
Please send feedback tojavamail@sun.com

Sun Microsystems, Inc

JavaMail API Design Specification
version 0.6

Version 0.6

Nov. 24, 1997

Java Mail 0.6

JavaMail

JavaSoft ii 11/25/97

Copyright © 1997 by Sun Microsystems Inc.

2550 Garcia Avenue, Mountain View, CA 94043.

All rights reserved.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject to the restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software Clause as DFARS 252.227-
7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and JavaSoft, are trademarks or registered trademarks of Sun Micro-
systems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABIL-
ITY, FITNESS FOR A PARTICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ER-
RORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC.,
MAY MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Table Of Contents

1. Introduction 1-1

2. Goals and Design Principles 2-1

3. Architectural Overview 3-1

4. The Message Class 4-1

5. The Mail Session 5-1

6. Message Storage And Retrieval 6-1

7. The JavaBeans Activation Framework 7-1

8. Message Composition 8-1

9. Transport Protocols and Mechanisms 9-1

10. Internet Mail 10-1

A. Environment Properties A-1

B. Examples Using the Mail API B-1

B.2 Example : Listing Folders B-4

B.3 Example: Copy or Move a Message Between Folders B-5

B.4 Example: Folder Search B-6

B.5 Example: Creating and Sending an RFC822 Message B-8

B.6 Example: Creating and Sending a MIME Multipart Message B-9

C. Message Security C-1

iv Book Title • Month 1996

C.1.1 Displaying an Encryted/Signed Message C-1

C.1.5.1 Encrypted/Signed C-3

D. Part and Multipart Class Diagram D-1

E. MimeMessage Object Hierarchy E-1

Chapter 1 Introduction 1-1

1

Introduction

In the two years since Java’s first release, Java has matured to become a complete platform. Java now can
provide a complete operating system, a distributed computing with RMI and the CORBA bridge, and a
component architecture including JavaBeans, the server toolkit, and the WebTop environment. Having
proven successful, many Java-based applications have matured with the language, and now require a Java-
based mail and messaging framework. The Java Mail API described in this specification answers that
requirement.

The Java Mail API provides a set of abstract classes defining objects which comprise a mail system. The
API defines classes like Message, Store and Transport. The API is designed to be extended and can be
subclassed to provide new protocols and to support new product functions when necessary.

In addition, the API provides concrete subclasses of the abstract classes. These subclasses, iincluding
MimeMessage and MimeBodyPart, implement widely used Internet mail protocols and conform to
specifications RFC822, RFC2045. They are ready to be used in application development.

1.1 Target Audience
The JavaMail API is designed to serve several audiences:

• Developers interested in building Java-based mail and messaging applications, whether client, server or
middleware.

• Application developers who need to “mail-enable” their applications.

• Service Providers who need to implement specific access and transfer protocols. For example; a
telecommunications company can use the Java Mail API to implement a PAGERTransport protocol,
which sends mail messages to alphanumeric pagers.

1.2 Acknowledgments
The authors of this specification are John Mani, Bill Shannon, Max Spivak, Kapono Carter and Chris Cotton.

We would like to acknowledge the following people for their comments and feedback on the initial drafts of
this document:

• Terry Cline and Bill Yeager: Sun Microsystems.

1-2 JavaMail API Design Specification • November 1997

• Arn Perkins and John Ragan: Novell, Inc.

• Nick Shelness: Lotus Developement Corporation.

• Juerg von Kanel: IBM Corporation.

• Prasad Yendluri, Jamie Zawinski, Terry Weissman and Gena Cunanan: Netscape Communications
Corporation.

Chapter 2 Goals and Design Principles 2-1

2

Goals and Design Principles

The JavaMail API is designed to add "mail-enable" functions to simple applications easily; but also to
support the creation of sophisticated user interfaces. It is easy to learn and begin to use. It includes
appropriate convenience classes which encapsulate common mail functions and protocols. It fits with other
Java packages in order to facilitate its use with other Java APIs, and uses familiar Java programming models.

The JavaMail API is therefore designed to satisfy the following development and runtime requirements:

• Simple, straightforward class design is easy for a developer to learn and implement.

• Use of familiar concepts and programming models support code development that interfaces well with
other Java APIs.

■ Uses convenience methods to access factories, which simplify the code required to implement
message storage and transport tasks.

■ Uses familiar exception-handling and JDK 1.1 event-handling programming models.

■ Uses features from the Java Activation Framework (JAF) to handle access to data based on data-
type, and to facilitate the addition of data types and commands on those data types. The JavaMail
API provides convenience functions to simplify these coding tasks.

■ Provides a set of ready-to-use concrete classes supporting Mime-types and common Network
protocols.

• Lightweight classes and interfaces make it easy to enable any application to handle basic mail-handling
tasks.

• Supports the development of robust, transport-intensive networking applications, which can handle a
variety of complex mail message formats, data types, and access and transport protocols.

The JavaMail API draws heavily from IMAP, MAPI, CMC, c-client and other messaging system APIs -
many of the concepts present in these other systems are also present in the JavaMail API. The JavaMail API
is familiar to users of these other systems. The JavaMail API is simpler to use, however; because it uses
Java language features not available to these other APIs, and because it uses the Java object model to shelter
applications from implementation complexity.

JavaMail API design is driven by the needs of the applications it supports - but it is also important to

2-2 JavaMail API Design Specification • November 1997

consider the needs of API implementors. It is critically important to enable the implementation of Java-
based messaging systems that interoperate with existing messaging systems-- especially Internet mail. It is
also important to anticipate the development of new messaging systems. The JavaMail API conforms to
current standards while not being so constrained by current standards that it stifles future innovation.

The JavaMail API supports many different messaging system implementations - different message stores,
different message formats, different message transports. The JavaMail API provides a set of base classes
and interfaces that define the API for client applications. Many simple applications will only need to interact
with the messaging system through these base classes and interfaces.

JavaMail subclasses can expose additional messaging system features. For instance, the MimeMessage
subclass exposes and implements common characteristics of an Internet mail message, as defined by
RFC822 and MIME and other Internet standards. Developers can subclass JavaMail base classes to provide
the implementations of particular messaging systems, such as IMAP4, POP3, and SMTP.

Base JavaMail classes include many convenience APIs that simplify their use. The implementation
subclasses of the JavaMail API is therefore not required to provide implementations for all of the JavaMail
API, and is left to concentrate on the core classes that provide the required functionality for that
implementation.

Alternately, a messaging system can choose to implement all of the JavaMail API directly, allowing it to
take advantage of performance optimizations possible, perhaps through use of "batched" protocol requests.
The IMAP4 protocol implementation takes advantage of this approach.

The JavaMail API uses the Java language to good effect to strike a balance between simplicity and
sophistication. Simple tasks are easy, and sophisticated functionality is possible.

Chapter 3 Architectural Overview 3-1

3

Architectural Overview

This Section describes the JavaMail architecture, defines major classes and interfaces comprising that
architecture, and lists major functions which the architecture implements.

