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Domain-specific models increase the level of abstraction used to develop large-

scale component-based systems. Model-driven development approaches (e.g., Model-
Integrated Computing and Model-Driven Architecture) emphasize the use of models
at all stages of system development. Decomposing problems using pure model-driven

approaches, however, sometimes results in a separation of the artifacts in a way that im-
pedes comprehension. For example, a single concern (such as deployment of distributed
systems) may consist of different orthogonal activities (such as component specification,
interaction, packaging and planning). From the perspective of keeping track of all entities

associated with a component to ensure that the constraints for the system as a whole
are not violated, a model-driven approach to describing the same system results in extra
effort.

This paper provides three contributions to the study of applying aspect-oriented
techniques to address the challenges of model-driven component-based distributed sys-
tems development outlined above. First, it evaluates the crosscutting concerns that arise
in model-driven distributed systems development in the context of a domain-specific

modeling language called the Platform-Independent Component Modeling Language
(PICML). Second, it describes how aspect-oriented model weaving helps modularize
the crosscutting concerns of component-based distributed systems using model transfor-
mations. Third, it describes how we have applied model weaving using a tool called the

Constraint-Specification Aspect Weaver (C-SAW). A case study of a joint-emergency
response system is presented to express the challenges in modeling a typical distributed
system. Our experience shows that model weaving is an effective and scalable technique

for dealing with crosscutting aspects of component-based distributed systems develop-
ment.
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specific models.

1. Introduction

Model-driven development (MDD) is emerging as a new paradigm to develop com-

plex distributed real-time and embedded (DRE) systems. By promoting models to

the status of a first-class entity in the design and implementation of such systems,

developers can reason about systems at a much higher level of abstraction than

by using purely programmatic techniques. Reusable approaches to distributed sys-

tems development based on component middleware technologies, such as CORBA

Component Model (CCM) [1], .NET [2] and J2EE [3], have yielded a paradigm

shift from (1) focusing on building individual components to (2) composition and

integration of systems from a set of pre-built, reusable components. MDD-based

approaches lend themselves well to composition- and integration-related tasks since

they (1) emphasize a visual approach to system development, which is crucial to

composition and integration activities, (2) focus on describing system constraints

using constraint languages [4], which can be enforced during design-time to prevent

common errors that may otherwise occur late in the integration stage, (3) make the

task of system analysis easier by providing better abstractions and notations closer

to the domain of the system, and (4) shield system developers from changes in the

underlying middleware platforms due to the increased level of abstraction.

MDD Challenges. Although MDD approaches are desirable in large-scale DRE

system development, the promotion of modeling elements to the status of first

class entities incurs other challenges, wherein system developers are exposed to a

number of crosscutting concerns at the modeling level [5]. These concerns typically

stem from the use of modeling abstractions to describe entities that were captured

at the level of implementation in prior approaches. Addressing these crosscutting

concerns using conventional MDD approaches can increase the type and number

of elements that need to be manipulated at the modeling level, which may negate

the benefits offered by MDD approaches. What is desired, therefore, is an enhanced

MDD approach that is (1) scalable with the number of modeling elements and the

dependencies between them and (2) gives assurances that changes to properties of

individual model elements can be performed non-intrusively.

Solution approach → Aspect-Oriented Model Weaving. Aspect-oriented

model weaving [6] is a promising approach for addressing the problems associated

with applying MDD-based approaches to large-scale distributed systems develop-

ment. Aspect-oriented model weaving unites the ideas of aspect-oriented software

development (AOSD) [7] with MDD to provide better modularization of model

properties that crosscut multiple layers of a model [5].

Our approach to improving the scalability of MDD - and subsequently un-

tangling the crosscutting concerns at the modeling level - relies on enhancing
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the Platform-Independent Component Modeling Language (PICML) [8] by apply-

ing aspect-oriented model-weaving provided by the Constraint-Specification Aspect

Weaver (C-SAW) [9]. PICML is an open-source domain-specific modeling language

(DSML) (available for download at www.dre.vanderbilt.edu/cosmic) developed

using the Generic Modeling Environment (GME) [10]. PICML enables developers

of component-based DRE systems to define component interfaces, along with their

properties and system software building rules, and also provides generative tools to

synthesize valid XML descriptor files that enable automated system deployment.

