2)
variable = object.method(arg1,arg2)

356 Working Model Basic User's Manual

Comparing Object Variables

The values used to represent objects are meaningless to the script in which they
are used, with the following exceptions:

Objects can be compared to each other to determine whether they refer to
the same object.

Objects can be compared with Nothing to determine whether the object
variable refers to a valid object.

Object comparisons are accomplished using the Is operator:

If a Is b Then MsgBox "a and b are the same object."
If a Is Nothing Then MsgBox "a is not initialized."
If b Is Not Nothing Then MsgBox "b is in use."

Collections

A collection is a set of related object variables. Each element in the set is called
a member and is accessed via an index, either numeric or text, as shown below:

MyApp.Toolbar.Buttons(0)
MyApp.Toolbar.Buttons("Tuesday")

It is typical for collection indexes to begin with 0.

Each element of a collection is itself an object, as shown in the following
examples:

Dim MyToolbarButton As Object

Set MyToolbarButton = MyApp.Toolbar.Buttons("Save")
MyAppp.Toolbar.Buttons(1).Caption = "Open"

The collection itself contains properties that provide you with information
about the collection and methods that allow navigation within that collection:

Dim MyToolbarButton As Object

NumButtons% = MyApp.Toolbar.Buttons.Count
MyApp.Toolbar.Buttons.MoveNext
MyApp.Toolbar.Buttons.FindNext "Save"

For i = 1 To MyApp.Toolbar.Buttons.Count
Set MyToolbarButton = MyApp.Toolbar.Buttons(i)
MyToolbarButton.Caption = "Copy"

Next i

Chapter 2 Oct, Oct$ (functions) 357

Predefined Objects

WM Basic predefines a few objects for use in all scripts. These are:

Clipboard System Desktop HWND
Net Basic Screen

In addition, WM Basic has objects defined specifically for Working Model.
Please see Chapter 1 and Chapter 3 for more information.

Note: Some of these objects are not available on all platforms.

Oct, Oct$ (functions)
Syntax Oct[$](number)

Description Returns a String containing the octal equivalent of the specified number.

Comments Oct$ returns a String, whereas Oct returns a String variant.

The returned string contains only the number of octal digits necessary to
represent the number.

The number parameter is any numeric expression. If this parameter is Null,
then Null is returned. Empty is treated as 0. The number parameter is
rounded to the nearest whole number before converting to the octal equivalent.

Example 'This example displays the octal equivalent of several numbers.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
st$ = "The octal values are: " & crlf
For x = 1 To 5

y% = x * 10
st$ = st$ & y% & " : " & Oct$(y%) & crlf

Next x
MsgBox st$

End Sub

See Also Hex, Hex$ (functions).

Platform(s) Windows and Macintosh.

OKButton (statement)
Syntax OKButton X,Y,width,height [,.Identifier]

Description Creates an OK button within a dialog box template.

358 Working Model Basic User's Manual

Comments This statement can only appear within a dialog box template (i.e., between the
Begin Dialog and End Dialog statements).

The OKButton statement accepts the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

If the DefaultButton parameter is not specified in the Dialog statement, the
OK button will be used as the default button. In this case, the OK button can be
selected by pressing Enter on a nonbutton control.

A dialog box template must contain at least one OKButton, CancelButton,
or PushButton statement (otherwise, the dialog box cannot be dismissed).

Example 'This example shows how to use the OK and Cancel buttons within a
'dialog box template and how to detect which one closed the dialog box.

Sub Main()
Begin Dialog ButtonTemplate 17,33,104,23,"Buttons"

OKButton 8,4,40,14,.OK
CancelButton 56,4,40,14,.Cancel

End Dialog
Dim ButtonDialog As ButtonTemplate
WhichButton = Dialog(ButtonDialog)
If WhichButton = -1 Then

MsgBox "OK was pressed."
ElseIf WhichButton = 0 Then

MsgBox "Cancel was pressed."
End If

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement);
Dialog (function); Dialog (statement); DropListBox (statement); GroupBox
(statement); ListBox (statement); OptionButton (statement); OptionGroup
(statement); Picture (statement); PushButton (statement); Text (statement);
TextBox (statement); Begin Dialog (statement), PictureButton (statement).

Platform(s) Windows and Macintosh.

On Error (statement)
Syntax On Error {Goto label | Resume Next | Goto 0}

Description Defines the action taken when a trappable runtime error occurs.

Chapter 2 On Error (statement) 359

Comments The form On Error Goto label causes execution to transfer to the
specified label when a runtime error occurs.

The form On Error Resume Next causes execution to continue on the
line following the line that caused the error.

The form On Error Goto 0 causes any existing error trap to be removed.

If an error trap is in effect when the script ends, then an error will be generated.

An error trap is only active within the subroutine or function in which it
appears.

Once an error trap has gained control, appropriate action should be taken, and
then control should be resumed using the Resume statement. The Resume
statement resets the error handler and continues execution. If a procedure ends
while an error is pending, then an error will be generated. (The Exit Sub or
Exit Function statement also resets the error handler, allowing a
procedure to end without displaying an error message.)

Errors within an Error Handler

If an error occurs within the error handler, then the error handler of the caller
(or any procedure in the call stack) will be invoked. If there is no such error
handler, then the error is fatal, causing the script to stop executing. The
following statements reset the error state (i.e., these statements turn off the fact
that an error occurred):

Resume
Err=-1

The Resume statement forces execution to continue either on the same line or
on the line following the line that generated the error. The Err=-1 statement
allows explicit resetting of the error state so that the script can continue normal
execution without resuming at the statement that caused the error condition.

The On Error statement will not reset the error. Thus, if an On Error
statement occurs within an error handler, it has the effect of changing the
location of a new error handler for any new errors that may occur once the error
has been reset.

360 Working Model Basic User's Manual

Example 'This example will demonstrate three types of error handling.
'The first case simply by-passes an expected error and continues
'with program operation. The second case creates an error branch
'that jumps to a common error handling routine that processes
'incoming errors, clears the error (with the Resume statement) and
'resumes program execution. The third case clears all internal error
'handling so that execution will stop when the next error is
'encountered.

Sub Main()
Dim x%
a = 10000
b = 10000

On Error Goto Pass 'Branch to this label on error.
Do

x% = a * b
Loop

Pass:
Err = -1 'Clear error status.
MsgBox "Cleared error status and continued."

On Error Goto Overflow 'Branch to new error routine on any
x% = 1000 'subsequent errors.
x% = a * b
x% = a / 0

On Error Goto 0 'Clear error branching.
x% = a * b 'Program will stop here.
Exit Sub 'Exit before common error routine.

Overflow: 'Beginning of common error routine.
If Err = 6 then

MsgBox "Overflow Branch."
Else

MsgBox Error(Err)
End If

Resume Next
End Sub

See Also Error Handling (topic); Error (statement); Resume (statement).

Platform(s) Windows and Macintosh.

Open (statement)
Syntax Open filename$ [For mode] [Access accessmode] [lock] As [#] filenumber _

[Len = reclen]

Description Opens a file for a given mode, assigning the open file to the supplied
filenumber.

Chapter 2 Open (statement) 361

Comments The filename$ parameter is a string expression that contains a valid filename.

The filenumber parameter is a number between 1 and 255. The FreeFile
function can be used to determine an available file number.

The mode parameter determines the type of operations that can be performed on
that file:

File Mode Description

Input Opens an existing file for sequential input (filename$ must exist). The value of
accessmode, if specified, must be Read.

Output Opens an existing file for sequential output, truncating its length to zero, or
creates a new file. The value of accessmode, if specified, must be Write.

Append Opens an existing file for sequential output, positioning the file pointer at the
end of the file, or creates a new file. The value of accessmode, if specified,
must be Read Write.

Binary Opens an existing file for binary I/O or creates a new file. Existing binary files
are never truncated in length. The value of accessmode, if specified, determines
how the file can subsequently be accessed.

Random Opens an existing file for record I/O or creates a new file. Existing random files
are truncated only if accessmode is Write. The reclen parameter determines the
record length for I/O operations.

If the mode parameter is missing, then Random is used.

The accessmode parameter determines what type of I/O operations can be
performed on the file:

Access Description

Read Opens the file for reading only. This value is valid only for files opened in
Binary, Random, or Input mode.

Write Opens the file for writing only. This value is valid only for files opened in
Binary, Random, or Output mode.

Read Write Opens the file for both reading and writing. This value is valid only for files
opened in Binary, Random, or Append mode.

362 Working Model Basic User's Manual

If the accessmode parameter is not specified, the following defaults are used:

File Mode Default Value for accessmode

Input Read

Output Write

Append Read Write

Binary When the file is initially opened, access is attempted three times in the
following order:

1. Read Write
2. Write
3. Read

Random Same as Binary files

The lock parameter determines what access rights are granted to other processes
that attempt to open the same file. The following table describes the values for
lock:

lock Value Description

Shared Another process can both read this file and write to it. (Deny none.)

Lock Read Another process can write to this file but not read it. (Deny read.)

Lock Write Another process can read this file but not write to it. (Deny write.)

Lock Read Write Another process is prevented both from reading
this file and from writing to it. (Exclusive.)

If lock is not specified, then the file is opened in Shared mode.

If the file does not exist and the lock parameter is specified, the file is opened
twiceonce to create the file and again to establish the correct sharing mode.

Files opened in Random mode are divided up into a sequence of records, each
of the length specified by the reclen parameter. If this parameter is missing,
then 128 is used. For files opened for sequential I/O, the reclen parameter
specifies the size of the internal buffer used by WM Basic when performing
I/O. Larger buffers mean faster file access. For Binary files, the reclen
parameter is ignored.

Chapter 2 OpenFilename$ (function) 363

Example 'This example opens several files in various configurations.

Sub Main()
Open "test.dat" For Output Access Write Lock Write As #2
Close
Open "test.dat" For Input Access Read Shared As #1
Close
Open "test.dat" For Append Access Write Lock Read Write as #3
Close
Open "test.dat" For Binary Access Read Write Shared As #4
Close
Open "test.dat" For Random Access Read Write Lock Read As #5
Close
Open "test.dat" For Input Access Read Shared As #6
Close
Kill "test.dat"

End Sub

See Also Close (statement); Reset (statement); FreeFile (function).

Platform(s) Windows and Macintosh.

OpenFilename$ (function)
Syntax OpenFilename$[([title$ [,extensions$]])]

Description Displays a dialog box that prompts the user to select from a list of files,
returning the full pathname of the file the user selects or a zero-length string if
the user selects Cancel.

Comments This function displays the standard file open dialog box, which allows the user
to select a file. It takes the following parameters:

Parameter Description

title$ String specifying the title that appears in the dialog box's title bar. If this
parameter is omitted, then "Open" is used.

extension$ String specifying the available file types. The format for this string depends on
the platform on which WM Basic is running. If this parameter is omitted, then
all files are displayed.

364 Working Model Basic User's Manual

e$ = "All Files:*.BMP,*.WMF;Bitmaps:*.BMP;Metafiles:*.WMF"
f$ = OpenFilename$("Open Picture",e$)

Example 'This example asks the user for the name of a file, then proceeds to
read the
'first line from that file.
Sub Main

Dim f As String,s As String
f$ = OpenFilename$("Open Picture","Text Files:*.TXT")
If f$ <> "" Then

Open f$ For Input As #1
Line Input #1,s$
Close #1
MsgBox "First line from " & f$ & " is " & s$

End If
End Sub

See Also MsgBox (statement); AskBox$ (function); AskPassword$ (function); InputBox,
InputBox$ (functions); SaveFilename$ (function); SelectBox (function);
AnswerBox (function).

Platform(s) Windows and Macintosh.

Chapter 2 OpenFilename$ (function) 365

Platform
Notes:

Windows

The extensions$ parameter must be in the following format:

type:ext[,ext][;type:ext[,ext]]...

Placeholder Description

type Specifies the name of the grouping of files, such as All Files.

ext Specifies a valid file extension, such as *.BAT or *.?F?.

For example, the following are valid extensions$ specifications:

"All Files:*.*"
"Documents:*.TXT,*.DOC"
"All Files:*.*;Documents:*.TXT,*.DOC"

Platform
Notes:

Macintosh

On the Macintosh, the extensions$ parameter contains a comma-separated list
of four-character file types. For example:

"TEXT,XLS4,MSWD"

On the Macintosh, the title$ parameter is ignored.

366 Working Model Basic User's Manual

Operator Precedence (topic)
The following table shows the precedence of the operators supported by WM
Basic. Operations involving operators of higher precedence occur before
operations involving operators of lower precedence. When operators of equal
precedence occur together, they are evaluated from left to right.

Operator Description Precedence Order

() Parentheses Highest
^ Exponentiation
- Unary minus
/, * Division and multiplication
\ Integer division
Mod Modulo
+, - Addition and subtraction
& String concatenation
=, <>, >, <, <=, >= Relational
Like, Is String and object comparison
Not Logical negation
And Logical or binary conjunction
Or Logical or binary disjunction
Xor, Eqv, Imp Logical or binary operators Lowest

The precedence order can be controlled using parentheses, as shown below:

a = 4 + 3 * 2 'a becomes 10.
a = (4 + 3) * 2 'a becomes 14.

Chapter 2 Operator Precision (topic) 367

Operator Precision (topic)
When numeric, binary, logical or comparison operators are used, the data type
of the result is generally the same as the data type of the more precise operand.
For example, adding an Integer and a Long first converts the Integer
operand to a Long, then preforms a long addition, overflowing only if the
result cannot be contained with a Long. The order of precision is shown in the
following table:

Empty Least precise

Boolean

Integer

Long

Single

Date

Double

Currency Most precise

There are exceptions noted in the descriptions of each operator.

The rules for operand conversion are further complicated when an operator is
used with variant data. In many cases, an overflow causes automatic promotion
of the result to the next highest precise data type. For example, adding two
Integer variants results in an Integer variant unless it overflows, in which
case the result is automatically promoted to a Long variant.

Option Base (statement)
Syntax Option Base {0 | 1}

Description Sets the lower bound for array declarations.

Comments By default, the lower bound used for all array declarations is 0.

This statement must appear outside of any functions or subroutines.

Example Option Base 1

Sub Main()
Dim a(10) 'Contains 10 elements (not 11).

End Sub

See Also Dim (statement); Public (statement); Private (statement).

Platform(s) Windows and Macintosh.

368 Working Model Basic User's Manual

Option Compare (statement)
Syntax Option Compare [Binary | Text]

Description Controls how strings are compared.

Comments When Option Compare is set to Binary, then string comparisons are case-
sensitive (e.g., "A" does not equal "a"). When it is set to Text, string
comparisons are case-insensitive (e.g., "A" is equal to "a").

The default value for Option Compare is Binary.

The Option Compare statement affects all string comparisons in any
statements that follow the Option Compare statement. Additionally, the
setting affects the default behavior of Instr, StrComp, and the Like
operator. The following table shows the types of string comparisons affected by
this setting:

> < <>
<= >= Instr
StrComp Like

The Option Compare statement must appear outside the scope of all
subroutines and functions. In other words, it cannot appear within a Sub or
Function block.

Chapter 2 Option CStrings (statement) 369

Example 'This example shows the use of Option Compare.

Option Compare Binary
Sub CompareBinary

a$ = "This String Contains UPPERCASE."
b$ = "this string contains uppercase."
If a$ = b$ Then

MsgBox "The two strings were compared case-insensitive."
Else

MsgBox "The two strings were compared case-sensitive."
End If

End Sub

Option Compare Text
Sub CompareText

a$ = "This String Contains UPPERCASE."
b$ = "this string contains uppercase."
If a$ = b$ Then

MsgBox "The two strings were compared case-insensitive."
Else

MsgBox "The two strings were compared case-sensitive."
End If

End Sub

Sub Main()
CompareBinary 'Calls subroutine above.
CompareText 'Calls subroutine above.

End Sub

See Also Like (operator); InStr (function); StrComp (function); Comparison Operators
(topic).

Platform(s) Windows and Macintosh.

Option CStrings (statement)
Syntax Option CStrings {On | Off}

Description Turns on or off the ability to use C-style escape sequences within strings.

370 Working Model Basic User's Manual

Comments When Option CStrings On is in effect, the compiler treats the backslash
character as an escape character when it appears within strings. An escape
character is simply a special character that cannot otherwise be ordinarily typed
by the computer keyboard.

Escape Description Equivalent Expression

\r Carriage return Chr$(13)
\n Line feed Chr$(10)
\a Bell Chr$(7)
\b Backspace Chr$(8)
\f Form feed Chr$(12)
\t Tab Chr$(9)
\v Vertical tab Chr$(11)
\0 Null Chr$(0)
\" Double quotation mark "" or Chr$(34)
\\ Backslash Chr$(92)
\? Question mark ?
\' Single quotation mark'
\xhh Hexadecimal number Chr$(Val("&Hhh))
\ooo Octal number Chr$(Val("&Oooo"))
\anycharacter Any character anycharacter

With hexadecimal values, WM Basic stops scanning for digits when it
encounters a nonhexadecimal digit or two digits, whichever comes first.
Similarly, with octal values, WM Basic stops scanning when it encounters a
nonoctal digit or three digits, whichever comes first.

When Option CStrings Off is in effect, then the backslash character has no
special meaning. This is the default.

Example Option CStrings On

Sub Main()
MsgBox "They said, \"Watch out for that clump of grass!\""
MsgBox "First line.\r\nSecond line."
MsgBox "Char A: \x41 \r\n Char B: \x42"

End Sub

Platform(s) Windows and Macintosh.

OptionButton (statement)
Syntax OptionButton X,Y,width,height,title$ [,.Identifier]

Description Defines an option button within a dialog box template.

Chapter 2 OptionEnabled (function) 371

Comments This statement can only appear within a dialog box template (i.e., between the
Begin Dialog and End Dialog statements).

The OptionButton statement accepts the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

title$ String containing text that appears within the option button. This text may
contain an ampersand character to denote an accelerator letter, such as
"&Portrait" for Portrait, which can be selected by pressing the P
accelerator.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

Example See OptionGroup (statement).

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement);
Dialog (function); Dialog (statement); DropListBox (statement); GroupBox
(statement); ListBox (statement); OKButton (statement); OptionGroup
(statement); Picture (statement); PushButton (statement); Text (statement);
TextBox (statement); Begin Dialog (statement), PictureButton (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

On Windows, accelerators are underlined, and the accelerator combination
Alt+letter is used.

Platform
Notes:

Macintosh

On the Macintosh, accelerators are normal in appearance, and the accelerator
combination Command+letter is used.

OptionEnabled (function)
Syntax OptionEnabled(name$ | id)

Description Returns True if the specified option button is enabled within the current
window or dialog box; returns False otherwise.

372 Working Model Basic User's Manual

Comments This function is used to determine whether a given option button is enabled
within the current window or dialog box. If an option button is enabled, then its
value can be set using the SetOption statement.

The OptionEnabled statement takes the following parameters:

Parameter Description

name$ String containing the name of the option button.

id Integer specifying the ID of the option button.

Note: The OptionEnabled function is used to determine whether an option
button is enabled in another application's dialog box. Use the DlgEnable
function with dynamic dialog boxes.

Example 'This example checks to see whether the option button is enabled before
'setting it.

If OptionEnabled("Tile") Then
SetOption "Tile"

End If

See Also GetOption (function); OptionExists (function); SetOption (statement).

Platform(s) Windows.

OptionExists (function)
Syntax OptionExists(name$ | id)

Description Returns True if the specified option button exists within the current window or
dialog box; returns False otherwise.

Comments This function is used to determine whether a given option button exists within
the current window or dialog box.

The OptionExists statement takes the following parameters:

Parameter Description

name$ String containing the name of the option button.

id Integer specifying the ID of the option button.

Note: The OptionExists function is used to determine whether an option
button exists in another application's dialog box. There is no equivalent
function for use with dynamic dialog boxes.

Chapter 2 OptionGroup (statement) 373

Example 'This example checks to see whether the option button exists and is
enabled
'before setting it.

If OptionExists("Tile") Then
If OptionEnabled("Tile") Then

SetOption("Tile")
End If

End If

See Also GetOption (function); OptionEnabled (function); SetOption (statement).

Platform(s) Windows.

OptionGroup (statement)
Syntax OptionGroup .Identifier

Description Specifies the start of a group of option buttons within a dialog box template.

Comments The .Identifier parameter specifies the name by which the group of option
buttons can be referenced by statements in a dialog function (such as
DlgFocus and DlgEnable). This parameter also creates an integer variable
whose value corresponds to the index of the selected option button within the
group (0 is the first option button, 1 is the second option button, and so on).
This variable can be accessed using the following syntax:
DialogVariable.Identifier.

This statement can only appear within a dialog box template (i.e., between the
Begin Dialog and End Dialog statements).

When the dialog box is created, the option button specified by .Identifier will be
on; all other option buttons in the group will be off. When the dialog box is
dismissed, the .Identifier will contain the selected option button.

Example 'This example creates a group of option buttons.

Sub Main()
Begin Dialog PrintTemplate 16,31,128,65,"Print"

GroupBox 8,8,64,52,"Orientation",.Junk
OptionGroup .Orientation

OptionButton 16,20,37,8,"Portrait",.Portrait
OptionButton 16,32,51,8,"Landscape",.Landscape
OptionButton 16,44,49,8,"Don't Care",.DontCare

OKButton 80,8,40,14
End Dialog
Dim PrintDialog As PrintTemplate
Dialog PrintDialog

End Sub

374 Working Model Basic User's Manual

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement);
Dialog (function); Dialog (statement); DropListBox (statement); GroupBox
(statement); ListBox (statement); OKButton (statement); OptionButton
(statement); Picture (statement); PushButton (statement); Text (statement);
TextBox (statement); Begin Dialog (statement), PictureButton (statement).

Platform(s) Windows and Macintosh.

Or (operator)
Syntax expression1 Or expression2

Description Performs a logical or binary disjunction on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants,
then a logical disjunction is performed as follows:

If the first and the second then the
expression is expression is result is

True True True
True False True
True Null True
False True True
False False False
False Null Null
Null True True
Null False Null
Null Null Null

Binary Disjunction

If the two expressions are Integer, then a binary disjunction is performed,
returning an Integer result. All other numeric types (including Empty
variants) are converted to Long and a binary disjunction is then performed,
returning a Long result.

Binary disjunction forms a new value based on a bit-by-bit comparison of the
binary representations of the two expressions according to the following table:

1 Or 1 = 1 Example:
0 Or 1 = 1 5 10101001
1 Or 0 = 1 6 01101010
0 Or 0 = 0 Or 11101011

Chapter 2 Pi (constant) 375

Examples 'This first example shows the use of logical Or.

Dim s$ As String

s$ = InputBox$("Enter a string.")
If s$ = "" Or Mid$(s$,1,1) = "A" Then

s$ = LCase$(s$)
End If

'This second example shows the use of binary Or.

Dim w As Integer

TryAgain:
s$ = InputBox$("Enter a hex number (four digits max).")
If Mid$(s$,1,1) <> "&" Then

s$ = "&H" & s$
End If
If Not IsNumeric(s$) Then Goto TryAgain

w = CInt(s$)
MsgBox "Your number is &H" & Hex$(w)
w = w Or &H8000
MsgBox "Your number with the high bit set is &H" & Hex$(w)

See Also Operator Precedence (topic); Xor (operator); Eqv (operator); Imp (operator);
And (operator).

Platform(s) Windows and Macintosh.

Pi (constant)
Syntax Pi

Description The Double value 3.141592653589793238462643383279.

Comments Pi can also be determined using the following formula:

4 * Atn(1)

Example 'This example illustrates the use of the Pi constant.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
dia# = 5
circ# = Pi * dia#
area# = Pi * ((dia# / 2) ^ 2)
msg = "Diameter: 5" & crlf
msg = msg & "Circumference: " & Format(circ#,"Standard") & crlf
msg = msg & "Area: " & Format(area#,"Standard")
MsgBox msg

End Sub

See Also Tan (function); Atn (function); Cos (function); Sin (function).

Platform(s) Windows and Macintosh.

376 Working Model Basic User's Manual

Picture (statement)
Syntax Picture X,Y,width,height,PictureName$,PictureType [,[.Identifier] [,style]]

Description Creates a picture control in a dialog box template.

Comments Picture controls are used for the display of graphics images only. The user
cannot interact with these controls.

The Picture statement accepts the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

PictureName$ String containing the name of the picture. If PictureType is 0, then this name
specifies the name of the file containing the image. If PictureType is 10, then
PictureName$ specifies the name of the image within the resource of the
picture library.

If PictureName$ is empty, then no picture will be associated with the control. A
picture can later be placed into the picture control using the DlgSetPicture
statement.

PictureType Integer specifying the source for the image. The following sources are
supported:

0 The image is contained in a file on disk.

10 The image is contained in a picture library as
specified by the PicName$ parameter on the
Begin Dialog statement.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). If omitted, then the first two
words of PictureName$ are used.

style Specifies whether the picture is drawn within a 3D frame. It can be any of the
following values:

0 Draw the picture control with a normal frame.

1 Draw the picture control with a 3D frame.

If omitted, then the picture control is drawn with a normal frame.

Chapter 2 Picture (statement) 377

The picture control extracts the actual image from either a disk file or a picture
library. In the case of bitmaps, both 2- and 16-color bitmaps are supported. In
the case of WMFs, WM Basic supports the Placeable Windows Metafile.

If PictureName$ is a zero-length string, then the picture is removed from the
picture control, freeing any memory associated with that picture.

Examples 'This first example shows how to use a picture from a file.

Sub Main()
Begin Dialog LogoDialogTemplate 16,32,288,76,"Introduction"

OKButton 240,8,40,14
Picture 8,8,224,64,"c:\bitmaps\logo.bmp",0,.Logo

End Dialog
Dim LogoDialog As LogoDialogTemplate
Dialog LogoDialog

End Sub

'This second example shows how to use a picture from a picture library
with
'a 3D frame.

Sub Main()
Begin Dialog LogoDialogTemplate

16,31,288,76,"Introduction",,"pictures.dll"
OKButton 240,8,40,14
Picture 8,8,224,64,"CompanyLogo",10,.Logo,1

End Dialog
Dim LogoDialog As LogoDialogTemplate
Dialog LogoDialog

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement);
Dialog (function); Dialog (statement); DropListBox (statement); GroupBox
(statement); ListBox (statement); OKButton (statement); OptionButton
(statement); OptionGroup (statement); PushButton (statement); Text
(statement); TextBox (statement); Begin Dialog (statement), PictureButton
(statement) , DlgSetPicture (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Picture controls can contain either a bitmap or a WMF (Windows metafile).
When extracting images from a picture library, WM Basic assumes that the
resource type for metafiles is 256.

Picture libraries are implemented as DLLs on Windows.

Platform
Notes:

Macintosh

Picture controls on the Macintosh can contain only PICT images. These are
contained in files of type PICT.

Picture libraries on the Macintosh are files with collections of named PICT
resources. The PictureName$ parameter corresponds to the name of one the
resources as it appears within the file.

378 Working Model Basic User's Manual

PictureButton (statement)
Syntax PictureButton X,Y,width,height,PictureName$,PictureType [,.Identifier]

Description Creates a picture button control in a dialog box template.

Comments Picture button controls behave very much like a push button controls. Visually,
picture buttons are different than push buttons in that they contain a graphic
image imported either from a file or from a picture library.

The PictureButton statement accepts the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

PictureName$ String containing the name of the picture. If PictureType is 0, then this name
specifies the name of the file containing the image. If PictureType is 10, then
PictureName$ specifies the name of the image within the resource of the
picture library.

If PictureName$ is empty, then no picture will be associated with the control. A
picture can later be placed into the picture control using the DlgSetPicture
statement.

PictureType Integer specifying the source for the image. The following sources are
supported:

0 The image is contained in a file on disk.

10 The image is contained in a picture library as
specified by the PicName$ parameter on the
Begin Dialog statement.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

The picture button control extracts the actual image from either a disk file or a
picture library, depending on the value of PictureType. The supported picture
formats vary from platform to platform.

If PictureName$ is a zero-length string, then the picture is removed from the
picture button control, freeing any memory associated with that picture.

Chapter 2 Pmt (function) 379

Examples 'This first example shows how to use a picture from a file.

Sub Main()
Begin Dialog LogoDialogTemplate 16,32,288,76,"Introduction"

OKButton 240,8,40,14
PictureButton 8,4,224,64,"c:\bitmaps\logo.bmp",0,.Logo

End Dialog
Dim LogoDialog As LogoDialogTemplate
Dialog LogoDialog

End Sub

'This second example shows how to use a picture from a picture library.

Sub Main()
Begin Dialog LogoDialogTemplate

16,31,288,76,"Introduction",,"pictures.dll"
OKButton 240,8,40,14
PictureButton 8,4,224,64,"CompanyLogo",10,.Logo

End Dialog
Dim LogoDialog As LogoDialogTemplate
Dialog LogoDialog

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement);
Dialog (function); Dialog (statement); DropListBox (statement); GroupBox
(statement); ListBox (statement); OKButton (statement); OptionButton
(statement); OptionGroup (statement); PushButton (statement); Text
(statement); TextBox (statement); Begin Dialog (statement), Picture
(statement), DlgSetPicture (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Picture controls can contain either a bitmap or a WMF (Windows metafile).
When extracting images from a picture library, WM Basic assumes that the
resource type for metafiles is 256.

Picture libraries are implemented as DLLs on Windows.

Platform
Notes:

Macintosh

Picture controls on the Macintosh can contain only PICT images. These are
contained in files of type PICT.

Picture libraries on the Macintosh are files with collections of named PICT
resources. The PictureName$ parameter corresponds to the name of one the
resources as it appears within the file.

Pmt (function)
Syntax Pmt(Rate,NPer,Pv,Fv,Due)

Description Returns the payment for an annuity based on periodic fixed payments and a
constant rate of interest.

380 Working Model Basic User's Manual

Comments An annuity is a series of fixed payments made to an insurance company or
other investment company over a period of time. Examples of annuities are
mortgages and monthly savings plans.

The Pmt function requires the following parameters:

Parameter Description

Rate Double representing the interest rate per period. If the periods are given in
months, be sure to normalize annual rates by dividing them by 12.

NPer Double representing the total number of payments in the annuity.

Pv Double representing the present value of your annuity. In the case of a loan, the
present value would be the amount of the loan.

Fv Double representing the future value of your annuity. In the case of a loan, the
future value would be 0.

Due Integer indicating when payments are due for each payment period. A 0
specifies payment at the end of each period, whereas a 1 specifies payment at
the start of each period.

Rate and NPer must be expressed in the same units. If Rate is expressed in
months, then NPer must also be expressed in months.

Positive numbers represent cash received, whereas negative numbers represent
cash paid out.

Example 'This example calculates the payment necessary to repay a $1,000.00
loan
'over 36 months at an annual rate of 10%. Payments are due at the
beginning
'of the period.

Sub Main()
x = Pmt((.1/12),36,1000.00,0,1)
msg = "The payment to amortize $1,000 over 36 months @ 10% is: "
MsgBox msg & Format(x,"Currency")

End Sub

See Also IPmt (function); NPer (function); PPmt (function); Rate (function).

Platform(s) Windows and Macintosh.

PopupMenu (function)
Syntax PopupMenu(MenuItems$())

Description Displays a pop-up menu containing the specified items, returning an Integer
representing the index of the selected item.

Chapter 2 PPmt (function) 381

Comments If no item is selected (i.e., the pop-up menu is canceled), then a value of 1 less
than the lower bound is returned (normally, –1).

This function creates a pop-up menu using the string elements in the given
array. Each array element is used as a menu item. A zero-length string results in
a separator bar in the menu.

The pop-up menu is created with the upper left corner at the current mouse
position.

A runtime error results if MenuItems$ is not a single-dimension array.

Only one pop-up menu can be displayed at a time. An error will result if
another script executes this function while a pop-up menu is visible.

Example Sub Main()
Dim a$()
AppList a$
w% = PopupMenu(a$)

End Sub

See Also SelectBox (function).

Platform(s) Windows.

PPmt (function)
Syntax PPmt(Rate,Per,NPer,Pv,Fv,Due)

Description Calculates the principal payment for a given period of an annuity based on
periodic, fixed payments and a fixed interest rate.

382 Working Model Basic User's Manual

Comments An annuity is a series of fixed payments made to an insurance company or
other investment company over a period of time. Examples of annuities are
mortgages and monthly savings plans.

The PPmt function requires the following parameters:

Parameter Description

Rate Double representing the interest rate per period.

Per Double representing the number of payment periods. Per can be no less than 1
and no greater than NPer.

NPer Double representing the total number of payments in your annuity.

Pv Double representing the present value of your annuity. In the case of a loan, the
present value would be the amount of the loan.

Fv Double representing the future value of your annuity. In the case of a loan, the
future value would be 0.

Due Integer indicating when payments are due. If this parameter is 0, then
payments are due at the end of each period; if it is 1, then payments are due at
the start of each period.

Rate and NPer must be in the same units to calculate correctly. If Rate is
expressed in months, then NPer must also be expressed in months.

Negative values represent payments paid out, whereas positive values represent
payments received.

Chapter 2 Print (statement) 383

Example 'This example calculates the principal paid during each year on a loan
of
'$1,000.00 with an annual rate of 10% for a period of 10 years. The
result
'is displayed as a table containing the following information: payment,
'principal payment, principal balance.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
pay = Pmt(.1,10,1000.00,0,1)
msg = "Amortization table for 1,000" & crlf & "at 10% annually for"
msg = msg & " 10 years: " & crlf & crlf
bal = 1000.00
For per = 1 to 10

prn = PPmt(.1,per,10,1000,0,0)
bal = bal + prn
msg = msg & Format(pay,"Currency") & " " &

Format$(Prn,"Currency")
msg = msg & " " & Format(bal,"Currency") & crlf

Next per
MsgBox msg

End Sub

See Also IPmt (function); NPer (function); Pmt (function); Rate (function).

Platform(s) Windows and Macintosh.

Print (statement)
Syntax Print [[{Spc(n) | Tab(n)}][expressionlist][{; | ,}]]

Description Prints data to an output device.

384 Working Model Basic User's Manual

Comments The actual output device depends on the platform on which WM Basic is
running.

The following table describes how data of different types is written:

Data Type Description

String Printed in its literal form, with no enclosing quotes.

Any numeric type Printed with an initial space reserved for the sign (space = positive).
Additionally, there is a space following each number.

Boolean Printed as "True" or "False".

Date Printed using the short date format. If either the date or time component is
missing, only the provided portion is printed (this is consistent with the
"general date" format understood by the Format/Format$ functions).

Empty Nothing is printed.

Null Prints "Null".

User-defined errors Printed as "Error code", where code is the
value of the user-defined error. The word "Error" is not translated.

Each expression in expressionlist is separated with either a comma (,) or a
semicolon (;). A comma means that the next expression is output in the next
print zone. A semicolon means that the next expression is output immediately
after the current expression. Print zones are defined every 14 spaces.

If the last expression in the list is not followed by a comma or a semicolon, then
a carriage return is printed to the file. If the last expression ends with a
semicolon, no carriage return is printedthe next Print statement will output
information immediately following the expression. If the last expression in the
list ends with a comma, the file pointer is positioned at the start of the next print
zone on the current line.

The Tab and Spc functions provide additional control over the column
position. The Tab function moves the file position to the specified column,
whereas the Spc function outputs the specified number of spaces.

Chapter 2 Print# (statement) 385

Examples Sub Main()
i% = 10
s$ = "This is a test."
Print "The value of i=";i%,"the value of s=";s$

'This example prints the value of i% in print zone 1 and s$ in
print

'zone 3.
Print i%,,s$

'This example prints the value of i% and s$ separated by 10 spaces.
Print i%;Spc(10);s$

'This example prints the value of i in column 1 and s$ in column
30.

Print i%;Tab(30);s$

'This example prints the value of i% and s$.
Print i%;s$,
Print 67

End Sub

See Also ViewportOpen (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Under Windows, this statement writes data to a viewport window.

If no viewport window is open, then the statement is ignored. Printing
information to a viewport window is a convenient way to output debugging
information. To open a viewport window, use the following statement:

ViewportOpen

Platform
Notes:

Macintosh

On the Macintosh, the Print statement prints data to stdout.

Print# (statement)
Syntax Print [#]filenumber, [[{Spc(n) | Tab(n)}][expressionlist][{;|,}]]

Description Writes data to a sequential disk file.

386 Working Model Basic User's Manual

Comments The filenumber parameter is a number that is used by WM Basic to refer to the
open file—the number passed to the Open statement.

The following table describes how data of different types is written:

Data Type Description

String Printed in its literal form, with no enclosing quotes.

Any numeric type Printed with an initial space reserved for the sign (space = positive).
Additionally, there is a space following each number.

Boolean Printed as "True" or "False".

Date Printed using the short date format. If either the date or time component is
missing, only the provided portion is printed (this is concistent with the
"general date" format understood by the Format/Format$ functions).

Empty Nothing is printed.

Null Prints "Null".

User-defined errors Printed to files as "Error code", where
code is the value of the user-defined error. The word "Error" is not translated.

Each expression in expressionlist is separated with either a comma (,) or a
semicolon (;). A comma means that the next expression is output in the next
print zone. A semicolon means that the next expression is output immediately
after the current expression. Print zones are defined every 14 spaces.

If the last expression in the list is not followed by a comma or a semicolon, then
an end-of-line is printed to the file. If the last expression ends with a semicolon,
no end-of-line is printedthe next Print statement will output information
immediately following the expression. If the last expression in the list ends with
a comma, the file pointer is positioned at the start of the next print zone on the
current line.

The Write statement always outputs information ending with an end-of-line.
Thus, if a Print statement is followed by a Write statement, the file pointer
is positioned on a new line.

The Print statement can only be used with files that are opened in Output
or Append mode.

The Tab and Spc functions provide additional control over the file position.
The Tab function moves the file position to the specified column, whereas the
Spc function outputs the specified number of spaces.

In order to correctly read the data using the Input# statement, you should
write the data using the Write statement.

Chapter 2 PrinterGetOrientation (function) 387

Examples Sub Main()
'This example opens a file and prints some data.
Open "test.dat" For Output As #1
i% = 10
s$ = "This is a test."
Print #1,"The value of i=";i%,"the value of s=";s$

'This example prints the value of i% in print zone 1 and s$ in
'print zone 3.
Print #1,i%,,s$

'This example prints the value of i% and s$ separated by ten
spaces.

Print #1,i%;Spc(10);s$

'This example prints the value of i in column 1 and s$ in column
30.

Print #1,i%;Tab(30);s$

'This example prints the value of i% and s$.
Print #1,i%;s$,
Print #1,67

Close #1
Kill "test.dat"

End Sub

See Also Open (statement); Put (statement); Write# (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

The end-of-line character is different on many platforms. On some platforms, it
is defined as a carriage-return/line-feed pair, and on other platforms, it is
defined as only a line feed. The WM Basic statements that read sequential files
do not care about the end-of-line character—either will work.

PrinterGetOrientation (function)
Syntax PrinterGetOrientation[()]

Description Returns an Integer representing the current orientation of paper in the
default printer.

Comments PrinterGetOrientation returns ebPortrait if the printer orientation
is set to portrait; otherwise, it returns ebLandscape.

This function loads the printer driver and therefore may be slow.

388 Working Model Basic User's Manual

Example 'This example toggles the printer orientation.

Sub Main()
If PrinterGetOrientation = ebLandscape Then

PrinterSetOrientation ebPortrait
Else

PrinterSetOrientation ebLandscape
End If

End Sub

See Also PrinterSetOrientation (statement).

Platform(s) Windows.

Platform
Notes:

Windows

The default printer is determined by examining the device= line in the
[windows] section of the win.ini file.

PrinterSetOrientation (statement)
Syntax PrinterSetOrientation NewSetting

Description Sets the orientation of the default printer to NewSetting.

Comments The possible values for NewSetting are as follows

Setting Description

ebLandscape Sets printer orientation to landscape.

ebPortrait Sets printer orientation to portrait.

This function loads the printer driver for the default printer and therefore may
be slow.

Example See PrinterGetOrientation (function).

See Also PrinterGetOrientation (function).

Platform(s) Windows.

Platform
Notes:

Windows

The default printer is determined by examining the device= line in the
[windows] section of the win.ini file.

PrintFile (function)
Syntax PrintFile(filename$)

Description Prints the filename$ using the application to which the file belongs.

Chapter 2 Private (statement) 389

Comments PrintFile returns an Integer indicating success or failure.

If an error occurs executing the associated application, then PrintFile
generates a trappable runtime error, returning 0 for the result. Otherwise,
PrintFile returns a value representing that application to the system. This
value is suitable for calling the AppActivate statement.

Example 'This example asks the user for the name of a text file, then prints
it.

Sub Main()
f$ = OpenFilename$("Print Text File","Text Files:*.txt")
If f$ <> "" Then

rc% = PrintFile(f$)
If rc% > 32 Then

MsgBox "File is printing."
End If

End If
End Sub

See Also Shell (function).

Platform(s) Windows.

Platform
Notes:

Windows

This function invokes the Windows 3.1 shell functions that cause an application
to execute and print a file. The application executed by PrintFile depends on
your system's file associations.

Private (statement)
Syntax Private name [(subscripts)] [As type] [,name [(subscripts)] [As type]]...

Description Declares a list of private variables and their corresponding types and sizes.

390 Working Model Basic User's Manual

Comments Private variables are global to every Sub and Function within the currently
executing script.

If a type-declaration character is used when specifying name (such as %, @, &, $,
or !), the optional [As type] expression is not allowed. For example, the
following are allowed:

Private foo As Integer
Private foo%

The subscripts parameter allows the declaration of arrays. This parameter uses
the following syntax:

[lower To] upper [,[lower To] upper]...

The lower and upper parameters are integers specifying the lower and upper
bounds of the array. If lower is not specified, then the lower bound as specified
by Option Base is used (or 1 if no Option Base statement has been
encountered). Up to 60 array dimensions are allowed.

The total size of an array (not counting space for strings) is limited to 64K.

Dynamic arrays are declared by not specifying any bounds:

Private a()

The type parameter specifies the type of the data item being declared. It can be
any of the following data types: String, Integer, Long, Single, Double,
Currency, Object, data object, built-in data type, or any user-defined data
type.

If a variable is seen that has not been explicitly declared with either Dim,
Public, or Private, then it will be implicitly declared local to the routine in
which it is used.

Fixed-Length Strings

Fixed-length strings are declared by adding a length to the String type-
declaration character:

Private name As String * length

where length is a literal number specifying the string's length.

Chapter 2 Public (statement) 391

Initial Values

All declared variables are given initial values, as described in the following
table:

Data Type Initial Value

Integer 0

Long 0

Double 0.0

Single 0.0

Currency 0.0

Object Nothing

Date December 31, 1899 00:00:00

Boolean False

Variant Empty

String "" (zero-length string)

User-defined type Each element of the structure is given a default value, as described above.

Arrays Each element of the array is given a default value, as described above.

Example See Public (statement).

See Also Dim (statement); Redim (statement); Public (statement); Option Base
(statement).

Platform(s) Windows and Macintosh.

Public (statement)
Syntax Public name [(subscripts)] [As type] [,name [(subscripts)] [As type]]...

Description Declares a list of public variables and their corresponding types and sizes.

392 Working Model Basic User's Manual

Comments Public variables are global to all Subs and Functions in all scripts.

If a type-declaration character is used when specifying name (such as %, @, &, $,
or !), the optional [As type] expression is not allowed. For example, the
following are allowed:

Public foo As integer
Public foo%

The subscripts parameter allows the declaration of arrays. This parameter uses
the following syntax:

[lower To] upper [,[lower To] upper]...

The lower and upper parameters are integers specifying the lower and upper
bounds of the array. If lower is not specified, then the lower bound as specified
by Option Base is used (or 1 if no Option Base statement has been
encountered). Up to 60 array dimensions are allowed.

The total size of an array (not counting space for strings) is limited to 64K.

Dynamic arrays are declared by not specifying any bounds:

Public a()

The type parameter specifies the type of the data item being declared. It can be
any of the following data types: String, Integer, Long, Single, Double,
Currency, Object, data object, built-in data type, or any user-defined data
type.

If a variable is seen that has not been explicitly declared with either Dim,
Public, or Private, then it will be implicitly declared local to the routine in
which it is used.

For compatibility, the keyword Global is also supported. It has the same
meaning as Public.

Fixed-Length Strings

Fixed-length strings are declared by adding a length to the String type-
declaration character:

Public name As String * length

where length is a literal number specifying the string's length.

Chapter 2 Public (statement) 393

Initial Values

All declared variables are given initial values, as described in the following
table:

Data Type Initial Value

Integer 0

Long 0

Double 0.0

Single 0.0

Currency 0.0

Date December 31, 1899 00:00:00

Object Nothing

Boolean False

Variant Empty

String "" (zero-length string)

User-defined type Each element of the structure is given a default value, as described above.

Arrays Each element of the array is given a default value, as described above.

Sharing Variables

When sharing variables, you must ensure that the declarations of the shared
variables are the same in each script that uses those variables. If the public
variable being shared is a user-defined structure, then the structure definitions
must be exactly the same.

Example 'This example uses a subroutine to calculate the area of ten circles
'and displays the result in a dialog box. The variables R and Ar are
'declared as Public variables so that they can be used in both Main and
Area.

Const crlf = Chr$(13) + Chr$(10)

Public x#, ar#

Sub Area()
ar# = (x# ^ 2) * Pi

End Sub

Sub Main()
msg = "The area of the ten circles are:" & crlf
For x# = 1 To 10

Area
msg = msg & x# & ": " & ar# & Basic.Eoln$

Next x#
MsgBox msg

End Sub

394 Working Model Basic User's Manual

See Also Dim (statement); Redim (statement); Private (statement); Option Base
(statement).

Platform(s) Windows and Macintosh.

PushButton (statement)
Syntax PushButton X,Y,width,height,title$ [,.Identifier]

Description Defines a push button within a dialog box template.

Comments Choosing a push button causes the dialog box to close (unless the dialog
function redefines this behavior).

This statement can only appear within a dialog box template (i.e., between the
Begin Dialog and End Dialog statements).

The PushButton statement accepts the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

title$ String containing the text that appears within the push button. This text may
contain an ampersand character to denote an accelerator letter, such as "&Save"
for Save.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

If a push button is the default button, it can be selected by pressing Enter on a
nonbutton control.

A dialog box template must contain at least one OKButton, CancelButton,
or PushButton statement (otherwise, the dialog box cannot be dismissed).

Chapter 2 Put (statement) 395

Example 'This example creates a bunch of push buttons and displays
'which button was pushed.

Sub Main()
Begin Dialog ButtonTemplate 17,33,104,84,"Buttons"

OKButton 8,4,40,14,.OK
CancelButton 8,24,40,14,.Cancel
PushButton 8,44,40,14,"1",.Button1
PushButton 8,64,40,14,"2",.Button2
PushButton 56,4,40,14,"3",.Button3
PushButton 56,24,40,14,"4",.Button4
PushButton 56,44,40,14,"5",.Button5
PushButton 56,64,40,14,"6",.Button6

End Dialog
Dim ButtonDialog As ButtonTemplate
WhichButton% = Dialog(ButtonDialog)
MsgBox "You pushed button " & WhichButton%

End Sub

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement);
Dialog (function); Dialog (statement); DropListBox (statement); GroupBox
(statement); ListBox (statement); OKButton (statement); OptionButton
(statement); OptionGroup (statement); Picture (statement); Text (statement);
TextBox (statement); Begin Dialog (statement), PictureButton (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

On Windows, accelerators are underlined, and the accelerator combination
Alt+letter is used.

Platform
Notes:

Macintosh

On the Macintosh, accelerators are normal in appearance, and the accelerator
combination Command+letter is used.

Put (statement)
Syntax Put [#]filenumber, [recordnumber], variable

Description Writes data from the specified variable to a Random or Binary file.

396 Working Model Basic User's Manual

Comments The Put statement accepts the following parameters:

Parameter Description

filenumber Integer representing the file to be written to. This is the same value as
returned by the Open statement.

recordnumber Long specifying which record is to be written to the file.

For Binary files, this number represents the first byte to be written starting with
the beginning of the file (the first byte is 1). For Random files, this number
represents the record number starting with the beginning of the file (the first
record is 1). This value ranges from 1 to 2147483647.

If the recordnumber parameter is omitted, the next record is written to the file
(if no records have been written yet, then the first record in the file is written).
When recordnumber is omitted, the commas must still appear, as in the
following example:

Put #1,,recvar

If recordlength is specified, it overrides any previous change in file position
specified with the Seek statement.

Chapter 2 Put (statement) 397

The variable parameter is the name of any variable of any of the following
types:

Variable Type File Storage Description

Integer 2 bytes are written to the file.

Long 4 bytes are written to the file.

String (variable-length)In Binary files, variable-length strings are written by
first determining the specified string variable's length,
then writing that many bytes to the file.

In Random files, variable-length strings are written by
first writing a 2-byte length, then writing that many
characters to the file.

String (fixed-length) Fixed-length strings are written to Random and Binary
files in the same way: the number of characters equal
to the string's declared length are written.

Double 8 bytes are written to the file (IEEE format).

Single 4 bytes are written to the file (IEEE format).

Date 8 bytes are written to the file (IEEE double format).

Boolean 2 bytes are written to the file (either –1 for True or 0
for False).

Variant A 2-byte VarType is written to the file followed by the
data as described above. With variants of type 10
(user-defined errors), the 2-byte VarType is followed
by a 2-byte unsigned integer (the error value), which is
then followed by 2 additional bytes of information.

The exception is with strings, which are always
preceded by a 2-byte string length.

398 Working Model Basic User's Manual

User-defined types Each member of a user-defined data type is written
individually.

In Binary files, variable-length strings within user-
defined types are written by first writing a 2-byte
length followed by the string's content. This storage is
different than variable-length strings outside of user-
defined types.

When writing user-defined types, the record length
must be greater than or equal to the combined size of
each element within the data type.

Arrays Arrays cannot be written to a file using the Put
statement.

Objects Object variables cannot be written to a file using the
Put statement.

With Random files, a runtime error will occur if the length of the data being
written exceeds the record length (specified as the reclen parameter with the
Open statement). If the length of the data being written is less than the record
length, the entire record is written along with padding (whatever data happens
to be in the I/O buffer at that time). With Binary files, the data elements are
written contiguously: they are never separated with padding.

Example 'This example opens a file for random write, then writes ten
'records into the file with the values 10-50. Then the file
'is closed and reopened in random mode for read, and the
'records are read with the Get statement. The result is displayed
'in a dialog box.

Sub Main()
Open "test.dat" For Random Access Write As #1
For x = 1 To 10

r% = x * 10
Put #1,x,r%

Next x
Close

Open "test.dat" For Random Access Read As #1
For x = 1 To 10

Get #1,x,r%
msg = msg & "Record " & x & " is: " & r% & Basic.Eoln$

Next x

MsgBox msg
Close
Kill "test.dat"

End Sub

See Also Open (statement); Put (statement); Write# (statement); Print# (statement).

Chapter 2 Pv (function) 399

Platform(s) Windows and Macintosh.

Pv (function)
Syntax Pv(Rate,NPer,Pmt,Fv,Due)

Description Calculates the present value of an annuity based on future periodic fixed
payments and a constant rate of interest.

Comments The Pv function requires the following parameters:

Parameter Description

Rate Double representing the interest rate per period. When used with monthly
payments, be sure to normalize annual percentage rates by dividing them by 12.

NPer Double representing the total number of payments in the annuity.

Pmt Double representing the amount of each payment per period.

Fv Double representing the future value of the annuity after the last payment has
been made. In the case of a loan, the future value would be 0.

Due Integer indicating when the payments are due for each payment period. A 0
specifies payment at the end of each period, whereas a 1 specifies payment at
the start of each period.

Rate and NPer must be expressed in the same units. If Rate is expressed in
months, then NPer must also be expressed in months.

Positive numbers represent cash received, whereas negative numbers represent
cash paid out.

Example 'This example demonstrates the present value (the amount you'd have to
pay
'now) for a $100,000 annuity that pays an annual income of $5,000 over
20
'years at an annual interest rate of 10%.

Sub Main()
pval = Pv(.1,20,-5000,100000,1)
MsgBox "The present value is: " & Format(pval,"Currency")

End Sub

See Also Fv (function); IRR (function); MIRR (function); Npv (function).

Platform(s) Windows and Macintosh.

QueEmpty (statement)
Syntax QueEmpty

400 Working Model Basic User's Manual

Description Empties the current event queue.

Comments After this statement, QueFlush will do nothing.

Example 'This code begins a new queue, then drags a selection over a range of
'characters in Notepad.

Sub Main()
AppActivate "Notepad"
QueEmpty 'Make sure the queue is empty.
QueMouseDn ebLeftButton,1440,1393
QueMouseUp ebLeftButton,4147,2363
QueFlush True

End Sub

Platform(s) Windows.

QueFlush (statement)
Syntax QueFlush isSaveState

Description Plays back events that are stored in the current event queue.

Comments After QueFlush is finished, the queue is empty.

If isSaveState is True, then QueFlush saves the state of the Caps Lock, Num
Lock, Scroll Lock, and Insert and restores the state after the QueFlush is
complete. If this parameter is False, these states are not restored.

The function does not return until the entire queue has been played.

Example 'This example pumps some keys into Notepad.

Sub Main()
AppActivate "Notepad"
QueKeys "This is a test{Enter}"
QueFlush True 'Play back the queue.

End Sub

Platform(s) Windows.

Platform
Notes:

Windows

The QueFlush statement uses the Windows journaling mechanism to replay
the mouse and keyboard events stored in the queue. As a result, the mouse
position may be changed. Furthermore, events can be played into any Windows
application, including DOS applications running in a window.

QueKeyDn (statement)
Syntax QueKeyDn KeyString$ [,time]

Description Appends key-down events for the specified keys to the end of the current event
queue.

Chapter 2 QueKeys (statement) 401

Comments The QueKeyDn statement accepts the following parameters:

Parameter Description

KeyString$ String containing the keys to be sent. The format for KeyString$ is described
under the SendKeys statement.

time Integer specifying the number of milliseconds devoted for the output of the
entire KeyString$ parameter. It must be within the following range:

0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$ parameter contains
ten keys, then a key will be output every 1/2 second. If unspecified (or 0), the
keys will play back at full speed.

The QueFlush command is used to play back the events stored in the current
event queue.

Example 'This example plays back a Ctrl + mouse click.

Sub Main()
QueEmpty
QueKeyDn "^"
QueMouseClick ebLeftButton 1024,792
QueKeyUp "^"
QueFlush True

End Sub

See Also DoKeys (statement); SendKeys (statement); QueKeys (statement); QueKeyUp
(statement); QueFlush (statement).

Platform(s) Windows.

QueKeys (statement)
Syntax QueKeys KeyString$ [,time]

Description Appends keystroke information to the current event queue.

Comments The QueKeys statement accepts the following parameters:

Parameter Description

KeyString$ String containing the keys to be sent. The format for KeyString$ is described
under the SendKeys statement.

402 Working Model Basic User's Manual

time Integer specifying the number of milliseconds devoted for the output of the
entire KeyString$ parameter. It must be within the following range:

0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$ parameter contains
ten keys, then a key will be output every 1/2 second. If unspecified (or 0), the
keys will play back at full speed.

The QueFlush command is used to play back the events stored in the current
event queue.

Example Sub Main()
WinActivate "Notepad"
QueEmpty
QueKeys "This is a test.{Enter}This is on a new line.{Enter}"
QueKeys "{Tab 3}This is indented with three tabs."
QueKeys "Some special characters: {~}{^}{%}{+}~"
QueKeys "Invoking the Find dialog.%Sf" 'Alt+S,F
QueFlush True

End Sub

See Also DoKeys (statement); SendKeys (statement); QueKeyDn (statement); QueKeyUp
(statement); QueFlush (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, you cannot send keystrokes to MS-DOS applications running
in a window.

QueKeyUp (statement)
Syntax QueKeyUp KeyString$ [,time]

Description Appends key-up events for the specified keys to the end of the current event
queue.

Comments The QueKeyUp statement accepts the following parameters:

Parameter Description

KeyString$ String containing the keys to be sent. The format for KeyString$ is described
under the SendKeys statement.

Chapter 2 QueMouseClick (statement) 403

time Integer specifying the number of milliseconds devoted for the output of the
entire KeyString$ parameter. It must be within the following range:

0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$ parameter contains
ten keys, then a key will be output every 1/2 second. If unspecified (or 0), the
keys will play back at full speed.

The QueFlush command is used to play back the events stored in the current
event queue.

Example See QueKeyDn (statement).

See Also DoKeys (statement); SendKeys (statement); QueKeys (statement); QueKeyDn
(statement); QueFlush (statement).

Platform(s) Windows.

QueMouseClick (statement)
Syntax QueMouseClick button,X,Y [,time]

Description Adds a mouse click to the current event queue.

Comments The QueMouseClick statement takes the following parameters:

Parameter Description

button Integer specifying which mouse button to click:

ebLeftButton Click the left mouse button.

ebRightButton Click the right mouse button.

X, Y Integer coordinates, in twips, where the mouse click is to be recorded.

time Integer specifying the delay in milliseconds between this event and the
previous event in the queue. If this parameter is omitted (or 0), the mouse click
will play back at full speed.

A mouse click consists of a mouse button down at position X, Y, immediately
followed by a mouse button up.

The QueFlush command is used to play back the events stored in the current
event queue.

404 Working Model Basic User's Manual

Example 'This example acvivates Notepad and invokes the Find dialog box. It
then
'uses the QueMouseClick command to click the Cancel button.

Sub Main()
AppActivate "Notepad" 'Activate Notepad.
QueKeys "%Sf" 'Invoke the Find dialog box.
QueFlush True 'Play this back (allow dialog box to open).
QueSetRelativeWindow 'Set mouse relative to Find dialog box.
QueMouseClick ebLeftButton,7059,1486 'Click the Cancel button.
QueFlush True 'Play back the queue.

End Sub

See Also QueMouseDn (statement); QueMouseUp (statement); QueMouseDblClk
(statement); QueMouseDblDn (statement); QueMouseMove (statement);
QueMouseMoveBatch (statement); QueFlush (statement).

Platform(s) Windows.

QueMouseDblClk (statement)
Syntax QueMouseDblClk button,X,Y [,time]

Description Adds a mouse double click to the current event queue.

Comments The QueMouseDblClk statement takes the following parameters:

Parameter Description

button Integer specifying which mouse button to double-click:

ebLeftButton Double-click the left mouse button.

ebRightButton Double-click the right mouse
button.

X, Y Integer coordinates, in twips, where the mouse double click is to be recorded.

time Integer specifying the delay in milliseconds between this event and the
previous event in the queue. If this parameter is omitted (or 0), the mouse
double click will play back at full speed.

A mouse double click consists of a mouse down/up/down/up at position X, Y.
The events are queued in such a way that a double click is registered during
queue playback.

The QueFlush command is used to play back the events stored in the current
event queue.

Example 'This example double-clicks the left mouse button.

QueMouseDblClk ebLeftButton,344,360

Chapter 2 QueMouseDblDn (statement) 405

See Also QueMouseClick (statement); QueMouseDn (statement); QueMouseUp (statement);
QueMouseDblDn (statement); QueMouseMove (statement); QueMouseMoveBatch
(statement); QueFlush (statement).

Platform(s) Windows.

QueMouseDblDn (statement)
Syntax QueMouseDblDn button, X, Y [,time]

Description Adds a mouse double down to the end of the current event queue.

Comments The QueMouseDblDn statement takes the following parameters:

Parameter Description

button Integer specifying which mouse button to press:

ebLeftButton Click the left mouse button.

ebRightButton Click the right mouse button.

x,y Integer coordinates, in twips, where the mouse double down is to be recorded.

time Integer specifying the delay in milliseconds between this event and the
previous event in the queue. If this parameter is omitted (or 0), the mouse
double down will play back at full speed.

This statement adds a mouse double down to the current event queue. A double
down consists of a mouse down/up/down at position X, Y.

The QueFlush command is used to play back the events stored in the current
event queue.

Example 'This example double-clicks a word, then drags it to a new location.

Sub Main()
QueFlush 'Start with empty queue.
QueMouseDblDn ebLeftButton,356,4931 'Double-click, mouse still

down.
QueMouseMove 600,4931 'Drag to new spot.
QueMouseUp ebLeftButton 'Now release the mouse.
QueFlush True 'Play back the queue.

End Sub

See Also QueMouseClick (statement); QueMouseDn (statement); QueMouseUp (statement);
QueMouseDblClk (statement); QueMouseMove (statement); QueMouseMoveBatch
(statement); QueFlush (statement).

Platform(s) Windows.

406 Working Model Basic User's Manual

QueMouseDn (statement)
Syntax QueMouseDn button,X,Y [,time]

Description Adds a mouse down to the current event queue.

Comments The QueMouseDn statement takes the following parameters:

Parameter Description

button Integer specifying which mouse button to press:

ebLeftButton Click the left mouse button.

ebRightButton Click the right mouse button.

X, Y Integer coordinates, in twips, where the mouse down is to be recorded.

time Integer specifying the delay in milliseconds between this event and the
previous event in the queue. If this parameter is omitted (or 0), the mouse down
will play back at full speed.

The QueFlush command is used to play back the events stored in the current
event queue.

Example See QueEmpty (statement).

See Also QueMouseClick (statement); QueMouseUp (statement); QueMouseDblClk
(statement); QueMouseDblDn (statement); QueMouseMove (statement);
QueMouseMoveBatch (statement); QueFlush (statement).

Platform(s) Windows.

QueMouseMove (statement)
Syntax QueMouseMove X,Y [,time]

Description Adds a mouse move to the current event queue.

Comments The QueMouseMove statement takes the following parameters:

Parameter Description

X, Y Integer coordinates, in twips, where the mouse is to be moved.

time Integer specifying the delay in milliseconds between this event and the
previous event in the queue. If this parameter is omitted (or 0), the mouse move
will play back at full speed.

The QueFlush command is used to play back the events stored in the current
event queue.

Chapter 2 QueMouseMoveBatch (statement) 407

Example See QueMouseDblDn (statement).

See Also QueMouseClick (statement); QueMouseDn (statement); QueMouseUp (statement);
QueMouseDblClk (statement); QueMouseDblDn (statement);
QueMouseMoveBatch (statement); QueFlush (statement).

Platform(s) Windows.

QueMouseMoveBatch (statement)
Syntax QueMouseMoveBatch ManyMoves$

Description Adds a series of mouse-move events to the current event queue.

Comments The ManyMoves$ parameter is a string containing positional and timing
information in the following format:

X,Y,time [,X,Y,time]...

The X and Y parameters specify a mouse position in twips. The time parameter
specifies the delay in milliseconds between the current mouse move and the
previous event in the queue. If time is 0, then the mouse move will play back as
fast as possible.

The QueMouseMoveBatch command should be used in place of a series of
QueMouseMove statements to reduce the number of lines in your script. A
further advantage is that, since the mouse-move information is contained within
a literal string, the storage for the data is placed in the constant segment instead
of the code segment, reducing the size of the code.

The QueFlush command is used to play back the events stored in the current
event queue.

408 Working Model Basic User's Manual

Example 'This example activates PaintBrush, then paints the word "Hi".

Sub Main()
AppActivate "Paintbrush"
AppMaximize
QueMouseDn ebLeftButton,2175,3412
QueMouseMoveBatch

"2488,3224,0,2833,2786,0,3114,2347,0,3208,2160,0,3240,2097,0"
QueMouseMoveBatch

"3255,2034,0,3255,1987,0,3255,1956,0,3255,1940,0,3224,1956,0"
QueMouseMoveBatch

"3193,1987,0,3114,2019,0,3036,2066,0,3005,2113,0,2973,2175,0"
QueMouseMoveBatch

"2942,2332,0,2926,2394,0,2926,2582,0,2911,2739,0,2911,2801,0"
QueMouseMoveBatch

"2911,2958,0,2911,3020,0,2911,3052,0,2911,3083,0,2911,3114,0"
QueMouseMoveBatch

"2911,3130,0,2895,3161,0,2895,3193,0,2895,3208,0,2895,3193,0"
QueMouseMoveBatch

"2895,3146,0,2911,3083,0,2926,3020,0,2942,2958,0,2973,2895,0"
QueMouseMoveBatch

"3005,2848,0,3020,2817,0,3036,2801,0,3052,2770,0,3083,2770,0"
QueMouseMoveBatch

"3114,2754,0,3130,2754,0,3146,2770,0,3161,2786,0,3161,2848,0"
QueMouseMoveBatch

"3193,3005,0,3193,3193,0,3208,3255,0,3224,3318,0,3240,3349,0"
QueMouseMoveBatch

"3255,3349,0,3286,3318,0,3380,3271,0,3474,3208,0,3553,3052,0"
QueMouseMoveBatch

"3584,2895,0,3615,2739,0,3631,2692,0,3631,2645,0,3646,2645,0"
QueMouseMoveBatch

"3646,2660,0,3646,2723,0,3646,2880,0,3662,2942,0,3693,2989,0"
QueMouseMoveBatch "3709,3005,0,3725,3005,0,3756,2989,0,3787,2973,0"
QueMouseUp ebLeftButton,3787,2973
QueMouseDn ebLeftButton,3678,2535
QueMouseMove 3678,2520
QueMouseMove 3678,2535
QueMouseUp ebLeftButton,3678,2535
QueFlush True

End Sub

See Also QueMouseClick (statement); QueMouseDn (statement); QueMouseUp (statement);
QueMouseDblClk (statement); QueMouseDblDn (statement); QueMouseMove
(statement); QueFlush (statement).

Platform(s) Windows.

QueMouseUp (statement)
Syntax QueMouseUp button,X,Y [,time]

Description Adds a mouse up to the current event queue.

Chapter 2 QueSetRelativeWindow (statement) 409

Comments The QueMouseUp statement takes the following parameters:

Parameter Description

button Integer specifying the mouse buttton to be released:

ebLeftButton Release the left mouse button.

ebRightButton Release the right mouse button.

X, Y Integer coordinates, in twips, where the mouse button is to be released.

time Integer specifying the delay in milliseconds between this event and the
previous event in the queue. If this parameter is omitted (or 0), the mouse up
will play back at full speed.

The QueFlush command is used to play back the events stored in the current
event queue.

Example See QueEmpty (statement).

See Also QueMouseClick (statement); QueMouseDn (statement); QueMouseDblClk
(statement); QueMouseDblDn (statement); QueMouseMove (statement);
QueMouseMoveBatch (statement); QueFlush (statement).

Platform(s) Windows.

QueSetRelativeWindow (statement)
Syntax QueSetRelativeWindow [window_object]

Description Forces all subsequent QueX commands to adjust the mouse positions relative to
the specified window.

Comments The window_object parameter is an object of type HWND. If window_object is
Nothing or omitted, then the window with the focus is used (i.e., the active
window).

The QueFlush command is used to play back the events stored in the current
event queue.

Example Sub Main()
'Adjust mouse coordinates relative to Notepad.
Dim a As HWND
Set a = WinFind("Notepad")
QueSetRelativeWindow a

End Sub

Platform(s) Windows.

410 Working Model Basic User's Manual

Random (function)
Syntax Random(min,max)

Description Returns a Long value greater than or equal to min and less than or equal to
max.

Comments Both the min and max parameters are rounded to Long. A runtime error is
generated if min is greater than max.

Example 'This example uses the random number generator to generate ten
'lottery numbers.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Randomize 'Start with new random seed.
For x = 1 To 10

y = Random(0,100) 'Generate numbers.
msg = msg & y & crlf

Next x
MsgBox "Ten numbers for the lottery: " & crlf & msg

End Sub

See Also Randomize (statement); Random (function).

Platform(s) Windows and Macintosh.

Randomize (statement)
Syntax Randomize [seed]

Description Initializes the random number generator with a new seed.

Comments If seed is not specified, then the current value of the system clock is used.

Example 'This example sets the randomize seed to a random number between
'100 and 1000, then generates ten random numbers for the lottery.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Randomize 'Start with new random seed.
For x = 1 To 10

y = Random(0,100) 'Generate numbers.
msg = msg + Str(y) + crlf

Next x
MsgBox "Ten numbers for the lottery: " & crlf & msg

End Sub

See Also Random (function); Rnd (function).

Platform(s) Windows and Macintosh.

Chapter 2 Rate (function) 411

Rate (function)
Syntax Rate(NPer,Pmt,Pv,Fv,Due,Guess)

Description Returns the rate of interest for each period of an annuity.

Comments An annuity is a series of fixed payments made to an insurance company or
other investment company over a period of time. Examples of annuities are
mortgages and monthly savings plans.

The Rate function requires the following parameters:

Parameter Description

NPer Double representing the total number of payments in the annuity.

Pmt Double representing the amount of each payment per period.

Pv Double representing the present value of your annuity. In a loan situation, the
present value would be the amount of the loan.

Fv Double representing the future value of the annuity after the last payment has
been made. In the case of a loan, the future value would be zero.

Due Integer specifying when the payments are due for each payment period. A 0
indicates payment at the end of each period, whereas a 1 indicates payment at
the start of each period.

Guess Double specifying a guess as to the value the Rate function will return. The
most common guess is .1 (10 percent).

Positive numbers represent cash received, whereas negative values represent
cash paid out.

The value of Rate is found by iteration. It starts with the value of Guess and
cycles through the calculation adjusting Guess until the result is accurate within
0.00001 percent. After 20 tries, if a result cannot be found, Rate fails, and the
user must pick a better guess.

Example 'This example calculates the rate of interest necessary to save $8,000
'by paying $200 each year for 48 years. The guess rate is 10%.

Sub Main()
r# = Rate(48,-200,8000,0,1,.1)
MsgBox "The rate required is: " & Format(r#,"Percent")

End Sub

See Also IPmt (function); NPer (function); Pmt (function); PPmt (function).

Platform(s) Windows and Macintosh.

412 Working Model Basic User's Manual

ReadIni$ (function)
Syntax ReadIni$(section$,item$[,filename$])

Description Returns a String containing the specified item from an ini file.

Comments The ReadIni$ function takes the following parameters:

Parameter Description

section$ String specifying the section that contains the desired variable, such as
"windows". Section names are specified without the enclosing brackets.

item$ String specifying the item whose value is to be retrieved.

filename$ String containing the name of the ini file to read.

See Also WriteIni (statement); ReadIniSection (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, if the name of the ini file is not specified, then win.ini is
assumed.

If the filename$ parameter does not include a path, then this statement looks for
ini files in the Windows directory.

ReadIniSection (statement)
Syntax ReadIniSection section$,ArrayOfItems()[,filename$]

Description Fills an array with the item names from a given section of the specified ini file.

Chapter 2 Redim (statement) 413

Comments The ReadIniSection statement takes the following parameters:

Parameter Description

section$ String specifying the section that contains the desired variables, such as
"windows". Section names are specified without the enclosing brackets.

ArrayOfItems() Specifies either a zero- or a one-dimensioned array of strings or variants. The
array can be either dynamic or fixed.

If ArrayOfItems() is dynamic, then it will be redimensioned to exactly hold the
new number of elements. If there are no elements, then the array will be
redimensioned to contain no dimensions. You can use the LBound, UBound, and
ArrayDims functions to determine the number and size of the new array's
dimensions.

If the array is fixed, each array element is first erased, then the new elements
are placed into the array. If there are fewer elements than will fit in the array,
then the remaining elements are initialized to zero-length strings (for String
arrays) or Empty (for Variant arrays). A runtime error results if the array is too
small to hold the new elements.

filename$ String containing the name of an ini file.

On return, the ArrayOfItems() parameter will contain one array element for
each variable in the specified ini section.

Example Sub Main()
Dim items() As String
ReadIniSection "windows",items$
r% = SelectBox("INI Items",,items$)

End Sub

See Also ReadIni$ (function); WriteIni (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, if the name of the ini file is not specified, then win.ini is
assumed.

If the filename$ parameter does not include a path, then this statement looks for
ini files in the Windows directory.

Redim (statement)
Syntax Redim [Preserve] variablename (subscriptRange) [As type],...

Description Redimensions an array, specifying a new upper and lower bound for each
dimension of the array.

414 Working Model Basic User's Manual

Comments The variablename parameter specifies the name of an existing array (previously
declared using the Dim statement) or the name of a new array variable. If the
array variable already exists, then it must previously have been declared with
the Dim statement with no dimensions, as shown in the following example:

Dim a$() 'Dynamic array of strings (no dimensions yet)

Dynamic arrays can be redimensioned any number of times.

The subscriptRange parameter specifies the new upper and lower bounds for
each dimension of the array using the following syntax:

[lower To] upper [,[lower To] upper]...

If lower is not specified, then 0 is used (or the value set using the Option Base
statement). A runtime error is generated if lower is less than upper. Array
dimensions must be within the following range:

–32768 <= lower <= upper <= 32767

The type parameter can be used to specify the array element type. Arrays can be
declared using any fundamental data type, user-defined data types, and objects.

Redimensioning an array erases all elements of that array unless the Preserve
keyword is specified. When this keyword is specified, existing data in the array
is preserved where possible. If the number of elements in an array dimension is
increased, the new elements are initialized to 0 (or empty string). If the number
of elements in an array dimension is decreased, then the extra elements will be
deleted. If the Preserve keyword is specified, then the number of dimensions
of the array being redimensioned must either be zero or the same as the new
number of dimensions.

Example 'This example uses the FileList statement to redim an array and fill it
'with filename strings. A new array is then redimmed to hold the
'number of elements found by FileList, and the FileList array is
'copied into it and partially displayed.

Sub Main()
Dim fl$()
FileList fl$,"*.*"
count = Ubound(fl$)
Redim nl$(Lbound(fl$) To Ubound(fl$))
For x = 1 to count

nl$(x) = fl(x)
Next x
MsgBox "The last element of the new array is: " & nl$(count)

End Sub

See Also Dim (statement); Public (statement); Private (statement); ArrayDims
(function); LBound (function); UBound (function).

Platform(s) Windows and Macintosh.

Chapter 2 Rem (statement) 415

Rem (statement)
Syntax Rem text

Description Causes the compiler to skip all characters on that line.

Example Sub Main()
Rem This is a line of comments that serves to illustrate the
Rem workings of the code. You can insert comments to make it more
Rem readable and maintainable in the future.

End Sub

See Also ' (keyword); Comments (topic).

Platform(s) Windows and Macintosh.

Reset (statement)
Syntax Reset

Description Closes all open files, writing out all I/O buffers.

Example 'This example opens a file for output, closes it with the Reset
statement,
'then deletes it with the Kill statement.

Sub Main()
Open "test.dat" for Output Access Write as # 1
Reset
Kill "test.dat"

If FileExists("test.dat") Then
MsgBox "The file was not deleted."

Else
MsgBox "The file was deleted."

End If
End Sub

See Also Close (statement); Open (statement).

Platform(s) Windows and Macintosh.

Resume (statement)
Syntax Resume {[0] | Next | label}

Description Ends an error handler and continues execution.

416 Working Model Basic User's Manual

Comments The form Resume 0 (or simply Resume by itself) causes execution to
continue with the statement that caused the error.

The form Resume Next causes execution to continue with the statement
following the statement that caused the error.

The form Resume label causes execution to continue at the specified label.

The Resume statement resets the error state. This means that, after executing
this statement, new errors can be generated and trapped as normal.

Example 'This example accepts two integers from the user and attempts to
'multiply the numbers together. If either number is larger than an
'integer, the program processes an error routine and then continues
'program execution at a specific section using 'Resume <label>'.
'Another error trap is then set using 'Resume Next'. The new error
'trap will clear any previous error branching and also 'tell' the
'program to continue execution of the program even if an error is
'encountered.