JavaMail API provides elements which are used to construct an interface to a messaging system, including
system components and interfaces. While this Specification does not define any specific implementation,
The JavaMail API does include several classes which implement RFC822 and MIME Internet messaging
standards and protocols. These classes are delivered as part of the JavaMail class package.

3.1 JavaMail Layered Architecture
The JavaMail architectural components are layered as shown below:

• The Abstract Layer declares Classes, Interfaces and abstract methods intended to support mail handling
functions that all mail systems support. API elements comprising the Abstract Layer are intended to be
subclassed and extended as necessary, in order to support standard data types, and to interface with
message access and message transport protocols as necessary.

• The implementation class layer implements the protocol defined in the abstract layer, in order to support
Messages holding MIME-compliant data, using standard access and transport protocols.

• JavaMail interfaces to the Network layer in order to send and receive messages, using predefined
transport protocols.

• JavaMail uses the Java Activation Framework (JAF) in order to encapsulate message data, and to handle
commands intended to interact with that data. Interaction with message data should take place via JAF-
aware JavaBeans, which are not provided by the JavaMail API.

JavaMail clients use the JavaMail API and Service Providers implement the JavaMail API. The layered
design architecture allows clients to use the same JavaMail API calls to send, receive and store a variety of
messages using different data-types, from different message stores, and using different message transport
protocols.

3-2 JavaMail API Design Specification • November 1997

3.2 JavaMail Class Hierarchy
The figure below shows major classes and interfaces comprising the JavaMail API. See See “Major
JavaMail API Components” for brief descriptions of all components shown on this diagram.

Mail-enabled Application

Java Bean - used to interact and
display message content

JavaMail
Abstract Class Layer

IMAP / POP3 / NNTP implementation Layer

JavaMail
Implementation Class Layer

JavaMail
API

Chapter 3 Architectural Overview 3-3

3.3 The JavaMail Framework
JavaMail API is intended to perform the following functions, which comprise the standard Mail handling
process for a typical client application:

• Create a Mail Message consisting of a collection of header attributes and a block of data of some known
data type, as specified in theContent-Type header field. JavaMail uses the Part interface and the
Message class to define a mail message. It uses the JAC-defined DataHandler object to contain data
placed into the message.

• Create a session object, which identifies the user, controls access to the User Store, and maintains the
network interface. JavaMail uses a Session object to handle an interactive mail session. Session also

Part

Message

Multipart
Container
Class

MimePart

Bodypart

MimePart

MimeMessage

MimeBodyPart

MimeMultipart
container
Class

JavaMail Implementation Layer

LEGEND

Extends

ImplementsInterface

Class

Container Class

3-4 JavaMail API Design Specification • November 1997

calls the Transport factory and the Store factory. The Transport factory automatically retrieves the
Transport object that can handle both the Message type and the Network transport protocol, and returns
that Transport object to the Session object. The Store factory returns a Store object which conforms to
the access protocol required by the message.

• Send the message to its recipient list, via the defined Transport protocol. JavaMail calls the
message.send() method, which instantiates the appropriate transport object via the Session object.

• Receive a message from the network. This function is implemented by the mail provider. Generally, the
provider delivers the message to the predefined Store designated to be the JavaMail Input folder.

• Place and retrieve messages in a store of Folders.

• Maintain a Folder tree as defined by the end-user. The end-user defines the folder tree via the JavaMai-
enabled client. JavaMail instantiates Store and Folder classes to structure the folder tree and manage the
messages placed into the tree.

• Retrieve a message from the store.

• Execute a high-level command on a retrieved message. High-level commands likeview andprint are
intended to be implemented via JAF-Aware JavaBeans. The JAF provides two simple demonstration
beans which handle MIMEtext/plain andImage data.

Note – The JavaMail framework does not define mechanisms that support message delivery, security,
disconnected operation, drectory services or filter functionality. Security, disconnected operation and
filtering support will be added in future releases.

This figure illustrates the JavaMail message-handling process.

Chapter 3 Architectural Overview 3-5

3.4 Major JavaMail API Components
This Section reviews major components comprising the JavaMail architecture.

3.4.1 The Message Class
Message is an abstract class which defines a set of attributes and a content body for a mail message.
Message attributes specify network routing information and define the structure of the content body,
including the content type. The content body is either a DataHandler object carrying the specified data type,
or a Multipart container object.

The Message class implements the Part interface. Part defines attributes which are required to define and
format data content carried by a Message object, and to interface successfully to a mail system. The
Message class adds From, To, Subject, Reply-To, and other attributes necessary for messge routing via a
message transport system. When contained in a Folder, a Message object also has a set of flags associated
with it. The JavaMail API also provides Message subclasses which support specific messaging
implementations.

Message content is a collection of bytes, or a reference to a collection of bytes, encapsulated within a
Message object. The JavaMail API has no knowledge of the data type or format of the message content. A
Message object interacts with its content though an intermediate layer -the Java Activation Framework
(JAF). Separating content from its formatting information allows a Message object to handle any arbitrary

FOLDERS

MESSAGE

FOLDERSTRANSPORT

Receive a
Message

Send a
Message

Submit a
Message

STORE

MESSAGE

Contains
Messages

Network
Infrastructure

3-6 JavaMail API Design Specification • November 1997

content and to transmit it using any appropriate transmission protocol, by using calls to the same API
methods. The Message recipient usually knows the content data type and format, and knows how to handle
that content.

The JavaMail API also supports multipart Message objects, where each Message part defines its own set of
attributes and content.

3.4.2 Message Storage and Retrieval
Messages are stored in Folder objects. A Folder can contain subfolders in addition to messages, thus
providing a tree-like folder hierarchy. The Folder class declares methods which fetch, append, copy and
delete Messages. Folder can also fire events to components registered as event listeners.

The Store class defines a database that holds a folder hierarchy together with its messages. The Store also
specifies theaccess protocol which accesses folders and retrieves messages stored in folders. Store also
provides methods to establish a connection to the database, to fetch Folders and to destroy a connection.
Service providers implementing Message Access protocols (IMAP4, POP3 etc.) start off by subclassing
Store. A user typically starts a session with the Mail system by connecting to a particular Store
implementation.

3.4.3 Message Composition and Transport
A client creates a new message by instantiating an appropriate Message subclass. It sets attributes like the
recipient addresses and the subject, and inserts the content into the Message object. Finally, it sends the
Message by invoking itssend() method.

The Transport class models the transport agent that routes a message to its destination addresses. This class
provides methods to send a Message to a list of recipients. Typically, a mail client does not have to know
about transports, invoking thesend() method on a Message object identifies the appropriate transport
based on its destination addresses.

3.4.4 The Session Class
The Session class defines global and per-user Mail-related properties which define the interface between a
mail-enabled client and the network. JavaMail system components use the Session object to set and get
specific properties. The Session class also provides a default authenticated session object which desktop
applications can share. Session is a final concrete class. It cannot be subclassed.

The Session also acts as a factory for Store and Transport objects which implement specific access and
transport protocols. By calling the appropriate factory method on a Session object, the client can obtain
Store and Transport objects that support specific protocols.