C-SAW is a model transformation engine that can be used to describe the essence

of a model-based crosscutting concern and transform a model accordingly. In C-

SAW, aspects are defined at the modeling abstraction level using the Embedded

Constraint Language (ECL). C-SAW assists modelers in rapidly inserting and re-

moving new properties and policies into models without the need for extensive

manual adaptation. This paper examines the benefits that can be achieved from

combining the aspect-oriented model weaving supported by C-SAW with PICML’s

MDD-based approach to distributed systems development. The primary combina-

tion of this synergy closes a significant gap in developing and deploying component

based distributed systems.

Paper organization The remainder of this paper is organized as follows: Sec-

tion 2 evaluates the use of MDD for DRE systems by using an unmanned air

vehicle (UAV) application as a running example; Section 3 gives an overview of the

aspect-oriented model weaving approach, illustrates how we have applied it to the

UAV example developed using PICML, and showcases the benefits of this approach;

Section 4 compares our work with other tools that apply aspect-oriented approaches

to distributed component systems development; and Section 5 presents concluding

remarks.

2. Evaluating Model-driven Development Approaches to

Developing Component-based Systems

MDD provides numerous benefits over programmatic approaches to large-scale soft-

ware systems development [11]. However, MDD also incurs challenges due to scal-

ability and crosscutting concerns, similar to the challenges seen in programmatic

approaches. Hence, it is imperative to enhance MDD approaches to address these

challenges.

In order to better illustrate the various challenges with MDD, we first present a

brief overview of MDD approaches to developing component-based systems. We then

illustrate an emergency response system, which uses multiple unmanned air vehicles

(UAVs) to perform aerial imaging, survivor tracking and damage assessment. The

UAV will serve as a motivating example to describe how a MDD solution can be

applied to all stages of development. We then highlight the scalability challenges

and crosscutting concerns a systems modeler faces when building a system like the
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emergency response system.

2.1. Overview of Model-driven Development of Component-based

Systems

In MDD, models are used to describe all artifacts of the system, i.e., interfaces,

interactions, and properties of all the components that comprise the system. These

models can be manipulated in a number of different ways to analyze the system,

and in some cases to generate the complete implementation of the system. In order

to capture the semantics in an effective manner that is as close as possible to the

domain of the developed system, we advocate building a domain-specific modeling

language (DSML), which can be viewed as a five-tuple [12] consisting of:

• Concrete syntax (C), which defines the notation used to express domain enti-

ties,

• Abstract syntax (A), which defines the concepts, relationships and integrity

constraints available in the language,

• Semantic Domain (S), which defines the formalism used to map the semantics

of the models to a particular domain,

• Syntactic mapping (MC : A→C), which assigns syntactic constructs, e.g.,

graphical and/or textual) to elements of the abstract syntax,

• Semantic mapping (MS: A→S), which relates the syntactic concepts to those

of the semantic domain.

To support effective design and development of component-based systems, we

have developed a DSML called PICML [8], which defines the different types of

modeling elements that are essential to developing, configuring and deploying

component-based systems. The artifacts pertaining to configuration and deployment

of component-based systems that are generated from PICML are then deployed us-

ing the Component-Integrated ACE ORB (CIAO) [13,14], which was developed in

collaboration with colleagues at Washington University.

2.2. A Representative DRE System

We now present a DRE system – an emergency response system – as the guiding ex-

ample to illustrate the MDD approach, and to illustrate the challenges that arise in

modeling these systems. This system is designed for emergency response situations

(such as disaster recovery efforts stemming from floods, earthquakes, or hurricanes)

and consists of a number of interacting subsystems. Our focus in this paper is on the

composition, integration and deployment of a UAV, which is used to monitor ter-

rain for flood damage, spot survivors that need to be rescued, and assess the extent

of damage. The UAV transmits this imagery to various other emergency response

units. The software components of this UAV application are shown in Figure 1 and

described in detail in [8].
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Fig. 1. Emergency Response System components

The UAV application involves sending streams of images from each UAV to a

control center responsible for monitoring the image data. Each image stream is com-

posed of a Sender (i.e., the UAV), a number of Qosket components, and a Receiver

component. Sender components are responsible for collecting the images from each

image sensor on the UAV. The Sender passes the images to a series of Qosket [13]

components that perform adaptations on the images to ensure that the images can

be transmitted without violating the quality of service (QoS) requirements. Exam-

ples of Qosket components include CompressQosket, ScaleQosket, CropQosket,

PaceQosket, and a DiffServQosket. The final Qosket in the pipeline then passes

the images to a Receiver component, which collects the images and passes them

on to a display in the control room of the emergency response team.

