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Abstract

Traditional transport systems do not adequately provide the
functionality or flexibility required by existing and future
multimedia applications. Conventional protocol architec-
tures based on a static configuration of relatively few pro-
tocols are incapable of providing the level of performance
the channel is capable of producing while still performing
the processing needed by the application. Multimedia ap-
plications require transport systems that can be configured
to match the the functional requirements of diverse multi-
media traffic sources as well as capable of adapting to the
dynamism inherent in multimedia applications and hetero-
geneous internetworks.

This paper describes ADAPTIVE, a transport system ar-
chitecture to support multimedia applications for high-speed
networks. The ADAPTIVE system applies object-oriented
design and implementation techniques to build an integrated
framework for protocol specification, composition, prototyp-
ing and experimentation. It utilizes a hierarchical specifica-
tion technique that allows both the policies of a communica-
tion session to be specified and the actual mechanisms used
to carry out these policies. Its monitoring and analysis fa-
cilities provide a rich environment for controlled experimen-
tation through the use of rapid prototyping and integrated
instrumentation.

1 Introduction

Traditional transport systems do not adequately provide the
functionality or flexibility needed by existing and future mul-
timedia applications and high speed networks. Applications
currently must either (1) accept wholesale the functionality
and behavior of an available protocol (e.g., TCP, UDP, TP4,
or VMTP), or (2) attempt to provide its own transport sub-
system by building on lower level communication service
primitives. Due to the diversity of application requirements
and the paucity of available protocols on most systems, ap-
proach (1) often leads to lowest-common-denominator solu-
tions that actually only satisfy the requirements of a narrow

1This paper appeared in the proceedings of the fourth IFIP conference
on High Performance Networking in Liege, Belgium, December 1992.

range of their target applications. Approach (2) leads to mul-
tiple, ad hoc, implementations that are not easily extended,
modified, or shared. This also places the burden of proto-
col processing on the application programmer, who may not
be fluent in the design and implementation of communica-
tion protocols. To alleviate this situation, future transport
systems must provide communication service that is flexible
and adaptive to (1) application diversity, (2) network diver-
sity, and (3) host system diversity.

Application Diversity: Distributed multimedia applica-
tions impose unique performance constraints on the under-
lying communication medium and the supporting transport
system that are more demanding and dynamic than those
previously encountered in traditional data applications. The
presence of these applications increases the dynamism of
the underlying network and their supporting transport sys-
tems due to the high degree of variance in traffic characteris-
tics exhibited by the applications’ data sources (e.g., highly
bursty, high bandwidth variable bit rate video sources, rel-
atively steady, low bandwidth digitized voice sources, short
transactional-based sources). Transport systems providing
communication service that utilizes traditional communica-
tion protocol suites typically offer very few options with re-
spect to both thequality of service (e.g., high throughput,
low delay) and thefunctionalityof service (e.g., reliable in-
order data stream, best-effort datagram) provided. Existing
and future multimedia applications require various levels of
performance (e.g., peak/average bandwidth, maximum de-
lay, low jitter) and behavior (e.g., synchronization, network-
kernel-application delivery, error correction), that are not ad-
equately addressed in existing systems.

Network Diversity: The diversity of network characteris-
tics encountered by distributed multimedia applications are
due to (1) the heterogeneity of internetworking environ-
ments, (2) dynamic or multipath routing, and (3) fluctua-
tions in network state caused by the traffic sources described
above. Network characteristics that vary across network en-
vironments includechannel speed(e.g., 10Mbps for Ether-
net, 100Mbps for FDDI, 155Mbps or 622Mbps for ATM),
maximum data transfer unit(e.g., 1500 octets for Ethernet,
9188 octets for SMDS, 48 octets for ATM),available ser-
vice types(e.g., datagram, virtual circuit, multicast, broad-
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cast) andaccess control scheme(e.g., CSMA/CD, token-
passing, switch-based). Network characteristics that may
vary dynamically over the lifetime of an association include
the aforementioned characteristics, which may fluctuate ei-
ther due to a change in routing, the use of multipath routing,
or a change in the number or location of participants in a
communication session. Additionally, network characteris-
tics such as packet loss rate and delay can vary greatly over
the lifetime of an association due to transient network con-
gestion.