Sub Main()
Dim a%, b%, x%

Again:
On Error Goto Overflow
a% = InputBox("Enter 1st integer to multiply","Enter Number")
b% = InputBox("Enter 2nd integer to multiply","Enter Number")

On Error Resume Next 'Continue program execution at next line x% = a% * b%

if err = 0 then
MsgBox x%

else
Msgbox a% & " * " & b% & " cause an overflow!"

end if

Exit Sub

Overflow: 'Error handler.
MsgBox "You've entered a non-integer value, try again!"
Resume Again

End Sub

See Also Error Handling (topic); On Error (statement).

Platform(s) Windows and Macintosh.

Return (statement)
Syntax Return

Description Transfers execution control to the statement following the most recent GoSub.

Chapter 2 Right, Right$ (functions) 417

Comments A runtime error results if a Return statement is encountered without a
corresponding GoSub statement.

Example 'This example calls a subroutine and then returns execution to the Main
'routine by the Return statement.

Sub Main()
GoSub SubTrue
MsgBox "The Main routine continues here."
Exit Sub

SubTrue:
MsgBox "This message is generated in the subroutine."
Return
Exit Sub

End Sub

See Also GoSub (statement).

Platform(s) Windows and Macintosh.

Right, Right$ (functions)
Syntax Right[$](text,NumChars)

Description Returns the rightmost NumChars characters from a specified string.

Comments Right$ returns a String, whereas Right returns a String variant.

The Right function takes the following parameters:

Parameter Description

text String from which characters are returned. A runtime error is generated if text
is Null.

NumChars Integer specifying the number of characters to return. If NumChars is greater
than or equal to the length of the string, then the entire string is returned. If
NumChars is 0, then a zero-length string is returned.

Example 'This example shows the Right$ function used in a routine to change
'uppercase names to lowercase with an uppercase first letter.

Sub Main()
lname$ = "WILLIAMS"
x = Len(lname$)
rest$ = Right$(lname$,x - 1)
fl$ = Left$(lname$,1)
lname$ = fl$ & LCase$(rest$)
MsgBox "The converted name is: " & lname$

End Sub

See Also Left, Left$ (functions).

418 Working Model Basic User's Manual

Platform(s) Windows and Macintosh.

RmDir (statement)
Syntax RmDir dir$

Comments Removes the directory specified by the String contained in dir$.

Example 'This routine creates a directory and then deletes it with RmDir.

Sub Main()
On Error Goto ErrMake
MkDir("test01")
On Error Goto ErrRemove
RmDir("test01")

ErrMake:
MsgBox "The directory could not be created."
Exit Sub

ErrRemove:
MsgBox "The directory could not be removed."
Exit Sub

End Sub

See Also ChDir (statement); ChDrive (statement); CurDir, CurDir$ (functions); Dir,
Dir$ (functions); MkDir (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Under Windows, this command behaves the same as the DOS "rd" command.

Rnd (function)
Syntax Rnd[(number)]

Description Returns a random Single number between 0 and 1.

Comments If number is omitted, the next random number is returned. Otherwise, the
number parameter has the following meaning:

If Then

number < 0 Always returns the same number.

number = 0 Returns the last number generated.

number > 0 Returns the next random number.

Chapter 2 RSet (statement) 419

Example 'This routine generates a list of random numbers and displays them.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
For x = -1 To 8

y! = Rnd(1) * 100
msg = msg & x & " : " & y! & crlf

Next x
MsgBox msg & "Last form: " & Rnd

End Sub

See Also Randomize (statement); Random (function).

Platform(s) Windows and Macintosh.

RSet (statement)
Syntax RSet destvariable = source

Description Copies the source string source into the destination string destvariable.

Comments If source is shorter in length than destvariable, then the string is right-aligned
within destvariable and the remaining characters are padded with spaces. If
source is longer in length than destvariable, then source is truncated, copying
only the leftmost number of characters that will fit in destvariable. A runtime
error is generated if source is Null.

The destvariable parameter specifies a String or Variant variable. If
destvariable is a Variant containing Empty, then no characters are copied. If
destvariable is not convertible to a String, then a runtime error occurs. A
runtime error results if destvariable is Null.

Example 'This example replaces a 40-character string of asterisks (*) with
'an RSet and LSet string and then displays the result.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim msg,tmpstr$
tmpstr$ = String$(40, "*")
msg = "Here are two strings that have been right-" & crlf
msg = msg & "and left-justified in a 40-character string."
msg = msg & crlf & crlf
RSet tmpstr$ = "Right->"
msg = msg & tmpstr$ & crlf
LSet tmpstr$ = "<-Left"
msg = msg & tmpstr$ & crlf
MsgBox msg

End Sub

See Also LSet (statement).

420 Working Model Basic User's Manual

Platform(s) Windows and Macintosh.

RTrim, RTrim$ (functions)
Syntax RTrim[$](text)

Description Returns a string with the trailing spaces removed.

Comments RTrim$ returns a String, whereas RTrim returns a String variant.

Null is returned if text is Null.

Example 'This example displays a left-justified string and its RTrim result.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = "This is a left-justified string. "
b$ = RTrim$(a$)
MsgBox a$ & "<=" & crlf & b$ & "<="

End Sub

See Also LTrim, LTrim$ (functions); Trim, Trim$ (functions).

Platform(s) Windows and Macintosh.

421

SaveFilename$ (function)
Syntax SaveFilename$[([title$ [,extensions$]])]

Description Displays a dialog box that prompts the user to select from a list of files and
returns a String containing the full path of the selected file.

Comments The SaveFilename$ function accepts the following parameters:

Parameter Description

title$ String containing the title that appears on the dialog box's caption. If this
string is omitted, then "Save As" is used.

extensions$ String containing the available file types. Its format depends on the platform
on which WM Basic is running. If this string is omitted, then all files are used.

The SaveFilename$ function returns a full pathname of the file that the user
selects. A zero-length string is returned if the user selects Cancel. If the file
already exists, then the user is prompted to overwrite it.

e$ = "All Files:*.BMP,*.WMF;Bitmaps:*.BMP;Metafiles:*.WMF"
f$ = SaveFilename$("Save Picture",e$)

422 Working Model Basic User's Manual

Example 'This example creates a save dialog box, giving the user the
'ability to save to several different file types.

Sub Main()
e$ = "All Files:*.BMP,*.WMF;Bitmaps:*.BMP;Metafiles:*.WMF"
f$ = SaveFilename$("Save Picture",e$)
If Not f$ = "" Then

Msgbox "User choose to save file as: " + f$
Else

Msgbox "User canceled."
End IF

End Sub

See Also MsgBox (statement); AskBox$ (function); AskPassword$ (function); InputBox,
InputBox$ (functions); OpenFilename$ (function); SelectBox (function);
AnswerBox (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Under Windows, the extensions$ parameter must be in the following format:

description:ext[,ext][;description:ext[,ext]]...

Placeholder Description

description Specifies the grouping of files for the user, such as All Files.

ext Specifies a valid file extension, such as *.BAT or *.?F?.

For example, the following are valid extensions$ specifications:

"All Files:*"
"Documents:*.TXT,*.DOC"
"All Files:*;Documents:*.TXT,*.DOC"

Platform
Notes:

Macintosh

On the Macintosh, the extensions$ parameter contains a comma-separated list
of four-character file types. For example:

"TEXT,XLS4,MSWD"

On the Macintosh, the title$ parameter is ignored.

Screen.DlgBaseUnitsX (property)
Syntax Screen.DlgBaseUnitsX

Description Returns an Integer used to convert horizontal pixels to and from dialog
units.

Chapter 2 Screen.DlgBaseUnitsY (property) 423

Comments The number returned depends on the name and size of the font used to display
dialog boxes.

To convert from pixels to dialog units in the horizontal direction:

((XPixels * 4) + (Screen.DlgBaseUnitsX - 1)) / Screen.DlgBaseUnitsX

To convert from dialog units to pixels in the horizontal direction:

(XDlgUnits * Screen.DlgBaseUnitsX) / 4

Example 'This example converts the screen width from pixels to dialog units.

Sub Main()
XPixels = Screen.Width
conv% = Screen.DlgBaseUnitsX
XDlgUnits = (XPixels * 4) + (conv% -1) / conv%
MsgBox "The screen width is " & XDlgUnits & " dialog units."

End Sub

See Also Screen.DlgBaseUnitsY (property).

Platform(s) Windows.

Screen.DlgBaseUnitsY (property)
Syntax Screen.DlgBaseUnitsY

Description Returns an Integer used to convert vertical pixels to and from dialog units.

Comments The number returned depends on the name and size of the font used to display
dialog boxes.

To convert from pixels to dialog units in the vertical direction:

(YPixels * 8) + (Screen.DlgBaseUnitsY - 1) / Screen.DlgBaseUnitsY

To convert from dialog units to pixels in the vertical direction:

(YDlgUnits * Screen.DlgBaseUnitsY) / 8

Example 'This example converts the screen width from pixels to dialog units.

Sub Main()
YPixels = Screen.Height
conv% = Screen.DlgBaseUnitsY
YDlgUnits = (YPixels * 8) + (conv% -1) / conv%
MsgBox "The screen width is " & YDlgUnits & " dialog units."

End Sub

See Also Screen.DlgBaseUnitsX (property).

Platform(s) Windows.

Screen.Height (property)
Syntax Screen.Height

424 Working Model Basic User's Manual

Description Returns the height of the screen in pixels as an Integer.

Comments This property is used to retrieve the height of the screen in pixels. This value
will differ depending on the display resolution.

This property is read-only.

Example 'This example displays the screen height in pixels.

Sub Main()
MsgBox "The Screen height is " & Screen.Height & " pixels."

End Sub

See Also Screen.Width (property).

Platform(s) Windows.

Screen.TwipsPerPixelX (property)
Syntax Screen.TwipsPerPixelX

Description Returns an Integer representing the number of twips per pixel in the
horizontal direction of the installed display driver.

Comments This property is read-only.

Example 'This example displays the number of twips across the screen
horizontally.

Sub Main()
XScreenTwips = Screen.Width * Screen.TwipsPerPixelX
MsgBox "Total horizontal screen twips = " & XScreenTwips

End Sub

See Also Screen.TwipsPerPixelY (property).

Platform(s) Windows.

Screen.TwipsPerPixelY (property)
Syntax Screen.TwipsPerPixelY

Description Returns an Integer representing the number of twips per pixel in the vertical
direction of the installed display driver.

Comments This property is read-only.

Example 'This example displays the number of twips across the screen
vertically.

Sub Main()
YScreenTwips = Screen.Height * Screen.TwipsPerPixelY
MsgBox "Total vertical screen twips = " & YScreenTwips

End Sub

Chapter 2 Screen.Width (property) 425

See Also Screen.TwipsPerPixelX (property).

Platform(s) Windows.

Screen.Width (property)
Syntax Screen.Width

Description Returns the width of the screen in pixels as an Integer.

Comments This property is used to retrieve the width of the screen in pixels. This value
will differ depending on the display resolution.

This property is read-only.

Example 'This example displays the screen width in pixels
Sub Main()

MsgBox "The screen width is " & Screen.Width & " pixels."
End Sub

See Also Screen.Height (property).

Platform(s) Windows.

Second (function)
Syntax Second(time)

Description Returns the second of the day encoded in the specified time parameter.

Comments The value returned is an Integer between 0 and 59 inclusive.

The time parameter is any expression that converts to a Date.

Example 'This example takes the current time; extracts the hour,
'minute, and second; and displays them as the current time.

Sub Main()
xt# = TimeValue(Time$())
xh# = Hour(xt#)
xm# = Minute(xt#)
xs# = Second(xt#)
Msgbox "The current time is: " & CStr(xh#) & ":" & CStr(xm#) & ":"

& CStr(xs#)
End Sub

See Also Day (function); Minute (function); Month (function); Year (function); Hour
(function); Weekday (function); DatePart (function).

Platform(s) Windows and Macintosh.

426 Working Model Basic User's Manual

Seek (function)
Syntax Seek(filenumber)

Description Returns the position of the file pointer in a file relative to the beginning of the
file.

Comments The filenumber parameter is a number that WM Basic uses to refer to the open
file—the number passed to the Open statement.

The value returned depends on the mode in which the file was opened:

File Mode Returns

Input Byte position for the next read
Output Byte position for the next write
Append Byte position for the next write
Random Number of the next record to be written or read
Binary Byte position for the next read or write

The value returned is a Long between 1 and 2147483647, where the first byte
(or first record) in the file is 1.

Example 'This example opens a file for random write, then writes ten
'records into the file using the PUT statement. The file position is
'displayed using the Seek Function, and the file is closed.

Sub Main()
Open "test.dat" For Random Access Write As #1
For x = 1 To 10

r% = x * 10
Put #1,x,r%

Next x
y = Seek(1)
MsgBox "The current file position is: " & y
Close

End Sub

See Also Seek (statement); Loc (function).

Platform(s) Windows and Macintosh.

Seek (statement)
Syntax Seek [#] filenumber,position

Description Sets the position of the file pointer within a given file such that the next read or
write operation will occur at the specified position.

Chapter 2 Select...Case (statement) 427

Comments The Seek statement accepts the following parameters:

Parameter Description

filenumber Integer used by WM Basic to refer to the open file—the number passed to the
Open statement.

position Long that specifies the location within the file at which to position the file
pointer. The value must be between 1 and 2147483647, where the first byte (or
record number) in the file is 1. For files opened in either Binary, Output,
Input, or Append mode, position is the byte position within the file. For
Random files, position is the record number.

A file can be extended by seeking beyond the end of the file and writing data
there.

Example 'This example opens a file for random write, then writes ten
'records into the file using the PUT statement. The file is
'then reopened for read, and the ninth record is read using
'the Seek and Get functions.

Sub Main()
Open "test.dat" For Random Access Write As #1
For x = 1 To 10

rec$ = "Record#: " & x
Put #1,x,rec$

Next x
Close

Open "test.dat" For Random Access Read As #1
Seek #1,9
Get #1,,rec$
MsgBox "The ninth record = " & x
Close
Kill "test.dat"

End Sub

See Also Seek (function); Loc (function).

Platform(s) Windows and Macintosh.

Select...Case (statement)
Syntax Select Case testexpression

[Case expressionlist
 [statement_block]]
[Case expressionlist
 [statement_block]]

.

.
[Case Else
 [statement_block]]
End Select

428 Working Model Basic User's Manual

Description Used to execute a block of WM Basic statements depending on the value of a
given expression.

Comments The Select Case statement has the following parts:

Part Description

testexpression Any numeric or string expression.

statement_block Any group of WM Basic statements. If the testexpression matches any of the
expressions contained in expressionlist, then this statement block will be
executed.

expressionlist A comma separated list of expressions to be compared against testexpression
using any of the following syntaxes:

expression [,expression]...
expression to expression
is relational_operator expression

The resultant type of expression in expressionlist must be the same as that of
testexpression.

Multiple expression ranges can be used within a single Case clause. For
example:

Case 1 to 10,12,15, Is > 40

Only the statement_block associated with the first matching expression will be
executed. If no matching statement_block is found, then the statements
following the Case Else will be executed.

A Select...End Select expression can also be represented with the
If...Then expression. The use of the Select statement, however, may be
more readable.

Example 'This example uses the Select...Case statement to output the
'current operating system.

Sub Main()
OpSystem% = Basic.OS
Select Case OpSystem%

Case 0
s = "Microsoft Windows"

Case 10
s = "Macintosh"

Case Else
s = "Other"

End Select
MsgBox "This version of WM Basic is running on: " & s

End Sub

Chapter 2 SelectBox (function) 429

See Also Choose (function); Switch (function); IIf (function); If...Then...Else
(statement).

Platform(s) Windows and Macintosh.

SelectBox (function)
Syntax SelectBox(title,prompt,ArrayOfItems)

Description Displays a dialog box that allows the user to select from a list of choices and
returns an Integer containing the index of the item that was selected.

Comments The SelectBox statement accepts the following parameters:

Parameter Description

title Title of the dialog box. This can be an expression convertible to a String. A
runtime error is generated if title is Null.

prompt Text to appear immediately above the list box containing the items. This can be
an expression convertible to a String. A runtime error is generated if prompt is
Null.

ArrayOfItems Single-dimensioned array. Each item from the array will occupy a single entry
in the list box. A runtime error is generated if ArrayOfItems is not a single-
dimensioned array.

ArrayOfItems can specify an array of any fundamental data type (structures are
not allowed). Null and Empty values are treated as zero-length strings.

The value returned is an Integer representing the index of the item in the list
box that was selected, with 0 being the first item. If the user selects Cancel, –1
is returned.

result% = SelectBox("Picker","Pick an application:",a$)

430 Working Model Basic User's Manual

Example 'This example gets the current apps running, puts them in to an array
'and then asks the user to select one from a list.

Sub Main()
Dim a$()
AppList a$
result% = SelectBox("Picker","Pick an application:",a$)
If Not result% = -1 then

Msgbox "User selected: " & a$(result%)
Else

Msgbox "User canceled"
End If

End Sub

See Also MsgBox (statement); AskBox$ (function); AskPassword$ (function); InputBox,
InputBox$ (functions); OpenFilename$ (function); SaveFilename$ (function);
AnswerBox (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Under Windows, SelectBox displays all text in its dialog box in 8-point MS
Sans Serif.

SelectButton (statement)
Syntax SelectButton name$ | id

Description Simulates a mouse click on the a push button given the push button's name (the
name$ parameter) or ID (the id parameter).

Comments The SelectButton statement accepts the following parameters:

Parameter Description

name$ String containing the name of the push button to be selected.

id Integer representing the ID of the push button to be selected.

A runtime error is generated if a push button with the given name or ID cannot
be found in the active window.

Note: The SelectButton statement is used to select a button in another
application's dialog box. This command is not intended for use with built-in or
dynamic dialog boxes.

Example This example simulates the selection of several buttons in a dialog.

Sub Main()
SelectButton "OK"
SelectButton 2
SelectButton "Close"

End Sub

Chapter 2 SelectComboBoxItem (statement) 431

See Also ButtonEnabled (function), ButtonExists (function)

Platform(s) Windows.

SelectComboBoxItem (statement)
Syntax SelectComboBoxItem {name$ | id},{ItemName$ | ItemNumber} [,isDoubleClick]

Description Selects an item from a combo box given the name or ID of the combo box and
the name or line number of the item.

Comments The SelectComboBoxItem statement accepts the following parameters:

Parameter Description

name$ String indicating the name of the combo box containing the item to be
selected.

The name of a combo box is determined by scanning the window list looking
for a text control with the given name that is immediately followed by a combo
box. A runtime error is generated if a combo box with that name cannot be
found within the active window.

id Integer specifying the ID of the combo box containing the item to be selected.

ItemName$ String specifying which item is to be selected. The string is compared without
regard to case. If ItemName$ is a zero-length string, then all currently selected
items are deselected. A runtime error results if ItemName$ cannot be found in
the combo box.

ItemNumber Integer containing the index of the item to be selected. A runtime error is
generated if ItemNumber is not within the correct range.

isDoubleClick Boolean value indicating whether a double click of that item is to be simulated.

Note: The SelectComboBoxItem statement is used to set the item of a combo
box in another application's dialog box. Use the DlgText statement to change
the content of the text box part of a list box in a dynamic dialog box.

Example This example simulates the selection of a couple of comboboxes

Sub Main()
SelectComboBoxItem "ComboBox1","Item4"
SelectComboBoxItem 1,2,TRUE

End Sub

See Also ComboBoxEnabled (function); ComboBoxExists (function); GetComboBoxItem$
(function); GetComboBoxItemCount (function).

Platform(s) Windows.

432 Working Model Basic User's Manual

SelectListBoxItem (statement)
Syntax SelectListBoxItem {name$ | id},{ItemName$ | ItemNumber} [,isDoubleClick]

Description Selects an item from a list box given the name or ID of the list box and the
name or line number of the item.

Comments The SelectListBoxItem statement accepts the following parameters:

Parameter Description

name$ String indicating the name of the list box containing the item to be selected.

The name of a list box is determined by scanning the window list looking for a
text control with the given name that is immediately followed by a list box. A
runtime error is generated if a list box with that name cannot be found within
the active window.

id Integer specifying the ID of the list box containing the item to be selected.

ItemName$ String specifying which item is to be selected. The string is compared without
regard to case. If ItemName$ is a zero-length string, then all currently selected
items are deselected. A runtime error results if ItemName$ cannot be found in
the list box.

ItemNumber Integer containing the index of the item to be selected. A runtime error is
generated if ItemNumber is not within the correct range.

isDoubleClick Boolean value indicating whether a double click of that item is to be simulated.

The list box must exist within the current window or dialog box; otherwise, a
runtime error will be generated.

For multiselect list boxes, SelectListBoxItem will select additional
items (i.e., it will not remove the selection from the currently selected items).

Note: The SelectListBoxItem statement is used to select an item in a list box
of another application's dialog box. Use the DlgText statement to change the
selected item in a list box within a dynamic dialog box.

Example 'This example simulates a double click on the first item in list box 1.

Sub Main()
SelectListBoxItem "ListBox1",1,TRUE

End Sub

See Also GetListBoxItem$ (function); GetListBoxItemCount (function);
ListBoxEnabled (function); ListBoxExists (function).

Platform(s) Windows.

Chapter 2 SendKeys (statement) 433

SendKeys (statement)
Syntax SendKeys KeyString$ [,[isWait] [,time]]

Description Sends the specified keys to the active application, optionally waiting for the
keys to be processed before continuing.

Comments The SendKeys statement accepts the following parameters:

Parameter Description

KeyString$ String containing the keys to be sent. The format for KeyString$ is described
below.

isWait Boolean value. If True (or not specified), then WM Basic waits for the keys to
be completely processed before continuing.

time Integer specifying the number of milliseconds devoted for the output of the
entire KeyString$ parameter. It must be within the following range:

0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$ parameter contains
ten keys, then a key will be output every 1/2 second. If unspecified (or 0), the
keys will play back at full speed.

Specifying Keys

To specify any key on the keyboard, simply use that key, such as "a" for
lowercase a, or "A" for uppercase a.

Sequences of keys are specified by appending them together: "abc" or "dir
/w".

Some keys have special meaning and are therefore specified in a special way—
by enclosing them within braces. For example, to specify the percent sign, use
"{%}". The following table shows the special keys:

Key Special Meaning Example
+ Shift "+{F1}" 'Shift+F1

^ Ctrl "^a" 'Ctrl+A

~ Shortcut for Enter "~" 'Enter

% Alt "%F" 'Alt+F

[] No special meaning "{[}" 'Open bracket

{} Used to enclose special keys "{Up}" 'Up Arrow

() Used to specify grouping "^(ab)" 'Ctrl+A,
Ctrl+B

434 Working Model Basic User's Manual

Keys that are not displayed when you press them are also specified within
braces, such as {Enter} or {Up}. A list of these keys follows:

{BkSp} {BS} {Break} {CapsLock}
{Clear}
{Delete} {Del} {Down} {End} {Enter}
{Escape} {Esc} {Help} {Home}
{Insert}
{Left} {NumLock} {NumPad0} {NumPad1} {NumPad2}
{NumPad3} {NumPad4} {NumPad5} {NumPad6} {NumPad7}
{NumPad8} {NumPad9} {NumPad/} {NumPad*} {NumPad-}
{NumPad+} {NumPad.} {PgDn} {PgUp}
{PrtSc}
{Right} {Tab} {Up} {F1} {Scroll
Lock}
{F2} {F3} {F4} {F5} {F6}
{F7} {F8} {F9} {F10} {F11}
{F12} {F13} {F14} {F15} {F16}

Keys can be combined with Shift, Ctrl, and Alt using the reserved keys "+",
"^", and "%" respectively:

For Key Combination Use

Shift+Enter "+{Enter}"
Ctrl+C "^c"
Alt+F2 "%{F2}"

To specify a modifier key combined with a sequence of consecutive keys,
group the key sequence within parentheses, as in the following example:

For Key Combination Use

Shift+A, Shift+B "+(abc)"
Ctrl+F1, Ctrl+F2 "^({F1}{F2})"

Use "~" as a shortcut for embedding Enter within a key sequence:

For Key Combination Use

a, b, Enter, d, e "ab~de"
Enter, Enter "~~"

Chapter 2 Set (statement) 435

To embed quotation marks, use two quotation marks in a row:

For Key Combination Use

"Hello" ""Hello""
a"b"c "a""b""c"

Key sequences can be repeated using a repeat count within braces:

For Key Combination Use

Ten "a" keys "{a 10}"
Two Enter keys "{Enter 2}"

Eample 'This example runs Notepad, writes to Notepad, and saves the new file
using
'the SendKeys statement.

Sub Main()
id = Shell("Notepad.exe")
AppActivate "Notepad"
SendKeys "Hello, Notepad." 'Write some text.
Sleep 2000
SendKeys "%fs" 'Save file (simulate Alt+F, S keys).
Sleep 2000
SendKeys "name.txt{ENTER}" 'Enter name of new file to save.
AppClose "Notepad"

End Sub

See Also DoKeys (statement); QueKeys (statement); QueKeyDn (statement); QueKeyUp
(statement).

Platform(s) Windows.

Set (statement)
Syntax 1 Set object_var = object_expression

Syntax 2 Set object_var = New object_type

Syntax 3 Set object_var = Nothing

Description Assigns a value to an object variable.

436 Working Model Basic User's Manual

Comments Syntax 1

The first syntax assigns the result of an expression to an object variable. This
statement does not duplicate the object being assigned but rather copies a
reference of an existing object to an object variable.

The object_expression is any expression that evaluates to an object of the same
type as the object_var.

With data objects, Set performs additional processing. When the Set is
performed, the object is notified that a reference to it is being made and
destroyed. For example, the following statement deletes a reference to object A,
then adds a new reference to B.

Set a = b

In this way, an object that is no longer being referenced can be destroyed.

Syntax 2

In the second syntax, the object variable is being assigned to a new instance of
an existing object type. This syntax is valid only for data objects.

When an object created using the New keyword goes out of scope (i.e., the Sub
or Function in which the variable is declared ends), the object is destroyed.

Syntax 3

The reserved keyword Nothing is used to make an object variable reference
no object. At a later time, the object variable can be compared to Nothing to
test whether the object variable has been instantiated:

Set a = Nothing
:

If a Is Nothing Then Beep

Example 'This example creates two objects and sets their values.

Sub Main()
Dim document As Object
Dim page As Object
Set document = GetObject("c:\resume.doc")
Set page = Document.ActivePage
MsgBox page.name

End Sub

See Also = (statement); Let (statement); CreateObject (function); GetObject
(function); Nothing (constant).

Platform(s) Windows and Macintosh.

SetAttr (statement)
Syntax SetAttr filename$,attribute

Chapter 2 SetCheckBox (statement) 437

Description Changes the attribute filename$ to the given attribute. A runtime error results if
the file cannot be found.

Comments The SetAttr statement accepts the following parameters:

Parameter Description

filename$ String containing the name of the file.

attribute Integer specifying the new attribute of the file.

The attribute parameter can contain any combination of the following values:

Constant Value Description

ebNormal 0 Turns off all attributes
ebReadOnly 1 Read-only files
ebHidden 2 Hidden files
ebSystem 4 System files
ebVolume 8 Volume label
ebArchive 32 Files that have changed since the last
backup
ebNone 64 Turns off all attributes

The attributes can be combined using the + operator or the binary Or operator.

Example 'This example creates a file and sets its attributes to Read-Only and
'System.

Sub Main()
Open "test.dat" For Output Access Write As #1
Close
MsgBox "The current file attribute is: " & GetAttr("test.dat")
SetAttr "test.dat",ebReadOnly Or ebSystem
MsgBox "The file attribute was set to: " & GetAttr("test.dat")

End Sub

See Also GetAttr (function); FileAttr (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Under Windows, these attributes are the same as those used by DOS.

SetCheckBox (statement)
Syntax SetCheckBox {name$ | id},state

Description Sets the state of the check box with the given name or ID.

438 Working Model Basic User's Manual

Comments The SetCheckBox statement accepts the following parameters:

Parameter Description

name$ String containing the name of the check box to be set.

id Integer specifying the ID of the check box to be set.

state Integer indicating the new state of the check box. If state is 1, then the box is
checked. If state is 0, then the check is removed. If state is 2, then the box is
dimmed (only applicable for three-state check boxes).

A runtime error is generated if a check box with the specified name cannot be
found in the active window.

This statement has the side effect of setting the focus to the given check box.

Note: The SetCheckBox statement is used to set the state of a check box in
another application's dialog box. Use the DlgValue statement to modify the
state of a check box within a dynamic dialog box.

Example 'This example sets a factious checkbox

Sub Main()
SetCheckBox "CheckBox1",1

End Sub

See Also CheckBoxExists (function); CheckBoxEnabled (function); GetCheckBox
(function); DlgValue (statement).

Platform(s) Windows.

SetEditText (statement)
Syntax SetEditText {name$ | id},content$

Description Sets the content of an edit control given its name or ID.

Chapter 2 SetOption (statement) 439

Comments The SetEditText statement accepts the following parameters:

Parameter Description

name$ String containing the name of the text box to be set.

The name of a text box control is determined by scanning the window list
looking for a text control with the given name that is immediately followed by
an edit control. A runtime error is generated if a text box control with that name
cannot be found within the active window.

id Integer specifying the ID of the text box to be set.

For text boxes that do not have a preceding text control, the id can be used to
absolutely reference the control. The id is determined by examining the dialog
box with a resource editor or using an application such as Spy.

content$ String containing the new content for the text box.

This statement has the side effect of setting the focus to the given text box.

Note: The SetEditText statement is used to set the content of a text box in
another application's dialog box. Use the DlgText statement to set the text of a
text box within a dynamic dialog box.

Example 'This example sets the content of the filename text box of the
'current window to "test.dat".

Sub Main()
SetEditText "Filename:","test.dat"

End Sub

See Also EditEnabled (function); EditExists (function); GetEditText$ (function).

Platform(s) Windows.

SetOption (statement)
Syntax SetOption name$ | id

Description Selects the specified option button given its name or ID.

440 Working Model Basic User's Manual

Comments The SetOption statement accepts the following parameters:

Parameter Description

name$ String containing the name of the option button to be selected.

id Integer containing the ID of the option button to be selected.

A runtime error is generated if the option button cannot be found within the
active window.

Note: The SetOption statement is used to select an option button in another
application's dialog box. Use the DlgValue statement to select an option button
within a dynamic dialog box.

Example 'This example selects the Continue option button.

Sub Main()
SetOption "Continue"

End Sub

See Also GetOption (function); OptionEnabled (function); OptionExists (function).

Platform(s) Windows.

Sgn (function)
Syntax Sgn(number)

Description Returns an Integer indicating whether a number is less than, greater than, or
equal to 0.

Comments Returns 1 if number is greater than 0.

Returns 0 if number is equal to 0.

Returns –1 if number is less than 0.

The number parameter is a numeric expression of any type. If number is Null,
then a runtime error is generated. Empty is treated as 0.

Chapter 2 Shell (function) 441

Example 'This example tests the product of two numbers and displays
'a message based on the sign of the result.

Sub Main()
a% = -100
b% = 100
c% = a% * b%
Select Case Sgn(c%)

Case -1
MsgBox "The product is negative " & Sgn(c%)

Case 0
MsgBox "The product is 0 " & Sgn(c%)

Case 1
MsgBox "The product is positive " & Sgn(c%)

End Select
End Sub

See Also Abs (function).

Platform(s) Windows and Macintosh.

Shell (function)
Syntax Shell(command$ [,WindowStyle])

Description Executes another application, returning the task ID if successful.

442 Working Model Basic User's Manual

Comments The Shell statement accepts the following parameters:

Parameter Description

command$ String containing the name of the application and any parameters.

WindowStyle Optional Integer specifying the state of the application window after
execution. It can be any of the following values:

1 Normal window with focus

2 Minimized with focus (default)

3 Maximized with focus

4 Normal window without focus

7 Minimized without focus

An error is generated if unsuccessful running command$.

The Shell command runs programs asynchronously: the statement following
the Shell statement will execute before the child application has exited. On
some platforms, the next statement will run before the child application has
finished loading.

The Shell function returns a value suitable for activating the application using
the AppActivate statement. It is important that this value be placed into a
Variant, as its type depends on the platform.

Example 'This example displays the Windows Clock, delays awhile, then closes
it.

Sub Main()
id = Shell("clock.exe",1)
AppActivate "Clock"
Sleep(2000)
AppClose "Clock"

End Sub

See Also PrintFile (function); SendKeys (statement); AppActivate (statement).

Platform(s) Windows and Macintosh.

Chapter 2 Sin (function) 443

Platform
Notes:

Macintosh

The Macintosh does not support wildcard characters such as * and ?. These are
valid filename characters. Instead of wildcards, the Macintosh uses the MacID
function to specify a collection of files of the same type. The syntax for this
function is:

Shell(MacID(text$) [,WindowStyle])

The text$ parameter is a four-character string containing an application
signature. A runtime error occurs if the MacID function is used on platforms
other than the Macintosh.

On the Macintosh, the WindowStyle parameter only specifies whether the
application receives the focus.

Platform
Notes:

Windows

Under Windows, this function returns the hInstance of the application.
Since this value is only a WORD in size, the upper WORD of the result is always
zero.

Sin (function)
Syntax Sin(angle)

Description Returns a Double value specifying the sine of angle.

Comments The angle parameter is a Double specifying an angle in radians.

Example 'This example displays the sine of pi/4 radians (45 degrees).

Sub Main()
c# = Sin(Pi / 4)
MsgBox "The sine of 45 degrees is: " & c#

End Sub

See Also Tan (function); Cos (function); Atn (function).

Platform(s) Windows and Macintosh.

Single (data type)
Syntax Single

Description A data type used to declare variables capable of holding real numbers with up
to seven digits of precision.

444 Working Model Basic User's Manual

Comments Single variables are used to hold numbers within the following ranges:

Sign Range

Negative -3.402823E38 <= single <= -1.401298E-45

Positive 1.401298E-45 <= single <= 3.402823E38

The type-declaration character for Single is !.

Storage

Internally, singles are stored as 4-byte (32-bit) IEEE values. Thus, when
appearing within a structure, singles require 4 bytes of storage. When used with
binary or random files, 4 bytes of storage is required.

Each single consists of the following

A 1-bit sign

An 8-bit exponent

A 24-bit mantissa

See Also Currency (data type); Date (data type); Double (data type); Integer (data
type); Long (data type); Object (data type); String (data type); Variant (data
type); Boolean (data type); DefType (statement); CSng (function).

Platform(s) Windows and Macintosh.

Sleep (statement)
Syntax Sleep milliseconds

Description Causes the script to pause for a specified number of milliseconds.

Comments The milliseconds parameter is a Long in the following range:

0 <= milliseconds <= 2,147,483,647

Example 'This example displays a message for 2 seconds.

Sub Main()
MsgOpen "Waiting 2 seconds",0,False,False
Sleep(2000)
MsgClose

End Sub

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Under Windows, the accuracy of the system clock is modulo 55 milliseconds.
The value of milliseconds will, in the worst case, be rounded up to the nearest
multiple of 55. In other words, if milliseconds is 1, it will be rounded to 55 in
the worst case.

Chapter 2 Sln (function) 445

Sln (function)
Syntax Sln(Cost,Salvage,Life)

Description Returns the straight-line depreciation of an asset assuming constant benefit
from the asset.

Comments The Sln of an asset is found by taking an estimate of its useful life in years,
assigning values to each year, and adding up all the numbers.

The formula used to find the Sln of an asset is as follows:

(Cost - Salvage Value) / Useful Life

The Sln function requires the following parameters:

Parameter Description

Cost Double representing the initial cost of the asset.

Salvage Double representing the estimated value of the asset at the end of its useful life.

Life Double representing the length of the asset's useful life.

The unit of time used to express the useful life of the asset is the same as the
unit of time used to express the period for which the depreciation is returned.

Example 'This example calculates the straight-line depreciation of an asset
'that cost $10,000.00 and has a salvage value of $500.00 as scrap
'after 10 years of service life.

Sub Main()
dep# = Sln(10000.00,500.00,10)
MsgBox "The annual depreciation is: " & Format(dep#,"Currency")

End Sub

See Also SYD (function); DDB (function).

Platform(s) Windows and Macintosh.

Space, Space$ (functions)
Syntax Space[$](NumSpaces)

Description Returns a string containing the specified number of spaces.

Comments Space$ returns a String, whereas Space returns a String variant.

NumSpaces is an Integer between 0 and 32767.

446 Working Model Basic User's Manual

Example 'This example returns a string of ten spaces and displays it.

Sub Main()
ln$ = Space$(10)
MsgBox "Hello" & ln$ & "over there."

End Sub

See Also String, String$ (functions); Spc (function).

Platform(s) Windows and Macintosh.

Spc (function)
Syntax Spc(numspaces)

Description Prints out the specified number of spaces. This function can only be used with
the Print and Print# statements.

Comments The numspaces parameter is an Integer specifying the number of spaces to
be printed. It can be any value between 0 and 32767.

If a line width has been specified (using the Width statement), then the
number of spaces is adjusted as follows:

numspaces = numspaces Mod width

If the resultant number of spaces is greater than width -
print_position, then the number of spaces is recalculated as follows:

numspaces = numspaces – (width – print_position)

These calculations have the effect of never allowing the spaces to overflow the
line length. Furthermore, with a large value for column and a small line width,
the file pointer will never advance more than one line.

Example 'This example displays 20 spaces between the arrows.

Sub Main()
ViewportOpen
Print "I am"; Spc(20); "20 spaces apart!"
Sleep (10000)'Wait 10 seconds.
ViewportClose

End Sub

See Also Tab (function); Print (statement); Print# (statement).

Platform(s) Windows and Macintosh.

SQLBind (function)
Syntax SQLBind(ID,array,column)

Description Specifies which fields are returned when results are requested using the
SQLRetrieve or SQLRetrieveToFile function.

Chapter 2 SQLBind (function) 447

Comments The following table describes the parameters to the SQLBind function:

Parameter Description

ID Long parameter specifying a valid connection.

array Any array of variants. Each call to SQLBind adds a new column number (an
Integer) in the appropriate slot in the array. Thus, as you bind additional
columns, the array parameter grows, accumulating a sorted list (in ascending
order) of bound columns.

If array is fixed, then it must be a one-dimensional variant array with sufficient
space to hold all the bound column numbers. A runtime error is generated if
array is too small.

If array is dynamic, then it will be resized to exactly hold all the bound column
numbers.

column Optional Long parameter that specifies the column to which to bind data. If this
parameter is omitted, all bindings for the connection are dropped.

This function returns the number of bound columns on the connection. If no
columns are bound, then 0 is returned. If there are no pending queries, then
calling SQLBind will cause an error (queries are initiated using the
SQLExecQuery function).

If supported by the driver, row numbers can be returned by binding column 0.

WM Basic generates a trappable runtime error if SQLBind fails. Additional
error information can then be retrieved using the SQLError function.

Example 'This example binds columns to data.

Sub Main()
Dim columns() As Variant
id& = SQLOpen("dsn=SAMPLE",,3)
t& = SQLExecQuery(id&,"Select * From c:\sample.dbf")
i% = SQLBind(id&,columns,3)
i% = SQLBind(id&,columns,1)
i% = SQLBind(id&,columns,2)
i% = SQLBind(id&,columns,6)
For x = 0 To (i% - 1)

MsgBox columns(x)
Next x
id& = SQLClose(id&)

End Sub

See Also SQLRetrieve (function); SQLRetrieveToFile (function).

Platform(s) Windows.

448 Working Model Basic User's Manual

SQLClose (function)
Syntax SQLClose(connectionID)

Description Closes the connection to the specified data source.

Comments The unique connection ID (connectionID) is a Long value representing a valid
connection as returned by SQLOpen. After SQLClose is called, any subsequent
calls made with the connectionID will generate runtime errors.

The SQLClose function returns 0 if successful; otherwise, it returns the passed
connection ID and generates a trappable runtime error. Additional error
information can then be retrieved using the SQLError function.

WM Basic automatically closes all open SQL connections when either the
script or the application terminates. You should use the SQLClose function
rather than relying on WM Basic to automatically close connections in order to
ensure that your connections are closed at the proper time.

Example 'This example disconnects the the data source sample.

Sub Main()
id& = SQLOpen("dsn=SAMPLE",,3)
id& = SQLClose(id&)

End Sub

See Also SQLOpen (function).

Platform(s) Windows.

SQLError (function)
Syntax SQLError(ErrArray [, ID])

Description Retrieves driver-specific error information for the most recent SQL functions
that failed.

Chapter 2 SQLError (function) 449

Comments This function is called after any other SQL function fails. Error information is
returned in a two-dimensional array (ErrArray). The following table describes
the parameters to the SQLError function:

Parameter Description

ErrArray Two-dimensional Variant array, which can be dynamic or fixed.

If the array is fixed, it must be (x,3), where x is the number of errors you want
returned. If x is too small to hold all the errors, then the extra error information
is discarded. If x is greater than the number of errors available, all errors are
returned, and the empty array elements are set to Empty.

If the array is dynamic, it will be resized to hold the exact number of errors.

ID Optional Long parameter specifying a connection ID. If this parameter is
omitted, error information is returned for the most recent SQL function call.

Each array entry in the ErrArray parameter describes one error. The three
elements in each array entry contain the following information:

Element Value

(entry,0) The ODBC error state, indicated by a Long containing the error class and
subclass.

(entry,1) The ODBC native error code, indicated by a Long.

(entry,2) The text error message returned by the driver. This field is String type.

For example, to retrieve the ODBC text error message of the first returned
error, the array is referenced as:

ErrArray(0,2)

The SQLError function returns the number of errors found.

WM Basic generates a runtime error if SQLError fails. (You cannot use the
SQLError function to gather additional error information in this case.)

450 Working Model Basic User's Manual

Example 'This example forces a connection error and traps it for use with
'the SQLError function.

Sub Main()
Dim a() As Variant
On Error Goto Trap
id& = SQLOpen("",,4)
id& = SQLClose(id&)
Exit Sub

Trap:
rc% = SQLError(a)
If (rc%) Then

For x = 0 To (rc% - 1)
MsgBox "The SQLState returned was: " & a(x,0)
MsgBox "The native error code returned was: " & a(x,1)
MsgBox a(x,2)

Next x
End If

End Sub

Platform(s) Windows.

SQLExecQuery (function)
Syntax SQLExecQuery(ID, query$)

Description Executes an SQL statement query on a data source.

Comments This function is called after a connection to a data source is established using
the SQLOpen function. The SQLExecQuery function may be called multiple
times with the same connection ID, each time replacing all results.

The following table describes the parameters to the SQLExecQuery function:

Parameter Description

ID Long identifying a valid connected data source. This parameter is returned by
the SQLOpen function.

query$ String specifying an SQL query statement. The SQL syntax of the string must
strictly follow that of the driver.

Chapter 2 SQLGetSchema (function) 451

The return value of this function depends on the result returned by the SQL
statement:

SQL Statement Value

SELECT...FROM The value returned is the number of columns returned
by the SQL statement.

DELETE,INSERT,UPDATEThe value returned is the number of rows affected by
the SQL statement.

WM Basic generates a runtime error if SQLExecQuery fails. Additional error
information can then be retrieved using the SQLError function.

Example 'This example executes a query on the connected data source.

Sub Main()
Dim s As String
Dim qry As Long
Dim a() As Variant

On Error Goto Trap
id& = SQLOpen("dsn=SAMPLE", s$, 3)
qry = SQLExecQuery(id&,"Select * From c:\sample.dbf")
MsgBox "There are " & qry & " columns in the result set."
id& = SQLClose(id&)
Exit Sub

Trap:
rc% = SQLError(a)
If (rc%) Then

For x = 0 To (rc% - 1)
MsgBox "The SQLState returned was: " & a(x,0)
MsgBox "The native error code returned was: " & a(x,1)
MsgBox a(x,2)

Next x
End If

End Sub

See Also SQLOpen (function); SQLClose (function); SQLRetrieve (function);
SQLRetrieveToFile (function).

Platform(s) Windows.

SQLGetSchema (function)
Syntax SQLGetSchema(ID, action, [,[array] [,qualifier$]])

Description Returns information about the data source associated with the specified
connection.

452 Working Model Basic User's Manual

Comments The following table describes the parameters to the SQLGetSchema function:

Parameter Description

ID Long parameter identifying a valid connected data source. This parameter is
returned by the SQLOpen function.

action Integer parameter specifying the results to be returned. The following table
lists values for this parameter:

Value Meaning

1 Returns a one-dimensional array of available
data sources. The array is returned in the
array parameter.

2 Returns a one-dimensional array of databases
(either directory names or database names,
depending on the driver) associated with the
current connection. The array is returned in
the array parameter.

3 Returns a one-dimensional array of owners
(user IDs) of the database associated with the
current connection. The array is returned in
the array parameter.

4 Returns a one-dimensional array of table
names for a specified owner and database
associated with the current connection. The
array is returned in the array parameter.

5 Returns a two-dimentional array (n by 2)
containing information about a specified
table. The array is configured as follows:

(0,0) Zeroth column name
(0,1) ODBC SQL data type
(Integer)
(1,0) First column name
(1,1) ODBC SQL data type
(Integer)
 : :
(n,0) Nth column name
(n,1) ODBC SQL data type
(Integer)

6 Returns a string containing the ID of the
current user.

Chapter 2 SQLGetSchema (function) 453

7 Returns a string containing the name (either
the directory name or the database name,
depending on the driver) of the current
database.

8 Returns a string containing the name of the
data source on the current connection.

9 Returns a string containing the name of the
DBMS of the data source on the current
connection (e.g., "FoxPro 2.5" or "Excel
Files").

10 Returns a string containing the name of the
server for the data source.

11 Returns a string containing the owner
qualifier used by the data source (e.g.,
"owner," "Authorization ID," "Schema").

12 Returns a string containing the table qualifier
used by the data source (e.g., "table," "file").

13 Returns a string containing the database
qualifier used by the data source (e.g.,
"database," "directory").

14 Returns a string containing the procedure
qualifier used by the data source (e.g.,
"database procedure," "stored procedure,"
"procedure").

array Optional Variant array parameter. This parameter is only required for action
values 1, 2, 3, 4, and 5. The returned information is put into this array.

If array is fixed and it is not the correct size necessary to hold the requested
information, then SQLGetSchema will fail. If the array is larger than required,
then any additional elements are erased.

If array is dynamic, then it will be redimensioned to hold the exact number of
elements requested.

454 Working Model Basic User's Manual

qualifier Optional String parameter required for actions 3, 4, or 5. The values are listed
in the following table:

Action Qualifier

3 The qualifier parameter must be the name of
the database represented by ID.

4 The qualifier parameter specifies a database
name and an owner name. The syntax for this
string is:

DatabaseName.OwnerName

5 The qualifier parameter specifies the name of
a table on the current connection.

WM Basic generates a runtime error if SQLGetSchema fails. Additional error
information can then be retrieved using the SQLError function.

If you want to retrieve the available data sources (where action = 1) before
establishing a connection, you can pass 0 as the ID parameter. This is the only
action that will execute successfully without a valid connection.

This function calls the ODBC functions SQLGetInfo and SQLTables in order to
retrieve the requested information. Some database drivers do not support these
calls and will therefore cause the SQLGetSchema function to fail.

Example 'This example gets all available data sources.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Dim dsn() As Variant
numdims% = SQLGetSchema(0,1,dsn)
If (numdims%) Then

msg = "Valid data sources are:" & crlf
For x = 0 To numdims% - 1

msg = msg & dsn(x) & crlf
Next x

Else
msg = "There are no available data sources."

End If
MsgBox msg

End Sub

See Also SQLOpen (function).

Platform(s) Windows.

Chapter 2 SQLOpen (function) 455

SQLOpen (function)
Syntax SQLOpen(login$ [,[completed$] [,prompt]])

Description Establishes a connection to the specified data source, returning a Long
representing the unique connection ID.

Comments This function connects to a data source using a login string (login$) and
optionally sets the completed login string (completed$) that was used by the
driver. The following table describes the parameters to the SQLOpen function:

Parameter Description

login$ String expression containing information required by the driver to connect to
the requested data source. The syntax must strictly follow the driver's SQL
syntax.

completed$ Optional String variable that will recieve a completed connection string
returned by the driver. If this parameter is missing, then no connection string
will be returned.

prompt Integer expression specifying any of the following values:

Value Meaning

1 The driver's login dialog box is always
displayed.

2 The driver's dialog box is only displayed if
the connection string does not contain enough
information to make the connection. This is
the default behavior.

3 The driver's dialog box is only displayed if
the connection string does not contain enough
information to make the connection. Dialog
box options that were passed as valid
parameters are dimmed and unavailable.

4 The driver's login dialog box is never
displayed.

The SQLOpen function will never return an invalid connection ID. The
following example establishes a connection using the driver's login dialog box:

id& = SQLOpen("",,1)

WM Basic returns 0 and generates a trappable runtime error if SQLOpen fails.
Additional error information can then be retrieved using the SQLError function.

456 Working Model Basic User's Manual

Before you can use any SQL statements, you must set up a data source and
relate an existing database to it. This is accomplished using the odbcadm.exe
program.

Example 'This example connects the data source called "sample," returning the
'completed connction string, and then displays it.

Sub Main()
Dim s As String
id& = SQLOpen("dsn=SAMPLE",s$,3)
MsgBox "The completed connection string is: " & s$
id& = SQLClose(id&)

End Sub

See Also SQLClose (function).

Platform(s) Windows.

SQLRequest (function)
Syntax SQLRequest(connection$,query$,array [,[output$] [,[prompt] [,isColumnNames]]])

Description Opens a connection, runs a query, and returns the results as an array.

Comments The SQLRequest function takes the following parameters:

Parameter Description

connection String specifying the connection information required to connect to the data
source.

query String specifying the query to execute. The syntax of this string must strictly
follow the syntax of the ODBC driver.

array Array of variants to be filled with the results of the query.

The array parameter must be dynamic: it will be resized to hold the exact
number of records and fields.

output Optional String to receive the completed connection string as returned by the
driver.

prompt Optional Integer specifying the behavior of the driver's dialog box.

isColumnNames Optional Boolean specifying whether the column names are returned as the
first row of results. The default is False.

WM Basic generates a runtime error if SQLRequest fails. Additional error
information can then be retrieved using the SQLError function.

Chapter 2 SQLRetrieve (function) 457

The SQLRequest function performs one of the following actions, depending on
the type of query being performed:

Type of Query Action

SELECT The SQLRequest function fills array with the results
of the query, returning a Long containing the number
of results placed in the array. The array is filled as
follows (assuming an x by y query):

(record 1,field 1)
(record 1,field 2)

:
(record 1,field y)
(record 2,field 1)
(record 2,field 2)

:
(record 2,field y)

:
:

(record x,field 1)
(record x,field 2)

:
(record x,field y)

INSERT, DELETE, UPDATE The SQLRequest function erases array and
returns a Long containing the number of affected rows.

Example 'This example opens a data source, runs a select query on it, and
'then displays all the data found in the result set.

Sub Main()
Dim a() As Variant
l& = SQLRequest("dsn=SAMPLE;","Select * From

c:\sample.dbf",a,,3,True)
For x = 0 To Ubound(a)

For y = 0 To l - 1
MsgBox a(x,y)

Next y
Next x

End Sub

Platform(s) Windows.

SQLRetrieve (function)
Syntax SQLRetrieve(ID,array[,[maxcolumns] [,[maxrows] [,[isColumnNames] [,

isFetchFirst]]]])

Description Retrieves the results of a query.

458 Working Model Basic User's Manual

Comments This function is called after a connection to a data source is established, a query
is executed, and the desired columns are bound. The following table describes
the parameters to the SQLRetrieve function:

Parameter Description

ID Long identifying a valid connected data source with pending query results.

array Two-dimensional array of variants to receive the results. The array has x rows
by y columns. The number of columns is determined by the number of bindings
on the connection.

maxcolumns Optional Integer expression specifying the maximum number of columns to
be returned. If maxcolumns is greater than the number of columns bound, the
additional columns are set to empty. If maxcolumns is less than the number of
bound results, the rightmost result columns are discarded until the result fits.

maxrows Optional Integer specifying the maximum number of rows to be returned. If
maxrows is greater than the number of rows available, all results are returned,
and additional rows are set to empty. If maxrows is less than the number of
rows available, the array is filled, and additional results are placed in memory
for subsequent calls to SQLRetrieve.

isColumnNames Optional Boolean specifying whether column names should be returned as the
first row of results. The default is False.

isFetchFirst Optional Boolean expression specifying whether results are retrieved from the
beginning of the result set. The default is False.

Before you can retrieve the results from a query, you must (1) initiate a query
by calling the SQLExecQuery function and (2) specify the fields to retrieve by
calling the SQLBind function.

This function returns a Long specifying the number of columns available in the
array.

WM Basic generates a runtime error if SQLRetrieve fails. Additional error
information is placed in memory.

Chapter 2 SQLRetrieveToFile (function) 459

Example 'This example executes a query on the connected data source, binds
'columns, and retrieves them.

Sub Main()
Dim a() As Variant
Dim b() As Variant
Dim c() As Variant

On Error Goto Trap
id& = SQLOpen("DSN=SAMPLE",,3)
qry& = SQLExecQuery(id&,"Select * From c:\sample.dbf"")
i% = SQLBind(id&,b,3)
i% = SQLBind(id&,b,1)
i% = SQLBind(id&,b,2)
i% = SQLBind(id&,b,6)
l& = SQLRetrieve(id&,c)
For x = 0 To Ubound(c)

For y = 0 To l& - 1
MsgBox c(x,y)

Next y
Next x
id& = SQLClose(id&)
Exit Sub

Trap:
rc% = SQLError(a)
If (rc%) Then

For x = 0 To (rc% - 1)
MsgBox "The SQLState returned was: " & a(x,0)
MsgBox "The native error code returned was: " & a(x,1)
MsgBox a(x,2)

Next x
End If

End Sub

See Also SQLOpen (function); SQLExecQuery (function); SQLClose (function); SQLBind
(function); SQLRetrieveToFile (function).

Platform(s) Windows.

SQLRetrieveToFile (function)
Syntax SQLRetrieveToFile(ID,destination$ [,[isColumnNames] [,delimiter$]])

Description Retrieves the results of a query and writes them to the specified file.

460 Working Model Basic User's Manual

Comments The following table describes the parameters to the SQLRetrieveToFile
function:

Parameter Description

ID Long specifying a valid connection ID.

destination String specifying the file where the results are written.

isColumnNames Optional Boolean specifying whether the first row of results returned are the
bound column names. By default, the column names are not returned.

delimiter Optional String specifying the column separator. A tab (Chr$(9)) is used as
the default.

Before you can retrieve the results from a query, you must (1) initiate a query
by calling the SQLExecQuery function and (2) specify the fields to retrieve by
calling the SQLBind function.

This function returns the number of rows written to the file. A runtime error is
generated if there are no pending results or if WM Basic is unable to open the
specified file.

WM Basic generates a runtime error if SQLRetrieveToFile fails. Additional
error information may be placed in memory for later use with the SQLError
function.

Chapter 2 Sqr (function) 461

Example 'This example opens a connection, runs a query, binds columns, and
'writes the results to a file.

Sub Main()
Dim a() As Variant
Dim b() As Variant

On Error Goto Trap
id& = SQLOpen("DSN=SAMPLE;UID=RICH",,4)
t& = SQLExecQuery(id&, "Select * From c:\sample.dbf"")
i% = SQLBind(id&,b,3)
i% = SQLBind(id&,b,1)
i% = SQLBind(id&,b,2)
i% = SQLBind(id&,b,6)
l& = SQLRetrieveToFile(id&,"c:\results.txt",True,",")
id& = SQLClose(id&)
Exit Sub

Trap:
rc% = SQLError(a)
If (rc%) Then

For x = 0 To (rc-1)
MsgBox "The SQLState returned was: " & a(x,0)
MsgBox "The native error code returned was: " & a(x,1)
MsgBox a(x,2)

Next x
End If

End Sub

See Also SQLOpen (function); SQLExecQuery (function); SQLClose (function); SQLBind
(function); SQLRetrieve (function).

Platform(s) Windows.

Sqr (function)
Syntax Sqr(number)

Description Returns a Double representing the square root of number.

Comments The number parameter is a Double greater than or equal to 0.

Example 'This example calculates the square root of the numbers from 1 to 10
'and displays them.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
For x = 1 To 10

sx# = Sqr(x)
msg = msg & Format(x,"Fixed") & " - " & Format(sx#,"Fixed") &

crlf
Next x
MsgBox msg

End Sub

462 Working Model Basic User's Manual

Platform(s) Windows and Macintosh.

Stop (statement)
Syntax Stop

Description Suspends execution of the current script, returning control to a debugger if one
is present. If a debugger is not present, this command will have the same effect
as End.

Example 'The Stop statement can be used for debugging. In this example, it is
used
'to stop execution when Z is randomly set to 0.

Sub Main()
For x = 1 To 10

z = Random(0,10)
If z = 0 Then Stop
y = x / z

Next x
End Sub

See Also Exit For (statement); Exit Do (statement); Exit Function (statement); Exit
Sub (statement); End (statement).

Platform(s) Windows and Macintosh.

Str, Str$ (functions)
Syntax Str[$](number)

Description Returns a string representation of the given number.

Comments The number parameter is any numeric expression or expression convertible to a
number. If number is negative, then the returned string will contain a leading
minus sign. If number is positive, then the returned string will contain a leading
space.

Singles are printed using only 7 significant digits. Doubles are printed using
15–16 significant digits.

These functions only output the period as the decimal separator and do not
output thousands separators. Use the CStr, Format, or Format$ function
for this purpose.

Example 'In this example, the Str$ function is used to display the value of a
'numeric variable.

Sub Main()
x# = 100.22
MsgBox "The string value is: " + Str(x#)

End Sub

Chapter 2 StrComp (function) 463

See Also Format, Format$ (functions); CStr (function).

Platform(s) Windows and Macintosh.

StrComp (function)
Syntax StrComp(string1,string2 [,compare])

DescriptionReturns an Integer indicating the result of comparing the two string arguments.

Comments Any of the following values are returned:

0 string1 = string2

1 string1 > string2

_1 string1 < string2

Null string1 or string2 is Null

The StrComp function accepts the following parameters:

Parameter Description

string1 First string to be compared, which can be any expression convertible to a
String.

string2 Second string to be compared, which can be any expression convertible to a
String.

compare Optional Integer specifying how the comparison is to be performed. It can be
either of the following values:

0 Case-sensitive comparison

1 Case-insensitive comparison

If compare is not specified, then the current Option Compare setting is
used. If no Option Compare statement has been encountered, then Binary
is used (i.e., string comparison is case-sensitive).

464 Working Model Basic User's Manual

Example 'This example compares two strings and displays the results.
'It illustrates that the function compares two strings to the
'length of the shorter string in determining equivalency.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = "This string is UPPERCASE and lowercase"
b$ = "This string is uppercase and lowercase"
c$ = "This string"
d$ = "This string is uppercase and lowercase characters"
abc = StrComp(a$,b$,0)
msg = msg & "a and c (sensitive) : " & Format(abc,"True/False") &

crlf
abi = StrComp(a$,b$,1)
msg = msg & "a and b (insensitive): " & Format(abi,"True/False") &

crlf
aci = StrComp(a$,c$,1)
msg = msg & "a and c (insensitive): " & Format(aci,"True/False") &

crlf
bdi = StrComp(b$,d$,1)
msg = msg & "b and d (sensitive) : " & Format(bdi,"True/False") &

crlf
MsgBox msg

End Sub

See Also Comparison Operators (topic); Like (operator); Option Compare (statement).

Platform(s) Windows and Macintosh.

String (data type)
Syntax String

Description A data type capable of holding a number of characters.

Comments Strings are used to hold sequences of characters, each character having a value
between 0 and 255. Strings can be any length up to a maximum length of 32767
characters.

Strings can contain embedded nulls, as shown in the following example:

s$ = "Hello" + Chr$(0) + "there" 'String with embedded null

The length of a string can be determined using the Len function. This function
returns the number of characters that have been stored in the string, including
unprintable characters.

The type-declaration character for String is $.

String variables that have not yet been assigned are set to zero-length by
default.

Chapter 2 String, String$ (functions) 465

Strings are normally declared as variable-length, meaning that the memory
required for storage of the string depends on the size of its content. The
following WM Basic statements declare a variable-length string and assign it a
value of length 5:

Dim s As String
s = "Hello" 'String has length 5.

Fixed-length strings are given a length in their declaration:

Dim s As String * 20
s = "Hello" 'String has length 20 (internally pads with

spaces).

When a string expression is assigned to a fixed-length string, the following
rules apply:

If the string expression is less than the length of the fixed-length string, then
the fixed-length string is padded with spaces up to its declared length.

If the string expression is greater than the length of the fixed-length string,
then the string expression is truncated to the length of the fixed-length
string.

Fixed-length strings are useful within structures when a fixed size is required,
such as when passing structures to external routines.

The storage for a fixed-length string depends on where the string is declared, as
described in the following table:

Strings Declared Are Stored

In structures In the same data area as that of the structure. Local structures are on the stack;
public structures are stored in the public data space; and private structures are
stored in the private data space. Local structures should be used sparingly as
stack space is limited.

In arrays In the global string space along with all the other array elements.

Local routines On the stack. The stack is limited in size, so local fixed-length strings should be
used sparingly.

See Also Currency (data type); Date (data type); Double (data type); Integer (data
type); Long (data type); Object (data type); Single (data type); Variant (data
type); Boolean (data type); DefType (statement); CStr (function).

Platform(s) Windows and Macintosh.

String, String$ (functions)
Syntax String[$](number,[CharCode | text$])

466 Working Model Basic User's Manual

Description Returns a string of length number consisting of a repetition of the specified
filler character.

Comments String$ returns a String, whereas String returns a String variant.

These functions take the following parameters:

Parameter Description

number Integer specifying the number of repetitions.

CharCode Integer specifying the character code to be used as the filler character. If
CharCode is greater than 255 (the largest character value), then WM Basic
converts it to a valid character using the following formula:

CharCode Mod 256

text$ Any String expression, the first character of which is used as the filler
character.

Example 'This example uses the String function to create a line of "=" signs
'the length of another string and then displays the character string
'underlined with the generated string.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = "This string will appear underlined."
b$ = String$(Len(a$),"=")
MsgBox a$ & crlf & b$

End Sub

See Also Space, Space$ (functions).

Platform(s) Windows and Macintosh.

Sub...End Sub (statement)
Syntax [Private | Public] [Static] Sub name[(arglist)]

[statements]
End Sub

Where arglist is a comma-separated list of the following (up to 30 arguments
are allowed):

[Optional] [ByVal | ByRef] parameter[()] [As type]

Description Declares a subroutine.

Chapter 2 Sub...End Sub (statement) 467

Comments The Sub statement has the following parts:

Part Description

Private Indicates that the subroutine being defined cannot be called from other scripts.

Public Indicates that the subroutine being defined can be called from other scripts. If
the Private and Public keywords are both missing, then Public is assumed.

Static Recognized by the compiler but currently has no effect.

name Name of the subroutine, which must follow WM Basic naming conventions:

1. Must start with a letter.

2. May contain letters, digits, and the underscore character
(_). Punctuation and type-declaration characters are not
allowed. The exclamation point (!) can appear within the
name as long as it is not the last character.

3. Must not exceed 80 characters in length.

Optional Keyword indicating that the parameter is optional. All optional parameters must
be of type Variant. Furthermore, all parameters that follow the first optional
parameter must also be optional.

If this keyword is omitted, then the parameter is required.

Note: You can use the IsMissing function to determine if an optional
parameter was actually passed by the caller.

ByVal Keyword indicating that the parameter is passed by value.

ByRef Keyword indicating that the parameter is passed by reference. If neither the
ByVal nor the ByRef keyword is given, then ByRef is assumed.

parameter Name of the parameter, which must follow the same naming conventions as
those used by variables. This name can include a type-declaration character,
appearing in place of As type.

type Type of the parameter (i.e., Integer, String, and so on). Arrays are indicated
with parentheses. For example, an array of integers would be declared as
follows:

Sub Test(a() As Integer)
End Sub

A subroutine terminates when one of the following statements is encountered:
End Sub
Exit Sub

Subroutines can be recursive.

468 Working Model Basic User's Manual

Passing Parameters to Subroutines

Parameters are passed to a subroutine either by value or by reference,
depending on the declaration of that parameter in arglist. If the parameter is
declared using the ByRef keyword, then any modifications to that passed
parameter within the subroutine change the value of that variable in the caller.
If the parameter is declared using the ByVal keyword, then the value of that
variable cannot be changed in the called subroutine. If neither the ByRef or
ByVal keywords are specified, then the parameter is passed by reference.

You can override passing a parameter by reference by enclosing that parameter
within parentheses. For instance, the following example passes the variable j
by reference, regardless of how the third parameter is declared in the arglist of
UserSub:

UserSub 10,12,(j)

Optional Parameters

WM Basic allows you to skip parameters when calling subroutines, as shown in
the following example:

Sub Test(a%,b%,c%)
End Sub

Sub Main
Test 1,,4 'Parameter 2 was skipped.

End Sub

You can skip any parameter with the following restrictions:

1. The call cannot end with a comma. For instance, using the above example,
the following is not valid:

Test 1,,

2. The call must contain the minimum number of parameters as requred by the
called subroutine. For instance, using the above example, the following are
invalid:

Test ,1 'Only passes two out of three required
parameters.

Test 1,2 'Only passes two out of three required parameters.

Chapter 2 Switch (function) 469

When you skip a parameter in this manner, WM Basic creates a temporary
variable and passes this variable instead. The value of this temporary variable
depends on the data type of the corresponding parameter in the argument list of
the called subroutine, as described in the following table:

Value Data type

0 Integer, Long, Single, Double, Currency

Zero-length string String

Nothing Object (or any data object)

Error Variant

December 30, 1899 Date

False Boolean

Within the called subroutine, you will be unable to determine if a parameter
was skipped unless the parameter was declared as a variant in the argument list
of the subroutine. In this case, you can use the IsMissing function to determine
if the parameter was skipped:

Sub Test(a,b,c)
If IsMissing(a) Or IsMissing(b) Then Exit Sub

End Sub

Example 'This example uses a subroutine to calculate the area of a circle.

Sub Main()
r! = 10
PrintArea r!

End Sub

Sub PrintArea(r as single)
area! = (r! ^ 2) * Pi
MsgBox "The area of a circle with radius " & r! & " = " & area!

End Sub

See Also Main (keyword); Function...End Function (statement).

Platform(s) Windows and Macintosh.

Switch (function)
Syntax Switch(condition1,expression1 [,condition2,expression2 ... [,condition7,expression7]])

Description Returns the expression corresponding to the first True condition.

470 Working Model Basic User's Manual

Comments The Switch function evaluates each condition and expression, returning the
expression that corresponds to the first condition (starting from the left) that
evaluates to True. Up to seven condition/expression pairs can be specified.

A runtime error is generated it there is an odd number of parameters (i.e., there
is a condition without a corresponding expression).

The Switch function returns Null if no condition evaluates to True.

Example 'The following code fragment displays the current operating platform.
If the
'platform is unknown, then the word "Unknown" is displayed.

Sub Main()
Dim a As Variant
a = Switch(Basic.OS = 0,"Windows 3.1",Basic.OS = 10,"Mac")
MsgBox "The current platforms is: " & IIf(IsNull(a),"Unknown",a)

End Sub

See Also Choose (function); IIf (function); If...Then...Else (statement);
Select...Case (statement).

Platform(s) Windows and Macintosh.

SYD (function)
Syntax SYD(Cost,Salvage,Life,Period)

Description Returns the sum of years' digits depreciation of an asset over a specific period
of time.

Comments The SYD of an asset is found by taking an estimate of its useful life in years,
assigning values to each year, and adding up all the numbers.

The formula used to find the SYD of an asset is as follows:

(Cost – Salvage_Value) * Remaining_Useful_Life / SYD

The SYD function requires the following parameters:

Parameter Description

Cost Double representing the initial cost of the asset.

Salvage Double representing the estimated value of the asset at the end of its useful life.

Life Double representing the length of the asset's useful life.

Period Double representing the period for which the depreciation is to be calculated. It
cannot exceed the life of the asset.

To receive accurate results, the parameters Life and Period must be expressed
in the same units. If Life is expressed in terms of months, for example, then
Period must also be expressed in terms of months.

Chapter 2 System.Exit (method) 471

Example 'In this example, an asset that cost $1,000.00 is depreciated over ten
years.
'The salvage value is $100.00, and the sum of the years' digits
'depreciation is shown for each year.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
For x = 1 To 10

dep# = SYD(1000,100,10,x)
msg = msg & "Year: " & x & " Dep: " & Format(dep#,"Currency") &

crlf
Next x
MsgBox msg

End Sub

See Also Sln (function); DDB (function).

Platform(s) Windows and Macintosh.

System.Exit (method)
Syntax System.Exit

Description Exits the operating environment.

Example 'This example asks whether the user would like to restart Windows
'after exiting.

Sub Main
button = MsgBox("Restart Windows on exit?",ebYesNo,"Exit Windows")
If button = ebYes Then System.Restart 'Yes button selected.
If button = ebNo Then System.Exit 'No button selected.

End Sub

See Also System.Restart (method).

Platform(s) Windows.

System.FreeMemory (property)
Syntax System.FreeMemory

Description Returns a Long indicating the number of bytes of free memory.

Example 'The following example gets the free memory and converts it to
'kilobytes

Sub Main()
FreeMem& = System.FreeMemory
FreeKBytes$ = Format(FreeMem& / 1000,"##,###")
MsgBox FreeKbytes$ & " Kbytes of free memory"

End Sub

472 Working Model Basic User's Manual

See Also System.TotalMemory (property); System.FreeResources (property);
Basic.FreeMemory (property).

Platform(s) Windows.

System.FreeResources (property)
Syntax System.FreeResources

Description Returns an Integer representing the percentage of free system resources.

Comments The returned value is between 0 and 100.

Example 'This example gets the percentage of free resources.

Sub Main()
FreeRes% = System.FreeResources
MsgBox FreeRes% & "% of memory resources available."

End Sub

See Also System.TotalMemory (property); System.FreeMemory (property);
Basic.FreeMemory (property).

Platform(s) Windows.

System.MouseTrails (method)
Syntax System.MouseTrails isOn

Description Toggles mouse trails on or off.

Comments If isOn is True, then mouse trails are turned on; otherwise, mouse trails are
turned off.

A runtime error is generated if mouse trails is not supported on your system.

Example 'This example turns on mouse trails.
Sub Main

System.MouseTrails 1
End Sub

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the setting is saved in the INI file permanently.

System.Restart (method)
Syntax System.Restart

Description Restarts the operating environment.

Chapter 2 System.TotalMemory (property) 473

Example 'This example asks whether the user would like to restart Windows after
'exiting.

Sub Main
button = MsgBox ("Restart Windows on exit?",ebYesNo,"Exit Windows")
If button = ebYes Then System.Restart 'Yes button selected.
If button = ebNo Then System.Exit 'No button selected.

End Sub

See Also System.Exit (method).

Platform(s) Windows.

System.TotalMemory (property)
Syntax System.TotalMemory

Description Returns a Long representing the number of bytes of available free memory in
Windows.

Example 'This example displays the total system memory.

Sub Main()
TotMem& = System.TotalMemory
TotKBytes$ = Format(TotMem& / 1000,"##,###")
MsgBox TotKbytes$ & " Kbytes of total system memory exist"

End Sub

See Also System.FreeMemory (property); System.FreeResources (property);
Basic.FreeMemory (property).

Platform(s) Windows.

System.WindowsDirectory$ (property)
Syntax System.WindowsDirectory$

Description Returns the home directory of the operating environment.

Example 'This example displays the windows directory.

Sub Main
MsgBox "Windows directory = " & System.WindowsDirectory$

End Sub

See Also Basic.HomeDir$ (property).

Platform(s) Windows.

System.WindowsVersion$ (property)
Syntax System.WindowsVersion$

Description Returns the version of the operating environment, such as "3.0" or "3.1."

474 Working Model Basic User's Manual

Example 'This example sets the UseWin31 variable to True if the Windows version
is
'greater than or equal to 3.1; otherwise, it sets the UseWin31 variable
'to False.

Sub Main()
If Val(System.WindowsVersion$) > 3.1 Then

MsgBox "You are running a Windows version later than 3.1"
Else

MsgBox "You are running Windows version 3.1 or earlier"
End If

End Sub

See Also Basic.Version$ (property).

Platform(s) Windows.

475

Tab (function)
Syntax Tab(column)

Description Prints the number of spaces necessary to reach a given column position.

Comments This function can only be used with the Print and Print# statements.

The column parameter is an Integer specifying the desired column position
to which to advance. It can be any value between 0 and 32767 inclusive.

Rule 1: If the current print position is less than or equal to column, then the
number of spaces is calculated as:

column – print_position

Rule 2: If the current print position is greater than column, then column – 1
spaces are printed on the next line.

If a line width is specified (using the Width statement), then the column
position is adjusted as follows before applying the above two rules:

column = column Mod width

The Tab function is useful for making sure that output begins at a given
column position, regardless of the length of the data already printed on that line.

Example 'This example prints three column headers and three numbers
'alligned below the column headers.

Sub Main()
ViewportOpen
Print "Column1";Tab(10);"Column2";Tab(20);"Column3"
Print Tab(3);"1";Tab(14);"2";Tab(24);"3"
Sleep(10000) 'Wait 10 seconds.
ViewportClose

End Sub

See Also Spc (function); Print (statement); Print# (statement).

Platform(s) Windows and Macintosh.

Tan (function)
Syntax Tan(angle)

Description Returns a Double representing the tangent of angle.

Comments The angle parameter is a Double value given in radians.

476 Working Model Basic User's Manual

Example 'This example computes the tangent of pi/4 radians (45 degrees).

Sub Main()
c# = Tan(Pi / 4)
MsgBox "The tangent of 45 degrees is: " & c#

End Sub

See Also Sin (function); Cos (function); Atn (function).

Platform(s) Windows and Macintosh.

Text (statement)
Syntax Text x,y,width,height,title$ [,[.Identifier] [,[FontName$] [,[size] [,style]]]]

Description Defines a text control within a dialog box template. The text control only
displays text; the user cannot set the focus to a text control or otherwise interact
with it.

Comments The text within a text control word-wraps. Text controls can be used to display
up to 32K of text.

The Text statement accepts the following parameters:

Parameter Description

x, y Integer positions of the control (in dialog units) relative to the upper left
corner of the dialog box.

width, height Integer dimensions of the control in dialog units.

title$ String containing the text that appears within the text control. This text may
contain an ampersand character to denote an accelerator letter, such as "&Save"
for Save. Pressing this accelerator letter sets the focus to the control following
the Text statement in the dialog box template.

Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). If omitted, then the first two
words from title$ are used.

FontName$ Name of the font used for display of the text within the text control. If omitted,
then the default font for the dialog is used.

Chapter 2 TextBox (statement) 477

size Size of the font used for display of the text within the text control. If omitted,
then the default size for the default font of the dialog is used.

style Style of the font used for display of the text within the text control. This can be
any of the following values:

ebRegular Normal font (i.e., neither bold nor italic)

ebBold Bold font

ebItalic Italic font

ebBoldItalic Bold-italic font

If omitted, then ebRegular is used.