2.3. Challenges in Applying MDD to an Emergency Response

System

This section describes how the PICML-based MDD approach is applied to the

emergency response system while simultaneously highlighting the different scala-

bility challenges and crosscutting concerns incurred by MDD. We illustrate these

challenges as they manifest themselves in each of the modeling stages of systems

development.
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Fig. 2. Interface Definition Fig. 3. Implementation Artifact Definition

2.3.1. Crosscutting Concerns in Modeling Interface Definitions

PICML allows modeling the individual component types in the system, which in-

volves either importing the component interface definitions from existing interface

definition language (IDL) files, or explicitly modeling them using PICML. In our

example, this involves defining the interfaces for the Sender, Receiver, Qosket,

SystemResourceManager, and the LocalResourceManager components.

In order to deploy a system using component middleware, such as CIAO, the

individual components that together realize the application must be specified as

shown in Figure 2. This step is very crucial, since the type (indicated by its name)

of the individual monolithic components are defined at this stage. The interface of

the system with external entities is also defined during this stage. These definitions

(including the names) serve as a bridge between the entities defined at the modeling

level and the corresponding implementation.

These component definitions are scattered throughout the system model through

the use of references to the individual component types. For example, the compo-

nent instances that are used to define the component interactions are instances of

the individual component types. Thus, it is the modeler’s responsibility to main-

tain the one-to-many relationship between the component types and the different

instances of the same type that are scattered across the models. If a component

type is modified/deleted, then the modeler has to manually update/remove all the

references scattered in the remaining model. This is an inherently time-consuming

task, which is error-prone and doesn’t scale if done manually.

2.3.2. Modeling Implementation Artifact Definitions

In this stage, a modeler defines the implementation artifacts shown in Figure 3 for

each monolithic component, which involves defining the different implementation

artifacts (e.g., shared libraries) that each component depends on, as well as describ-

ing the dependencies that each component may have on external system libraries.

For example, when building the UAV application using CIAO, a mono-
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lithic component, say SystemResourceManager, is composed of three libraries, 1)

SystemResourceManager exec, which contains the implementation of the compo-

nent functionality, 2) SystemResourceManager stub, which contains code that pro-

vides the marshaling and de-marshaling related functionality for each component,

and 3) SystemResourceManager svnt, which contains the code to glue together the

component with other portions of the execution environment, such as the underlying

CORBA middleware-related infrastructure.

Although the number, names and kinds of implementation artifacts might differ

with the corresponding implementation, each component will end up having de-

pendencies on the artifacts that are necessary to provide the functionality of the

component. Thus, these artifacts need to be modeled explicitly, an activity which

doesn’t scale well. Moreover, the modeler is responsible for maintaining the depen-

dencies between component instances and the dependent implementation artifacts.

A mistake in the maintenance of the dependency will result in a run-time error due

to unresolved dependencies of component instances on implementation artifacts.

Another example of tangled concerns arises from the need to follow specific

naming conventions for the modeling elements, wherein the naming of implemen-

tation artifacts in the model must mirror the naming conventions of the under-

lying component middleware infrastructure. For example, in the default config-

uration of CIAO, if the three dependent libraries for SystemResourceManager

are not named SystemResourceManager exec, SystemResourceManager stub, and

SystemResourceManager svnt respectively, it will result in a run-time error.

Yet another naming related problem is with the specification of the entry point

for loading a shared library (as components are usually implemented). The modeler

must ensure that the definitions of these entry points actually map to entry points

defined in the shared libraries.

2.3.3. Modeling Interaction Definitions

In this stage of development, a modeler defines the different interactions between

components, which involves composing the application from a set of individual com-

ponents. The components are connected using their ports to form assemblies, which

could be nested. In PICML, assemblies contain monolithic components which are

connected together. Assemblies can also be hierarchical, i.e., an assembly can con-

tain other assembly components. In our example, each stream of images is modeled

as an assembly by connecting the Sender, LocalResourceManager, Qoskets, and

the Receiver, as shown in Figure 4. This assembly is then instantiated multiple

times depending on the number of UAVs, along with the SystemResourceManager,

and the ControlCenterDisplay, to form the complete UAV application.