Host System Diversity: A large degree of diversity exists
in the degree and nature of support provided by host sys-
tems for communication protocols. This diversity appears
in both the available hardware (e.g., CPU, network inter-
face, memory hierarchy) and the supporting system software.
Software-related issues such as scheduling mechanisms
(e.g., x-kernel[1] lightweight processes vs. STREAMS[2]
service routines), user-kernel data delivery mechanisms
(e.g., BSD socket layer [3] vs. x-kernel upcall mecha-
nism), buffer management schemes (e.g., BSD mbuf s vs.
STREAMS mblk t s) and protocol composition and de-
multiplexing mechanisms (e.g., STREAMS modules vs.x-
kernel protocol and session objects). Hardware issues that
are variable across host systems include processor architec-
tures (e.g., uniprocessor vs. shared memory multiprocessor
[4] vs. message passing multiprocessor[5, 6]), explicit sup-
port for protocol processing (e.g., performing all protocol
processing off-board processors[7, 8], specialized hardware
to assist a single protocol function [9]), effects of interrupts
on overall system performance (e.g., number of interrupts
required to move data between the host system memory and
the network interface, performance penalty from interrupt-
driven processing due to the amount of context a processor
must save across interrupts, cache invalidation and pipeline
flushing).

The ADAPTIVE System: ADAPTIVE is “A Dynamically
Assembled Protocol Transformation, Intergration, and Vali-
dation Environment.” The ADAPTIVE system [10] has been
designed to address the diversity described above by provid-
ing: (1) a flexible and adaptive kernel of protocol mecha-
nisms that provide a framework for protocol composition,
(2) a unified scheme for specifying both the policies and
the mechanisms that are used to provide communication ser-
vices, and (3) an integrated environment for the specification,
collection, and presentation of performance data. As shown
in Figure 1, ADAPTIVE’s three main subsystems are:

1. Map Applications and Networks To Transport Systems
(MANTTS)– MANTTS interacts with the entities of a
communication session to select the policies and mech-
anisms that will satisfy an application’s communication
requirements given the diverse needs of an application
and the dynamic state of the network. Section 3 de-
scribes MANTTS in detail.

2. Transport Kernel Objects (TKO)– TKO instanti-
ates precisely-tailoredtransport system session con-
texts from a library of reusable protocol mechanisms.
These sessions maintain one or morestreams, each
of which corresponds to an independent unidirectional
data stream between two logical endpoints of commu-
nication. Section 4 describes TKO in detail.

3. UNIform Transport Evaluation Subsystem (UNITES)–
UNITES provides an infrastructure for traffic monitor-
ing, performance evaluation and protocol instrumenta-
tion. Section 5 describes UNITES in detail.

2 ADAPTIVE Design Principles

Adequately supporting the diversity of application require-
ments and network characteristics described in Section 1 re-
quires a flexible transport system architecture that provides
communication service appropriate for the specific traffic
sources and underlying network technologies [11, 12, 13].
ADAPTIVE allows the behavior of a communication session
to be precisely tailored to the required service by implement-
ing a protocol in terms of a set of independently recombin-
able protocol mechanisms. This independence is achieved
through the strict use of uniform abstract interfaces to each
set of functionally-similar mechanisms. Using this composi-
tion scheme facilitates the following:

2.1 Controlled Protocol Experimentation

By holding all other mechanisms within a session constant,
the effects of choices within one subset of the mechanisms
can be accurately observed without undue interaction with
the rest of the protocol. For example, the effect on pro-
tocol performance due to changing the Connection Man-
agement function from one that is implicit timer-based to
one that is explicit handshake-based can be attributed to the
mechanism selection, as all other factors can be held con-
stant. Previous comparisons of various protocol mechanisms
[14, 15, 16, 17] have been done largely based on their imple-
mentations within the context of a complete protocol, thus
making it difficult to isolate a single mechanism from its in-
teractions with the rest of the system. More accurate conclu-
sions may be reached as to the suitability of a given mecha-
nism using controlled experimentation techniques.

2.2 Flexible Protocol Engineering

By leveraging off of established software engineering tech-
niques, the task ofcorrectly implementing a communication
protocol can be made less complex than using traditional
implementation methods. ADAPTIVE provides a frame-
work of reusable mechanismobjects[18] that allow pro-
tocols to be developed from new and existing component
mechanisms that are independently implemented, tested, and
maintained. ADAPTIVE implements protocol mechanisms
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Figure 1: ADAPTIVE System Architecture

to comply with uniform abstract interfaces, allowing the one
implementation of a protocol mechanism to be replaced by
another (e.g., go-back-nreplacingselective repeaterror re-
covery) written to the same interface without affecting the
implementation of the other constituent mechanisms. Pro-
tocol mechanisms are implemented as C++ objects [19] that
encapsulate both the currentstateof a protocol and theop-
erationsthat are performed to implement the mechanism as
one unified abstract data type. Instances of these data types
are then instantiated and configured at run-time to provide
the desired protocol function. Implementing protocol mech-
anisms as objects yields several desirable results:

1. Information Hiding– details specific to the internal im-
plementation of a given mechanism are hidden behind
a uniform interface [20]. By enforcing the principle
of separation of concerns, this uniform interface cre-
ates a firewall between a mechanism’sclients(e.g., the
application programmer or protocol implementer) and
the mechanism’sprovider (e.g., the mechanism imple-
menter).

2. Reuse via Inheritance– as mechanisms are imple-
mented in terms of C++ classes, the commonality of a
set of mechanisms can be shared via inheritance. Us-
ing inheritance, a common base class provides the por-
tion of the mechanism that is shared by all members of
the set, and each mechanism is implemented byderiv-
ing a new sub-class from the base, which requires the
implementer to provide only the portion of the mech-
anism that distinguishes the mechanism from the rest
of the set. This technique allows both the reuse of in-
terface (e.g., several error reporting mechanisms which
share the same interface for reporting which packets

are missing) and the reuse of implementation (e.g., sev-
eral stream synchronization mechanisms which use the
same underlying implementation for attaching new data
streams).

3. Rapid Prototyping– utilizing the collection of proto-
col mechanisms provided with ADAPTIVE, combined
with the techniques described above, protocol design-
ers can rapidly develop new protocols by specifying the
desired configuration of available mechanisms. Alter-
natively, protocolmechanismdesigners may use the li-
brary of available mechanisms as a reliable and consis-
tent base with which new protocol mechanisms may be
designed, prototyped and tested.

2.3 Adaptive Protocol Operation

In addition to the flexibility described above, a transport
system must exhibitadaptability to sufficiently accom-
modate the dynamism that exist in both the application
(e.g., alternate coding schemes based on subject activity,
adding/subtracting data streams or participants to a commu-
nication session) and the network (e.g., bandwidth availabil-
ity and packet loss rate fluctuations, latency variations due
to a switch from terrestrial to satellite links). ADAPTIVE
protocol configurations are capable of three classes of adap-
tivity:

1. Parametric Adaptivity– which varies the behavior of
a communication session by adjusting some subset
of its parameters(e.g., inter-packet gap, transfer unit
size, remote context update rate). Parametric adap-
tivity is suited to transient changes in the state of
the network due to congestion as well as quantitative
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changes in application behavior (e.g., A/D sample rate
increases/decreases).

2. Functional Adaptivity– which varies the behavior of
a communication session by changing some subset of
its mechanisms(e.g., changing from selective repeat to
go-back-n error recovery schemes, enabling/disabling
gap or duplicate suppression). Functional adaptivity is
required to adjust to fundamental changes in the state
of the network due to sustained packet loss, increased
latency, or changes in routing as well as qualitative
changes in application behavior or requirements (e.g.,
changing video coding schemes may require different
error detection behavior, adding participants to a unicast
data stream requires a different error recovery mecha-
nism).

3. Quantitative Adaptivity– which varies the behavior of
a communication session by adding or subtracting data
streams. Quantitative adaptivity is required to accom-
modate multi-stream applications that selectively dis-
able/enable multiple medium sources (e.g., a teleconfer-
encing application that switches from audio only to au-
dio and video). Quantitative adaptivity is also required
to accommodate multi-user collaborative applications
that dynamically add or subtract participants from a
workgroup.

ADAPTIVE provides various mechanisms which support the
three types of transport system adaptivity described above:

1. Explicit Mechanism Replacement Support– by build-
ing protocol mechanisms based on uniform interfaces
that hide the variance in different implementations, a
single protocol mechanism (e.g., update remote con-
texts) can be implemented by multiple different poli-
cies (e.g., periodic updates, request-based updates). As
described in Section 4, by providing explicit interface
and implementation support for run-time mechanism
replacement, ADAPTIVE offers an efficient and con-
sistent framework for adaptive protocol operation.

2. Application Feedback/Feedforward Control– by pro-
viding callback mechanisms by which applications can
be notified of changes in operating environment (i.e.,
the network, the transport system, remote communi-
cation entities), and allowing manipulation of running
session configurations via a uniform interface, proto-
col adaptivity can be placed under direct application
control. As described in Section 3, ADAPTIVE pro-
vides this facility with multiple levels of granularity and
scope.