3.5 The JavaMail Event Model
The JavaMail event model conforms to the Java JDK 1.1 Event model specification, as described in the
JavaBeans Specification. The JavaMail API follows the design patterns defined in the Beans Specification
for naming events, event methods and event listener registration.

Chapter 3 Architectural Overview 3-7

All events are subclassed from MailEvent. Clients listen for specific events by registering themselves as
listeners for those events. Events notify listeners of state changes as a session progresses. During a session, a
JavaMail API component fires a specific event-type to notify objects registered as listeners for that event-
type. The JavaMail Session, Message, Store, and Transport classes are event sources. This Specification
describes a specific event in the Section which describes the class which fires that event.

3.6 Using the JavaMail API
This Section defines the syntax and lists the order in which a client application calls some JavaMail methods
in order to access and open a Message located in the folder designated as the JavaMail inbox:

A JavaMail API client typically begins a mail handling task by obtaining the default JavaMail Session
object.

Session session = Session.getDefaultInstance(
 props, authenticator);

The client uses the Session object’sgetStore() method to connect to the default Store. The
getStore() method returns a Store object subclass that supports the access protocol defined in the user
properties object, which will typically contain per-user preferences.

Store store = Session.getStore();
store.connect();

If the connection is successful, the client can list available folders in the Store, and then fetch and view
specific Message objects.

// get the INBOX folder
Folder inbox = store.getFolder("INBOX");

// open the INBOX folder
inbox.open(Folder.READ_WRITE);

Message m = inbox.getMessage(1); // get Message # 1
String subject = m.getSubject(); // get Subject
Object content = m.getContent(); // get content
..
..

Finally, the client closes all open Folders, and then closes the Store.
inbox.close(); // Close the INBOX
store.close(); // Close the Store

See “Examples Using the Mail API” for a more complete example.

3-8 JavaMail API Design Specification • November 1997

Chapter 4 The Message Class 4-1

4

The Message Class

The Message class defines the access protocol that handles electronic messages exchanged between
JavaMail API components and mail system consumers, and carries content from a sender address to a list of
recipient addresses. The Message class is an abstract class that implements the Part interface.

Message Subclasses can implement several standard message formats. For example; The JavaMail API
provides the MimeMessage class, which extends Message in order to implement the RFC822 and the MIME
standard for Internet messages. Implementations typically can construct themselves from byte streams and
generate byte streams for transmission.

A Message subclass instantiates a container object that holds message content, together with attributes that
specify addresses for the sender and reipients, structural information about the message, and the content type
of the message body. Messages placed into a Folder also have a set of flags that describe the state of the
message within the folder.

The structure of a Message object does not vary with its content type. The Message object has no direct
knowledge of the nature or semantics of its content. This separation of structure from content allows the
message object to content of any arbitrary type.

The figure below illustrates the Message class structure.

4-2 JavaMail API Design Specification • November 1997

The structure of a Message object does not vary with its content type. The Message object has no direct
knowledge of the nature or semantics of its content. This separation of structure from content allows the
message object to contain any arbitrary content.

Message objects are either retrieved from a Folder or constructed by instantiating a new Message object of
the appropriate subclass. Messages stored within a Folder are sequentially numbered, starting at one. An
assigned message number can change when the folder is expunged, since the expunge operation removes
deleted messages from the folder and also renumbers the remaining messages.

A Message object can contain multiple parts, where each part contains its own set of attributes and content.
The content of a multipart message is a Multipart object that contains BodyPart objects representing each
individual part. The Part interface defines the structural and semantic similarity between the Message class
and the BodyPart class.

Message Class

Header Attributes

Content Body

Attributes defined by the
Part interface, including
Content-Type .

Attributes added by the
Message Class.

Optional attributes added by
a Message Subclass,
like MimeMessage.

 Part interface

 DataHandler
Class

DataHandler Object

Contains data that conforms
to the Content-Type
attribute, together with meth-
ods that provide access to
that data.

JavaBean
queries the
DataHandler
object in order to
view and handle
content body.

Chapter 4 The Message Class 4-3

The figure below illustrates a Message instance hierarchy, where the Message contains attributes, a set of
flags, and content. See “MimeMessage Object Hierarchy” for an illustration of the MimeMessage object
hierarchy.

The Message class provides methods to perform the following tasks:

• Get, Set and Create its attributes and content:

public String getSubject() throws MessagingException;

public void setSubject(String subject)
 throws MessagingException;
public String[] getHeader(String name)
 throws MessagingException;
public void setHeader(String name, String value)
 throws MessagingException;

MessageFlags Attributes

Legend

Contains

Implements

Part

Content

Interface

Class

References

4-4 JavaMail API Design Specification • November 1997

public Object getContent()
 throws MessagingException;
public void setContent(Object content, String type)
 throws MessagingException

• Send itself to its recipients:

public void send()
 throws MessagingException;

• Save changes to its containing folder.

public void saveChanges()
 throws MessagingException;

This method also ensures that the Message header fields are updated to be consistent with the changed
message contents.

• Generate a bytestream for the Message object.

public void putByteStream(OutputStream os)
 throws Exception;

This byte stream can be used to save the message or send it to a Transport object.

4.1 The Part Interface
The Part interface defines a set of standard headers common to most mail systems, specifies the data-type
assigned to data comprising a content block, and defines set and get methods for each of these members. It
is the basic data component in the JavaMail API and provides a common interface for both the Message and
the BodyPart classes. See the JavaMail API documentation for details.

• Message implements the Part interface, and adds message-specific header attribute definitions with its
corresponding set and get methods. Clients can create, send, receive and store individual messages.

• BodyPart implements the Part interface without headers defined by the Message class, and is intended to
define a single message element included within a message object that includes a multipart content type.
Clients must embed BodyPart objects into multipart objects in order to create, send, receive or store them.

Note – A Message object can not be contained directly in a multipart object, but must be embedded in a
BodyPart first.

Chapter 4 The Message Class 4-5

4.1.1 Message Attributes
The Message class adds its own set of standard attributes to those it inherits from the Part interface. These
attributes include the sender and recipient addresses, and the subject. The Message class also supports non-
standard attributes in the form of Headers. See the JavaMail API Documentation for the list of standard
attributes defined in the Message class. Not all messaging systems will support arbitrary headers, and the
availability and meaning of particular header names is specific to the messaging system implemented.

Mail systems can also support other Part attributes. Custom attributes are represented as Header objects.
Each object is a name-value pair where both the name and value are Strings. These are typically added to
Message subclasses.

4.1.2 The ContentType Attribute
The ContentType attribute specifies the content data type, following the MIME typing specification (RFC
2045). A MIME type is composed of a primary type which declares the general type of the content, and a
subtype which specifies a specific format for the content.

JavaMail API components can access a content block via these mechanisms:

ThesetDataHandler(DataHandler) method specifies content for a new Part object, as a step
towards the construction of a new Message. Part also provides some convenience methods to set up most
common content types.

As an input stream The Part interface declares thegetInputStream() method,
which returns an input stream to the content. Note that Part imple-
mentations must decode any mail-specific transfer encoding before
providing the input stream.