Although there may be many component types defined in a model, it might be

the case that only a subset of the component types need to be connected together to

realize the application. For the components that are to be deployed, it is necessary

to ensure that the associated implementation artifacts described in Section 2.3.2
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Fig. 4. Interaction Definition Fig. 5. Package Definition

are already defined, thus creating a dependency. It is also necessary that all the

component instances that are defined in an assembly are also given appropriate

mappings as explained in Section 2.3.5. Thus, any change to the assembly requires

changes to a number of associated aspects, thereby highlighting the tangling of

concerns. This is a tedious and error-prone task if done manually.

2.3.4. Modeling Package Definitions

The packaging of component assemblies involves defining the relation between units

of deployment called packages, and the individual assemblies that are the output

of the composition process defined earlier. As shown in Figure 5, a package is as-

sociated with a top-level assembly, and is used to bootstrap the deployment of the

application. In the UAV application, the top-level assembly that contains many in-

dividual streams as sub-assemblies needs to be associated with a package so that

the UAV application can be deployed.

Packages also serve the dual purpose of providing an entry point for bootstrap-

ping the whole application. It is essential that an implementation of each component

be available in such a form. It is necessary to ensure that this mapping between

components and packages be maintained. It is also necessary that when changes

to the assemblies are made, the appropriate packages are also updated. The need

to ensure that changes to some elements are propagated to a dependent element is

another crosscutting concern.

2.3.5. Modeling the Domain Definition and Component Mapping

Domain definition involves modeling the elements of the target domain and a map-

ping between component instances and the target domain. This task is usually

done by a domain administrator who has knowledge of the physical infrastructure

on which the application is to be deployed. After the elements of the target do-

main are defined, a mapping between the individual component instances (and/or

assemblies) onto elements of the target domain is specified. This activity results in
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the creation of a deployment plan, which is used by the run-time infrastructure to

deploy the application.

In order to ensure successful deployment of the application, the mapping be-

tween the component instances (or assemblies) and nodes of the target domain

need to be consistent. Although constraints can help in matching the capabilities of

each node with the requirements of the individual components, all the components

(or assemblies) need to be assigned to nodes, and this assignment needs to be up-

dated when the definitions of the component assemblies change. Any error in this

process shows up only at run-time. This highlights both crosscutting concerns and

scalability issues.

The use of MDD approaches to develop systems like the UAV application pro-

vides a significant improvement over programmatic approaches based on using only

QoS-enabled component middleware. However, as outlined above, a number of tan-

gled concerns and scalability issues manifest themselves in the modeling of DRE

systems such as the UAV application. The concept of a component pervades these

artifacts, and the challenges that occur are due to the tangling of the concerns

associated with a component at multiple places in the model. If left unresolved,

these challenges can hamper developer productivity, and also negatively affect the

correctness of the system being modeled. Section 3 describes our solution to these

problems.

3. Applying Aspect-Oriented Model Weaving to PICML

This section presents a solution to the challenges of modeling and developing large-

scale distributed systems described in Section 2.3. Our approach to resolving these

challenges relies on the use of aspect-oriented model weaving using C-SAW. We first

provide an overview of aspect-oriented modeling and then describe our solution.

3.1. Overview of Aspect-Oriented Domain Modeling

A distinguishing feature of AOSD is the notion of crosscutting, which character-

izes the phenomenon whereby some representation of a concern is scattered among

multiple boundaries of modularity, and tangled amongst numerous other concerns.

Aspect-Oriented Programming (AOP) languages, such as AspectJ [15], permit the

separation of crosscutting concerns into aspects.

We have found that the same crosscutting problems that arise in code also exist

in domain-specific models [5] as shown in Figure 6. For example, it is often the

case that the meta-model forces a specific type of decomposition, such that the

same concern is repeatedly applied in many places, usually with slight variations

at different nodes in the model. This is a consequence of the “dominant decompo-

sition” [16], which occurs when a primary modularization strategy is selected that

subjects other concerns to be described in a non-localized manner. Aspect-Oriented

Modeling (AOM) is an AOSD extension applied to earlier stages of the lifecycle.

Our specific perspective of AOM improves the modeling task itself by providing the
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Fig. 6. Modularizing Crosscutting Concerns in Domain-specific Models

ability to specify properties across a model during the system modeling process.

This action is performed by using a weaver that has been constructed with the

concepts of modeling in mind.