3. Network Feedback– by utilizing information collected
by the ADAPTIVE/UNITES subsystem, protocol adap-
tivity can be enabled by various conditions observed
in the underlying network and local and remote trans-
port systems. UNITES provides information on both
the state of the network (e.g., packet loss rate, channel

utilization) and the state of local and remote ADAP-
TIVE entities (e.g., buffer utilization, retransmission
counts). Section 5 describe the metric collection facili-
ties of ADAPTIVE in detail.

3 Map Applications and Networks To
Transport Systems (MANTTS)

ADAPTIVE is a transformational system that configures
and instantiates transport system configurations based on
application requirements and network characteristics. The
ADAPTIVE/MANTTS subsystem provides the Application
Programmatic Interface (API) to the ADAPTIVE system
through the use of ADAPTIVE Communication Descrip-
tors (ACDs). ACDs provide a flexible mechanism for ap-
plications to describe (1) grade of service requirements, (2)
application-transport system interactions, and (3) instrumen-
tation/measurement configurations. MANTTS performs a
series of transformations on an ACD to synthesize a Ses-
sion Configuration Specification (SCS), which is used by the
ADAPTIVE/TKO subsystem to instantiate and instrument a
communication session.

3.1 Hierarchical Specification

Flexible and adaptive transport systems are of little utility
if they lack an effective facility for applications to specify
the characteristics required from a communication session.
Various schemes for specifying an application’squality of
service (QoS) requirements (e.g., error rate, throughput, de-
lay) as well as it’sfunctionalityof service (FoS) requirements
(e.g., connection-oriented vs. connectionless, best effort vs.
acknowledged vs. reliable delivery) exist [21, 22, 23]. Ex-
isting schemes have been designed for transport systems that
are either inflexible and/or non-adaptive to diversity in appli-
cation or network characteristics. For a specification scheme
to provide applications with an adequate interface to flexi-
ble and adaptive transport services, explicit support must be
offered for the following:

1. Variable Granularity– both for QoS and FoS parame-
ters, a specification scheme must provide fine grain con-
trol to applications that are aware of and require precise
specification of a communication session configuration.
Courser grainmacro-level specification is also required
for applications that are not aware of or are unconcerned
with every detail of a session’s configuration.

2. Application-based Specification– to allow most appli-
cations to specify a communication session in terms
of the application domain, a specification scheme must
provide sufficient insulation from the underlying pro-
tocol implementation. Application-based specification
allows an application to specify high level communica-
tion policies(e.g., deliver all data reliably) and relies on
the transport system to decide on the actualmechanisms
to be used (e.g., PAR, ARQ, FEC).
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Figure 2: Hierarchical Specification

3. Mechanism-based Specification– provisions must be
made for applications that require low-level control of
the exact configuration of a communication session.
Mechanism-based specification permits the application
to bypass the application-based specification scheme by
directly specifying themechanismsused by a commu-
nication session. Provisions should be made for reject-
ing inconsistent protocol configurations resulting from
incomplete or incompatible specifications.

4. Application-Transport System Interaction– the previ-
ous three requirements primarily address the initial con-
figuration of a communication session. To effectively
support the diversity and dynamism inherent in multi-
media applications, explicit provisions for application-
transport system interactions are required. These provi-
sions take two forms:

(a) Transport System–Application Data Delivery,
which specifies the policies and mechanisms the
transport system must use to deliver received data
to the application. This entails dictatingwhento
deliver the data (e.g., immediately upon reception,
periodically, or based on reception of related data)
as well ashow to deliver the data (e.g., using an
upcall mechanism[24] or read/write system calls).

(b) Application-guided Adaptation, which specifies
both theconditionsthe transport system needs to
react to (e.g., end-to-end delay exceeding some
threshold, a remote application requesting an ad-
ditional data stream on a connection) as well as
the actionsthat are to be taken (e.g., change re-

transmission mechanism, notify application via a
callback).

The following section describes the ADAPTIVE Commu-
nication Descriptor, a hierarchical interface to flexible and
adaptive transport services that satisfies the aforementioned
requirements.