As a DataHandler object The Part interface declares thegetDataHandler() method,
which returns ajavax.activation.DataHandler object that
wraps around the content. The DataHandler object allows clients to
discover the operations available to perform on the content, and to
instantiate the appropriate component to perform those operations.
See “The JavaBeans Activation Framework” for details describing
the DataTyping framework

As a Java object The Part interface declares thegetContent() method, which
returns the content as a Java object. The type of the returned object is
dependent on the content datatype. If the content is of type multipart,
thegetContent() returns a Multipart object, or a Multipart sub-
class object.getContent() returns an input stream for unknown
content-types. Note thatgetContent() uses the DataHandler
internally to obtain the native form.

4-6 JavaMail API Design Specification • November 1997

Part provides theputByteStream() method that streams its byte stream in mail-safe form suitable for
transmission. This byte stream is typically an aggregation of the Part attributes and the byte stream for its
content.

4.2 The Address Class
The Address class represents email addresses. Address is an abstract class. Subclasses provide
implementation-specific semantics.

Address selects the addressing protocol identified itsgetType() method. For example, passing an
InternetAddress object togetType() returns ’RFC822.’ Similarly, an NNTPAddress object returns
’nntp.’ TheSession class uses this return value to identify theTransport subclass supporting the
addressing protocol required by the Message to be sent.

4.3 The BodyPart Class
BodyPart is an abstract class that implements the Part interface, in order to define the attribute and content
body definitions that Part declares. It does not declare attributes that set From, To, Subj, Reply-To, or other
address header fields, as a Message object does.

A BodyPart object is intended to be inserted into a Multipart container, later accessed via a multipart
message.

4.4 The Multipart Class
The Multipart class implements multipart messages. A Multipart message is a Message object where the
content-type specifier has been set to ’Multipart.’ Multipart is a container class which contains objects of
type Bodypart. A Bodypart object is an instantiation of the Part interface-- it contains either a new Multipart
container object, or a DataHandler object.

The figure below illustrates the structure and content of a multipart message:

Chapter 4 The Message Class 4-7

Note that Multipart objects can be nested to any reasonable depth within a Multipart Message, in order to
build an appropriate structure for data carried in DataHandler objects. Therefore, it is important to check the
ContentType header for each BodyPart element stored within a Multipart container. The figure below
illustrates a typical nested Multipart Message.

Multipart Object

Header Attributes

Content Body

Attributes defined by the Part
interface only.

Attributes include a new
Content-Type attribute..

The content body itself can be
either a DataHandler object con-
taining data, or another Multipart
object.

Bodypart Object

A Multipart Message can hold more
than one Multipart Object.

Message

Header Attributes
Normal Message,
includes a Content-
Type attribute
set to ‘Multi.’ .

A Multipart Message is a simple
message object where the Con-
tent-Type is set to ‘Multipart , ‘
and the Content Body carries a
reference to a Multipart object .

Content Body
Normal Message,
includes a Content
body of type
‘Multipart.’

A Multipart object is a container
of Bodypart objects, where each
Bodypart can in turn contain
either a DataHandler object, or
another Multipart object.

Bodypart Object

4-8 JavaMail API Design Specification • November 1997

Typically, the client callsgetContentType() to return the ContentType of a message. If
getContentType() returns a MIME-type whose primary type is "multipart," then the client calls
getContent() to return the Multipart container object.

Multipart supports several methods that get, create, and remove individual BodyPart objects.

public int getCount() throws MessagingException;
public Body getBodyPart(int index)
 throws MessagingException;
public void addBodyPart(BodyPart part)
 throws MessagingException;
public void removeBodyPart(BodyPart body)
 throws MessagingException;
public void removeBodyPart(int index)

Message
Object

Multipart Container
Object

Bodypart object
which carries a
DataHandler object
holding data.

Bodypart object
which holds a Multi-
part Container
object, which in turn
contains a reference
to a new Multipart
object.

Other Optional
Multipart Objects

New bodyparts,
containing either
Datahandler or
Multipart objects.

Other Bodypart
objects.

Content body
references a
Multipart con-
tainer object.

Bodypart

Bodypart

Bodypart

Carries
addresses for
the entire tree.

Chapter 4 The Message Class 4-9

 throws MessagingException;

Multipart implements thejavax.beans.DataSource interface. It can act as the DataSource object for
javax.beans.DataHandler s andjavax.beans.DataContentHandlers . This allows
message-aware content handlers to handle Multipart data sources more efficiently, since the data has already
been parsed into individual parts.

This diagram illustrates the structure of a multipart Message, and shows associated Message and Multipart
calls for a typical call sequence returning a bodypart containing text/plain content.

In this figure, the ContentType attribute of a Message object indicates that it holds a multipart content. Use
thegetContent() method to obtain the Multipart object.

This code sample below shows the retrieval of a Multipart object. See “Examples Using the Mail API” for
examples which traverse a multipart message and create new multipart messages.

Multipart mp = (Multipart)message.getContent();

Message

Multipart

BodyPart

0 ... n-1

getContent()

getBodyPart(index)

Legend

extends

contains

getContentType()
multipart/mixed

Text

getContent()

text/plain
getContentType()

4-10 JavaMail API Design Specification • November 1997

int count = mp.getCount();
BodyPart body_part;
for (int i = 1; i <= count; i++)

body_part = mp.getBodyPart(i);

4.5 The Flags Class
Flags objects carry flag settings which describe the state of a Message within its containing folder.
Message.getFlags () returns a Flags object that holds all the flags currently set for that message.

ThesetFlags(Flags f) method sets the specified set of flags for that Message. Each flag is
represented as a String. The set(String s) method on a Flags object sets the specified flag; the
isSet(String s) method returns whether the specified flag is set.

Note that a Folder is not guaranteed to support either standard system flags or arbitrary user flags. The
getPermanentFlags () method in a Folder returns a Flags object that contains all the system flags
supported by that Folder implementation. The presence of the special USER flag indicates that the client can
set arbitrary user-definable flags on any Message belonging to this folder.

4.6 Message Creation And Transmission
Message is an abstract class, so an appropriate subclass must be instantiated to create a new Message
object. A client creates a message by instantiating an appropriate Message subclass.

For example, the MimeMessage subclass handles Internet email messages. Typically, the client application

ANSWERED Clients set this flag to indicate that this Message has been answered.

DRAFT Indicates that this Message is a draft.

FLAGGED No defined semantics. Clients can use this flag to mark a message in
some user-defined manner.

RECENT This Message is newly arrived in this Folder. This flag is set when
the message is first delivered into the folder and cleared when the
containing folder is closed. Clients cannot set this flag.

SEEN Marks a message that has been opened. A Client sets this flag implic-
itly when the message contents are retrieved.

DELETED Allows undoable message deletion. Setting this flag for a message
marks it 'deleted' but does not physically remove the message from
its folder. The client callsexpunge() on a folder to remove all
deleted messages in that folder.

Chapter 4 The Message Class 4-11

creates an email message by instantiating a MimeMessage object, and passing required attribute values to
that object. In an email message, the client defines Subject, From, and To attributes. The client then passes
message content into the MimeMessage object by using a suitably configured DataHandler object. See
“Message Composition” for details.