Example Begin Dialog UserDialog3 81,64,128,60,"Untitled"
CancelButton 80,32,40,14
OKButton 80,8,40,14
Text 4,8,68,44,"This text is displayed in the dialog box."

End Dialog

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement);
Dialog (function); Dialog (statement); DropListBox (statement); GroupBox
(statement); ListBox (statement); OKButton (statement); OptionButton
(statement); OptionGroup (statement); Picture (statement); PushButton
(statement); TextBox (statement); Begin Dialog (statement), PictureButton
(statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Under Windows, accelerators are underlined, and the Alt+letter accelerator
combination is used.

Under Windows, 8-point MS Sans Serif is the default font used within user
dialogs.

Platform
Notes:

Macintosh

On the Macintosh, accelerators are normal in appearance, and the
Command+letter accelerator combination is used.

On the Macintosh, 10-point Geneva is the default font used within user dialogs.

TextBox (statement)
Syntax TextBox x,y,width,height,.Identifier [,[isMultiline] [,[FontName$] [,[size] [,style]]]]

Description Defines a single or multiline text-entry field within a dialog box template.

478 Working Model Basic User's Manual

Comments If isMultiline is 1, the TextBox statement creates a multiline text-entry field.
When the user types into a multiline field, pressing the Enter key creates a new
line rather than selecting the default button.

This statement can only appear within a dialog box template (i.e., between the
Begin Dialog and End Dialog statements).

The TextBox statement requires the following parameters:

Parameter Description

x, y Integer position of the control (in dialog units) relative to the upper left corner
of the dialog box.

width, height Integer dimensions of the control in dialog units.

Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates a
string variable whose value corresponds to the content of the text box. This
variable can be accessed using the syntax:

DialogVariable.Identifier

isMultiline Specifies whether the text box can contain more than a single line (0 = single-
line; 1 = multiline).

FontName$ Name of the font used for display of the text within the text box control. If
omitted, then the default font for the dialog is used.

size Size of the font used for display of the text within the text box control. If
omitted, then the default size for the default font of the dialog is used.

style Style of the font used for display of the text within the text box control. This
can be any of the following values:

ebRegular Normal font (i.e., neither bold nor italic)

ebBold Bold font

ebItalic Italic font

ebBoldItalic Bold-italic font

If omitted, then ebRegular is used.

When the dialog box is created, the Identifier variable is used to set the initial
content of the text box. When the dialog box is dismissed, the variable will
contain the new content of the text box.

A single-line text box can contain up to 256 characters. The length of text in a
multiline text box is not limited by WM Basic; the default memory limit
specified by the given platform is used instead.

Chapter 2 Time, Time$ (functions) 479

Example Begin Dialog UserDialog3 81,64,128,60,"Untitled"
CancelButton 80,32,40,14
OKButton 80,8,40,14
TextBox 4,8,68,44,.TextBox1,1

End Dialog

See Also CancelButton (statement); CheckBox (statement); ComboBox (statement);
Dialog (function); Dialog (statement); DropListBox (statement); GroupBox
(statement); ListBox (statement); OKButton (statement); OptionButton
(statement); OptionGroup (statement); Picture (statement); PushButton
(statement); Text (statement); Begin Dialog (statement), PictureButton
(statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Under Windows, 8-point MS Sans Serif is the default font used within user dialogs.

Platform
Notes:

Macintosh

On the Macintosh, 10-point Geneva is the default font used within user dialogs.

Time, Time$ (functions)
Syntax Time[$][()]

Description Returns the system time as a String or as a Date variant.

Comments The Time$ function returns a String contains the time in 24-hour time
format, whereas Time returns a Date variant.

To set the time, use the Time/Time$ statements.

Example 'This example returns the system time and displays it in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
oldtime$ = Time$
msg = "Time was: " & oldtime$ & crlf
Time$ = "10:30:54"
msg = msg & "Time set to: " & Time$ & crlf
Time$ = oldtime$
msg = msg & "Time restored to: " & Time$
MsgBox msg

End Sub

See Also Time, Time$ (statements); Date, Date$ (functions); Date, Date$
(statements); Now (function).

Platform(s) Windows and Macintosh.

480 Working Model Basic User's Manual

Time, Time$ (statements)
Syntax Time[$] = newtime

Description Sets the system time to the time contained in the specified string.

Comments The Time$ statement requres a string variable in one of the following formats:

HH
HH:MM
HH:MM:SS

where HH is between 0 and 23, MM is between 0 and 59, and SS is between 0
and 59.

The Time statement converts any valid expression to a time, including string
and numeric values. Unlike the Time$ statement, Time recognizes many
different time formats, including 12-hour times.

Example 'This example returns the system time and displays it in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
oldtime$ = Time$
msg = "Time was: " & oldtime$ & crlf
Time$ = "10:30:54"
msg = msg & "Time set to: " & Time$ & crlf
Time$ = oldtime$
msg = msg & "Time restored to: " & Time$
MsgBox msg

End Sub

See Also Time, Time$ (functions); Date, Date$ (functions); Date, Date$
(statements).

Platform(s) Windows and Macintosh.

Timer (function)
Syntax Timer

Description Returns a Single representing the number of seconds that have elapsed since
midnight.

Example 'This example displays the elapsed time between execution start and
'the time you clicked the OK button on the first message.

Sub Main()
start& = Timer
MsgBox "Click the OK button, please."
total& = Timer - start&
MsgBox "The elapsed time was: " & total& & " seconds."

End Sub

Chapter 2 TimeSerial (function) 481

See Also Time, Time$ (functions); Now (function).

Platform(s) Windows and Macintosh.

TimeSerial (function)
Syntax TimeSerial(hour,minute,second)

Description Returns a Date variant representing the given time with a date of zero.

Comments The TimeSerial function requires the following parameters:

Parameter Description

hour Integer between 0 and 23.

minute Integer between 0 and 59.

second Integer between 0 and 59.

Example Sub Main()
start# = TimeSerial(10,22,30)
finish# = TimeSerial(10,35,27)
dif# = Abs(start# - finish#)
MsgBox "The time difference is: " & Format(dif#, "hh:mm:ss")

End Sub

See Also DateValue (function); TimeValue (function); DateSerial (function).

Platform(s) Windows and Macintosh.

TimeValue (function)
Syntax TimeValue(time_string$)

Description Returns a Date variant representing the time contained in the specified string
argument.

Comments This function interprets the passed time_string$ parameter looking for a valid
time specification.

The time_string$ parameter can contain valid time items separated by time
separators such as colon (:) or period (.).

Time strings can contain an optional date specification, but this is not used in
the formation of the returned value.

If a particular time item is missing, then it is set to 0. For example, the string
"10 pm" would be interpreted as "22:00:00."

482 Working Model Basic User's Manual

Example 'This example calculates the TimeValue of the current time and
'displays it in a dialog box.

Sub Main()
t1$ = "10:15"
t2# = TimeValue(t1$)
MsgBox "The TimeValue of " & t1$ & " is: " & t2#

End Sub

See Also DateValue (function); TimeSerial (function); DateSerial (function).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Under Windows, time specifications vary, depending on the international
settings contained in the [intl] section of the win.ini file.

Trim, Trim$ (functions)
Syntax Trim[$](text)

Description Returns a copy of the passed string expression (text) with leading and trailing
spaces removed.

Comments Trim$ returns a String, whereas Trim returns a String variant.

Null is returned if text is Null.

Example 'This example uses the Trim$ function to extract the nonblank part
'of a string and display it.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
text$ = " This is text "
tr$ = Trim$(text$)
MsgBox "Original =>" & text$ & "<=" & crlf & "Trimmed =>" & tr$ &

"<="
End Sub

See Also LTrim, LTrim$ (functions); RTrim, RTrim$ (functions).

Platform(s) Windows and Macintosh.

True (constant)
Description Boolean constant whose value is True.

Comments Used in conditionals and Boolean expressions.

Chapter 2 Type (statement) 483

Example 'This example sets variable a to True and then tests to see whether
'(1) A is True; (2) the True constant = -1; and (3) A is
'equal to -1 (True).

Sub Main()
a = True
If ((a = True) and (True = -1) and (a = -1)) then

MsgBox "a is True."
Else

MsgBox "a is False."
End If

End Sub

See Also False (constant); Constants (topic); Boolean (data type).

Platform(s) Windows and Macintosh.

Type (statement)
Syntax Type username

variable As type
variable As type
variable As type
:

End Type

Description The Type statement creates a structure definition that can then be used with the
Dim statement to declare variables of that type. The username field specifies
the name of the structure that is used later with the Dim statement.

Comments Within a structure definition appear field descriptions in the format:

variable As type

where variable is the name of a field of the structure, and type is the data type
for that variable. Any fundamental data type or previously declared user-
defined data type can be used within the structure definition (structures within
structures are allowed). Only fixed arrays can appear within structure
definitions.

The Type statement can only appear outside of subroutine and function
declarations.

484 Working Model Basic User's Manual

When declaring strings within fixed-size types, it is useful to declare the strings
as fixed-length. Fixed-length strings are stored within the structure itself rather
than in the string space. For example, the following structure will always
require 62 bytes of storage:

Type Person
FirstName As String * 20
LastName As String * 40
Age As Integer

End Type

Note: Fixed-length strings within structures are size-adjusted upward to an
even byte boundary. Thus, a fixed-length string of length 5 will occupy 6 bytes
of storage within the structure.

Example 'This example displays the use of the Type statement to create a
'structure representing the parts of a circle and assign values
'to them.

Type Circ
msg As String
rad As Integer
dia As Integer
are As Double
cir As Double

End Type

Sub Main()
Dim circle As Circ
circle.rad = 5
circle.dia = circle.rad * 2
circle.are = (circle.rad ^ 2) * Pi
circle.cir = circle.dia * Pi
circle.msg = "The area of the circle is: " & circle.are
MsgBox circle.msg

End Sub

See Also Dim (statement); Public (statement); Private (statement).

Platform(s) Windows and Macintosh.

UBound (function)
Syntax UBound(ArrayVariable() [,dimension])

Description Returns an Integer containing the upper bound of the specified dimension of
the specified array variable.

Chapter 2 UCase, UCase$ (functions) 485

Comments The dimension parameter is an integer that specifies the desired dimension. If
not specified, then the upper bound of the first dimension is returned.

The UBound function can be used to find the upper bound of a dimension of an
array returned by an OLE automation method or property:

UBound(object.property [,dimension])

UBound(object.method [,dimension])

Example 'This example dimensions two arrays and displays their upper bounds.

Sub Main()
Dim a(5 To 12)
Dim b(2 To 100, 9 To 20)
uba = UBound(a)
ubb = UBound(b,2)
MsgBox "The upper bound of a is: " & uba & " The upper bound of b

is: " & ubb

'This example uses Lbound and Ubound to dimension a dynamic array to
'hold a copy of an array redimmed by the FileList statement.

Dim fl$()
FileList fl$,"*"
count = Ubound(fl$)
If ArrayDims(a) Then

Redim nl$(Lbound(fl$) To Ubound(fl$))
For x = 1 To count

nl$(x) = fl$(x)
Next x
MsgBox "The last element of the new array is: " & nl$(count)

End If
End Sub

See Also LBound (function); ArrayDims (function); Arrays (topic).

Platform(s) Windows and Macintosh.

UCase, UCase$ (functions)
Syntax UCase[$](text)

Description Returns the uppercase equivalent of the specified string.

Comments UCase$ returns a String, whereas UCase returns a String variant.

Null is returned if text is Null.

486 Working Model Basic User's Manual

Example 'This example uses the UCase$ function to change a string from
'lowercase to uppercase.

Sub Main()
a1$ = "this string was lowercase, but was converted."
a2$ = UCase$(a1$)
MsgBox a2$

End Sub

See Also LCase, LCase$ (functions).

Platform(s) Windows and Macintosh.

Unlock (statement)
Syntax Unlock [#] filenumber [,{record | [start] To end}]

Description Unlocks a section of the specified file, allowing other processes access to that
section of the file.

Comments The Unlock statement requires the following parameters:

Parameter Description

filenumber Integer used by WM Basic to refer to the open file—the number passed to the
Open statement.

record Long specifying which record to unlock.

start Long specifying the first record within a range to be unlocked.

end Long specifying the last record within a range to be unlocked.

For sequential files, the record, start, and end parameters are ignored: the entire
file is unlocked.

Chapter 2 Unlock (statement) 487

The section of the file is specified using one of the following:

Syntax Description

No record specification Unlock the entire file.

record Unlock the specified record number (for
Random files) or byte (for Binary files).

to end Unlock from the beginning of the file to the
specified record (for Random files) or byte (for
Binary files).

start to end Unlock the specified range of records (for
Random files) or bytes (for Binary files).

The unlock range must be the same as that used by the Lock statement.

488 Working Model Basic User's Manual

Example 'This example creates a file named test.dat and fills it with ten
'string variable records. These are displayed in a dialog box. The
'file is then reopened for read/write, and each record is locked,
'modified, rewritten, and unlocked. The new records are then 'displayed
in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
a$ = "This is record number: "
b$ = "0"
rec$ = ""

msg = ""
Open "test.dat" For Random Access Write Shared As #1
For x = 1 To 10

rec$ = a$ & x
Lock #1,x
Put #1,,rec$
Unlock #1,x
msg = msg & rec$ & crlf

Next x
Close
MsgBox "The records are: " & crlf & msg

msg = ""
Open "test.dat" For Random Access Read Write Shared As #1
For x = 1 to 10

rec$ = Mid$(rec$,1,23) & (11 - x)
Lock #1,x 'Lock it for our use.
Put #1,x,rec$ 'Nobody's changed it.
UnLock #1,x
msg = msg & rec$ & crlf

Next x
MsgBox "The records are: " & crlf & msg
Close

Kill "test.dat"
End Sub

See Also Lock (statement); Open (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Macintosh

On the Macintosh, file locking will only succeed on volumes that are shared
(i.e., file sharing is on).

Chapter 2 User-Defined Types (topic) 489

User-Defined Types (topic)

User-defined types (UDTs) are structure definitions created using the Type
statement. UDTs are equivalent to C language structures.

Declaring Structures

The Type statement is used to create a structure definition. Type declarations
must appear outside the body of all subroutines and functions within a script
and are therefore global to an entire script.

Once defined, a UDT can be used to declare variables of that type using the
Dim, Public, or Private statement. The following example defines a
rectangle structure:

Type Rect
left As Integer
top As Integer
right As Integer
bottom As Integer

End Type
:

Sub Main()
Dim r As Rect

:
r.left = 10

End Sub

Any fundamental data type can be used as a structure member, including other
user-defined types. Only fixed arrays can be used within structures.

Copying Structures

UDTs of the same type can be assigned to each other, copying the contents. No
other standard operators can be applied to UDTs.

Dim r1 As Rect
Dim r2 As Rect

:
r1 = r2

When copying structures of the same type, all strings in the source UDT are
duplicated and references are placed into the target UDT.

The LSet statement can be used to copy a UDT variable of one type to
another:

LSet variable1 = variable2

LSet cannot be used with UDTs containing variable-length strings. The
smaller of the two structures determines how many bytes get copied.

490 Working Model Basic User's Manual

Passing Structures

UDTs can be passed both to user-defined routines and to external routines, and
they can be assigned. UDTs are always passed by reference.

Since structures are always passed by reference, the ByVal keyword cannot be
used when defining structure arguments passed to external routines (using
Declare). The ByVal keyword can only be used with fundamental data types
such as Integer and String.

Passing structures to external routines actually passes a far pointer to the data
structure.

Size of Structures

The Len function can be used to determine the number of bytes occupied by a
UDT:

Len(udt_variable_name)

Since strings are stored in WM Basic's data space, only a reference (currently, 2
bytes) is stored within a structure. Thus, the Len function may seem to return
incorrect information for structures containing strings.

Val (function)
Syntax Val(number)

Description Converts a given string expression to a number.

Comments The number parameter can contain any of the following:

Leading minus sign (for nonhex or octal numbers only)

Hexadecimal number in the format &Hhexdigits

Octal number in the format &Ooctaldigits

Floating-point number, which can contain a decimal point and an optional
exponent

Spaces, tabs, and line feeds are ignored.

If number does not contain a number, then 0 is returned.

The Val function continues to read characters from the string up to the first
nonnumeric character.

The Val function always returns a double-precision floating-point value. This
value is forced to the data type of the assigned variable.

Chapter 2 Variant (data type) 491

Example 'This example inputs a number string from an InputBox and converts it
'to a number variable.

Sub Main()
a$ = InputBox$("Enter anything containing a number","Enter Number")
b# = Val(a$)
MsgBox "The value is: " & b#

End Sub

'The following table shows valid strings and their numeric equivalents:
' "1 2 3" 123
' "12.3" 12.3
' "&HFFFF" -1
' "&O77" 63
' "12.345E-02" .12345

See Also CDbl (function); Str, Str$ (functions).

Platform(s) Windows and Macintosh.

Variant (data type)
Syntax Variant

Description A data type used to declare variables that can hold one of many different types
of data.

Comments During a variant's existence, the type of data contained within it can change.
Variants can contain any of the following types of data:

Type of Data WM Basic Data Types

Numeric Integer, Long, Single, Double, Boolean, Date, Currency.

Logical Boolean.

Dates and times Date.

String String.

Object Object.

No valid data A variant with no valid data is considered Null.

Uninitialized An uninitialized variant is considered Empty.

There is no type-declaration character for variants.

The number of significant digits representable by a variant depends on the type
of data contained within the variant.

Variant is the default data type for WM Basic. If a variable is not explicitly
declared with Dim, Public, or Private, and there is no type-declaration
character (i.e., #, @, !, %, or &), then the variable is assumed to be Variant.

492 Working Model Basic User's Manual

Determining the Subtype of a Variant

The following functions are used to query the type of data contained within a
variant:

Function Description

VarType Returns a number representing the type of data contained within the variant.

IsNumeric Returns True if a variant contains numeric data. The following are considered
numeric:

Integer, Long, Single, Double, Date, Boolean,
Currency

If a variant contains a string, this function returns True if the string can be
converted to a number.

If a variant contains an Object whose default property is numeric, then
IsNumeric returns True.

IsObject Returns True if a variant contains an object.

IsNull Returns True if a variant contains no valid data.

IsEmpty Returns True if a variant is uninitialized.

IsDate Returns True if a variant contains a date. If the variant contains a string, then
this function returns True if the string can be converted to a date. If the variant
contains an Object, then this function returns True if the default property of
that object can be converted to a date.

Assigning to Variants

Before a Variant has been assigned a value, it is considered empty. Thus,
immediately after declaration, the VarType function will return ebEmpty.
An uninitialized variant is 0 when used in numeric expressions and is a zero-
length string when used within string expressions.

A Variant is Empty only after declaration and before assigning it a value.
The only way for a Variant to become Empty after having received a value
is for that variant to be assigned to another Variant containing Empty, for it
to be assigned explicitly to the constant Empty, or for it to be erased using the
Erase statement.

When a variant is assigned a value, it is also assigned that value's type. Thus, in
all subsequent operations involving that variant, the variant will behave like the
type of data it contains.

Chapter 2 Variant (data type) 493

Operations on Variants

Normally, a Variant behaves just like the data it contains. One exception to
this rule is that, in arithmetic operations, variants are automatically promoted
when an overflow occurs. Consider the following statements:

Dim a As Integer,b As Integer,c As Integer
Dim x As Variant,y As Variant,z As Variant

a% = 32767
b% = 1
c% = a% + b% 'This will overflow.

x = 32767
y = 1
z = x + y 'z becomes a Long because of Integer overflow.

In the above example, the addition involving Integer variables overflows
because the result (32768) overflows the legal range for integers. With
Variant variables, on the other hand, the addition operator recognizes the
overflow and automatically promotes the result to a Long.

Adding Variants

The + operator is defined as performing two functions: when passed strings, it
concatenates them; when passed numbers, it adds the numbers.

With variants, the rules are complicated because the types of the variants are
not known until execution time. If you use +, you may unintentionally perform
the wrong operation.

It is recommended that you use the & operator if you intend to concatenate two
String variants. This guarantees that string concatenation will be performed
and not addition.

Variants That Contain No Data

A Variant can be set to a special value indicating that it contains no valid
data by assigning the Variant to Null:

Dim a As Variant
a = Null

The only way that a Variant becomes Null is if you assign it as shown
above.

The Null value can be useful for catching errors since its value propagates
through an expression.

494 Working Model Basic User's Manual

Variant Storage

Variants require 16 bytes of storage internally:

A 2-byte type

A 2-byte extended type for data objects

4 bytes of padding for alignment

An 8-byte value

Unlike other data types, writing variants to Binary or Random files does not
write 16 bytes. With variants, a 2-byte type is written, followed by the data (2
bytes for Integer and so on).

Disadvantages of Variants

The following list describes some disadvantages of variants:

1. Using variants is slower than using the other fundamental data types (i.e.,
Integer, Long, Single, Double, Date, Object, String, Currency,
and Boolean). Each operation involving a Variant requires
examination of the variant's type.

2. Variants require more storage than other data types (16 bytes as opposed to
8 bytes for a Double, 2 bytes for an Integer, and so on).

3. Unpredictable behavior. You may write code to expect an Integer
variant. At runtime, the variant may be automatically promoted to a Long
variant, causing your code to break.

Passing Nonvariant Data to Routines Taking Variants

Passing nonvariant data to a routine that is declared to receive a variant by
reference prevents that variant from changing type within that routine. For
example:

Sub Foo(v As Variant)
v = 50 'OK.
v = "Hello, world." 'Get a type-mismatch error here!

End Sub

Sub Main()
Dim i As Integer
Foo i 'Pass an integer by reference.

End Sub

In the above example, since an Integer is passed by reference (meaning that
the caller can change the original value of the Integer), the caller must
ensure that no attempt is made to change the variant's type.

Chapter 2 VarType (function) 495

Passing Variants to Routines Taking Nonvariants

Variant variables cannot be passed to routines that accept nonvariant data by
reference, as demonstrated in the following example:

Sub Foo(i as Integer)
End Sub

Sub Main()
Dim a As Variant
Foo a 'Compiler gives type-mismatch error here.

End Sub

See Also Currency (data type); Date (data type); Double (data type); Integer (data
type); Long (data type); Object (data type); Single (data type); String (data
type); Boolean (data type); DefType (statement); CVar (function); Empty
(constant); Null (constant); VarType (function).

Platform(s) Windows and Macintosh.

VarType (function)
Syntax VarType(variable)

Description Returns an Integer representing the type of data in variable.

Comments The variable parameter is the name of any Variant.

The following table shows the different values that can be returned by
VarType:

Value Constant Data Type

0 ebEmpty Uninitialized
1 ebNull No valid data
2 ebInteger Integer
3 ebLong Long
4 ebSingle Single
5 ebDouble Double
6 ebCurrency Currency
7 ebDate Date
8 ebString String
9 ebObject Object (OLE automation object)

10 ebError User-defined error
11 ebBoolean Boolean
12 ebVariant Variant (not returned by this function)
13 ebDataObject Non-OLE automation object

496 Working Model Basic User's Manual

Comments When passed an cbject, the VarType function returns the type of the default
property of that object. If the object has no default property, then either
ebObject or ebDataObject is returned, depending on the type of variable.

Example Sub Main()
Dim v As Variant
v = 5& 'Set v to a Long.

If VarType(v) = ebInteger Then
Msgbox "v is an Integer."

ElseIf VarType(v) = ebLong Then
Msgbox "v is a Long."

End If
End Sub

See Also Empty (constant); Null (constant); Variant (data type).

Platform(s) Windows and Macintosh.

ViewportClear (statement)
Syntax ViewportClear

Description Clears the open viewport window.

Comments The statement has no effect if no viewport is open.

Example Sub Main()
ViewportOpen
Print "This will be displayed in the viewport window."
Sleep 2000
ViewportClear
Print "This will replace the previous text."
Sleep 2000
ViewportClose

End Sub

See Also ViewportClose (statement); ViewportOpen (statement).

Platform(s) Windows.

ViewportClose (statement)
Syntax ViewportClose

Description This statement closes an open viewport window.

Comments The statement has no effect if no viewport is opened.

Chapter 2 ViewportOpen (statement) 497

Example Sub Main()
ViewportOpen
Print "This will be displayed in the viewport window."
Sleep 2000
ViewportClose

End Sub

See Also ViewportOpen (statement).

Platform(s) Windows.

ViewportOpen (statement)
Syntax ViewportOpen [title$ [,x,y [,width,height]]]

Description Opens a new viewport window or switches the focus to the existing viewport
window.

Comments The ViewportOpen statement requires the following parameters:

Parameter Description

title$ Specifies a String containing the text to appear in the viewport's caption.

x,y Specifies Integer coordinates given in twips indicating the initial position of
the upper left corner of the viewport.

width,height Specifies Integer values indicating the initial width and height of the
viewport.

This statement has no effect if a viewport window is already open.

Combined with the Print statement, a viewport window is a convenient place
to output debugging information.

The viewport window is closed when the WM Basic host application is
terminated.

498 Working Model Basic User's Manual

The buffer size for the viewport is 32K. Information from the start of the buffer
is removed to make room for additional information being appended to the end
of the buffer.

The following keys work within a viewport window:

Up Scrolls up by one line.
Down Scrolls down by one line.
Home Scrolls to the first line in the viewport window.
End Scrolls to the last line in the viewport window.
PgDn Scrolls the viewport window down by one page.
PgUp Scrolls the viewport window up by one page.
Ctrl+PgUp Scrolls the viewport window left by one page.
Ctrl+PgDn Scrolls the viewport window right by one page.

Only one viewport window can be open at any given time. Any scripts with
Print statements will output information into the same viewport window.

When printing to viewports, the end-of-line character can be any of the
following: a carriage return, a line feed, or a carriage-return/line-feed pair.

Example Sub Main()
ViewportOpen "WM Basic Viewport",100,100,500,500
Print "This will be displayed in the viewport window."
Sleep 2000
ViewportClose

End Sub

See Also ViewportClose (statement).

Platform(s) Windows.

VLine (statement)
Syntax VLine [lines]

Description Scrolls the window with the focus up or down by the specified number of lines.

Comments The lines parameter is an Integer specifying the number of lines to scroll. If
this parameter is omitted, then the window is scrolled down by one line.

Chapter 2 VPage (statement) 499

Example 'This example prints a series of lines to the viewport, then 'scrolls
back up the lines to the top using VLine.

Sub Main()
ViewportOpen "WM Basic Viewport",100,100,500,200
For i = 1 to 50

Print "This will be displayed on line#: " & i
Next i
MsgBox "We will now go back 40 lines..."
VLine -40
MsgBox "...and here we are!"
ViewportClose

End Sub

See Also VPage (statement); VScroll (statement).

Platform(s) Windows.

VPage (statement)
Syntax VPage [pages]

Description Scrolls the window with the focus up or down by the specified number of
pages.

Comments The pages parameter is an Integer specifying the number of lines to scroll. If
this parameter is omitted, then the window is scrolled down by one page.

Example 'This example scrolls the viewport window up five pages.

Sub Main()
ViewportOpen "WM Basic Viewport",100,100,500,200
For i = 1 to 500

Print "This will be displayed on line#: " & i
Next i
MsgBox "We will now go back 5 pages..."
VLine -5
MsgBox "...and here we are!"
ViewportClose

End Sub

See Also VLine (statement); VScroll (statement).

Platform(s) Windows.

VScroll (statement)
Syntax VScroll percentage

Description Sets the thumb mark on the vertical scroll bar attached to the current window.

Comments The position is given as a percentage of the total range associated with that
scroll bar. For example, if the percentage parameter is 50, then the thumb mark
is positioned in the middle of the scroll bar.

500 Working Model Basic User's Manual

Example 'This example prints a bunch of lines to the viewport, then
'scrolls back to the top using VScroll.

Sub Main()
ViewportOpen "WM Basic Viewport",100,100,500,200
For i = 1 to 50

Print "This will be displayed on line#: " & i
Next i
MsgBox "We will now go to the 0% thumb mark poisiton (the top)..."
VScroll 0
VScroll 0
MsgBox "...and here we are!"
ViewportClose

End Sub

See Also VLine (statement); VPage (statement).

Platform(s) Windows.

Weekday (function)
Syntax Weekday(date)

Description Returns an Integer value representing the day of the week given by date.
Sunday is 1, Monday is 2, and so on.

The date parameter is any expression representing a valid date.

Example 'This example gets a date in an input box and displays
'the day of the week and its name for the date entered.

Sub Main()
Dim a$(7)
a$(1) = "Sunday"
a$(2) = "Monday"
a$(3) = "Tuesday"
a$(4) = "Wednesday"
a$(5) = "Thursday"
a$(6) = "Friday"
a$(7) = "Saturday"

Reprompt:
bd = InputBox$("Please enter your birthday.","Enter Birthday")
If Not(IsDate(bd)) Then Goto Reprompt

dt = DateValue(bd)
dw = WeekDay(dt)
Msgbox "You were born on day " & dw & ", which was a " & a$(dw)

End Sub

See Also Day (function); Minute (function); Second (function); Month (function); Year
(function); Hour (function); DatePart (function).

Platform(s) Windows and Macintosh.

Chapter 2 While...Wend (statement) 501

While...Wend (statement)
Syntax While condition

 [statements]
Wend

Description Repeats a statement or group of statements while a condition is True.

Comments The condition is initially and then checked at the top of each iteration through
the loop.

Example 'This example executes a While loop until the random number generator
'returns a value of 1.

Sub Main()
x% = 0
count% = 0
While x% <> 1 And count% < 500

x% = Rnd(1)
If count% > 1000 Then

Exit Sub
Else

count% = count% + 1
End If

Wend
MsgBox "The loop executed " & count% & " times."

End Sub

See Also Do...Loop (statement); For...Next (statement).

Platform(s) Windows and Macintosh.

Platform
Notes:

Windows

Due to errors in program logic, you can inadvertantly create infinite loops in
your code. Under Windows, you can break out of infinite loops using
Ctrl+Break.

Platform
Notes:

Macintosh

Due to errors in program logic, you can inadvertantly create infinite loops in
your code. On the Macintosh, you can break out of infinite loops using
Command+Period.

Width# (statement)
Syntax Width# filenumber,newwidth

Description Specifies the line width for sequential files opened in either Output or
Append mode.

502 Working Model Basic User's Manual

Comments The Width# statement requires the following parameters:

Parameter Description

filenumber Integer used by WM Basic to refer to the open file—the number passed to the
Open statement.

newwidth Integer between 0 to 255 inclusive specifying the new width. If newwidth is 0,
then no maximum line length is used.

When a file is initially opened, there is no limit to line length. This command
forces all subsequent output to the specified file to use the specified value as the
maximum line length.

The Width statement affects output in the following manner: if the column
position is greater than 1 and the length of the text to be written to the file
causes the column position to exceed the current line width, then the data is
written on the next line.

The Width statement also affects output of the Print command when used
with the Tab and Spc functions.

Example 'This statement sets the maximum line width for file number 1 to 80
'columns.

Sub Main()
Width #1,80

End Sub

See Also Print (statement); Print# (statement); Tab (function); Spc (function).

Platform(s) Windows and Macintosh.

WinActivate (statement)
Syntax WinActivate [window_name$ | window_object] [,timeout]

Description Activates the window with the given name or object value.

Chapter 2 WinClose (statement) 503

Comments The WinActivate statement requires the following parameters:

Parameter Description

window_name$ String containing the name that appears on the desired application's title bar.
Optionally, a partial name can be used, such as "Word" for "Microsoft Word."

A hierarchy of windows can be specified by separating each window name with
a vertical bar (|), as in the following example:

WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title
contains the word "Notepad". If found, the windows owned by the top level
window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in place
of the window_name$ parameter to indicate a specific window to activate.

timeout Integer specifying the number of milliseconds for which to attempt activation
of the specified window. If not specified (or 0), then only one attempt will be
made to activate the window. This value is handy when you are not certain that
the window you are attempting to activate has been created.

If window_name$ and window_object are omitted, then no action is performed.

Example 'This example runs the clock.exe program by activating the Run File
'dialog box from within Program Manager.

Sub Main()
WinActivate "Program Manager"
Menu "File.Run"
WinActivate "Program Manager|Run"
SendKeys "clock.exe{ENTER}"

End Sub

See Also AppActivate (statement).

Platform(s) Windows.

WinClose (statement)
Syntax WinClose [window_name$ | window_object]

Description Closes the given window.

504 Working Model Basic User's Manual

Comments The WinClose statement requires the following parameters:

Parameter Description

window_name$ String containing the name that appears on the desired application's title bar.
Optionally, a partial name can be used, such as "Word" for "Microsoft Word."

A hierarchy of windows can be specified by separating each window name with
a vertical bar (|), as in the following example:

WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title
contains the word "Notepad". If found, the windows owned by the top level
window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in place
of the window_name$ parameter to indicate a specific window to activate.

If window_name$ and window_object are omitted, then the window with the
focus is closed.

This command differs from the AppClose command in that this command
operates on the current window rather than the current top-level window (or
application).

Example 'This example closes Microsoft Word if its object reference is found.

Sub Main()
Dim WordHandle As HWND
Set WordHandle = WinFind("Word")
If (WordHandle Is Not Nothing) Then WinClose WordHandle

End Sub

See Also WinFind (function)

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the current window can be an MDI child window, a pop-up
window, or a top-level window.

WinFind (function)
Syntax WinFind(name$) As HWND

Description Returns an object variable referencing the window having the given name.

Comments The name$ parameter is specified using the same format as that used by the
WinActivate statement.

Chapter 2 WinList (statement) 505

Example 'This example closes Microsoft Word if its object reference is found.

Sub Main()
Dim WordHandle As HWND
Set WordHandle = WinFind("Word")
If (WordHandle Is Not Nothing) Then WinClose WordHandle

End Sub

See Also WinActivate (statement).

Platform(s) Windows.

WinList (statement)
Syntax WinList ArrayOfWindows()

Description Fills the passed array with references to all the top-level windows.

Comments The passed array must be declared as an array of HWND objects.

The ArrayOfWindows parameter must specify either a zero- or one-
dimensioned dynamic array or a single-dimensioned fixed array. If the array is
dynamic, then it will be redimensioned to exactly hold the new number of
elements. For fixed arrays, each array element is first erased, then the new
elements are placed into the array. If there are fewer elements than will fit in
the array, then the remaining elements are unused. A runtime error results if the
array is too small to hold the new elements.

After calling this function, use the LBound and UBound functions to
determine the new size of the array.

Examples 'This example minimizes all top-level windows.

Sub Main()
Dim a() As HWND
WinList a
For i = 1 To UBound(a)

WinMinimize a(i)
Next i

End Sub

See Also WinFind (function)

Platform(s) Windows.

WinMaximize (statement)
Syntax WinMaximize [window_name$ | window_object]

Description Maximizes the given window.

506 Working Model Basic User's Manual

Comments The WinMaximize statement requires the following parameters:

Parameter Description

window_name$ String containing the name that appears on the desired application's title bar.
Optionally, a partial name can be used, such as "Word" for "Microsoft Word."

A hierarchy of windows can be specified by separating each window name with
a vertical bar (|), as in the following example:

WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title
contains the word "Notepad". If found, the windows owned by the top level
window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in place
of the window_name$ parameter to indicate a specific window to activate.

If window_name$ and window_object are omitted, then the window with the
focus is maximized.

This command differs from the AppMaximize command in that this
command operates on the current window rather than the current top-level
window.

Example 'This example maximizes all top-level windows.

Sub Main()
Dim a() As HWND
WinList a
For i = 1 To UBound(a)

WinMaximize a(i)
Next i

End Sub

See Also WinMinimize (statement); WinRestore (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the current window can be an MDI child window, a pop-up
window, or a top-level window.

WinMinimize (statement)
Syntax WinMinimize [window_name$ | window_object]

Description Minimizes the given window.

Chapter 2 WinMove (statement) 507

Comments The WinMinimize statement requires the following parameters:

Parameter Description

window_name$ String containing the name that appears on the desired application's title bar.
Optionally, a partial name can be used, such as "Word" for "Microsoft Word."

A hierarchy of windows can be specified by separating each window name with
a vertical bar (|), as in the following example:

WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title
contains the word "Notepad". If found, the windows owned by the top level
window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in place
of the window_name$ parameter to indicate a specific window to activate.

If window_name$ and window_object are omitted, then the window with the
focus is minimized.

This command differs from the AppMinimize command in that this
command operates on the current window rather than the current top-level
window.

Example See example for WinList (statement).

See Also WinMaximize (statement); WinRestore (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the current window can be an MDI child window, a pop-up
window, or a top-level window.

WinMove (statement)
Syntax WinMove x,y [window_name$ | window_object]

Description Moves the given window to the given x,y position.

508 Working Model Basic User's Manual

Comments The WinMove statement requires the following parameters:

Parameter Description

x,y Integer coordinates given in twips that specify the new location for the
window.

window_name$ String containing the name that appears on the desired application's title bar.
Optionally, a partial name can be used, such as "Word" for "Microsoft Word."

A hierarchy of windows can be specified by separating each window name with
a vertical bar (|), as in the following example:

WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title
contains the word "Notepad". If found, the windows owned by the top level
window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in place
of the window_name$ parameter to indicate a specific window to activate.

If window_name$ and window_object are omitted, then the window with the
focus is moved.

This command differs from the AppMove command in that this command
operates on the current window rather than the current top-level window. When
moving child windows, remember that the x and y coordinates are relative to
the client area of the parent window.

Example 'This example moves Program Manager to upper left corner of the screen.

WinMove 0,0,"Program Manager"

See Also WinSize (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the current window can be an MDI child window, a pop-up
window, or a top-level window.

WinRestore (statement)
Syntax WinRestore [window_name$ | window_object]

Description Restores the specified window to its restore state.

Chapter 2 WinSize (statement) 509

Comments Restoring a minimized window restores that window to it screen position before
it was minimized. Restoring a maximized window resizes the window to its size
previous to maximizing.

The WinRestore statement requires the following parameters:

Parameter Description

window_name$ String containing the name that appears on the desired application's title bar.
Optionally, a partial name can be used, such as "Word" for "Microsoft Word."

A hierarchy of windows can be specified by separating each window name with
a vertical bar (|), as in the following example:

WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title
contains the word "Notepad". If found, the windows owned by the top level
window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in place
of the window_name$ parameter to indicate a specific window to activate.

If window_name$ and window_object are omitted, then the window with the
focus is restored.

This command differs from the AppRestore command in that this command
operates on the current window rather than the current top-level window.

Example 'This example minimizes all top-level windows except for Program
'Manager.

Sub Main()
Dim a() As HWND
WinList a
For i = 0 To UBound(a)
 WinMinimize a(i)
Next I
WinRestore "Program Manager"

End Sub

See Also WinMaximize (statement); WinMinimize (statement.

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the current window can be an MDI child window, a pop-up
window, or a top-level window.

WinSize (statement)
Syntax WinSize width,height [,window_name$ | window_object]

510 Working Model Basic User's Manual

Description Resizes the given window to the specified width and height.

Comments The WinSize statement requires the following parameters:

Parameter Description

width,height Integer coordinates given in twips that specify the new size of the window.

window_name$ String containing the name that appears on the desired application's title bar.
Optionally, a partial name can be used, such as "Word" for "Microsoft Word."

A hierarchy of windows can be specified by separating each window name with
a vertical bar (|), as in the following example:

WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title
contains the word "Notepad". If found, the windows owned by the top level
window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in place
of the window_name$ parameter to indicate a specific window to activate.

If window_name$ and window_object are omitted, then the window with the
focus is resized.

This command differs from the AppSize command in that this command
operates on the current window rather than the current top-level window.

Example 'This example runs and resizes Notepad.

Sub Main()
Dim NotepadApp As HWND
id = Shell("Notepad.exe")
set NotepadApp = WinFind("Notepad")
WinSize 4400,8500,NotepadApp

End Sub

See Also WinMove (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, the current window can be an MDI child window, a pop-up
window, or a top-level window.

Word$ (function)
Syntax Word$(text$,first[,last])

Description Returns a String containing a single word or sequence of words between first
and last.

Chapter 2 WordCount (function) 511

Comments The Word$ function requires the following parameters:

Parameter Description

text$ String from which the sequence of words will be extracted.

first Integer specifing the index of the first word in the sequence to return. If last is
not specified, then only that word is returned.

last Integer specifying the index of the last word in the sequence to return. If last
is specified, then all words between first and last will be returned, including all
spaces, tabs, and end-of-lines that occur between those words.

Words are separated by any nonalphanumeric characters such as spaces, tabs,
end-of-lines, and punctuation.

If first is greater than the number of words in text$, then a zero-length string is
returned.

If last is greater than the number of words in text$, then all words from first to
the end of the text are returned.

Example 'This example finds the name "Stuart" in a string and then
'extracts two words from the string.

Sub Main()
s$ = "My last name is Williams; Stuart is my surname."
c$ = Word$(s$,5,6)
MsgBox "The extracted name is: " & c$

End Sub

See Also Item$ (function); ItemCount (function); Line$ (function); LineCount
(function); WordCount (function).

Platform(s) Windows and Macintosh.

WordCount (function)
Syntax WordCount(text$)

Description Returns an Integer representing the number of words in the specified text.

Comments Words are separated by spaces, tabs, and end-of-lines.

Example 'This example counts the number of words in a particular string.

Sub Main()
s$ = "My last name is Williams; Stuart is my surname."
i% = WordCount(s$)
MsgBox "'" & s$ & "' has " & i% & " words."

End Sub

512 Working Model Basic User's Manual

See Also Item$ (function); ItemCount (function); Line$ (function); LineCount
(function); Word$ (function).

Platform(s) Windows and Macintosh.

Write# (statement)
Syntax Write [#]filenumber [,expressionlist]

Description Writes a list of expressions to a given sequential file.

Comments The file referenced by filenumber must be opened in either Output or
Append mode.

The filenumber parameter is an Integer used by WM Basic to refer to the
open file—the number passed to the Open statement.

The following table summarizes how variables of different types are written:

Data Type Description

Any numeric type Written as text. There is no leading space, and the period is always used as the
decimal separator.

String Written as text, enclosed within quotes.

Empty No data is written.

Null Written as #NULL#.

Boolean Written as #TRUE# or #FALSE#.

Date Written using the universal date format:

#YYYY-MM-DD HH:MM:SS#

user-defined errors Written as #ERROR ErrorNumber#, where
ErrorNumber is the value of the user-defined error. The word ERROR is not
translated.

The Write statement outputs variables separated with commas. After writing
each expression in the list, Write outputs an end-of-line.

The Write statement can only be used with files opened in Output or
Append mode.

Chapter 2 WriteIni (statement) 513

Example 'This example opens a file for sequential write, then writes ten
'records into the file with the values 10...50. Then the file
'is closed and reopened for read, and the records are read with the
'Input statement. The results are displayed in a dialog box.

Sub Main()
Open "test.dat" For Output Access Write As #1
For x = 1 To 10

r% = x * 10
 Write #1,x,r%
Next x
Close

Open "test.dat" For Input Access Read As #1
For x = 1 To 10

Input #1,a%,b%
msg = msg & "Record " & a% & ": " & b% & Basic.Eoln$

Next x

 MsgBox msg
Close

End Sub

See Also Open (statement); Put (statement); Print# (statement).

Platform(s) Windows and Macintosh.

WriteIni (statement)
Syntax WriteIni section$,ItemName$,value$[,filename$]

Description Writes a new value into an ini file.

Comments The WriteIni statement requires the following parameters:

Parameter Description

section$ String specifying the section that contains the desired variables, such as
"windows." Section names are specified without the enclosing brackets.

ItemName$ String specifying which item from within the given section you want to
change. If ItemName$ is a zero-length string (""), then the entire section
specified by section$ is deleted.

value$ String specifying the new value for the given item. If value$ is a zero-length
string (""), then the item specified by ItemName$ is deleted from the ini file.

filename$ String specifying the name of the ini file.

514 Working Model Basic User's Manual

Example 'This example sets the txt extension to be associated with Notepad.

Sub Main()
WriteIni "Extensions","txt","c:\windows\notepad.exe

^.txt","win.ini"
End Sub

See Also ReadIni$ (function); ReadIniSection (statement).

Platform(s) Windows.

Platform
Notes:

Windows

Under Windows, if filename$ is not specified, the win.ini file is used.

If the filename$ parameter does not include a path, then this statement looks for
ini files in the Windows directory.

Xor (operator)
Syntax expression1 Xor expression2

Description Performs a logical or binary exclusion on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants,
then a logical exclusion is performed as follows:

If the first and the second then the
expression is expression is result is

True True False
True False True
False True True
False False False

If either expression is Null, then Null is returned.

Binary Exclusion

If the two expressions are Integer, then a binary exclusion is performed,
returning an Integer result. All other numeric types (including Empty
variants) are converted to Long, and a binary exclusion is then performed,
returning a Long result.

Binary exclusion forms a new value based on a bit-by-bit comparison of the
binary representations of the two expressions according to the following table:

1 Xor 1 = 0 Example:
0 Xor 1 = 1 5 01101001
1 Xor 0 = 1 6 10101010
0 Xor 0 = 0 Xor 11000011

 Year (function) 515

Example 'This example builds a logic table for the XOR function and
'displays it.

Sub Main()
For x = -1 To 0

For y = -1 To 0
z = x Xor y
msg = msg & Format(x,"True/False") & " Xor "
msg = msg & Format(y,"True/False") & " = "
msg = msg & Format(z,"True/False") & Basic.Eoln$

Next y
Next x
MsgBox msg

End Sub

See Also Operator Precedence (topic); Or (operator); Eqv (operator); Imp (operator); And
(operator).

Platform(s) Windows and Macintosh.

Year (function)
Syntax Year(date)

Description Returns the year of the date encoded in the specified date parameter. The value
returned is between 100 and 9999 inclusive.

The date parameter is any expression representing a valid date.

Example 'This example returns the current year in a dialog box.

Sub Main()
tdate$ = Date$
tyear! = Year(DateValue(tdate$))
MsgBox "The current year is: " & tyear$

End Sub

See Also Day (function); Minute (function); Second (function); Month (function); Hour
(function); Weekday (function); DatePart (function).

Platform(s) Windows and Macintosh.

517

C H A P T E R 3

This chapter contains an alphabetical listing of objects, methods, and properties that are
specifically implemented to operate Working Model.
The reader is strongly encouraged to keep Working Model User's Manual at his/her disposal,
since most of the following API calls have equivalent implementation in Working Model's
graphical user interface. The Working Model User's Manual provides far more extensive
discussions on features.

Notations
Italicized portions of headings (e.g., WMDocument.Body) indicate type names. Hence to
make use of the indicated syntax, you must substitute the name of a variable of that type.
For example, you cannot write:

Dim aBody as WMBody
Set aBody = WMDocument.Body(3) ' wrong usage: WMDocument is
a type name

Instead, you must declare a variable of type WMDocument as follows:
Dim aDoc as WMDocument
Dim aBody as WMBody
Set aDoc = WM.ActiveDocument
Set aBody = aDoc.Body(3) ' correct

Note that in the last line of the above example, WMDocument is replaced with aDoc, a variable
of the type WMDocument in order to invoke the Body method.

Collection (topic)
In Working Model Basic, some objects are called a Collection, because
they contain a set of objects of a particular type. The following objects
are Collections defined in Working Model Basic.

Object Description

WM.Documents Collection of Working Model documents, or WMDocument objects.

WMDocument.Bodies Collection of all WMBody objects in
the document.

Working Model Basic
Extensions Reference

518 Working Model Basic User's Manual

Each Collection object has several common names for its properties and
methods, although the exact syntax, return types, and their actions differ
depending on the type of objects that the Collection represents.

Common properties and methods are as follows:

Method/PropertyDescription

Count (property) The Integer property containing the current number of objects that the
Collection represents.

Item (method) Returns the specific object within the Collection. For example,
WMDocument.Bodies.Item returns a WMBody object.

Please refer to individual Collection objects for detailed information on
definitions, syntax, and examples.

See Also WM.Documents (property), WMDocument.Selection (property)

WM (constant)
Description The constant WM represents the Working Model application itself. WM is an

object with the following methods and properties. Please see individual
sections for detailed information on syntax, return values, and examples.

Method/PropertyDescription

ActiveDocument Currently active Working Model document.

DeleteMenuItem Deletes a menu item from the Script menu.

Documents Set of documents that are open.

EnableMenuItem Enables or disables the user-definable menu item in the Script menu.

GetMenuItem Returns a String containing the name of the specified menu item in the
Script menu.

InsertMenuItem Adds a new menu item in the Script menu and associates the item with the
specified script file.

LoadWMBLibrary Loads a file containing subroutines for use in other scripts.

New Opens a new (untitled) Working Model document.

Open Opens an existing Working Model document.

RunScript Executes a script/tool written in WM Basic.

ShowAppearanceWindow Opens/closes the Appearance
window.

ShowGeometryWindow Opens/closes the Geometry window.

ShowPropertiesWindow Opens/closes the Properties window.

Chapter 3 WM.ActiveDocument (property) 519

UnloadWMBLibrary Unloads a file containing subroutines used in other scripts.

Version Version number of Working Model.

Example (See WM.ActiveDocument)

See Also WM.ActiveDocument (property), WM.Documents (property), WM.New
(method), WM.Open (method), WM.Version (property), WM.Quit (method),
WM.Save (method), WM.SaveAs (method).

WM.ActiveDocument (property)
Syntax WM.ActiveDocument

Description A WMDocument object which is currently active in the Working Model
application. You can set or get the WM.ActiveDocument property.

Comments Working Model can open and simulate several documents at a time, and
you need to make a document active in order to bring it to the foreground.
WM.ActiveDocument returns an error if the given document is invalid. If
no document is currently open, WM.ActiveDocument returns an error
code.

Example Sub Main()

'opens a new document in the back layer.

Dim Doc1 as WMDocument

Dim Doc2 as WMDocument

Set Doc1 = WM.ActiveDocument

Set Doc2 = WM.New() 'opens a new document (becomes active).

If Doc1 is not Nothing then

Set WM.ActiveDocument = Doc1 'resurrects the previously
active document

End If

End Sub

See Also WMDocument (object), WM.ActiveDocument (statement)

WM.DeleteMenuItem (method)
Syntax WM.DeleteMenuItem Index

Description Deletes a menu item from the Script menu.

Comments The WM.DeleteMenuItem method removes a menu item from Working
Model's Script menu (located in the menu bar). The first two items in the
Script menu, Run and Edit, are part of Working Model's standard menu
and cannot be deleted. Any menu item added by WM.InsertMenuItem

520 Working Model Basic User's Manual

can be removed using the WM.DeleteMenuItem method.

The WM.DeleteMenuItem method takes the following parameter:

Parameter Description

Index An Integer. The number (> 0) specifies the location of the menu item to
be removed.

For example, if three menu items exist below Editor, then Index can be
between 1 and 3 (inclusive). Setting Index = 2 would remove the menu
item in the middle, for instance.

If Index is out of range, DeleteMenuItem neither removes any item nor
generates an error code.

Example Sub Main()

' Adds three menu items "Hop", "Step", and "Jump"

' in that order. The pathname is shown in Windows format.

WM.InsertMenuItem 1, "Hop", "C:\scripts\hop.wbs"

WM.InsertMenuItem 2, "Step", "C:\scripts\step.wbs"

WM.InsertMenuItem 3, "Jump", "C:\scripts\jump.wbs"

' Immediately deletes the "Step" menu.

WM.DeleteMenuItem 2

End Sub

See Also WM.InsertMenuItem (method), WM.EnableMenuItem (method)

WM.Documents (property)
Syntax WM.Documents

Description Returns a collection object of currently open Working Model
documents.

Comments WM.Documents is a read-only property.

The WM.Documents property has the following property and method.

Method/PropertyDescription

Count An Integer property containing the number of documents in
WM.Documents (= number of open documents).

Item(id) A method which returns the WMDocument object specified by the index id
(Integer).

Example Sub Main()

Chapter 3 WM.EnableMenuItem (method) 521

' Shows the name of the third document. Does nothing

' if no more than 2 documents are currently open

Dim WM1 as WMDocument

if WM.Documents.Count > 2 then

Set WM1 = WM.Documents.Item(3)

MsgBox "Document ID 3 is " + WM1.Name

end if

End Sub

See Also WMDocument (object), WM (constant)

WM.EnableMenuItem (method)
Syntax WM.EnableMenuItem Index,EnableFlag

Description Enables or disables a menu item in the Script menu.

Comments The WM.EnableMenuItem method enables or disables a user-definable
item from Working Model's Script menu (located in the menu bar). The
first two items in the Script menu, Run and Edit, are part of Working
Model’s standard menu and cannot be altered. Any menu item added by
WM.InsertMenuItem can be enabled or disabled using the
WM.EnableMenuItem method.

The disabled menu item remains in the Script menu but appears dimmed
(shown in light-gray). The item remains as such until it is enabled by the
EnableMenuItem method. While the menu item is disabled, the user
cannot choose it and is prohibited from invoking the script or tool
associated with the menu item through the Script menu. The user can still
invoke the script using the Run menu (as long as she or he is aware of the
filename and path).

The WM.EnableMenuItem method takes the following parameters:

Parameter Description

Index An Integer. The number (> 0) specifies the location of the menu item to
be enabled or disabled.

For example, if three menu items exist below Editor, then the Index can
be between 1 and 3 (inclusive). Setting Index = 2 would enable or disable
the menu item in the middle, for instance.

EnableFlag A Boolean specifying whether the menu item is to be enabled or disabled.
When EnableFlag is set to True, the menu item will be enabled; if False,
then the menu item will be disabled.

522 Working Model Basic User's Manual

If Index is out of range, EnableMenuItem neither generates an error nor
performs any action.

To remove a menu item that was inserted by EnableMenuItem, use
WM.DeleteMenuItem method.

Example Sub Main()

' Adds three menu items "Hop", "Step", and "Jump"

' in that order, and disables Hop and Step menu items.

' The pathname is shown in Windows format.

WM.InsertMenuItem 1, "Hop", "C:\scripts\hop.wbs"

WM.InsertMenuItem 2, "Step", "C:\scripts\step.wbs"

WM.InsertMenuItem 3, "Jump", "C:\scripts\jump.wbs"

' Disable Hop and Step menus.

WM.EnableMenuItem 1, False ' corresponds to Hop menu item

WM.EnableMenuItem 2, False ' corresponds to Step menu item

End Sub

See Also WM.DeleteMenuItem (method), WM.InsertMenuItem (method)

WM.GetMenuItem (method)
Syntax WM.GetMenuItem(Index [, PathString])

Description Returns a String containing the name of the specified menu item in the
Script menu.

Comments The WM.GetMenuItem method returns the menu name of the specified
menu item from Working Model's Script menu (located in the menu bar).
Further, you can obtain the pathname of the script that is invoked by the
menu item. (The pathname is originally set by the WM.InsertMenuItem
method.)

The first two items in the Script menu, Run and Edit, are part of Working
Model's standard menu and cannot be accessed using WM.GetMenuItem.
Any menu item added by WM.InsertMenuItem can be accessed using the
WM.GetMenuItem method.

The WM.GetMenuItem method takes the following parameters:

Parameter Description

Index An Integer. The number (> 0) specifies the location of the menu item.

For example, if three menu items exist below Edit in the Script menu,
then Index can be between 1 and 3 (inclusive). Setting Index = 2 would

Chapter 3 WM.InsertMenuItem (method) 523

access the menu item in the middle, for instance.

PathString An optional String. This parameter receives the pathname of the script
that is originally set by the WM.InsertMenuItem method.

If Index is out of range, WM.GetMenuItem neither generates an error nor
performs any action.

If you choose to replace the script/tool invoked by a menu item, you need
to delete the menu item first(using WM.DeleteMenuItem) and add the
menu item again using WM.InsertMenuItem, with the new script
pathname as its parameter.

The script specified by PathString can be either object code or source
code. See Chapter 1 for more information on object code and source code
file types.

Example Sub Main()

Dim Path as String

Dim MenuName as String

' Adds three menu items "Hop", "Step", and "Jump"

' in that order. The pathname is shown in Windows format.

WM.InsertMenuItem 1, "Hop", "C:\scripts\hop.wbs"

WM.InsertMenuItem 2, "Step", "C:\scripts\step.wbs"

WM.InsertMenuItem 3, "Jump", "C:\scripts\jump.wbs"

' Report pathname for the Jump menu item.

MenuName = WM.GetMenuItem(3, Path)

MsgBox "Menu "+MenuName+" invokes the file "+Path

End Sub

See Also WM.InsertMenuItem (method), WM.DeleteMenuItem (method)

WM.InsertMenuItem (method)
Syntax WM.InsertMenuItem Index, MenuName, ScriptFileName

Description Adds a new menu item in the Script menu, and associates the menu item
with the specified script file.

Comments The InsertMenuItem method adds a new item in Working Model's Script
menu located in the menu bar. At the same time, the specified script is
associated with the new menu item. From then on, the user can simply
choose the menu item and invoke the script or tool written in WM Basic.
The purpose of this method is to provide quick access to pre-written
scripts by seamlessly integrating external scripts into Working Model's

524 Working Model Basic User's Manual

user interface.

The WM.InsertMenuItem method takes the following parameters:

Parameter Description

Index An Integer specifying where the menu item will be added. The number (>
0) specifies the order in which the menu items appear. The number Index
must specify where the menu is to be located.

For example, the first addition should be Index = 1. For the second time
around, if you wish to add another menu item above the first, then set
Index = 1. If you wish to add it below the first, then set Index = 2.

MenuName A String specifying how the menu item appears in the Script menu.

ScriptFileName A String specifying the script or tool that is to be invoked by choosing
the menu item. Full pathname is required.

If Index is out of range, InsertMenuItem does not add any new item. If
ScriptFileName is not found in the file system, InsertMenuItem still adds
the menu item. In either case, no error code is generated. Use the
FileExists call to verify the existence of the script file, if so desired.

After a menu item is added, you can disable or enable the menu item using
WM.EnableMenuItem method. You can also remove the menu item using
WM.DeleteMenuItem method.

Example (See WM.EnableMenuItem)

See Also WM.DeleteMenuItem (method), WM.EnableMenuItem (method),
FileExists (function)

WM.LoadWMBLibrary (method)
Syntax WM.LoadWMBLibrary ScriptFileName

Description Loads a scripting code module.

Comments The LoadWMBLibrary method loads a library of WM Basic code so that it
becomes available to the user. In order to invoke functions and
subroutines implemented in a library code module, you have to use the
LoadWMBLibrary method to load it first.

The WM.LoadWMBLibrary method takes the following parameters:

Parameter Description

ScriptFileName A String specifying the filename of the code module.

The file could be either a source script file or a compiled script file. If you
loaded a source file, you can use the debugger to trace into the source

Chapter 3 WM.New (method) 525

code of the library.

NOTE: After a code module is loaded with WM.LoadWMBLibrary, the
module will stay in memory until you explicitly unload it using
WM.UnloadWMBLibrary or quit Working Model. If you make a change in
the module, and if the module is already loaded, you must unload the
module and reload it to make the change effective.

In order to use memory efficiently, you should consider using
WM.UnloadWMBLibrary method, which unloads the code module.

If you wish to run a complete script or tool (i.e., script or tool that can run
on its own), you should use the WM.RunScript method.

Example ' Suppose the following code is saved as "c:\testing\mod1.wbs".

Function TimesTwo(a as Integer)

' Defines the function TimesTwo

TimesTwo = a * 2

End Function

' The following code (the main module) makes a call.

Sub Main()

Dim I as Integer

 WM.LoadWMBLibrary "c:\testing\mod1.wbs"

I = 2

MsgBox str$(TimesTwo(I)) ‘ Calls the function TimesTwo

WM.UnloadWMBLibrary "c:\testing\mod1.wbs"

End Sub

See Also WM.UnloadWMBLibrary (method), WM.DeleteMenuItem (method),
WM.EnableMenuItem (method), FileExists (function), WM.RunScript
(method)

WM.New (method)
Syntax WM.New()

Description Opens a new (untitled) Working Model document and returns the
corresponding WMDocument object.

Comments WM.ActiveDocument will point to the new document.

Example Sub Main()

Dim WM1 as WMDocument

526 Working Model Basic User's Manual

Set WM1 = WM.New() 'just opened a new document

End Sub

See Also WMDocument (object)

WM.Open (method)
Syntax WM.Open(FileName)

Description Opens the specified Working Model document and returns the
corresponding WMDocument object.

Comments The String parameter FileName is the name of the Working Model file
you wish to open. The parameter can contain pathnames.

WM.ActiveDocument will point to the opened document.

Example Sub Main()

Dim WM1 as WMDocument

If FileExists("demo1.wm") then

Set WM1 = WM.Open("demo1.wm")

End If

End Sub

See Also WMApplication (object), WMDocument (object)

WM.RunScript (method)
Syntax WM.RunScript FileName

Description Executes a script written in Working Model Basic.

Comments The WM.RunScript method invokes and executes the specified script or
tool written in Working Model Basic.

The WM.RunScript method takes the following parameter:

Parameter Description

FileName A String containing the full pathname of the file/script to be executed
(target script).

If the target script does not exist, WM.RunScript neither generates an error
nor performs any action. Use the FileExists call to verify the existence
of the target script to make your code robust.

The target script needs to be a complete program (a program that can be
executed on its own). If you wish to invoke only functions or subroutines
defined in a target script, consider using the WM.LoadWMBLibrary method.

Chapter 3 WM.UnloadWMBLibrary (method) 527

The WM Basic Debugger cannot trace into the target script. If you wish
to debug the target script, you should run the target script on its own.

Otherwise, you can turn the target script into a code module; in that case,
you would need to rename Main() module to something else, such as
Main_Dummy(). You can use WM.LoadWMBLibrary method to load the
module, and call the subroutine Main_Dummy(). The debugger will be
able to step into the target script code.

If you wish to have quick access to scripts or tools that you would like to
run frequently, you may consider using WM.InsertMenuItem, which adds
specified scripts or tools as menu items in the Script menu.

Example Sub Main()

' Executes a Script named "magic.wbs". Returns an

' error message if no such file is found.

Dim S as String

If Basic.OS = ebWin16 then

S = "c:\scripts\magic.wbs"

ElseIf Basic.OS = ebMacintosh then

S = "Macintosh HD:Scripts:magic.wbs"

Else

S = "" ' Null string

End If

If FileExists(S) then

WM.RunScript S

Else

MsgBox "Tool "+S+" cannot be found."

End If

End Sub

See Also WM.InsertMenuItem (method), FileExists (Function),
WM.LoadWMBLibrary (method)

WM.UnloadWMBLibrary (method)
Syntax WM.UnloadWMBLibrary ScriptFileName

Description Unloads a scripting code module.

Comments The UnloadWMBLibrary method unloads a library of WM Basic code
module from memory. The code module must be loaded first (using the

528 Working Model Basic User's Manual

WM.LoadWMBLibrary method) before being unloaded.

By unloading a code module that may not be used frequently, Working
Model can maintain sufficient memory space to run. You can always load
the code module back when necessary.

The WM.UnloadWMBLibrary method takes the following parameters:

Parameter Description

ScriptFileName A String specifying the filename of the code module.

The file could be either a source script file or a compiled script file.

Example (See WM.LoadWMBLibrary.)

See Also WM.LoadWMBLibrary (method), WM.DeleteMenuItem (method),
WM.EnableMenuItem (method), FileExists (function)

WM.ShowAppearanceWindow (property)
Syntax WM.ShowAppearanceWindow

Description A Boolean property to specify whether the Appearance window is open.

Comments When the ShowAppearanceWindow property is set to True, the
Appearance window opens.

Example Sub Main()

' Opens the Appearance window

If WM.ShowAppearanceWindow = False Then

WM.ShowAppearanceWindow = True

End If

End Sub

See Also WM (constant), WM.ShowPropertiesWindow (property),
WM.ShowGeometryWindow (property)

WM.ShowGeometryWindow (property)
Syntax WM.ShowGeometryWindow

Description A Boolean property to specify whether the Geometry window is open.

Comments When the ShowGeometryWindow property is set to True, the Geometry
window opens.

Example Sub Main()

' Opens the Geometry window

If WM.ShowGeometryWindow = False Then

Chapter 3 WM.ShowPropertiesWindow (property) 529

WM.ShowGeometryWindow = True

End If

End Sub

See Also WM (constant), WM.ShowPropertiesWindow (property),
WM.ShowGeometryWindow (property)

WM.ShowPropertiesWindow (property)
Syntax WM.ShowPropertiesWindow

Description A Boolean property to specify whether the Properties window is open.

Comments When the ShowPropertiesWindow property is set to True, the Properties
window opens.

Example Sub Main()

' Opens the Properties window

If WM.ShowPropertiesWindow = False Then

WM.ShowPropertiesWindow = True

End If

End Sub

See Also WM (constant), WM.ShowPropertiesWindow (property),
WM.ShowGeometryWindow (property)

WM.Version (property)
Syntax WM.Version

Description Returns a String indicating the version number of the Working Model
application.

Comments WM.Version is read-only.

Example Sub Main()

MsgBox "Running Working Model ver. " + WM.Version

End Sub

See Also WM (topic)

WMBody (object)
Syntax WMBody

Description An object which provides an interface to rigid bodies used in Working
Model simulations.

530 Working Model Basic User's Manual

Comments To create a WMBody object in a document, use the NewBody method of the
WMDocument object.

A WMBody object has properties that are different depending on the Kind of
the object. Shown below are properties common to all WMBody objects.
Please refer to the Working Model User's Manual for detailed discussions
on these properties.

Note: WMBody object also has properties available in WMObject objects.
Please see the section on WMObject for details.

Property Description

Kind (String) type of the body (Circle, Rectangle, or Polygon) (read-
only).

PX, PY (WMCell) x- and y-positions of the body's FOR.

PR (WMCell) orientation of the body.

VX, VY (WMCell) x- and y-velocities of the body's FOR.

VR (WMCell) angular velocity of the body.

COMOffsetX (WMCell)x-offset of the body's center of mass from the FOR.

COMOffsetY (WMCell) y-offset of the body's center of mass from the FOR.

Mass (WMCell) mass of the body. Changing Mass affects Density accordingly, as the
body area is fixed.

Area (double) area of the body (read-only).

Density (double) density of the body. Changing Density affects Mass
accordingly, as the body area is fixed (read-only).

Moment (WMCell) mass moment of inertia of the body.

Charge (WMCell) electric charge of the body.

Elasticity (WMCell) elasticity of the body.

StaticFriction (WMCell) static friction coefficient of the body.

KineticFriction (WMCell) kinetic friction coefficient
of the body.

ShowCenterOfMass (Boolean) 1 if shown, 0 otherwise.

ShowCharge (Boolean) 1 if shown, 0 otherwise.

Further, depending on the Kind, a WMBody object has the following
properties.

For Kind = "Rectangle" and "Square":

Property Description

Chapter 3 WMBody (object) 531

Width (WMCell) width of the rectangle.

Height (WMCell) height of the rectangle.

For Square, Width and Height are always equal. Any modification to
either property will automatically modify the other.

For Kind = "Circle":

Property Description

Radius (WMCell) radius of the circle.

For Kind = "Polygon":

Property/MethodDescription

VertexCount (Integer) the number of vertices that the polygon consists of.

GetVertex Given an index (Integer) and two parameters (Double), this method fills
the parameters x and y with the (x, y) coordinates of the specified vertex.

Syntax: Body.GetVertex n, x, y

where n is the index of the vertex, and x and y are parameters of type
Double, to be assigned to the coordinates of the vertex n upon return from
the method. The (x, y) coordinates are given in terms of the polygon’s
frame of reference (FOR).

AddVertex Given an index (Integer) and x, y coordinates, this method adds the vertex
to the polygon at the specified index.

Syntax: Body.AddVertex n, x, y

where n is the index at which the new vertex (x, y) is added. The rest of
the vertices will be pushed down in the list. The (x, y) coordinates are
given in terms of the global coordinates.

DeleteVertex Given an index, this method deletes the vertex from the polygon.

Syntax: Body.DeleteVertex n

where n is the index of the vertex to be deleted, and Body is assumed to be
a WMBody object. The rest of the vertices will be pushed up in the list.

Because a polygon must have at least 3 vertices, DeleteVertex fails if
VertexCount = 3. If you want to replace one of the three remaining
vertices, you must first insert the replacement vertex, then delete the old
one.

Example Sub Main()

'Creates a circle and a polygon

Dim CircleBody as WMBody

532 Working Model Basic User's Manual

Dim PolyBody as WMBody

Dim Doc as WMDocument

Set Doc = WM.ActiveDocument

Set CircleBody = Doc.NewBody("Circle")

CircleBody.PX.Value = 1.0: CircleBody.PY.Value = 2.5

CircleBody.Radius.Value = 1.5

Set PolyBody = Doc.NewBody("polygon")

PolyBody.PX.Value = 4.0: PolyBody.PY.Value = 2.5

' Form the square-shaped polygon

PolyBody.AddVertex 1, 0.5, 0.5

PolyBody.AddVertex 2, 0.5, -0.5

PolyBody.AddVertex 3, -0.5, 0.5

PolyBody.AddVertex 4, -0.5, -0.5

PolyBody.DeleteVertex 7 ' delete three default vertices

PolyBody.DeleteVertex 6

PolyBody.DeleteVertex 5

' Delete one of the vertices and turn it into a right triangle

PolyBody.DeleteVertex 3 'Delete one of the vertices

End Sub

See Also WMDocument.NewBody (method), WMConstraint (object), WMPoint
(object), WMCell (object)

WMCell (object)
Syntax WMCell

DescriptionAn object to declare formula cells used in Working Model simulations.

Comments WMCell is a placeholder for the properties available in Working Model
objects. For example, a WMBody object has properties PX and PY, which
represent the position of the body. You can enter in these properties not
only numerical values but Working Model formulas (such as
body[5].v.x). These properties, PX and PY, are instances of WMCell
objects.

A WMCell object has the following properties.

Property Description

Formula A String that contains the formula string. The usage of formula language

Chapter 3 WMCell (object) 533

is discussed in the Working Model User’s Manual.

Value A Double that contains a numerical value. If the Formula string is not
empty, the Value property holds the result of the evaluation of the
Formula string above.

To assign a formula language expression to a WMCell object, make sure to
bracket the expression with double quotation marks ("). For example, in
order to set a position, initial velocity, and a dimension of a rectangle
body called Rect, you can assign numerical values and formulas as
follows:

Rect.PX.Formula = "time + 2" ' x-position

Rect.PY.Value = 15 ' y-position

Rect.Width.Value = 8 ' width of the rectangle

Rect.Height.Formula = "Input[5]" ' height of the rectangle

As soon as one of the WMCell fields is defined, the other follows suit. For
example, if you define a valid formula expression in the Formula property
of a WMCell object, its Value property will hold the result of the
evaluation of the formula thereafter. Conversely, if you define a
numerical value in the Value property of the WMCell object, the Formula
property will hold an empty string.

When the Formula property is specified, its value is evaluated at every
frame of the simulation step, including frame 0. The value of t or time is
evaluated to 0 at frame 0.

For performance reasons, when a WMCell object is modified, the
appearance on the screen does not update until the script is terminated or
the Update method is invoked (although internal computations use correct
values). See WMDocument.Update for more information.

Note: WMCell objects are always associated with properties of other
objects, such as WMBody and WMConstraint. Declaring a WMCell object
means nothing more than declaring a “pointer” and does not allocate the
actual object. Therefore, you cannot use a WMCell object as a placeholder
for expressions and variables. For example, you cannot type:

Dim MyCell as WMCell

MyCell.Formula = "2.5 + sin(t)" ' you will get an error here

because the object MyCell is still only a pointer and has no substance.
Meanwhile, the following usage is valid:

Dim MyBody as WMBody

Dim MyCell as WMCell

Set MyBody = WM.ActiveDocument.NewBody("square")

534 Working Model Basic User's Manual

Set MyCell = MyBody.PX ' correct usage

because MyCell now points to the physical object, MyBody.PX, or the x-
position of a square WMObject.

Example Sub Main()

' Creates a rectangle and an input, and

' links the two.

Dim D as WMDocument

Dim B as WMBody

Dim I as WMInput

Set D = WM.ActiveDocument

Set B = D.NewBody("Rectangle")

Set I = D.NewInput()

' Moves the slider. Note X and Y are simply

' integers and not WMCell objects.

I.X = 100

I.Y = 50

I.Value = 0.5

' Defines the rectangle's initial position and initial velocity

B.PX.Value = 1.0

B.PY.Value = 2.0

B.VX.Formula = "Input["+str$(I.ID)+"]"

' Defines the rectangle's dimension

B.Width.Value = 0.4

B.Height.Formula = "body["+str$(B.ID)+"].width*2"

End Sub

See Also WMBody (object), WMPoint (object), WMConstraint (object), WMInput
(object), WMOutput (object), WMDocument (object), WMDocument.Update
(object)

WMConstraint (object)
Syntax WMConstraint

DescriptionAn object which provides an interface to constraints used in Working Model simulations.

Comments To create a new WMConstraint object in a Working Model document, use
the NewConstraint method of the WMDocument object.

Chapter 3 WMConstraint (object) 535

All WMConstraint objects have the following methods and properties.
The list shows the properties and methods applicable to each Kind. Note
that only Kind, ActiveWhen, and AlwaysActive are the common
properties for all WMConstraint objects. Please refer to individual
sections for these methods and properties for more information.

Note: WMConstraint object also has properties available in WMObject
objects. Please see the section on WMObject for details.

Constraint Kind Applicable Properties and Methods

Pin, SquarePin Kind, ActiveWhen, AlwaysActive, Point, PointCount

Spring Kind, ActiveWhen, AlwaysActive, Point, K, Exponent, Length,
CurrentLength, PointCount

Damper Kind, ActiveWhen, AlwaysActive, Point, K, Exponent, PointCount

SpringDamper Kind, ActiveWhen, AlwaysActive, K, DamperK, Length, CurrentLength,
Point, PointCount

Rspring Kind, ActiveWhen, AlwaysActive, K, Exponent, Rotation,
CurrentRotation, Point, PointCount

Rdamper Kind, ActiveWhen, AlwaysActive, K, Exponent, Point, PointCount

Slot Kind, ActiveWhen, AlwaysActive, Point, PointCount

CurvedSlot Kind, ActiveWhen, AlwaysActive, Point, VertexCount, GetVertex,
AddVertex, DeleteVertex, ClosedSlot, PointCount

Rod Kind, ActiveWhen, AlwaysActive, Point, Length, CurrentLength,
PointCount

Separator, Rope Kind, ActiveWhen, AlwaysActive, Point, Elasticity, Length,
CurrentLength, PointCount

Force Kind, ActiveWhen, AlwaysActive, Point, FX, FY, FR, Ftheta,
RotateWithBody, PointCount

Torque Kind, ActiveWhen, AlwaysActive, Point, Torque, PointCount

Actuator Kind, ActiveWhen, Field, AlwaysActive, Point, ActuatorType,
PointCount

Motor Kind, ActiveWhen, Field, AlwaysActive, Point, MotorType, PointCount

Pulley AppendPoint, PointCount, Point

Gear Kind, ActiveWhen, AlwaysActive, GearRatio, AutoComputeGearRatio,
RodActive, RodAlwaysActive, Internal, InternalBody, PointCount

Example Sub Main()

' Creates a box, spring, and attaches one endpoint of

536 Working Model Basic User's Manual

' the spring to Box.