3.2. Aspect Modeling with C-SAW

Our approach to AOM requires a domain-specific modeling weaver that processes

the structured description of a visual model, which is different from traditional

programming language weavers (e.g., the AspectJ weaver [15]) that support better

modularization at a lower level of abstraction by processing source code.

We have designed C-SAW to provide support for modularizing crosscutting mod-

eling concerns in the GME. This weaver operates on the abstract syntax tree of the

model. GME provides a framework that allows DSML developers to register cus-

tom actions and hooks with the environment. These hooks can read and write the

elements of a model during the modeling stage. In general, the hooks registered

with GME are specific to a particular DSML. GME also provides an introspection

API, which provides knowledge about the types and instances of a model, without

a priori knowledge about the underlying DSML. Utilizing this feature of GME, we

have implemented C-SAW as a “plugin,” a GME terminology for a DSML indepen-

dent hook. Thus, the benefits of C-SAW are applicable across a whole spectrum of

DSMLs.

To be effective, this weaver also requires the features of an enhanced constraint

language. Standard OCL is strictly a declarative language for specifying assertions

and properties of UML models. Our need to extend OCL is motivated by the fact
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that we require an imperative language for describing the actual model transforma-

tions. We designed a language called the Embedded Constraint Language (ECL) to

describe model transformations. ECL is an extension of the OCL and provides many

of the common features of OCL, such as arithmetic operators, logical operators, and

numerous operators on collections (e.g., size, forAll, exists, select). A unique feature

of ECL that is not provided within OCL, however, is a set of reflective operators

for navigating the hierarchical structure of a model. These operators can be applied

to first class model objects (e.g., a container model or primitive model element) to

obtain reflective information needed in AOM.

The AOM approach that we have adopted in C-SAW can be summarized by the

diagram in Figure 7. As shown in this figure, transformations are performed between

the source models and the target models that belong to the same metamodel. C-

SAW weaves additive changes into these source models to generate the target models

relying on transformation specifications written in ECL.

DefinesDefines

MetaModel

Source Model

ECL Transformation 

Specifications

Target Model

aspect Start( )
{declare componentTypesFolder, implementationArtifactsFoler,
packagesFolder : folder;
componentTypesFolder := rootFolder().addFolder("ComponentTypes",
"ComponentTypes");

….

Aspect

Weaving

Fig. 7. C-SAW Aspect Model Weaver Framework

• Modeling Aspect: A modeling aspect is a modular construct that specifies a

crosscutting concern across a model hierarchy. Each aspect describes the binding

and parameterization of strategies to specific nodes in a model. A modeling aspect

is responsible for identifying the specific locations of a crosscutting concern, and

offers the capability to make quantifiable statements across the boundaries of a

model.

• Strategies: A strategy is used to specify elements of computation, constraint
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propagation, and the application of specific properties to the model nodesa. The

name strategy is inspired by the strategy design pattern [17]. We use this term to

define a collection of inter-changeable heuristics. Strategies are generic in the sense

that their descriptions are not bound to particular model nodes. Each domain

that supports a specific meta-level GME paradigm will have disparate strategies

that can be applied to a model through C-SAW. Strategies provides a hook that

the weaver can call to process node-specific constraint application and propaga-

tion. Strategies offer numerous ways for instrumenting nodes in the model with

crosscutting concerns.

3.3. Resolving UAV Crosscutting Modeling Challenges with

C-SAW

As described in Section 2.3, the modeling concern related to application deployment

has been decomposed into multiple views along the dimension of the underlying

CCM run-time. However, this modularization results in related concepts from the

dimensions of individual components and assemblies to be non-localized and split

across multiple entities. This section describes how C-SAW is used to modularize

the concepts related to individual components and assemblies. The approach takes

advantage of aspect-oriented model weaving to fill in the information into the various

orthogonal artifacts that are necessary to deploy the UAV application.

aspect Deploy( )
{

// Create a folder under the RootFolder called "ComponentTypes" of
// kind ComponentTypes
componentTypesFolder := rootFolder().addFolder("ComponentTypes", "ComponentTypes");

// Create a folder under the RootFolder called
// "ImplementationArtifacts" of kind ImplementationArtifacts
implementationArtifactsFolder

:= rootFolder().addFolder("ImplementationArtifacts", "ImplementationArtifacts");

// Create a folder under the RootFolder of kind ComponentPackages
// called "Packages"
packagesFolder := rootFolder().addFolder("ComponentPackages", "Packages");