3.2 ADAPTIVE Communication Descriptor
(ACD)

Applications request communication services from ADAP-
TIVE by providing MANTTS with a set of ADAPTIVE
Communication Descriptors (ACDs). For a given commu-
nication session, the application furnishes a separate ACD
per data stream that describes the behavior requested for that
stream. Each ACD consists of five major components as fol-
lows:

1. Quality of Service (QoS):The QoS contains thequan-
titative description of the desired service. It allows the
application to specify the a range of values to be used
for each parameter (e.g., minimum acceptable, expected
maximum, expected mean, expected variance), provid-
ing a set of default values (e.g., don’t care, maximum
allowed, unknown) for applications that are not capable
of providing complete information. QoS parameters in-
clude throughput, connection duration, delay, jitter, and
loss probability.

2. Functionality of Service (FoS):Applications specify
the qualitative behavior of desired service using the
FoS. The FoS describes the policies (e.g., recover lost
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Transport Service Class Example Applications Average Burst Delay Jitter Order Loss Priority Multi-
Thruput Factor Sens Sens Sens Tolerance Delivery cast

Interactive Voice Conversation low low high high low high no no
Isochronous Tele-Conferencing mod mod high high low mod yes yes
Distributional Full-Motion Video (comp) high high high mod low mod yes yes
Isochronous Full-Motion Video (raw) very-high low high high low mod yes yes
Real-Time Non-Isochronous Manufacturing Control mod mod high var high low yes yes

File Transfer mod low low N/D high none no no
Non-Real-Time TELNET very-low high high low high none yes no
Non-Isochronous On-Line Transaction Processing low high high low var none no no

Remote File Service low high high low var none no yes

Figure 3: Transport Service Classes

data, suppress duplicates, encryption) that are to be car-
ried out by the transport system. In contrast to the QoS,
which describeswhenandhow muchdata will be trans-
mitted, the FoS describeswhatprocessing must be done
before transmission and reception.

3. Data Synchronization and Delivery (DSD):The DDS
specifies the the policies to be used in synchronizing
multiple data streams within one communication ses-
sion (i.e., what tolerance of intra-stream drift is ac-
ceptable, what action to take given a loss of synchro-
nization), and the mechanisms to be used to ultimately
deliver the data to the application (e.g., via read/write
calls, via upcalls into application, via in-kernel direct
routing to a device).

4. Transport Service Adjustment (TSA): The TSA al-
lows applications to participate in the dynamic configu-
ration of the communication session. The TSA is a set
of < condition; action > pairs, where thecondition
specifies what event the application is interested in re-
sponding to, (e.g., resource request denied, latency ex-
ceeds 10ms), and theactionspecifies the response to be
taken, either as a callback to the application, or a call to
an internal ADAPTIVE routine. These internal routines
range from macro-level operations, (e.g., abort connec-
tion) to very fine grain actions that implement both
parametric, functional, and em quantitative adaptivity.
MANTTS provides a special condition value that, when
used in conjunction with these functional adaptivity op-
erations, allows the application to “escape” the normal
configuration process and hard-wire a protocol config-
uration. The session configuration that results from this
direct specification method can then be validated by
ADAPTIVE/MANTTS to guarantee that a meaningful
protocol will be produced (i.e., that fundamental mech-
anism incompatibilities do not exist).

5. Transport Metric Configuration (TMC): To accom-
modate protocol development, prototyping and mea-
surement, the TMC allows the application to specify
what performance metrics it is interested in monitoring.
Each metric is specified by (1)what is to be measured
and where (e.g., host system throughput, per-stream
transmission count, transmission delay), (2) the sam-

pling and reporting rate (e.g., sample everyk millisec-
onds, report everyn seconds), and (3) the reporting ac-
tion to be taken (e.g., add sample(s) to a repository, call-
back to application). The TMC allows any application
using ADAPTIVE services to instrument a communica-
tion session.

3.3 MANTTS Operation

ADAPTIVE Communication Descriptors provide the API to
ADAPTIVE. Once the ACDs have been created by the ap-
plication and passed to ADAPTIVE, MANTTS must then
transform these configuration requests that are expressed
in terms of application-domain requirements into aSession
Configuration Specifier (SCS)that can be used to directly
instantiate a communication session. This transformation
process examines the parameters of an ACD and attempts to
match it to a pre-configuredTransport Service Class (TSC)
that represents a common set of communication require-
ments shared by a class of applications (e.g., Real-Time Non-
Isochronous, Interactive Isochronous). Figure 3 shows a rep-
resentative set of transport service classes and the parameters
they encompass.