After the Message object is constructed, the client calls the MimeMessage send() method to route it to
its specified recipients. See “Transport Protocols and Mechanisms” for a discussion of the Transport
process.

4-12 JavaMail API Design Specification • November 1997

Chapter 5 The Mail Session 5-1

5

The Mail Session

A mail Session object manages the configuration options and user authentication information used to
interact with messaging systems. It also accesses the Transport factory, which returns the transport object
used to send a message.

The JavaMail API supports simultaneous multiple sessions. Each session can access multiple message
stores and transports. Any desktop application that needs to access the current primary message store can
share the default session. Typically the mail-enabled application establishes the default session, which
initializes the authentication information necessary to access the user Inbox folder. Other desktop
applications then use the default session when sending mail on behalf of the user.

For example:

A Session object is created using a static factory method:
Session session = Session.getInstance
 (props, authenticator);

to create an unshared session, or
Session defaultSession =
 Session.getDefaultInstance
 (props, authenticator);

to access the default session.

The Properties object which initializes the session contains default values and other configuration
information. See “Environment Properties” for a list of properties used by the JavaMail API.

The Authenticator object controls security aspects for the session object. The messaging system uses it as a
callback mechanism to interact with the user when a password is required to login to a messaging system. It
also indirectly controls access to the default session, as described below.

Messaging system implementations can register PasswordAuthentication objects with the Session object for
use later in the session, or for use by other users of the same session. Because PasswordAuthentication
objects contain passwords, acess to this information must be carefully controlled. Applications that create
Session objects must restrict access to those objects appropriately. In addition, the Session class shares some

5-2 JavaMail API Design Specification • November 1997

responsibility for controlling access to the default session object.

The first call togetDefaultInstance() creates a new Session object and associates it with the
Authenticator object. Subsequent calls togetDefaultInstance() compare the Authenticator object
passed in with the Authenticator object saved in the default session. Access to the default session is allowed
if both objects have been loaded by the same class loader. Typically, this is the case when both the default
session creator and the program requesting default session access are in the same "security domain." Also;
if both objects are null, access is allowed. Using null to gain access is discouraged, because this allows
access to the default session from any security domain.

Some messaging system implementations can use additional properties. Typically the properties object
contains user-defined customizations in addition to system-wide defaults. Mail-enabled application logic
determines the appropriate set of properties. Lacking a specific requirement, the application can use the
system properties object retrieved fromSystem.getProperties() .

A mail-enabled client uses the Session object to retrieve a Store or Transport object in order to read or send
mail. Typically, the client retrieves the default Store object, based on properties loaded for that session:

Store store = session.getStore();

The client can override the session defaults and access a message store supporting a different type:

Store store = session.getStore("imap");

Implementers of Store and Transport objects will be told which session to which they have been assigned.
They can then make the Session object available to other objects contained within this Store or Transport
using application-dependent logic.

The Session class provides a factory mechanism for obtaining appropriate Store and Transport
implementation objects, based on their protocol names.

5.1 The Resource Registry
JavaMail APIs need to allow for configuration, both default and system/application-specific. The Resource
Registry provides this mechanism. The registry performs the following functions:

• Provides a mechanism for discovery of available protocols,

• Registers a newly-installed protocol

(e.g. com.acme.mail.acmesmtp)

• Maps a protocol to an implementation

• (i.e. imap uses com.sun.mail.imap).

• Allows clients to specify thier preferred store and transport procotols (i.e. use pop3 for store and smtp for
transport)

• Specifies default protocol implementations and overriding them

Chapter 5 The Mail Session 5-3

5.2 Resource Files
 The JavaMail APIs are configured using the following files:

• javamail.providers

• javamail.default.providers

• javamail.address.map

• javamail.default.address.map

Each resource filejavamail. X is searched in the following order:

1. java.home>/lib/javamail. X

2. META-INF/javamail. X

3. META-INF/javamail.default. X

Method 1 allows the user to include their own version of the resource file by placing it in the lib directory of
wherever thejava.home property points. Method 2 allows an application that uses the JavaMail APIs to
include their own resource files in their application’s or jar file’s META-INF directory. The default files,
javamail.default.X , is part of the JavaMailmail.jar file.

File location depends upon how theClassLoader.getResource() is implemented. Usually,
getResource() searches through the CLASSPATH until it finds the requested file and then stops. JDK
1.1 has a limitation that the number of files of each type that will be found in the CLASSPATH is limited to
one. However, this only affects method 2 above; method 1 is loaded from a specific location (if allowed by
the SecurityManager) and method 3 uses a different name to ensure that the default resource file is always
loaded successfully.

File search order matters. If multiple entries exist, the first entries take precedence over the latter entries as
the initial defaults. For example, the first imap provider found will be initially set as the default imap
implementation until explicitly changed by the application.

The user- or system-supplied resource files augment, not override, the default files included with the
JavaMail APIs. This means that all the entries in all the files loaded will be available.

5.2.1 Resource File Formats and Specifications

javamail.providers & javamail.default.providers

These resource files specify the stores and transports that are available on the system, allowing an
application to "discover" what store and transport implementations are available. The protocol
implementations are listed one per line. The file format defines four attributes that describe a protocol

5-4 JavaMail API Design Specification • November 1997

implementation. Each attribute is a "="-separated name-value pair with the name in lowercase. Each name-
value pair is semi-colon (";") separated.

protocol valid protocol for the type. For
example, "smtp" for transport

type valid entries currently are "store"
and "transport"

class class name that implements this protocol
vendor optional string identifying the vendor

Here’s an example ofMETA-INF/javamail.default.providers file contents:

protocol=imap; type=store;
class=com.sun.mail.imap.IMAPStore;
vendor=Sun Microsystems, Inc; protocol=smtp;
type=transport;
class=com.sun.mail.smtp.SMTPTransport;
javamail.address.map & javamail.default.address.map

These resource files map transport address types to the transport protocol. (Recall that the
javax.mail.Address.getType() method returns the address type. The javamail.providers file maps
the transport type to the actual procotol implementation. The file format is a series of name-value pairs.
Each key name must correspond to an address type that is currently installed on the system; there must be an
entry for eachjavax.mail.Address implementation that is present For example,
javax.mail.internet.InternetAddress.getType() returnsrfc822. Each referenced protocol
must be installed on the system. For the case ofnews, the client must install a Transport provider supporting
the nntp protocol.