Dim Doc as WMDocument : Set Doc = WM.Activedocument

Dim Box as WMBody

Set Box = Doc.NewBody("square") : Box.Width.Value = 1.0

Dim MySpring as WMConstraint

Set MySpring = Doc.NewConstraint("spring")

Set MySpring.Point(1).Body = Box ' attaches an endpoint to Box

' point coordinates are relative to Box, since the point is

' already attached to it.

MySpring.Point(1).PX.Value = 0.2

MySpring.Point(1).PY.Value = 0.5

' Set the position of the other endpoint to (3, 0) (global)

MySpring.Point(2).PX.Value = 3.0

MySpring.Point(2).PY.Value = 0.0

End Sub

See Also WMDocument.NewConstraint (method), WMBody (object), WMPoint
(object), WMObject (object), WMCell (object)

WMConstraint.ActiveWhen (property)
Syntax WMConstraint.ActiveWhen

Description A WMCell that specifies the condition for which the constraint is active (i.e., exerts
necessary force/torque to maintain the constraint).

Comments The ActiveWhen property itself is read-only, but you can modify the Value and
Formula properties of this WMCell object (see description of the WMCell object).
The condition is overridden if AlwaysActive is True, in which case the constraint is
always active.

The ActiveWhen property is applicable to all WMConstraint objects.

Note: Since the property AlwaysActive is True by default, you must first set the
property to False before modifying the ActiveWhen property; otherwise, Working
Model will report a run-time error.

Example Sub Main()

' Sets the first constraint in the document's active condition

Dim Constr1 as WMConstraint

Set Constr1 = WM.ActiveDocument.Constraints.Item(1)

if Constr1 is not Nothing then

Chapter 3 WMConstraint.ActuatorType (property) 537

' Required before modifying ActiveWhen.

Constr1.AlwaysActive = False

Constr1.ActiveWhen.Formula = "and(frame()<50, time<2.5)"

else

MsgBox "No constraint exists in the document"

end if

End Sub

See Also WMConstraint (object), WMConstraint.AlwaysActive (property)

WMConstraint.ActuatorType (property)
Syntax WMConstraint.ActuatorType

Description A String object to specify the type of an actuator constraint.

Comments ActuatorType can be set to Force, Acceleration, Velocity, or Length.
Applicable only when Kind is Actuator.

Example Sub Main()

' Sets the driver type to sinusoidal, velocity driver

Dim D as WMDocument : Set D = WM.Activedocument

Dim driver as WMConstraint

Dim Weight as WMBody

Set Weight = D.NewBody("circle")

Weight.radius.Value = 0.5

Weight.PY.value = -1.5

Set driver = D.NewConstraint("actuator")

Set driver.Point(2).Body = Weight

driver.ActuatorType = "Length"

driver.Field.Formula = str$(Driver.CurrentLength)+"+sin(t*5)"

D.Run 100

End Sub

See Also WMConstraint (object)

WMConstraint.AddVertex (method)
Syntax WMConstraint.AddVertex index, x, y

Description A method to add a new control point to the curved slot.

538 Working Model Basic User's Manual

Comments AddVertex is a method which, given the index of the curved slot control
point (specified in the Integer parameter index), adds the new control
point (x, y) (Double parameters) at the index counter index. VertexCount
will be updated, and the remaining control points will be shifted
accordingly (i.e. their index will increment by one).

The (x, y) coordinates of the control points are measured with respect to
the FOR of the curved slot (can be accessed using the Point method).
Currently, WM Basic does not provide a direct way to enter polar
coordinates for curved slots.

To access the existing control points, use GetVertex method.

Applicable only when Kind is CurvedSlot.

Example Sub Main()

' Creates a closed curved slot and creates a polygon that has
the

' save vertices

Dim Slot as WMConstraint

Dim Poly as WMBody

Dim x as Double, y as Double

Set Slot = WM.ActiveDocument.NewConstraint("curvedslot")

' By default, slot has three vertices (0, 0), (1,1), and (2,2)

Slot.AddVertex 3, 2.0, 0.0

Slot.DeleteVertex 4

Slot.ClosedSlot = True

' Now the slot has (0,0), (1,1), (2,0) in that order

Set Poly = WM.ActiveDocument.NewBody("polygon")

For I = 1 to Slot.VertexCount

Slot.GetVertex I, x, y

Poly.AddVertex 1, x, y

Next

Poly.DeleteVertex 6 ' eliminates the default vertices

Poly.DeleteVertex 5

Poly.DeleteVertex 4

End Sub

See Also WMConstraint (object), WMConstraint.VertexCount (property),
WMConstraint.GetVertex (method), WMConstraint.DeleteVertex

Chapter 3 WMConstraint.AppendPoint (method) 539

(method)

WMConstraint.AppendPoint (method)
Syntax WMConstraint.AppendPoint x, y

Description A method to add a new point to a pulley.

Comments AppendPoint is a method which appends a new point (x, y) (Double
parameters) to a pulley. The point is added after the last point. The
PointCount property will be incremented accordingly.

To access the coordinates of an existing pulley point, use the
WMConstraint.Point method.

The current version of WM Basic does not allow you to delete points from
the pulley. You would need to delete the entire pulley system first.

Applicable only when Kind is Pulley.

Example Sub Main()

' Adds a new node (2.5, 3.5) to the pulley system.

Dim Pulley as WMConstraint

Set Pulley = WM.ActiveDocument.Constraints.Item(1)

if Pulley is not Nothing Then

If Pulley.Kind = "pulley" Then

Pulley.AppendPoint 2.5, 3.5

MsgBox "The Pulley has
"+str$(Pulley.PointCount)+"points"

End If

End If

End Sub

See Also WMConstraint (object), WMConstraint.PointCount (property),
WMConstraint.Point (method)

WMConstraint.AlwaysActive (property)
Syntax WMConstraint.AlwaysActive

Description A Boolean to indicate whether the constraint is always active.

Comments The default value is True, meaning that the constraint is always active. If set True,
AlwaysActive overrides the condition set in ActiveWhen, and you cannot modify
the ActiveWhen property.

The AlwaysActive property is applicable to all WMConstraint objects.

540 Working Model Basic User's Manual

Example (See WMConstraint.ActiveWhen)

See Also WMConstraint (object), WMConstraint.ActiveWhen (property)

WMConstraint.AutoComputeGearRatio (property)
Syntax WMConstraint.AutoComputeGearRatio

Description A Boolean object to specify whether the gear ratio is to be automatically
computed.

Comments When True, the gear ratio is automatically computed based on the relative
radii of the two bodies specified as gears. If one of the bodies is not a
circle and if AutoComputeGearRatio is True, the gear ratio is computed
as 1.0.

When True, the value specified in GearRatio is ignored.

The default value is True. Applicable only when Kind is Gear.

Example (See WMConstraint.GearRatio)

See Also WMConstraint (object), WMConstraint.GearRatio (property)

WMConstraint.ClosedSlot (property)
Syntax WMConstraint.ClosedSlot

Description A Boolean to indicate whether the curved slot geometry is open or closed.

Comments When ClosedSlot is True, the curved slot geometry is closed; otherwise,
the geometry is open. The default value is False.

Applicable only when Kind is CurvedSlot.

Example (See WMConstraint.AddVertex)

See Also WMConstraint (object)

WMConstraint.CurrentLength (property)
Syntax WMConstraint.CurrentLength

Description A Double containing the current length of a linear constraint.

Comments The unit is based on the current unit system. The property is read-only.

Only applicable when Kind is Spring, SpringDamper, Rope, Separater,
and Rod.

Example (See WMConstraint.Length)

See Also WMConstraint (object)

Chapter 3 WMConstraint.CurrentRotation (property) 541

WMConstraint.CurrentRotation (property)
Syntax WMConstraint.CurrentRotation

Description A Double containing the current rotation of a rotational constraint.

Comments The unit is based on the current unit system. The property is read-only.

Only applicable when Kind is Rspring.

Example (See WMConstraint.Rotation)

See Also WMConstraint (object), WMConstraint.Rotation (property)

WMConstraint.DamperK (property)
Syntax WMConstraint.DamperK

Description A WMCell object to specify the multiplicative constant for a damper
component of a SpringDamper.

Comments The damper force is defined as -Kv. Only applicable when Kind is
SpringDamper. For a Damper constraint, use the property
WMConstraint.K instead.

Example Sub Main()

' Sets the strut and simulate mass-damper-spring model

Dim D as WMDocument : Set D = WM.Activedocument

Dim strut as WMConstraint

Dim Weight as WMBody

Set Weight = D.NewBody("circle")

Weight.radius.Value = 0.5

Weight.PY.value = -1.5

Set strut = D.NewConstraint("springdamper")

Set strut.Point(2).Body = Weight

strut.DamperK.value = 1.2 ' damping constant

Strut.Length.Value = Strut.CurrentLength

strut.K.Value = 25.0 ' spring constant

D.Run 100

End Sub

See Also WMConstraint (object), WMConstraint.Exponent (property),
WMConstraint.K (property)

542 Working Model Basic User's Manual

WMConstraint.DeleteVertex (method)
Syntax WMConstraint.DeleteVertex index

Description A method to delete a control point from a curved slot.

Comments DeleteVertex is a method which, given the index of the curved slot
control point (specified in the Integer parameter index), deletes the
control point. VertexCount will be updated, and the remaining control
points will be shifted accordingly (i.e. their index will be decremented by
one).

Applicable only when Kind is CurvedSlot.

Example (See WMConstraint.AddVertex)

See Also WMConstraint (object), WMConstraint.VertexCount (property),
WMConstraint.GetVertex (method), WMConstraint.AddVertex (method)

WMConstraint.Elasticity (property)
Syntax WMConstraint.Elasticity

Description A WMCell object to specify the elasticity of a linear constraint.

Comments Applicable only when Kind is Rope or Separator.

Example Sub Main()

' Set the elasticity of a separator (assume

' one exists) 1.0.

Dim Doc as WMDocument : Set Doc = WM.ActiveDocument

Dim Separator as WMConstraint

Set Separator = Doc.Constraint("separator")

If Separator is not Nothing then

Separator.Elasticity.Value = 1.0

Else

MsgBox "No constraint with the name 'separator'"

End If

End Sub

See Also WMConstraint (object)

WMConstraint.Exponent (property)
Syntax WMConstraint.Exponent

Chapter 3 WMConstraint.Field (property) 543

Description An Integer to specify the exponent for displacement (for springs) or
velocity (for dampers).

Comments The constraint force is defined by -Kve (for dampers) or Kxe (for springs),
where v is relative velocity, x is displacement, and e is the Exponent.

Only applicable when Kind is Spring, Damper, Rdamper, and Rspring.

Example (See WMConstraint.K)

See Also WMConstraint, WMConstraint.K

WMConstraint.Field (property)
Syntax WMConstraint.Field

Description A WMCell object to specify the magnitude of the motor or actuator.

Comments Motors and actuators are versatile constraints which can control various
properties such as length, rotation, velocity, and acceleration. You must
set the MotorType or ActuatorType to specify the controlled quantity,
and then specify its magnitude by setting the Field property of the
WMConstraint object.

Only applicable when Kind is Motor or Actuator.

Example (See WMConstraint.ActuatorType and WMConstraint.MotorType)

See Also WMConstraint (object), WMConstraint.MotorType (property),
WMConstraint.ActuatorType (property)

WMConstraint.FR, FTheta (properties)
Syntax WMConstraint.FR, WMConstraint.FTheta

Description WMCell objects to specify the radial (FR) and angular (FTheta)
components of a force constraint.

Comments The values are specified in the current force unit with respect to the global
coordinate system.

Note: To access FR and FTheta properties, the force magnitude
specifications must be set to polar coordinates. When a force is created,
the default mode is Cartesian coordinates, in which case FR and FTheta
are set to Nothing. You must explicitly specify the polar mode in the
Properties window for the force.

Applicable only when Kind is Force.

Example Sub Main()

' If the first constraint in the document is a

544 Working Model Basic User's Manual

' force, and if the force spec is set to Polar

' coordinates, modify (r, theta) to (10, 45).

Dim Force as WMConstraint

Set Force = WM.ActiveDocument.Constraints.Item(1)

WM.ActiveDocument.UnitSystem = "si degrees"

' Make sure that the object is Force and that the coordinate

' spec mode is Polar (otherwise FR and FTheta returns Nothing).

If (Force is not Nothing) and (Force.Kind = "force") then

If Force.FR is not Nothing then

Force.FTheta.Value = 45' degrees

Force.FR.Value = 10 ' Newton

End If

End If

End Sub

See Also WMConstraint (object), WMConstraint.FX, FY (properties)

WMConstraint.FX, FY (properties)
Syntax WMConstraint.FX, WMConstraint.FY

Description WMCell objects to specify the X- and Y-components of a force constraint.

Comments The values are specified in the current force unit with respect to the global
coordinate system.

Applicable only when Kind is Force.

Example Sub Main()

' Apply force at a corner of a square body.

' Let the direction of the force stay fixed with

' respect to the orientation of the body.

Dim D as WMDocument : Set D = WM.Activedocument

D.Gravity = "none"

Dim Force as WMConstraint

Dim Weight as WMBody

Set Weight = D.NewBody("square")

Weight.width.Value = 1.0

Set Force = D.NewConstraint("Force")

Chapter 3 WMConstraint.GearRatio (property) 545

Set Force.Point(1).Body = Weight

Force.Point(1).PX.Value = -0.5

Force.Point(1).PY.Value = -0.5

Force.RotateWithBody = True

Force.FX.Value = 10

Force.FY.Value = 0

D.Run 50

End Sub

See Also WMConstraint (object), WMConstraint.FR, FTheta (properties)

WMConstraint.GearRatio (property)
Syntax WMConstraint.GearRatio

Description A WMCell object to specify the gear ratio of a gear constraint.

Comments The value is ignored if AutoComputeGearRatio is True. Please note that
the gear ratio is a unitless quantity.

Applicable only when Kind is Gear.

Example Sub Main()

Dim D as WMDocument : Set D=WM.ActiveDocument

Dim DriveGear as WMBody

Dim DrivenGear as WMBody

Dim GearSys as WMConstraint

Set DriveGear = D.NewBody("circle")

Set DrivenGear = D.NewBody("circle")

DriveGear.Radius.value = 1.5

DrivenGear.Radius.value = 0.5

DrivenGear.PX.Value = 3.0

Set GearSys = D.NewConstraint("gear")

GearSys.Point(1).Body = DriveGear

GearSys.Point(2).Body = DrivenGear

GearSys.AutoComputeGearRatio = False ' required

GearSys.GearRatio.Value = 5.5

' Make the rod active only while t < 2.5

GearSys.RodAlwaysActive = False

546 Working Model Basic User's Manual

GearSys.RodActive.Formula = "time < 2.5"

' Note: At this point, circles remain unattached to

' the background; you need to attach them with

' pin joint or motor to make the gears work.

End Sub

See Also WMConstraint (object), WMConstraint.AutoComputeGearRatio (property)

WMConstraint.GetVertex (method)
Syntax WMConstraint.GetVertex index, x, y

Description A method to obtain the x- and y-coordinates of a specified control point of
a curved slot.

Comments GetVertex is a method which, given the index of a curved slot control
point (specified in the Integer parameter index), fills the Double
parameters x, y as the coordinates of the specified control point.

Applicable only when Kind is CurvedSlot.

Example (See WMConstraint.AddVertex)

See Also WMConstraint (object), WMConstraint.VertexCount (property),
WMConstraint.AddVertex (method), WMConstraint.DeleteVertex
(method)

WMConstraint.Internal (property)
Syntax WMConstraint.Internal

Description A Boolean to specify whether the gear system works as an internal-
external gear pair.

Comments When Internal is True, one of the bodies involved in the gear constraint
(specified in InternalBody) becomes the internal gear. Use
InternalBody to specify which gear is acting as an internal gear.

Default value is False.

Applicable only when Kind is Gear.

Example (See WMConstraint.GearRatio)

See Also WMConstraint (object), WMConstraint.InternalBody (property)

WMConstraint.InternalBody (property)
Syntax WMConstraint.InternalBody

Chapter 3 WMConstraint.K (property) 547

Description An Integer to specify the body acting as the internal gear. Applicable
only when Kind is Gear, and only if Internal is True.

Comments The Integer property returns 1 or 2. The number corresponds to which
body was selected first when the gear was created.

Example Sub Main()

' Provided that an internal gear constraint exists in doc,

' reports which body is acting as the internal gear.

Dim Doc as WMDocument

Dim Gear as WMConstraint

Set Doc = WM.ActiveDocument

Set Gear = Doc.Constraint("gear")

If Gear is not Nothing then

If Gear.Internal then

MsgBox "Internal gear is "+str$(Gear.InternalBody)

Else

MsgBox "Gear found, but it is not an internal gear"

End If

End If

End Sub

See Also WMConstraint (object), WMConstraint.Internal (property)

WMConstraint.K (property)
Syntax WMConstraint.K

Description A WMCell object to specify the multiplicative constant for the constraint
force.

Comments The constraint force is defined by -Kve (for dampers) or -Kxe (for springs),
where v is relative velocity, x is displacement, and e is the exponent.

Only applicable when Kind is Spring, Damper, Rdamper, SpringDamper
and Rspring.

Example Sub Main()

' Simulate mass-spring model; spring is -kx^2

Dim D as WMDocument : Set D = WM.Activedocument

Dim Spring as WMConstraint

Dim Weight as WMBody

548 Working Model Basic User's Manual

Set Weight = D.NewBody("circle")

Weight.radius.Value = 0.5

Weight.PY.value = -1.5

Set Spring = D.NewConstraint("spring")

Set Spring.Point(2).Body = Weight

Spring.Exponent = 2

Spring.K.Value = 25.0 ' spring constant

Spring.Length.Value = Spring.CurrentLength

D.Run 100

End Sub

See Also WMConstraint, WMConstraint.Exponent

WMConstraint.Kind (property)
Syntax WMConstraint.Kind

Description A String to indicate the type of a constraint.

Comments The Kind property is read-only and automatically defined by Working
Model when the constraint is created. See the section on WMConstraint
(object) for the range of values accepted as this String property.

The Kind property is applicable to all WMConstraint objects.

Example (See WMConstraint.ActuatorType)

See Also WMConstraint (object)

WMConstraint.Length (property)
Syntax WMConstraint.Length

Description A WMCell object to specify rest length of a linear constraint.

Comments The unit is based on the current unit system.

Only applicable when Kind is Spring, SpringDamper, Rope, Separator,
and Rod.

Example Sub Main()

' Sets a spring-mass model, where the rest length

' of the spring is half of the initial length.

' (i.e. spring is under tension initially)

 Dim D as WMDocument : Set D = WM.ActiveDocument

Chapter 3 WMConstraint.MotorType (property) 549

Dim Spring as WMConstraint

Dim Pendulum as WMBody

Set Pendulum = D.NewBody("circle")

Pendulum.Radius.Value = 0.5

Pendulum.PY.Value = -2.0

Set Spring = D.NewConstraint("spring")

SetSpring.Point(1).Body = Pendulum

Spring.Length.Value = Spring.CurrentLength / 2

D.Run 45

D.Reset

End Sub

See Also WMConstraint (object)

WMConstraint.MotorType (property)
Syntax WMConstraint.MotorType

Description A String object to specify the type of a motor constraint.

Comments MotorType can be set to Torque, Acceleration, Velocity, or Rotation.
Applicable only when Kind is Motor.

Example Sub Main()

' Sets the motor type to sinusoidal, velocity driver

Dim D as WMDocument : Set D = WM.Activedocument

Dim Motor as WMConstraint

Dim Spinner as WMBody

Set Spinner = D.NewBody("square")

Spinner.Width.Value = 1.0

Set Motor = D.NewConstraint("motor")

Set Motor.Point(2).Body = Spinner

Motor.MotorType = "Velocity"

Motor.Field.Formula = "200*sin(t*8)"

D.Run 100

End Sub

See Also WMConstraint (object)

550 Working Model Basic User's Manual

WMConstraint.Point (method)
Syntax WMConstraint.Point(index)

Description Returns a WMPoint object that represents the point element of a linear
constraint.

Comments The parameter index is an Integer that distinguish one point from
another. The value of index can be either 1 or 2 for all linear constraints
except for a pulley. For a pulley system, index can range from 1 to the
number of points embedded in the pulley. Refer to the
WMConstraint.PointCount property for information.

The Point method returns a WMPoint object. Refer to the section on
WMPoint for more information .

Applicable only when Kind is Spring, Damper, SpringDamper, Rod,
Separator, Rope, Actuator, Pulley, Pin, SquarePin, Rspring,
Rdamper, Motor, Hslot, Vslot, KeyedHslot, KeyedVslot, and
CurvedSlot.

To append a point to a pulley system, use the AppendPoint method of the
WMConstraint object.

The Point method returns the following depending on the Kind of the
WMConstraint object.

Kind Point(1) Point(2)

Spring, Damper,
SpringDamper, Rod,
Separator, Rope,
Actuator

(If the constraint was
created interactively
with the mouse) the
first point created.

(If the constraint was
created interactively
with the mouse) the
second point created.

Pulley The first node created. The second node
created.

Pin, SquarePin,
Rspring, Rdamper,
Motor

Point attached to the
body on the lower
layer.

Point attached to the
body on the upper
layer.

Hslot, Vlost,
KeyedHSlot,
KeyedVSlot,
CurvedSlot

Point representing the
slot element, or the
FOR of the slot .

Point attached to the
body moving along the
slot.

Note: When you create a pin joint or locked joint by performing JOIN, the
body created earlier belongs to the lower layer.

Example Sub Main()

' Create two links and connect them with a pin joint.

Chapter 3 WMConstraint.PointCount (property) 551

Dim D as WMDocument : Set D = WM.ActiveDocument

Dim Joint as WMConstraint

Dim Link1 as WMBody

Dim Link2 as WMBody

' Create two bodies

Set Link1 = D.NewBody("rectangle")

Link1.Width.Value = 2.0 : Link1.Height.Value = 0.5

Set Link2 = D.NewBody("rectangle")

Link2.Width.Value = 0.5 : Link2.Height.Value = 2.0

' Create a joint and attach it to the links

Set Joint = D.NewConstraint("pin")

SetJoint.Point(2).Body = Link1

Joint.Point(2).PX.Value = -0.75

Joint.Point(2).PY.Value = 0

Set Joint.Point(1).Body = Link2

Joint.Point(1).PX.Value = 0

Joint.Point(1).PY.Value = 0.75

' Modify the position of the linkage

Link2.PX.Value = 0.0 : Link2.PY.Value = 1.0

End Sub

See Also WMConstraint (object), WMConstraint.PointCount (property),
WMConstraint.AppendPoint (method), WMPoint (object)

WMConstraint.PointCount (property)
Syntax WMConstraint.PointCount

Description An Integer which shows the number of point elements embedded in a
constraint (endpoints for most constraints, or nodes for pulleys).

Comments Read-only. Most useful when Kind is Pulley. For rotational/linear
constraints and joints, PointCount returns two. For force, torque, and a
slot element, PointCount returns 1. To append a point to the pulley, use
the WMConstraint.AppendPoint method.

Example (See WMConstraint.AppendPoint)

See Also WMConstraint (object), WMConstraint.AppendPoint (method),
WMConstraint.Point (method)

552 Working Model Basic User's Manual

WMConstraint.RodActive (property)
Syntax WMConstraint.RodActive

Description A WMCell object to specify the condition under which the built-in rod
constraint in the gear becomes an active constraint.

Comments The value specified in RodActive is overridden if RodAlwaysActive is
True.

Note: Since the property RodAlwaysActive is True by default, you must first set the
property to False before modifying the RodActive property; otherwise, Working
Model will not allow modification of the RodActive property.

Applicable only when Kind is Gear.

Example (See WMConstraint.GearRatio)

See Also WMConstraint (object), WMConstraint.RodAlwaysActive (property),
WMConstraint.GearRatio (property)

WMConstraint.RodAlwaysActive (property)
Syntax WMConstraint.RodAlwaysActive

Description A Boolean to specify whether the build-in rod constraint in the gear
should always be active.

Comments If set True, RodAlwaysActive overrides conditions that may have been
given in RodActive. The default value is True.

Applicable only when Kind is Gear.

Example (See WMConstraint.GearRatio)

See Also WMConstraint (object), WMConstraint.RodActive (property),
WMConstraint.GearRatio (property)

WMConstraint.RotateWithBody (properties)
Syntax WMConstraint.RotateWithBody

Description A Boolean object to specify whether the direction of the force is to be
fixed with respect to the body to which it is attached.

Comments When RotateWithBody is True, the direction of the force is fixed with
respect to the body (i.e., retains the direction specified at the initial frame).
The default value is False.

Applicable only when Kind is Force.

Example (See WMConstraint.FX, FY)

Chapter 3 WMConstraint.Rotation (property) 553

See Also WMConstraint (object), WMConstraint.FX, FY (properties)

WMConstraint.Rotation (property)
Syntax WMConstraint.Rotation

Description A WMCell object that specifies the rest rotation of a rotional constraint.

Comments The unit for rotation is based on the current unit system.

Only applicable when Kind is RSpring.

Example Sub Main()

' set up a torsion pendulum

 Dim D as WMDocument : Set D = WM.ActiveDocument

D.Gravity = "none"

Dim Spring as WMConstraint

Dim Pendulum as WMBody

Set Pendulum = D.NewBody("rectangle")

Pendulum.Width.Value = 0.5

Pendulum.Height.Value = 2.0

Set Spring = D.NewConstraint("Rspring")

SetSpring.Point(2).Body = Pendulum

Spring.Point(2).PY.Value = 0.75

Pendulum.PR.Value = 45

Spring.Rotation.Value = Spring.CurrentRotation * 2

D.Run 45

D.Reset

End Sub

See Also WMConstraint (object)

WMConstraint.Torque (property)
Syntax WMConstraint.Torque

Description A WMCell object to specify the magnitude of Torque.

Comments The magnitude is interpreted in the current torque unit. You can also use
the Field property to specify the torque (see Example below).

Applicable only when Kind is Torque.

554 Working Model Basic User's Manual

Example Sub Main()

' Creates a body and applies torque to it.

Dim Doc as WMDocument : Set Doc = WM.ActiveDocument

Doc.Gravity = "none"

Dim Body as WMBody : Set Body = Doc.NewBody("square")

Body.Mass.Value = 5

Dim T as WMConstraint

Set T = Doc.NewConstraint("torque")

Set T.Point(1).Body = Body

T.Torque.Value = 10 ' T.Force.Value = 10 would work, too

Doc.Run 50

End Sub

See Also WMConstraint (object), WMConstraint.Field (property)

WMConstraint.VertexCount (property)
Syntax WMConstraint.VertexCount

Description An Integer which returns the number of control points embedded in a
curved slot joint.

Comments Read-only. Applicable only when Kind is CurvedSlot.

Example (See WMConstraint.AddVertex)

See Also WMConstraint (object), WMConstraint.GetVertex (method),
WMConstraint.AddVertex (method), WMConstraint.DeleteVertex
(method)

WMDocument (object)
Syntax WMDocument

Description An object which provides an interface to Working Model document.

Comments Most of Working Model Basic functionalities operate on a Working
Model document. You usually declare a WMDocument object before
running a simulation or manipulating individual Working Model objects,
such as constraints and bodies.

WMDocument has the following properties and methods. Please refer to
individual sections for complete descriptions.

Property/MethodDescription

Chapter 3 WMDocument (object) 555

AirResistanceType Specifies the type of air resistance.

AirResistanceV2Coeff Specifies the high air resistance
coefficient.

AirResistanceVCeoff Specifies the standard air resistance
coefficient.

AnimationStep Specifies the Animation Step of the simulation.

AssemblyError Specifies the Assembly Error.

AutoAnimationStep Enables or disables the automatic Animation Step determination.

AutoAssemblyError Enables or disables the automatic Assembly Error determination.

AutoEraseTrack Specifies whether the AutoErase Track feature is active.

AutoIntegratorError Enables or disables the automatic
Integrator Error determination.

AutoOverlapError Enables or disables the automatic Overlap Error determination.

AutoSignificantDigits Enables or disables the automatic
Significant Digits determination.

Bodies The collection of all WMBody objects in the document.

Body Returns the specified WMBody object.

ChargeUnit Specifes the charge unit.

Close Closes the document.

CombineTapeScroll Specifies whether the tape control
display is combined in line with the horizontal scroll bar.

Constraint Returns the specified WMConstraint object.

Constraints The collection of all WMConstraint objects in the document.

ControlsLocked Lock Control.

Copy Copies selected set of objects to the Clipboard.

CurrentFrame Shows the current frame number of the simulation.

Cut Copies selected set of objects to the Clipboard and deletes the objects
from the document.

DecimalDigits Specifies the number of decimal digits displayed in meters and dialogs.

DecimalFormat Specifies the display format for floating point numbers.

Delete Permanently deletes selected set of objects.

DistanceUnit Specifies the distance unit.

ElectricPotentialUnit

556 Working Model Basic User's Manual

Specifies the electric potential unit.

ElectrostaticConst Specifies the electrostatic constant factor.

ElectrostaticsOn Specifies whether the electrostatic forces are active between bodies.

EnergyUnit Specifies the energy unit.

EraseTrack Erases traced simulation tracks left on the document window.

ExportDXF Exports a DXF file.

ExportMeterData Exports meter data to a file.

ExportStartFrame Specifies the intial frame number when exporting data to a file.

ExportStopFrame Specifies the final frame number when exporting data to a file.

ForceFieldFX, ForceFieldFY, ForceFieldT

Specifies the force field components.

ForceFieldType Specifies the force field type.

ForceUnit Specifies the force unit.

FrequencyUnit Specifies the frequency unit.

Gravity Specifies the type of gravitational force acting in the document.

HistoryFrames Shows the number of frames currently stored in memory.

ImportDXF Imports a DXF file.

Input Returns the specified WMInput object.

Inputs Collection of all WMInput objects in the document.

Integrator Specifies the integration method.

IntegratorError Specifies the Integrator Error.

Join Joins objects.

LinearGravityConst Specifies the linear gravitational constant.

MassUnit Specifies the mass unit.

Name The document name (file name).

NewBody Creates a new WMBody object.

NewConstraint Creates a new WMConstraint object.

NewInput Creates a new WMInput object.

NewOutput Creates a new WMOutput object.

NewPoint Creates a new WMPoint object.

Object Returns the specified WMObject object (regardless of its Kind).

Chapter 3 WMDocument (object) 557

Objects Collection of all WMObject objects in the document.

Output Returns the specified WMOutput object.

Outputs Collection of all WMOutput objects in the document.

OverlapError Specifies the Overlap Error.

Paste Pastes objects from Clipboard to the Working Model document.

PlanetaryGravityConst Specifies the planetary gravitational
constant.

PlayerMode Specifies whether the document is in Player mode.

Point Returns the specified WMPoint object.

Points Collection of WMPoint objects in the document.

PowerUnit Specifies the power unit.

Reset Resets the Working Model simulation.

RotationalVelocityUnit

Specifies the rotational velocity unit.

RotationUnit Specifies the rotation unit.

Run Runs the Working Model simulation.

Save Saves the Working Model simulation under the current filename.

SaveAs Saves the Working Model simulation under the specified name.

ScaleFactor Specifes the scale factor of the Working Model document screen.

ScrollTo Scrolls the document screen to a specific location.

Select Selects or de-selects Working Model objects in the document.

SelectAll Selects or de-selects all Working Model objects simultaneously in the
document.

Selection Contains the objects currently selected in the document.

ShowCoordinates Show or hide the Coordinates bar.

ShowGridLines Show or hide the grid lines.

ShowHelpRibbon Show or hide the Help Ribbon.

ShowRulers Show or hide the rulers.

ShowScrollBars Show or hide the scroll bars.

ShowTapeControl Show or hide the tape control.

ShowToolPalette Show or hide the Toolbar.

558 Working Model Basic User's Manual

ShowXYAxes Show or hide the x- and y-axes.

SimulationMode Sets the simulation mode (e.g. Fast, Accurate)

SignificantDigits Specifies the number of significant digits.

SkipFrames Specifies the frame skip rate.

Split Splits the selected bodies or constraints.

StartHere Resets the simulation history.

TimeUnit Specifies the time unit.

Tracking Specifies the tracking rate.

UnitSystem Specifies the current unit system.

Update Updates the Working Model document screen to reflect changes in
WMCell objects.

VariableIntegrationStep

Sets the integration step to be fixed or variable.

VelocityUnit Specifies the (linear) velocity unit.

ViewWidth Specifies the view width (scaled length of the horizontal ruler).

WarnInconsistent Enables or disables the inconsistent constraint warning.

WarnLargeVorA Enables or disables the large velocity/acceleration warning.

WarnOverlap Enables or disables the initial body overlap warning.

WarnRedundant Enables or disables the redundant constraint warning.

Example Sub Main()

Dim WM1 as WMDocument

Set WM1 = WM.ActiveDocument

MsgBox "The currently active document is " + WM1.Name

End Sub

See Also WM (constant)

WMDocument.AirResistanceType (property)
Syntax WMDocument.AirResistanceType

Description A String which controls the type of air resistance acting in the Working
Model document.

Comments The AirResistanceType property can take one of the following.

Value Unit Description

Chapter 3 WMDocument.AirResistanceV2Coeff (property) 559

none No air resistance.

standard Standard air resistance, which acts on a body proportional to its cross
sectional width and velocity.

high High air resistance, which acts on a body proportional to its cross
sectional width and the squared velocity.

The default value for every new document is none.

Use the properties AirResistanceVCoeff and AirResistanceV2Coeff
to control standard and high air resistance forces, respectively.

Example Sub Main()

 Dim D as WMDocument : Set D = WM.ActiveDocument

D.AirResistanceType = "Standard"

D.AirResistanceVCoeff = 7.0

End Sub

See Also WMDocument (object), WMDocument.AirResistanceVCoeff(property),
WMDocument.AirResistanceV2Coeff(property)

WMDocument.AirResistanceV2Coeff (property)
Syntax WMDocument.AirResistanceV2Coeff

Description A Double which specifies the high air resistance coefficient in the
Working Model document.

Comments You must turn on the high air resistance first in order for this constant to
take effect in the Working Model document (see
WMDocument.AirResistanceType). The property
AirResistanceV2Coeff pertains to the coefficient k used in computing F
= k|v|2A, where F is the force acting on every body (whose cross-sectional
width is A (projected to the direction of v) and the velocity is v) in the
document.

The default value of AirResistanceV2Coeff is 5.0 kg /m sec2 (0.007 lb /
in sec2). The numerical value is automatically adjusted to accommodate
the current unit system in order to retain the physical magnitude of the
constant.

See WMDocument.AirResistanceType to specify the high air resistance
constant.

Example Sub Main()

 Dim D as WMDocument : Set D = WM.ActiveDocument

D.AirResistanceType = "High"

560 Working Model Basic User's Manual

D.AirResistanceV2Coeff = 7.0

End Sub

See Also WMDocument (object), WMDocument.AirResistanceType(property),
WMDocument.AirResistanceVCoeff(property)

WMDocument.AirResistanceVCoeff (property)
Syntax WMDocument.AirResistanceVCoeff

Description A Double which specifies the standard air resistance coefficient in the
Working Model document.

Comments You must turn on the standard air resistance first in order for this constant
to take effect in the Working Model document (see
WMDocument.AirResistanceType). The property
AirResistanceVCoeff pertains to the coefficient k used in computing F
= k|v|A, where F is the force acting on every body (whose cross-sectional
width is A (projected to the direction of v) and the velocity is v) in the
document.

The default value of AirResistanceVCoeff is 5.0 kg /m sec (0.28 lb / in
sec). The numerical value is automatically adjusted to accommodate the
current unit system in order to retain the physical magnitude of the
constant.

See WMDocument. AirResistanceType to specify the standard air
resistance constant.

Example (See WMDocument.AirResistanceType)

See Also WMDocument (object), WMDocument.AirResistanceType(property),
WMDocument.AirResistanceV2Coeff(property)

WMDocument.AnimationStep (property)
Syntax WMDocument.AnimationStep

Description The animation time step of the Working Model document.

Comments AnimationStep is a Double property. The property is exactly equivalent
to the Animation Step in the Accuracy dialog of Working Model.

For a new document, the default value of AnimationStep is determined
by Working Model automatically. The value varies according to the size
and unit system of the model.

In order to specify AnimationStep, you must first set
AutoAnimationStep to False.

Example Sub Main()

Chapter 3 WMDocument.AssemblyError (property) 561

' Uses Fast simulation mode for the active document, and

' set the Animation Step to 0.01

WM.ActiveDocument.SimulationMode = "Fast"

' At this point, AutoAnimationStep is True and AnimationStep

' has the value automatically determined by Working Model.

WM.ActiveDocument.AutoAnimationStep = False

WM.ActiveDocument.AnimationStep = 0.1

End Sub

See Also WMDocument (object), WMDocument.AutoAnimationStep (property)

WMDocument.AssemblyError (property)
Syntax WMDocument.AssemblyError

Description Specifies the Assembly Error of the Working Model document.

Comments AssemblyError is a Double property. The property is equivalent to the
Assembly Error in the Accuracy dialog of Working Model.

For a new document, the default value of AssemblyError is determined
by Working Model automatically. The value varies according to the size
and unit system of the model.

In order to specify AssemblyError, you must first set
AutoAssemblyError to False.

Example Sub Main()

' Uses Fast simulation mode for the active document, and

' set the Assembly Error to 0.01

WM.ActiveDocument.SimulationMode = "Fast"

' At this point, AutoAssemblyError is True and

' AssemblyError has the value automatically determined by

' Working Model.

WM.ActiveDocument.AutoAssemblyError = False

WM.ActiveDocument.AssemblyError = 0.01

End Sub

See Also WMDocument (object), WMDocument.AutoAssemblyError (property)

WMDocument.AutoAnimationStep (property)
Syntax WMDocument.AutoAnimationStep

562 Working Model Basic User's Manual

Description Specifies whether AnimationStep for WMDocument object is to be
determined automatically.

Comments AutoAnimationStep is a Boolean property. Setting the property to True
is equivalent to checking the Automatic radio button under Animation
Step in the Accuracy dialog of Working Model.

When the property is True, Working Model automatically determines an
appropriate animation time step.

The default value of AutoAnimationStep is True.

If you set the AutoAnimationStep to be False, the value of
AnimationStep remains unchanged. You need to directly modify the
value of AnimationStep if necessary.

Example See WMDocument.AnimationStep.

See Also WMDocument (object), WMDocument.AnimationStep (property)

WMDocument.AutoAssemblyError (property)
Syntax WMDocument.AutoAssemblyError

Description Specifies whether AssemblyError for WMDocument object is to be
determined automatically.

Comments AutoAssemblyError is a Boolean property. Setting the property to True
is equivalent to checking the Automatic radio button under Assembly
Error in the Accuracy dialog of Working Model. Please refer to the
Working Model User's Manual for descriptions of Assembly Error.

When the property is True, Working Model will automatically determine
an appropriate size of Assembly Error.

The default value of AutoAssemblyError is True.

If you set the AutoAssemblyError to be False, the value of
AssemblyError remains unchanged. You need to modify the
AssemblyError property directly if necessary.

Example See WMDocument.AssemblyError.

See Also WMDocument (object), WMDocument.AssemblyError (property)

WMDocument.AutoEraseTrack (property)
Syntax WMDocument.AutoEraseTrack

Description A Boolean to specify whether the AutoErase Track feature is active.

Comments When the AutoErase Track feature is active, simulation tracks are erased
automatically whenever the document is modified. Please refer to the

Chapter 3 WMDocument.AutoIntegratorError (property) 563

Working Model User's Manual for more information on this feature.

AutoErase Track feature is active when AutoEraseTrack property is
True.

The default value of AutoEraseTrack is True.

Example (See WMDocument.EraseTrack)

See Also WMDocument.EraseTrack (method)

WMDocument.AutoIntegratorError (property)
Syntax WMDocument.AutoIntegratorError

Description Specifies whether IntegratorError for WMDocument object is to be
determined automatically.

Comments AutoIntegratorError is a Boolean property. Setting the property to
True is equivalent to checking the Automatic radio button under
Integrator Error in the Accuracy dialog of Working Model. Please refer to
the Working Model User's Manual for descriptions of Integrator Error.

When the property is True, Working Model will automatically determine
an appropriate size of Integrator Error.

The default value of AutoIntegratorError is True.

If you set the AutoIntegratorError to be False, the value of
IntegratorError remains unchanged. You need to modify the
IntegratorError property directly if necessary.

Example See WMDocument.IntegratorError.

See Also WMDocument (object), WMDocument.IntegratorError (property)

WMDocument.AutoOverlapError (property)
Syntax WMDocument.AutoOverlapError

Description Specifies whether OverlapError for WMDocument object is to be
determined automatically.

Comments AutoOverlapError is a Boolean property. Setting the property to True is
equivalent to checking the Automatic radio button under Overlap Error in
the Accuracy dialog of Working Model. Please refer to the Working
Model User's Manual for descriptions of Overlap Error.

When the property is True, Working Model will automatically determine
an appropriate size of Overlap Error.

The default value of AutoOverlapError is True.

If you set the AutoOverlapError to be False, the value of

564 Working Model Basic User's Manual

OverlapError remains unchanged. You need to modify the
OverlapError property directly if necessary.

Example See WMDocument.OverlapError.

See Also WMDocument (object), WMDocument.OverlapError (property)

WMDocument.AutoSignificantDigits (property)
Syntax WMDocument.AutoSignificantDigits

Description Specifies whether SignificantDigits for WMDocument object is to be
determined automatically.

Comments AutoSignificantDigits is a Boolean property. Setting the property to
True is equivalent to checking the Automatic radio button under
Significant Digits in the Accuracy dialog of Working Model. Please refer
to the Working Model User's Manual for descriptions of Significant
Digits.

When the property is True, Working Model will automatically determine
an appropriate size of Significant Digits.

The default value of AutoSignificantDigits is True.

If you set the AutoSignificantDigits to be False, the value of
SignificantDigits remains unchanged. You need to modify the
SignificantDigits property directly if necessary.

Example See WMDocument.SignificantDigits.

See Also WMDocument (object), WMDocument.SignificantDigits (property)

WMDocument.Bodies (property)
Syntax WMDocument.Bodies

Description Returns the collection of all WMBody objects present in the document.

Comments The Bodies property is a collection of all WMBody objects present in the
document. Like any other Collection object, you can use the Item method
to access a specific body within the collection.

The Bodies property is read-only.

If you wish to access a single body in the document instead of a
collection, use the Body method of the WMDocument object.

The index parameter given to the Item method is sequential within the set
of bodies in the document. For example, if a document Doc has 10 objects
(bodies, constraints, etc.) and 3 of the 10 objects are bodies, these bodies
may be referred to as Doc.Body(3), Doc.Body(6) and Doc.Body(7) with
the Body method. With the Bodies property, these objects are referred to

Chapter 3 WMDocument.Body (method) 565

as Doc.Bodies.Item(1), Doc.Bodies.Item(2), and
Doc.Bodies.Item(3), but not necessarily in that order. The Bodies
property is provided as a convenient tool to access all bodies in a loop
statement (see Example), and the indices given to the Item are not
permanently linked to individual WMBody objects.

Example Sub Main()

' change the name of all bodies to "truss member"

Dim D as WMDocument

Dim B as WMBody

Set D = WM.ActiveDocument

For I = 1 to D.Bodies.Count

D.Bodies.Item(I).Name = "truss member"

Next

End Sub

See Also WMDocument (object), WMDocument.Body (method), WMBody (object),
Collection (topic)

WMDocument.Body (method)
Syntax WMDocument.Body(name | id)

Description Returns the first WMBody object that matches the given name or ID
number, or the special value Nothing if none is found.

Comments The WMDocument.Body method takes one or the other of the following
parameters:

Parameter Description

name A String containing the name of the WMBody object to be searched. The
string match will not be case-sensitive.

id An Integer specifying the ID of the WMBody.

Note: The Body method returns a single body, whereas the Bodies
property of a WMDocument returns the collection of all bodies within the
document.

Example Sub Main()

' Outputs the ID number of a body named "Cam Lobe".

Dim D as WMDocument

Dim B as WMBody

Set D = WM.ActiveDocument

566 Working Model Basic User's Manual

Set B = D.Body("Cam Lobe")

If B is not Nothing then

MsgBox "Cam Lobe ID: "+str$(B.ID)

Else

MsgBox "No object by the name of Cam Lobe found"

End If

End Sub

See Also WMDocument (object), WMDocument.Bodies (property), WMBody (object)

WMDocument.ChargeUnit (property)
Syntax WMDocument.ChargeUnit

Description A String which specifies the charge unit in the Working Model
document.

Comments The ChargeUnit property can take one of two values as follows.

Value Unit Description

Coulombs Coulombs.

Statcoulombs Statcoulombs.

Both lower- and upper-case letters are accepted. The default value of the
ChargeUnit property is "Coulombs".

The property may be overwritten when the user explicitly specifies the
UnitSystem property of the document, because each unit system has a set
of specifications for all measurement units. For example, the SI unit
system automatically changes distance unit to meters, mass unit to
kilograms, and time unit to seconds.

Example (See WMDocument.UnitSystem)

See Also WMDocument.UnitSystem (property), WMDocument.DecimalFormat
(property), WMDocument.DecimalDigits (property)

WMDocument.Close (method)
Syntax WMDocument.Close

Description Closes the Working Model document.

Comments If the document has been modified without being saved, Working Model
will display a dialog asking whether the user wishes to save the changes.

Example Sub Main()

Chapter 3 WMDocument.Collide (method) 567

' Closes the active document

MsgBox "Closing " + WM.ActiveDocument.Name

WM.ActiveDocument.Close

End Sub

See Also WMDocument (object)

WMDocument.Collide (method)
Syntax WMDocument.Collide [state]

Description Specifies whether the selected objects could collide.

Comments The WMDocument.Collide method takes the selected set of WMBody
objects and controls whether the objects could collide or not. You can
select or deselect objects using the Select or SelectAll method of the
WMDocument. You can verify the current set of objects by accessing
WMDocument.Selection property.

The method takes the following parameter:

Parameter Description

state An optional Boolean specifying whether the objects could collide (if
True) or not collide (if False). The parameter is optional, and the default
value is True.

You can use the SelectAll method immediately followed by the
Collide method to make all bodies non-collidable. If objects other than
WMBody are included in the selection, they will be ignored.

By default, all WMBody objects could collide with one another. The
exception is made when two bodies are directly connected with joints or
gears. For more detail on collision properties, please refer to Chapter 4 of
the Working Model User's Manual.

Example Sub Main()

' Makes all bodies in the active document not collidable.

Dim D as WMDocument

Set D = WM.ActiveDocument

D.SelectAll ' Selects all objects, including non-WMBody

D.Collide False

End Sub

See Also WMDocument (object), WMDocument.Select (method),
WMDocument.Selection (property)

568 Working Model Basic User's Manual

WMDocument.CombineTapeScroll (property)
Syntax WMDocument.CombineTapeScroll

Description A Boolean to show whether the tape control display is combined in line
with the horizontal scroll bar or displayed in parallel with the scroll bar.

Comments CombineTapeScroll is True if the Tape Control is displayed in line with
the horizontal scroll bar. When the property is set to False, the Tape
Control is displayed in parallel to the horizontal scroll bar. Changing the
combine status will activate the Save menu item.

Example Sub Main()

' Combines the tape control with horizontal scroll bar.

' Warns the user if it is already so.

Dim D as WMDocument

Set D = WM.ActiveDocument

if D.CombineTapeScroll = True then

MsgBox "Tape Control is already combined"

else

D.CombineTapeScroll = True

end if

End Sub

See Also WMDocument (object)

WMDocument.Constraint (method)
Syntax WMDocument.Constraint(name | id)

Description Returns the first WMConstraint object in the document that matches the
given name or ID number, or the special value Nothing if none is found.

Comments The WMDocument.Constraint method takes one or the other of the
following parameters:

Parameter Description

name A String containing the name of the WMConstraint object to be
searched. The string match will not be case-sensitive.

id An Integer specifying the ID of the WMConstraint.

Example Sub Main()

Chapter 3 WMDocument.Constraints (property) 569

' Outputs the name of constraint[3].

Dim D as WMDocument

Dim C as WMConstraint

Set D = WM.ActiveDocument

Set C = D.Constraint(3)

If C is not Nothing Then

MsgBox "Constraint(3) is called "+C.Name

End If

End Sub

See Also WMDocument (object), WMConstraint (object)

WMDocument.Constraints (property)
Syntax WMDocument.Constraints

Description Returns the collection of all WMConstraint objects present in the
document.

Comments The Constraints property is a collection of all WMConstraint objects
present in the document. Like any other Collection object, you can use
the Item method to access a specific constraint within the collection.

The Constraints property is read-only.

The index parameter given to the Item method is sequential within the set
of constraints in the document. For example, if a document Doc has 10
objects (bodies, constraints, etc.) and 3 of the 10 objects are constraints,
these constraints may be referred to as Doc.Constraint(3),
Doc.Constraint(6) and Doc.Constraint(7) with the Constraint
method. With the Constraints property, these objects are referred to as
Doc.Constraints.Item(1), Doc.Constraints.Item(2), and
Doc.Constraints.Item(3), but not necessarily in that order. The
Constraints property is provided as a convenient tool to access all
constraints in a loop statement (see Example), and the indices given to the
Item are not permanently linked to individual WMConstraint objects.

Example Sub Main()

' hide all the constraints in the document

Dim D as WMDocument

Set D = WM.ActiveDocument

For I = 1 to D.Constraints.Count

D.Constraints.Item(I).Show = False

570 Working Model Basic User's Manual

Next

End Sub

See Also WMDocument (object), WMConstraint (object), Collection (topic)

WMDocument.ControlsLocked (property)
Syntax WMDocument.ControlsLocked

Description A Boolean to show whether the Lock Controls is turned on in the
Working Model document.

Comments ControlsLocked is True if the controls and meters are locked in place;
False otherwise. You can set ControlsLocked to True or False
whether any Control object (controls and meters) exists in the Working
Model document. If the flag is set to True, you can create Controls, but
you will not be able to move them until you disable Lock Controls
through the menu or by setting ControlsLocked to False.

Example Sub Main()

' Toggles Lock Control on the active document.

Dim D as WMDocument

Set D = WM.ActiveDocument

if D.ControlsLocked = True then

D.ControlsLocked = False

else

D.ControlsLocked = True

end if

End Sub

See Also WMDocument (object)

WMDocument.Copy (method)
Syntax WMDocument.Copy

Description Copies selected set of objects in the Working Model document to the
Clipboard.

Comments The objects to be copied need to be selected first. The Copy method has
no effect if no object is selected.

The method is equivalent of the Copy menu item in the Edit menu. The
selected objects will not be modified.

Example Sub Main()

Chapter 3 WMDocument.CurrentFrame (property) 571

' Creates a square and duplicates it on the screen.

Dim D as WMDocument

Dim B as WMBody

Set D = WM.ActiveDocument

' Creates a square; by default, located at (0, 0)

Set B = D.NewBody("square")

B.Width.Value = 1.0

D.Select B

D.Copy

' Duplicates a square.

D.Paste

' Now we will select both squares, "cut" them,

' and paste them.

D.SelectAll

D.Cut

D.Paste

End Sub

See Also WMDocument (object), WMDocument.Select (method),
WMDocument.SelectAll (method), WMDocument.Cut (method),
WMDocument.Paste (method)

WMDocument.CurrentFrame (property)
Syntax WMDocument.CurrentFrame

Description An Integer containing the current frame number of the simulation.

Comments The CurrentFrame is an Integer property which contains the current
frame number of the simulation. If no simulation history is stored, or
simulation is reset, CurrentFrame always contains 0.

CurrentFrame is a read-only property.

To obtain the number of frames stored in memory for the current
document, use the WMDocument.HistoryFrames property.

Example (See WMDocument.Reset)

See Also WMDocument (object), WMDocument.HistoryFrames (property),
WMDocument.Run (method), WMDocument.Reset (method),
WMDocument.StartHere (method)

572 Working Model Basic User's Manual

WMDocument.Cut (method)
Syntax WMDocument.Cut

Description Copies a selected set of objects in the Working Model document to the
Clipboard and deletes the objects from the document.

Comments The objects to be copied need to be selected first.

The method is equivalent of the Cut menu item in the Edit menu. The
selected objects will be deleted from the document.

Example See WMDocument.Copy.

See Also WMDocument (object), WMDocument.Select (method),
WMDocument.SelectAll (method), WMDocument.Copy (method),
WMDocument.Paste (method)

WMDocument.DecimalDigits (property)
Syntax WMDocument.DecimalDigits

Description An Integer which specifies the number of decimal digits displayed in
Working Model's meters and dialogs.

Note: This property is not related to WMDocument.SignificantDigits.

Comments The property has different significance depending on the current setting of
WMDocument.DecimalFormat.

The default value is 3.

Example See WMDocument.DecimalFormat.

See Also WMDocument.DecimalFormat (property), WMDocument.UnitSystem
(property)

WMDocument.DecimalFormat (property)
Syntax WMDocument.DecimalFormat

Description A String which specifies the display format for floating point numbers in
Working Model's meters and dialogs.

Comments DecimalFormat can take one of the three values as follows. Note that the
display format also depends on the setting of the DecimalDigits property
of the WMDocument object. Please refer to the Working Model User's
Manual for more information on Numbers and Units.

Value Description

Auto Working Model automatically adjusts the number display to show easy-to-
read numbers. The number of digits after the floating point is exactly the

Chapter 3 WMDocument.Delete (method) 573

one specified in DecimalDigits. For example, 0.000123 and 333.3333
are displayed as 1.2e-4 and 333.3, respectively, provided DecimalDigits
= 1.

Floating All numbers are displayed in the form of X.YYYeZ, where X is always one
digit, and the number of sub-decimal digits (i.e., how many Ys to be
displayed) is given by DecimalDigits. Z, the exponent, is always an
integer. For example, 0.000123 and 333.3333 are displayed as 1.2e-4 and
3.3e2, respectively, provided DecimalDigits = 1.

Fixed All numbers are displayed without exponents (no matter how large or
small it is), with as many sub-decimal digits as specifed in
DecimalDigits. For example, 0.000123 and 333.3333 are displayed as
0.0 and 333.3, respectively, provided DecimalDigits = 1.

The default value is "Auto".

Example Sub Main()

' Set the number format to fixed with 5 digits.

WM.ActiveDocument.DecimalFormat = "Fixed"

WM.ActiveDocument.DecimalDigits = 5

End Sub

See Also WMDocument.DecimalDigits (property), WMDocument.UnitSystem
(property)

WMDocument.Delete (method)
Syntax WMDocument.Delete [object]

Description Deletes a selected set of objects in the Working Model document.

Comments The optional parameter, object, can be a WMBody, WMConstraint,
WMPoint, WMOutput, or WMInput. If the parameter is provided, the Delete
method will delete the object.

If no parameter is specified, the Delete method deletes the currently
selected set of objects. If no object is selected, the Delete method has no
effect.

Example Sub Main()

' Delete all objects in the document

WM.ActiveDocument.SelectAll

WM.ActiveDocument.Delete

End Sub

See Also WMDocument (object), WMDocument.Select (method),
WMDocument.SelectAll (method)

574 Working Model Basic User's Manual

WMDocument.DeletePauseControl (method)
Syntax WMDocument.DeletePauseControl index

Description Deletes an existing pause control condition.

Comments The DeletesPauseControl takes the following parameter.

Parameter Description

index An Integer specifying the pause condition. The value of index can be
between 1 and PauseControlCount inclusive.

Please see the section on WMDocument.NewPauseControl for how pause
conditions are created.

Deleting a pause condition decrements the PauseControlCount property
by 1 (provided there is at least 1 pause condition before the method is
called). If a pause condition is deleted, other conditions whose number
was higher than index will be shifted down and assigned a new number
(decremented by 1).

For example, suppose three pause conditions exist. If you invoke:

Doc.DeletePauseControl 2

then the condition 3 will change its number to 2, while the condition 1
remains unchanged. No condition 3 exists anymore thereafter. See the
Example below.

Example Sub Main()

' Creates three pause conditions and deletes the second.

' Assumes no pause condition exists heretofore.

Dim D as WMDocument

Set D = WM.ActiveDocument

D.NewPauseControl

D.NewPauseControl

D.NewPauseControl

D.PauseControl(1).Formula = "time > 1"

D.PauseControl(2).Formula = "time > 2"

D.PauseControl(3).Formula = "time > 3"

D.DeletePauseControl 2

' At this point, the condition "time > 3" is reassigned

' as Condition 2.

MsgBox "Condition 2 is now:" + D.PauseControl(2).Formula

Chapter 3 WMDocument.DistanceUnit (property) 575

' The message box displays "time > 3"

End Sub

See Also WMDocument (object), WMDocument.NewPauseControl (method),

WMDocument.PauseControlCount (property),
WMDocument.SetPauseControlType (method),
WMDocument.GetPauseControlType (method),
WMDocument.PauseControl (method)

WMDocument.DistanceUnit (property)
Syntax WMDocument.DistanceUnit

Description A String which specifies the distance unit in the Working Model
document.

Comments The DistanceUnit property can have one of the following values.

Value Unit Description

Angstroms Angstroms.

Centimeters Centimeters.

Feet Feet.

Inches Inches.

Kilometers Kilometers.

Light Years Light years.

Meters Meters.

Micrometers Micrometers (microns).

Miles Miles.

Millimeters Millimeters.

Mils Mils (one thousandth of an inch).

Nanometers Nanometers.

Parsecs Parsecs.

Yards Yards.

Both lower- and upper-case letters are accepted. The default value of the
DistanceUnit property is "Meters".

The property is overwritten when the user explicitly specifies the
UnitSystem property of the document, because each unit system has a set
of specifications for all measurement units.

576 Working Model Basic User's Manual

Example See WMDocument.UnitSystem.

See Also WMDocument.UnitSystem (property), WMDocument.DecimalFormat
(property), WMDocument.DecimalDigits (property)

WMDocument.ElectricPotentialUnit (property)
Syntax WMDocument.ElectricPotentialUnit

Description A String which specifies the electric potential unit in the Working Model
document.

Comments The ElectricPotentialUnit property can have one of the following
values.

Value Unit Description

Volts Volts.

(null) None. (i.e., ElectricPotentialUnit = "")

The default value of the ElectricPotentialUnit property is "Volts".

The property is overwritten when the user explicitly specifies the
UnitSystem property of the document, because each unit system has a set
of specifications for all measurement units.

Example See WMDocument.UnitSystem.

See Also WMDocument.UnitSystem (property), WMDocument.DecimalFormat
(property), WMDocument.DecimalDigits (property)

WMDocument.ElectrostaticConst (property)
Syntax WMDocument.ElectrostaticConst

Description A Double which specifies the electrostatic constant in the Working Model
document.

Comments You must turn on the electrostatics first in order for this constant to take
effect in the Working Model document (see
WMDocument.ElectrostaticsOn). The property ElectrostaticConst
pertains to the value of the constant 1/4πε0 used in computing F =

(C1C2/r
2)/4πε0, where F is the force acting on every pair of bodies (whose

charge is C1 and C2 and located a distance r apart) in the document.

The default value of ElectrostaticConst is 8.99x109 Nm2/C2. The
numerical value is automatically adjusted to accommodate the current unit
system in order to retain the physical magnitude of the constant.

Example (See WMDocument.ElectrostaticsOn)

Chapter 3 WMDocument.ElectrostaticsOn (property) 577

See Also WMDocument (object), WMDocument.ElectrostaticsOn (property)

WMDocument.ElectrostaticsOn (property)
Syntax WMDocument.ElectrostaticsOn

Description A Boolean which specifies whether the electrostatic forces are turned on
in the Working Model document.

Comments Electrostatic forces act between each pair of bodies according to their
charge. You can specify the value of ElectrostaticsOn as follows.

Value Unit Description

True Electrostatic force is on.

False Electrostatic force is off.

Use the property WMDocument.ElectrostaticConst to modify the value
of multiplicative constant 1/4πε0.

Example Sub Main()

' Turns on Electrostatics.

Dim D as WMDocument : Set D = WM.ActiveDocument

D.ElectroStaticsOn = True

D.ElectrostaticConst = 8.990e+9

MsgBox D.Electrostaticson

End Sub

See Also WMDocument (object), WMDocument.ElectrostaticConst (property)

WMDocument.EnergyUnit (property)
Syntax WMDocument.EnergyUnit

Description A String which specifies the energy unit in the Working Model
document.

Comments The EnergyUnit property can have one of the following values

Value Unit Description

Joules Joules (J).

Kilowatt hours Kilowatt hours (kWh).

Kilocalories Kilocalories (Kcal).

B. T. U. British thermal units (BTU).

Electron Volts Electron volts (eV).

578 Working Model Basic User's Manual

MeV Megaelectron volts (MeV).

Ergs Ergs (Erg).

(null) None. (i.e., EnergyUnit = "")

Both lower- and upper-case letters are accepted. The default value of the
DistanceUnit property is "Joules".

The property is overwritten when the user explicitly specifies the
UnitSystem property of the document, because each unit system has a set
of specifications for all measurement units.

When EnergyUnit is set to "" (null), Working Model displays the energy
unit as a composite unit based on the setting in ForceUnit and
DistanceUnit. For example, when DistanceUnit is "Meters",
ForceUnit is "Newtons", and EnergyUnit is "" (null), then meters and
Properties window show the velocity unit as "N m", or Newton-meters.

Example See WMDocument.UnitSystem.

See Also WMDocument.UnitSystem (property), WMDocument.DecimalFormat
(property), WMDocument.DecimalDigits (property)

WMDocument.EraseMeterValues (method)
Syntax WMDocument.EraseMeterValues

Description Flushes from memory the meter data taken from multiple simulation runs.

Comments When the RetainMeterValues property of the document is True,
Working Model stores the meter data from multiple simulations into its
memory. Use the EraseMeterValues method to flush the memory.

The EraseMeterValues method is only valid when the
RetainMeterValues property of the document is True.

Example Sub Main()

' Erase meter values only when the Retain Meter Values

' feature is active

Dim D as WMDocument : Set D = WM.ActiveDocument

If D.RetainMeterValues then

D.EraseMeterValues

End If

End Sub

See Also WMDocument.RetainMeterValues (property)

Chapter 3 WMDocument.EraseTrack (method) 579

WMDocument.EraseTrack (method)
Syntax WMDocument.EraseTrack

Description Erases traced tracks left on the Working Model document window.

Comments Use the EraseTrack method to refresh the simulation tracks.

Example Sub Main()

' Erase tracks only if AutoEraseTrack is off, and

' Tracking is turned on.

 Dim D as WMDocument

Set D = WM.ActiveDocument

If (D.AutoEraseTrack = False and D.Tracking <> 0) then

D.EraseTrack

End if

End Sub

See Also WMDocument.AutoEraseTrack (property)

WMDocument.ExportDXF (method)
Syntax WMDocument.ExportDXF filename

Description Exports the document to a DXF file.

Comments The method takes the following parameter.

Parameter Description

filename A String which specifies the name of the DXF file.

Please refer to the Working Model User's Manual for details regarding
how DXF files are created from objects in Working Model.

Example Sub Main()

' Opens a file and exports the model to a dxf file.

Dim D as WMDocument

If FileExists("4bar.wm") then

Set D = WM.Open("4bar.wm")

D.ExportDXF "4bar.dxf"

else

MsgBox "Error: File 4bar.wm does not exist."

580 Working Model Basic User's Manual

end if

End Sub

See Also WMDocument (object), WMDocument.ImportDXF (method)

WMDocument.ExportMeterData (method)
Syntax WMDocument.ExportMeterData filename [MeterSelect]

Description Exports the meter data to a text file.

Comments The method takes the following parameters.

Parameter Description

filename A String which specifies the name of the meter data file.

MeterSelect An optional Boolean parameter which specifies whether to export the data
from selected meters only or from all meters. When set True, Working
Model will export meter data only from selected meters. Use
WMDocument.Select method to select meters and objects. The default
value is False.

By default, frame 0 up to the last frame currently stored in the simulation
history will be exported to a meter data file. To specify the initial and
final frames for the meter data export, set ExportStartFrame and
ExportStopFrame properties of the WMDocument object.

Example Sub Main()

' If time history exists, and meter exists,

' exports meter data from all meters.

Dim D as WMDocument : Set D = WM.ActiveDocument

if D.HistoryFrames > 0 and D.Outputs.Count > 0 then

D.ExportStartFrame = 0

D.ExportStopFrame = D.HistoryFrames

D.ExportMeterData "Datafile.dta"

end if

End Sub

See Also WMDocument (object), WMDocument.ExportStartFrame (property),
ExportStopFrame (property)

WMDocument.ExportStartFrame (property)
Syntax WMDocument.ExportStartFrame

Chapter 3 WMDocument.ExportStopFrame (property) 581

Description Specifies the initial frame number when exporting a data file.

Comments The ExportStartFrame is an Integer property which specifies the initial
frame number for exporting files. Working Model will export the data file
(such as Meter Data), starting from the frame designated by
ExportStartFrame, finishing the export (and the simulation) with the
ExportStopFrame.

The default value of ExportStartFrame is 0.

Example (See WMDocument.ExportMeterData)

See Also WMDocument (object), WMDocument.ExportMeterData (method),
ExportStopFrame (property)

WMDocument.ExportStopFrame (property)
Syntax WMDocument.ExportStopFrame

Description Specifies the final frame number when exporting a data file.

Comments The ExportStopFrame is an Integer property which specifies the final
frame number for exporting files. Working Model will export the data file
(such as Meter Data), starting from the frame designated by
ExportStartFrame, finishing the export (and the simulation) with the
ExportStopFrame.

The default value of ExportStopFrame is 100 (if no simulation history
exists) or the last frame currently stored in the simulation history.

Example (See WMDocument.ExportMeterData)

See Also WMDocument (object), WMDocument.ExportMeterData (method),
ExportStartFrame (property)

WMDocument.ForceFieldFX, ForceFieldFY, ForceFieldT
(properties)

Syntax WMDocument.ForceFieldFX, WMDocument.ForceFieldFY,
WMDocument.ForceFieldT

Description WMCell properties which specify the X-, Y-, and torque components of the
force field in the Working Model document, respectively

Comments You must activate the force field first in order for these properties to take
effect in the Working Model document (see
WMDocument.ForceFieldType).

Example (See WMDocument.ForceFieldType)

See Also WMDocument (object), WMDocument.ForceFieldType(property)

582 Working Model Basic User's Manual

WMDocument.ForceFieldType (property)
Syntax WMDocument.ForceFieldType

Description A String which specifies the type of the force field in the Working
Model document.

Comments The ForceFieldType property can have one of the following values.

Value Unit Description

off Off. No active force field.

pairwise Force field acts between each pair of bodies in the document.

field Force field acts uniformly on the document.

Use WMDocument.ForceFieldFX, ForceFieldFY, and ForceFieldT
properties to specify the individual components of the force field.

The force field acts on bodies in the document in addition to forces set by
AirResistanceType, Gravity, and ElectrostaticsOn properties of the
document.

Example Sub Main()

' Sets up magnetic force field pointing into the

' simulation window.

 Dim D as WMDocument : Set D = WM.ActiveDocument

D.ForceFieldType = "field"

D.ForceFieldFX.Formula = "-1e4 * self.charge * self.v.y"

D.ForceFieldFY.Formula = "1e4 * self.charge * self.v.x"

End Sub

See Also WMDocument (object), WMDocument.ForceFieldFX, ForceFieldFY,
ForceFieldT (properties)

WMDocument.ForceUnit (property)
Syntax WMDocument.ForceUnit

Description A String which specifies the force unit in the Working Model document.

Comments The ForceUnit property can have one of the following values.

Value Unit Description

Dynes Dynes.

Grams (force) Gram forces.

Kilograms (force) Kilogram forces.

Chapter 3 WMDocument.FrequencyUnit (property) 583

Newtons Newtons.

Poundals Poundals.

Pounds Pounds.

Both lower- and upper-case letters are accepted. The default value of the
ForceUnit property is "Newtons".

The property is overwritten when the user explicitly specifies the
UnitSystem property of the document, because each unit system has a set
of specifications for all measurement units.

Example See WMDocument.UnitSystem.

See Also WMDocument.UnitSystem (property), WMDocument.DecimalFormat
(property), WMDocument.DecimalDigits (property)

WMDocument.FrequencyUnit (property)
Syntax WMDocument.FrequencyUnit

Description A String which specifies the frequency unit in the Working Model
document.

Comments The FrequencyUnit property can take one of the following.

Value Unit Description

Hertz Hertz (Hz).

(null) None. (i.e., FrequencyUnit = "")

The default value of the FrequencyUnit property is "" (null).

Both lower- and upper-case letters are accepted. The property is
overwritten when the user explicitly specifies the UnitSystem property of
the document, because each unit system has a set of specifications for all
measurement units.

Example See WMDocument.UnitSystem.

See Also WMDocument.UnitSystem (property), WMDocument.DecimalFormat
(property), WMDocument.DecimalDigits (property)

WMDocument.GetPauseControlType (method)
Syntax WMDocument.GetPauseControlType(index)

Description Returns the String specifying the action to be taken when the pause
condition is satisfied.

Comments The SetPauseControlType method takes the following parameter.

584 Working Model Basic User's Manual

Parameter Description

index An Integer specifying the pause condition. The value of index can be
between 1 and PauseControlCount inclusive.

The return value of the GetPauseControlType method can be one of the following:

Value Description

"pause" Pauses the simulation when the condition is satisfied. The user can click
the Run button to continue the simulation.

"stop" Stops the simulation when the condition is satisfied. After the simulation
is stopped with this pause condition, the user must remove or modify this
pause condition to continue the simulation further.

"reset" Resets the simulation to frame 0 when the condition is satisfied.

"loop" Loops the simulation when the condition is satisfied. The simulation will
be repeated indefinitely.

To specify the condition, use the SetPauseControlType method.

For more information on pause control, please see the section on
WMDocument.NewPauseControl method.

Example Sub Main()

' Checks all the current pause conditions, and switches

' them all to Reset When.

Dim D as WMDocument

Set D = WM.ActiveDocument

for I = 1 to D.PauseControlCount

if D.GetPauseControlType(I) <> "reset" then

D.SetPauseControlType I, "reset"

end if

next

End Sub

See Also WMDocument (object), WMDocument.NewPauseControl (method)
WMDocument.PauseControlCount (property), WMDocument.PauseControl
(method), WMDocument.SetPauseControlType (method),
WMDocument.DeletePauseControl (method)

WMDocument.Gravity (property)
Syntax WMDocument.Gravity

Chapter 3 WMDocument.HistoryFrames(property) 585

Description A String which controls the type of gravitational forces acting in the
Working Model document.

Comments The Gravity property can have one of the following values.

Value Unit Description

none No gravity.

linear Gravity acts uniformly on every body in the document. The force acts in
the negative y-direction. See the property
WMDocument.LinearGravityConst to modify the gravitational constant.

planetary Gravity acts between each pair of bodies. The magnitude of the gravity is
determined by Newton's law of gravitation. See the property
WMDocument.PlanetaryGravityConst to modify the gravitational
constant.

The default value is linear.

Example Sub Main()

' Sets up the lunar gravitational field.

 Dim D as WMDocument : Set D = WM.ActiveDocument

D.Gravity = "linear"

D.LinearGravityConst = 1.67

End Sub

See Also WMDocument (object), WMDocument.LinearGravityConst (property),
WMDocument.PlanetaryGravityConst (property)

WMDocument.HistoryFrames(property)
Syntax WMDocument.HistoryFrames

Description An Integer containing the number of simulation frames currently stored
in memory.

Comments The HistoryFrames is an Integer property which contains the number
of frames currently stored in memory for the given document. If no
simulation history is stored, HistoryFrames always contains 0.

HistoryFrames is a read-only property.

To obtain the current frame number displayed in the document, use the
WMDocument.CurrentFrame property.

Example (See WMDocument.ExportMeterData)

See Also WMDocument (object), WMDocument.CurrentFrame (property),
WMDocument.Run (method), WMDocument.Reset (method),
WMDocument.StartHere (method)

586 Working Model Basic User's Manual

WMDocument.ImportDXF (method)
Syntax WMDocument.ImportDXF filename

Description Imports a DXF file into the document.

Comments The method takes the following parameter.

Parameter Description

filename A String which specifies the name of the DXF file.

Please refer to Working Model User's Manual for details regarding how
DXF files are translated to objects in Working Model.

Example Sub Main()

' Imports a DXF file

Dim D as WMDocument : Set D = WM.ActiveDocument

If FileExists("4bar.dxf") then

D.ImportDXF "4bar.dxf"

End if

End Sub

See Also WMDocument (object), WMDocument.ImportDXF (method)

WMDocument.Input (method)
Syntax WMDocument.Input(name | id)

Description Returns the first WMInput object that matches the given name or ID
number, or the special value Nothing if none is found.

Comments The WMDocument.Input method takes one or the other of the following
parameters:

Parameter Description

name A String containing the name of the WMInput object to be searched. The
string match will not be case-sensitive.

id An Integer specifying the ID of the WMInput.

Example Sub Main()

' Outputs the name of input[2].

Dim D as WMDocument

Dim I as WMInput

Set D = WM.ActiveDocument

Chapter 3 WMDocument.Inputs (property) 587

Set I = D.Input(2)

If I is not Nothing then

MsgBox I.Name

End If

End Sub

See Also WMDocument (object), WMInput (object)

WMDocument.Inputs (property)
Syntax WMDocument.Inputs

Description Returns the collection of all WMInput objects present in the document.

Comments The Inputs property is a collection of all WMInput objects present in the
document. Like any other Collection objects, you can use the Item
method to access a specific input within the collection.

The Inputs property is read-only.

The index parameter given to the Item method is sequential within the set
of input objects in the document. For example, if a document Doc has 10
objects (bodies, constraints, etc.) and 3 of the 10 objects are inputs, these
inputs may be referred to as Doc.Input(3), Doc.Input(6) and
Doc.Input(7) with the Input method. With the Inputs property, these
objects are referred to as Doc.Inputs.Item(1), Doc.Inputs.Item(2),
and Doc.Inputs.Item(3), but not necessarily in that order. The Inputs
property is provided as a convenient tool to access all input objects in a
loop statement (see Example), and the indices given to the Item are not
permanently linked to individual WMInput objects.

Example Sub Main()

' change all the constraints to sliders

Dim D as WMDocument

Set D = WM.ActiveDocument

For I = 1 to D.Inputs.Count

D.Inputs.Item(I).Format = "slider"

Next

End Sub

See Also WMDocument (object), WMInput (object), Collection (topic)

WMDocument.Integrator (property)
Syntax WMDocument.Integrator

588 Working Model Basic User's Manual

Description Specifies the current integrator for the WMDocument object.

Comments Integrator is a String property. It can have one of the following
values.

Parameter Description

euler The Euler method.

kutta_merson The Predictor/corrector method.

All documents have kutta_merson as the default simulation mode (which
is set in the Accurate simulation mode).

Example Sub Main()

' Sets the integrator of the active document to

' the Euler method.

Dim D as WMDocument

Set D = WM.ActiveDocument

D.Integrator = "euler"

End Sub

See Also WMDocument (object), WMDocument.SimulationMode (property)

WMDocument.IntegratorError (property)
Syntax WMDocument.IntegratorError

Description Specifies the Integrator Error of the Working Model document.

Comments IntegratorError is a Double property. The property is exactly
equivalent to the Integrator Error in the Accuracy dialog of Working
Model.

For a new document, the default value of IntegratorError is determined
by Working Model automatically. The value varies according to the size
and unit system of the model.