4 Transport Kernel Objects (TKO)

Transport Kernel Objects (TKO) is a protocol composition
framework that provides flexible data transport service to ap-
plications. It provides a set of uniform abstract interfaces and
a library of mechanism implementations for the various func-
tions required to compose multimedia communication proto-
cols. TKO is implemented as a collection of C++ classesthat
allow protocols to be composed usingobjectsthat implement
the mechanisms used in a particular protocol configuration.
As shown in Figure 4, TKO consists of two major subsys-
tems:

1. TKO Operating Services Interface Library (TKO-OSIL)
– a set of C++ classes that provide an efficient uniform
interface to the basic operating system services required
by all protocols. TKO-OSIL allows protocols to be im-
plemented in a portable and consistent manner.
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2. TKO Mechanism Class Library (TKO-MCL)– a set of
C++ classes that provide implementations of the vari-
ous protocol mechanisms that comprise a communica-
tion session. TKO-MCL is partitioned into mechanism
familiesthat allow several alternate implementations of
a protocol function to share both interface and imple-
mentation.

The remainder of this section describes these two subsys-
tems.

4.1 TKO-Operating Services Interface Li-
brary (TKO-OSIL)

Implementing efficient communication protocols for gen-
eral purpose computers requires operating system support
for protocol development and operation. The services re-
quired from the operating environment include scheduling,
buffer management, multiplexing/demultiplexing and con-
text management. Most existing systems provide some sub-
set of these services (e.g., BSD-UNIX[3], UNIX System V
STREAMS[2],x-kernel[1]), but with very little consistency
across environments. For example, all three of the previously
mentioned systems provide some form of buffer manage-
ment (e.g., BSD mbuf , STREAMSmblk , x-kernelMsg),
but each has somewhat different semantics and interfaces for
the basic set of operations (e.g., logical vs physical copy-
ing, appending/truncating messages). TKO-OSIL provides a
consistent interface to these basic operating system services
for use by TKO-MCL protocol implementations by provid-
ing the following three C++ classes:

1. TKEvent – the basic abstraction for temporal events.
Many protocols must respond to temporal events such
as retransmission timer expiration or periodic update
requests [25]. TheTKEvent class defines an infras-
tructure for event management, providing operations
like TKEvent::schedule , TKEvent::happen ,
andTKEvent::cancel . TKEvent objects sched-
ule themselves to happen one or more times (i.e., they
are intermittent or periodic), they may be cancelled, and
they are triggered to happen asynchronously by the op-
erating system’s timer facility. To accommodate the
synchronization of multimedia applications and proto-
cols to isochronous devices (e.g., D/A converters, frame
buffers),TKEvent allows periodic events to enable or
disable drift compensation to overcome fluctuations in
system scheduling services.

2. TKMessage – the basic abstraction for incoming and
outgoing network messages. Previous work has shown
that memory-to-memory copying is a significant source
of transport system overhead [26]. Therefore, some
form of buffer management is necessary to avoid un-
necessary copying when moving messages between
protocol entities and when adding or deleting head-
ers and trailers [27]. TheTKMessage class pro-
vides a uniform interface for services that create, copy,

prepend, and split messages.TKMessage objects
are internally divided into two distinct regions: the
headerand thedata. The data region supports effi-
cient logical copying operations and segmenting and
reassembling of data chunks. The header region sup-
ports operations (e.g., TKMessage::prepend and
TKMessage::unprepend ) that efficiently prepend
header information onto a message and later strip it
off. Explicit support is also provided for combin-
ing/separating component sub-messages belonging to
multiple data streams for subsequent delivery to the net-
work or application.

3. TKSession – the basic abstraction for a communica-
tion session. A protocol implementation must retain a
collection of state variables for the proper operation of
the protocol. In a multiprotocol environment, this in-
cludes both (1) information that a protocol must main-
tain on a per-session basis for addressing, internal buffer
management, and protocol specific operations, and (2)
some mechanism for associating the state variables of a
session to the global state of the specific protocol the
session is associated with, specifically, whichopera-
tionsor methodsare to be performed as part of the pro-
tocol processing.TKSession encapsulates this infor-
mation behind a uniform abstract interface that allows
basic protocol operations (e.g., TKSession::send ,
TKSession::recv , TKSession::control ) to
be properly dispatched to the appropriate protocol
function. TKSession is implemented in two parts:
(1) global variables and functions– responsible for
TKSession creation and management and demul-
tiplexing incomingTKMessages to the appropriate
TKSession , and (2)instance variable and functions
– responsible for performing the protocol specific oper-
ations on incoming and outgoingTKMessages .

These three classes provide the foundation for the opera-
tion and composition of protocols using the TKO Mechanism
Class Library described below.