Here’s an example of what ajavamail.address.map can contain.

rfc822=smtp news=nntp

PROVIDER ~~~~~~~~ /**
* The Provider is a class that describes a protocol
* implementation. The values come from the
* javamail.providers & javamail.default.providers
* resource files.
*/ public class Provider {
public static final int STORE = 1;
public static final int TRANSPORT = 2;
/**
* Package-private constructor for the Provider class.
*
* @param type STORE or TRANSPORT

Chapter 5 The Mail Session 5-5

* @param protocol valid protocol for the type
* @param class class name that implements this protocol
* @param vendor optional string identifying the
* vendor (may be null)
*/
Provider(int type, String protocol, String class,

String vendor){
}
/** Returns the type of this Provider */
public int getType() {}

/** Returns the protocol supported by this Provider */
public String getProtocol() {}

/** Returns name of the class that implements
 the protocol */
public String getClassName() {}

/** Returns name of the vendor associated
 with this implementation */
public String getVendor() {} }

5.3 Session Changes
The constructor for the Session object initializes the appropriate variables from the resource files. The order
in which protocols are entered in the resource files determines the initial defaults for protocol
implementations. New methods,getProviders() and {get,set}Provider() , allow the client to
discover the available (installed) protocol implementations, and to set the protocols to be used by default.

public final class Session {
private Session (Properties props,

Authenticator authenticator) {

// somewhere in the constructor...
// load contents of javamail.providers files
// initialize defaultProtocolsByProtocol &
// defaultProtocolsByClass table with Providers
// load contents of address.map files
}

// PROTOCOL DISCOVERY methods

/**
* This method returns an array of all the

5-6 JavaMail API Design Specification • November 1997

* implementations installed via the
* javamail.[default.]providers files that can
* be loaded using the ClassLoader available
* to this application.
*/
public Provider[] getProviders() {
}
// QUERYING/SETTING default protocols
/**
* Returns the default Provider for the protocol
* specified. Checks mail.<protocol>.class property
* first and if it exists, returns the Provider
* associated with this implementation.
*
* If it doesn’t exist, this method returns the
* implementation that appeared first in the
* configuration files. If an implementation for the
* protocol isn’t found, it returns null.
*
* @param protocol Configured protocol (for
* example; smtp or imap)
*/

public Provider getProvider(String protocol) {
}
/**
* Set the passed Provider to be the default
* implementation for the protocol in Provider.protocol
* overriding any previous values.
*/
public void setProvider(Provider pd){
}
//////////
// new implementations for existing methods using registry
public Store getStore(String protocol) {

String classname = getProvider(protocol).getClassName();
// dynamically load the class and return it
}
public Store getStore(Provider pd) {
// returns the instantiated class pd.class
}
public Transport getTransport(Address address) {
String protocol = addressMap.get(address.getType());
return getTransport(protocol);

Chapter 5 The Mail Session 5-7

}
public Transport getTransport(Provider pd) {
// returns the instantiated class pd.class
}
public Transport getTransport(String protocol) {
String classname = getProvider(protocol).getClassName();
// dynamically load the class and return it
} }

5.4 Overriding Defaults At Runtime
On a per-system basis, implementations can be added by installing custom javamail.providers resource files.

At runtime, an application may set the default implementation to use for a particular protocol. It can set the
mail. protocol .class property when it creates the Session object. ThegetProvider() method
consults this property first.

The code can also callsetProvider() passing in a Provider that was returned by the discovery methods.
A Provider object cannot be explicitly created; it must be retrieved using thegetProviders() method.

In either case, the classname specified must be one of the ones configured in the resource files. Note that the
methods described here allow the client tochoose from among preconfigured implementations, and not to
configure a new implementation.

Example Scenarios

Scenario 1: The client application invokes the default protocols:

class Application1 {
init() {
// application properties include the JavaMail
// required properties: mail.store.protocol,
// mail.transport.protocol, mail.host, mail.user

Properties props = loadApplicationProps();
Session session = Session.getInstance(props, null);

// get the store implementation of the protocol
// defined in mail.store.protocol; the implementation
// returned will be defined by the order of entries in
// javamail.providers & javamail.default.providers
try {
Store store = session.getStore();
store.connect();

5-8 JavaMail API Design Specification • November 1997

} catch (MessagingException mex) {}
...
} }

Scenario 2: The client application presents available implementations to the user and then sets the user’s
choice as the default implementation:

class Application2 {
init() {

// application properties include the JavaMail
// required properties: mail.store.protocol,
// mail.transport.protocol, mail.host, mail.user
Properties props = loadApplicationProps();
Session session = Session.getInstance(props, null);

// find out which implementations are available
Provider[] providers = session.getProviders();

// ask the user which implementations to use
// user’s response may include a number of choices,
// i.e. imap & nntp store providers & smtp transport
Provider[] userChosenProviders =
askUserWhichProvidersToUse(providers);

// set the defaults based on users response
for (int i = 0; i < userChosenProviders.length; i++)
session.setProvider(userChosenProviders[i]);

// get the store implementation of the protocol
// defined in mail.store.protocol; the implementation
// returned will be the one configured previously
try {
Store store = session.getStore();
store.connect();
} catch (MessagingException mex) {}
...
} }

Scenario 3 Application wants to specify an implementation for a given protocol:

class Application3 {
init() {
// application properties include the JavaMail

Chapter 5 The Mail Session 5-9

// required properties: mail.store.protocol,
// mail.transport.protocol, mail.host, mail.user
Properties props = loadApplicationProps();

// hard-code an implementation to use
"com.acme.SMTPTRANSPORT"
props.put("mail.smtp.class", "com.acme.SMTPTRANSPORT");
Session session = Session.getInstance(props, null);

// get the smtp transport implementation; the
// implementation returned will be com.acme.SMTPTRANSPORT
// if it was correctly configured in the resource files.
// If com.acme.SMTPTRANSPORT can’t be loaded, a
// MessagingException is thrown.
try {
Transport transport = session.getTransport("smtp");
} catch (MessagingException mex) {
quit();
}
...
} }

5.5 Managing Security
The Session class allows messaging system implementations to use the Authenticator object that was
registered when the session was created. The Authenticator object is created by the application and allows
interaction with the user to obtain a user name and password. The user name and password is returned in a
PasswordAuthentication object. The messaging system implementation can ask the session to associate a
user name and password with a particular message store using the setPasswordAuthentication method. This
information is retrieved using the getPasswordAuthentication method. This avoids the need to ask the user
for a password when reconnecting to a Store that has disconnected, or when a secon application sharing the
same session needs to create its own connection to the same Store.

Messaging system implementations can register PasswordAuthentication objects with the Session object for
use later in the session, or for use by other users of the same session. Because PasswordAuthentication
objects contain passwords, access to this information must be carefully controlled. Applications that create
Session objects must restrict access to those objects appropriately. In addition, the Session class shares some
responsibility for controlling access to the default session object.

The first call to getDefaultInstance() creates a new Session object and associates the Authenticator object
with the Session object. Later calls to getDefaultInstance compare the Authenticator object passed in, to the
Authenticator object saved in the default session. If both objects have been loaded by the same class loader,
then getDefaultInstance() will allow access to the default session. Typically, this is the case when both the
creator of the default session and the code requesting access to the default session are in the same "security

5-10 JavaMail API Design Specification • November 1997

domain." Also, if both objects are null, access is allowed. This last case is discouraged because setting
objects to ’null’ allows access to the default session from any security domain.