In order to specify IntegratorError, you must first set
AutoIntegratorError to False.

Example Sub Main()

' Uses Fast simulation mode for the active document, and

' set the Integrator Error to 0.01

WM.ActiveDocument.SimulationMode = "Fast"

' At this point, AutoIntegratorError is True and

 ' IntegratorError has the value automatically determined by

Chapter 3 WMDocument.Join (method) 589

' Working Model.

WM.ActiveDocument.AutoIntegratorError = False

WM.ActiveDocument.IntegratorError = 0.05

End Sub

See Also WMDocument (object), WMDocument.AutoIntegratorError (property)

WMDocument.Join (method)
Syntax WMDocument.Join

Description Join objects that are selected and ready to be joined in the document.

Comments The WMDocument.Join performs the Join operation on objects that are
selected and ready to be joined in the document. For example, two
individual point elements, when selected, can be joined to form a pin joint.
Also constraints that are currently split can be rejoined using this method.

Example Sub Main()

' Select point[5] and point[6], and joins them together

' to form a pin joint. Assumes point[5] and point[6] exist.

Dim D as WMDocument

Set D = WM.ActiveDocument

D.SelectAll False ' make sure no others are selected

D.Select D.Point(5)

D.Select D.Point(6)

D.Join

End Sub

See Also WMDocument (object), WMObject (object)

WMDocument.LinearGravityConst (property)
Syntax WMDocument.LinearGravityConst

Description A Double which specifies the linear gravity constant in the Working
Model document.

Comments You must first turn on linear gravity in order for this constant to take
effect in the Working Model document (see WMDocument.Gravity). The
property LinearGravityConst pertains to the gravitational constant g
used in computing F = mg, where F is the force acting on every body
(whose mass is m) in the document.

590 Working Model Basic User's Manual

The default value of LinearGravityConst is 9.81 m / sec2 (386 in / sec2).
The numerical value is automatically adjusted to accommodate the current
unit system in order to retain the physical magnitude of the constant.

See WMDocument.PlanetaryGravityConst to specify the gravitational
constant G for planetary gravity.

Example (See WMDocument.Gravity)

See Also WMDocument (object), WMDocument.Gravity (property),
WMDocument.PlanetaryGravityConst (property)

WMDocument.MassUnit (property)
Syntax WMDocument.MassUnit

Description A String which specifies the mass unit in the Working Model document.

Comments The MassUnit property can have one of the following values.

Value Unit Description

Kilograms Kilograms.

Earth Pounds British pounds.

Slugs Slugs.

Metric Tons Metric tons.

Grams Grams.

Milligrams Milligrams.

Atomic mass units Atomic mass unit.

Both lower- and upper-case letters are accepted. The default value of the
MassUnit property is "Kilograms".

The property is overwritten when the user explicitly specifies the
UnitSystem property of the document, because each unit system has a set
of specifications for all measurement units.

Example See WMDocument.UnitSystem.

See Also WMDocument.UnitSystem (property), WMDocument.DecimalFormat
(property), WMDocument.DecimalDigits (property)

WMDocument.Name (property)
Syntax WMDocument.Name

Description Returns a String containing the name of the Working Model document.

Comments The Name property is read-only. The property cannot be directly modified

Chapter 3 WMDocument.NewBody (method) 591

through Working Model Basic. You can save the document under a
different name using the SaveAs method.

Example Sub Main()

MsgBox "The active document name is " + WM.ActiveDocument.Name

End Sub

See Also WMDocument (object), WMDocument.SaveAs (method).

WMDocument.NewBody (method)
Syntax WMDocument.NewBody(type)

Description Creates a new body in the Working Model document, and returns the
WMBody object.

Comments The NewBody method takes the following parameter:

Parameter Description

type A String which specifies the type of the body to be created. The value of
type can be circle, square, rectangle, or polygon.

The default dimension of the object is based on the current grid size. For
brevity, let us denote the grid size as g. The object will have the following
default dimensions and positions.

A polygon will have three vertices ((0,0), (g,0), (g,g) in global
coordinates) by default. Its FOR is set to the geometric center of the
polygon (triangle).

A circle will have a diameter equal to g. The geometric center of the
circle will be placed at (0, 0).

A square and rectangle will have a width and height equal to g. The
geometric center of the body will be placed at (0, 0).

The current grid size can be viewed by activating the grid lines in the
Working Model document (use WMDocument.ShowGridLines property).

After creating the object, modify the property of the new WMBody object to
specify its initial position and geometry.

Example Sub Main()

' Creates a circle of radius 2 at (x,y)=(3,3)

Dim B1 as WMBody

Dim Doc1 as WMDocument

Doc1 = WM.ActiveDocument

592 Working Model Basic User's Manual

Set B1 = Doc1.NewBody("Circle")

B1.radius.value = 2

B1.PX.Value = 3 : B1.PY.Value = 3

End Sub

See Also WMDocument (object), WMBody (object), WMDocument.ShowGridLines
(property)

WMDocument.NewConstraint (method)
Syntax WMDocument.NewConstraint(type)

Description Creates a new constraint in the Working Model document, and returns the
corresponding WMConstraint object.

Comments The NewConstraint method takes the String parameter type, which
specifies the type of the constraint to be created. The value can be one of
the following.

Value Description

Pin Pin joint.

SquarePin Locked joint.

Spring Spring.

Damper Damper.

SpringDamper Spring-damper combination.

Rspring Rotational spring.

Rdamper Rotational damper.

Hslot Horizontal slot joint.

Vslot Vertical slot joint.

KeyedHSlot Keyed horizontal slot joint.

KeyedVSlot Keyed vertical slot joint.

CurvedSlot Curved slot joint.

Rod Rod.

Separator Separator.

Rope Rope.

Force Force.

Torque Torque.

Chapter 3 WMDocument.NewInput (method) 593

Actuator Actuator.

Motor Motor.

Pulley Pulley.

Gear Gear.

When created, constraints default to the following:

Endpoint coordinates are set to (0, 0). Slot points (base points) will be
at zero.

A curved slot has three default control points: (0, 0), (1, 1), and (2, 2).

Endpoints are attached to the background.

Magnitude for force and torque is set to 0.

The Kind property of the constraint is set to equal to the String given
in the type parameter. The only exceptions are all linear slot joints
(Vslot, Hslot, KeyedHSlot, KeyedVSlot); these constraints have
Kind set to "slot".

To specify the constraint properties, directly modify the properties of the
new WMConstraint object after it is created with the NewConstraint
method.

Example (See WMConstraint)

See Also WMDocument (object), WMConstraint (object)

WMDocument.NewInput (method)
Syntax WMDocument.NewInput()

Description Creates a new input object in the Working Model document, and returns
the corresponding WMInput object.

Comments To specify which object is to be controlled by the WMInput object, you
need to modify the property of the target object itself (see Example
below).

The default Format of the input object is Slider.

Example Sub Main()

'Creates a square and sets up a slider bar to control its
initial x-position

Dim D as WMBody

Dim I as WMInput

Set D = WM.ActiveDocument.NewBody("square")

D.Width.Value = 1.0

594 Working Model Basic User's Manual

Set I = WM.ActiveDocument.NewInput()

D.PX.Formula = "input[" +str$(I.ID)+ "]"

End Sub

See Also WMDocument (object), WMInput (object)

WMDocument.NewOutput (method)
Syntax WMDocument.NewOutput()

Description Creates a new output object in the Working Model document, and returns
the corresponding WMOutput object.

Comments To specify what quantities are to be displayed on the WMOutput object,
you need to modify its properties. See Example below. Also, please refer
to the section on WMOutput for more information.

The default Format of the WMOutput object is Graph.

Example Sub Main()

'Sets up a square and creates a meter to measure its y-

'position.

Dim B as WMBody

Dim O as WMOutput

Set B = WM.ActiveDocument.NewBody("square")

B.Width.Value = 1.0

Set O = WM.ActiveDocument.NewOutput()

FLD$ = "body["+str$(B.ID)+"].p.y"

O.Column(1).Cell.Formula = FLD

O.Column(1).Label = "Y-Position"

End Sub

See Also WMDocument (object), WMOutput (object)

WMDocument.NewPauseControl (method)
Syntax WMDocument.NewPauseControl

Description Creates a new pause control condition.

Comments The NewPauseControl allows for an entry of a new pause control
condition.

Each WMDocument object maintains a list of pause control conditions. The
PauseControlCount property keeps track of how many pause control

Chapter 3 WMDocument.NewPauseControl (method) 595

conditions are currently implemented. The PauseControlCount is
initially set to zero, as no pause condition is specified in a blank
document.

When the NewPauseControl method is invoked, PauseControlCount is
incremented by 1 and a new condition is added to the end of the list; hence
the new PauseControlCount is equal to the position of the new
condition. You must use the PauseControl method to specify the
formula expression for the pause condition, and use the
SetPauseControlType method to specify the action to be taken (e.g.
Pause, Stop, or Loop) when the condition is satisfied.

Only three pause control conditions will appear in the Pause Control
dialog, but repeated calls to NewPauseControl will continue to add to the
end of the list.

To delete a pause control condition, use the DeletePauseControl
method.

Example Sub Main()

' Creates two pause control conditions; assume no pause

' conditions currently exists. Conditions are:

' 1: pause when frame number exceeds 100

' 2: reset when time exceeds 2.5.

Dim D as WMDocument

Set D = WM.ActiveDocument

' Creates two conditions in a row

D.NewPauseControl

D.NewPauseControl

D.PauseControl(1).Formula = "frame() > 100"

D.PauseControl(2).Formula = "time > 2.5"

D.SetPauseControlType 1, "pause"

D.SetPauseControlType 2, "reset"

End Sub

See Also WMDocument (object), WMDocument.PauseControl (method),

WMDocument.PauseControlCount (property),
WMDocument.SetPauseControlType (method),
WMDocument.GetPauseControlType (method),
WMDocument.DeletePauseControl (method)

596 Working Model Basic User's Manual

WMDocument.NewPoint (method)
Syntax WMDocument.NewPoint(type)

Description Creates a new point element in the Working Model document, and returns
the corresponding WMPoint object.

Comments The NewPoint method takes the following parameter:

Parameter Description

type A String which specifies what type of point is to be created. The value
can be either Point (to create a point element), SquarePoint (to create a
square point element), or Anchor (to create an anchor).

Example Sub Main()

' Creates a point at (x,y)=(3,3)

Dim P as WMPoint

Set P = WM.ActiveDocument.NewPoint("SquarePoint")

P.PX.Value = 3.0

P.PY.Value = 3.0

End Sub

See Also WMDocument (object), WMPoint (object)

WMDocument.Object (method)
Syntax WMDocument.Object(name | id)

Description Returns the first WMObject object that matches the given name or ID
number.

Comments Since the Object method returns a WMObject, you must store the return
value in another WMObject variable, even if the return value is certain to
be a WMBody object, for example. The method Object is most useful when
you try to apply a type-independent change to all objects in the entire
document (see Example).

The WMDocument.Object method takes one or the other of the following
parameters:

Parameter Description

name A String containing the name of the WMObject object to be searched.
The string match will be case-sensitive.

id An Integer specifying the ID of the WMObject.

The return value will be Nothing if no WMObject that matches the

Chapter 3 WMDocument.Objects (property) 597

criterion is found.

Example Sub Main()

' Finds an object named "Body". If it is not a WMBody object,
pops up

' warning for bad naming. (You can name any object in any way;
this is

' a sample code to clean up naming scheme simply for the sake
of usability)

Dim Doc as WMDocument : Set Doc = WM.ActiveDocument

Dim I as Integer, Obj as WMObject

Set Obj = Doc.Object("body")

If Obj is not Nothing then

If Obj.Kind <> "body" then

MsgBox "Object "+str$(Obj.ID)+" has a name 'body' but it
is not!"

End If

End If

End Sub

See Also WMDocument (object), WMObject (object)

WMDocument.Objects (property)
Syntax WMDocument.Objects

Description Returns the collection of all WMObject objects (i.e., all Working Model
objects) present in the document.

Comments The Objects property is a collection of all WMObject objects present in
the document. Like any other Collection objects, you can use the Item
method to access a specific object within the collection.

The Objects property is read-only.

Please note the return value of the Item method will be another WMObject.
For example, even if you are certain that the returned object is a WMBody,
you must use WMObject object to store the return value.

' Assume Doc is a valid WMDocument object.

' Assume body[3] exists.

Dim B as WMBody

Dim Obj as WMObject

B = Doc.Objects.Item(3) ' incorrect usage

598 Working Model Basic User's Manual

obj = Doc.Objects.Item(3) ' correct usage

Since obj shown above is a WMObject object, you can only access the
properties available in WMObject objects (such as Name, ShowName, etc.).

In order to access body[3] as well as its methods and properties, use the
WMDocument.Body method instead.

Example Sub Main()

' show the name of all the objects in the document

Dim Doc as WMDocument : Set Doc = WM.ActiveDocument

For I = 1 to Doc.Objects.Count

Doc.Objects.Item(I).ShowName = True

Next

End Sub

See Also WMDocument (object), WMObject (object), Collection (topic)

WMDocument.Output (method)
Syntax WMDocument.Output(name$|id)

Description Returns the first WMOutput object that matches the given name or ID
number, or the special value Nothing if none is found.

Comments The WMDocument.Output method takes one or the other of the following
parameters:

Parameter Description

name$ A String containing the name of the WMOutput object to be searched.
The string match will not be case-sensitive.

id An Integer specifying the ID of the WMOutput.

Example Sub Main()

' Outputs the name of output[2]. Assumes that there exists

' output[2].

Dim D as WMDocument

Dim O as WMOutput

Set D = WM.ActiveDocument

Set O = D.Output(2)

If O is not Nothing then

MsgBox O.Name

Chapter 3 WMDocument.Outputs (property) 599

End If

End Sub

See Also WMDocument (object), WMOutput (object)

WMDocument.Outputs (property)
Syntax WMDocument.Outputs

Description Returns the collection of all WMOutput objects present in the document.

Comments The Outputs property is a collection of all WMOutput objects present in
the document. Like any other Collection objects, you can use the Item
method to access a specific output within the collection.

The Outputs property is read-only.

The index parameter given to the Item method is sequential within the set
of constraints in the document. For example, if a document Doc has 10
objects (bodies, constraints, etc.) and 3 of the 10 objects are outputs, these
constraints may be referred to as Doc.Output(3), Doc.Output(6) and
Doc.Output(7) with the Output method. With the Outputs property,
these objects are referred to as Doc.Outputs.Item(1),
Doc.Outputs.Item(2), and Doc.Outputs.Item(3), but not necessarily
in that order. The Outputs property is provided as a convenient tool to
access all outputs in a loop statement (see Example), and the indices given
to the Item are not permanently linked to individual WMOutput objects.

Example Sub Main()

' change all the outputs to digital meters

Dim D as WMDocument

Set D = WM.ActiveDocument

For I = 1 to D.Outputs.Count

D.Outputs.Item(I).Format = "digital"

Next

End Sub

See Also WMDocument (object), WMOutput (object), Collection (topic)

WMDocument.OverlapError (property)
Syntax WMDocument.OverlapError

Description Specifies the Overlap Error of the Working Model document.

Comments OverlapError is a Double property. The property is equivalent to the
Overlap Error in the Accuracy dialog of Working Model.

600 Working Model Basic User's Manual

For a new document, the default value of OverlapError is determined by
Working Model automatically. The value varies according to the size and
unit system of the model.

In order to specify OverlapError, you must first set AutoOverlapError
to False.

Example Sub Main()

' Uses Fast simulation mode for the active document, and

' set the Overlap Error to 0.01

WM.ActiveDocument.SimulationMode = "Fast"

' At this point, AutoOverlapError is True and

' OverlapError has the value automatically determined by

' Working Model.

WM.ActiveDocument.AutoOverlapError = False

WM.ActiveDocument.OverlapError = 0.1

End Sub

See Also WMDocument (object), WMDocument.AutoOverlapError (property)

WMDocument.Paste (method)
Syntax WMDocument.Paste

Description Pastes a selected set of objects from the Clipboard to the Working Model
document.

Comments The pasted location is automatically determined by Working Model.

The method is equivalent of the Paste menu item in the Edit menu.

Example (See WMDocument.Copy).

See Also WMDocument (object), WMDocument.Select (method),
WMDocument.SelectAll (method), WMDocument.Cut (method),
WMDocument.Copy (method)

WMDocument.PauseControl (method)
Syntax WMDocument.PauseControl(index)

Description Returns the WMCell object representing the specified pause condition.

Comments The PauseControl method takes the following parameter.

Parameter Description

index An Integer specifying the pause condition. The value of index can be

Chapter 3 WMDocument.PauseControlCount (property) 601

between 1 and PauseControlCount inclusive.

Each WMDocument object maintains a list of pause control conditions. You
can use the PauseControl method to specify the formula expressions for
each pause condition. Use SetPauseControlType method to specify the
action to be taken (e.g. Pause, Reset, Loop) when the condition is
satisfied.

For more information on pause control, please see the section on
WMDocument.NewPauseControl method.

Example Sub Main()

' Creates a new pause control condition. If 3 or more
conditions exist,

' does not allow further additions.

Dim D as WMDocument

Set D = WM.ActiveDocument

if D.PauseControlCount < 3 then

D.NewPauseControl

D.PauseControl(D.PauseControlCount).Formula = "time > 2.5"

D.SetPauseControlType D.PauseControlCount, "reset"

else

MsgBox "Document already has 3 pause conditions!"

end if

End Sub

See Also WMDocument (object), WMDocument.NewPauseControl (method)
WMDocument.PauseControlCount (property),
WMDocument.SetPauseControlType (method),
WMDocument.GetPauseControlType (method),
WMDocument.DeletePauseControl (method)

WMDocument.PauseControlCount (property)
Syntax WMDocument.PauseControlCount

Description Contains the current number (Integer) of pause control conditions.
Read-only.

Comments Each WMDocument maintains a list of pause control conditions. The
PauseControlCount property keeps track of how many pause control
conditions are currently implemented. The PauseControlCount is
initially set to zero, as no pause condition is specified in a blank
document.

602 Working Model Basic User's Manual

When the NewPauseControl method is invoked, PauseControlCount is
incremented by 1; the new PauseControlCount serves as the index for
the new condition. You must use the PauseControl method to specify
the formula expression for the pause condition, and use the
SetPauseControlType method to specify the action to be taken (e.g.
Pause, Reset, Stop, or Loop) when the condition is satisfied.

To delete a pause control condition, use the DeletePauseControl
method. The DeletePauseControl method decrements the
PauseControlCount by 1.

Example (See WMDocument.PauseControl)

See Also WMDocument (object), WMDocument.NewPauseControl (method)
WMDocument.PauseControl (method),
WMDocument.SetPauseControlType (method),
WMDocument.GetPauseControlType (method),
WMDocument.DeletePauseControl (method)

WMDocument.PlanetaryGravityConst (property)
Syntax WMDocument.PlanetaryGravityConst

Description A Double which specifies the planetary gravity constant in the Working
Model document.

Comments You must turn on the planetary gravity first in order for this constant to
take effect in the Working Model document (see WMDocument.Gravity).
The property PlanetaryGravityConst pertains to the gravitational
constant G used in computing F = Gm1m2/r

2, where F is the force acting
on every pair of bodies (whose masses are m1 and m2, respectively) in the
document.

See WMDocument.LinearGravityConst to specify the gravitational
constant g for linear gravity.

Example Sub Main()

' Sets up the planetary gravitational field.

 Dim D as WMDocument : Set D = WM.ActiveDocument

D.Gravity = "planetary"

MsgBox "G = "+str$(D.PlanetaryGravityConst)

End Sub

See Also WMDocument (object), WMDocument.Gravity (property),
WMDocument.LinearGravityConst (property)

Chapter 3 WMDocument.PlayerMode (property) 603

WMDocument.PlayerMode (property)
Syntax WMDocument.PlayerMode

Description A Boolean which specifies whether the document is in Player mode.

Comments When the PlayerMode property is True, the document is in Player mode.
In Player mode, the toolbar, scroll bars, and most of the menu items are
disabled. The document cannot be modified interactively (without
choosing the Edit Mode first); the PlayerMode property must be set to
False before any interactive modification is to be made.

Using WM Basic, you can modify documents in Player mode.

The default value of the PlayerMode is False.

Example Sub Main()

' Switch a document to player mode

WM.ActiveDocument.PlayerMode = True

End Sub

See Also WMDocument (object)

WMDocument.Point (method)
Syntax WMDocument.Point(name | id)

Description Returns the first WMPoint object that matches the given name or ID
number, or the special value Nothing if none is found.

Comments The WMDocument.Point method takes one or the other of the following
parameters:

Parameter Description

name A String containing the name of the WMPoint object to be searched. The
string match will not be case-sensitive.

id An Integer specifying the ID of the WMPoint.

Example Sub Main()

' Outputs the name of point[5]. Assumes that point[5] exists.

Dim D as WMDocument

Dim P as WMPoint

Set D = WM.ActiveDocument

Set P = D.Point(5)

604 Working Model Basic User's Manual

If P is not Nothing then

MsgBox P.Name

End If

End Sub

See Also WMDocument (object), WMPoint (object)

WMDocument.Points (property)
Syntax WMDocument.Points

Description Returns the collection of all WMPoint objects present in the document.

Comments The Points property is a collection of all WMPoint objects present in the
document. Like any other Collection objects, you can use the Item
method to access a specific point within the collection.

The Points property is read-only.

The index parameter given to the Item method is sequential within the set
of points in the document. For example, if a document Doc has 10 objects
(bodies, constraints, etc.) and 3 of the 10 objects are points, these points
may be referred to as Doc.Point(3), Doc.Point(6) and Doc.Point(7)
with the Point method. With the Points property, these objects are
referred to as Doc.Points.Item(1), Doc.Points.Item(2), and
Doc.Points.Item(3), but not necessarily in that order. The Points
property is provided as a convenient tool to access all points in a loop
statement (see Example), and the indices given to the Item are not
permanently linked to individual WMPoint objects.

Example Sub Main()

' change the name of all points to "hinge"

Dim D as WMDocument

Dim B as WMBody

Set D = WM.ActiveDocument

For I = 1 to D.Points.Count

D.Points.Item(I).Name = "hinge"

Next

End Sub

See Also WMDocument (object), WMPoint (object), Collection (topic)

WMDocument.PowerUnit (property)
Syntax WMDocument.PowerUnit

Chapter 3 WMDocument.RetainMeterValues (property) 605

Description A String which specifies the power unit in the Working Model
document.

Comments The PowerUnit property can take one of the following.

Value Unit Description

Watts Watts (W).

Horsepower Horsepower (HP).

(null) None. (i.e., PowerUnit = "")

Both lower- and upper-case letters are accepted. The default value of the
PowerUnit property is "Watts".

The property is overwritten when the user explicitly specifies the
UnitSystem property of the document, because each unit system has a set
of specifications for all measurement units.

Example See WMDocument.UnitSystem.

See Also WMDocument.UnitSystem (property), WMDocument.DecimalFormat
(property), WMDocument.DecimalDigits (property)

WMDocument.RetainMeterValues (property)
Syntax WMDocument.RetainMeterValues

Description A Boolean to specify whether the meter data from multiple simulations
are to be kept in memory.

Comments When RetainMeterValues is True, Working Model keeps the meter data
from multiple simulations in memory. When the property is False, the
meter data is flushed every time new simulation is run. Please refer to the
Working Model User's Manual for more information on the Retain Meter
Values feature.

The default value of RetainMeterValues is False.

Use the EraseMeterValues method of the document to flush the memory.

Example (See WMDocument.EraseMeterValues)

See Also WMDocument.EraseMeterValues (method)

WMDocument.Reset (method)
Syntax WMDocument.Reset

Description Resets a Working Model simulation.

Comments WMDocument.Reset has no effect if the simulation has not run or is at
frame 0.

606 Working Model Basic User's Manual

Example Sub Main()

' Erase History. Make sure that the current frame is 0.

Dim D as WMDocument : Set D = WM.ActiveDocument

If D.CurrentFrame <> 0 then

if MsgBox("Resetting first; ok?", ebOKCancel) = ebOK then

D.Reset

D.StartHere

end if

else

 D.Reset

 D.Starthere

end if

End Sub

See Also WMDocument (object), WMDocument.Reset (method)

WMDocument.RotationalVelocityUnit (property)
Syntax WMDocument.RotationalVelocityUnit

Description A String which specifies the angular velocity unit in the Working Model
document.

Comments The RotationalVelocityUnit property can have one of the following
values.

Value Unit Description

Revs/Min Revolutions per minute.

(null) None. (i.e., RotationalVelocityUnit = "")

The default value of the RotationalVelocityUnit property is an empty
string ("", meaning null). When RotationalVelocityUnit is set to
null, Working Model displays the velocity unit as a composite unit based
on the setting in RotationUnit and TimeUnit. For example, when
RotationUnit is "Radians", TimeUnit is "Seconds", and
RotationalVelocityUnit is null, then meters and Properties window
show the velocity unit as "rad/s", or radians per second.

Both lower- and upper-case letters are accepted. The property is
overwritten when the user explicitly specifies the UnitSystem property of
the document, because each unit system has a set of specifications for all
measurement units.

Chapter 3 WMDocument.RotationUnit (property) 607

Example See WMDocument.UnitSystem.

See Also WMDocument.UnitSystem (property), WMDocument.DecimalFormat
(property), WMDocument.DecimalDigits (property)

WMDocument.RotationUnit (property)
Syntax WMDocument.RotationUnit

Description A String which specifies the rotation unit in the Working Model
document.

Comments The RotationUnit property can take one of the following values.

Value Unit Description

Degrees Degrees.

Radians Radians.

Seconds Seconds.

Minutes Minutes.

Revolutions Revolutions.

Both lower- and upper-case letters are accepted. The default value of the
RotationUnit property is "Degrees".

The property is overwritten when the user explicitly specifies the
UnitSystem property of the document, because each unit system has a set
of specifications for all measurement units.

Example See WMDocument.UnitSystem.

See Also WMDocument.UnitSystem (property), WMDocument.DecimalFormat
(property), WMDocument.DecimalDigits (property)

WMDocument.Run (method)
Syntax WMDocument.Run [frames]

Description Runs a Working Model simulation.

CommentsParameter Description

frames An Integer parameter specifying the number of frames to be run. The
simulation will stop after computing the frame (frames)-1.

If the parameter frames is omitted, the simulation will run indefinitely. If
Pause Control conditions are set, the simulation will stop as soon as
computing the frame (frames)-1 or at least one of the pause conditions (if
specified) is satisfied.

608 Working Model Basic User's Manual

You can use the CurrentFrame property to access the current frame
number when the simulation is paused.

Note: The execution control is given to Working Model until the Run
method has finished. To avoid running a never-ending script, we
recommend providing the parameter frames and/or setting Pause Control
conditions (see WMDocument.NewPauseControl).

Example Sub Main()

' Runs the simulation for 25 frames and saves the result with
history.

Dim D as WMDocument

Set D = WM.ActiveDocument

D.Run 25 ' Working Model starts the simulation.

' The remainder of the code is not executed until frame 24

' is calculated.

D.Reset

D.SaveAs "model1.wm", True ' saves the history, too.

End Sub

See Also WMDocument (object), WMDocument.Reset (method),
WMDocument.CurrentFrame (property), WMDocument.NewPauseControl
(method)

WMDocument.Save (method)
Syntax WMDocument.Save

Description Saves the Working Model document.

Comments If the document has not been previously saved (i.e., the document is still
“untitled”), Working Model will display a dialog prompting the filename
as well as folder/directory location. To avoid the confirmation dialog, use
the SaveAs method.

Example Sub Main()

' Saves the active document if it has a meaningful name

' other than "Untitled".

If InStr(WM.ActiveDocument.Name, "Untitled") then

MsgBox "Use SaveAs first to name the document."

Else

MsgBox "Saving " + WM.ActiveDocument.Name + "."

Chapter 3 WMDocument.SaveAs (method) 609

WM.ActiveDocument.Save

End If

End Sub

See Also WMDocument (object), WMDocument.SaveAs (method)

WMDocument.SaveAs (method)
Syntax WMDocument.SaveAs filename [, isHistorySaved]

Description Saves the Working Model document under the specified filename.

Comments The SaveAs method takes the following parameters.

Parameter Description

filename A String to specify the filename of the document is to be saved.

isHistorySaved (optional) A Boolean to specify whether the simulation history is to be
saved. The history will be saved if True. The default value is False.

Example Sub Main()

'Save the current file with time history

Dim WM1 as WMDocument : Set WM1 = WM.ActiveDocument

If Basic.OS = ebMacintosh then

WM1.SaveAs "My Important Model", True

ElseIf Basic.Os = ebWin16 then

WM1.SaveAs "model1.wm", True

End If

End Sub

See Also WMDocument (object), WMDocument.Save (method)

WMDocument.ScaleFactor (property)
Syntax WMDocument.ScaleFactor

Description A Double to specify the scale factor of the Working Model document
shown on the screen.

Comments ScaleFactor indicates how large or small the Working Model document
is displayed on the screen.

The ScaleFactor property is inversely proportional to the ViewWidth
property of the document. Since the document pixel size is not affected
by modifying the ScaleFactor property, ViewWidth will automatically

610 Working Model Basic User's Manual

double when ScaleFactor is halved, for example.

Please refer to the Working Model User's Manual for more information.

Example Sub Main()

' Sets the view size so that it displays 10 meters wide

' Also, focuses the origin at the center, and reports

' the current scale factor on the window.

Dim D as WMDocument : Set D = WM.ActiveDocument

D.UnitSystem = "si degrees"

D.ViewWidth = 10.0

D.ScrollTo 0, 0

MsgBox "Current Scale Factor: "+str$(D.ScaleFactor)

End Sub

See Also WMDocument.ViewWidth (property)

WMDocument.ScrollTo (method)
Syntax WMDocument.ScrollTo x, y

Description Scrolls the document window to focus in a particular area of the
document.

Comments You can use the ScrollTo method to shift the focus of the document
display to the desired position. The method takes the following
parameters.

Parameter Description

x, y (x, y) global coordinates in the document.

The document will be scrolled so that (x, y) becomes the center of the
document.

You can also modify ScaleFactor and ViewSize properties to change the
outlook of the document.

Example (See WMDocument.ScaleFactor)

See Also WMDocument.ScaleFactor (property), WMDocument.ViewWidth (property)

WMDocument.Select (method)
Syntax WMDocument.Select object [, state]

Description Selects or de-selects the specified object in the document.

Chapter 3 WMDocument.SelectAll (method) 611

Comments The WMDocument.Select method takes the following parameters:

Parameter Description

object An object of type WMObject (which includes WMBody, WMConstraint,
WMInput, WMOutput, and WMPoint).

state An Boolean specifying whether the object is to be selected (if True) or
deselected (if False). The parameter is optional, and tthe default value is
True.

This method does the equivalent of a “shift-select” in the UI. That is, the
specified object is added/removed from the collection of selected objects.
Other selected objects remain selected. If you want only the specified
object to be selected, you must first use WMDocument.SelectAll to
ensure that all other objects are deselected.

Example Sub Main()

' Select point[5]. Assumes that there exists point[5] in

' the active document.

Dim D as WMDocument

Dim P as WMPoint

Set D = WM.ActiveDocument

Set P = D.Point(5)

D.Select P, True '"True" is optional.

End Sub

See Also WMDocument (object), WMObject (object)

WMDocument.SelectAll (method)
Syntax WMDocument.SelectAll [state]

Description Selects or de-selects all objects in the document.

Comments The WMDocument.SelectAll method takes the following parameter:

Parameter Description

state An optional Boolean specifying whether all objects are to be selected (if
True) or de-selected (if False). The parameter is optional, and the default
value is True.

Example Sub Main()

' De-selects all objects in the document.

Dim D as WMDocument

612 Working Model Basic User's Manual

Set D = WM.ActiveDocument

D.SelectAll False

End Sub

See Also WMDocument (object)

WMDocument.Selection (property)
Syntax WMDocument.Selection

Description An object that represents a collection of WMObject objects selected in the
document.

Comments WMDocument.Selection itself is a read-only property. The property is
automatically updated when objects are selected or de-selected. For
example, if you select two objects, Selection represents those two objects.
Count will return 2, and Item(1) and Item(2) will return the objects
selected.

The Selection property further has the following properties and methods.

Property Description

Count A read-only Integer that contains the number of objects currently
selected. The number will increase / decrease as you select more / less
objects (see WMDocument.Select and WMDocument.SelectAll).

Method Description

Item (n) Returns the nth object in the selection. The returned object may be a
WMBody, WMConstraint, WMPoint, WMOutput, or WMInput. This property
can only be assigned to a variable of type WMObject. This method is only
of use in looping over all selected objects, regardless of their type and
checking, or modifying, some common property at the WMObject level
(like name or id).

Body (n) Returns the nth WMBody object in the selection. If there are fewer than n
WMBody objects selected, the return value will be nothing.

Constraint (n) Returns the nth WMConstraint object in the selection. If there are fewer
than n WMConstraint objects selected, the return value will be nothing.

Point (id) Returns the nth WMPoint object in the selection. If there are fewer than n
WMPoint objects selected, the return value will be nothing.

Input (n) Returns the nth WMInput object in the selection. If there are fewer than n
WMInput objects selected, the return value will be nothing.

Chapter 3 WMDocument.SetPauseControlType (method) 613

Output (n) Returns the nth WMOutput object in the selection. If there are fewer than
n WMOutput objects selected, the return value will be nothing.

Example Sub Main()

' Picks the first object in the document and determines

' its type. If the object is not body, constraint, or point,
yields

' a message. (In that case, the object could be an input or
output.)

Dim B as WMBody

Dim C as WMConstraint

Dim P as WMPoint

Dim D as WMDocument

Set D = WM.ActiveDocument

D.SelectAll

If D.Selection.Item(1) is Nothing Then

' no object exists in the document

Exit Sub

End If

If D.Selection.Item(1).Kind = "body" Then

Set B = D.Selection.Body(1)

ElseIf D.Selection.Item(1).Kind = "constraint" Then

Set C = D.Selection.Constraint(1)

ElseIf D.Selection.Item(1).Kind = "point" Then

Set P = D.Selection.Point(1)

Else

MsgBox "Object 1 is neither body, constraint, nor point!"

End If

End Sub

See Also WMObject (object), WMDocument.Select (method), WMDocument.SelectAll
(method)

WMDocument.SetPauseControlType (method)
Syntax WMDocument.SetPauseControlType index, condition

Description Specifies the action to be taken when the indexed pause condition is

614 Working Model Basic User's Manual

satisfied.

Comments The SetPauseControlType method takes the following parameter.

Parameter Description

index An Integer specifying the pause condition. The value of index can be
between 1 and PauseControlCount inclusive.

condition A String which specifies the action. See below.

The parameter condition takes one of the following values:

Value Description

"pause" Pauses the simulation when the condition is satisfied. The user can click
the Run button to continue the simulation.

"stop" Stops the simulation when the condition is satisfied. The user cannot click
the Run button to continue the simulation. After the simulation is stopped
with this pause condition, the user must remove or modify this pause
condition to continue the simulation further.

"reset" Resets the simulation to frame 0 when the condition is satisfied.

"loop" Loops the simulation when the condition is satisfied. The simulation will
be repeated indefinitely.

To retrieve the condition, use the GetPauseControlType method.

For more information on pause control, please see the section on
WMDocument.NewPauseControl method.

Example (See WMDocument.PauseControl)

See Also WMDocument (object), WMDocument.NewPauseControl (method)
WMDocument.PauseControlCount (property), WMDocument.PauseControl
(method), WMDocument.GetPauseControlType (method),
WMDocument.DeletePauseControl (method)

WMDocument.ShowCoordinates (property)
Syntax WMDocument.ShowCoordinates

Description A Boolean to show whether the Coordinates bar is turned on in the
Working Model document.

Comments ShowCoordinates is True if the coordinates bar is displayed; False
otherwise. Changing the Coordinates bar display status will enable the
Save menu item.

Example Sub Main()

' Show Coordinates bar. Notifies the user if it is already on.

Chapter 3 WMDocument.ShowGridLines (property) 615

Dim D as WMDocument

Set D = WM.ActiveDocument

if D.ShowCoordinates = True then

MsgBox "Coordinates bar is already on"

else

D.ShowCoordinates = True

end if

End Sub

See Also WMDocument (object)

WMDocument.ShowGridLines (property)
Syntax WMDocument.ShowGridLines

Description A Boolean to show whether the grid lines are displayed in the Working
Model document.

Comments ShowGridLines is True if the grid lines are displayed; False otherwise.
Changing the grid line display status will enable the Save menu item.

Example Sub Main()

' Show grid lines. Warns the user if they are already on.

Dim D as WMDocument

Set D = WM.ActiveDocument

if D.ShowGridLines = True then

MsgBox "Grid lines are already on"

else

D.ShowGridLines = True

end if

End Sub

See Also WMDocument (object)

WMDocument.ShowHelpRibbon (property)
Syntax WMDocument.ShowHelpRibbon

Description A Boolean to show whether the Help Ribbon is displayed in the Working
Model document.

Comments ShowHelpRibbon is True if the Help Ribbon is displayed; False
otherwise. Changing the Help Ribbon display status will enable the Save

616 Working Model Basic User's Manual

menu item.

Example Sub Main()

' Hide Help Ribbon. Warns the user if it is already off.

Dim D as WMDocument

Set D = WM.ActiveDocument

if D.ShowHelpRibbon = False then

MsgBox "Help Ribbon is already off"

else

D.ShowHelpRibbon = False

end if

End Sub

See Also WMDocument (object)

WMDocument.ShowRulers (property)
Syntax WMDocument.ShowRulers

Description A Boolean to show whether the rulers are displayed in the Working
Model document.

Comments ShowRulers is True if the rulers are displayed; False otherwise.
Changing the ruler display status will activate the Save menu item.

Example Sub Main()

' Show Rulers. Warns the user if it is already on.

Dim D as WMDocument

Set D = WM.ActiveDocument

if D.ShowRulers = True then

MsgBox "Rulers are already on"

else

D.ShowRulers = True

end if

End Sub

See Also WMDocument (object)

WMDocument.ShowScrollBars (property)
Syntax WMDocument.ShowScrollBars

Chapter 3 WMDocument.ShowTapeControl (property) 617

Description A Boolean to show whether the scroll bars are displayed in the Working
Model document.

Comments ShowScrollBars is True if the rulers are displayed; False otherwise.
Changing the scroll bars display status will enable the Save menu item.

Example Sub Main()

' Hide scroll bars. Warns the user if they are already off.

Dim D as WMDocument

Set D = WM.ActiveDocument

if D.ShowScrollBars = False then

MsgBox "Scroll bars are already turned off"

else

D. ShowScrollBars = False

end if

End Sub

See Also WMDocument (object)

WMDocument.ShowTapeControl (property)
Syntax WMDocument.ShowTapeControl

Description A Boolean to show whether the tape control is displayed in the Working
Model document.

Comments ShowTapeControl is True if the Tape Control is displayed; False
otherwise. Changing the Tape Control display status will enable the Save
menu item.

Example Sub Main()

' Hide Tape Control. Warns the user if it is already off.

Dim D as WMDocument

Set D = WM.ActiveDocument

if D.ShowTapeControl = False then

MsgBox "Tape Control is already off"

else

D. ShowTapeControl = False

end if

End Sub

See Also WMDocument (object)

618 Working Model Basic User's Manual

WMDocument.ShowToolPalette (property)
Syntax WMDocument.ShowToolPalette

Description A Boolean to show whether the Toolbar is displayed in the Working
Model document.

Comments ShowToolPalette is True if the Toolbar is displayed; False otherwise.
Changing the Toolbar display status will enable the Save menu item.

Example Sub Main()

' Hide Tool Palette. Warns the user if it is already off.

Dim D as WMDocument

Set D = WM.ActiveDocument

if D.ShowToolPalette = False then

MsgBox "Tool palette is already off"

else

D. ShowToolPalette = False

end if

End Sub

See Also WMDocument (object)

WMDocument.ShowXYAxes (property)
Syntax WMDocument.ShowXYAxes

Description A Boolean to show whether the global x- and y-axes are displayed in the
Working Model document.

Comments ShowXYAxes is True if the axes are displayed; False otherwise. Changing
the axes display status will enable the Save menu item.

Example Sub Main()

' Show XY Axes. Warns the user if it is already on.

Dim D as WMDocument

Set D = WM.ActiveDocument

if D.ShowXYAxes = True then

MsgBox "Axes are already on"

else

D.ShowXYAxes = True

end if

Chapter 3 WMDocument.SignificantDigits (property) 619

End Sub

See Also WMDocument (object)

WMDocument.SignificantDigits (property)
Syntax WMDocument.SignificantDigits

Description Specifies the Significant Digits of the Working Model document.

Comments SignificantDigits is an Integer property. The property is equivalent
to the Significant Digits in the Accuracy dialog of Working Model. The
value of SignificantDigits can range from 1 to 16. Attempts to assign
an out-of-range value are silently ignored while the value of
SignificantDigits remains unchanged.

For a new document, the default value of SignificantDigits is
determined by Working Model automatically. The value varies according
to the size and unit system of the model.

In order to specify SignificantDigits, you must first set
AutoSignificantDigits to False.

Example Sub Main()

' Uses Fast simulation mode for the active document, and

' set the Significant Digits to 10

WM.ActiveDocument.SimulationMode = "Fast"

' At this point, AutoSignificantDigits is True and

' SignificantDigits has the value automatically determined by

' Working Model.

WM.ActiveDocument.AutoSignificantDigits = False

WM.ActiveDocument.SignificantDigits = 10

End Sub

See Also WMDocument (object), WMDocument.AutoSignificantDigits (property)

WMDocument.SimulationMode (property)
Syntax WMDocument.SimulationMode

Description Specifies the current simulation mode for the WMDocument object.

Comments SimluationMode is a String property. Setting the property is exactly
equivalent to choosing the simulation mode in the Accuracy dialog of
Working Model. All other simulation parameters (such as time step and
active warnings) are automatically determined when the simulation mode
is specified to be either Fast or Accuracy. Please refer to the Working

620 Working Model Basic User's Manual

Model User's Manual for more information.

The property can be one of the following. In particular, the Fast and
Accurate modes have predefined parameters for the simulation accuracy.

Parameter Description

fast The Fast mode. Employs the Euler method as the integrator.

accurate The Accurate mode. Employs the Kutta-Merson method as the integrator.

custom No default values.

All documents have Accurate as the default simulation mode.

Example Sub Main()

' Sets the simulation mode of the active document to

' the Fast mode.

Dim D as WMDocument

Set D = WM.ActiveDocument

D.SimulationMode = "Fast"

End Sub

See Also WMDocument (object), WMDocument.Integrator (property)

WMDocument.SkipFrames (property)
Syntax WMDocument.SkipFrames

Description An Integer to specify the frame skip rate used in animation.

Comments SkipFrames specifies the rate of frame refresh while animating the
simulation result.

The default value of SkipFrames is 1, indicating that every frame is
displayed. When set to 2, for example, the animation will skip every other
frame.

Example Sub Main()

' Change the skip frame rate of the active document to 4

WM.ActiveDocument.SkipFrames = 4

End Sub

See Also WMDocument (object)

WMDocument.Split (method)
Syntax WMDocument.Split

Chapter 3 WMDocument.StartHere (method) 621

Description Split objects that are selected and joined in the document.

Comments The WMDocument.Split performs the Split operation on objects that are
selected and ready to be split in the document. For example, a pin joint
can be split into two point elements. If a body is selected and it is
currently attached to something with a joint, then that joint will be split
also.

Example Sub Main()

' Pins a rectangle the background, splits the pin joint

' (just to show the effect of split), and runs the simulation.

Dim D as WMDocument : Set D = WM.ActiveDocument

Dim Rect as WMBody

Dim Joint as WMConstraint

Set Rect = D.NewBody("rectangle")

Rect.Width.Value = 1.0 : Rect.Height.Value = 2.0

Set Joint = D.NewConstraint("pin")

Set Joint.Point(2).Body = Rect

D.SelectAll False ' Deselect all objects first

D.Select Rect ' Select the rectangle

D.Split

D.Run 25 ' the rectangle will fall

D.Reset

End Sub

See Also WMDocument (object), WMObject (object)

WMDocument.StartHere (method)
Syntax WMDocument.StartHere

Description Erases the simulation history stored in memory, and sets the current frame
to be the initial frame for the next simulation.

Comments The StartHere method has no effect on the current frame. The method
simply erases all the simulation history (if any), and sets the current frame
(contained in the CurrentFrame property of the document) as the initial
frame (frame 0).

As a result of the StartHere method, both HistoryFrames and
CurrentFrame properties will be set to 0.

Example (See WMDocument.Reset)

622 Working Model Basic User's Manual

See Also WMDocument (object), WMDocument.Run (method), WMDocument.Reset
(method), WMDocument.CurrentFrame (property),
WMDocument.HistoryFrames (property)

WMDocument.TimeUnit (property)
Syntax WMDocument.TimeUnit

Description A String which specifies the time unit in the Working Model document.

Comments The TimeUnit property can have one of the following values.

Value Unit Description

Seconds Seconds (with s as unit display for meters).

Seconds (sec) Seconds (with sec as unit display for meters).

Minutes Minutes.

Hours Hours (with h as unit display for meters).

Hours (hr) Hours (with hr as unit display for meters).

Milliseconds Milliseconds.

Years Years.

Microseconds Microseconds.

Days Days.

Both lower- and upper-case letters are accepted. The default value of the
TimeUnit property is "Seconds".

The property is overwritten when the user explicitly specifies the
UnitSystem property of the document, because each unit system has a set
of specifications for all measurement units.

Example See WMDocument.UnitSystem.

See Also WMDocument.UnitSystem (property), WMDocument.DecimalFormat
(property), WMDocument.DecimalDigits (property)

WMDocument.Tracking (property)
Syntax WMDocument.Tracking

Description An Integer to specify the tracking rate used in animation.

Comments The Tracking property specifies the rate at which a traced track is
displayed in the Working Model document.

The default value of Tracking is 0, indicating that no traced track is
displayed. When set to 1, for example, the animation will leave traced

Chapter 3 WMDocument.UnitSystem (property) 623

track every frame.

Example Sub Main()

' track every 6 frames in the current document

Dim Brick as WMBody

Dim Doc as WMDocument : Set Doc = WM.ActiveDocument

Doc.Gravity = "linear"

Set Brick = Doc.NewBody("square")

Brick.Mass.Value = 1.0

WM.ActiveDocument.Tracking = 6

WM.ActiveDocument.Run 100 ' run for 100 frames and see

End Sub

See Also WMDocument.SkipFrames (property)

WMDocument.UnitSystem (property)
Syntax WMDocument.UnitSystem

Description A String which specifies the unit system currently employed in the
Working Model document.

Comments The UnitSystem property can be one of the following.

Value Description

astronomical Astronomical (e.g., light-years for disatance, years for time).

atomic Atomic (e.g., nanometers for distance, atomic mass unit for mass).

cgs The CGS unit system (e.g., centimeters for distance, grams for mass,
seconds for time).

si degree The SI unit system (e.g., meters for distance, kilograms for mass, seconds
for time) with degrees as the angular measurement.

si radian The SI unit system (e.g., meters for distance, kilograms for mass, seconds
for time) with radians as the angular measurement.

english (pounds) English system (e.g., inches for
distance, seconds for time) with pounds as the mass measurement (with
acceleration on Earth built-in; therefore 0.45 kilogram of mass is
translated to 1 pound).

english (slugs) English system (e.g., inches for
distance, seconds for time) with slugs as the mass measurement.

undefined Any unit system that does not fall into the above descriptions.

624 Working Model Basic User's Manual

The default value is "si degrees".

Each unit system has a set of specifications for units used in various
measurements. Therefore, assigning the UnitSystem property overrides
the setting given in unit properties of the WMDocument object, such as
DistanceUnit, MassUnit, and TimeUnit.

For example, if you assign the UnitSystem property to "english
(pounds)", then DistanceUnit, MassUnit, and TimeUnit of the
document will be changed to "inches", "pounds", and "seconds",
regardless of the previous setting of these units.

If you change any of the individual measurement units, the UnitSystem
property will be automatically changed to "undefined", reflecting the
fact that the unit system may no longer conform to the one previously
specified.

Example Sub Main()

' Starts out with English (pounds) unit system,

' and modifies various unit systems.

Dim D as WMDocument

Set D = WM.ActiveDocument

D.UnitSystem = "english earth pounds"

' At this point, various units are set to default; for example,

' length unit is set to inches, and mass unit is set to pounds.

' For details on each units, see individual sections.

D.DistanceUnit = "feet"

D.TimeUnit = "minutes"

D.MassUnit = "milligrams"

D.ChargeUnit = "Statcoulombs"

D.RotationUnit = "Revolutions"

D.ElectricPotentialUnit = "" ' "" means null string.

D.ForceUnit = "Poundals"

D.EnergyUnit = "Kilocalories"

D.PowerUnit = "Horsepower"

D.FrequencyUnit = "Hertz"

D.VelocityUnit = "Miles per Hour"

D.RotationalVelocityUnit = "Revs/Min"

End Sub

Chapter 3 WMDocument.Update (method) 625

See Also WMDocument.DecimalDigits (property), WMDocument.DecimalFormat
(property)

WMDocument.Update (method)
Syntax WMDocument.Update

Description Updates the Working Model document screen to reflect the modifications
made on any WMCell object.

Comments For performance reasons, when a WMCell object property is modified
(e.g., position of a circle, dimension of a rectangle), the document screen
will not be updated until the script is terminated. If you wish to see the
result of a modification immediately, use the Update method to
synchronize the Working Model document window with the current
WMCell object settings.

Note: Any modification on WMCell is immediately recorded in the
Working Model database. Computational results of a simulation is
unaffected whether or not the Update method is used. The Update
method is only necessary to “refresh” the document screen (i.e., for visual
rendering).

You may find the method useful in debugging (to see the effect of a code
step-by-step) and for presentation purposes (to demonstrate animated
results for audience).

Example Sub Main()

' Moves the circle from 0.0 to 2.0 incrementally by 0.2. The
motion of

' the circle is rendered on the screen as it is repositioned
each time.

' Without the Update, you will only see a circle positioned at
(2, 0) at

' the end (i.e., no animation).

Dim Doc as WMDocument, Disk as WMBody

Set Doc = WM.ActiveDocument

Set Disk = Doc.NewBody("circle")

For I = 0.0 to 2.0 Step 0.2

Disk.PX.Value = I

Doc.Update ' comment out this line and see how the
results differ

Next I

End Sub

626 Working Model Basic User's Manual

See Also WMDocument (object), WMDocument.Reset (method),
WMDocument.CurrentFrame (property)

WMDocument.VariableIntegrationStep (property)
Syntax WMDocument.VariableIntegrationStep

Description Specifies whether the integration step is to be variable or fixed for the
WMDocument object.

Comments VariableIntegrationStep is a Boolean property. Setting the property
is exactly equivalent to checking the variable time step button in the
Accuracy dialog of Working Model.

When the property is True, Working Model will automatically use the
variable time step.

The value of VariableIntegrationStep is set automatically to True or
False, when you specify the SimulationMode to Accurate or Fast,
respectively.

Since the default SimulationMode is Accurate, the default value of
VariableIntegrationStep is True.

Example Sub Main()

' Sets the simulation mode to Accurate mode, then sets the

' integration step to fixed mode.

Dim D as WMDocument

Set D = WM.ActiveDocument

D.SimulationMode = "Accurate"

' at this point VariableIntegrationStep is True, because

' Accurate mode imposes the default setting.

D.VariableIntegrationStep = False

End Sub

See Also WMDocument (object), WMDocument.SimulationMode (property),
WMDocument.IntegrationStep (property)

WMDocument.VelocityUnit (property)
Syntax WMDocument.VelocityUnit

Description A String which specifies the velocity unit in the Working Model
document.

Comments The VelocityUnit property can take one of three values as follows.

Chapter 3 WMDocument.ViewWidth (property) 627

Value Unit Description

Speed of Light Speed of light (c).

Miles per Hour Miles per hour (mph).

(null) None. (i.e., VelocityUnit = "")

The default value of the VelocityUnit property is null (can be specified
as a null string, or "").

Both lower and upper case letters are accepted. The property is
overwritten when the user explicitly specifies the UnitSystem property of
the document, because each unit system has a set of specification for all
measurement units.

When VelocityUnit is set to null, Working Model displays the velocity
unit as a composite unit based on the setting in DistanceUnit and
TimeUnit. For example, when DistanceUnit is "m" TimeUnit is "s",
and VelocityUnit is "" (null), then meters and Properties window show
the velocity unit as "m/s", or meters per second.

Example See WMDocument.UnitSystem.

See Also WMDocument.UnitSystem (property), WMDocument.DecimalFormat
(property), WMDocument.DecimalDigits (property)

WMDocument.ViewWidth (property)
Syntax WMDocument.ViewWidth

Description A Double to specify the length represented by the horizontal ruler of the
Working Model document shown on the screen.

Comments ViewWidth indicates the length represented by the width of the Working
Model document. The number given in ViewWidth is interpreted in the
current unit system.

The ViewWidth property is inversely proportional to the ScaleFactor
property of the document. Since the document pixel size is not affected
by modifying the ViewWidth property, ScaleFactor will automatically
double when ViewWidth is halved, for example.

Example (See WMDocument.ScaleFactor)

See Also WMDocument.ScaleFactor (property)

WMDocument.WarnInaccurate (property)
Syntax WMDocument.WarnInaccurate

Description Specifies whether the warning dialog for Inaccurate Integration is enabled.

628 Working Model Basic User's Manual

Comments WarnInaccurate is a Boolean property. Setting the property to True is
exactly equivalent to checking the Inaccurate Integration Warning check
box in the Accuracy dialog of Working Model.

When the property is True, Working Model will bring up a warning
dialog box when it detects the presence of a large velocity or acceleration
in the simulation, which may cause instability in the system. Please refer
to the Working Model User's Manual for more information on this
warning.

The value of WarnInaccurate is set automatically to False or True,
when you specify the SimulationMode to Accurate or Fast,
respectively.

Since the default SimulationMode is Accurate, the default value of
WarnInaccurate is False.

Example Sub Main()

' Sets the simulation mode to Accurate mode, except

' enable the large-velocity-or-acceleration warning.

Dim D as WMDocument

Set D = WM.ActiveDocument

D.SimulationMode = "Accurate"

' at this point WarnInaccurate is False, because

' Accurate mode imposes the default setting.

D.WarnInaccurate = True

End Sub

See Also WMDocument (object), WMDocument.SimulationMode (property)

WMDocument.WarnInconsistent (property)
Syntax WMDocument.WarnInconsistent

Description Specifies whether the warning dialog for inconsistent constraints is
enabled.

Comments WarnInconsistent is a Boolean property. Setting the property to True is
exactly equivalent to checking the Inconsistent Constraints Warning check
box in the Accuracy dialog of Working Model.

When the property is True, Working Model will bring up a warning
dialog box when it detects an inconsistent constraint during the
simulation. Inconsistent constraints may introduce excessive force in the
simulation and render the system unstable. Please refer to the Working
Model User's Manual for more information on this warning.

Chapter 3 WMDocument.WarnOverlap (property) 629

The value of WarnInconsistent is set automatically to True or False,
when you specify the SimulationMode to Accurate or Fast,
respectively.

Since the default SimulationMode is Accurate, the default value of
WarnInconsistent is True.

Example Sub Main()

' Sets the simulation mode to Fast mode, except

' enable the Inconsistent Constraints Warning.

Dim D as WMDocument

Set D = WM.ActiveDocument

D.SimulationMode = "Fast"

' at this point WarnInconsistent is False, because

' Fast mode imposes the default setting.

D.WarnInconsistent = True

End Sub

See Also WMDocument (object), WMDocument.SimulationMode (property),
WMDocument.WarnRedundant (property)

WMDocument.WarnOverlap (property)
Syntax WMDocument.WarnOverlap

Description Specifies whether the warning dialog for Initial body Overlap is enabled.

Comments WarnOverlap is a Boolean property. Setting the property to True is
exactly equivalent to checking the Initial Body Overlap Warning check
box in the Accuracy dialog of Working Model.

When the property is True, Working Model will bring up a warning
dialog box when it detects two or more bodies are overlapping more than
a specified tolerance (set in the PositionalError property) at the first
frame of the simulation. Large overlap between objects may introduce
excessive force in the simulation and render the system unstable. Please
refer to the Working Model User's Manual for more information on this
warning.

The value of WarnOverlap is set automatically to True, when you specify
the SimulationMode to Accurate or Fast.

Since the default SimulationMode is Accurate, the default value of
WarnOverlap is True.

Example Sub Main()

630 Working Model Basic User's Manual

' In order to prevent unstable simulations,

' checks to make sure the overlap warning is on.

Dim D as WMDocument

Set D = WM.ActiveDocument

If D.WarnOverlap = False then

MsgBox "Overlap warning should be on! Turning it on..."

D.WarnOverlap = True

End If

End Sub

See Also WMDocument (object), WMDocument.SimulationMode (property),
WMDocument.PostionalError (property)

WMDocument.WarnRedundant (property)
Syntax WMDocument.WarnRedundant

Description Specifies whether the warning dialog for redundant constraints is enabled.

Comments WarnRedundant is a Boolean property. Setting the property to True is
exactly equivalent to checking the Redundant Constraints Warning check
box in the Accuracy dialog of Working Model.

When the property is True, Working Model will bring up a warning
dialog box when it detects a redundant constraints during the simulation.
Redundant constraints may introduce excessive force in the simulation
and render the system unstable. Please refer to the Working Model User's
Manual for more information on this warning.

The value of SimulationMode has no bearings to the value of the
WarnRedundant property.

The default value of WarnRedundant is False.

Example Sub Main()

' Sets the simulation mode to Fast mode, and

' enable the Redundant Constraints warning.

Dim D as WMDocument

Set D = WM.ActiveDocument

D.SimulationMode = "Fast"

D. WarnRedundant = True

End Sub

See Also WMDocument (object), WMDocument.SimulationMode (property),

Chapter 3 WMInput (object) 631

WMDocument.WarnInconsistent (property)

WMInput (object)
Syntax WMInput

Description An object which provides an interface to input controls used in Working
Model simulations.

Comments To create a new WMInput object in a Working Model document, use the
NewInput method of the WMDocument object.

To specify which object is to be controlled by the WMInput object, you
need to modify the properties of the target object itself (see Example
below).

A WMInput object has the following properties.

Property Description

Kind String indicating the type of the object (WMInput). The property is read-
only.

Value Double containing the current value of the input.

Format String which indicates the input format. Can be "Slider", "Table",
"Button" or "TextBox". The format types correspond to the input type
specified in the Properties window.

Min Double to specify the minimum bound of the input. Any Value specified
below Min will be truncated to Min.

Max Double to specify the maximum bound of the input. Any Value specified
in excess of Max will be truncated to Max.

X, Y Integer to specify the (x, y) coordinates that describe the position of the
WMInput object in the document. The values are measured in pixel
coordinates, where the top-left corner of the document window is (0, 0).
The x-coordinate increases toward the right edge of the screen, whereas
the y-coordinate increases downward to the bottom of the screen.

632 Working Model Basic User's Manual

(0, 0)
X

Y

Height, Width Integer to specify the height and width of the WMInput object in the
Working Model document. As in X and Y properties, Height and Width
are given in pixel units.

The following properties are applicable only when Format is "Slider".

Property Description

Snaps Integer to determine the number of snaps between given Min and Max
values. Working Model divides the range between Min and Max into
equal-sized intervals, so that the slider only snaps at Min, Max, and
(Snaps-1) steps in between.

Snaps only affects the mouse-dragging of the slider. Therefore, if a WM
Basic script specifies Value to be a quantity that does not fall into any of
the snapping values, Working Model will accept the number as given (as
long as the value is within the range specified by Min and Max).

ShowText Boolean to indicate whether a text box will be displayed alongside the
input slider. When ShowText is True, the text box will be displayed.

The following property is applicable only when Format is "Button".

Property Description

Momentary Boolean. When Momentary is set to True, the WMInput object (a button,
since Format is "Button") becomes active only for the duration in which
the mouse button is held down. When False, the button acts as a toggle
switch.

The following properties and method are applicable only when Format is
"Table".

Property/method Description

DataColumn Integer to specify which column in the file is to be read as a data
column. Default value is 1.

TimeColumn Integer to specify which column in the file is to be read as a time

Chapter 3 WMObject (object) 633

column. Default value is 0, indicating that each row of data corresponds
to a single Animation Step.

ReadTable A method to read the data table. Syntax is:

[WMInput].ReadTable filename

where the parameter filename is a String specifying the name of the data
file.

Example Sub Main()

'Creates a square and sets the slider bar to control

'its initial x-position.

Dim D as WMBody

Dim I as WMInput

Dim id as Integer

Set D = WM.ActiveDocument.NewBody("square")

Set I = WM.ActiveDocument.NewInput()

id = I.ID

D.PX.Formula = "input[" + str$(id) + "]"

End Sub

See Also WMOutput (object), WMDocument.NewInput (method)

WMObject (object)
Syntax WMObject

Description WMObject provides an interface to attributes common to on-screen objects
in a Working Model document.

Comments WMObject is the parent object of WMBody, WMConstraint, WMPoint,
WMInput, and WMOutput, in that these classes inherit properties/methods of
WMObject. An object of any of these five types will also have
properties/methods of the parent.

A WMObject object has the properties and methods shown below.
Accordingly, objects of type WMBody, WMConstraint, WMPoint, WMInput,
and WMOutput have all these properties, except X, Y that are only available
to WMInput and WMOutput objects.

The properties X and Y control the screen location of the object and have
no effect on bodies, points and constraints because the screen location is
determined by scrolling (see WMDocument.ScrollTo).

The properties Width and Height are also available to WMBody objects.
However, for a WMBody object, the properties are of type WMCell, and they

634 Working Model Basic User's Manual

are evaluated in the current distance unit instead of pixels.

Property Description

ID A read-only Integer. Every WMObject object is assigned a unique
identification number regardless of its kind. As a general rule, the number
is assigned in the order the object is created.

The ID number is identical to the one used in Working Model's formula
language (such as body[5], or constraint[3]).

Kind A read-only String. Every WMObject object “knows” its kind. For
example, a force object (which is of type WMConstraint) has the Kind
string set to "force" as soon as the object is created. This information
can be used to identify the object type and define conditional statements.

Every character in the Kind string is in lower-case, and the comparison
needs to be case-sensitive. For instance, given a force object (Kind =
"force"), the comparison:

Force.Kind = "force"

returns True, whereas:
Force.Kind = "Force"

returns False.

Name String. Every WMObject object has a default name, depending on its
Kind. For example, a body has a default name "rectangle", "polygon",
"square" or "circle", depending on its geometry. The Name property is
for information only, and the user can freely modify the property.

The Name string always appears on utility windows (Properties, Geometry,
and Appearance). You can also display the Name string on the Working
Model simulation by setting the ShowName property to True (see
ShowName below).

Show Boolean to indicate whether the object is visible on the Working Model
simulation window. You can hide objects by setting the Show to False.
The default value for Show is True.

ShowName Boolean to indicate whether the Name property of the object is visible on
the Working Model simulation window. You can display the name
(custom-definable; see Name above) of each object when you run the
simulation. The Name is displayed near the frame of reference of the
object. The default value of ShowName is False.

X, Y Integer pixel coordinates to indicate the position of the object on the
screen. These properties are needed for objects of type WMInput and
WMOutput, since unlike other objects in Working Model, these objects are
not associated with any other coordinate system besides the pixel map on
the screen.

Chapter 3 WMObject (object) 635

Height, Width Integer pixel size of the WMInput or WMOutput objects. (Height and
Width are WMCell objects in WMBody objects.)

Method Description

Body() This method casts (converts) the WMObject to WMBody (see Example).

Constraint() This method casts the WMObject to WMConstraint (see Example).

Input() This method casts the WMObject to WMInput (see Example).

Output() This method casts the WMObject to WMOutput (see Example).

Point() This method casts the WMObject to WMPoint (see Example).

In object-oriented programming terms, WMObject may be considered as a
base class from which WMBody and others (derived-classes) descend.

Example Sub Main()

'Illustrates the use of type-casts.

 ' Determines the type of the first object in the document and

' assigns a variable to it.

Dim Doc as WMDocument

Dim obj as WMObject

Dim aBody as WMBody, aPoint as WMPoint, aConstraint as
WMConstraint

Dim anInput as WMinput, anOutput as WMOutput

Set Doc = WM.ActiveDocument

Doc.SelectAll

Set obj = Doc.Selection.Item(1)

 ' Item returns a WMObject

If obj is Nothing Then

Exit Sub

End If

If obj.Kind = "body" Then

Set aBody = obj.Body() : MsgBox "Body found"

ElseIf obj.Kind = "constraint" Then

Set aConstraint = obj.Constraint() : MsgBox "Constraint
found"

ElseIf obj.Kind = "point" Then

Set aPoint = obj.Point() : MsgBox "Point found"

636 Working Model Basic User's Manual

ElseIf obj.Kind = "output" Then

Set anOutput = obj.Output() : MsgBox "Output found"

ElseIf obj.Kind = "input" Then

Set anInput = obj.Input() : MsgBox "Input found"

End If

End Sub

See Also WMBody (object), WMConstraint (object), WMPoint (object), WMInput
(object), WMOutput (object), WMDocument.Selection (property)

WMOutput (object)
Syntax WMOutput

Description An object which provides an interface to output meters used in Working
Model simulations.

Comments A WMOutput object represents meters used in Working Model. Every
meter in Working Model can measure up to four quantities, and so can a
WMOutput object.

Each measured quantity is specified using WMOutputColumn objects. A
WMOutput object has methods and properties specifying how the values
are displayed on the meter. Yet a WMOutput object is not much more than
a place holder for a WMOutputColumn object. You can access individual
columns of a WMOutput object using the Column method (see below).

A WMOutput object has the following properties and methods..

Method/PropertyDescription

Column(num) A method which returns the specified WMOutputColumn object
representing the fields of the output meter. The parameter num of type
Integer specifies the column ID.

For num = 0, Column returns the value of the field x (x-axis). For num =
n, Column returns the value of the field yn. Please see WMOutputColumn
section for more information.

ConnectPoints A Boolean property to indicate whether the plotted points are to be
connected.

Format A String property to specify the display format of the Output. It can be
"digital", "bar", or "graph".

Kind A String property indicating the type of the object ; returns "output".
The property is read-only.

ShowAxes A Boolean property to indicate whether x- and y-axes are displayed when

Chapter 3 WMOutput (object) 637

the Output is in the graph format.

ShowGrid Boolean to indicate whether the grid display is turned on or off.

ShowFrame Boolean to indicate whether the Output has an outlining frame.

ShowLabels Boolean to indicate whether to show the labels on the Output.

ShowUnits Boolean to indicate whether the units are shown on the Output.

X, Y Integer to specify the (x, y) coordinates that describe the position of the
WMOutput object in the document. The values are measured in pixel
coordinates, where the top-left corner of the document window is (0, 0).
The x-coordinate increases toward the right edge of the screen, whereas
the y-coordinate increases downward to the bottom of the screen.

H, W Integer to specify the height and width of the WMOutput object in the
Working Model document. As in X and Y properties, H and W are given in
pixel sizes.

For example, suppose you want to locate the WMOutput object M at (150,
50) and change its dimensions to 250 (width) by 120 (height) pixels. The
code segment would be:

M.X = 150: M.Y = 50

M.W = 250: M.H = 120

(Recall a colon (:) is used to separate two statements in a single line.)

The result would look like the following:

(0, 0)

150

50

250

120

(units in pixels)

(150, 50)

Example Sub Main()

'Creates a meter to plot sin(t). See also

'WMOutputColumn below.

Dim M as WMOutput

638 Working Model Basic User's Manual

Set M = WM.ActiveDocument.NewOutput()

M.Format = "graph"

M.Column(1).Label = "sine plot"

M.Column(1).Cell.Formula = "sin(t)"

End Sub

See Also WMOutputColumn (object), WMDocument.NewOutput (method)

WMOutputColumn (object)
Syntax WMOutputColumn

Description An object which provides an interface to individual formulas of outputs
(meters).

Comments A WMOutputColumn object represents one of the output fields of a
WMOutput (meter) object. While a WMOutput object contains information
regarding the meter display format, its WMOutputColumn objects hold
information regarding what quantities are to be displayed in the meter.

Each WMOutputColumn object corresponds to a row in the Properties
window for a meter. Just like in Working Model, you can specify the
quantity to be measured (using formulas), minimum and maximum values
for plotting (or automatic scale), and display the label for each output
column.

The table below shows how the properties of the WMOutputColumn object
can be specified.

Method/PropertyDescription

AutoScale Boolean to indicate whether the particular output is subject to automatic
scaling. AutoScale is True when the automatic scaling is active, and
False otherwise.

Cell WMCell containing the quantity to be measured. Typically, formulas are
used to specify the quantity to be measured (see Example below).

Label String which contains the label for the particular meter column. Label is
no more than an informative comment to make the output easy to read.

Min Double to specify the minimum bound of the plotting window when the
WMOutput object is in graph format. When AutoScale is True, Min
returns the current minimum bound.

Max Double to specify the maximum bound of the plotting window when the
WMOutput object is in graph format. When AutoScale is True, Max
returns the current maximum bound.

Show Boolean to indicate whether the column is to be displayed on the Output

Chapter 3 WMPoint (object) 639

object. Show is True when the value is displayed, or False otherwise.

Example Sub Main()

' Creates a digital meter to show t and sin(t)

Dim M as WMOutput

Dim T1 as WMOutputColumn

Set M = WM.ActiveDocument.NewOutput()

M.Format = "digital"

Set T1 = M.Column(2)

T1.Label = "sine of t"

T1.Cell.Formula = "sin(t)"

End Sub

See Also WMOutput (object)

WMPoint (object)
Syntax WMPoint

Description An object which provides an interface to points used in Working Model
simulations.

Comments A WMPoint object has the following properties.

Note: WMPoint object also has properties available in WMObject objects.
Please see the section on WMObject for details.

Property Description

Kind (String) indicates the type of the Point (point, squarepoint, or
anchor).

PX, PY (WMCell) x- and y-positions of the Point.

PR (WMCell) orientation of the Point.

GlobalPX (Double) global x-position of the Point.

GlobalPY (Double) global y-position of the Point.

GlobalPR (Double) global orientation of the Point.

Body (WMBody) the body to which the Point is attached. If the point is attached
to the background, the Body property returns the background, which has
the ID of 0 (see Example).

Constraint (WMConstraint) the constraint object which the Point is part of. Read-
only. Returns Nothing if the point is not part of any constraint.

640 Working Model Basic User's Manual

Example Sub Main()

' Creates a square and attaches a point at a corner

' of the square.

 Dim D as WMDocument

Dim P as WMPoint

Dim B as WMBody

Set D = WM.ActiveDocument

' Creates a square. By default, it will be located at (0, 0)

Set B = D.NewBody("Square")

B.Width.Value = 1.0 ' Height will also be 1.0

' Creates a point. By default, it will be located at (0, 0)

Set P = D.NewPoint("Point")

If P.Body.ID = 0 then

MsgBox "The point is currently attached to the background."

End If

Set P.Body = B ' attached to the square previously created

MsgBox "Now the point is attached to "+P.Body.Name

' Move the point to the corner of the square. Note Point's

' coordinates are given in terms of the body it is attached.

P.PX.Value = 0.5 ' 0.5 in x from the FOR of the square

P.PY.Value = 0.5 ' 0.5 in y from the FOR of the square

End Sub

See Also WMCell (object), WMBody (object)

641

C H A P T E R 4

This chapter explains how to use Script Editor, a tool that enables you to edit and debug your
WM Basic scripts. It begins with some general information about working with Script Editor
and then discusses editing your scripts, running your scripts to make sure they work properly,
debugging them if necessary, and exiting from Script Editor.

Contents
Script Editor Basics
Editing Your Scripts
Running Your Scripts
Debugging Your Scripts
Exiting from Script Editor
Menu Reference

Editing and Debugging
Scripts

642 Working Model Basic User's Manual

 Script Editor Basics
This section provides general information that will help you work most effectively with
Script Editor. It includes an overview of Script Editor's application window—the interface
you'll use to edit, run, and debug your WM Basic scripts—as well as lists of keyboard
shortcuts and information on using the Help system.

Script Editor's Application Window
Script Editor's application window contains the following elements:

Toolbar: a collection of tools that you can use to provide instructions
to Script Editor, as discussed in the following subsection.
Edit pane: a window containing the WM Basic code for the script you
are currently editing.
Watch pane: a window that opens to display the watch variable list
after you have added one or more variables to that list.
Pane separator: a divider that appears between the edit pane and the
watch pane when the watch pane is open.
Status bar: displays the current location of the insertion point within
your script.

Toolbar

Pane separator

Edit pane

Status bar

Watch pane

Toolbar
The following list briefly explains the purpose of each of the tools on Script Editor's toolbar.
These tools are discussed in more detail later in the chapter, in the context of the procedures
in which they are used.

Chapter 4 Editing and Debugging Scripts 643

Toolbar Tools

Button
Face

Tool Function

Start Begins execution of a script.

End Stops execution of a script.

Toggle
Breakpoint

Adds or removes a breakpoint on a
line of WM Basic code.

Add Watch Displays the Add Watch dialog box,
in which you can specify the name of
a WM Basic variable. That variable,
together with its value (if any), is then
displayed in the watch pane of Script
Editor's application window.

Calls Displays the list of procedures called
by the currently executing WM Basic
script. Available only during break
mode.

Single Step Executes the next line of a WM Basic
script and then suspends execution of
the script. If the script calls another
WM Basic procedure, execution will
continue into each line of the called
procedure.

Procedure
Step

Executes the next line of a WM Basic
script and then suspends execution of
the script. If the script calls another
WM Basic procedure, WM Basic will
run the called procedure in its
entirety.

Keyboard Shortcuts
The following lists present various types of keyboard shortcuts, including general shortcuts,
navigating shortcuts, editing shortcuts, and debugging shortcuts.

644 Working Model Basic User's Manual

General Shortcuts

Key(s) Function

F1 (Windows
only)

Provides context-sensitive help for selected
menu commands and variables in the watch
pane, for WM Basic terms in the edit pane that
have been selected or that contain the insertion
point, and for displayed dialog boxes.

Shift+F1
(Windows only)

Toggles the Help pointer.

Ctrl+F
(Windows),
Cmd+F
(Macintosh)

Displays the Find dialog box, which allows you
to specify text for which you want to search.

F3 (Windows),
Cmd+G
(Macintosh)

Searches for the next occurrence of previously
specified text. If you have not previously
specified text for which you want to search,
displays the Find dialog box.

F4 Invokes the Goto Line dialog box.

Esc (Windows) Deactivates the Help pointer if it is active.
Otherwise, compiles your script and returns you
to the host application.

Navigating Shortcuts

Key(s) Function

Up arrow Moves the insertion point up one line.

Down arrow Moves the insertion point down one line.

Left arrow Moves the insertion point left by one character
position.

Right arrow Moves the insertion point right by one
character position.

PgUp Moves the insertion point up by one window.

PgDn Moves the insertion point down by one
window.

Ctrl+PgUp
(Windows)

Scrolls the insertion point left by one window.

Ctrl+PgDn
(Windows)

Scrolls the insertion point right by one
window.

Chapter 4 Editing and Debugging Scripts 645

Ctrl+ Left arrow
(Windows),
Cmd+Left arrow
(Macintosh)

Moves the insertion point to the start of the
next word to the left.