4.2 TKO Mechanism Class Library (TKO-
MCL)

TKO-MCL is implemented as a C++ class library of reusable
C++ protocol mechanisms. Each TKO-MCL class is an
implementation of a single protocol function (e.g., error
detection, encryption, transmission control), that encapsu-
lates both thestateandmethodneeded to perform the de-
sired function. A TKO protocol is composed from multiple
lightweight TKO-MCL objects, each of which performs a
different protocol function. The remainder of this section
provides a description of TKO-MCL and discusses several
performance enhancements available to TKO-MCL protocol
implementors.
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4.2.1 Mechanism Families

To efficiently support flexible configuration and adaptive
reconfiguration, TKO-MCL is organized as a C++ inheri-
tance hierarchy. TKO-MCL takes advantage of C++ lan-
guage mechanisms for (1)encapsulationto bind operations
and their associated context allowing object-oriented pro-
tocol composition, (2)dynamic bindingto allow protocol
operations to be transparently and automatically selected at
run-time, and (3)inheritancewhich allows multiple proto-
col mechanisms to be implemented as specializations of a
single mechanism. As shown in Figure 5, the TKO-MCL
class hierarchy is partitioned into multipleMechanism Fam-
ilies, each of which provides one or more implementations
of a given protocol function (e.g., error reporting, encoding,
stream synchronization). Each Mechanism Family consists
of two distinct types of classes, a single Abstract Base Class
(ABC), that defines the interface orsignaturefor the pro-
tocol mechanism and optionally implements any shared or
default behavior, from which one or more Concrete Derived
Classes (CDCs) are derived, each of which represents a par-
ticular implementation of the abstract protocol function its
family represents. Within a Mechanism Family, new mech-
anism implementations are usually implemented by deriving
directly from the Abstract Base Class, but can alternatively
be derived indirectly via a Concrete Derived Class when only
a small amount of behavior in an existing implementation
needs to be changed. Using derivation orsubclassingas an
implementation technique offers the following advantages:

� Shared interfaces allow multiple implementations to be
transparently “plugged in” to perform a given proto-

col function. This interface consists of a collection of
methods or C++ member functionsthat provide consis-
tent and controlled access to the services provided by
a mechanism implementation. The dynamic binding of
virtual member functions in C++ ensures that the appro-
priate code is executed based upon the class a particular
implementation is an instance of. A more detailed dis-
cussion of this appears in Section 4.2.2.

� Shared implementations allow a mechanism implemen-
tation to be expressed in terms of itsdifferencesfrom
its base class. Reusing existing implementations via
specialization allows new protocols to be implemented
more rapidly and aids the task of protocol maintenance,
as defects that are repaired in a base class are automati-
cally repaired in any derived classes.

As shown in Figure 5, TKO-MCL provides a standard set
of Mechanism Families that correspond to the basic mech-
anisms used in protocol processing (e.g., Connection Man-
agement, Remote Context Management, Reliability Man-
agement, Stream Synchronization Management, Transmis-
sion Management). The Reliability Management Mecha-
nism Family shown in Figure 5 is an example of aCom-
posite Component, which is described in Section 4.2.3. As
described above, each family contains a single Abstract Base
Class that defines the basic interface to the mechanism, and
multiple Concrete Derived Classes, that represent specific
policy decisions that are used to implement a given mech-
anism.
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4.2.2 Context Architecture

TKO provides an additional C++ class,TKContext , that
links together a selection of various TKO-MCL mechanism
implementations to form a cohesive protocol. TKO utilizes
one TKContext per unidirectional data stream, combin-
ing multiple, possibly different,TKContext s to form a
communication session. As shown in Figure 4, a single
TKSession object is used to provide a rendezvous point
for managing theTKContext s associated with the multiple
data streams attached to a session. EachTKContext main-
tains a set of pointers to Abstract Base Classes, one for each
TKO-MCL Mechanism Family. OperationalTKContext s
are created by setting these pointers to instances the appro-
priate Concrete Derived Classes.

4.2.3 Optimizations

As previously described,TKContext s maintain pointers to
base classes and rely on language mechanisms to dynami-
cally bind the appropriate executable code at run-time. Al-
though studies have shown that it is possible to efficiently
implement operating systems and communication protocols
using these techniques [28, 29], ADAPTIVE/TKO provides
several optimizations that streamline the creation and opera-
tion of commonly instantiated protocol configurations.