In the future, JDK 1.2 security Permissions could control access to the default session. Note that the
Authenticator and PasswordAuthentication classes and their use in JavaMail is similar to the classes with the
same names provided in thejava.net package in JDK 1.2. As new authentication mechanisms are added
to the system, new methods can be added to the Authenticator class to request the needed information. The
default implementations of these new methods will fail, but new clients that understand these new
authentication mechanisms can provide implementations of these methods. New classes other than
PasswordAuthentication could be needed to contain the new authentication information, and new methods
could be needed in the Session class to store such information. JavaMail design evolution will be patterned
after the corresponding JDK classes.

To simplify message folder naming and to minimize the need to manage Store and Transport objects, folders
can be named using URLs. The Session class provides methods to retrieve a Folder object given a URL for
the folder:

Folder f = session.getFolder(url);

Not all messaging systems are required to support URL naming of folders. For a system that does support
URLs, the URL format is specific to that messaging system.

Chapter 6 Message Storage And Retrieval 6-1

6

Message Storage And Retrieval

This Section describes JavaMail message storage facilities supported by the Store and Folder classes.

Messages are contained in Folders. New messages are usually delivered to folders by a transport protocol or
a delivery agent. Clients retrieve messages from folders using an access protocol.

6.1 The Store Class
The Store class defines a database that holds a Folder hierarchy and the messages within. The Store also
defines the access protocol used to access folders and retrieve messages from folders. Store is an abstract
class. Subclasses implement specific message databases and access protocols.

Clients gain access to a database of messages (a message store) by obtaining a Store object that implements
the database access protocol. Most message stores require the user to be authenticated before they allow
access.connect() performs that authentication.

For many message stores, a host name, user name, and password are sufficient to authenticate a user. The
JavaMail API provides aconnect() override that takes this information as input parameters. Store also
provides a defaultconnect() method. In either case, the client can obtain missing information from the
session object’s properties, or by interacting with the user by accessing the session’s Authenticator object.

The default implementation of the connect method in the Store class uses these techniques to retrieve all
needed information and then calls the protocolConnect method. The messaging system implementation
must provide an appropriate implementation of this method. The messaging system can also choose to
directly override the connect method.

By default, Store queries the following properties for the user name and host name:

mail.user, or user.name if not set
mail.host

These global defaults can be overridden on a per-protocol basis by the properties:

mail.<protocol>.user

6-2 JavaMail API Design Specification • November 1997

mail.<protocol>.host

Note that Passwords can not be specified using properties.

Clients initiate a session with a message database by obtaining a Store object that implements the database
access protocol. Theconnect() method connects a client to that database. Some Store implementations
may require user authentication; in those cases, theconnect() method can display a dialog window to
conduct the authentication process. Invokingconnect() on an already connected Store is an error.

The Store presents a default namespace to clients. Typically, this namespace is located in the connected
user’s default folder. Store implementations can also present other namespaces. The
getDefaultFolder() method on Store returns the root folder for the default namespace.

Clients terminate a session by calling theclose() method on the Store object. Once a Store is closed
(either explicitly using theclose () method; or externally, if the Mail server dies), all Messaging
components belonging to that Store become invalid. Typically, clients will try to recover from an
unexpected termination by callingconnect() to reconnect to the Store object, and then fetching new
Folder objects and new Message objects.

6.1.1 Store Events
Store sends the following events to interested listeners:

6.2 The Folder Class
The Folder class represents a folder containing messages. Folders can contain subfolders as well as
messages, thus providing a hierarchical structure. ThegetType() method returns whether a Folder can
hold subfolders, messages, or both. Folder is an abstract class. Subclasses implement protocol-specific
Message Folders.

ThegetDefaultFolder() method for the corresponding Store object returns the root folder of a user’s

ConnectionEvent Generated when a connection is successfully made to the
Store, or when an existing connection is terminated or dis-
connected.

StoreEvent Communicates alerts and notification messages from the
Store to the end user. ThegetMessageType() method
returns the event type, which can be one of:ALERT or
NOTICE . The client must displayALERT events in some
fashion that calls the user’s attention to the message.

FolderEvent Communicates changes to any folder contained within the
Store. These changes include creation of a new Folder, dele-
tion of an existing Folder, and renaming of an existing
Folder.

Chapter 6 Message Storage And Retrieval 6-3

default folder hierarchy. Thelist () method for a Folder returns all the subfolders under that folder. The
getFolder (String name) method for a Folder returns the named subfolder. Note that this subfolder
need not exist physically in the Store. Theexists () method in a folder indicates whether this folder exists.
A folder is created in the Store by invoking itscreate () method.

A Folder instantiates in the closed state. A closed folder allows certain operations; they include deleting the
folder, renaming the folder, listing subfolders, creating subfolders and monitoring for new messages. The
open() method opens a Folder. All Folder methods exceptopen() , delete(), andrenameTo() are
valid on an open Folder. Note that theopen() method is applicable only on Folders that can contain
messages.

The messages within a Folder are sequentially numbered, from one through the total number of messages.
This ordering is referred to as the "mailbox order" and is usually based on the arrival time of the messages in
the folder. As each new message arrives into a folder, it is assigned a sequence number that is one higher
than the previous number of messages in that folder. ThegetMessageNumber() method on a Message
returns its sequence number.

The sequence number assigned to a Message is valid within a session, but only as long as it retains its
relative position within the Folder. Any change in message ordering can change the Message object's
sequence number. Currently this occurs when the client callsexpunge() to remove deleted messages and
renumber messages remaining in the folder.

A client can reference a message stored within a Folder either by its sequence number, or by the
corresponding Message object itself. Since a sequence number can change within a session, it is preferable
to use Message objects rather than sequence numbers as cached references to messages. Clients using the
JavaMail API are expected to provide light-weight Message objects that get filled ’on-demand’, so that
callinggetMessages() on a Folder object is an inexpensive operation - both in terms of CPU cycles and
memory. For instance, an IMAP implementation could return Message objects that contain only the
corresponding IMAP UIDs.

6.2.1 The FetchProfile Method
The Message objects returned by a Folder are expected to be light-weight objects. Invokingget methods on
a Message cause the corresponding data items to be loaded into the object, on demand. Certain Store
implementations support batch fetching of data items for a range of Messages. Clients can use such
optimizations, for example; when filling the header-list window for a range of messages. The
FetchProfile() method allows a client to list the items it will fetch in a batch, for a certain message
range.

The following code illustrates the use of a FetchProfile when fetching Messages from a Folder. The client
fills its header-list window with the Subject, From, and X-mailer headers for all messages in the folder.

Message[] msgs = folder.getMessages();
FetchProfile fp = new FetchProfile();
fp.set(FetchProfile.ENVELOPE);

6-4 JavaMail API Design Specification • November 1997

fp.add("X-mailer");
folder.fetch(msgs, fp);
for (int i = 0; i < folder.getMessageCount(); i++) {

display(msg[i].getFrom());
display(msg[i].getSubject());
display(msg[i].getHeader("X-mailer"));

}

6.2.2 Folder Events
Folders generate events to notify listeners of any change in either the folder or in its Messages list. The
client can register listeners to a closed Folder, but the notification event fires only after that folder is opened.

Folder supports the following events:

ConnectionEvent This event fires when a Folder is opened or closed.