// Retrieve the componentAssembly folder, and generate deployment artifacts
rootFolder().findFolder("ComponentImplementations").models()

->select(f | f.kindOf() == "ComponentImplementationContainer")
->models()->select(p | p.kindOf() == "ComponentAssembly")

->WeaveDeploymentArtifacts();
}

Aspect Listing 1: Deployment Specification Aspect

The task of modularizing the concerns of deployment begins with defining a

specification aspect in C-SAW. Aspect Listing 1 shows a snippet of the definition of

a“model nodes” refer to modeling elements that are defined in the metamodel, and serve as visu-
alization elements in the domain model
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the Deploy aspect. This modeling aspect defines the tasks that a modeler typically

performs manually. Specifically, it enables creation of different folders, which will

contain the different orthogonal entities (e.g., implementation artifacts and compo-

nent packages) needed to deploy an application using CCM. This aspect has been

extended to cover all the different activities that were discussed in Section 2.3. Due

to space constraints, we have not shown all of the different entities that are created

by this aspect. The initial creation of these folders has a similarity to intertype

declarations in AspectJ.

After creating the required folders, the Deploy aspect determines all com-

ponent assemblies, which contain the definitions of the component interactions.

The component assemblies are discovered by the weave-time introspection facili-

ties that are provided by ECL. For each component assembly, it then applies the

WeaveDeploymentArtifacts strategy as shown in Strategy Listing 1.

strategy WeaveDeploymentArtifacts()
{

// Get the list of component instances within the assembly
models()->select(c | c.kindOf() == "Component")->ImplementationArtifacts();
models()->select(c | c.kindOf() == "Component")->PackageDefinition();

}

Strategy Listing 1: Weave Deployment Artifacts Strategy

WeaveDeploymentArtifacts aggregates the different strategies that need to be

applied to each individual component. For brevity, we illustrate just two such strate-

gies — ImplementationArtifacts and PackageDefinition — which are neces-

sary to solve the challenges described in Section 2.3.2 and Section 2.3.4. Several

other deployment strategies have been created, but are not show here in order to

keep the example short.

The ImplementationArtifacts strategy shown in Strategy Listing 2 is respon-

sible for creating the different auxiliary shared libraries that are needed to imple-

ment a single monolithic component. It can be seen that this strategy modularizes:

• Creation of all implementation artifacts mandated by the underlying run-time,

• Creation of implementation artifacts which adhere to a specific naming conven-

tion,

• Keeping track of dependencies between a single monolithic component and it’s

associated implementation artifacts,

• Setting attribute values like location and entry points into shared libraries.

By modularizing the different activities associated with defining implementation

artifacts and allowing for customizability based on idiosyncrasies of specific run-

time environments, C-SAW helps resolve the challenge described in Section 2.3.2

by modularizing artifact definitions for all available components.

The PackageDefinition strategy shown in Strategy 3 is responsible for cre-

ation of a package and association of a component assembly with the component
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strategy ImplementationArtifacts()
{

component := self;
componentName := component.getName();

// Create an element of kind ArtifactContainer with the same name as the
// component instance
artContainer := rootFolder().findFolder("ImplementationArtifacts")

.addModel("ArtifactContainer", componentName);

// Create Foo_exec, Foo_stub and Foo_svnt
ia_exec := artContainer.addAtom("ImplementationArtifact", componentName + "_exec");
ia_stub := artContainer.addAtom("ImplementationArtifact", componentName + "_stub");
ia_svnt := artContainer.addAtom("ImplementationArtifact", componentName + "_svnt");

// Set the attribute "location" of Foo_exec, Foo_stub and Foo_svnt
ia_exec.setAttribute("location", componentName + "_exec");
ia_stub.setAttribute("location", componentName + "_stub");
ia_svnt.setAttribute("location", componentName + "_svnt");

// Create an element which is a reference to Foo_stub
ia_stubRef

:= artContainer.addReference("ImplementationArtifactReference", ia_stub);

// Create a connection of kind ArtifactDependsOn between Foo_svnt
// and the Reference to Foo_stub
artifactContainer.addConnection("ArtifactDependsOn", ia_svnt, ia_stubRef);

// Create a connection of kind ArtifactDependsOn between Foo_exe
// and the Reference to Foo_stub
artifactContainer.addConnection("ArtifactDependsOn", ia_exec, ia_stubRef);