Ctrl+Right arrow
(Windows),
Cmd+Right arrow
(Macintosh)

Moves the insertion point to the start of the
next word to the right.

Home On Windows, places the insertion point before
the first character in the line. On Macintosh,
scrolls back to the beginning of the script
(without moving the cursor).

End On Windows, places the insertion point after
the last character in the line. On Macintosh,
scrolls down to the end of the script (without
moving the cursor).

Ctrl+Home
(Windows)

Places the insertion point before the first
character in the script.

Ctrl+End
(Windows)

Places the insertion point after the last
character in the script.

Editing Shortcuts

Key(s) Function

Delete Removes the selected text or removes the
character following the insertion point without
placing it on the Clipboard.

Backspace Removes the selected text or removes the
character preceding the insertion point without
placing it on the Clipboard.

Ctrl+Y
(Windows)

Deletes the entire line containing the insertion
point without placing it on the Clipboard.

Tab Inserts a tab character.

Enter Inserts a new line, breaking the current line.

Ctrl+C
(Windows),
Cmd+C
(Macintosh)

Copies the selected text, without removing it
from the script, and places it on the Clipboard.

646 Working Model Basic User's Manual

Ctrl+X
(Windows),
Cmd+X
(Macintosh)

Removes the selected text from the script and
places it on the Clipboard.

Ctrl+V
(Windows),
Cmd+V
(Macintosh)

Inserts the contents of the Clipboard at the
location of the insertion point.

Shift + any
navigating
shortcut

Selects the text between the initial location of
the insertion point and the point to which the
keyboard shortcut would normally move the
insertion point. (For example, pressing Shift +
Ctrl + Left arrow selects the word to the left of
the insertion point.

Ctrl+Z
(Windows),
Cmd+Z
(Macintosh)

Reverses the effect of the preceding editing
change(s).

Debugging Shortcuts

Key(s) Function

Shift+F9 Displays the Add Watch dialog box, in which
you can specify the name of a WM Basic
variable. Script Editor then displays the value
of that variable, if any, in the watch pane of its
application window.

Delete Removes the selected watch variable from the
watch pane.

Enter or F2 Displays the Modify Variable dialog box for
the selected watch variable, which enables you
to modify the value of that variable.

Cmd+Y
(Macintosh)

Performs a syntax check on your script.

Cmd+T
(Macintosh), F5

Runs your script.

Cmd+E
(Macintosh)

Terminates your script.

F6 If the watch pane is open, switches the
insertion point between the watch pane and the
edit pane.

Chapter 4 Editing and Debugging Scripts 647

Cmd+"="
(Macintosh), F8

Activates the Single Step command, which
executes the next line of a WM Basic script
and then suspends execution of the script. If
the script calls another WM Basic procedure,
execution will continue into each line of the
called procedure.

Shift+F8 Activates the Procedure Step command, which
executes the next line of a WM Basic script
and then suspends execution of the script. If
the script calls another WM Basic procedure,
WM Basic will run the called procedure in its
entirety.

Ctrl+Break
(Windows) or
Cmd+period (.)
(Macintosh)

Suspends execution of an executing script and
places the instruction pointer on the next line
to be executed.

F9 Sets or removes a breakpoint on the line
containing the insertion point.

Using the Help System (Windows Only)
Script Editor's Help system provides context-sensitive help both on WM Basic keywords and
on how to use various features of Script Editor. The Help system also lets you pinpoint
information on key topics. This subsection describes several ways to get help.
Here's how to activate the Help pointer and use it to get help on certain key features of Script
Editor, including the status bar, toolbar, menu commands, edit pane, watch pane, and pane
separator.

To get context-sensitive help using the Help pointer:
1. To activate the Help pointer, press Shift+F1.

When you pass the pointer over an area of Script Editor's application
window on which you can obtain help, a question mark appears beside
the mouse pointer to indicate that the Help pointer is active.

648 Working Model Basic User's Manual

Help pointer

Note: You can use the Help pointer to obtain help on all toolbar tools
and menu commands, including those that are currently disabled.

2. Place the Help pointer on the item for which you want help and click
the mouse button.
Script Editor's Help system displays information for the item on which
you clicked.

Here's how to use the keyboard to get context-sensitive help on WM Basic terms, watch
variables, menu commands, and dialog boxes.

To get context-sensitive help using the keyboard:
1. Select the WM Basic term on which you want help or place the

insertion point anywhere in the term.
-Or-
Select the watch variable or menu command on which you want help
(including commands that are currently disabled).
-Or-
Display the dialog box on which you want help.

2. Press F1.
Script Editor's Help system displays information on the WM Basic
term, watch variable, menu command, or dialog box.

Here's how to access the Help system and pinpoint specific information within it.

To search for help on a specific topic:
1. From the Help menu, choose the Search for Help on command.

The Search dialog box appears.
2. Either enter the desired topic in the text box or select it from the

following scrollable list.
3. Click the Show Topics button or press Enter.

Chapter 4 Editing and Debugging Scripts 649

The topic you selected is displayed in the second scrollable list,
together with closely related Help topics, if any.

4. Click the Go To button or press Enter.
Help is displayed for the topic you selected.

Here's how to display the Help system contents and use it to find information on selected
topics.

To use the Help system contents:
1. From the Help menu, choose Contents.

A list of major topics in Script Editor's Help system appears.
2. Select the topic on which you want help.

The Help system either displays information on the selected topic or
presents a list of more specific subtopics from which you can choose
to obtain the desired information.

Editing Your Scripts
This section explains how to use Script Editor to edit WM Basic code. Although, in some
respects, editing code with Script Editor is like editing regular text with a word-processing
program, Script Editor also has certain capabilities specifically designed to help you edit WM
Basic code.
You'll learn how to move around within your script, select and edit text, add comments to
your script, break long WM Basic statements across multiple lines, search for and replace
selected text, and perform a syntax check of your script. The section ends with a brief
discussion of editing dialog box templates, which is explained in much more detail in
Chapter 3.

Navigating within a Script
The lists of keyboard shortcuts in the preceding section contain a group of navigating
shortcuts, which you can use to move the insertion point around within your script. When
you move the insertion point with a keyboard shortcut, Script Editor scrolls the new location
of the insertion point into view if it is not already displayed.
You can also reposition the insertion point with the mouse and the Goto Line command, as
explained below.
Script Editor differs from most word-processing programs in that it allows you to place the
insertion point anywhere within your script, including in "empty spaces." (Empty spaces are
areas within the script that do not contain text, such as a tab's expanded space or the area
beyond the last character on a line.)
Here's how to use the mouse to reposition the insertion point. This approach is especially fast
if the area of the screen to which you want to move the insertion point is currently visible.

To move the insertion point with the mouse:
1. Use the scroll bars at the right and bottom of the display to scroll the

target area of the script into view if it is not already visible.
2. Place the mouse pointer where you want to position the insertion point.
3. Click the left mouse button.

The insertion point is repositioned.

650 Working Model Basic User's Manual

Note: When you scroll the display with the mouse, the insertion point
remains in its original position until you reposition it with a mouse
click. If you attempt to perform an editing operation when the insertion
point is not in view, Script Editor automatically scrolls the insertion
point into view before performing the operation.

Here's how to jump directly to a specified line in your script. This approach is especially fast
if the area of the screen to which you want to move the insertion point is not currently visible
but you know the number of the target line.

To move the insertion point to a specified line in your script:
1. Press F4.

Script Editor displays the Goto Line dialog box.

2. Enter the number of the line in your script to which you want to move
the insertion point.

3. Click the OK button or press Enter.
The insertion point is positioned at the start of the line you specified. If
that line was not already displayed, Script Editor scrolls it into view.
Note: The insertion point cannot be moved so far below the end of a
script as to scroll the script entirely off the display. When the last line
of your script becomes the first line on your screen, the script will stop
scrolling, and you will be unable to move the insertion point below the
bottom of that screen.

Performing Editing Operations with Script Editor
This subsection provides an overview of the editing operations you can perform with Script
Editor—including inserting, selecting, deleting, cutting, copying, and pasting material—and
explains how to undo, or reverse, the most recent editing operations. You may wish to refer
to the lists of keyboard shortcuts in the preceding section, which contain a group of editing
shortcuts that can be used to perform many of the operations discussed here.

Inserting Text
In Script Editor, inserting text and other characters such as tabs and line breaks works about
the same way as it does in a word-processing program: you position the insertion point at the
desired location in the script and start typing.
However, as noted in the preceding subsection, Script Editor lets you position the insertion
point in "empty spaces," which means that you can also insert text into empty spaces—a
feature that comes in handy when you want to insert a comment in the space beyond the end
of a line in your script. (Adding comments to your script is discussed later in this section.)
When you insert characters beyond the end of a line, the space between the insertion point
and the last character on the line is backfilled with tab characters.

Chapter 4 Editing and Debugging Scripts 651

Another way in which Script Editor differs from word-processing programs is that in Script
Editor, text does not wrap. If you keep entering text on a given line, eventually you will reach
a point at which you can enter no more text on that line. Therefore, you control the line
breaks by pressing Enter when you want to insert a new line in your script. The effect of
pressing Enter depends on where the insertion point is located at the time:

If you press Enter with the insertion point at or beyond the end of a
line, a new line is inserted after the current line.
If you press Enter with the insertion point at the start of a line, a new
line is inserted before the current line.
If you press Enter with the insertion point within a line, the current line
is broken into two lines at that location.

If you press Tab, a tab character is inserted at the location of the insertion point, which
causes text after the tab to be moved to the next tab position. If you insert new text within a
tab's expanded space, the text that originally appeared on that line is moved to the next tab
position each time the new text that you are entering reaches the start of another tab position.

Selecting Text
You can use either the mouse or the keyboard to select text and other characters in your
script. Regardless of which method you use, you should be aware that in Script Editor, you
can select either a portion of one line or a series of whole lines, but you cannot select a
portion of one line plus one or more whole lines. When you are selecting multiple lines and
start or end your selection partway through a line, Script Editor automatically extends the
selection to include the entire starting and ending lines.
Here's how to use the mouse to select text in your script.

To select text with the mouse:
1. Place the mouse pointer where you want your selection to begin.
2. While pressing the left mouse button, drag the mouse until you reach

the end of your selection, and release the mouse button.
-Or-
While pressing Shift, place the mouse pointer where you want your
selection to end and click the left mouse button.
The selected text is highlighted on your display.

652 Working Model Basic User's Manual

Selected text

Another way to select one or more whole lines with the mouse is to start by placing the
mouse pointer in the left margin beside the first line you want to select. The pointer becomes
a reverse arrow, which points toward the line of text. Click the left mouse button to select a
single line; press the left mouse button and drag up or down to select multiple lines.
Here's how to use keyboard shortcuts to select text in your script.

To select text with the keyboard:
1. Place the insertion point where you want your selection to begin.
2. While pressing Shift, use one of the navigating keyboard shortcuts to

extend the selection to the desired ending point.
The selected text is highlighted on your display.

Note: When you intend to select an entire single line of text in your script, it is important to
remember to extend your selection far enough to include the hidden end-of-line character,
which is the character that inserts a new line in your script.
Here's how to use the keyboard to select one or more whole lines in your script.

To select an entire line of text with the keyboard:
1. Place the insertion point at the beginning of the line you want to select.
2. Press Shift + Down arrow.

The entire line, including the end-of-line character, is selected.
3. To extend your selection to include additional whole lines of text,

repeat step 2.
Once you have selected text within your script, you can perform a variety of other editing
operations on it, including deleting the text, placing it on the Clipboard (either by cutting the
text or copying it), and pasting it.

Deleting Text
When you delete material, it is removed from your script without being placed on the
Clipboard.

Chapter 4 Editing and Debugging Scripts 653

Here's how to remove one or more characters, selected text, or entire lines from your script.

To delete text:
To remove a single character to the left of the insertion point, press
Backspace once; to remove a single character to the right of the
insertion point, press Delete once. To remove multiple characters, hold
down Backspace or Delete.
-Or-
To remove text that you have selected, press Backspace or Delete.
-Or-
(On Windows) To remove an entire line, place the insertion point in
that line and press Ctrl+Y.

Here's how to remove an unwanted line break from your script.

To combine the current line with the following line:
1. Place the insertion point after the last character on the current line.
2. Press Delete once to delete the hidden end-of-line character.

The current line and the following line are combined.
Notes: If any spaces were entered at the end of the current line, you
may have to press Delete one or more additional times to remove these
hidden characters first before you can delete the end-of-line character.
Pressing Backspace with the insertion point at the start of a line has no
effect—that is, it will not combine the current line with the preceding
line.

Cutting and Copying Text
You can place material from your script on the Clipboard by either cutting it or copying it.
Here's how to place on the Clipboard text that you have cut from your script.

To cut a selection:
Press Ctrl+X (Windows) or Cmd+X (Macintosh).
The selection is removed from your script and placed on the
Clipboard.

Here's how to place on the Clipboard text that you have copied from your script.

To copy a selection:
Press Ctrl+C (Windows) or Cmd+C (Macintosh).
The selection remains in your script, and a copy of it is placed on the
Clipboard.

Pasting Text
Once you have cut or copied material to the Clipboard, here's how to paste it into your script
at another location.

To paste the contents of the Clipboard into your script:
1. Position the insertion point where you want to place the contents of the

Clipboard.

654 Working Model Basic User's Manual

2. Press Ctrl+V (Windows) or Cmd+V (Macintosh).
The contents of the Clipboard appear at the location of the insertion
point.

If you wish to delete a block of text and insert the contents of the Clipboard in its place, you
can combine the two operations by first selecting the text you want to remove and then
pressing Ctrl+V (Windows) or Cmd+V (Macintosh) to replace it with the contents of the
Clipboard.

Undoing Editing Operations
You can undo editing operations that produce a change in your script, including:

The insertion of a series of characters
The insertion of a block of text from the Clipboard
The deletion of a series of characters
The deletion or cutting of a block of text

You cannot undo operations that don't produce any change in your script, such as moving the
insertion point, selecting text, and copying material to the Clipboard.
Here's how to reverse the effect of the preceding editing operation.

To undo an editing operation:
Press Ctrl+Z (Windows) or Cmd+Z (Macintosh).
Your script is restored to the way it looked before you performed the
editing operation.

Adding Comments to Your Script
You can add comments to your script to remind yourself or others of how your code works.
Comments are ignored when your script is executed.
In WM Basic, the apostrophe symbol (') is used to indicate that the text from the apostrophe
to the end of the line is a comment.
Here's how to designate an entire line as a comment.

To add a full-line comment:
1. Type an apostrophe (') at the start of the line.
2. Type your comment following the apostrophe.

When your script is run, the presence of the apostrophe at the start of
the line will cause the entire line to be ignored.

Here's how to designate the last part of a line as a comment.

To add a comment at the end of a line of code:
1. Position the insertion point in the empty space beyond the end of the

line of code.
2. Type an apostrophe (').
3. Type your comment following the apostrophe.

When your script is run, the code on the first portion of the line will be
executed, but the presence of the apostrophe at the start of the
comment will cause the remainder of the line to be ignored.

Although you can place a comment at the end of a line containing executable code, you
cannot place executable code at the end of a line containing a comment because the presence

Chapter 4 Editing and Debugging Scripts 655

of the apostrophe at the start of the comment will cause the balance of the line (including the
code) to be ignored.

Breaking a WM Basic Statement across Multiple Lines
By default, in Script Editor, a single WM Basic statement can extend only as far as the right
margin, and each line break represents a new statement. However, you can override this
default if you want to break a long statement across two or more lines.
Here's how to indicate that two or more lines of WM Basic code should be treated as a single
statement when your script is run.

To break a WM Basic statement across multiple lines:
1. Type the WM Basic statement on multiple lines, exactly the way you

want it to appear.
2. Place the insertion point at the end of the first line in the series.
3. Press the spacebar once to insert a single space.
4. Type an underscore (_).

Note: The underscore is the line-continuation character, which
indicates that the WM Basic statement continues on the following line.

5. Repeat steps 2–4 to place a line-continuation character at the end of
each line in the series except the last.
When you run your script, the code on this series of lines will be
executed as a single WM Basic statement, just as if you had typed the
entire statement on the same line.

Searching and Replacing
Script Editor makes it easy to search for specified text in your script and automatically
replace instances of specified text.

Finding Text in Your Script
Here's how to locate instances of specified text quickly anywhere within your script.

To find specified text:
1. Move the insertion point to where you want to start your search. (To

start at the beginning of your script, press Ctrl+Home (Windows) or
Home (Macintosh).)

2. Press Ctrl+F (Windows) or Cmd+F (Macintosh).
Script Editor displays the Find dialog box:

3. In the Find What field, specify the text you want to find.

656 Working Model Basic User's Manual

4. Select the Match Case check box if you want the search to be case-
sensitive. Otherwise, the search will be case-insensitive.

5. Click the Find Next button or press Enter.
The Find dialog box remains displayed, and Script Editor either
highlights the first instance of the specified text or indicates that it
cannot be found.

6. If the specified text has been found, repeat step 5 to search for the next
instance of it.
Note: If the Find dialog box blocks your view of an instance of the
specified text, you can move the dialog box out of your way and
continue with your search. You can also click the Cancel button,
which removes the Find dialog box while maintaining the established
search criteria, and then press F3 to find successive occurrences of the
specified text. (If you press F3 when you have not previously specified
text for which you want to search, Script Editor displays the Find
dialog box so you can specify the desired text.)

Replacing Text in Your Script
Here's how you can automatically replace either all instances or selected instances of
specified text.

To replace specified text:
1. Move the insertion point to where you want to start the replacement

operation. (To start at the beginning of your script, press Ctrl+Home
on Windows or Home on Macintosh.)

2. Choose the Replace command from the Search menu.
Script Editor displays the Replace dialog box:

3. In the Find What field, specify the text you want to replace.
4. In the Replace With field, specify the replacement text.
5. Select the Match Case check box if you want the replacement

operation to be case-sensitive. Otherwise, it will be case-insensitive.
6. To replace all instances of the specified text, click the Replace All

button.

Chapter 4 Editing and Debugging Scripts 657

Script Editor either replaces the specified text throughout your script
and indicates the number of occurrences it has changed, or it indicates
that the specified text cannot be found.

7. To replace selected instances of the specified text, click the Find Next
button.
Script Editor either highlights the first instance of the specified text or
indicates that it cannot be found.

8. If the specified text has been found, either click the Replace button to
replace that instance of it or click the Find Next button to highlight the
next instance (if any).
Each time you click the Replace button, Script Editor replaces that
instance of the specified text and automatically highlights the next
instance.

Checking the Syntax of a Script
When you try to run or debug a script whose syntax hasn't been checked, Script Editor first
performs a syntax check automatically.
Here's how to perform a syntax check manually when you are editing your script, without
having to run it.

To perform a syntax check:
1. From the Run menu, choose the Syntax Check command.

Script Editor either indicates that no errors have been found or
displays an error message that specifies the first line in your script
where an error has been found and briefly describes the nature of that
error.

2. Click the OK button or press Enter.
If Script Editor has found a syntax error, the line containing the error is
highlighted on your display.

3. Correct the syntax error.
4. Repeat steps 1–3 until you have found and corrected all syntax errors.

Editing Dialog Box Templates (Windows Only)
If you are running the WM Basic on Windows, the Insert New Dialog and Edit Dialog
commands will appear in the Edit menu. These commands allow you to use the features of
Dialog Editor to create a new dialog box template and insert it into your script or edit an
existing dialog box template contained in your script.
Here's how to invoke Dialog Editor and use it to create a new dialog box template for use in
your script.

To insert a new dialog box template into your script:
1. Place the insertion point where you want the new dialog box template

to appear in your script.
2. From the Edit menu, choose the Insert New Dialog command.

Script Editor's application window is temporarily disabled, and Dialog
Editor appears, displaying a new dialog box in its application window.

3. Use Dialog Editor to create your dialog box.

658 Working Model Basic User's Manual

4. Exit from Dialog Editor and return to Script Editor.
Script Editor automatically places the new dialog box template
generated by Dialog Editor in your script at the location of the
insertion point.

Here's how to invoke Dialog Editor and use it to modify a dialog box template contained in
your script.

To edit an existing dialog box template in your script:
1. Select the WM Basic code for the entire dialog box template.
2. From the Edit menu, choose the Edit Dialog command.

Script Editor's application window is temporarily disabled, and Dialog
Editor appears, displaying in its application window a dialog box
created from the code you selected.

3. Use Dialog Editor to modify your dialog box.
4. Exit from Dialog Editor and return to Script Editor.

Script Editor automatically replaces the dialog box template you
originally selected with the revised template generated by Dialog
Editor.

Refer to Chapter 4 for a detailed discussion of how to use Dialog Editor to create and edit
dialog box templates.

Running Your Scripts
Once you have finished editing your script, you will want to run it to make sure it performs
the way you intended. You can also pause or stop an executing script.
Here's how to compile your script, if necessary, and then execute it.

To run your script:
Click the Start tool on the toolbar.
-Or-
Press F5.
The script is compiled (if it has not already been compiled), the focus
is switched to the Working Model window, and the script is executed.
Note: During script execution, Script Editor's application window is
available only in a limited manner. Some of the menu commands may
be disabled, and the toolbar tools may be inoperative.

Here's how to suspend the execution of a script that you are running.

To pause an executing script:
Press Ctrl+Break (Windows) or Cmd+"." (period) (Macintosh).
Execution of the script is suspended, and the instruction pointer (a gray
highlight) appears on the line of code where the script stopped
executing.
Note: The instruction pointer designates the line of code that will be
executed next if you resume running your script.

Here's how to stop the execution of a script that you are running.

Chapter 4 Editing and Debugging Scripts 659

To stop an executing script:
Click the End tool on the toolbar.
Note: Many of the functions of Script Editor's application window
may be unavailable while you are running a script. If you want to stop
your script but find that the toolbar is currently inoperative, press
Ctrl+C (Windows) or Cmd+"." (period) (Macintosh) to pause your
script, then click the End tool.

Debugging Your Scripts
This section presents some general information that will help you work most effectively with
Script Editor's debugging capabilities and then explains how to trace the execution of your
script, how to set and remove breakpoints, and how to add watch variables and modify their
value.

Using the WM Basic Debugger
While debugging, you are actually executing the code in your script line by line. Therefore,
to prevent any modifications to your script while it is being run, the edit pane is read-only
during the debugging process. You are free to move the insertion point throughout the script,
select text and copy it to the Clipboard as necessary, set breakpoints, and add and remove
watch variables, but you cannot make any changes to the script until you stop running it.
To let you follow and control the debugging process, Script Editor displays an instruction
pointer on the line of code that is about to be executed—that is, the line that will be executed
next if you either proceed with the debugging process or run your script at full speed. When
the instruction pointer is on a line of code, the text on that line appears in black on a gray
background that spans the width of the entire line. The following illustration shows the
difference between the instruction pointer and the selection highlight (discussed in the
preceding section), in which the text appears in white on a black background that spans only
the width of the selected text.

Selection
highlight

Instruction
pointer

660 Working Model Basic User's Manual

Tracing Script Execution
Script Editor gives you two ways to trace script execution—single step and procedure step—
both of which involve stepping through your script code line by line. The distinction between
the two is that the single step process traces into calls to user-defined functions and
subroutines, whereas the procedure step process does not trace into these calls (although it
does execute them).
Here's how to trace the execution of your script with either the single step or procedure step
method.

To step through your script:
1. Click the Single Step or Procedure Step tool on the toolbar.

-Or-
Press F8 (Single Step) or Shift+F8 (Procedure Step).
Script Editor places the instruction pointer on the sub main line of
your script.
Note: When you initiate execution of your script with any of these
methods, the script will first be compiled, if necessary. Therefore,
there may be a slight pause before execution actually begins. If your
script contains any compile errors, it will not be executed. To debug
your script, first correct any compile errors, then initiate execution
again.

2. To continue tracing the execution of your script line by line, repeat
step 1.
Each time you repeat step 1, Script Editor executes the line containing
the instruction pointer and moves the instruction pointer to the next
line to be executed.

3. When you finish tracing the execution of your script, either click the
Start tool on the toolbar (or press F5) to run the balance of the script at
full speed or click the End tool to halt execution of the script.

When you are stepping through a subroutine, you may need to determine the procedure calls
by which you arrived at that point in your script. Here's how to use the Calls dialog box to
obtain this information.

To display the Calls dialog box:
1. Click the Calls tool on the toolbar.

Script Editor displays the Calls dialog box, which lists the procedure
calls made by your script in the course of arriving at the present
subroutine.

Chapter 4 Editing and Debugging Scripts 661

2. From the Calls dialog box, select the name of the procedure you wish
to view.

3. Click the Show button.
Script Editor highlights the currently executing line in the procedure
you selected, scrolling that line into view if necessary. (During this
process, the instruction pointer remains in its original location in the
subroutine.)

When you are stepping through a subroutine, you may want to repeat or skip execution of a
section of code. Here's how to use the Set Next Statement command to move the instruction
pointer to another line within that subroutine.

To move the instruction pointer to another line within a subroutine:
1. Place the insertion point in the line where you want to resume stepping

through the script.
2. From the Debug menu, choose the Set Next Statement command.

The instruction pointer moves to the line you selected, and you can
resume stepping through your script from there.
Note: You can only use the Set Next Statement command to move the
instruction pointer within the same subroutine. If you place the
insertion point on a line that is not in the same subroutine, the Set Next
Statement command will be disabled in the Debug menu.

Setting and Removing Breakpoints
If you want to start the debugging process at the first line of your script and then step through
your code line by line until you reach the end of the code that you need to debug, the method
described in the preceding subsection works fine. But if you only need to debug one or more
portions of a long script, that method can be pretty cumbersome.
An alternate strategy is to set one or more breakpoints at selected lines in your script. Script
Editor suspends execution of your script just before it reaches a line containing a breakpoint,
thereby allowing you to begin or resume stepping through the script from that point.

Setting Breakpoints
You can set breakpoints to begin the debugging process partway through your script, to
continue debugging at a line outside the current subroutine, and to debug only selected
portions of your script.
Valid breakpoints can only be set on lines in your script that contain code, including lines in
functions and subroutines. Although you can set a breakpoint anywhere within a script prior
to execution, when you compile and run the script, invalid breakpoints (that is, breakpoints

662 Working Model Basic User's Manual

on lines that don't contain code) are automatically removed. While you are debugging your
script, Script Editor will beep if you try to set a breakpoint on a line that does not contain
code.
Here's how to begin the debugging process at a selected point in your script.

To start debugging partway through a script:
1. Place the insertion point in the line where you want to start debugging.
2. To set a breakpoint on that line, click the Toggle Breakpoint tool on

the toolbar.
-Or-
Press F9.
The line on which you set the breakpoint now appears in contrasting
type.

3. Click the Start tool on the toolbar.
-Or-
Press F5.
Script Editor runs your script at full speed from the beginning and then
pauses prior to executing the line containing the breakpoint. It places
the instruction pointer on that line to designate it as the line that will be
executed next when you either proceed with debugging or resume
running the script.

If you want to continue debugging at another line in your script, you can use the Set Next
Statement command in the Debug menu to move the instruction pointer to the desired line—
provided the line is within the same subroutine.
If you want to continue debugging at a line that isn't within the same subroutine, here's how
to move the instruction pointer to that line.

To continue debugging at a line outside the current subroutine:
1. Place the insertion point in the line where you want to continue

debugging.
2. To set a breakpoint on that line, press F9.
3. To run your script, click the Start tool on the toolbar or press F5.

The script executes at full speed until it reaches the line containing the
breakpoint and then pauses with the instruction pointer on that line.
You can now resume stepping through your script from that point.

If you only need to debug parts of your script, here's how to facilitate the task by using
breakpoints.

To debug selected portions of your script:
1. Place a breakpoint at the start of each portion of your script that you

want to debug.
Note: Up to 255 lines in your script can contain breakpoints.

2. To run the script, click the Start tool on the toolbar or press F5.
The script executes at full speed until it reaches the line containing the
first breakpoint and then pauses with the instruction pointer on that
line.

3. Step through as much of the code as you need to.

Chapter 4 Editing and Debugging Scripts 663

4. To resume running your script, click the Start tool on the toolbar or
press F5.
The script executes at full speed until it reaches the line containing the
second breakpoint and then pauses with the instruction pointer on that
line.

5. Repeat steps 3 and 4 until you have finished debugging the selected
portions of your script.

Removing Breakpoints
Breakpoints can be removed either manually or automatically.
Here's how to delete breakpoints manually one at a time.

To remove a single breakpoint manually:
1. Place the insertion point on the line containing the breakpoint that you

want to remove.
2. Click the Toggle Breakpoint tool on the toolbar.

-Or-
Press F9.
The breakpoint is removed, and the line no longer appears in
contrasting type.

Here's how to delete all breakpoints manually in a single operation.

To remove all breakpoints manually:
Select the Clear All Breakpoints command from the Debug menu.
Script Editor removes all breakpoints from your script.

Breakpoints are removed automatically under the following circumstances: (1) As mentioned
earlier, when your script is compiled and executed, breakpoints are removed from lines that
don't contain code. (2) When you exit from Script Editor, all breakpoints are cleared.

Adding a Watch Variable
As you debug your script, you can use Script Editor's watch pane to monitor selected
variables. For each of the variables on this watch variable list, Script Editor displays the
name of the variable, where it is defined, its value (if the variable is not in scope, its value is
shown as <not in context>), and other key information such as its type and length (if it is a
string). The values of the variables on the watch list are updated each time you enter break
mode.
Here's how to add a variable to Script Editor's watch variable list.

To add a watch variable:
1. Click the Add Watch tool on the toolbar.

-Or-
Press Shift+F9.
Script Editor displays the Add Watch dialog box.

664 Working Model Basic User's Manual

2. Use the controls in the Context box to specify where the variable is
defined (locally, publicly, or privately) and, if it is defined locally, in
which routine it is defined.

3. In the Variable Name field, enter the name of the variable you want to
add to the watch variable list.
You can only watch variables of fundamental data types, such as
Integer, Long, Variant, and so on; you cannot watch complex
variables such as structures, arrays, or Working Model objects. You
can, however, watch individual elements of arrays or structure
members using the following syntax:

[variable [(index,...)] [.member [(index,...)]]...]

Where variable is the name of the structure or array variable, index is a
literal number, and member is the name of a structure member.
For example, the following are valid watch expressions:
Watch Variable Description

a(1) Element 1 of array a

person.age Member age of structure person

company(10,23).person.age Member age of structure person that is
at element 10,23 within the array of
structures called company

Note: If you are executing the script, you can display the names of all
the variables that are "in scope," or defined within the current function
or subroutine, on the drop-down Variable Name list and select the
variable you want from that list.

4. Click the OK button or press Enter.
If this is the first variable you are placing on the watch variable list,
the watch pane opens far enough to display that variable. If the watch
pane was already open, it expands far enough to display the variable
you just added.
Note: Although you can add as many watch variables to the list as you
want, the watch pane only expands until it fills half of Script Editor's
application window. If your list of watch variables becomes longer

Chapter 4 Editing and Debugging Scripts 665

than that, you can use the watch pane's scroll bars to bring hidden
portions of the list into view.

The list of watch variables is maintained between script executions. Depending on the
implementation, it may also be maintained between invocations of Script Editor.
In order to delete a variable from Script Editor's watch variable list or modify the value of a
variable on the list, you must first select the desired variable. Here's how to select a variable
on the list.

To select a watch variable:
Place the mouse pointer on the variable you want to select and click
the left mouse button.
-Or-
If one of the variables on the watch list is already selected, use the
arrow keys to move the selection highlight to the desired variable.
-Or-
If the insertion point is in the edit pane, press F6 to highlight the most
recently selected variable on the watch list and then use the arrow keys
to move the selection highlight to the desired variable.
Note: Pressing F6 again returns the insertion point to its previous
position in the edit pane.

Here's how to delete a selected variable from Script Editor's watch variable list.

To delete a watch variable:
1. Select the variable on the watch list.
2. Press Delete.

The selected variable is removed from the watch list.

Modifying the Value of a Variable
When the debugger has control, you can modify the value of any of the variables on Script
Editor's watch variable list. Here's how to change the value of a selected watch variable.

To modify the value of a variable on the watch variable list:
1. Place the mouse pointer on the name of the variable whose value you

want to modify and double-click the left mouse button.
-Or-
Select the name of the variable whose value you want to modify and
press Enter or F2.
Script Editor displays the Modify Variable dialog box.

666 Working Model Basic User's Manual

Notes: The name of the variable you selected on the watch variable list
appears in the Name field. If you want to change another variable, you
can either enter a different variable in the Name field or select a
different variable from the Variables list box, which shows the names
of the variables that are defined within the current function or
subroutine.
When you use the Modify Variable dialog box to change the value of a
variable, you don't have to specify the context. Script Editor first
searches locally for the definition of that variable, then privately, then
publicly.

2. Enter the new value for your variable in the Value field.
3. Click the OK button.

The new value of your variable appears on the watch variable list.
When changing the value of a variable, Script Editor converts the new value to be of the
same type as the variable being changed. For example, if you change the value of an Integer
variable to 1.7, a conversion between a floating-point number and an Integer is performed,
assigning the value 2 to the Integer variable.
When modifying a Variant variable, Script Editor needs to determine both the type and
value of the data. Script Editor uses the following logic in performing this assignment (in this
order):

If the new value is Then

Null The Variant variable is assigned Null (VarType
1)

Empty The Variant variable is assigned Empty
(VarType 0).

True The Variant variable is assigned True (VarType
11).

False The Variant variable is assigned False
(VarType 11).

Chapter 4 Editing and Debugging Scripts 667

number The Variant variable is assigned the value of
number. The type of the variant is the smallest
data type that fully represents that number.

You can force the data type of the variable using a
type-declarator letter following number, such as
%, #, &, !, or @.

date The Variant variable is assigned the value of the
new date (VarType 7)

Anything else The Variant variable is assigned a String
(VarType 8).

Script Editor will not assign a new value if it cannot be converted to the same type as the
specified variable.

Exiting from Script Editor
Here's how to get out of Script Editor. What happens when you exit depends on (1) whether
you have made changes to your script and (2) whether your script contains errors.

To exit from Script Editor:
Choose the Exit and Return command from the File menu.
If you have made changes to your script, Script Editor displays a
dialog box asking whether you want to save the script. If you either
click the No button or click the Yes button and your script contains no
errors, you exit from Script Editor immediately. If you click the Yes
button and your script contains errors, Script Editor highlights the line
containing the first error and displays a dialog box asking whether you
want to exit anyway. If you click the Yes button, Script Editor saves
your script, errors and all, and then you exit from Script Editor.
If you haven't made any changes to your script, you exit from Script
Editor immediately, regardless of whether the script contains errors
from a previous editing session.

Menu Reference
File Menu

Command
Keyboard
Shortcut Function

 N ew (Windows)
New Script
(Macintosh)

Ctrl+N
(Windows)
Cmd+N
(Macintosh)

Creates a new script
document.

668 Working Model Basic User's Manual

 O pen (Windows)

Open Script
(Macintosh)

Ctrl+O
(Windows)
Cmd+O
(Macintosh)

Opens an existing script
document.

Close
(Macintosh
Only)

Cmd+W Closes the Script Editor
window and returns you to
Working Model.

 S ave Cmd+S
(Macintosh)

Saves the current script
document under its filename.

Save A s Saves the current script
document under a new
filename.

New Working
Model
Document
(Macintosh)

Creates a new Working
Model document.

Open Working
Model
Document
(Macintosh)

Open an existing Working
Model document.

Quit Working
Model
(Macintosh)

Cmd+Q Closes Script Editor and quits
Working Model.

E x it (Windows) Alt+F4 or
Ctrl+W

Closes the current script
document and returns you to
Working Model.

Edit Menu

Comman
d

Keyboard
Shortcut Function

 U ndo Ctrl+Z
(Windows),
Cmd+Z
(Mantic)

Reverses the effect of the preceding
editing change(s).

Cu t Ctrl+X
(Windows),
Cmd+X
(Macintosh)

Removes the selected text from the
script and places it on the Clipboard.

Chapter 4 Editing and Debugging Scripts 669

 C opy Ctrl+C
(Windows),
Cmd+C
(Macintosh)

Copies the selected text, without
removing it from the script, and places
it on the Clipboard.

 P aste Ctrl+V
(Windows),
Cmd+V
(Macintosh)

Inserts the contents of the Clipboard at
the current position of the insertion
point.

 D elete Delete or
Backspace

Removes the selected text from the
script without placing it on the
Clipboard.

 I nsert New
Dialog...
(Windows
)

(Windows Only) Invokes the Dialog
Editor, which you can use to create a
new dialog box for insertion into your
script.

 E dit
Dialog...
(Windows
)

(Windows Only) Invokes the Dialog
Editor, which you can use to edit the
selected dialog box template. (This
command is only enabled if a dialog
box template is currently selected.)

 F ind... Ctrl+F
(Windows),
Cmd+F
(Macintosh)

Displays the Find dialog box, which
allows you to specify text for which you
want to search.

Find N ext F3
(Windows),
Cmd+G
(Macintosh)

Searches for the next occurrence of
previously specified text. If you have
not previously specified text for which
you want to search, displays the Find
dialog box.

 R eplace... Cmd+R
(Macintosh)

Displays the Replace dialog box, which
allows you to substitute replacement
text for instances of specified text.

 G oto
Line...

F4 Presents the Goto Line dialog box,
which allows you to move the insertion
point to the start of a specified line
number in your script.

Note: The Insert New Dialog and Edit Dialog commands only appear in the Edit menu if you
are running the WM Basic 2.1 on a platform that supports Dialog Editor.

670 Working Model Basic User's Manual

Run Menu

Command
Keyboard
Shortcut Function

 S tart Cmd+T
(Macintosh), F5

Begins execution of a script.

 E nd Cmd+E
(Macintosh)

Stops execution of an executing
script.

S y ntax
Check

Cmd+Y
(Macintosh)

Verifies the syntax of the
statements in your script by
compiling it.

Debug Menu

Command
Keyboard
Shortcut Function

 A dd
Watch...

Shift+F9 Displays the Add Watch dialog
box, in which you can specify
the name of a WM Basic
variable. That variable,
together with its value (if any),
is then displayed in the watch
pane of Script Editor's
application window.

 D elete
Watch

Delete Deletes a selected variable
from the watch variable list.

 M odify... Enter or F2 Displays the Modify Variable
dialog box for a selected
variable, which enables you to
modify the value of that
variable.

 S ingle Step Cmd+"="
(Macintosh), F8

Steps through the script code
line by line, tracing into called
procedures.

 P rocedure
Step

Shift+F8 Steps through the script code
line by line without tracing into
called procedures.

 T oggle
Breakpoint

Cmd+B
(Macintosh), F9

Toggles a breakpoint on the
line containing the insertion
point.

 Editing and Debugging Scripts 671

 C lear All
Breakpoints

Removes all breakpoints
previously set with the Toggle
Breakpoint command.

Set N ext
Statement

Enables you to place the
instruction pointer on another
line within the current
procedure and resume script
execution from that point.

Help Menu (Windows Only)

Comman
d

Keyboard
Shortcut Function

 C ontents Displays a list of major topics on which
you can obtain help.

 S earch for
Help on...

Displays the Search dialog box, which
allows you to search for Help topics
containing specific keywords.

673

C H A P T E R 5

Dialog Editor is a tool that enables you to create and modify custom dialog boxes for use in
your WM Basic scripts. Although the WM Basic statements used to display a dialog box and
respond to the choices made by a user of the dialog box may seem complicated, Dialog
Editor makes it easy to generate the WM Basic statements needed for your custom dialog
boxes.
Note: Currently, Dialog Editor is available only on Working Model for Windows. However,
Working Model for Macintosh is perfectly capable of running scripts that include dialogs.
For sample code, see entries in Chapter 2 that are related to Dialog Manipulation, Predefined
Dialogs, and User Dialogs (the list of such entries can be found in section “Language
Elements by Category” of the Introduction).

Contents
Overview
Using the Dialog Editor
Creating a Custom Dialog Box
Editing a Custom Dialog Box
Editing an Existing Dialog Box
Testing an Edited Dialog Box
Incorporating a Dialog Box Template into Your Script
Exiting from Dialog Editor
Menu Reference

Editing Custom Dialog Boxes
(Windows Only)

674 Working Model Basic User's Manual

Overview
Sometimes your script will need to obtain information from the user. In many cases, you can
obtain this information by using one of WM Basic's predefined dialog boxes in your script.
When you must go beyond the information-gathering capabilities provided by predefined
dialog boxes, you can use Dialog Editor to create a custom dialog box for use in your script.
Dialog Editor is a tool that allows you to generate a dialog box template in WM Basic simply
by editing an on-screen dialog box layout. You can then incorporate the template that Dialog
Editor generates into your script.
The balance of this section provides general information that you'll need in order to work
with Dialog Editor, including:

Features that Dialog Editor supports
An introduction to Dialog Editor's application window
A list of keyboard shortcuts
How to use the Help system

Then, in the following sections, you'll learn how to use Dialog Editor to create and edit
custom dialog boxes and to edit dialog boxes captured from other applications. You'll also
learn how to test an edited dialog box and incorporate the dialog box template generated by
Dialog Editor into your script. And finally, you'll learn how to exit from Dialog Editor.

Features of the Dialog Editor
Dialog Editor supports the following features:

Visual editing of a dialog box template in WM Basic
The creation of dynamic dialog boxes

Using the Dialog Editor
This section presents general information that will help you work most effectively with
Dialog Editor. It includes an overview of Dialog Editor's application window—the interface
you'll use to create and edit dialog box templates in WM Basic—as well as a list of keyboard
shortcuts and information on using the Help system.

Dialog Editor's Application Window
Before you begin creating a new custom dialog box, Dialog Editor's application window
looks like this:

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 675

Toolbar

Dialog box

Status bar

The application window contains the following elements:
Toolbar: a collection of tools that you can use to provide instructions
to Dialog Editor, as discussed in the following subsection
Dialog box: the visual layout of the dialog box that you are currently
creating or editing
Status bar: provides key information about the operation you are
currently performing, including the name of the currently selected
control or dialog box, together with its position on the display and its
dimensions; the name of a control you are about to add to the dialog
box with the mouse pointer, together with the pointer's position on the
display; the function of the currently selected menu command; and the
activation of Dialog Editor's testing or capturing functions

Note: Dialog boxes created with Dialog Editor normally appear in an 8 point Helvetica font,
both in Dialog Editor's application window and when the corresponding WM Basic code is
run.

Dialog Editor's Toolbar
The following list briefly explains the purpose of each of the tools on Dialog Editor's toolbar,
which you can use to add controls to your dialog box, make various changes to the dialog
box and its controls, and test the dialog box's functioning.

Icon Tool Function

Run Runs the dialog box for testing
purposes.

Information Displays the Information dialog box for
the selected dialog box or control.

676 Working Model Basic User's Manual

Pick Lets you select, move, and resize items
and control the insertion point.

OK Button Adds an OK button to your dialog box.

Cancel Button Adds a Cancel button to your dialog
box.

Push Button Adds a push button to your dialog box.

Option Button Adds an option button to your dialog
box.

Check Box Adds a check box to your dialog box.

Group Box Adds a group box to your dialog box.

Text Adds a text control to your dialog box.

Text Box Adds a text box to your dialog box.

List Box Adds a list box to your dialog box.

Combo Box Adds a combo box to your dialog box.

Drop List Box Adds a drop list box to your dialog box.

Picture Adds a picture to your dialog box.

Picture Button Adds a picture button to your dialog
box.

The types of dialog box controls that you can add with the control tools are fully described in
the next section of the chapter.

Keyboard Shortcuts for Dialog Editor
The following keyboard shortcuts can be used for some of the operations you will perform
most frequently in Dialog Editor.

Key(s) Function

Alt+F4 Closes Dialog Editor's application window.

Ctrl+C Copies the selected dialog box or control, without
removing it from Dialog Editor's application
window, and places it on the Clipboard.

Ctrl+D Creates a duplicate copy of the selected control.

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 677

Ctrl+G Displays the Grid dialog box.

Ctrl+I Displays the Information dialog box for the selected
dialog box or control.

Ctrl+V Inserts the contents of the Clipboard into Dialog
Editor. If the Clipboard contains WM Basic
statements describing one or more controls, then
Dialog Editor adds those controls to the current
dialog box. If the Clipboard contains the WM Basic
template for an entire dialog box, then Dialog Editor
creates a new dialog box from the statements in the
template.

Ctrl+X Removes the selected dialog box or control from
Dialog Editor's application window and places it on
the Clipboard.

Ctrl+Z Undoes the preceding operation.

Del Removes the selected dialog box or control from
Dialog Editor's application window without placing
it on the Clipboard.

F1 Displays Help for the currently active window.

F2 Runs the dialog box for testing purposes.

F3 Sizes certain controls to fit the text they contain.

Shift+F1 Toggles the Help pointer.

Using the Help System
Dialog Editor provides several ways to obtain on-line help.
Here's how to display Help for the window or dialog box that is currently active.

To display Help for the currently active window:
Press F1.
If Dialog Editor's application window was active, the Help system
contents appear. If a dialog box was active, Help for that dialog box
appears.

Here's how to access the Help system and search for a specific topic within it.

To pinpoint a specific topic in the Help system:
1. From the Help menu, choose the Search for Help on command.

A scrollable list of Help topics appears.
2. Select the desired topic from the list.

The topic you selected is displayed in a second scrollable list, together
with closely related Help topics, if any.

3. If the desired topic is not already highlighted on the second list, select
it and press Enter.

678 Working Model Basic User's Manual

Help is displayed for the topic you selected.

Creating a Custom Dialog Box
This section describes the types of controls that Dialog Editor supports. It also explains how
to create controls and initially position them within your dialog box, and offers some pointers
on creating controls efficiently.
In the next section, "Editing a Custom Dialog Box," you'll learn how to make various types
of changes to the controls that you've created—moving and resizing them, assigning labels
and accelerator keys, and so forth.

Types of Controls

Dialog Editor supports the following types of standard Windows controls:
Push button: a command button. The default OK and Cancel buttons
are special types of push buttons.
Option button: one of a group of two or more linked buttons that let
users select only one from a group of mutually exclusive choices. A
group of option buttons works the same way as the buttons on a car
radio: because the buttons operate together as a group, clicking an
unselected button in the group selects that button and automatically
deselects the previously selected button in that group.
Check box: a box that users can check or clear to indicate their
preference regarding the alternative specified on the check box label.

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 679

Group box: a rectangular design element used to enclose a group of
related controls. You can use the optional group box label to display a
title for the controls in the box.
Text: a field containing text that you want to display for the users'
information. The text in this field wraps, and the field can contain a
maximum of 255 characters. Text controls can either display stand-
alone text or be used as labels for text boxes, list boxes, combo boxes,
drop list boxes, pictures, and picture buttons. You can choose the font
in which the text appears.
Text box: a field into which users can enter text (potentially, as much
as 32K). By default, this field holds a single line of nonwrapping text.
If you choose the Multiline setting in the Text Box Information dialog
box, this field will hold multiple lines of wrapping text.
List box: a displayed, scrollable list from which users can select one
item. The currently selected item is highlighted on the list.
Combo box: a text field with a displayed, scrollable list beneath it.
Users can either select an item from the list or enter the name of the
desired item in the text field. The currently selected item is displayed
in the text field. If the item was selected from the scrolling list, it is
highlighted there as well.
Drop list box: a field that displays the currently selected item,
followed by a downward-pointing arrow, which users can click to
temporarily display a scrolling list of items. Once they select an item
from the list, the list disappears and the newly selected item is
displayed in the field.
Picture: a field used to display a Windows bitmap or metafile.
Picture button: a special type of push, or command, button on which
a Windows bitmap or metafile appears.

Notes: Group boxes, text controls, and pictures are passive elements in a dialog box,
inasmuch as they are used purely for decorative or informative purposes. Users cannot act
upon these controls, and when they tab through the dialog box, the focus skips over these
controls.
You can obtain a Windows bitmap or metafile from a file or from a specified library.

Adding Controls to a Dialog Box
In this subsection, you'll learn how to create controls and determine approximately where
they first appear within your dialog box. In the following subsection, you'll learn how to
determine the positioning of controls more precisely.
Here's how to add one or more controls to your dialog box using simple mouse and keyboard
methods.

To add a control:
1. From the toolbar, choose the tool corresponding to the type of control

you want to add.
When you pass the mouse pointer over an area of the display where a
control can be placed, the pointer becomes an image of the selected

680 Working Model Basic User's Manual

control with crosshairs (for positioning purposes) to its upper left. The
name and position of the selected control appear on the status bar.
When you pass the pointer over an area of the display where a control
cannot be placed, the pointer changes into a circle with a slash through
it (the "prohibited" symbol).
Note: You can only insert a control within the borders of the dialog
box you are creating. You cannot insert a control on the dialog box's
title bar or outside its borders.

2. Place the pointer where you want the control to be positioned and click
the mouse button.
The control you just created appears at the specified location. (To be
more specific, the upper left corner of the control will correspond to
the position of the pointer's crosshairs at the moment you clicked the
mouse button.) The control is surrounded by a thick frame, which
means that it is selected, and it may also have a default label.
After the new control has appeared, the mouse pointer becomes an
arrow, to indicate that the Pick tool is active and you can once again
select any of the controls in your dialog box.

3. To add another control of the same type as the one you just added,
press Ctrl+D.
A duplicate copy of the control appears.
To add a different type of control, repeat steps 1 and 2.

4. To reactivate the Pick tool, click the arrow-shaped tool on the toolbar.
-Or-
Place the mouse pointer on the title bar of the dialog box or outside the
borders of the dialog box (that is, on any area where the mouse pointer
turns into the "prohibited" symbol) and click the mouse button.

As you plan your dialog box, keep in mind that a single dialog box can contain no more than
255 controls and that a dialog box will not operate properly unless it contains either an OK
button, a Cancel button, a push button, or a picture button. (When you create a new custom
dialog box, an OK button and a Cancel button are provided for you by default.)
Later in the chapter, you'll learn more about selecting controls, and you'll learn how to assign
labels.

Using the Grid to Help You Position Controls within a
Dialog Box
The preceding subsection explained how to determine approximately where a newly created
control will materialize in your dialog box. Here, you'll learn how to use Dialog Editor's grid
to help you fine-tune the initial placement of controls.
The area of your dialog box in which controls can be placed (that is, the portion of the dialog
box below the title bar) can be thought of as a grid, with the X (horizontal) axis and the Y
(vertical) axis intersecting in the upper left corner (the 0, 0 coordinates). The position of
controls can be expressed in terms of X units with respect to the left border of this area and in
terms of Y units with respect to the top border. (In fact, the position of controls is expressed
in this manner within the dialog box template that you produce by working with Dialog
Editor.)

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 681

Here's how to display the grid and adjust its X and Y settings, which can help you position
controls more precisely within your dialog box.

To display and adjust the grid:
1. Press Ctrl+G.

Dialog Editor displays the following dialog box:

2. To display the grid in your dialog box, select the Show grid check box.
3. To change the current X and Y settings, enter new values in the X and

Y fields.
Note: The values of X and Y in the Grid dialog box determine the
grid's spacing. Assigning smaller X and Y values produces a more
closely spaced grid, which enables you to move the mouse pointer in
smaller horizontal and vertical increments as you position controls.
Assigning larger X and Y values produces the opposite effect on both
the grid's spacing and the movement of the mouse pointer. The X and
Y settings entered in the Grid dialog box remain in effect regardless of
whether you choose to display the grid.

4. Click the OK button or press Enter.
Dialog Editor displays the grid with the settings you specified. With
the grid displayed, you can line up the crosshairs on the mouse pointer
with the dots on the grid to position controls precisely and align them
with respect to other controls.

Grid

682 Working Model Basic User's Manual

As you move the mouse pointer over the dialog box after you have chosen a control tool
from the toolbar, the status bar displays the name of the type of control you have selected and
continually updates the position of the mouse pointer in X and Y units. (This information
disappears if you move the mouse pointer over an area of the screen where a control cannot
be placed.) After you click the mouse button to add a control, that control remains selected,
and the status bar displays the control's width and height in dialog units as well as its name
and position, as shown in the preceding illustration, in which the push button is selected.

Note: Dialog units represent increments of the font in which Dialog Editor creates dialog
boxes (namely, 8 point Helvetica). Each X unit represents an increment equal to 1/4 of that
font, and each Y unit represents an increment equal to 1/8 of that font.

Creating Controls Efficiently
Creating dialog box controls in random order might seem like the fastest approach. However,
the order in which you create controls has some important implications, so a little advance
planning can save you a lot of work in the long run.
Here are several points about creating controls that you should keep in mind:

Tabbing order: Users can select dialog box controls by tabbing, as
explained in the next subsection. The order in which you create the
controls is what determines the tabbing order. That is, as users tab
through the dialog box, the focus is changed from one control to the
next in the order in which you created the controls (regardless of the
order in which you position the controls in the dialog box). The closer
you can come to creating controls in the order in which you want them
to receive the tabbing focus, the fewer tabbing-order adjustments
you'll have to make later on.
Option button grouping: If you want a series of option buttons to
work together as a mutually exclusive group, you must create all the
buttons in that group one right after the other, in an unbroken
sequence. If you get sidetracked and create a different type of control
before you have finished creating all the option buttons in your group,
you'll split the buttons into two (or more) separate groups. (Let's say
you want to create an option button group with five buttons. You
create three of the buttons and then create a list box, after which you
finish creating the last two buttons. When you test your dialog box,
you'll find that all five of these option buttons don't work together as a
mutually exclusive group. Instead, the first three buttons will form one
mutually exclusive group, and the last two buttons will form another
mutually exclusive group.)
Accelerator keys: As explained later in the chapter, you can provide
easy access to a text box, list box, combo box, or drop list box by
assigning an accelerator key to an associated text control, and you can
provide easy access to the controls in a group box by assigning an
accelerator key to the group box label. To do this, you must create the
text control or group box first, followed immediately by the controls
that you want to associate with it. If the controls are not created in the

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 683

correct order, they will not be associated in your dialog box template,
and any accelerator key you assign to the text control or group box
label will not work properly.

If you don't create controls in the most efficient order, the resulting problems with tabbing
order, option button grouping, and accelerator keys usually won't become apparent until you
test your dialog box. Although you can still fix these problems at that point, as explained
later in the chapter, it will definitely be more cumbersome. In short, it's easier to prevent (or
at least minimize) problems of this sort than to fix them after the fact.

Editing a Custom Dialog Box
In the preceding section, you learned how to create controls and determine where they
initially appear within your dialog box. In this section, you'll learn how to make various types
of changes to both the dialog box and the controls in it. The following topics are included:

Selecting items so that you can work with them
Using the Information dialog box to check and/or change various
attributes of items
Changing the position and size of items
Changing titles and labels
Assigning accelerator keys
Specifying pictures
Creating or modifying picture libraries under Windows
Duplicating and deleting controls
Undoing editing operations

Selecting Items
In order to edit a dialog box or a control, you must first select it. When you select an item, it
becomes surrounded by a thick frame, as you saw in the preceding section.
Here's how to select a control using either mouse or keyboard methods.

To select a control:
With the Pick tool active, place the mouse pointer on the desired
control and click the mouse button.
-Or-
With the Pick tool active, press the Tab key repeatedly until the focus
moves to the desired control.
The control is now surrounded by a thick frame to indicate that it is
selected and you can edit it.

Here's how to select the entire dialog box using either mouse or keyboard methods.

To select the dialog box:
With the Pick tool active, place the mouse pointer on the title bar of
the dialog box or on an empty area within the borders of the dialog box
(that is, on an area where there are no controls) and click the mouse
button.
-Or-

684 Working Model Basic User's Manual

With the Pick tool active, press the Tab key repeatedly until the focus
moves to the dialog box.
The dialog box is now surrounded by a thick frame to indicate that it is
selected and you can edit it.

Using the Information Dialog Box
The Information dialog box enables you to check and adjust various attributes of controls and
dialog boxes. This subsection explains how to display the Information dialog box and
provides an overview of the attributes with which it lets you work. In the following
subsections, you'll learn more about how to use the Information dialog box to make changes
to your dialog box and its controls.
Here's how to use the Dialog Box Information dialog box to check and adjust attributes that
pertain to the dialog box as a whole.

To display the Information dialog box for a dialog box:
With the Pick tool active, place the mouse pointer on an area of the
dialog box where there are no controls and double-click the mouse
button.
-Or-
With the Pick tool active, select the dialog box and either click the
Information tool on the toolbar, press Enter, or press Ctrl+I.
Dialog Editor displays the Dialog Box Information dialog box:

Here's how to use the Information dialog box for a control to check and adjust attributes that
pertain to that particular control.

To display the Information dialog box for a control:
With the Pick tool active, place the mouse pointer on the desired
control and double-click the mouse button.
-Or-

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 685

With the Pick tool active, select the control and either click the
Information tool on the toolbar, press Enter, or press Ctrl+I.
Dialog Editor displays an Information dialog box corresponding to the
control you selected. Here is an example:

The following lists show the attributes that you can change with the Dialog Box Information
dialog box and the Information dialog boxes for the various controls. In some cases
(specified below), it's mandatory to fill in the fields in which the attributes are specified—
that is, you must either leave the default information in these fields or replace it with more
meaningful information, but you can't leave the fields empty. In other cases, filling in these
fields is optional—that is, you can either leave the default information in the fields, replace it
with more meaningful information, or leave the fields entirely empty.
Note: A quick way to determine whether it's mandatory to fill in a particular Information
dialog box field is to see whether the OK button becomes grayed out when you delete the
information in that field. If it does, then you must fill in that field.
In many cases, you could simply leave the generic-sounding default information in the
Information dialog box fields and worry about replacing it with more meaningful information
after you paste the dialog box template into your script. However, if you take a few moments
to replace the default information with something specific when you first create your dialog
box, not only will you save yourself some work later on but you may also find that your
changes make the WM Basic code produced by Dialog Editor more readily comprehensible
and hence easier to work with.

Attributes That You Can Adjust with the Dialog Box
Information Dialog Box

The Dialog Box Information dialog box can be used to check and adjust the following
attributes, which pertain to the dialog box as a whole.

Mandatory/
Optional Attribute

Optional Position: X and Y coordinates on the display, in
dialog units

Mandatory Size: width and height of the dialog box, in dialog
units

686 Working Model Basic User's Manual

Optional Style: options that allow you to determine whether
the close box and title bar are displayed

Optional Text$: text displayed on the title bar of the dialog
box

Mandatory Name: name by which you refer to this dialog box
template in your WM Basic code

Optional .Function: name of a WM Basic function in your
dialog box

Optional Picture Library: picture library from which one
or more pictures in the dialog box are obtained

Attributes That You Can Adjust with the Information Dialog
Box for a Control

The Information dialog box for a control can be used to check and adjust the following
attributes. The second column of the list indicates the control(s) to which each attribute
pertains.

Mandatory/
Optional Control(s) Affected Attribute

Mandatory All controls Position: X and Y
coordinates within the
dialog box, in dialog units

Mandatory All controls Size: width and height of
the control, in dialog units

Optional Push button, option
button, check box,
group box, and text

Text$: text displayed on a
control

Optional Text Font: font in which text is
displayed

Optional Text box Multiline: option that
allows you to determine
whether users can enter a
single line of text or
multiple lines

Optional OK button, Cancel
button, push button,
option button, group
box, text, picture,
and picture button

.Identifier: name by which
you refer to a control in
your WM Basic code

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 687

Mandatory Check box, text box,
list box, combo box,
and drop list box

.Identifier: name by which
you refer to a control in
your WM Basic code; also
contains the result of the
control after the dialog box
has been processed

Optional Picture, picture
button

.Identifier: name of the file
containing a picture that
you want to display or the
name of a picture that you
want to display from a
specified picture library

Optional Picture Frame: option that allows
you to display a 3-D frame

Mandatory List box, combo
box, and drop list
box

Array$: name of an array
variable in your WM Basic
code

Mandatory Option button .Option Group: name by
which you refer to a group
of option buttons in your
WM Basic code

Changing Position and Size
This subsection explains how Dialog Editor helps you keep track of the location and
dimensions of dialog boxes and controls, and presents several ways to move and resize these
items.

Keeping Track of Position and Size
Dialog Editor's display can be thought of as a grid, in which the X (horizontal) axis and the Y
(vertical) axis intersect in the upper left corner of the display (the 0, 0 coordinates). The
position of the dialog box you are creating can be expressed in terms of X units with respect
to the left border of the parent window and in terms of Y units with respect to the top border.
As explained in the preceding section, the portion of your dialog box below the title bar can
also be thought of as a grid, with the X and Y axes intersecting in the upper left corner of this
area. The position of controls within the dialog box can be expressed in terms of X units with
respect to the left border of this area and in terms of Y units with respect to the top border.
When you select a dialog box or control, the status bar displays its position in X and Y units
as well as its width and height in dialog units. Each time you move or resize an item, the
corresponding information on the status bar is updated. You can use this information to
position and size items more precisely.

Changing the Position of an Item
Dialog Editor provides several ways to reposition dialog boxes and controls.
Here's how to move a dialog box or control by dragging it with the mouse.

688 Working Model Basic User's Manual

To reposition an item with the mouse:
1. With the Pick tool active, place the mouse pointer on an empty area of

the dialog box or on a control.
2. Depress the mouse button and drag the dialog box or control to the

desired location.
Note: The increments by which you can move a control with the
mouse are governed by the grid setting. For example, if the grid's X
setting is 4 and its Y setting is 6, you'll be able to move the control
horizontally only in increments of 4 X units and vertically only in
increments of 6 Y units. This feature is handy if you're trying to align
controls in your dialog box. If you want to move controls in smaller or
larger increments, press Ctrl+G to display the Grid dialog box and
adjust the X and Y settings.

Here's how to move a selected dialog box or control by pressing the arrow keys.

To reposition an item with the arrow keys:
1. Select the dialog box or control that you want to move.
2. Press an arrow key once to move the item by 1 X or Y unit in the

desired direction.
-Or-
Depress an arrow key to "nudge" the item steadily along in the desired
direction.
Note: When you reposition an item with the arrow keys, a faint, partial
afterimage of the item may remain visible in the item's original
position. These afterimages are rare and will disappear once you test
your dialog box.

Here's how to move a selected dialog box by changing its coordinates in the Dialog Box
Information dialog box.

To reposition a dialog box with the Dialog Box Information dialog box:
1. Display the Dialog Box Information dialog box.
2. Change the X and Y coordinates in the Position group box.

-Or-
Leave the X and/or Y coordinates blank.

3. Click the OK button or press Enter.
If you specified X and Y coordinates, the dialog box moves to that
position. If you left the X coordinate blank, the dialog box will be
centered horizontally relative to the parent window of the dialog box
when the dialog box is run. If you left the Y coordinate blank, the
dialog box will be centered vertically relative to the parent window of
the dialog box when the dialog box is run.

Here's how to move a selected control by changing its coordinates in the Information dialog
box for that control.

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 689

To reposition a control with the Information dialog box:
1. Display the Information dialog box for the control that you want to

move.
2. Change the X and Y coordinates in the Position group box.
3. Click the OK button or press Enter.

The control moves to the specified position.
Notes: When you move a dialog box or control with the arrow keys or with the Information
dialog box, the item's movement is not restricted to the increments specified in the grid
setting.
When you attempt to test a dialog box containing hidden controls (i.e., controls positioned
entirely outside the current borders of your dialog box), Dialog Editor displays a message
advising you that there are controls outside the dialog box's borders and asks whether you
wish to proceed with the test. If you proceed, the hidden controls will be disabled for testing
purposes. (Testing dialog boxes is discussed later in the chapter.)

Changing the Size of an Item
Dialog boxes and controls can be resized either by directly manipulating them with the
mouse or by using the Information dialog box. Certain controls can also be resized
automatically to fit the text displayed on them.
Here's how to change the size of a selected dialog box or control by dragging its borders or
corners with the mouse.

To resize an item with the mouse:
1. With the Pick tool active, select the dialog box or control that you

want to resize.
2. Place the mouse pointer over a border or corner of the item.
3. Depress the mouse button and drag the border or corner until the item

reaches the desired size.
Here's how to change the size of a selected dialog box or control by changing its Width
and/or Height settings in the Information dialog box.

To resize an item with the Information dialog box:
1. Display the Information dialog box for the dialog box or control that

you want to resize.
2. Change the Width and Height settings in the Size group box.
3. Click the OK button or press Enter.

The dialog box or control is resized to the dimensions you specified.
Here's how to adjust the borders of certain controls automatically to fit the text displayed on
them.

To resize selected controls automatically:
1. With the Pick tool active, select the option button, text control, push

button, check box, or text box that you want to resize.
2. Press F2.

The borders of the control will expand or contract to fit the text
displayed on it.

690 Working Model Basic User's Manual

Note: Windows metafiles always expand or contract proportionally to fit within the picture
control or picture button control containing them. In contrast, windows bitmaps are of a fixed
size. If you place a bitmap in a control that is smaller than the bitmap, the bitmap is clipped
off on the right and bottom. If you place a bitmap in a control that is larger than the bitmap,
the bitmap is centered within the borders of the control. Picture controls and picture button
controls must be resized manually.

Changing Titles and Labels
By default, when you begin creating a dialog box, its title reads "Untitled," and when you
first create group boxes, option buttons, push buttons, text controls, and check boxes, they
have generic-sounding default labels, such as "Group Box" and "Option Button."
Here's how to change the title of your dialog box as well as the labels of group boxes, option
buttons, push buttons, text controls, and check boxes.

To change a dialog box title or a control label:
1. Display the Information dialog box for the dialog box whose title you

want to change or for the control whose label you want to change.
2. Enter the new title or label in the Text$ field.

Note: Dialog box titles and control labels are optional. Therefore, you
can leave the Text$ field blank.

3. If the information in the Text$ field should be interpreted as a variable
name rather than a literal string, select the Variable Name check box.

4. Click the OK button or press Enter.
The new title or label is now displayed on the title bar or on the
control.

Although OK and Cancel buttons also have labels, you cannot change them. The remaining
controls (text boxes, list boxes, combo boxes, drop list boxes, pictures, and picture buttons)
don't have their own labels, but you can position a text control above or beside these controls
to serve as a de facto label for them.

Assigning Accelerator Keys
Accelerator keys enable users to access dialog box controls simply by pressing Alt + a
specified letter. Users can employ accelerator keys to choose a push button or an option
button; toggle a check box on or off; and move the insertion point into a text box or group
box or to the currently selected item in a list box, combo box, or drop list box.
An accelerator key is essentially a single letter that you designate for this purpose from a
control's label. You can assign an accelerator key directly to controls that have their own
label (option buttons, push buttons, check boxes, and group boxes). (You can't assign an
accelerator key to OK and Cancel buttons because, as noted above, their labels can't be
edited.) You can create a de facto accelerator key for certain controls that don't have their
own labels (text boxes, list boxes, combo boxes, and drop list boxes) by assigning an
accelerator key to an associated text control.
Here's how to designate a letter from a control's label to serve as the accelerator key for that
control.

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 691

To assign an accelerator key:
1. Display the Information dialog box for the control to which you want

to assign an accelerator key.
2. In the Text$ field, type an ampersand (&) before the letter you want to

designate as the accelerator key.
3. Click the OK button or press Enter.

The letter you designated is now underlined on the control's label, and
users will be able to access the control by pressing Alt + the
underlined letter.

Note: Accelerator key assignments must be unique within a particular dialog box. If you
attempt to assign the same accelerator key to more than one control, Dialog Editor displays a
reminder that that letter has already been assigned.

If, for example, you have a push button whose label reads Apply, you can designate A as the
accelerator key by displaying the Push Button Information dialog box and typing &Apply in
the Text$ field. When you press Enter, the button label looks like the following illustration,
and users will be able to choose the button by typing Alt+A.

As another example, let's say you have a list box that is immediately preceded in the dialog
box template by a text control whose label reads 1994 Project Files. By using the method
described above, you can designate F as the accelerator key. When you click OK or press
Enter, the text control label looks like the following illustration, and users will be able to
move the insertion point to the currently selected item in the list box by typing Alt+F.

Note: In order for such a de facto accelerator key to work properly, the text control or group
box label to which you assign the accelerator key must be associated with the control(s) to
which you want to provide user access—that is, in the dialog box template, the description of
the text control or group box must immediately precede the description of the control(s) that
you want associated with it. The simplest way to establish such an association is to create the
text control or group box first, followed immediately by the associated control(s).

Specifying Pictures
In the preceding section, you learned how to add picture controls and picture button controls
to your dialog box. But these controls are nothing more than empty outlines until you specify
the pictures that you want them to display.

692 Working Model Basic User's Manual

A picture control or picture button control can display a Windows bitmap or metafile, which
you can obtain from a file or from a specified library. (Refer to the following subsection for
information on creating or modifying picture libraries under Windows.)
Here's how to display a Windows bitmap or metafile from a file on a picture control or
picture button control by using the control's Information dialog box to indicate the file in
which the picture is contained.

To specify a picture from a file:
1. Display the Information dialog box for the picture control or picture

button control whose picture you want to specify.
2. In the Picture source option button group, select File.
3. In the Name$ field, enter the name of the file containing the picture

you want to display in the picture control or picture button control.
Note: By clicking the Browse button, you can display the Select a
Picture File dialog box and use it to find the file.

4. Click the OK button or press Enter.
The picture control or picture button control now displays the picture
you specified.

Here's how to display a Windows bitmap or metafile from a library on a picture control or
picture button control by first using the Dialog Box Information dialog box to specify the
library and then using the control's Information dialog box to indicate the name of the
picture.

To specify a picture from a picture library:
1. Display the Dialog Box Information dialog box.
2. In the Picture Library field, specify the name of the picture library that

contains the picture(s) you want to display in your dialog box.
Notes: By clicking the Browse button, you can display the Select a
Picture Library dialog box and use it to find the library.
If you specify a picture library in the Dialog Box Information dialog
box, all the pictures in your dialog box must come from this library.

3. Click the OK button or press Enter.
4. Display the Information dialog box for the picture control or picture

button control whose picture you want to specify.
5. In the Picture source option button group, select Library.
6. In the Name$ field, enter the name of the picture you want to display

on the picture control or picture button control. (This picture must be
from the library that you specified in step 2.)

7. Click the OK button or press Enter.
The picture control or picture button control now displays the picture
you specified.

Creating or Modifying Picture Libraries under Windows
The Picture statement in WM Basic allows images to be specified as individual picture
files or as members of a picture library, which is a DLL that contains a collection of pictures.

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 693

Currently, both Windows bitmaps and metafiles are supported. You can obtain a picture
library either by creating a new one or by modifying an existing one, as described below.
Each image is placed into the DLL as a resource identified by its unique resource identifier.
This identifier is the name used in the Picture statement to specify the image.
The following resource types are supported in picture libraries:

Resource Type Description

2 Bitmap. This is defined in windows.h as RT_BITMAP.

256 Metafile. Since there is no resource type for
metafiles, 256 is used.

Here's how to create a new picture library to contain the Windows bitmaps or metafiles that
you want to display on picture controls or picture button controls in your dialog box.

To create a picture library under Windows:
1. Create a C file containing the minimal code required to establish a

DLL. The following code can be used:
#include <windows.h>
int CALLBACK LibMain(

HINSTANCE hInstance,
WORD wDataSeg,
WORD wHeapSz,
LPSTR lpCmdLine) {
UnlockData(0);
return 1;

}
2. Use the following code to create a DEF file for your picture library:

LIBRARY
DESCRIPTION "My Picture Library"
EXETYPE WINDOWS
CODE LOADONCALL MOVABLE DISCARDABLE
DATA PRELOAD MOVABLE SINGLE
HEAPSIZE 1024

3. Create a resource file containing your images. The following example
shows a resource file using a bitmap called sample.bmp and a
metafile called usa.wmf.
#define METAFILE 256
USA METAFILE "usa.wmf"
MySample BITMAP "sample.bmp"

4. Create a make file that compiles your C module, creates the resource
file, and links everything together.

Here's how to modify an existing picture library to contain the Windows bitmaps or metafiles
that you want to display on picture controls or picture button controls in your dialog box.

To modify an existing picture library:
1. Make a copy of the picture library you want to modify.
2. Modify the copy by adding images using a resource editor such as

Borland's Resource Workshop or Microsoft's App Studio.
Note: When you use a resource editor, you need to create a new
resource type for metafiles (with the value 256).

694 Working Model Basic User's Manual

Duplicating and Deleting Controls
Here's how to use Dialog Editor's duplicating feature, which saves you the work of creating
additional controls individually if you need one or more copies of a particular control.

To duplicate a control:
1. Select the control that you want to duplicate.
2. Press Ctrl+D.

A duplicate copy of the selected control appears in your dialog box.
3. Repeat step 2 as many times as necessary to create the desired number

of duplicate controls.
Duplicating is a particularly efficient approach if you need to create a group of controls, such
as a series of option buttons or check boxes. Simply create the first control in the group and
then, while the newly created control remains selected, repeatedly press Ctrl+D until you
have created the necessary number of copies.
Dialog Editor also enables you to delete single controls or even clear the entire dialog box.
If you want to remove controls from your dialog box selectively, here's how to delete them
one at a time.

To delete a single control:
1. Select the control you want to delete.
2. Press Del.

The selected control is removed from your dialog box.
If you want to "wipe the slate clean" and start all over again with your dialog box, here's how
to remove all its controls in a single operation.

To delete all the controls in a dialog box:
1. Select the dialog box.
2. Press Del.
3. If the dialog box contains more than one control, Dialog Editor

prompts you to confirm that you want to delete all controls. Click the
Yes button or press Enter.
All the controls disappear, but the dialog box's title bar and close box
(if displayed) remain unchanged.

Undoing Editing Operations
You can undo editing operations that produce a change in your dialog box, including:

The addition of a control
The insertion of one or more controls from the Clipboard
The deletion of a control
Changes made to a control or dialog box, either with the mouse or with
the Information dialog box

You cannot undo operations that don't produce any change in your dialog box, such as
selecting controls or dialog boxes and copying material to the Clipboard.
Here's how to reverse the effect of the preceding editing operation.

To undo an editing operation:
Press Ctrl+Z.

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 695

Your dialog box is restored to the way it was before you performed the
editing operation.

Editing an Existing Dialog Box
There are three ways to edit an existing dialog box: (1) You can copy the WM Basic template
of the dialog box you want to edit from a script to the Clipboard and paste it into Dialog
Editor. (2) You can use the capture feature to "grab" an existing dialog box from another
application and insert a copy of it into Dialog Editor. (3) You can open a dialog box template
file that has been saved on a disk. Once you have the dialog box displayed in Dialog Editor's
application window, you can edit it using the methods described earlier in the chapter.

Pasting an Existing Dialog Box into Dialog Editor
You can use Dialog Editor to modify the WM Basic statements in your script that correspond
to an entire dialog box or to one or more dialog box controls.
If you want to modify a WM Basic dialog box template contained in your script, here's how
to select the template and paste it into Dialog Editor for editing.

To edit an existing dialog box directly:

1. Select the entire WM Basic dialog box template (from the Begin
Dialog instruction to the End Dialog instruction) in your script.

2. Choose Edit Dialog in the Edit menu of the Script Editor.
Dialog Editor creates a new dialog box corresponding to the template
selected in the Script Editor.

To paste an existing dialog box into Dialog Editor:

1. Copy the entire WM Basic dialog box template (from the Begin
Dialog instruction to the End Dialog instruction) from your script
to the Clipboard.