Composites: Figure 5 shows that Reliability Management
is implemented as aComposite Component. Composites al-
low multiple related mechanism families to be bundled to-
gether into one larger mechanism. Composites are useful for
enforcing relationships between multiple sub-mechanisms
(e.g., requiring go-back-N error recovery to use cumulative

acknowledgments) while still allowing the sub-mechanisms
to be independently used elsewhere (e.g., using cumulative
acknowledgment with sliding window flow control). Com-
posites also allow the larger mechanism they represent to be
replaced in one operation, which greatly reduces the com-
plexity of run-time reconfiguration.

Preconfigured Contexts: TKO allows en-
tire TKContext s to be preconfigured for commonly used
protocol configurations. This entails implementing the class
as a collection of actual instances of the constituent mech-
anisms, instead of a collection ofpointersto instances that
must be created separately and linked to theTKContext at
run-time. This preconfiguration technique offers encreased
performance by (1) eliminating one to two levels of indirec-
tion due to the pointer dereference and virtual function res-
olution and (2) by allowing instances of preconfigured con-
texts to be cached for faster instantiation.

5 UNIform Transport and Evaluation
Subsystem (UNITES)

One of the primary goals of the ADAPTIVE system is to pro-
vide a framework for controlled protocol experimentation.
ADAPTIVE provides an integrated experimentation environ-
ment by utilizing UNITES’ metric specification, collection,
analysis and presentation facilities. Performance data gath-
ered by UNITES can be used to evaluate various protocol
mechanisms and configurations with respect to (1) the level
of service provided to the application, (2) the utilization of
the underlying communication channel, and (3) the internal
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performance characteristics of a given set of protocol mech-
anisms.

As shown in Figure 6, the UNITES Metric Repository
stores the collected performance data in a shared database to
minimize the intrusion made by the metric collection process
[30]. Users may access this information via (1) UNITES-
provided interactive graphic displays, (2) the UNITES C++

run-time library, or (3) standard network management proto-
cols such as SNMP or CMIP. This metric data is available on
either a systemwide, per-host, or per-connection basis. The
performance monitoring process can be initiated when appli-
cation programs use the Transport Measurement Component
(TMC) parameter in the ADAPTIVE Communication De-
scriptor (ACD) to indicate the metrics they are interested in
monitoring. ADAPTIVE then selectively instruments the in-
stantiated TKO configurations and automatically collects the
performance data during the operation of the system.

Metric collection may also be specified independent of
a communication session using either a graphics-based or
language-based interface to UNITES. Sjodinet al. [31] de-
fines a specification language that indicates what measure-
ments to collect and what traffic to generate. UNITES pro-
vides similar functionality with its UNITES Metric Specifi-
cation Language (UMSL), but also provides a graphical in-
terface that allows complex metric collection configurations
to be specified using common user-interface elements (e.g.,
check boxes, edit text fields, buttons, menus). This interface
can be used to generate UMSL code for subsequent modifi-
cation or to be used directly to configure a UNITES metric
collection configuration.

UNITES supports two primary classes of metrics,black
boxandwhite box. Black box metrics require no knowledge
of or interaction with the internal implementation of a pro-

tocol configuration. Black box metrics include application-
based and host system-based metrics (e.g., throughput, la-
tency, and jitter) and network based metrics (e.g., bit error
rates, network utilization, and packet lengths). White box
metrics require internal instrumentation of a protocol con-
figuration and may be collected on a mechanism, mecha-
nism family, connection, application, host system or system-
wide basis. White box metrics include retransmission count,
buffer utilization, instruction length, and scheduling and dis-
patching overhead. Both black box and white box metrics
contribute to pinpointing performance bottlenecks in proto-
col configurations.

6 Summary

ADAPTIVE provides an integrated framework for proto-
col composition, evaluation and experimentation. It uti-
lizes object-oriented design and implementation techniques
to create an infrastructure for protocol composition that al-
lows both flexible configuration and adaptive reconfiguration
of communication protocols. The ADAPTIVE system inte-
grates the hierarchical specification of application require-
ments and protocol configurations with the monitoring and
reporting of performance metrics to create a transport sys-
tem capable of adapting to network and application diversity
and dynamism.

We are currently designing and implementing a prototype
implementation written in C++ that runs under System V
STREAMS. We plan to use this prototype to experiment with
different transport system configurations that support multi-
media applications (e.g., network voice and video) running
on several different networks (e.g., Ethernet, Tree Network
[32], DQDB, and FDDI).
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