}

Strategy Listing 2: Implementation Artifact Strategy

strategy PackageDefinition()
{

// Create an element of kind ComponentPackage with the same name as the
// component instance (say Foo)
compPackage := pkgContainer.addAtom("ComponentPackage", componentName);

// Create an element of kind ComponentImplementationReference, which
// references the MonolithicImplementation of the same name
componentImplRef

:= pkgContainer.addReference("ComponentImplementationReference", monolithicImpl);

// Create an element of kind ComponentRef, which references the type of
// the component of Foo
componentRef2 := pkgContainer.addReference("ComponentRef", component);

// Create a connection between Foo -> Reference to implementation
pkgContainer.addConnection("Implementation", compPackage, componentImplRef);

// Create a connection between Foo -> Reference to component type
pkgContainer.addConnection("PackageInterface", compPackage, componentRef2);

}

Strategy Listing 3: Package Definition Strategy

package. Similar strategies were defined to solve the challenges outlined in Sec-

tion 2.3.1, Section 2.3.3 and Section 2.3.5. By combining the specification aspects

and strategies, C-SAW enhances the utility of a DSML like PICML, and resolves the

challenges associated with a pure MDD-based approach to improve development of
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component-based distributed systems.

4. Related Work

A growing area of research is concentrated on bringing aspect-oriented techniques

into the purview of analysis and design [18,19]. A focal point of these efforts is the

development of notational conventions that assist in the documentation of concerns

that crosscut a design. These notational conventions advance the efficiency of ex-

pression of these concerns in the design. Moreover, they also have the important

trait of improving the traceability from design to implementation.

Although these current efforts do well to improve the cognizance of AOSD at

the design level, they generally tend to treat the concept of aspect-oriented design

as an adjective. This is to say that the focus has been on the notational, semantical

and decorative attributes concerned with aspects and their representation within

UML. A contribution of this paper is to consider aspect-oriented modeling as a

verb. That is, viewing AOSD as a mechanism to improve the modeling task, itself,

by providing the ability to quantify properties across a model during the system

modeling process. This action is performed by utilizing a weaver that has been

constructed with the concepts of modeling in mind. A research effort that also

appears to have this goal in mind can be found in [20], which is focused on UML

models.

There is an increasing interest among researchers toward applying advanced

separation of concerns techniques to non-code artifacts [21]. In particular, AOSD

techniques have been investigated at all levels of the development lifecycle [22],

including requirements engineering and early design [23,24]. Several researchers have

investigated the application of AOSD concepts within the context of the UML [25,

26]. These efforts have yielded guidelines for describing crosscutting concerns at

higher levels of abstraction. In this regard, they have common goals with the work

described in our paper. These efforts differ from our work, however, because we

have been concentrating on the idea of building actual weavers for domain models.

VEST [27] is a toolkit that is built as a GME meta-model. It supports mod-

eling and analysis of real-time systems and introduces the notion of prescriptive

aspects to specify programming language independent advice to a design. A dis-

tinction between VEST and our C-SAW-based approach is in the generalizabilty

of the weaving process. C-SAW is constructed to work with any GME meta-model

(including VEST itself), while the strength of VEST lies in real-time system speci-

fication.

5. Concluding Remarks

Although MDD approaches to building distributed systems have inherent advan-

tages over a purely programmatic approach, additional tools are needed to assist

in modularizing crosscutting concerns that are not effectively captured by model-

ing languages like PICML. To address this problem, we describe the aspect-oriented
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model weaving capabilities of the Constraint-Specification Aspect Weaver (C-SAW).

Using the C-SAW concepts — strategies and modeling aspects — many of the prob-

lems associated with scattered pieces of deployment related artifacts and model

scalability can be effectively addressed. In particular, weaving at the modeling level

is a form of transformation that enables a developer to evolve and maintain con-

sistency across numerous views that are available in a modeling language. The key

contribution is an ability to make changes across a model in many locations in an

automated manner. Because of the crosscutting nature of model properties and con-

straints, the manual adaptation of a model becomes too error prone and hampers

productivity because of all the mouse clicking and typing involved in each change.

We also show how we have successfully applied the C-SAW concepts to ad-

dress the deployment aspect of distributed component-based systems modeled using

PICML. The combination of MDD tools like PICML, and aspect-oriented model

weavers like C-SAW, are crucial to realizing the goal of automated design and de-

velopment of component-based middleware systems.
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