2. Open Dialog Editor.
3. Press Ctrl+V.
4. When Dialog Editor asks whether you want to replace the existing

dialog box, click the Yes button.
Dialog Editor creates a new dialog box corresponding to the template
contained on the Clipboard.

If you want to modify the WM Basic statements in your script that correspond to one or more
dialog box controls, here's how to select the statements and paste them into Dialog Editor for
editing.

To paste one or more controls from an existing dialog box into Dialog
Editor:
1. Copy the WM Basic description of the control(s) from your script to

the Clipboard.
2. Open Dialog Editor.
3. Press Ctrl+V.

Dialog Editor adds to your current dialog box one or more controls
corresponding to the description contained on the Clipboard.

696 Working Model Basic User's Manual

Notes: When you paste a dialog box template into Dialog Editor, the tabbing order of the
controls is determined by the order in which the controls are described in the template. When
you paste one or more controls into Dialog Editor, they will come last in the tabbing order,
following the controls that are already present in the current dialog box.
If there are any errors in the WM Basic statements that describe the dialog box or controls,
the Dialog Translation Errors dialog box will appear when you attempt to paste these
statements into Dialog Editor. This dialog box shows the lines of code containing the errors
and provides a brief description of the nature of each error.

Capturing a Dialog Box from Another Application
Here's how to capture the standard Windows controls from any standard Windows dialog box
in another application and insert those controls into Dialog Editor for editing.

To capture an existing standard Windows dialog box:
1. Display the dialog box you want to capture.
2. Open Dialog Editor.
3. Choose the Capture Dialog command from the File menu.

Dialog Editor's application window moves behind all other open
application windows, and the dialog box you displayed in step 1
reappears. The mouse pointer, previously an arrow, now looks like a
butterfly net.

4. Place the mouse pointer over the dialog box that you want to capture.
If the mouse pointer is over a standard Windows dialog box that
contains some standard Windows controls, a tiny dialog box appears in
front of the mouse pointer's butterfly net to indicate that the pointer
has found controls that can be captured. If the mouse pointer is not
over a standard Windows dialog box that contains standard Windows
controls, the butterfly net remains unchanged to indicate that the
mouse pointer has not found controls that can be captured.

Mouse pointer positioned over an area of the screen that does
not contain standard Windows controls

Mouse pointer positioned over a standard Windows dialog
box that contains some standard Windows controls

5. Click the mouse button.
Dialog Editor's application window moves in front of all other open
application windows and now displays the standard Windows controls
from the target dialog box.
Note: Dialog Editor only supports standard Windows controls and
standard Windows dialog boxes. Therefore, if the target dialog box
contains both standard Windows controls and custom controls, only
the standard Windows controls will appear in Dialog Editor's
application window. If the target dialog box is not a standard Windows
dialog box, you will be unable to capture the dialog box or any of its
controls.

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 697

Opening a Dialog Box Template File
Here's how to open any dialog box template file that has been saved on a disk so you can edit
the template in Dialog Editor.

To open a dialog box template file:
1. Choose Open from the File menu.

The Open Dialog File dialog box appears.
2. Select the file containing the dialog box template that you want to edit

and click the OK button.
Dialog Editor creates a dialog box from the statements in the template
and displays it in the application window.

Note: If there are any errors in the WM Basic statements that describe the dialog box, the
Dialog Translation Errors dialog box will appear when you attempt to load the file into
Dialog Editor. This dialog box shows the lines of code containing the errors and provides a
brief description of the nature of each error.

Testing an Edited Dialog Box
Dialog Editor lets you run your edited dialog box for testing purposes. When you click the
Test tool, your dialog box comes alive, which gives you an opportunity to make sure it
functions properly and fix any problems before you incorporate the dialog box template into
your script.
Before you run your dialog box, take a moment to look it over for basic problems such as the
following:

Does the dialog box contain a command button—that is, a default OK
or Cancel button, a push button, or a picture button?
Does the dialog box contain all the necessary push buttons?
Does the dialog box contain a Help button if one is needed?
Are the controls aligned and sized properly?
If there is a text control, is its font set properly?
Are the close box and title bar displayed (or hidden) as you intended?
Are the control labels and dialog box title spelled and capitalized
correctly?
Do all the controls fit within the borders of the dialog box?
Could you improve the design of the dialog box by adding one or more
group boxes to set off groups of related controls?
Could you clarify the purpose of any unlabeled control (such as a text
box, list box, combo box, drop list box, picture, or picture button) by
adding a text control to serve as a de facto label for it?
Have you made all the necessary accelerator key assignments?

After you've fixed any elementary problems, you're ready to run your dialog box so you can
check for problems that don't become apparent until a dialog box is activated.
Testing your dialog box is an iterative process that involves running the dialog box to see
how well it works, identifying problems, stopping the test and fixing those problems, then
running the dialog box again to make sure the problems are fixed and to identify any

698 Working Model Basic User's Manual

additional problems, and so forth—until the dialog box functions the way you intend. Here's
how to test your dialog box and fine-tune its performance.

To test your dialog box:
1. Click the Run tool on the toolbar.

-Or-
Press F5.
The dialog box becomes operational, and you can check how it
functions.

2. To stop the test, click the Run tool, press F5, or double-click the dialog
box's close box (if it has one).

3. Make any necessary adjustments to the dialog box.
4. Repeat steps 1–3 as many times as you need in order to get the dialog

box working properly.
When testing a dialog box, you can check for operational problems such as the following:

Tabbing order: When you press the Tab key, does the focus move
through the controls in a logical order? (Remember, the focus skips
over items that users cannot act upon, including group boxes, text
controls, and pictures.)
When you paste controls into your dialog box, Dialog Editor places
their descriptions at the end of your dialog box template, in the order
in which you paste them in. Therefore, you can use a simple cut-and-
paste technique to adjust the tabbing order. First, click the Run tool to
end the test and then, proceeding in the order in which you want the
controls to receive the focus, select each control, cut it from the dialog
box (by pressing Ctrl+X), and immediately paste it back in again (by
pressing Ctrl+V). The controls will now appear in the desired order in
your template and will receive the tabbing focus in that order.
Option button grouping: Are the option buttons grouped correctly?
Does selecting an unselected button in a group automatically deselect
the previously selected button in that group?
To merge two groups of option buttons into a single group, click the
Run tool to end the test and then use the Option Button Information
dialog box to assign the same .Option Group name for all the buttons
that you want included in that group.
Text box functioning: Can you enter only a single line of
nonwrapping text, or can you enter multiple lines of wrapping text?
If the text box doesn't behave the way you intended, click the Run tool
to end the test; then display the Text Box Information dialog box and
select or clear the Multiline check box.
Accelerator keys: If you have assigned an accelerator key to a text
control or group box in order to provide user access to a text box, list
box, combo box, drop list box, or group box, do the accelerator keys
work properly? That is, if you press Alt + the designated accelerator
key, does the insertion point move into the text box or group box or to
the currently selected item in the list box, combo box, or drop list box?

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 699

If the accelerator key doesn't work properly, it means that the text box,
list box, combo box, drop list box, or group box is not associated with
the text control or group box to which you assigned the accelerator
key—that is, in your dialog box template, the description of the text
control or group box does not immediately precede the description of
the control(s) that should be associated with it. As with tabbing-order
problems (discussed above), you can fix this problem by using a
simple cut-and-paste technique to adjust the order of the control
descriptions in your template. First, click the Run tool to end the test;
then cut the text control or group box from the dialog box and
immediately paste it back in again; and finally, do the same with each
of the controls that should be associated with the text control or group
box. The controls will now appear in the desired order in your
template, and the accelerator keys will work properly.

Incorporating a Dialog Box Template into Your
Script
Dialog boxes and dialog box controls are communicated between Dialog Editor and your
script via the Clipboard, where they are represented as WM Basic statements. Here's how to
copy a dialog box or control and paste it into your script.

To incorporate a dialog box or control into your script:
1. Select the dialog box or control that you want to incorporate into your

script.
2. Press Ctrl+C.
3. Open your script and paste in the contents of the Clipboard at the

desired point.
The dialog box template or control is now described in WM Basic
statements in your script, as shown in the following example.

700 Working Model Basic User's Manual

Exiting from Dialog Editor
Here's how to get out of Dialog Editor. When you exit, you can save your dialog box
template (that is, the WM Basic description of the dialog box) as a text file.

To exit from Dialog Editor:
1. Press Alt+F4.

If you have made changes to your dialog box template, Dialog Editor
asks whether you want to save those changes.

2. If you want to save your changes to a text file, click the Yes button.
Dialog Editor displays the Save Dialog File dialog box, which you can
use to specify the file to which you want to save your template.

Menu/Tools Reference
File Menu

Menu
Comman
d

Toolbar
Tool

Keyboar
d
Shortcut

Function

 N ew Creates a new dialog box. Dialog
Editor prompts you before
discarding any changes you have
made to your current dialog box.

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 701

 O pen... Displays the Open Dialog File
dialog box, which you can use to
open an existing dialog box
template. Dialog Editor prompts
you before discarding any
changes you have made to your
current dialog box.

 S ave If you have already created a file
for the current dialog box
template, saves the template to
that file.

If you have not yet created a file
for the current dialog box
template, displays the Save
Dialog File dialog box, which you
can use to specify the file to
which you want to save the
current template.

Save
 A s...

Displays the Save Dialog File
dialog box, which you can use to
save the current dialog box
template in a file under a new
name.

 T est
Dialog

F5 Toggles between the run mode (in
which the dialog box "comes
alive" for testing purposes) and
the edit mode (in which you can
make changes to the dialog box).

 C apture
Dialog

Captures the standard Windows
controls from a standard
Windows dialog box in another
Windows application.

E x it Alt+F4 Closes Dialog Editor. Dialog
Editor prompts you before
discarding any changes you have
made to your current dialog box.

Exit &
Return

Alt+F4 Closes Dialog Editor and returns
you to the host application.
Dialog Editor prompts you before
discarding any changes you have
made to your current dialog box.

702 Working Model Basic User's Manual

Edit Menu

Menu
Comman
d

Toolbar
Tool

Keyboar
d
Shortcut

Function

 U ndo Ctrl+Z Allows you to undo up to 10
preceding operations. The Undo
command continually indicates
the next operation you can undo
by selecting it and grays out when
there are no more operations that
can be undone.

Cu t Ctrl+X Removes the selected dialog box
or control from Dialog Editor's
application window and places it
on the Clipboard.

 C opy Ctrl+C Copies the selected dialog box or
control, without removing it from
Dialog Editor's application
window, and places it on the
Clipboard.

 P aste Ctrl+V Inserts the contents of the
Clipboard into Dialog Editor.

If the Clipboard contains WM
Basic statements describing one
or more controls, then those
controls are added to the current
dialog box. If the Clipboard
contains the WM Basic template
for an entire dialog box, then
Dialog Editor creates a new
dialog box from the statements in
the template.

If the WM Basic statements
contain errors, Dialog Editor
displays the Dialog Translation
Errors dialog box, which helps
you pinpoint the location and
nature of the errors.

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 703

 D elete Del Removes the selected dialog box
or control from Dialog Editor's
application window without
placing it on the Clipboard. If you
have selected the dialog box and
it contains more than one control,
Dialog Editor prompts you before
removing all the controls from it.

Duplic a te Ctrl+D Creates a duplicate copy of the
selected control.

Si z e to
Text

F3 Adjusts the borders of certain
controls to fit the text displayed
on them.

 I nfo... Ctrl+I Displays the Information dialog
box for the selected dialog box or
control. You can use this dialog
box to check and adjust various
attributes of controls and dialog
boxes.

 G rid... Ctrl+G Displays the Grid dialog box,
which you can use to display or
turn off the grid and adjust the
grid's spacing.

Controls Menu

Menu
Comman
d

Toolbar
Tool Function

O K
button

Adds a default OK button to your dialog box.
An OK button is a special type of push, or
command, button.

C a ncel
button

Adds a default Cancel button to your dialog
box. A Cancel button is a special type of
push, or command, button.

 P ush
button

Adds a push, or command, button to your
dialog box.

 O ption
button

Adds an option button to your dialog box. An
option button is one of a group of two or more
linked buttons that let users select only one
from a group of mutually exclusive choices.

704 Working Model Basic User's Manual

 C heck
box

Adds a check box to your dialog box. Users
can check or clear a check box to indicate
their preference regarding the alternative
specified on the check box label.

 G roup
box

Adds a group box to your dialog box. A group
box is a rectangular design element used to
enclose a group of related controls. You can
use the optional group box label to display a
title for the controls in the box.

 T ext Adds a text control to your dialog box. A text
control is a field containing text that you want
to display for the users' information. The text
in this field wraps, and the field can contain a
maximum of 255 characters. Text controls
can either display stand-alone text or be used
as labels for text boxes, list boxes, combo
boxes, drop list boxes, pictures, and picture
buttons. You can choose the font in which the
text appears.

T e xt box Adds a text box to your dialog box. A text
box is a field into which users can enter text
(potentially, as much as 32K). By default, this
field holds a single line of nonwrapping text.
If you choose the Multiline setting in the Text
Box Information dialog box, this field will
hold multiple lines of wrapping text.

 L ist box Adds a list box to your dialog box. A list box
is a displayed, scrollable list from which users
can select one item. The currently selected
item is highlighted on the list.

Com b o
box

Adds a combo box to your dialog box. A
combo box consists of a text field with a
displayed, scrollable list beneath it. Users can
either select an item from the list or enter the
name of the desired item in the text field. The
currently selected item is displayed in the text
field. If the item was selected from the
scrolling list, it is highlighted there as well.

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 705

 D rop list
box

Adds a drop list box to your dialog box. A
drop list box consists of a field that displays
the currently selected item, followed by a
downward-pointing arrow, which users can
click to temporarily display a scrolling list of
items. Once they select an item from the list,
the list disappears and the newly selected item
is displayed in the field.

P i cture Adds a picture to your dialog box. A picture
is a field used to display a Windows bitmap or
metafile.

Picture
button

Adds a picture button to your dialog box. A
picture button is a special type of push, or
command, button on which a Windows
bitmap or metafile appears.

Help Menu

Menu
Comman
d

Keyboar
d
Shortcut

Function

 C ontents F1 Presents a list of major topics in the Help
system. By clicking a topic on the list, you
can display the available Help information
about that topic.

 S earch
for Help
On...

Displays a dialog box that allows users to
search for Help topics containing specific
keywords.

 A bout
Dialog
Editor...

Displays the About Dialog Editor dialog box,
which indicates application name, version
number, copyright statement, and icon, as
well as additional information such as amount
of available memory and disk space.

Pick Tool

Toolbar
Tool Function

Pick

Lets you select, move, and resize items and control the
insertion point.

706 Working Model Basic User's Manual

Using a Custom Dialog
You can use a custom dialog box to display information to a user while providing an
opportunity to respond. After using Dialog Editor to insert a dialog box template into your
script, you’ll need to make the following modifications to your script.

1. Create a dialog record by using a Dim statement.
2. Put information into the custom dialog box by assigning values to

dialog box controls.
3. Display the custom dialog box by using either the Dialog() function or

the Dialog statement.
4. Retrieve values from the custom dialog box after the user closes it.

Creating a Dialog Record
To store the values retrieved from a customer dialog box, you create a dialog record with a
Dim statement, using the following syntax:

Dim DialogRecord As DialogVariable
Here are some examples of how to create dialog records:

Dim b As UserDialog ' Define a dialog record "b"
Dim PlayCD As CDDialog ' Define a dialog record "PlayCD"

Here is a sample script named DIALOG1.WBS that illustrates how to create a dialog record
named b within a dialog box template named UserDialog. Notice that the dialog box
template precedes the statement that creates the dialog record and that the Dialog statement
follows both of them in the script.

Sub Main()
Dim Listbox1$() 'Initialize listbox array
'Define the dialog box template
Begin Dialog UserDialog ,,163,94,"Grocery Order"

Text 13,6,32,8,"&Quantity:",.Text1
TextBox 48,4,28,12,.TextBox1
ListBox 12,28,68,32,ListBox1$,.ListBox1
OKButton 112,8,40,14
CancelButton 112,28,40,14

End Dialog
Dim b as UserDialog 'Create the dialog record
Dialog b 'Display the dialog

End Sub

Put information into the custom dialog box
If you open and run the sample script shown in the previous section, you'll see a dialog box
that resembles the following (the dialog box you see may be slightly different):

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 707

As you can see, this isn't a very useful dialog box. For one thing, the user doesn't see any
items in the list box along the left side of this dialog box. To put information into this custom
dialog box, you assign values to dialog box controls by modifying the statements in your
script that are responsible for displaying those controls to the user. The following table lists
the dialog box controls to which you can assign variables and the types of information you
can control:

Control(s) Types of information:

List box, drop-down list box, or
combo box

Items

Text box Default text

Check box Values

In the following sections, you’ll learn how to define and fill an array, set the default text in a
text box, and set the initial focus and tab order for the controls in your custom dialog.

Defining and filling an array
You can store items in the list box shown in the example above by creating an array and then
assigning values to the elements of the array. For example, you could include the following
lines to initialize an array with three elements and assign the names of three common fruits to
these elements of your array:

Dim Listbox1$(3) 'Initialize listbox array
Listbox1$(0) = "Apples"
Listbox1$(1) = "Oranges"

 Listbox1$(2) = "Pears"

Setting default text in a text box
You can set the default value of the text box in your script to 12 with the following
statement, which must follow the statement that defines the dialog record but precede the
statement or function that displays the custom dialog box:

b.TextBox1 = "12"

Setting the initial focus and controlling the tab order

You can control which control has the focus when your custom dialog box is first displayed
as well as the tabbing order between controls by understanding two rules that WM Basic

708 Working Model Basic User's Manual

follows. First, the focus in a custom dialog box is always set initially to the first control to
appear in the dialog box template. Second, the order in which subsequent controls appear
within the dialog box template determines the tabbing order. That is, pressing the TAB key
will change the focus from the first control to the second one, pressing the TAB key again
will change the focus to the third control, and so on.

Displaying the Dialog Box
To display a custom dialog box, you can use either a Dialog() function or a Dialog
statement.

Using the Dialog() function
You can use a Dialog() function to determine how the user closed your custom dialog box.
For example, the following statement will return a value when the user clicks on an OK
button, Cancel button, or takes another action.

response% = Dialog(b)
The Dialog() function returns any of the following values:

Value returned: If:

-1 The OK button was clicked.

0 The Cancel button was clicked.

>0 A push button was clicked. The returned number
represents which button was clicked based on its order
in the dialog box template (1 is the first push button, 2
is the second push button, and so on).

Using the Dialog statement
You can use the Dialog statement when you don’t need to determine how the user closed
your dialog box. You’ll still be able to retrieve other information from the dialog box record,
such as the value of a list box or other dialog box control. The following statement is an
example of the correct use of the Dialog statement.

Dialog b

Retrieving values from the Dialog Box
After displaying a custom dialog box for your user, your script must retrieve the values of the
dialog controls. You retrieve these values by referencing the appropriate identifiers in the
dialog record.
You’ll find an example of how to retrieve values from a custom dialog box in the following
sample script.

Sample
In the following script, named DIALOG2.WBS, shows several of the techniques described
earlier in this section have been used.
In this script, the array named ListBox1 is filled with three elements ("Apples", "Oranges",
and "Pears"). The default value of TextBox1 is set to 12. A variable named response is used
to store information about how the dialog box was closed. An identifier named ListBox1 is
used to determine whether the user chose "Apples", "Oranges", or "Pears" in the list box

Chapter 5 Editing Custom Dialog Boxes (Windows Only) 709

named ListBox$. Finally, a Select Case…End Select statement is used to display a
message box appropriate to the manner in which the user dismissed the custom dialog box.

Sub Main()
Dim Listbox1$(2)
Dim response%
Listbox1$(0) = "Apples"
Listbox1$(1) = "Oranges"

 Listbox1$(2) = "Pears"
Begin Dialog UserDialog ,,163,94,"Grocery Order"

Text 13,6,32,8,"&Quantity:",.Text1
TextBox 48,4,28,12,.TextBox1
ListBox 12,28,68,32,ListBox1$,.ListBox1
OKButton 112,8,40,14
CancelButton 112,28,40,14

End Dialog
Dim b as UserDialog
b.TextBox1 = "12"
response = Dialog(b)
Select Case response%

Case -1
Fruit$ = ListBox1$(b.listbox1)
MsgBox "Thank you for ordering " + b.TextBox1 + " " +

Fruit$
Case 0

MsgBox "Your order has been cancelled."
End Select

End Sub

Using a Dynamic Dialog Box
In the previous section, you learned how to use custom dialog boxes. As you learned, you
can retrieve the values from dialog box controls after the user dismisses the dialog box by
referencing the identifiers in the dialog record.
You can also retrieve values from the dialog box while the dialog box is displayed, using a
feature of WM Basic called dynamic dialog boxes.
The following script, named DIALOG3.WBS, illustrates the most important concepts you’ll
need to understand in order to create a dynamic dialog box in your script:

Dim Fruits(2) as String
Dim Vegetables(2) as String
Function DialogControl(ctrl$, action%, suppvalue%) As Integer

Select Case action%
Case 1

DlgListBoxArray "listbox1", fruits
DlgValue "listbox1", 0

Case 2
If ctrl$ = "OptionButton1" Then

DlgListBoxArray "listbox1", fruits
DlgValue "listbox1", 0

ElseIf ctrl$ = "OptionButton2" Then
DlgListBoxArray "listbox1", vegetables
DlgValue "listbox1", 0

End If
End Select

End Function

710 Working Model Basic User's Manual
Sub Main()

Dim ListBox1$()
Dim Produce$
Fruits(0) = "Apples"
Fruits(1) = "Oranges"

 Fruits(2) = "Pears"
Vegetables(0) = "Carrots"

 Vegetables(1) = "Peas"
Vegetables(2) = "Lettuce"
Begin Dialog UserDialog ,,163,94,"Grocery

Order",.DialogControl
Text 13,6,32,8,"&Quantity:",.Text1
TextBox 48,4,28,12,.TextBox1
ListBox 12,28,68,32,ListBox1$,.ListBox1
OptionGroup .OptionGroup1

OptionButton 12,68,48,8,"&Fruit",.OptionButton1
OptionButton 12,80,48,8,"&Vegetables",.OptionButton2

OKButton 112,8,40,14
CancelButton 112,28,40,14

End Dialog
Dim b as UserDialog
b.TextBox1 = "12"
response% = Dialog(b)
Select Case response%

Case -1
If b.optiongroup1 = 0 Then

produce$ = fruits(b.listbox1)
Else

produce$ = vegetables(b.listbox1)
End If
MsgBox "Thank you for ordering " & b.TextBox1 & " " &

produce$
Case 0

MsgBox "Your order has been cancelled."
End Select

End Sub

In the remainder of this section, you’ll learn how to make a dialog box dynamic by
examining the workings of this sample script.

Making a Dialog Box Dynamic
The first thing to notice about this script, which a more complex variation of the
DIALOG2.WBS script described earlier in this chapter, is that an identifier named
.DialogControl has been added to the Begin Dialog statement. As you will learn in the
following section, this parameter to the Begin Dialog statement tells WM Basic to pass
control to a function procedure named DialogControl.

Using a Dialog Function
Before WM Basic displays a custom dialog by executing a Dialog statement or Dialog()
function, it must first initialize the dialog box. During this initialization process, WM Basic
checks to see if you’ve defined a dialog function as part of your dialog box template. If so,

 Editing Custom Dialog Boxes (Windows Only) 711

WM Basic will give control to your dialog function, allowing your script to carry out certain
actions, such as hiding or disabling dialog box controls.
After completing its initialization process, WM Basic displays your custom dialog box.
When the user selects an item in a list box, clears a check box, or carries out certain other
actions within the dialog box, WM Basic will again call your dialog function.
In fact, WM Basic also calls your dialog function repeatedly even while the user is not
interacting with the dialog box.

Responding to User Actions
A WM Basic dialog function can respond to six types of user actions:
Action Description

1 This action is sent immediately before the dialog box is shown for the
first time.

2 This action is sent when:

A button is clicked, such as OK, Cancel, or a push
button.

A check box's state has been modified.

An option button is selected. In this case,
ControlName$ contains the name of the option
button that was clicked, and SuppValue contains
the index of the option button within the option
button group (0-based).

The current selection is changed in a list box, drop
list box, or combo box. In this case, ControlName$
contains the name of the list box, combo box, or
drop list box, and SuppValue contains the index of
the new item (0 is the first item, 1 is the second,
and so on).

3 This action is sent when the content of a text box or combo box has been
changed. This action is only sent when the control loses focus.

4 This action is sent when a control gains the focus.

5 This action is sent continuously when the dialog box is idle.

6 This action is sent when the dialog box is moved.

You’ll find a more complete explanation of these action codes in Chapter 2, A-Z Reference in
the Working Model Basic User’s Manual in the reference for DlgProc function.

713

C H A P T E R 6

You can use another application to control Working Model through DDE (on Windows) or
Apple events (on Macintosh). You can write a script or a macro using the external
application, that sends instructions to Working Model in WM Basic language.
This chapter provides instructions to establish the communication between applications.

Contents
Sending WM Basic Program via DDE
Sending WM Basic Program via Apple events

Controlling Working Model
from Another Application

714 Working Model Basic User's Manual

Sending a WM Basic Program via DDE
Working Model is a DDE server and supports the topic WMBasic. Via DDE, any application
can send WM Basic commands to Working Model. Shown below are a few examples of
how you can send instructions to Working Model from another application.
Note: The method for establishing a DDE conversation varies significantly from one
application to another. Please refer to the documentation for the application for reference.

Using Microsoft Excel 5.0
You can write a Visual Basic macro in Excel that directly sends a series of instructions in
WM Basic to Working Model. Please refer to the User’s Manual for Excel to find out more
details.

Sending a Single Line of WM Basic Code
Shown below is a Visual Basic script written as an Excel macro.

Sub Macro1()
' Assume Working Model is running
channelID = Application.DDEInitiate("WM", "WMBasic")
Application.DDEExecute channelID, "MsgBox ""Hello"""
Application.DDETerminate channelID

End Sub
The first line, DDEInitiate, establishes the link with WM (Working
Model, which runs as WM.EXE) under the topic WMBasic. Working
Model must be running for DDEInitiate to work. The function
DDEInitiate returns the channelID (an integer describing the
channel number) which will be used in subsequent DDE
conversations.
DDEExecute statement takes the first parameter channelID, and the
program written in WM Basic as the second parameter. Note that the
double-quotation marks (") need to be repeated when sent through
DDEExecute.
To finish the DDE conversation, add DDETerminate statement in your
macro.

When Working Model receives the above statements, Sub Main() and End Sub are
automatically inserted to create a complete program as follows:

Sub Main()
MsgBox "Hello"

End Sub

Sending a WM Basic Program
If you want to send more than one line of WM Basic code,

the code needs to be a complete program (includes Sub Main() and
End Sub), and
you need to bracket the beginning and the end of the program by
special symbols $wmstart$ and $wmend$. Otherwise, Working Model
would add Sub Main() and End Sub to every line, and your program
would not function properly.

For example:

Chapter 6 Controlling Working Model from Another Application 715
Sub Macro1()

channelID = Application.DDEInitiate("WM", "WMBasic")
Application.DDEExecute channelID, "$wmstart$"
Application.DDEExecute channelID, "Sub Main()"
Application.DDEExecute channelID, "Dim Box as WMBody"
Application.DDEExecute channelID, "Set Box =

WM.ActiveDocument.NewBody("square")"
Application.DDEExecute channelID, "Box.Width.Value = 0.2"
Application.DDEExecute channelID, "End Sub"
Application.DDEExecute channelID, "$wmend$"
Application.DDETerminate channelID

End Sub
Working Model will start processing the target program upon receiving $wmend$. The above
code is interpreted as the following WM Basic program:

Sub Main()
Dim Box as WMBody
Set Box = WM.ActiveDocument.NewBody("square")
Box.Width.Value = 0.2

End Sub

Using Visual Basic
You can write a standalone Visual Basic program that sends a series of instructions to
Working Model. This scheme may seem a bit strange at first, since WM Basic closely
mimics Visual Basic. After all, what is wrong with writing your entire application in WM
Basic?
Nothing, really. But under following circumstances, you may find it appropriate to take
advantage of the facility.

You already have a large application written in Visual Basic, and you
wish to modify a part of the program so that it interacts with Working
Model.
You wish to write a Visual Basic application, but most of its
functionality does not require Working Model. For instance, you wish
to distribute your application to other people who may or may not own
Working Model, and the interactions with Working Model are not a
critical part of your application.

Sending a Single Line of WM Basic Code
Shown below is an example of how you may send a command from Visual Basic program.
Assume the variable myControl is a valid Visual Basic control.

myControl.LinkTopic = "WM|WMBasic" ' specifies app and topic
myControl.LinkMode = 2
myControl.LinkExecute "MsgBox ""Hello"""

(Note that the two repeating quotations marks ("") are necessary to indicate a single
quotation symbol within the parameter of LinkExecute.)
The second line (myControl.LinkMode = 2) sets the link mode to 2 (Manual Mode).
Working Model only supports the manual mode link. For more information, please refer to
the documentation on Visual Basic.
When Working Model receives the above statements, Sub Main() and End Sub are
automatically inserted to create a complete program as follows:

Sub Main()

716 Working Model Basic User's Manual
MsgBox "Hello"

End Sub

Sending a WM Basic Program
If you wish send multiple lines of WM Basic code, you need to call the LinkExecute method
repeatedly. Furthermore:

the code needs to be a complete program (includes Sub Main() and
End Sub), and
you need to bracket the beginning and the end of the program by
special symbols $wmstart$ and $wmend$. Otherwise, Working Model
would add Sub Main() and End Sub to every line, and your program
would not function properly.

For example:
myControl.LinkTopic = "WM|WMBasic" ' specifies app and topic
myControl.LinkItem = ""
myControl.LinkMode = 2
myControl.LinkExecute "$wmstart$"
myControl.LinkExecute "Sub Main()"
myControl.LinkExecute "Dim B as WMbody"
myControl.LinkExecute "Set B =
WM.ActiveDocument.NewBody(""square"")"
myControl.LinkExecute "B.Width.Value = 0.2"
myControl.LinkExecute "End Sub"
myControl.LinkExecute "$wmend$"

Working Model will start processing the code upon receiving $wmend$.

Sending a WMBasic Program via Apple Events
Working Model supports the Required suite of Apple events. It also supports the DoScript
event (part of Miscellaneous suite). Shown below is an example of how you can send
instructions to Working Model from AppleScript Editor. Other applications (although not
discussed here) supporting Apple events include Claris FileMaker.
Note: The method for establishing an Apple events communication varies significantly from
one application to another. Please refer to the documentation for the application for
reference.

Using AppleScript Editor
AppleScript Editor is an editing tool used to create scripts that automate various Macintosh
operations. AppleScript Editor is included in Macintosh System 7.5.
You can send a WM Basic program through AppleScript using a DoScript statement.

Sending a Single Line of WM Basic Code
Shown below is an example of an AppleScript code which executes WM Basic code:

tell application "Working Model"
DoScript "MsgBox \"Hello\""

end tell
Note that the backslash (\) must be added in front of a double-quotation mark (") to be
properly interpreted by the DoScript command.
When Working Model receives the above statements, Sub Main() and End Sub are
automatically inserted to create a complete program as follows:

 Controlling Working Model from Another Application 717
Sub Main()

MsgBox "Hello"
End Sub

Sending a WM Basic Program
If you wish send multiple lines of WM Basic code, you need to call the DoScript command
repeatedly. Furthermore:

the code needs to be a complete program (includes Sub Main() and
End Sub), and
you need to bracket the beginning and the end of the program by
special symbols $wmstart$ and $wmend$. Otherwise, Working Model
would add Sub Main() and End Sub to every line, and your program
would not function properly

For example:
tell application "Working Model"

DoScript "$wmstart$"
DoScript "Sub Main()"
DoScript "Dim B as WMBody"
DoScript "Set B = WM.ActiveDocument.NewBody(\"square\")"
DoScript "B.Width.Value = 0.2"
DoScript "End Sub"
DoScript "$wmend$"

end tell

Working Model will start processing the code upon receiving $wmend$.

719

A P P E N D I X A

This section contains listings of all the runtime errors. It is divided into three subsections, the
first describing errors messages compatible with "standard" Basic as implemented by
Microsoft Visual Basic, the second describing error messages specific to WM Basic, and the
third describing error messages that only pertain to Working Model operations.
A few error messages contain placeholders which get replaced by the runtime when forming
the completed runtime error message. These placeholders appear in the following list as the
italicized word placeholder.
For details on how you can trap and handle errors please see the section on Error Handling
(topic) in the Chapter 2 of this manual.

Visual Basic Compatible Error Messages
Error
Number

Error Message

3 Return without GoSub

5 Illegal procedure call

6 Overflow

7 Out of memory

9 Subscript out of range

10 This array is fixed or temporarily locked

11 Division by zero

13 Type mismatch

14 Out of string space

19 No Resume

20 Resume without error

26 Dialog needs End Dialog or push button

Runtime Error Messages

720 Working Model Basic User's Manual

Error
Number

Error Message

28 Out of stack space

35 Sub or Function not defined

48 Error in loading DLL

49 Bad DLL calling convention

51 Internal error

52 Bad file name or number

53 File not found

54 Bad file mode

55 File already open

57 Device I/O error

58 File already exists

59 Bad record length

61 Disk full

62 Input past end of file

63 Bad record number

64 Bad file name

67 Too many files

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Can't rename with different drive

75 Path/File access error

76 Path not found

91 Object variable or With block variable not set

93 Invalid pattern string

94 Invalid use of Null

139 Only one user dialog may be up at any time

140 Dialog control identifier does not match any current
control

Appendix A Runtime Error Messages 721

Error
Number

Error Message

141 The placeholder statement is not available on this dialog
control type

143 The dialog control with the focus may not be hidden or
disabled

144 Focus may not be set to a hidden or disabled control

150 Dialog control identifier is already defined

163 This statement can only be used when a user dialog is
active

260 No timer available

281 No more DDE channels

282 No foreign application responded to a DDE initiate

283 Multiple applications responded to a DDE initiate

285 Foreign application won't perform DDE method or
operation

286 Timeout while waiting for DDE response

287 User pressed Escape key during DDE operation

288 Destination is busy

289 Data not provided in DDE operation

290 Data in wrong format

291 Foreign application quit

292 DDE conversation closed or changed

295 Message queue filled; DDE message lost

298 DDE requires ddeml.dll

429 OLE Automation server can't create object

430 Class doesn't support OLE Automation

431 OLE Automation server cannot load file

432 File name or class name not found during OLE
Automation operation

433 OLE Automation object does not exist

434 Access to OLE Automation object denied

435 OLE initialization error

722 Working Model Basic User's Manual

Error
Number

Error Message

436 OLE Automation method returned unsupported type

437 OLE Automation method did not return a value

438 Object doesn't support this property or method
placeholder

439 OLE Automation argument type mismatch placeholder

440 OLE Automation error placeholder

443 OLE Automation Object does not have a default value

452 Invalid ordinal

460 Invalid Clipboard format

520 Can't empty clipboard

521 Can't open clipboard

600 Set value not allowed on collections

601 Get value not allowed on collections

603 ODBC - SQLAllocEnv failure

604 ODBC - SQLAllocConnect failure

608 ODBC - SQLFreeConnect error

610 ODBC - SQLAllocStmt failure

3129 Invalid SQL statement; expected 'DELETE', 'INSERT',
'PROCEDURE', 'SELECT', or 'UPDATE'

3146 ODBC - call failed

3148 ODBC - connection failed

3276 Invalid database ID

WM Basic-Specific Error Messages
Error
Number

Error Message

800 Incorrect Windows version

801 Too many dimensions

802 Can't find window

803 Can't find menu item

Appendix A Runtime Error Messages 723

Error
Number

Error Message

804 Another queue is being flushed

805 Can't find control

806 Bad channel number

807 Requested data not available

808 Can't create pop-up menu

809 Message box canceled

810 Command failed

811 Network error

812 Network function not supported

813 Bad password

814 Network access denied

815 Network function busy

816 Queue overflow

817 Too many dialog controls

818 Can't find list box/combo box item

819 Control is disabled

820 Window is disabled

821 Can't write to ini file

822 Can't read from ini file

823 Can't copy file onto itself

824 OLE Automation unknown object name

825 Can't redimension a fixed array

826 Can't load and initialize extension

827 Can't find extension

828 Unsupported function or statement

829 Can't find ODBC libraries

830 OLE Automation Lbound or Ubound on non-Array value

831 Incorrect definition for dialog procedure

724 Working Model Basic User's Manual

Error Messages in Working Model Operations
Error
Number

Error Message

900 Failure during Working Model API call

901 A Working Model API call failed because the object it
referenced no longer exists

902 Attempted to set a property which the referenced object
does not have

903 Attempted to get a property which the referenced object
does not have

904 Unrecognized string parameter in subroutine call

905 Bad parameter in subroutine call

906 Could not load the specified library. Check its location
and confirm that it compiles.

907 Could not run the specified script. Check its location and
confirm that it compiles.

999 Invalid object variable

725

A P P E N D I X B

The following table contains a list of all the errors generated by the WM Basic compiler.
With some errors, the compiler changes placeholders within the error to text from the script
being compiled. These placeholders are represented in this table by the word placeholder.

1 Variable Required - Can't assign to this expression

2 Letter range must be in ascending order

3 Redefinition of default type

4 Out of memory, too many variables defined

5 Type-character doesn't match defined type

6 Expression too complex

7 Cannot assign whole array

8 Assignment variable and expression are different types

10 Array type mismatch in parameter

11 Array type expected for parameter

12 Array type unexpected for parameter

13 Integer expression expected for an array index

14 Integer expression expected

15 String expression expected

18 Left of "." must be an object, structure, or dialog

19 Invalid string operator

20 Can't apply operator to array type

21 Operator type mismatch

22 "placeholder" is not a variable

23 "placeholder" is not a array variable or a function

Compiler Error Messages

726 Working Model Basic User's Manual

24 Unknown placeholder "placeholder"

25 Out of memory

26 placeholder: Too many parameters encountered

27 placeholder: Missing parameter(s)

28 placeholder: Type mismatch in parameter placeholder

29 Missing label "placeholder"

30 Too many nested statements

31 Encountered new-line in string

32 Overflow in decimal value

33 Overflow in hex value

34 Overflow in octal value

35 Expression is not constant

37 No type-characters allowed on parameters with explicit type

39 Can't pass an array by value

40 "placeholder" is already declared as a parameter

41 Variable name used as label name

42 Duplicate label

43 Not inside a function

44 Not inside a sub

46 Can't assign to function

47 Identifier is already a variable

48 Unknown type

49 Variable is not an array type

50 Can't redimension an array to a different type

51 Identifier is not a string array variable

52 0 expected

55 Integer expression expected for file number

56 placeholder is not a method of the object

57 placeholder is not a property of the object

Appendix B Compiler Error Messages 727

58 Expecting 0 or 1

59 Boolean expression expected

60 Numeric expression expected

61 Numeric type FOR variable expected

62 For...Next variable mismatch

63 Out of string storage space

64 Out of identifier storage space

65 Internal error 1

66 Maximum line length exceeded

67 Internal error 3

68 Division by zero

69 Overflow in expression

70 Floating-point expression expected

72 Invalid floating-point operator

74 Single character expected

75 Subroutine identifier can't have a type-declaration character

76 Script is too large to be compiled

77 Variable type expected

78 Can't evaluate expression

79 Can't assign to user or dialog type variable

80 Maximum string length exceeded

81 Identifier name already in use as another type

84 Operator cannot be used on an object

85 placeholder is not a property or method of the object

86 Type-character not allowed on label

87 Type-character mismatch on routine placeholder

88 Destination name is already a constant

89 Can't assign to constant

90 Error in format of compiler extensions

91 Identifier too long

728 Working Model Basic User's Manual

92 Expecting string or structure expression

93 Can't assign to expression

94 Dialog and Object types are not supported in this context

95 Array expression not supported as parameter

96 Dialogs, objects, and structures expressions are not supported as a
parameter

97 Invalid numeric operator

98 Invalid structure element name following "."

99 Access value can't be used with specified mode

101 Invalid operator for object

102 Can't LSet a type with a variable-length string

103 Syntax error

104 placeholder is not a method of the object

105 No members defined

106 Duplicate type member

107 Set is for object assignments

108 Type-character mismatch on variable

109 Bad octal number

110 Bad number

111 End-of-script encountered in comment

112 Misplaced line continuation

113 Invalid escape sequence

114 Missing End Inline

115 Statement expected

116 ByRef argument mismatch

117 Integer overflow

118 Long overflow

119 Single overflow

120 Double overflow

121 Currency overflow

122 Optional argument must be Variant

 Compiler Error Messages 729

123 Parameter must be optional

124 Parameter is not optional

125 Expected: Lib

126 Illegal external function return type

127 Illegal function return type

128 Variable not defined

129 No default property for the object

130 The object does not have an assignable default property

131 Parameters cannot be fixed length strings

132 Invalid length for a fixed length string

133 Return type is different from a prior declaration

134 Private variable too large. Storage space exceeded

135 Public variables too large. Storage space exceeded

731

A P P E N D I X C

The following table lists all WM Basic language elements and on which platforms these
language elements are supported. A solid square () indicates that the element is supported.
The blank square () indicates that the element is not supported.

Language Element Windo
ws

Macinto
sh

&

'

()

*

+

-

/

<

<=

<>

= (assignment)

= (operator)

>

>=

\

^

_

Abs

ActivateControl

Language Elements by
Platform

732 Working Model Basic User's Manual

Language Element Windo
ws

Macinto
sh

And

AnswerBox

AppActivate

AppClose

AppFileName$

AppFind

AppGetActive$

AppGetPosition

AppGetState

AppHide

AppList

AppMaximize

AppMinimize

AppMove

AppRestore

AppSetState

AppShow

AppSize

AppType

ArrayDims

ArraySort

Asc

AskBox$

AskPassword$

Atn

Basic.Capability

Basic.Eoln$

Basic.FreeMemory

Basic.HomeDir$

Basic.OS

Basic.PathSeparator$

Appendix C Language Elements by Platform 733

Language Element Windo
ws

Macinto
sh

Basic.Version$

Beep

Begin Dialog

Boolean

ButtonEnabled

ButtonExists

Call

CancelButton

CBool

CCur

CDate

CDbl

ChDir

ChDrive

CheckBox

CheckBoxEnabled

CheckBoxExists

Choose

Chr, Chr$

CInt

Clipboard$ (function)

Clipboard$ (statement)

Clipboard.Clear

Clipboard.GetFormat

Clipboard.GetText

Clipboard.SetText

CLng

Close

ComboBox

ComboBoxEnabled

ComboBoxExists

734 Working Model Basic User's Manual

Language Element Windo
ws

Macinto
sh

Command, Command$

Const

Cos

CreateObject

CSng

CStr

CurDir, CurDir$

Currency

CVar

CVDate

CVErr

Date

Date, Date$ (functions)

Date, Date$ (statements)

DateAdd

DateDiff

DatePart

DateSerial

DateValue

Day

DDB

DDEExecute

DDEInitiate

DDEPoke

DDERequest, DDERequest$

DDESend

DDETerminate

DDETerminateAll

DDETimeOut

Declare

DefBool

Appendix C Language Elements by Platform 735

Language Element Windo
ws

Macinto
sh

DefCur

DefDate

DefDbl

DefInt

DefLng

DefObj

DefSng

DefStr

DefVar

Desktop.ArrangeIcons

Desktop.Cascade

Desktop.SetColors

Desktop.SetWallpaper

Desktop.Snapshot

Desktop.Tile

Dialog (function)

Dialog (statement)

Dim

Dir, Dir$

DiskDrives

DiskFree

DlgControlId

DlgEnable (function)

DlgEnable (statement)

DlgFocus (function)

DlgFocus (statement)

DlgListBoxArray (function)

DlgListBoxArray (statement)

DlgSetPicture

DlgText (statement)

DlgText$ (function)

736 Working Model Basic User's Manual

Language Element Windo
ws

Macinto
sh

DlgValue (function)

DlgValue (statement)

DlgVisible (function)

DlgVisible (statement)

Do...Loop

DoEvents (function)

DoEvents (statement)

DoKeys

Double

DropListBox

EditEnabled

EditExists

End

Environm Environ$

Eof

Eqv

Erase

Erl

Err (function)

Err (statement)

Error

Error, Error$

Exit Do

Exit For

Exit Function

Exit Sub

Exp

FileAttr

FileCopy

FileDateTime

FileDirs

Appendix C Language Elements by Platform 737

Language Element Windo
ws

Macinto
sh

FileExists

FileLen

FileList

FileParse$

FileType

Fix

For...Next

Format, Format$

FreeFile

Function...End

Fv

Get

GetAttr

GetCheckBox

GetComboBoxItem$

GetComboBoxItemCount

GetEditText$

GetListBoxItem$

GetListBoxItemCount

GetObject

GetOption

Global

GoSub

Goto

GroupBox

Hex, Hex$

HLine

Hour

HPage

HScroll

HWND

738 Working Model Basic User's Manual

Language Element Windo
ws

Macinto
sh

HWND.Value

If...Then...Else

IIf

Imp

Inline

Input#

Input, Input$

InputBox, InputBox$

InStr

Int

Integer

IPmt

IRR

Is

IsDate

IsEmpty

IsError

IsMissing

IsNull

IsNumeric

IsObject

Item$

ItemCount

Kill

LBound

LCase, LCase$

Left, Left$

Len

Let

Like

Line Input #

Appendix C Language Elements by Platform 739

Language Element Windo
ws

Macinto
sh

Line$

LineCount

ListBox

ListBoxEnabled

ListBoxExists

Loc

Lock

Lof

Log

Long

LSet

LTrim, LTrim$

MacID

MacScript

Main

Mci

Menu

MenuItemChecked

MenuItemEnabled

MenuItemExists

Mid, Mid$

Mid, Mid$

Minute

MIRR

MkDir

Mod

Month

MsgBox (function)

MsgBox (statement)

MsgClose

MsgOpen

740 Working Model Basic User's Manual

Language Element Windo
ws

Macinto
sh

MsgSetText

MsgSetThermometer

Name

Net.AddCon$

Net.Browse$

Net.CancelCon

Net.Dialog

Net.GetCaps

Net.GetCon$

Net.User$

Not

Nothing

Now

NPer

Npv

Object

Oct. Oct$

OKButton

On Error

Open

OpenFilename$

Option Base

Option Compare

Option CStrings

OptionButton

OptionEnabled

OptionExists

OptionGroup

Or

Picture

PictureButton

Appendix C Language Elements by Platform 741

Language Element Windo
ws

Macinto
sh

Pmt

PopupMenu

PPmt

Print

Print #

PrinterGetOrientation

PrinterSetOrientation

PrintFile

Private

Public

PushButton

Put

Pv

QueEmpty

QueFlush

QueKeyDn

QueKeys

QueKeyUp

QueMouseClick

QueMouseDblClk

QueMouseDblDn

QueMouseDn

QueMouseMove

QueMouseMoveBatch

QueMouseUp

QueSetRelativeWindow

Random

Randomize

Rate

ReadINI$

ReadINISection

742 Working Model Basic User's Manual

Language Element Windo
ws

Macinto
sh

ReDim

REM

Reset

Resume

Return

Right, Right$

RmDir

Rnd

RSet

RTrim, RTrim$

SaveFileName$

Screen.DlgBaseUnitsX

Screen.DlgBaseUnitsY

Screen.Height

Screen.TwipsPerPixelX

Screen.TwipsPerPixelY

Screen.Width

Second

Seek

Seek

Select...Case

SelectBox

SelectButton

SelectComboboxItem

SelectListboxItem

SendKeys

Set

SetAttr

SetCheckbox

SetEditText

SetOption

Appendix C Language Elements by Platform 743

Language Element Windo
ws

Macinto
sh

Sgn

Shell

Sin

Single

Sleep

Sln

Space, Space$

Spc

SQLBind

SQLClose

SQLError

SQLExecQuery

SQLGetSchema

SQLOpen

SQLRequest

SQLRetrieve

SQLRetrieveToFile

Sqr

Stop

Str, Str$

StrComp

String

String, String$

Sub...End

Switch

SYD

System.Exit

System.FreeMemory

System.FreeResources

System.MouseTrails

System.Restart

744 Working Model Basic User's Manual

Language Element Windo
ws

Macinto
sh

System.TotalMemory

System.WindowsDirectory$

System.WindowsVersion$

Tab

Tan

Text

TextBox

Time, Time$ (functions)

Time, Time$ (statements)

Timer

TimeSerial

TimeValue

Trim, Trim$

Type

UBound

UCase, UCase$

UnLock

Val

Variant

VarType

ViewportClear

ViewportClose

ViewportOpen

VLine

VPage

VScroll

Weekday

While...Wend

Width#

WinActivate

WinClose

 Language Elements by Platform 745

Language Element Windo
ws

Macinto
sh

WinFind

WinList

WinMaximize

WinMinimize

WinMove

WinRestore

WinSize

Word$

WordCount

Write #

WriteINI

Xor

Year

747

A P P E N D I X D

The following list contains important WM Basic limitations:
Line numbers are not supported. Labels can be used in place of line
numbers are targets for the Goto statement.
Strings are limited in length to 32,764 characters. This includes local,
public, and private strings, as well as strings within structures and
arrays.
The Visual Basic declaration modifiers Static and Shared are not
supported.
The default string space is 8K, which expands automatically up to a
maximum of 1 MB. This space contains all strings and arrays
regardless of their scope.
The default stack size for the runtime is 2,048 bytes. This space
contains all local variables (except arrays and variable-length strings)
and passed parameters.
The stack is also used by the runtime for storage of intermediate
values, so the actual available stack space will be slightly less.
Calls made to subroutines or functions in other scripts use the stack of
the caller.
The data area that holds private variables is limitated to 16K. This data
space contains all private variables except strings and arrays, which
are stored in the string space.
The data area that holds public variables is limited to 16K. This data
space contains all public variables except strings and arrays, which are
stored in the string space.
The size of a source script is limited to 65534 characters. This
limitation can be avoided by breaking up large scripts into smaller
ones.
A compiled script consists of p-code, constant data, and symbolic
information, each of which is limited to 64K. These limitations can be
avoided by breaking up large scripts into smaller ones, which is rarely
necessary.
Arrays can have up to 60 dimensions.
Variable names are limited to 80 characters.

WM Basic Limitations

748 Working Model Basic User's Manual

Labels are limited to 80 characters.
Each executing script contains a table of structures that track calls
made to external routines. Each structure is approximately 88 bytes
with an overal size limited to 64K.
The number of open DDE channels is not fixed; rather, it is limited
only by available memory and system resources.
The number of open files is limited to 255 or the operating system
limit, whichever is less.
The number of characters within a string literal (a string enclosed
within quotation marks) is limited to 1024 characters. (Strings can be
concatenated using the concatenation [&] operator with the normal
string limit of 32,764 characters.)
The number of nesting levels (i.e., loops within loops) is limited by
compiler memory.
Queue playback buffer size is limited to 64K. With 10 bytes per event,
this allows for 6,553 events.
Each GoSub requires 2 bytes of the WM Basic runtime stack.
Arrays and user-defined types cannot be passed to a method of an OLE
automation object.
Arrays and user-defined types cannot be set as the value of a property
of an OLE automation object.
Arrays and user-defined types cannot be returned from a method or
property of an OLE automation object.
Array indexes must be in the following range:
-32768 <= array-index <=32767
The size of an array cannot exceed 32K. For example, an array of
integers, each of which requires 2 bytes of storage, is limited to the
following maximum number of elements:
max_num_elements = (32767 - overhead) / 2

where overhead is currently approximately 16 bytes.
A maximum of 128 fonts can be used within a single user dialog,
although the practical limitation imposed by the operating system may
be less.

749

A P P E N D I X E

The following section describes differences between Visual Basic and WM Basic. In the
proceeding discussion, "VB" is used to refer to Visual Basic 3.0, and VBA is used to refer to
Visual Basic for Applications 1.0.
The following sections are covered:

Arrays
Constants
Data Types
Declarations
Declare Statement
Floating Point Numbers
Language Element Differences
Natural Language Support
Objects
OLE Automation
Parameter Passing
Strings
Variants
Stack Size
Expression Evaluation
File Searching

WM Basic/Visual Basic
Differences

750 Working Model Basic User's Manual

Arrays
VB and VBA support huge arrays, WM Basic does not.

Constants
VBA supports shared constants (using the Public keyword). In WM Basic, constants must
be repeated within each script in which they are used.
VB and VBA do not allow the concatenation of constant elements. For example, the
following script compiles in WM Basic but not in VB or VBA:

Const t$ = "Hello" & Chr$(9) & "there."
Sub Main()

Msgbox t$
End Sub

VBA allows a user to redefine global constants at the subroutine/function level without
affecting their global values; WM Basic does not. For example, the following script will
compile and execute in VBA but not in WM Basic:

Const t = "Hello"
Sub Main()

Const t$ = "Good Bye"
MsgBox t$ 'Displays Good Bye

End Sub

Data Types
WM Basic and VBA support the Boolean and Date data types, VB does not.

Declarations
In VB and VBA, if a variable is initially declared with a type declaration character, then that
character must appear with every use of that variable. WM Basic relaxes this by not requiring
the type declaration character with every use of that variable.
Both VB and VBA support the Static keyword as a modifier for the Sub and Function
statements. WM Basic supports use of this keyword with these statements with no effect.
A variable used in a comparison expression that hasn't been declared will be implicitly
declared in VB and VBA. In WM Basic, this will be seen as an unresolved function:

Sub Main
if a$ = "hello" then beep

End Sub
In WM Basic, the above script will compile, but gives a Sub or function not defined
error when executed. In VB and VBA, this will automatically declare a variable called a$ as
a String.
WM Basic allows the @ type declaration character to be specified with currency constants;
VB and VBA do not.

Declare Statement
VBA supports shared Declare statements (using the Public keyword). In WM Basic, these
must be declared in every script in which they are used.
WM Basic supports a superset of that functionality available in VB—namely, the additional
calling conventions.

Appendix E WM Basic/Visual Basic Differences 751

WM Basic and VB pass values to external routines in the same manner with the following
exceptions:

WM Basic passes True or False as Boolean values (signed short in
C). VB passes these as Boolean variants.
Variants are passed as internal variant structures in both WM Basic
and VB. For all numeric values, the types are the same. Strings,
however, in WM Basic are passes as a 16-bit internal value, whereas in
VB they are passed as a 32-bit pointer to a null-terminated string.
The variant structure in both systems is a 4-byte type (a 32-bit
integer—the same value as returned by the VarType function),
followed by 4 bytes of slop, followed by the value of the variable, as
shown below:
Bytes 0-3 Bytes 4-7 Bytes 8-15

VarType Alignment
slop

Value

Strings within variants are passed within an internal variant structure
in both WM Basic and VB.

Floating Point Numbers
In VB and VBA, floating point numbers are interpreted as doubles unless they are explicitly
accompanied by a type-declaration character. Thus, the following line assigns a Double in
VB and VBA, whereas in WM Basic, it assigns a Single:

a = 0.00001
In WM Basic, additional checking is performed to determine if a floating point number can
be accurately represented as a Single. If so, then the number is stored as a Single, requiring
4 bytes rather than 8.
The implications of this difference can be seen in the following code:

Dim a As Variant,b As Variant
a = 1000
b = .00001
a = a + b
MsgBox a

In VB and VBA, since the variables a and b are assigned Double values, the addition is
performed between two doubles, resulting in the value 1000.00001. In WM Basic, on the
other hand, a and b are assigned Single values, resulting in an addition between two singles.
When these two singles are added, there is a loss of precision resulting in the value 1000.
In situations such as this, you should explicitly force the types using type-declaration
characters. The above code can be re-written as follows:

Dim a As Variant,b As Variant
a = 1000#
b = .00001#
a = a + b
MsgBox a 'WM Basic displays 1000.00001

Currency Numbers
In VB , Double numbers do not convert to Currency numbers the same way. In VB, for
example, the following script will fail:

752 Working Model Basic User's Manual
Sub Main

result = CCur("-1.401298E-45")
End Sub

The above fails in VB because the number being converted is known to be a Double. In WM
Basic, any number between the valid range supported by Currency is convertable to
Currency, even if the number is expressed in scientific notation or is extremely small
(approaching zero).

Language Element Differences
The following language elements allow specification of additional parameters for displaying
help in VBA:

MsgBox (statement)
MsgBox (function)
InputBox/InputBox$ (functions)

WM Basic and VB do not support these parameters.
VBA and WM Basic uses a slightly different syntax for the following SQL functions (due to
WM Basic's lack of support for variant arrays):

SQLError
SQLGetSchema
SQLRetrieve
SQLRequest

The above functions are supported only by VBA, not by VB
WM Basic does not support any of the following VBA language elements:

Language Element Type
Array Function
ebHiragana Constant
ebKatakana Constant
ebLowerCase Constant
ebNarrow Constant
ebProperCase Constant
ebUpperCase Constant
ebWide Constant
Exit Property Statement
For Each...Next Statement
IsArray Function
LenB Function
LoadPicture Function
On...Gosub Statement
On...Goto Statement
Option Explicit Statement
Option Private Statement
Property Get...End Property Statement
Property Let...End Property Statement
Property Set...End Property Statement

Appendix E WM Basic/Visual Basic Differences 753

Language Element Type
SavePicture Statement
Screen.MousePointer Property
Static Statement
StrConv Function
TypeName Function
TypeOf Function
With...End With Statement

The syntax for MsgBox and InputBox does not support the context and HelpFile parameters.

Natural Language Support
VBA supports multi-byte characters (sometimes referred to as natural language support);
WM Basic and VB do not.

Objects
WM Basic does not support any of VB's objects (except clipboard, screen, and a few others).

OLE Automation
WM Basic does not support named parameters. Visual Basic does not support named-
parameters either; this is a feature of VBA.
WM Basic does not support the VBA bracket syntax used with OLE automation objects. For
example, the following two expressions are equivalent in VBA:

Application.Workbooks(1).Worksheets(“Sheet1”).Range(“A1”)
[A1]

WM Basic does not support the VBA bracket syntax used to resolve the scope of a method or
property:

Dim a As Object
Set a = CreateObject("Word.Basic")
a.[MsgBox] "Hello, world." '<-- Won't work in WM Basic

Parameter Passing
VB and WM Basic do not support optional parameters. This is supported by VBA.

Strings
In WM Basic, variable-length strings within structures require 2 bytes of storage. In VB and
VBA, variable-length strings within structures require 4 bytes of storage.
The implications of this difference can be seen in the following code:

Type Sample
LastName As String

End Type
Sub Main

Dim a As Sample
MsgBox Len(a)

End Sub
In the above code, Visual Basic displays 4, while WM Basic displays 2.

754 Working Model Basic User's Manual

In WM Basic, variable-length strings are limited to 32K in length. In VB, variable-length
strings are limited to 64K. In VBA, variable-length strings have no limits on their lengths.
This limitation has implications on the string functions. For example, the Left function
returns a specified number of characters from the left side of a string. The second parameter
represents the number of characters to return—in VBA, this parameter is a Long whereas, in
WM Basic, this parameter is an Integer. To demonstrate, the following statement will
overflow in WM Basic, but not in VBA:

s$ = Left(s$,300000)
VB and VBA do not accept strings in some functions expecting numbers such as Int and
Fix. WM Basic allows strings as long as they are convertible to numbers.

Dim A As Variant
ABS(19) 'OK
A = "10"
ABS(A) 'OK
ABS("10") 'Works in WM Basic, not in VB/VBA

In WM Basic, these functions will accept any data type convertible to a number. If the data
type is a string, WM Basic converts it to a Double.
Fixed-length strings within structures are size-adjusted upwards to an even size. Thus,
structures in WM Basic are always even sized. VB and VBA allow fixed-length strings
within structures to maintain an odd size.

Variants
Passing variants either by value or by reference to external routines (using the Declare
statement) passes either the entire variant structure (ByVal) or a pointer to a variant structure
(ByRef) used internally by WM Basic. This means that passing variants to externally
declared routines can only be done if that routine is aware of the internal variant structure
used by WM Basic. This applies specifically to strings and OLE automation objects stored
within the variant.
In VB and VBA, on the other hand, strings and OLE automation objects within variants are
stored in their native format (i.e., 32-bit pointer to a null-terminated string or an LPDISPATCH
value).
VBA supports variant arrays; WM Basic and VB do not. This includes use of the Array and
IsArray functions.
WM Basic and VBA support error variants; VB does not.

Passing Variants by Reference
In VBA, variants cannot be passed by reference to user-defined routines accepting non-
variant parameters. For example, the following will not work in VBA:

Sub Test(ByRef a As Integer)
End Sub
Sub Main

Dim v As Variant
v = 5
Test v '<-- VBA gives error here

End Sub
In WM Basic, the above example works as expected. WM Basic actually performs a
conversion of the Variant v to a temporary Integer value and passes this temporary value
by reference. Upon return from the call to Test, WM Basic convers the temporary Integer
back to a Variant.

Appendix E WM Basic/Visual Basic Differences 755

Passing Optional Variants to Forward Declared Routines
WM Basic does not catch the following error:

Declare Sub Test(Optional v As Variant) '<-- LINE 1
Sub Main

Test
End Sub
Sub Test(v As Variant) '<-- LINE 5
End Sub

In the above script, the Declare statement on line 1 defines a prototype for the Test function
that is incompatible with the actual declaration on line 5.

Stack Size
WM Basic uses a default stack of 2K, expandable to 8K. VB and VBA uses a much larger
stack size. For example, VBA allocates approximately 14K for the stack.
Since the stack for WM Basic is smaller, you may have to be more attentive when using local
variables, especially fixed-length strings and structures, since storage for all local variables
comes from the stack.
Note: Variable-length strings only require 2 bytes of storage on the stack. Wherever possible,
use variable length strings in place of fixed-length strings.

Expression Evaluation
With Boolean expressions (i.e., expression involving And, Or, Xor, Eqv, and Imp), if one
operand is Null and the other argument is numeric, then Null is returned regardless of the
value of the other operand. For example, the following expression returns Null:

Null And 300000
Despite the fact that the expression returns Null, VBA evaluates the numeric operand
anyway, converting it to a Long. If an overflow occurs during conversion, a trappable
runtime error is generated. In WM Basic, the expression returns Null regardless of the value
of the numeric operand. For example, the following expression will overflow in VBA, but
not in WM Basic:

Null And 5E200

File Searching
The filename matching algorithm used by WM Basic is different than that used by VB. This
affects commands that perform directory searching, such as Dir, Kill, and FileList. The
following differences exist:

In VB, an asterisk within the filename matches any characters up to
the end of the filename or to the period, whichever comes first.
In VB, the period is a separator for the filename and the extension. In
WM Basic, the period is treated as a normal filename character.

The following table describes the meaning of some common file specifications.
Specificati
on

Meaning in VB Meaning in WM Basic

* All files. All files.

. All files. All files that have an

756 Working Model Basic User's Manual

extension.

s*e All files that begin with
"s".

All files that begin with "s"
and end with "e".

s*.* All files that begin with
"s".

All files that begin "s" and
have an extension.

test. The file "test" with no
extension.

The file called "test.". WM
Basic will never find this
file under Windows or
DOS.

test.* All files having the root
name "test" with any
extension, such as "test",
"test.txt", and so on.

All files having the root
name "test" with an
extension. The file "test"
with no extension will not
be found.

This filename matching algorithm is the same across all platforms that support WM Basic.

757

– (minus sign), subtraction operator, 52–53
! (exclamation point)

activating parts of files, 260
used for Single type-declaration character. See type-

declaration characters
used within user-defined formats, 242

" (quote), embedding within strings, 305
(number sign)

as delimiter for date literals, 305
delimiter for date literals, 129
delimiter for parsing input, 274–76
used for Double type-declaration character. See type-

declaration characters
used to specify ordinal values, 152
used within user-defined formats, 241
wildcard used with Like (operator), 297

#ERROR code#
reading from sequential files, 275
writing to sequential files, 492

#FALSE#
reading from sequential files, 275
writing to sequential files, 492

#NULL#
reading from sequential files, 275
writing to sequential files, 492

#TRUE#
reading from sequential files, 275
writing to sequential files, 492

$ (dollar sign), used for String type-declaration
character. See type-declaration characters

$wmend$, 695, 696, 698
$wmstart$, 695, 696, 698
% (percent)

used for Integer type-declaration character. See type-
declaration characters

used within user-defined formats, 241
& (ampersand)

concatenation operator, 48
octal/hexadecimal formats, 305
used for Long type-declaration character. See type-

declaration characters
used within user-defined formats, 242

& (operator), vs. addition, 51
' (apostrophe), used with comments, 48–50
() (parentheses)

used in expressions, 49–50
() (parentheses)

used to pass parameters by value, 49
* (asterisk)

multiplication operator, 50
used within user-defined formats, 242
wildcard. See wildcards
wildcard used with Like (operator), 297

+ (plus sign), addition operator, 50–52
, (comma)

used with Print, 371
used within user-defined formats, 241

. (period)
used to separate object from property, 53–54
used with structures, 53–54
used within filenames, 124
used within user-defined formats, 241

/ (slash)
division operator, 54–55
used within filenames, 123
used within user-defined formats, 241

: (colon)
used with labels, 264
used within filenames, 123, 124
used within user-defined formats, 241

; (semicolon), used with Print, 371, 373
< (less than)

comparison operator, 3–4
used within user-defined formats, 242

Index

758 Working Model Basic User's Manual

<= (less than or equal), comparison operator, 3–4
<> (not equal), comparison operator, 3–4
= (equal sign)

assignment statement, 55–56
comparison operator, 3–4

> (greater than)
comparison operator, 3–4
used within user-defined formats, 242

>= (greater than or equal), comparison operator, 3–4
? (question mark)

wildcard. See wildcards
wildcard used with Like (operator), 297

@ (at sign)
used for Currency type-declaration character. See

type-declaration characters
used within user-defined formats, 242

\ (backslash)
integer division operator, 56
used with escape characters, 358
used within filenames, 123
used within user-defined formats, 242

^ (caret), exponentiation operator, 57
_ (underscore), line-continuation character, 57–58
__stdcall calling convention, 145
0 (digit), used within user-defined formats, 240
Abs (function), 58–59
absolute value, 58–59
accelerator keys, in Dialog Editor, 661

assigning to dialog controls, 669–71
testing, 679

actions, dialog, 172, 691
ActivateControl (statement), 59–60
activating

applications, 64–65
windows, 482–83

aliases
used with external subroutines and functions, 146

alignment, considerations for cross-platform scripting,
122

And (operator), 60–61
annuities

future values of, 250
interest rates of, 396–97
number of periods for, 340–41
payments for, 367–68
present value of, 341–42, 384–85
principal payments for, 369–71

AnswerBox (function), 61–63
antilogarithm function (Exp), 224
Any (data type), 63–64, 147
AppActivate (statement), 64–65

AppClose (statement), 65–66
Append (keyword), 350–53
AppFilename$ (function), 66
AppFind$ (function), 66–67
AppGetActive$ (function), 67
AppGetPosition (statement), 67–68
AppGetState (function), 68–69
AppHide (statement), 69–70
AppleScript, executing, 312
applications

activating, 64–65
changing size of, 75–76
closing, 65–66
finding, 66–67
finding active, 67
getting position of, 67–68
getting state of, 68–69
getting type of, 76–77
hiding, 69–70
listing, 70–71
maximizing, 71
minimizing, 71–72
moving, 72–73
restoring, 73–74
retrieving filenames of, 66
running, 426–27
selecting menu commands from, 315–16
setting state of, 74
showing, 75

AppList (statement), 70–71
AppMaximize (statement), 71
AppMinimize (statement), 71–72
AppMove (statement), 72–73
AppRestore (statement), 73–74
AppSetState (statement), 74
AppShow (statement), 75
AppSize (statement), 75–76
AppType (function), 76–77
arctangent function (Atn), 84
arguments

parentheses use, 49–50
passed to functions, 248
passed to subroutines, 450
to external routines, 93, 147, 151

arithmetic operators. See operators
arranging

icons, 155
windows

cascading, 155–56
tiling, 158–59

ArrayDims (function), 77–78

 Index 759

arrays, 3
ArrayDims (function), 77–78
declaring, 79

as local, 161–63
as private, 376–77
as public, 377–80

Dim (statement), 161–63
dimensions

getting bounds of, 80
getting lower bound, 292–93
getting number of, 77–78, 80
getting upper bound, 466–67
LBound (function), 292–93
maximum number of, 161
reestablishing, 398–99
UBound (function), 466–67

dynamic, 80, 161, 376, 378, 398–99
erasing, 215–16
filling combo boxes from, 170
filling drop list boxes from, 170
filling list boxes from, 170
filling with application names, 70–71
filling with disk names, 166
filling with query results, 441
filling with window objects, 485
fixed-sized, declaring, 79
list of language elements, 3
operations on, 80
passing, 80
Private (statement), 376–77
Public (statement), 377–80
selecting items of, 414–15
setting default lower bound of, 356
size, changing while running, 398–99
sorting, 81
total size of, 161, 376, 378

ArraySort (statement), 81
As Any (keyword), 147
Asc (function), 81–82
AskBox$ (function), 82–83
AskPassword$ (function), 83–84
assigning, objects, 420–21
assignment

= (statement), 55–56
Let (statement), 296–97
LSet (statement), 310–11
overflow during, 55, 297
rounding during, 226
RSet (statement), 404

Atn (function), 84
used to calculate Pi, 363

attributes. See files, attributes of
automation. See OLE automation
Basic.Capability (method), 84–85, 120
Basic.Eoln$ (property), 85–86
Basic.FreeMemory (property), 86
Basic.HomeDir$ (property), 86
Basic.OS (property), 87, 120
Basic.PathSeparator$ (property), 87
Basic.Version$ (property), 87–88
BasicScript

free memory of, 86
functions to get information from, 12
home directory of, 86
version of, 87–88

Beep (statement), 88
Begin Dialog (statement), 88–90
Binary (keyword), 350–53
binary data

reading, 251–53
writing, 381–84

binary files
opening, 350–53
reading from, 251–53
writing to, 381–84

binary operators
And (operator), 60–61
Eqv (operator), 214–15
Imp (operator), 272–73
list of, 12–13
Not (operator), 338–39
Or (operator), 362–63
Xor (operator), 494–95

bitmaps, used in dialog boxes, 364, 366
Body (method)

of WMDocument, 544
Body (property)

of WMPoint, 616
Boolean (data type), 91

converting to, 96
range of values, 91
storage requirements, 91

Boolean constants
False (constant), 227
True (constant), 464

breakpoints, in Script Editor, 640
removing, 642
setting, 640–41

bugs (error trapping), 219–20, 348–50
built-in dialogs. See dialogs, built-in
ButtonEnabled (function), 91–92
ButtonExists (function), 92

760 Working Model Basic User's Manual

buttons. See also push buttons
on toolbar

in Dialog Editor, 653–54
in Script Editor, 620–21

by value, forcing parameters, 248, 450
ByRef (keyword), 92–93, 146, 148, 247, 248, 449, 450
byte ordering, with files, 121
byte ordering, with structures, 121
ByVal (keyword), 49, 93–94, 146, 147, 246, 248, 449,

450
Call (statement), 94–95
calling

external routines, 144–53
other routines, 94–95

calling conventions
__stdcall, 145
CDecl, 145
for external routines, under Macintosh, 148
for external routines, under Win32, 148
for external routines, under Windows, 148
Pascal, 145
System, 145

Cancel buttons
adding to dialog template, 95
getting label of, 177
in Dialog Editor, 657
setting label of, 176

capabilities
of network, 334–36
of platform, 84–85

capturing
active application, 157–58
active window, 157–58
entire screen, 157–58

capturing dialog boxes from another application, in
Dialog Editor, 676–77

cascading desktop windows, 155–56
Case Else (statement), 413
case sensitivity, when comparing strings, 356–57
case statement, 412–13
CBool (function), 96
CCur (function), 96–97
cd audio, Mci (function), 313–15
CDate, CVDate (functions), 97
CDbl (function), 98
CDecl (keyword), 144–53
CDecl calling convention, 145
character

codes, 81–82
converting to number, 81–82

ChDir (statement), 98–99

ChDrive (statement), 99
check boxes

adding to dialog template, 99–101
checking for existence of, 101–2
checking if enabled, 101
getting state of, 178, 255
in Dialog Editor, 657
setting state of, 179, 422–23

CheckBox (statement), 99–101
CheckBoxEnabled (function), 101
CheckBoxExists (function), 101–2
Choose (function), 102–3
Chr, Chr$ (functions), 103
chunking. See parsing
CInt (function), 103–4
Clipboard

erasing, 105–6
getting contents of, 104–5, 106–7
getting type of data in, 106
list of language elements, 3
placing snapshots into, 157–58
setting contents of, 105, 107

Clipboard$ (function), 104–5
Clipboard$ (statement), 105
Clipboard.Clear (method), 105–6
Clipboard.GetFormat (method), 106
Clipboard.GetText (method), 106–7
Clipboard.SetText (method), 107
CLng (function), 107–8
Close (statement), 108–9
closing

all files, 400
applications, 65–66
files, 108–9
windows, 483–84

code resources
search rules for, 152
specifying, on the Macintosh, 153

Collection (topic), 497
collections

defined, 346
elements, identifying, 346
indexing, 346
methods of, 346
properties of, 346

colors, changing desktop, 156
combo boxes

adding to dialog template, 109–10
checking for existence of, 111–12
checking if enabled, 110–11
getting edit field of, 177

 Index 761

getting number of items in, 256–57
getting selection of, 255–56
in Dialog Editor, 657
selecting item from, 416
setting edit field of, 176
setting items in, 170

ComboBox (statement), 109–10
ComboBoxEnabled (function), 110–11
ComboBoxExists (function), 111–12
command line, retrieving, 112
Command, Command$ (functions), 112
comments, 113

' (apostrophe), 48–50
adding to scripts, in Script Editor, 632
list of language elements, 3
Rem (statement), 400

common dialogs
file open, 353–55
file save, 406–7

comparing strings, 445–46
comparison operators, 3–4

list of, 3–4
table of, 113
used with mixed types, 114
used with numbers, 114
used with strings, 114
used with variants, 115

compatibility mode, opening files in, 352
compiler errors, 705–9
concatenation operator (&), 48
conditionals

Choose (function), 102–3
If...Then...Else (statement), 270–71
IIf (function), 271–72
Switch (function), 451–52

conjunction operator (And), 60–61
Const (statement), 115–17
constants. See also literals

declaring, 115–17
ebAbort (constant), 189
ebBold (constant), 190
ebBoldItalic (constant), 191
ebBoolean (constant), 191
ebCurrency (constant), 192
ebDate (constant), 193
ebDirectory (constant), 194–95
ebDOS16 (constant), 87
ebDouble (constant), 195
ebEmpty (constant), 195
ebExclamation (constant), 195–96
ebHidden (constant), 196

ebIgnore (constant), 196–97
ebInformation (constant), 197
ebInteger (constant), 197–98
ebItalic (constant), 198
ebLandscape (constant), 198
ebLeftButton (constant), 198–99
ebLong (constant), 199
ebMacintosh (constant), 87, Error! Not a valid

bookmark in entry on page 199
ebMaximized (constant), 199
ebMinimized (constant), 200
ebNo (constant), 200
ebNone (constant), 200–201
ebNormal (constant), 201
ebNull (constant), 202
ebObject (constant), 202
ebOK (constant), 202
ebOKCancel (constant), 202–3
ebOKOnly (constant), 203
ebOS2 (constant), 87
ebPortrait (constant), 203
ebQuestion (constant), 203–4
ebReadOnly (constant), 204
ebRegular (constant), 204–5
ebRestored (constant), 205
ebRetry (constant), 205
ebRetryCancel (constant), 206
ebRightButton (constant), 206
ebSingle (constant), 206–7
ebSolaris (constant), 87
ebString (constant), 207
ebSystem (constant), 207–8
ebSystemModal (constant), 208
ebVariant (constant), 208
ebVolume (constant), 208–9
ebWin16 (constant), 87, 195
ebWin32 (constant), 87
ebWindows (constant), 209–10
ebYes (constant), 210
ebYesNo (constant), 210
ebYesNoCancel (constant), 210–11
Empty (constant), 212
False (constant), 227
folding, 306
giving explicit type to, 116
list of, 118
list of language elements, 17
naming conventions of, 116
Nothing (constant), 339
Null (constant), 342–43
Pi (constant), 363

762 Working Model Basic User's Manual

scoping of, 117
True (constant), 464

control IDs, retrieving, 167
control structures, 213

Do...Loop (statement), 182–83
Exit Do (statement), 221–22
Exit For (statement), 222–23
Exit Function (statement), 223
Exit Sub (statement), 224
For...Next (statement), 237–38
Function...End Function (statement), 245–49
GoSub (statement), 262–63, 401–2
Goto (statement), 263–64
If...Then...Else (statement), 270–71
list of, 5–6
Select...Case (statement), 412–13
Sub...End Sub (statement), 448–51
While...Wend (statement), 481–82

control.ini file, 156
controlling applications

list of language elements, 4–5
Menu (statement), 315–16
QueEmpty (statement), 385–86
QueFlush (statement), 386
QueKeyDn (statement), 386–87
QueKeys (statement), 387–88
QueKeyUp (statement), 388
QueMouseClick (statement), 388–89
QueMouseDblClk (statement), 389–90
QueMouseDblDn (statement), 390–91
QueMouseDn (statement), 391–92
QueMouseMove (statement), 392
QueMouseMoveBatch (statement), 393–94
QueMouseUp (statement), 394
QueSetRelativeWindow (statement), 394–95

controlling program flow. See control structures
controls. See dialog controls
conversations. See DDE
conversion. See data conversion
coordinate systems

dialog base units, 407–8
pixels, 408–9–10
twips per pixel, 409

copying
data

using = (statement), 55–56
using Let (statement), 296–97
using LSet (statement), 310–11
using RSet (statement), 404

files, 228–29
text. See Clipboard

in Script Editor, 631
user-defined types, 310

Cos (function), 118
cosine, 118
counters, used with For...Next (statement), 238
counting

items in combo box, 256–57
items in list box, 259–60
items in string, 289–90
lines in string, 300–301
words, 491–92

CreateObject (function), 118–20
creating dialog boxes, in Dialog Editor, 656–61
creating new objects, 162, 337–38
cross-platform scripting, 120–24

alignment, 122
byte ordering with files, 121
byte ordering with structures, 121
determining capabilities of platform, 120
determining platform, 84–85, 120
end-of-line character, 122
getting end-of-line character, 85–86
getting path separator, 87
getting platform, 87
path separators, 123
portability of compiled code, 122
portability of drive letters, 124
relative paths, 124
unsupported language elements, 123

CSng (function), 124–25
CStr (function), 125
CurDir, CurDir$ (functions), 125–26
Currency (data type), 126

converting to, 96–97
range of values, 126
storage requirements, 126

currency format, 239
custom controls, activating, 59–60
custom dialogs. See user dialogs
cutting text, in Script Editor, 631
CVar (function), 126–27
CVDate (function), 97
CVErr (function), 127–28
data conversion

character to number, 81–82
during expression evaluation, 225
list of language elements, 7
number to character, 103
number to hex string, 266
number to octal string, 347
string to number, 471–72

 Index 763

testing for numbers, 287–88
to Boolean, 96
to Currency, 96–97
to Date, 97, 136, 284–85, 463–64
to Double, 98
to error, 127–28
to Integer, 103–4
to Long, 107–8
to Single, 124–25
to String, 125, 445
to Variant, 126–27

data conversion functions
Asc (function), 81–82
CBool (function), 96
CCur (function), 96–97
CDate, CVDate (functions), 97
CDbl (function), 98
Chr, Chr$ (functions), 103
CInt (function), 103–4
CLng (function), 107–8
CSng (function), 124–25
CStr (function), 125
CVar (function), 126–27
CVErr (function), 127–28
Hex, Hex$ (functions), 266
Oct, Oct$ (functions), 347
Str, Str$ (functions), 445
Val (function), 471–72

data objects. See objects
data sources

retrieving DBMS of, 436
retrieving list of, 435
retrieving name of, 436
retrieving owner qualifier of, 436
retrieving server of, 436

data types
Any (data type), 63–64, 147
arguments. See arguments
arrays. See arrays
Boolean (data type), 91
changing default, 153–55
converting. See data conversion
converting between. See data conversion
Currency (data type), 126
Date (data type), 129
Dim (statement), 161–63
Double (data type), 185–86
Integer (data type), 280
list of, 7–8
Long (data type), 309–10
Object (data type), 343–44

Private (statement), 376–77
Public (statement), 377–80
returned from external functions, 146
Single (data type), 427–28
String (data type), 446–48
user-defined, 470–71
Variant (data type), 472–76

data, sharing. See DDE
database

list of language elements, 8
database functions

SQLBind (function), 430
SQLClose (function), 431
SQLError (function), 432
SQLExecQuery (function), 433
SQLGetSchema (function), 435
SQLOpen (function), 438
SQLRequest (function), 439
SQLRetrieve (function), 441
SQLRetrieveToFile (function), 442

databases
closing, 431
opening, 438
placing data, 430
querying, 433, 439, 441, 442
retrieving errors from, 432
retrieving information about, 435
retrieving list of, 435
retrieving list of owners of, 435
retrieving name of, 436
retrieving qualifier of, 436
tables

retrieving list of, 436
Date (data type), 129

converting to, 97, 136, 463–64
range of values, 129
specifying date constants, 129
storage requirements, 129

Date, Date$ (functions), 130
Date, Date$ (statements), 130–31
date/time functions

Date, Date$ (functions), 130
Date, Date$ (statements), 130–31
DateAdd (function), 131–33
DateDiff (function), 133–34
DatePart (function), 134–35
DateSerial (function), 136
Day (function), 136–37
FileDateTime (function), 229
Hour (function), 267
IsDate (function), 284–85

764 Working Model Basic User's Manual

list of language elements, 8–9
Minute (function), 319–20
Month (function), 322–23
Now (function), 339–40
Second (function), 410
Time, Time$ (functions), 461
Time, Time$ (statements), 461–62
Timer (function), 462
TimeSerial (function), 463
Weekday (function), 480–81
Year (function), 495

DateAdd (function), 131–33
DateDiff (function), 133–34
DatePart (function), 134–35
dates

adding, 131–33
converting to, 136, 284–85
current, 130, 339–40
Date (data type), 129
day of month, 136–37
day of week, 480–81
file creation, 229
file modification, 229
month of year, 322–23
parts of, 134–35
reading from sequential files, 275
setting, 130–31
subtracting, 133–34
year, 495

DateSerial (function), 136
DateValue (function), 136
Day (function), 136–37
DDB (function), 137–38
DDE

AppActivate (statement), 64–65
changing timeout, 144
DoEvents (function), 184
DoEvents (statement), 184
ending conversation, 142–43
executing remote command, 138–39
getting text, 140–41
getting value from another application, 140–41
initiating conversation, 139
list of language elements, 9
sending text, 140
setting data in another application, 141–42
setting value in another application, 140
Shell (function), 426–27
starting conversation, 139
terminating conversation, 142–43–44

DDEExecute (statement), 138–39

DDEInitiate (function), 139
DDEPoke (statement), 140
DDERequest, DDERequest$ (functions), 140–41
DDESend (statement), 141–42
DDETerminate (statement), 142–43
DDETerminateAll (statement), 143–44
DDETimeout (statement), 144
debugger, invoking, 444
debugging scripts, in Script Editor, 638. See also Script

Editor
breakpoints, 640

removing, 642
setting, 640–41

instruction pointer, 638
moving to another line in subroutine, 639

procedure calls, tracing, 639
script execution, tracing, 638–39
watch variables, 642

adding, 642–44
deleting, 644
modifying value of, 644–45
selecting, 644

decision making. See also control structures
Choose (function), 102–3
If...Then...Else (statement), 270–71
IIf (function), 271–72
Select...Case (statement), 412–13
Switch (function), 451–52

Declare (statement), 63, 144–53
declaring

implicit variables, 161
object variables, 162, 337–38, 343, 345
with Dim (statement), 161–63
with Private (statement), 376–77
with Public (statement), 377–80

default data type, changing, 153–55
default properties, 226
DefType (statement), 153–55
degrees, converting to radians, 84
DELETE (SQL statement), 434, 440
deleting controls, in Dialog Editor, 674
deleting text, in Script Editor, 630–31
delimited files, reading, 274–76
depreciation

calculated using double-declining balance method,
137–38

straight-line depreciation, 429
sum of years' digits depreciation, 452–53

Desktop.ArrangeIcons (method), 155
Desktop.Cascade (method), 155–56
Desktop.SetColors (method), 156

 Index 765

Desktop.SetWallpaper (method), 156–57
Desktop.Snapshot (method), 157–58
Desktop.Tile (method), 158–59
Dialog (function), 159–60
Dialog (statement), 160–61
dialog actions, 172, 691
dialog boxes, in Dialog Editor. See also dialog controls;

dialog controls, in Dialog Editor; Dialog Editor; user
dialogs
attributes of, adjusting with Information dialog box,

664–65
capturing from another application, 676–77
creating, 656–61
editing, 651, 661–74
incorporating dialog boxes or dialog controls into

script, 679
Information dialog box for, displaying, 662–63
moving

with arrow keys, 667
with Information dialog box, 667
with mouse, 666–67

opening dialog box template files in Dialog Editor,
677

pasting dialog box controls into Dialog Editor, 675–76
pasting dialog boxes into Dialog Editor, 675, 676
resizing, 668

with Information dialog box, 668
with mouse, 668

selecting, 662
testing, 678

for basic problems, 677–78
for operational problems, 678–79
when there are hidden controls, 668

titles of, changing, 669
dialog callback. See dialog procedures
dialog controls. See also dialog controls, in Dialog Editor

activating, 59–60
adding, in Dialog Editor, 658–59
Cancel buttons

adding to dialog template, 95
getting label of, 177
in Dialog Editor, 657
setting label of, 176

changing focus of, 169–70
changing text of, 176–77
check boxes

adding to dialog template, 99–101
checking existence of, 101–2
checking if enabled, 101
getting state of, 178, 255
in Dialog Editor, 657

setting state of, 179, 422–23
combo boxes

adding to dialog template, 109–10
checking for existence of, 111–12
checking if enabled, 110–11
getting edit field of, 177
getting number of items in, 256–57
getting selection of, 255–56
in Dialog Editor, 657
selecting item from, 416
setting edit field of, 176
setting items in, 170

deleting, in Dialog Editor, 674
disabling, 168–69
drop list boxes

adding to dialog template, 186–88
getting selection index of, 178
getting selection of, 177
in Dialog Editor, 657
setting items in, 170
setting selection of, 176, 179

duplicating, in Dialog Editor, 673
enabling, 168–69
getting enabled state of, 167–68
getting focus of, 169
getting text of, 177–78
getting value of, 178
getting visibility of, 179–80
group boxes

adding to dialog template, 265–66
getting label of, 177
in Dialog Editor, 657
setting label of, 176

list boxes
adding to dialog template, 301–3
checking for existence of, 303–4
checking if enabled, 303
getting number of items in, 259–60
getting selection index of, 178
getting selection of, 177, 258–59
in Dialog Editor, 657
selecting item from, 416–17
setting items in, 170
setting selection of, 176, 179

list of language elements, 9–10
moving, in Dialog Editor, 666–67–68
OK buttons

adding to dialog template, 347–48
getting label of, 177
in Dialog Editor, 657
setting label of, 176

766 Working Model Basic User's Manual

option buttons
adding to dialog template, 358–59
checking existence of, 360–61
checking if enabled, 359–60
getting label of, 177
getting selection index of, 178
getting state of, 261–62
grouping within dialog template, 361–62
in Dialog Editor, 657
selecting, 179
setting label of, 176
setting state of, 424–25

picture button controls
adding to dialog template, 365–67

picture buttons
in Dialog Editor, 657

picture controls
adding to dialog template, 363–65
in Dialog Editor, 657
setting image of, 174–76

positioning with grid, in Dialog Editor, 659–60
push buttons

adding to dialog template, 380–81
checking for existence of, 92
checking if enabled, 91–92
getting label of, 177
in Dialog Editor, 657
selecting, 415
setting label of, 176

resizing, in Dialog Editor, 668–69
retrieving ID of, 167
selecting, in Dialog Editor, 662
setting value of, 178–79
setting visibility of, 180–82
text boxes

adding to dialog template, 459–61
getting content of, 177, 257–58
in Dialog Editor, 657, 679
setting content of, 176, 423–24

text controls
adding to dialog template, 458–59
getting label of, 177
in Dialog Editor, 657
setting label of, 176

dialog controls, in Dialog Editor. See also dialog boxes,
in Dialog Editor; dialog controls; Dialog Editor; user
dialogs
accelerator keys

assigning to, 669–71
testing, 679

adding to dialog box, 658–59

attributes of, adjusting with Information dialog box,
664, 665–66

Cancel buttons, 657
check boxes, 657
combo boxes, 657
creating efficiently, 660–61
deleting

all controls, 674
one control, 674

drop list boxes, 657
duplicating, 673
group boxes, 657
hidden, 668
Information dialog box for, displaying, 663–64
labels of, changing, 669
list boxes, 657
moving

with arrow keys, 667
with Information dialog box, 667–68
with mouse, 666–67

OK buttons, 657
option buttons, 657

grouping, 661, 679
pasting controls into Dialog Editor, 675–76
picture buttons, 657. See also dialog controls, in

Dialog Editor, specifying pictures
picture controls, 657. See also dialog controls, in

Dialog Editor, specifying pictures
positioning with grid, 659–60
push buttons, 657
resizing, 668

automatically, 668–69
with Information dialog box, 668
with mouse, 668

selecting, 662
specifying pictures, 671

from file, 671
from picture library, 671–72

tabbing order of, 660, 676, 678
text boxes, 657, 679
text controls, 657
types of, 656–57

Dialog Editor, 651, 652. See also dialog boxes, in Dialog
Editor; dialog controls; dialog controls, in Dialog
Editor; user dialogs
application window, 652–53
Controls menu, 683–84
controls supported by, 656–57
Dialog Translation Errors dialog box, 676, 677
Edit menu, 682–83
exiting from, 680

 Index 767

features of, 652
File menu, 680–81
grid, displaying and adjusting, 659–60
help

for current window, 655
on selected topics, 655–56

Help menu, 684–85
Information dialog box, 662–66

adjusting control attributes with, 664, 665–66
adjusting dialog box attributes with, 664–65
displaying

for controls, 663–64
for dialog boxes, 662–63

keyboard shortcuts, 654–55
Pick tool, 685
picture libraries, 672–73

creating for use in, 672–73
modifying for use in, 673

toolbar of, 653–54
undoing editing operations, 674

dialog procedures, 171–74
actions sent to, 172, 691

dialog templates. See user dialogs
dialog units, calculating, 407–8
dialogs, built-in. See also user dialogs

AnswerBox (function), 61–63
AskBox$ (function), 82–83
AskPassword$ (function), 83–84
InputBox, InputBox$ (functions), 277–78
listing of, 14–15
MsgBox (function), 323–26
MsgBox (statement), 327
MsgClose (statement), 327
MsgOpen (statement), 327–29
MsgSetText (statement), 329
MsgSetThermometer (statement), 329–30
PopupMenu (function), 368–69
SaveFilename$ (function), 406–7
SelectBox (function), 414–15
user-defined, 88–90

Dim (statement), 161–63
dimensions. See arrays, dimensions
Dir, Dir$ (functions), 163–65
directories

changing, 98–99
containing BasicScript, 86
containing Windows, 455
creating, 321–22
getting list of, 230
getting path separator, 87
parsing names of, 234–35

removing, 403
retrieving, 125–26
retrieving filenames from, 163–65, 231–34

disabling, dialog controls, 168–69
disjunction operator (Or), 362–63
disk drives

changing, 99
getting free space of, 166–67
platform support, 124
retrieving current directory of, 125–26
retrieving list of, 166

DiskDrives (statement), 166
DiskFree (function), 166–67
displaying messages, 323–26, 327

breaking text across lines, 325
DlgControlId (function), 167
DlgEnable (function), 167–68
DlgEnable (statement), 168–69
DlgFocus (function), 169
DlgFocus (statement), 169–70
DlgListBoxArray (function), 170
DlgProc (function), 171–74
DlgSetPicture (statement), 174–76
DlgText (statement), 176–77
DlgText$ (function), 177–78
DlgValue (function), 178
DlgValue (statement), 178–79
DlgVisible (function), 179–80
DlgVisible (statement), 180–82
DLLs. See also external routines

calling, 144–53
Declare (statement), 144–53
search rules for, under Windows, 152

Do...Loop (statement), 182–83
exiting Do loop, 221–22

documentation. See comments
DoEvents (function), 184
DoEvents (statement), 184
Double (data type), 185–86

converting to, 98
internal format, 186
range of values, 186
storage requirements, 185–86

double-declining balance method, used to calculate
depreciation, 137–38

drives. See disk drives
drop list boxes

adding to dialog template, 186–88
getting selection index of, 178
getting selection of, 177
in Dialog Editor, 657

768 Working Model Basic User's Manual

setting items in, 170
setting selection of, 176, 179

DropListBox (statement), 186–88
duplicating controls, in Dialog Editor, 673
dynamic arrays, 80
dynamic data exchange. See DDE
dynamic dialogs. See user dialogs
dynamic link libraries. See DLLs
e. See logarithms
ebAbort (constant), 189
ebBold (constant), 190
ebBoldItalic (constant), 191
ebBoolean (constant), 191
ebCurrency (constant), 192
ebDate (constant), 193
ebDirectory (constant), 194–95
ebDOS (constant), 87
ebDouble (constant), 195
ebEmpty (constant), 195
ebExclamation (constant), 195–96
ebHidden (constant), 196
ebIgnore (constant), 196–97
ebInformation (constant), 197
ebInteger (constant), 197–98
ebItalic (constant), 198
ebLandscape (constant), 198
ebLeftButton (constant), 198–99
ebLong (constant), 199
ebMacintosh (constant), 87, Error! Not a valid

bookmark in entry on page 199
ebMaximized (constant), 199
ebMinimized (constant), 200
ebNo (constant), 200
ebNone (constant), 200–201
ebNormal (constant), 201
ebNull (constant), 202
ebObject (constant), 202
ebOK (constant), 202
ebOKCancel (constant), 202–3
ebOKOnly (constant), 203
ebOS2 (constant), 87
ebPortrait (constant), 203
ebQuestion (constant), 203–4
ebReadOnly (constant), 204
ebRegular (constant), 204–5
ebRestored (constant), 205
ebRetry (constant), 205
ebRetryCancel (constant), 206
ebRightButton (constant), 206
ebSingle (constant), 206–7
ebSolaris (constant), 87

ebString (constant), 207
ebSystem (constant), 207–8
ebSystemModal (constant), 208
ebVariant (constant), 208
ebVolume (constant), 208–9
ebWin16 (constant), 87, 195
ebWin32 (constant), 87
ebWindows (constant), 209–10
ebYes (constant), 210
ebYesNo (constant), 210
ebYesNoCancel (constant), 210–11
edit controls. See text boxes
EditEnabled (function), 211
EditExists (function), 211–12
editing custom dialog boxes, 651, 661–74
Else (keyword), 270–71
ElseIf (keyword), 270–71
embedded objects. See OLE automation
embedded quotation marks, 305
Empty (constant), 212
Empty, testing for, 285
enabling, dialog controls, 168–69
End (statement), 213
end of file

checking, 213–14
checking for, 213–14

end-of-line, in sequential files, 276
entry points, Main (statement), 313
Environ, Environ$ (functions), 213
environment variables, getting, 213
environment, controlling

list of language elements, 6–7
EOF (function), 213–14
equivalence operator (Eqv), 214–15
Eqv (operator), 214–15
Erase (statement), 215–16
Erl (function), 216–17
Err (function), 217
Err (statement), 218
Error (statement), 218–19
error handlers

cascading, 220
nesting, 219, 349
removing, 349
resetting, 218, 349
resuming, 349, 400–401

error messages
BasicScript-specific, 702, 703
compatible with Visual Basic, 699
compiler, 705–9
runtime, 699–702

 Index 769

error trapping, 219–20, 348–50
Error, Error$ (functions), 220–21
errors

BasicScript-specific, 220
cascading, 220
Erl (function), 216–17
Err (function), 217
Err (statement), 218
Error (statement), 218–19
Error, Error$ (functions), 220–21
generating, 218–19
getting error number of, 217
getting line number of, 216–17
getting text of, 220–21
handling, 219–20
list of language elements, 10
On Error (statement), 348–50
range of values for, 218
resetting state of, 218
Resume (statement), 400–401
resuming control after, 220
setting, 218
SQL, 432
Stop (statement), 444
trapping, 348–50
user-defined, 220

converting to, 127–28
printing, 371
printing to sequential files, 373
reading from binary/random files, 252
reading from sequential files, 275
testing for, 285–86
writing to random/binary files, 383
writing to sequential files, 492

Visual Basic compatibility with, 220
escape characters, table of, 358
exclusive or operator (Xor), 494–95
executing scripts, in Script Editor

pausing execution of, 637
starting execution of, 637
stopping execution of, 637
tracing execution of, 638–39

Exit Do (statement), 182, 221–22
Exit For (statement), 222–23, 238
Exit Function (statement), 223
Exit Sub (statement), 224
exiting

from Dialog Editor, 680
from Script Editor, 646

exiting from Dialog Editor, 680
exiting operating environment, 453

Exp (function), 224
exponentiation operator (^), 57
expressions

evaluation of, 225–26
promotion of operands within, 225
propagation of Null through, 342

external routines
calling, 144–53
calling conventions of, 148
passing parameters, 147

data formats, 149
null pointers, 149
strings, 148
using ByVal (keyword), 93, 151

specified with ordinal numbers, 152
under Macintosh, 152
under Windows, 152

False (constant), 227
file I/O

Close (statement), 108–9
EOF (function), 213–14
Get (statement), 251–53
Input# (statement), 274–76
Line Input# (statement), 298–99
Loc (function), 306–7
Lock (statement), 307–8
Lof (function), 308–9
Open (statement), 350–53
Print# (statement), 371–72
Put (statement), 381–84
Reset (statement), 400
Seek (function), 410–11
Seek (statement), 411–12
Spc (function), 430
Tab (function), 457
Unlock (statement), 467–69
Width# (statement), 482
Write# (statement), 492–93

file numbers, finding available, 245
file open dialog box, 353–55
file save dialog box, 406–7
file system

list of language elements, 11–12
FileAttr (function), 227–28
FileCopy (statement), 228–29
FileDateTime (function), 229
FileDirs (statement), 230
FileExists (function), 230–31
FileLen (function), 231
FileList (statement), 231–34
FileParse$ (function), 234–35

770 Working Model Basic User's Manual

files
attributes of

ebArchive (constant), 190
ebDirectory (constant), 194–95
ebHidden (constant), 196
ebNone (constant), 200–201
ebNormal (constant), 201
ebReadOnly (constant), 204
ebSystem (constant), 207–8
ebVolume (constant), 208–9
getting, 253–55
setting, 421–22
used with Dir, Dir$ (functions), 165
used with FileList (statement), 233
used with GetAttr (function), 254

attributes, used with SetAttr (statement), 422
checking existence of, 230–31
checking for end of, 213–14
closing, 108–9
closing all, 400
copying, 228–29
deleting, 291–92
end-of-line character, 122
getting date and time of, 229
getting length of, 231
getting list of, 163–65, 231–34
getting mode of, 227–28
getting next available file number, 245
getting position within, 306–7, 410–11
getting size of, 308–9
list of language elements, 10–11
locking regions in, 307–8
opening, 350–53

access capabilities, 352
modes, 351
setting another process's access rights, 352
setting record length, 352
truncating to zero length, 351

printing, 375–76
reading, 274–76
reading binary data from, 251–53
reading lines from, 298–99
renaming, 330–31
requesting name of, 406–7
setting read/write position in, 411–12
sharing, 352
splitting names of, 234–35
types of

ebWindows (constant), 209–10
FileType (function), 236
getting, 236

unlocking regions in, 467–69
writing binary data to, 381–84
writing query results to, 442
writing to, 371–72, 492–93

FileType (function), 236
financial functions

DDB (function), 137–38
Fv (function), 250
IPmt (function), 280–82
IRR (function), 282–83
list of, 12
MIRR (function), 320–21
NPer (function), 340–41
Npv (function), 341–42
Pmt (function), 367–68
PPmt (function), 369–71
Pv (function), 384–85
Rate (function), 396–97
Sln (function), 429
SYD (function), 452–53

finding
applications, 66–67
files, 163–65
strings, 278–79
windows, 484–85

Fix (function), 236–37. See also Int (function)
fixed arrays, 79
fixed numeric format, 239
fixed-length strings

conversion between variable-length, 447
declaring, 161, 376, 378
passing to external routines, 148, 150
within structures, 465

floating-point values
Double (data type), 185–86
Single (data type), 427–28

focus, of dialog controls
getting, 169
setting, 169–70

fonts, within user-dialogs, 90
For...Next (statement), 237–38

exiting For loop, 222–23
formatting data

built-in, 239
built-in formats

date/time, 240
numeric, 239

in files
Spc (function), 430
Tab (function), 457
Width# (statement), 482

 Index 771

user-defined formats, 240
date/time, 243
numeric, 240
string, 242

forward referencing, with Declare (statement), 63, 144–
53

FreeFile (function), 245
Function...End Function (statement), 245–49
Function...End Sub (statement), exiting function, 223
Functions, 24

defining, 245–49
exiting function, 223
naming conventions of, 246
returning values from, 247

future value of annuity, calculating, 250
fuzzy string comparisons, 297–98
Fv (function), 250
general date format, 240
general number format, 239
generating random numbers, 395
Get (statement), 251–53
GetAttr (function), 253–55
GetCheckBox (function), 255
GetComboBoxItem$ (function), 255–56
GetComboBoxItemCount (function), 256–57
GetEditText$ (function), 257–58
GetListBoxItem$ (function), 258–59
GetListBoxItemCount (function), 259–60
GetOption (function), 261–62
global (public) variables, 377–80
Global (statement) (Public [statement]), 377–80
GoSub (statement), 262–63

returning from, 401–2
Goto (statement), 263–64
grep (Like [operator]), 297–98
grid, in Dialog Editor, 659–60
group boxes

adding to dialog template, 265–66
getting label of, 177
in Dialog Editor, 657
setting label of, 176

GroupBox (statement), 265–66
grouping option buttons, 361–62
handles, getting operating system file handles, 227–28
height, of screen, 408–9
help

in Dialog Editor, 655–56, 684–85
in Script Editor, 624–26, 649

Hex, Hex$ (functions), 266
hexadecimal characters, in strings, 358
hexadecimal strings

converting to, 266
converting to numbers, 471–72

hiding
applications, 69–70
dialog controls, 180–82

HLine (statement), 266–67
home directory, 86
Hour (function), 267
HPage (statement), 267–68
HScroll (statement), 268
HWND (object), 268–69
HWND (object), getting value of, 269–70
icons, arranging on desktop, 155
idle loops

DoEvents (function), 184
DoEvents (statement), 184

If...Then...Else (statement), 270–71
If...Then...End If (statement), shorthand for (IIf), 271–

72
IIf (function), 271–72
Imp (operator), 272–73
implication operator (Imp), 272–73
implicit variable declaration, with DefType (statement),

153–55
indexing collections, 346
infinite loops, breaking out of, 183, 238, 482
Information dialog box, in Dialog Editor, 662–66
ini files. See also win.ini file; control.ini file

list of language elements, 12
reading items from, 397
reading section names from, 397–98
writing items to, 493–94

Inline (statement), 273–74
Input (keyword), 350–53
Input# (statement), 274–76
InputBox, InputBox$ (functions), 277–78
INSERT (SQL statement), 434, 440
inserting text, in Script Editor, 628
insertion point, moving, in Script Editor, 626–27

to specified line, 627–28
with keyboard, 622–23
with mouse, 627

instantiation of OLE objects, 118–20
InStr (function), 278–79
Int (function), 279–80. See also Fix (function)
Integer (data type), 280

converting to, 103–4
range of values for, 280
storage requirements of, 280

integer division operator (\), 56
Interactive Operation, 20

772 Working Model Basic User's Manual

intercepting (trapping) errors, 219–20, 348–50
interest payments, calculating, 280–82
internal rate of return, calculating, 282–83, 320–21
IPmt (function), 280–82
IRR (function), 282–83
Is (operator), 283–84
IsDate (function), 284–85
IsEmpty (function), 285
IsError (function), 285–86
IsMissing (function), 249, 286–87, 451
IsNull (function), 287
IsNumeric (function), 287–88
IsObject (function), 288–89
Item$ (function), 289
ItemCount (function), 289–90
iterating through collections, 346
jumps

GoSub (statement), 262–63
Goto (statement), 263–64
Return (statement), 401–2

keyboard shortcuts
in Dialog Editor, 654–55
in Script Editor, 621–24

keystrokes, sending
DoEvents (function), 184
DoEvents (statement), 184
QueKeyDn (statement), 386–87
restrictions, 388
special characters, 419
to applications, 185, 386–87–88

keywords
list of, 291
restrictions for, 291

Kill (statement), 291–92
labels

in place of line numbers, 299
naming conventions of, 264
used with GoSub (statement), 262
used with Goto (statement), 264

LBound (function), 292–93
used with OLE arrays, 293

LCase, LCase$ (functions), 293–94
least precise operand, 356
Left, Left$ (functions), 294
Len (function), 294–96
Len (keyword), specifying record length, 350–53
Let (statement), 296–97
Lib (keyword), 144–53
Like (operator), 297–98
line breaks, in MsgBox (statement), 325
line continuation, 57–58

in Script Editor, 633
Line Input# (statement), 298–99
line numbers, 299
Line$ (function), 299–300
LineCount (function), 300–301
linking. See DDE; OLE automation
list boxes

adding to dialog template, 301–3
checking for existence of, 303–4
checking if enabled, 303
getting number of items in, 259–60
getting selection index of, 178
getting selection of, 177, 258–59
in Dialog Editor, 657
selecting item from, 416–17
setting items in, 170
setting selection of, 176, 179

ListBox (statement), 301–3
ListBoxEnabled (function), 303
ListBoxExists (function), 303–4
literals, 305–6
Loc (function), 306–7
local variables. See also variables

declaring, 161–63
Lock (statement), 307–8
locking file regions, 307–8
Lof (function), 308–9
Log (function), 309
logarithm function (Log), 309
logarithms

Exp (function), 224
Log (function), 309

logical constants
False (constant), 227
True (constant), 464

logical negation, 338–39
logical operators

And (operator), 60–61
Eqv (operator), 214–15
Imp (operator), 272–73
list of, 12–13
Not (operator), 338–39
Or (operator), 362–63
Xor (operator), 494–95

Long (data type), 309–10
converting to, 107–8
range of values, 310
storage requirements for, 310

long date format, 240
long time format, 240
looping

 Index 773

Do...Loop (statement), 182–83
exiting Do loop, 221–22
exiting For loop, 222–23
For...Next (statement), 237–38

lowercasing strings, 293–94
LSet (statement), 310–11
LTrim, LTrim$ (functions), 311
MacID (function), 65, 165, 292, 311–12, 427
Macintosh, MacID (function), 311–12
MacScript (statement), 312
Main (statement), 313
matching strings, 297–98
math functions

Abs (function), 58–59
Atn (function), 84
Cos (function), 118
Exp (function), 224
Fix (function), 236–37
Int (function), 279–80
list of, 13
Log (function), 309
Randomize (statement), 395–96
Rnd (function), 403–4
Sgn (function), 425–26
Sin (function), 427
Sqr (function), 444
Tan (function), 457–58

math operators. See operators
maximizing

applications, 71
windows, 485–86

Mci (function), 313–15
medium date format, 240
medium time format, 240
memory

available, 453–54
available resources, 454
available within BasicScript, 86
total, 455
total size for arrays, 161

Menu (statement), 315–16
MenuItemChecked (function), 316
MenuItemEnabled (function), 317
MenuItemExists (function), 317
menus

determining existence of, 317
determining if checked, 316
determining if enabled, 317
pop-up, 368–69
selecting, 315–16

menus, reference for

in Dialog Editor, 680–85
in Script Editor, 646–49

message dialog
changing text of, 329
closing, 327
creating, 327–29
setting thermometer, 329–30

messages, error. See error messages
messages, runtime error, 699–702
metafiles

used in dialog boxes, 364, 366
used with picture controls, 175, 365, 367

Methods, 24
defined, 344
invoking, 345
with OLE automation, 343

Mid, Mid$ (functions), 317–18
Mid, Mid$ (statements), 318–19
minimizing

applications, 71–72
windows, 486–87

Minute (function), 319–20
MIRR (function), 320–21
MkDir (statement), 321–22
Mod (operator), 322
modeless message dialog, 328
modes, for open files, 227–28
Month (function), 322–23
most precise operand, 356
mouse

clicking button, 388–89
double-clicking button, 389–90
double-pressing button, 390–91
moving, 392
moving in batch, 393–94
pressing button, 391–92
releasing button, 394
setting coordinates relative to window, 394–95
trails, setting, 454

moving
applications, 72–73
controls, in Dialog Editor, 666–67–68
dialog boxes, in Dialog Editor, 666–67
windows, 487–88

MsgBox (function), 323–26
MsgBox (statement), 327

constants used with
ebAbort (constant), 189
ebArchive (constant), 190
ebCancel (constant), 191–92
ebCritical (constant), 192

774 Working Model Basic User's Manual

ebDataObject (constant), 192–93
ebDefaultButton1 (constant), 194
ebDefaultButton2 (constant), 194
ebDefaultButton3 (constant), 194
ebExclamation (constant), 195–96
ebIgnore (constant), 196–97
ebInformation (constant), 197
ebNo (constant), 200
ebOK (constant), 202
ebOKCancel (constant), 202–3
ebOKOnly (constant), 203
ebQuestion (constant), 203–4
ebRetry (constant), 205
ebRetryCancel (constant), 206
ebSystemModal (constant), 208
ebYes (constant), 210
ebYesNo (constant), 210
ebYesNoCancel (constant), 210–11

MsgClose (statement), 327
MsgOpen (statement), 327–29
MsgSetText (statement), 329
MsgSetThermometer (statement), 329–30
multidimensional arrays. See arrays
Name (statement), 330–31
naming conventions

of constants, 116
of functions, 246
of labels, 264
of subroutines, 449
of variables, 163

negation
logical, 338–39
unary minus operator, 52–53

nesting, For...Next (statement), 238
net present value, calculating, 341–42
Net.AddCon (method), 331–32
Net.Browse$ (method), 332–33
Net.CancelCon (method), 333
Net.Dialog (method), 333–34
Net.GetCaps (method), 334–36
Net.GetCon$ (method), 337
Net.User$ (property), 337
networks

canceling connection, 333
capabilities of, 334–36
getting name of connection, 337
getting user name, 337
invoking browse dialog box, 332–33
invoking network dialog, 333–34
list of language elements, 13–14
redirecting local device, 331–32

New (keyword), 162, 337–38, 420–21
Next (keyword), 237–38
Not (operator), 338–39
Nothing (constant), 339

used with Is (operator), 283
Now (function), 339–40
NPer (function), 340–41
Npv (function), 341–42
Null

checking for, 287
propagation of, 342
vs. Empty, 342–43

Null (constant), 342–43
nulls, embedded within strings, 447
numbers

adding, 51
converting from strings, 471–72
converting to strings, 445
floating-point, 185–86, 427–28
getting sign of, 425–26
hexadecimal representation, 305
IsNumeric (function), 287–88
octal representation, 305
printing, 371–72
reading from binary/random files, 251–53
reading from sequential files, 274–76
testing for, 287–88
truncating, 236–37, 279–80
writing to binary/random files, 381–84
writing to sequential files, 371–72, 492–93

numeric operators
– (operator), 52–53
\ (operator), 56
* (operator), 50
+ (operator), 50–52
/ (operator), 54–55
^ (operator), 57
list of, 14

Object (data type), 343–44
storage requirements for, 343

object collections. See collections
objects, 22, 344–47. See also OLE automation

accessing methods of, 345
accessing properties of, 343, 345
assigning, 420–21
assigning values to, 345
automatic destruction, 344
collections of, 346
comparing, 283–84, 346
creating, 420–21
creating new, 162, 337–38

 Index 775

declaring, 161–63, 343, 345, 376–77
declaring as public, 377–80
defined, 344
instantiating, 343
invoking methods of, 343
list of language elements, 14
OLE, creating, 118–20
predefined, table of, 347
testing for, 288–89
testing if uninitialized, 283
using dot separator, 343

Oct, Oct$ (functions), 347
octal characters, in strings, 358
octal strings

converting to, 347
converting to numbers, 471–72

OK buttons
adding to dialog template, 347–48
getting label of, 177
in Dialog Editor, 657
setting label of, 176

OKButton (statement), 347–48
OLE automation. See also DDE

automatic destruction, 344
CreateObject (function), 118–20
creating objects, 118–20
default properties of, 226
Object (data type), 343–44
Set (statement), 420–21

On Error (statement), 219, 348–50
on/off format, 240
Open (statement), 350–53
operating environment

exiting, 453
free memory of, 453–54
free resources of, 454
restarting, 454–55
total memory in, 455

operators
– (operator), 52–53
& (operator), 48
\ (operator), 56
* (operator), 50
+ (operator), 50–52
/ (operator), 54–55
< (operator), 3–4
<= (operator), 3–4
<> (operator), 3–4
= (operator), 3–4
> (operator), 3–4
>= (operator), 3–4

^ (operator), 57
And (operator), 60–61
Eqv (operator), 214–15
Imp (operator), 272–73
Is (operator), 283–84
Like (operator), 297–98
Mod (operator), 322
Not (operator), 338–39
Or (operator), 362–63
precedence of, 355
precision of, 356
Xor (operator), 494–95

Option Base (statement), 161, 356, 376, 378
option buttons

adding to dialog template, 358–59
checking existence of, 360–61
checking if enabled, 359–60
getting label of, 177
getting selection index of, 178
getting state of, 261–62
grouping within dialog template, 361–62
in Dialog Editor, 657, 661, 679
selecting, 179
setting label of, 176
setting state of, 424–25

Option Compare (statement), 356–57
effect on InStr (function), 279
effect on Like (operator), 297
effect on string comparisons, 114, 446

Option CStrings (statement), 358
Optional (keyword), 146, 246, 449
optional parameters

checking for, 286–87
passed to functions, 248
passed to subroutines, 450
passing to external routines, 146
passing to functions, 246
passing to subroutines, 449

OptionButton (statement), 358–59
OptionEnabled (function), 359–60
OptionExists (function), 360–61
OptionGroup (statement), 361–62
Or (operator), 362–63
ordinal values, 152
Output (keyword), 350–53
overflow, in assignment, 55, 297
pane, in Script Editor

edit, 620
separator, 620
watch, 620

Parameters, 25

776 Working Model Basic User's Manual

passing by reference, 92–93
passing by value, 49–50, 93–94
to external routines, 93, 147, 151

parentheses, used in expressions, 49–50
parsing

filenames, 234–35
list of language elements, 14
strings

by item, 289
by line, 299–300
by words, 490–91
counting items within, 289–90
counting lines within, 300–301
counting words within, 491–92

Pascal calling convention, 145
password, requesting from user, 83–84
pasting text. See also Clipboard

in Script Edtior, 631
path separator

getting, 87
on different platforms, 123

paths
extracting from filenames, 234–35
specifying relative, 124

pausing script execution, 428
percent format, 239
period (.), used to separate object from property, 53–54
period (.), used with structures, 53–54
Pi (constant), 363
PICT files, on the Macintosh, 176, 365, 367
Picture (statement), 363–65
picture button controls

adding to dialog template, 365–67
picture buttons

in Dialog Editor, 657
picture controls

adding to dialog template, 363–65
automatic loading of images into, 180
caching, 180
deleting image of, 175
in Dialog Editor, 657
setting image of, 174–76

picture libraries, creating or modifying, 672–73
PictureButton (statement), 365–67
pictures, specifying, in Dialog Editor, 671–72
platform constants, 87

ebDOS (constant), 87
ebMacintosh (constant), 87
ebOS2 (constant), 87
ebSolaris (constant), 87
ebWin16 (constant), 87

ebWin32 (constant), 87
Pmt (function), 367–68
Point (method)

of WMConstraint, 529
of WMDocument, 581

PopupMenu (function), 368–69
portability of compiled code, 122
PPmt (function), 369–71
precedence of operators, 355
precision

loss of, 55
of operators, 356

predefined dialogs. See dialogs, built-in
predefined objects, table of, 347
present value, calculating, 384–85
Preserve (keyword), 398–99
preserving elements while redimensioning arrays, 398–

99
Print (statement), 371–72
print zones, 371, 373
Print# (statement), 371–72
printer orientation

constants used with
ebLandscape (constant), 198
ebPortrait (constant), 203

getting, 374–75
setting, 375

PrinterGetOrientation (function), 374–75
PrinterSetOrientation (statement), 375
PrintFile (function), 375–76
printing

files, 375–76
list of language elements, 14–15
to stdout, 371–72
to viewports, 371–72

Private (keyword), 246, 449
Private (statement), 376–77
private variables, declaring, 376–77
procedures. See subroutines; functions

list of language elements, 15
tracing calls of, in Script Editor, 639

program flow. See control structures
promotion

automatic, 356
of operands in expressions, 225

prompting for input. See dialogs, built-in
Properties, 23

accessing, 345
defined, 344
with OLE automation, 343

Public (keyword), 246, 449

 Index 777

Public (statement), 377–80
public variables, declaring, 377–80
push buttons

adding to dialog template, 380–81
checking for existence of, 92
checking if enabled, 91–92
getting label of, 177
in Dialog Editor, 657
selecting, 415
setting label of, 176

PushButton (statement), 380–81
Put (statement), 381–84
Pv (function), 384–85
qualifiers

of database owners, 436
of databases, 436
of tables, 436

QueEmpty (statement), 385–86
QueFlush (statement), 386
QueKeyDn (statement), 386–87
QueMouseClick (statement), 388–89
QueMouseDblClk (statement), 389–90
QueMouseDblDn (statement), 390–91
QueMouseDn (statement), 391–92
QueMouseMove (statement), 392
QueMouseMoveBatch (statement), 393–94
QueMouseUp (statement), 394
QueSetRelativeWindow (statement), 394–95
queues

constants used with
ebLeftButton (constant), 198–99
ebRightButton (constant), 206

emptying, 385–86
playing back, 386
waiting for playback of, 184

radians, converting to degrees, 84
Random (function), 395
Random (keyword), 350–53
random files

opening, 350–53
reading, 251–53
setting record length, 352
writing to, 381–84

random numbers
generating

between 0 and 1, 403–4
within range, 395

initializing random number generator, 395–96
Randomize (statement), 395–96
Rate (function), 396–97
Read (keyword), 350–53

ReadIni$ (function), 397
ReadIniSection (statement), 397–98
records. See user-defined types
recursion, 247, 450
Redim (statement), 398–99
redimensioning arrays, 398–99
reference counting, 344
regular expressions, with Like (operator), 297–98
relaxed type checking, 63–64
Rem (statement), 400
remainder, calculating, 322
remote execution, with DDEExecute (statement), 138–

39
renaming files, 330–31
repeating statements. See looping
replacing text, in Script Editor, 634–35
requesting user input. See dialogs, built-in
reserved words, 291
Reset (statement), 400
resetting error handler, 349
resizing

applications, 75–76
controls, in Dialog Editor, 668–69
dialog boxes, in Dialog Editor, 668
windows, 489–90

resolution, of screen, 408–9–10
resources, of operating environment, 454
restoring

applications, 73–74
windows, 488–89

restricted words, 291
Resume (statement), 220, 348–50, 400–401
Return (statement), 401–2
Right, Right$ (functions), 402
RmDir (statement), 403
Rnd (function), 403–4
rounding, 226
RSet (statement), 404
RTrim, RTrim$ (functions), 405
running other programs, 426–27
runtime errors, 699–702
SaveFilename$ (function), 406–7
scientific format, 239
scoping

of constants, 117
of object variables, 421

Screen.DlgBaseUnitsX (property), 407–8
Screen.DlgBaseUnitsY (property), 408
Screen.Height (property), 408–9
Screen.TwipsPerPixelX (property), 409
Screen.TwipsPerPixelY (property), 409

778 Working Model Basic User's Manual

Screen.Width (property), 409–10
Script Editor, 619. See also debugging scripts, in Script

Editor
application window, 620
comments, adding to script, 632
Debug menu, 649
dialog box templates, editing for use in, 636
Edit menu, 647–48
edit pane, 620
exiting from, 646
File menu, 646–47
Help menu, 649
Help system, 624

getting context-sensitive help, 624–25
searching for help on specific topics, 625–26
using contents, 626

insertion point, moving, 626–27
to specified line, 627–28
with keyboard, 622–23
with mouse, 627

instruction pointer, 638
moving to another line in subroutine, 639

keyboard shortcuts
debugging, 623–24
editing, 623
general, 621–22
navigating, 622–23

pane separator, 620
Run menu, 648
scripts

checking syntax of, 635–36
navigating within, 622–23, 626–28
pausing execution of, 637
running, 637
stopping execution of, 637
tracing execution of, 638–39

selection highlight, 629
statements, continuing on multiple lines, 633
status bar, 620
text

copying, 631
cutting, 631
deleting, 630–31
inserting, 628
pasting, 631
replacing, 634–35
searching for, 633–34
selecting, 629–30

toolbar, 620–21
undoing editing operations, 631–32
watch pane, 620

Scripting Operation, 21
scripts, debugging, in Script Editor. See debugging

scripts, in Script Editor
scrolling

HLine (statement), 266–67
HPage (statement), 267–68
HScroll (statement), 268
VLine (statement), 479
VPage (statement), 479–80
VScroll (statement), 480

searching for text, in Script Editor, 633–34
Second (function), 410
seed, for random number generator, 395–96
Seek (function), 410–11
Seek (statement), 411–12
SELECT (SQL statement), 434, 440
Select...Case (statement), 412–13
SelectBox (function), 414–15
SelectButton (statement), 415
SelectComboBoxItem (statement), 416
selecting

controls, in Dialog Editor, 662
dialog boxes, in Dialog Editor, 662

selecting text, in Script Editor, 629–30
SelectListBoxItem (statement), 416–17
sending keystrokes, 386–87
SendKeys (statement), 184
separator lines, in dialog boxes, 265
sequential files

opening, 350–53
reading, 274–76
reading lines from, 298–99
writing to, 371–72, 492–93

Set (statement), 420–21
SetAttr (statement), 421–22
SetCheckBox (statement), 422–23
SetEditText (statement), 423–24
SetOption (statement), 424–25
Sgn (function), 425–26
Shared (keyword), 350–53
sharing

data. See DDE
files, 352

sharing variables, 379
Shell (function), 64, 426–27
short date format, 240
short time format, 240
showing

applications, 75
dialog controls, 180–82

sign, of numbers, 425–26

 Index 779

simulating events. See controlling applications
Sin (function), 427
sine function (Sin), 427
Single (data type), 427–28

conversion to, 124–25
range of values, 428
storage requirements, 428

Sleep (statement), 428
Sln (function), 429
sounds

Beep (statement), 88
Mci (function), 313–15

Space, Space$ (functions), 429–30
Spc (function), 371, 373, 430
special characters, 103, 419

escape characters, 358
SQLBind (function), 430
SQLClose (function), 431
SQLError (function), 432
SQLExecQuery (function), 433
SQLGetSchema (function), 435
SQLOpen (function), 438
SQLRequest (function), 439
SQLRetrieve (function), 441
SQLRetrieveToFile (function), 442
Sqr (function), 444
square root function (Sqr), 444
standard numeric format, 239
Statements, 24, 34
Static (keyword), 246, 449
status bar

in Dialog Editor, 653
in Script Editor, 620

stdout, printing to, 371–72
Step (keyword), 237–38
Stop (statement), 444
stopping script execution, 213, 444
storage

for fixed-length strings, 447
Str, Str$ (functions), 445
straight-line depreciation, 429
StrComp (function), 445–46
String (data type), 446–48
string functions

Item$ (function), 289
LCase, LCase$ (functions), 293–94
Left, Left$ (functions), 294
Len (function), 294–96
Line$ (function), 299–300
LTrim, LTrim$ (functions), 311
Mid, Mid$ (functions), 317–18

Option Compare (statement), 356–57
Right, Right$ (functions), 402
RTrim, RTrim$ (functions), 405
Space, Space$ (functions), 429–30
StrComp (function), 445–46
String, String$ (functions), 448
Trim, Trim$ (functions), 464
UCase, UCase$ (functions), 467
Word$ (function), 490–91

string operators
& (operator), 48
+ (operator), 50–52
Like (operator), 297–98
list of, 15

String, String$ (functions), 448
strings

comparing, 114, 297–98, 356–57, 445–46
concatenation, 48, 50–52

vs. addition, 48, 51
converting from numbers, 445
converting to, 125
converting to lowercase, 293–94
converting to numbers, 471–72
converting to uppercase, 467
copying, 310–11, 404
counting items within, 289–90
counting lines within, 300–301
counting words within, 491–92
escape characters in, 358
finding one within another, 278–79
fixed-length vs. variable-length, 447
fixed-length, declaring, 161, 376, 378
getting leftmost characters from, 294
getting length of, 294–96
getting rightmost characters from, 402
getting substrings from, 317–18
list of language elements, 15–16
of same characters, 448
of spaces, 429–30
parsing by item, 289
printing, 371–72
reading from sequential files, 274–76–77, 298–99
requesting from user, 82–83, 277–78
retrieving items from, 289
retrieving lines from, 299–300
retrieving words from, 490–91
setting substrings in, 318–19
String (data type), 446–48
trimming leading and trailing spaces from, 464
trimming leading spaces from, 311
trimming trailing spaces from, 405

780 Working Model Basic User's Manual

writing to sequential files, 371–72, 492–93
stripping spaces. See trimming
structures. See user-defined types
Sub...End Sub (statement), 448–51

exiting subroutine, 224
subroutines

defining, 448–51
exiting subroutine, 224
naming conventions of, 449

substrings
finding, 278–79
getting, 317–18
getting leftmost characters from, 294
getting rightmost characters from, 402
setting, 318–19

sum of years' digits depreciation, 452–53
Switch (function), 451–52
SYD (function), 452–53
syntax, checking, in Script Editor, 635–36
System 7.0, 312
System calling convention, 145
system date. See dates
system time. See time
System.Exit (method), 453
System.FreeMemory (property), 453–54
System.FreeResources (property), 454
System.MouseTrails (method), 454
System.Restart (method), 454–55
System.TotalMemory (property), 455
System.WindowsDirectory$ (property), 455
System.WindowsVersion$ (property), 455–56
Tab (function), 371, 373, 457
tables

retrieving column data types, 436
retrieving column names of, 436
retrieving list of, 436
retrieving qualifier of, 436

Tan (function), 457–58
tangent function (Tan), 457–58
task list, filling array with, 70–71
templates. See user dialogs
testing dialog boxes, in Dialog Editor, 668, 677–79
Text (statement), 458–59
text boxes

adding to dialog template, 459–61
checking existence of, 211–12
checking if enabled, 211
getting content of, 177, 257–58
in Dialog Editor, 657, 679
setting content of, 176, 423–24

text controls

adding to dialog template, 458–59
getting label of, 177
in Dialog Editor, 657
setting label of, 176

TextBox (statement), 459–61
thermometers, in message dialogs, 329–30
tiling desktop windows, 158–59
time

forming from components, 463
getting current time, 339–40, 461
getting specific time, 463
hours, 267
minutes, 319–20
seconds, 410
seconds since midnight, 462
setting current time, 461–62

Time, Time$ (functions), 461
Time, Time$ (statements), 461–62
time/date functions. See date/time functions
Timer (function), 462
TimeSerial (function), 463
TimeValue (function), 463–64
toolbar

in Dialog Editor, 653–54
in Script Editor, 620–21

trigonometric functions
Atn (function), 84
Cos (function), 118
Sin (function), 427
Tan (function), 457–58

Trim, Trim$ (functions), 464
trimming

leading and trailing spaces from strings, 464
leading spaces from strings, 311
trailing spaces from strings, 405

True (constant), 464
true/false format, 240
truncating numbers, 236–37, 279–80
twips per pixel, calculating, 409
Type (statement), 465–66
type checking, relaxed, with Declare (statement), 63–64
type coercion, 225
type-declaration characters

effect on interpretation when reading numbers from
sequential files, 274

for Currency, 126
for Double, 186
for Integer, 280
for Long, 310
for Single , 428
for String, 447

 Index 781

used when converting to number, 288
used when declaring literals, 305–6
used with Dim (statement), 161
used with external subroutines and functions, 145

UBound (function), 466–67
used with OLE arrays, 466

UCase, UCase$ (functions), 467
unary minus operator, 52–53
underflow, 55
undo

in Dialog Editor, 674
in Script Editor, 631–32

uninitialized objects, 343, 345
Nothing (constant), 339
testing for with Is (operator), 283

universal date format
reading, 275
used with literals, 129, 305
writing, 492

Unlock (statement), 467–69
unlocking file regions, 467–69
unsupported language elements, 123
UPDATE (SQL statement), 434, 440
uppercasing strings, 467
user dialogs

automatic timeout for, 160
available controls in, 88
Begin Dialog (statement), 88–90
CheckBox (statement), 99–101
ComboBox (statement), 109–10
control outside bounds of, 172
creating, 88–90
default button for, 159
Dialog (function), 159–60
Dialog (statement), 160–61
dialog procedures of, 171–74
DlgControlId (function), 159–60
DlgEnable (function), 167–68
DlgEnable (statement), 168–69
DlgFocus (function), 169
DlgFocus (statement), 169–70
DlgListBoxArray (function), 170
DlgListBoxArray (statement), 170–71
DlgProc (function), 171–74
DlgSetPicture (statement), 174–76
DlgText (statement), 176–77
DlgText$ (function), 177–78
DlgValue (function), 178
DlgValue (statement), 178–79
DlgVisible (function), 179–80
DlgVisible (statement), 180–82

DropListBox (statement), 186–88
expression evaluation within, 90
GroupBox (statement), 265–66
idle processing for, 173, 691
invoking, 159–60–61
list of language elements, 16–17
ListBox (statement), 301–3
nesting capabilities of, 174
OKButton (statement), 347–48
OptionButton (statement), 358–59
OptionGroup (statement), 361–62
Picture (statement), 363–65
PictureButton (statement), 365–67
pressing Enter within, 348
pressing Esc within, 95
PushButton (statement), 380–81
required statements within, 89
showing, 172
Text (statement), 458–59
TextBox (statement), 459–61

user-defined errors
converting to, 127–28
generating, 218–19
printing, 371
printing to sequential files, 373
reading from binary/random files, 252
reading from sequential files, 275
testing for, 285–86
writing to random/binary files, 383
writing to sequential files, 492

user-defined functions. See functions
user-defined types, 470–71

copying, 470
declaring, 470
defining, 465–66
getting size of, 294–96, 471
passing, 471

Val (function), 471–72
Value (property), 269–70
variables

assigning objects, 420–21
declaring

as local, 161–63
as private, 376–77
as public, 377–80
with Dim, 161–63
with Private (statement), 376–77
with Public (statement), 377–80

getting storage size of, 294–96
implicit declaration of, 161
initial values of, 162, 377, 379

782 Working Model Basic User's Manual

list of language elements, 17
naming conventions of, 163
watch, in Script Editor, 642–45

Variant (data type), 472–76
variants

#FALSE#, 275
#NULL#, 275
#TRUE#, 275
adding, 51, 474
assigning, 473
automatic promotion of, 356
containing no data, 342–43, 474
converting to, 126–27
disadvantages, 475
Empty (constant), 212
getting length of, 294–96
getting types of, 473, 476–77
list of language elements, 17–18
Null (constant), 342–43
operations on, 474
passing nonvariant data to routines taking variants,

475
passing to routines taking nonvariants, 476
printing, 371–72
reading from sequential files, 274–76
storage requirements of, 475
testing for Empty, 285
testing for Error, 285–86
testing for Null, 287
testing for objects, 288–89
types of, 472, 476

ebBoolean (constant), 191
ebCurrency (constant), 192
ebDate (constant), 193
ebDouble (constant), 195
ebEmpty (constant), 195
ebError (constant), 193
ebInteger (constant), 197–98
ebLong (constant), 199
ebNull (constant), 202
ebObject (constant), 202
ebSingle (constant), 206–7
ebString (constant), 207
ebVariant (constant), 208

Variant (data type), 472–76
writing to sequential files, 371–72, 492–93

VarType (function), 476–77
version

of BasicScript, 87–88
of Windows, 455–56

ViewportClear (statement), 477

ViewportClose (statement), 477–78
ViewportOpen (statement), 478–79
viewports

clearing, 477
closing, 477–78
keys used in, 478
opening, 478–79
printing to, 371–72

Visual Basic, error messages, 699
VisualBasic, 20
VLine (statement), 479
VPage (statement), 479–80
VScroll (statement), 480
wallpaper, changing desktop, 156–57
watch variables, in Script Editor, 642

adding, 642–44
deleting, 644
modifying value of, 644–45
selecting, 644

waveform audio, Mci (function), 313–15
Weekday (function), 480–81
While...Wend (statement), 481–82
Width# (statement), 482
width, of screen, 409–10
wildcards. See also MacID (function)

used with Dir, Dir$ (functions), 164
win.ini file, 136, 157, 245, 375, 397, 398, 464, 494
WinActivate (statement), 482–83
WinClose (statement), 483–84
windows

activating, 482–83
capturing, 157–58
closing, 483–84
constants used with

ebMaximized (constant), 199
ebMinimized (constant), 200
ebRestored (constant), 205

directory of, 455
finding, 484–85
getting list of, 485
getting value of, 269–70
maximizing, 485–86
minimizing, 486–87
moving, 487–88
resizing, 489–90
restoring, 488–89
scrolling, 266–67–68, 479–80
version of, 455–56

WinFind (function), 484–85
WinList (statement), 485
WinMaximize (statement), 485–86

 Index 783

WinMinimize (statement), 486–87
WinMove (statement), 487–88
WinRestore (statement), 488–89
WinSize (statement), 489–90
WM (constant), 33, 498
WM Basic, 33
WM.ActiveDocument (property), 499
WM.DeleteMenuItem (method), 499
WM.Documents (property), 500
WM.EnableMenuItem (method), 501
WM.GetMenuItem (method), 502
WM.InsertMenuItem (method), 503
WM.LoadWMBLibrary (method), 504
WM.NewDocument (method), 505
WM.Open (method), 506
WM.RunScript (method), 506
WM.ShowAppearanceWindow (property), 508
WM.ShowGeometryWindow (property), 508
WM.ShowPropertiesWindow (property), 509
WM.UnloadWMBLibrary (method), 507
WM.Version (property), 509
WMBody (object), 36, 509
WMCell (object), 512
WMConstraint (object), 39, 514
WMConstraint.ActiveWhen (property), 516
WMConstraint.ActuatorType (property), 517
WMConstraint.AddVertex (method), 517
WMConstraint.AlwaysActive (property), 519
WMConstraint.AppendPoint (method), 518
WMConstraint.AutoComputeGearRatio (property),

520
WMConstraint.ClosedSlot (property), 520
WMConstraint.CurrentLength (property), 520
WMConstraint.CurrentRotation (property), 520
WMConstraint.DamperK (property), 521
WMConstraint.DeleteVertex (method), 521
WMConstraint.Elasticity (property), 522
WMConstraint.Exponent (property), 522
WMConstraint.Field (property), 523
WMConstraint.FR, FTheta (properties), 523
WMConstraint.FX, FY (properties), 524
WMConstraint.GearRatio (property), 525
WMConstraint.GetVertex (method), 526
WMConstraint.Internal (property), 526
WMConstraint.InternalBody (property), 526
WMConstraint.K (property), 527
WMConstraint.Kind (property), 528
WMConstraint.Length (property), 528
WMConstraint.MotorType (property), 529
WMConstraint.Point (method), 529
WMConstraint.PointCount (property), 531

WMConstraint.RodActive (property), 531
WMConstraint.RodAlwaysActive (property), 532
WMConstraint.RotateWithBody (properties), 532
WMConstraint.Rotation (property), 532
WMConstraint.Torque (property), 533
WMConstraint.VertexCount (property), 534
WMDocument (object), 34, 534
WMDocument.AirResistanceType (property), 538
WMDocument.AirResistanceV2Coeff (property), 539
WMDocument.AirResistanceVCoeff (property), 539
WMDocument.AnimationStep (property), 540
WMDocument.AssemblyError (property), 540
WMDocument.AutoAnimationStep (property), 541
WMDocument.AutoAssemblyError (property), 541
WMDocument.AutoEraseTrack (property), 542
WMDocument.AutoIntegratorError (property), 542
WMDocument.AutoOverlapError (property), 543
WMDocument.AutoSignificantDigits (property), 543
WMDocument.Bodies (property), 544
WMDocument.Body (method), 544
WMDocument.ChargeUnit (property), 545
WMDocument.Close (method), 546
WMDocument.Collide (method), 546
WMDocument.CombineTapeScroll (property), 547
WMDocument.Constraint (method), 547
WMDocument.Constraints (property), 548
WMDocument.ControlsLocked (property), 549
WMDocument.Copy (method), 549
WMDocument.CurrentFrame (property), 550
WMDocument.Cut (method), 551
WMDocument.DecimalDigits (property), 551
WMDocument.DecimalFormat (property), 551
WMDocument.Delete (method), 552
WMDocument.DeletePauseControl (method), 553
WMDocument.DistanceUnit (property), 554
WMDocument.ElectricPotentialUnit (property), 555
WMDocument.ElectrostaticConst (property), 555
WMDocument.ElectroStaticsOn (property), 556
WMDocument.EnergyUnit (property), 556
WMDocument.EraseMeterValues (method), 557
WMDocument.EraseTrack (method), 558
WMDocument.ExportDXF (method), 558
WMDocument.ExportMeterData (method), 559
WMDocument.ExportStartFrame (property), 559
WMDocument.ExportStopFrame (property), 560
WMDocument.ForceFieldFX, ForceFieldFY,

ForceFieldT (property), 560
WMDocument.ForceFieldType (property), 560
WMDocument.ForceUnit (property), 561
WMDocument.FrequencyUnit (property), 562
WMDocument.GetPauseControlType (method), 562

784 Working Model Basic User's Manual

WMDocument.Gravity (property), 563
WMDocument.HistoryFrames (property), 564
WMDocument.ImportDXF (method), 564
WMDocument.Input (method), 565
WMDocument.Inputs (property), 566
WMDocument.Integrator (property), 566
WMDocument.IntegratorError (property), 567
WMDocument.Join (method), 568
WMDocument.LinearGravityConst (property), 568
WMDocument.MassUnit (property), 569
WMDocument.Name (property), 569
WMDocument.NewBody (method), 570
WMDocument.NewConstraint (method), 570
WMDocument.NewInput (method), 572
WMDocument.NewOutput (method), 572
WMDocument.NewPauseControl (method), 573
WMDocument.NewPoint (method), 574
WMDocument.Object (method), 575
WMDocument.Objects (property), 575
WMDocument.Output (method), 576
WMDocument.Outputs (property), 577
WMDocument.OverlapError (property), 578
WMDocument.Paste (method), 578
WMDocument.PauseControl (method), 579
WMDocument.PauseControlCount (property), 580
WMDocument.PlanetaryGravityConst (property), 580
WMDocument.PlayerMode (property), 581
WMDocument.Point (method), 581
WMDocument.Points (property), 582
WMDocument.PowerUnit (property), 583
WMDocument.Reset (method), 584
WMDocument.RetainMeterValues (property), 583
WMDocument.RotationalVelocityUnit (property), 584
WMDocument.RotationUnit (property), 585
WMDocument.Run (method), 585
WMDocument.Save (method), 586
WMDocument.SaveAs (method), 587
WMDocument.ScaleFactor (property), 587
WMDocument.ScrollTo (method), 588
WMDocument.Select (method), 588
WMDocument.SelectAll (method), 589

WMDocument.Selection (property), 590
WMDocument.SetPauseControlType (method), 591
WMDocument.ShowCoordinates (property), 592
WMDocument.ShowGridLines (property), 593, 605
WMDocument.ShowHelpRibbon (property), 593
WMDocument.ShowRulers (property), 594
WMDocument.ShowScrollBars (property), 594
WMDocument.ShowTapeControl (property), 595
WMDocument.ShowToolPalette (property), 596
WMDocument.ShowXYAxes (property), 596
WMDocument.SignificantDigits (property), 597
WMDocument.SimulationMode (property), 597
WMDocument.SkipFrames (property), 598
WMDocument.Split (method), 598
WMDocument.StartHere (method), 599
WMDocument.TimeUnit (property), 600
WMDocument.Tracking (property), 600
WMDocument.UnitSystem (property), 601
WMDocument.Update (method), 602
WMDocument.VariableIntegrationStep (property),

603
WMDocument.VelocityUnit (property), 604
WMDocument.WarnInaccurate (property), 605
WMDocument.WarnInconsistent (property), 606
WMDocument.WarnOverlap (property), 607
WMDocument.WarnRedundant (property), 607
WMInput (object), 608
WMObject (object), 610
WMOutput (object), 613
WMOutputColumn (object), 615
WMPoint (object), 37, 616
Word$ (function), 490–91
WordCount (function), 491–92
word-wrapping, in MsgBox (statement), 325
Write (keyword), 350–53
Write# (statement), 492–93
WriteIni (statement), 493–94
Xor (operator), 494–95
Year (function), 495
yes/no format, 239
yielding, 184, 428

Changes to Working Model Basic™

This section describes changes in the WM Basic™ Script language that will
affect scripts written for Working Model 3.0.3.

Title: Language differences between BasicScript 2.1, 2.2, and 2.25
Category: BasicScript Language
Document Number: 0000223A
Circulation: Public - Everyone
Applies To: All versions of BasicScript

This document describes the changes in the BasicScript language that affect scripts written for BasicScript 2.1
or BasicScript 2.0. The goal of this document is to describe what causes older scripts to break when running
them in BasicScript 2.2.

Other related documents:

"Upgrading to BasicScript 2.25" describes programmatic changes in the BasicScript APIs that are
relevant when upgrading from BasicScript 2.1 to 2.2 and 2.25. This document is distributed with the
BasicScript Programmer's Guide and is available for download from the Partners Web site.
"BasicScript 2.1 to 2.2 Changes in Language Reference" described the changes in the Language
Reference that occurred between versions 2.1 and 2.2. This document is available for download from
the Partners Web site.
"Modifying compilation for backward compatibility" is a knowledge base article describing special
undocumented flags for compiling old scripts. The knowledge base is available for
browsing/searching on the Partners Web site.

SendKeys

The default value for the second parameter to Shell was changed from True to False. Script that contain
statement such as:
SendKeys "Hello"

Will need to be changed to:
SendKeys "Hello",True

Type Declaration Characters

In version 2.1, the following was allowed:
Dim a$ As String

This now produces an error. The following are correct syntaxes:
Dim a$
Dim a As String

(Note: The embedder can disable this new behavior by setting the CF_RESERVED2 flag in the wFlags
member of the ebCOMPILESTRUCT structure.)

Using Keywords as Identifiers

In BasicScript 2.1, the following was allowed:
MsgBox% = 10

In BasicScript 2.2, this is not allowed, as MsgBox is a built-in keyword. You can get around this by renaming
the variable to a different unreserved name or by declaring the variable with the Dim,
Private, or Public statement:

Dim MsgBox As Integer
MsgBox = 10

Once redeclared in this manner, the MsgBox command/function can no longer be called to display a dialog
box.

The re-use of language elements in this manner only applies to built-in keywords defined either by BasicScript
or by any of your application's extensions. Additional restrictions apply to reserved words (a subcategory of
keywords as described below).

(Note: The embedder can disable this new behavior by setting the CF_RESERVED1 flag in the wFlags
member of the ebCOMPILESTRUCT structure.)

Using Reserved Words as Identifiers

BasicScript 2.1 allowed reserved words to be used as variable names when accompanied by a type declaration
character as shown below:
For$ = "Hello"

This is a very bad practice that should be discouraged. These variables should renamed in the script.

A complete list of reserved words is contained in the User's Guide in the alphabetical entry entitled "Keywords
(topic)".

(Note: The embedder can allow reserved words to be redefined in this manner by setting the CF_RESERVED1
flag in the wFlags member of the ebCOMPILESTRUCT structure.)

Default Data Type

In version 2.0 of BasicScript, the default data type was Integer. BasicScript 2.1 and 2.2 now use Variant as
the default data type.

This introduces many problems if a script contains many implicit variables and function. In such cases, the
following statement can be placed at the top of such scripts to change the default data type
back to Integer:
Option Default Integer

A better solution would be to add an Option Explicit statement at the top of the script to expose all the implicit
declarations, then explicitly define each variable and function as the appropriate type. Implicit declarations
occasionally cause inadvertant bugs in the script.

Using Predefined Objects as Identifiers

As is the case in all versions of BasicScript, you cannot use the names of predefined objects as identifiers in
scripts. For example, if your application introduces an object called "Form" and a predefined object of that type
called "Form1", then the user is prevented from using "Form1" as the name of a variable in the script as shown
below:
Dim Form1 As Integer '<-- This will produce an error

There are many predefined objects built-in to BasicScript, some of which are new, resulting in potential
problems in scripts which use these names for variables, subroutines, or functions. For example, since Msg is
a new built-in object, the following code will no longer compile:
Dim Msg As String
Msg = "Hello"

The following lists all the objects predefined by BasicScript:

Object Name EB20 EB21 EB22

HWND Yes Yes Yes

Viewport No No Yes

Msg No No Yes

Clipboard Yes Yes Yes

Desktop Yes Yes Yes

System Yes Yes Yes

Net Yes Yes Yes

Screen Yes Yes Yes

Basic Yes Yes Yes

MacID Yes Yes Yes

Err No No Yes

Obsolete Syntax

Although some language elements that have been replaced with more modern syntax, the older style syntax is
still supported. The following table shows these replacements in the case that the user wants to use the more
modern language element:

Language Element Replace With

Err (function) Err[.Number] (default property)

Err (statement) Err[.Number] (default property)

MsgClose (statement) Msg.Close (method)

MsgOpen (statement) Msg.Open (method)

MsgSetText (statement) Msg.Text (property)

MsgSetThermometer (statement) Msg.Thermometer (property)

ViewportClear (statement) Viewport.Clear (method)

ViewportClose (statement) Viewport.Close (method)

ViewportOpen (statement) Viewport.Open (method)

New Constants

As is the case in all versions of BasicScript, you cannot use the names of constants as identifiers in scripts. For
example, each of the following statements is illegal:
Dim ebYes As Integer '<-- Illegal (cannot redefine constant)
ebYes = 10 '<-- Illegal (cannot assign to constant)

BasicScript 2.2 introduces a number of constants not present in earlier version. Each of these constants is
preceeded by the two letters "eb" and are described in the following table:
ebAlias ebArray ebBack
ebCFBitmap ebCFDIB ebCFMetafile
ebCFPalette ebCFText ebCFUnicodeText
ebCr ebCrLf ebFirstFourDays
ebFirstFullWeek ebFirstJan1 ebFormFeed

ebFriday ebFromUnicode ebHide
ebHiragana ebIMEAlphaDbl ebIMEAlphaSng
ebIMEDisabled ebIMEHiragana ebIMEKatakanaDbl
ebIMEKatakanaSng ebIMENoOp ebIMEOff
ebIMEOn ebKatakana ebLf
ebLINUX ebLowerCase ebMaximizedFocus
ebMinimizedFocus ebMinimizedNoFocus ebMonday
ebNarrow ebNormalFocus ebNormalNoFocus
ebNullChar ebNullString ebProperCase
ebSaturday ebSunday ebTab
ebThursday ebTuesday ebUnicode
ebUpperCase ebUseSystem ebVerticalTab
ebWednesday ebWide

Despite the fact that these constants are made unique by their two-letter prefix, there is still a possibility that a
duplicate identifier exists in older scripts. In this case, the only alternative is to rename the identifier.

Null Keyword

In BasicScript 2.0, the Null keyword was implemented as a function that returned a zero-length string. In
BasicScript 2.1 and above, "Null" is a reserved compiler keyword representing a special state of Variants.
Code that uses the Null function must be replaced with an empty string literal as shown below:

The statement:
s$ = Null()

Should be replaced with:
s$ = ""

Passing Uninitialized Strings to External Routines

In BasicScript 2.1 and earlier, uninitialized strings were passed to the external routines (i.e., those declared
with the Declare statement) as zero-length strings. BasicScript 2.2 and above pass unititialized strings as
NULL.

Resetting the Error State

In BasicScript 2.1 and earlier, the error state was reset when Err was set to -1. In BasicScript 2.2 and later, the
error state is reset under the following conditions:

When a Resume statement is executed.
When Err is set to -1.
When an On Error statement is executed.
When Err.Clear is executed.
When Exit Sub, Exit Function, End Sub, or End Function is executed.

Instr

In BasicScript 2.1 and earlier, the InStr function was able to determine its behavior from the type of data pased
as the first parameter. For example, the following was legal:

pos = Instr("Hello, world.","world",0)

In BasicScript 2.2 and later, the first parameter must be specified in order for the last parameter to be specified.
In other words, given the following syntax, InStr uses the rules described below:

Instr([start,] search,find, [,compare])

If there are this many parameters Then Instr assumes the following were specified

2 search,find

3 start,search,find

4 start,search,find,compare

Double Precision in Loop Counters

Consider the following loop:
Dim d As Double
For d = 3.7 To 4.1 Step 0.1
MsgBox d
Next d

In the above script, the following are printed in the dialogs:
3.7
3.8
3.9
4

In BasicScript 2.2 and later, the dialog containing "4.1" is not displayed, whereas in version 2.1, the number
"4.1" was displayed.

This difference is due to the imprecise internal representation of 0.1 in IEEE format. In the last iteration
through the loop, this error has accumulated such that the loop counter is slightly greater than 4.1, preventing
the final iteration of the loop. In BasicScript 2.1, the addition was handled differently.

The behavior of BasicScript 2.2 is consistent with that if Visual Basic.

(c) Copyright 1991-1996 Summit Software Company. All rights reserved.

	Working Model2D
	Contents
	Introduction
	Getting Started with WM Basic
	A–Z Reference
	WM Basic Extensions Reference
	Editing and Debugging Scripts
	Editing Custom Dialog Boxes
	Controlling WM from Another Application
	Runtime Error Messages
	Compiler Error Messages
	Language Elements by Platform
	WM Basic Limitations
	WM Basic/Visual Basic Differences
	Index
	Changes to WM Basic (from version 3.0)