When a Folder closes (either because the client has calledclose ()
or from some external cause), all Messaging components belonging
to that Folder become invalid. Typically, clients will attempt to
recover by reopening that Folder, and then fetching Message
objects.

FolderEvent This event fires when the client creates, deletes or renames this
folder. Note that the Store object containing this folder can also fire
this event.

Chapter 6 Message Storage And Retrieval 6-5

6.2.3 The Expunge Process
Deleting messages from a Folder is a two-phase operation. Setting theDELETED flag on messages marks
them as deleted, but it does not remove them from the Folder. The deleted messages are removed only when
the client invokes theexpunge() method on that Folder. The Folder then notifies listeners by firing an
appropriate MessageEvent. The MessageEvent contains the expunged Message objects. Note that the
expunge() method also returns the expunged Message objects. The Folder also renumbers the messages
falling after the expunged messages in the message list. Thus, when theexpunge() method returns, the
sequence number of those Message objects will change. Note, however, that the expunged messages still
retain their original sequence numbers.

Since expunging a folder can remove some messages from the folder and renumber others, it is important
that the client synchronize itself with the expunged folder as early as possible. The next Sections describe a
set of recommendations for clients wanting to expunge a Folder:

• Expunge the folder; close it; and then reopen and refetch messages from that Folder. This ensures that the
client was notified of the updated folder state. In fact, the client can just issue theclose () method with
the "expunge " parameter set to true to force an expunge of the Folder during the close operation, thus
even avoiding the explicit call toexpunge ().

• The previous solution might prove to be too simple or too drastic in some circumstances. This paragraph
describes the scenario of a more complex client expunging a single access folder; for example, a folder
that allows only one read-write connection at a time. The recommended steps for such a client after it

MessageCountEvent This event notifies listeners that the message count has changed. The
following actions can cause this change:

• Addition of new Messages into the Folder, either by a delivery
agent or because of anappend () operation. The new
Message objects are included in the event.

• Removal of existing messages from this Folder. Removed
messages are referred to as expunged messages. The
isExpunged () method on removed Messages returns true
and thegetMessageNumber () method returns the original
sequence number assigned to that messge. All other
Message methods throw a
MessageRemovedException . See “The Folder Class”
for a discussion of removal of deleted messages in shared
folders. The expunged Message objects are included in the
event. An expunged message is invalid and should be pruned
from the client's view as early as possible. See “The Expunge
Process” for details on theexpunge() method.

6-6 JavaMail API Design Specification • November 1997

issues theexpunge () command on the folder are:

• Update its message count, either by decrementing it by the number of expunged messages, or by
invoking thegetMessageCount() method on the Folder.

• If the client uses sequence numbers to reference Messages, it must account for the renumbering of
Messages subsequent to the expunged messages. Thus if a Folder has 5 messages as shown below,
(sequence numbers are within parenthesis), and if the client is notified that Messages A and C are
removed, it should account for the renumbering of the remaining Messages as shown in the second figure.

.

• The client should prune expunged messages from its internal storage as early as possible.

• The Expunge process becomes compex when dealing with a shared folder that can be edited. Consider
the case where two clients are operating on the same folder. Each client posesses its own Folder object,
but each Folder object actually represents the same physical folder.

If one client expunges the shared folder, any deleted messages are physically removed from the folder. The
primary client can probably deal with this appropriately since it initiated this process and is ready to handle
the consequences. However, secondary clients are not guaranteed to be in a state where they can handle an
unexpected Message removed event-- especially if the client is heavily multithreaded or if it uses sequence
numbers.

To allow clients to handle such situations gracefully, the the JavaMail API applies following restrictions to
Folder implementations:

• A Folder can remove and renumber its Messages only when it is explicitly expunged using the
expunge() method. When the folder is implicitly expunged, it marks any expunged messages as
expunged, but it still maintains access to those Message objects. This means that the following state is
maintained when the Folder is implicitly expunged:

• getMessages() returns expunged Message objects together with valid message objects. However; an
expunged message can throw the MessageExpungedException if direct access is attempted.

• The messages in the Folder should not be renumbered.

• The implicit expunge operation can not change the total Folder message count.

• The group get methods on Folder (getFlags()) can return null objects for expunged messages. They
can not abort the operation by throwing the MessageExpungedException.

A (1) B (2) C (3) D (4) E (5)

D (2) E (3)B (1)

Chapter 6 Message Storage And Retrieval 6-7

• A Folder can notify listeners of 'implicit' expunges by generating appropriate MessageEvents. However,
the removed field in the event must be set to false to indicate that the message is still in the folder. When
this Folder is explicitly expunged, then the Folder must remove all expunged messages, renumber it's
internal Message cache, and generate MessageEvents for all the expunged messages, with each removed
flag set to true.

The recommended set of actions for a client under the above situation is as follows:

• Multithreaded clients that expect to handle shared folders are advised not to use sequence numbers.

• If a client receives a MessageEvent indicating message removal, it should check the removed flag. If the
flag is false, it can issue anexpunge() request on the Folder object to synchronize it with the physical
folder. It may also mark the expunged messages in order to notify the end-user.

• If the removed flag was set to true, the client should follow earlier recommendations on dealing with
explicit expunges.

6.3 The Search Process
Search criteria are expressed as a tree of search-terms, forming a parse tree for the search expression. The
SearchTerm class represents search terms. This is an abstract class with a single method:

boolean match(Object o);

Subclasses implement specific match algorithms by implementing the match() method. Thus new search
terms and algorithms can be easily introduced into the search framework by writing the required Java code.

The search package provides a set of standard search terms that implement specific match criteria on
Message objects. For example, SubjectTerm pattern-matches the given String with the subject header of
the given message.

final class SubjectTerm extends SearchTerm {
public SubjectTerm(String pattern);
public boolean match(Message m);

}

The search package also provides a set of standard logical operator terms that can be used to compose more
complex search terms. These include AndTerm, OrTerm and NotTerm.

final class AndTerm extends SearchTerm {
public AndTerm(SearchTerm t1, SearchTerm t2);
public boolean match(Object o) {
 // The AND operator
 for (int i=0; i < terms.length; i++)

if (!terms[i].match(o))
return false;

 return true;

6-8 JavaMail API Design Specification • November 1997

}
}

The Folder class supports searches on messages through thesesearch() method versions:

public Message[] search(SearchTerm term)
public Message[] search(SearchTerm term, Message[] msgs)

These methods return the Message objects matching the specified search Term. The default implementation
applies the search term on each Message object in the specified range. Other implementations may optimize
this; for example, the IMAP Folder implementation maps the search Term into an IMAP SEARCH
command which the server executes. Note that the IMAP implementation works only if the search Term
includes only predefined standard search terms.

Chapter 7 The JavaBeans Activation Framework 7-1

7

The JavaBeans Activation
Framework

The JavaMail API relies heavily on the JavaBeans Activation Framework (JAF) to determine the MIME
data type, to determine the commands available on that data, and to provide a software component
corresponding to a particular behavior. The JAF specification is part of the "Glasgow" JavaBeans
specification. More details can be obtained fromhttp://java.sun.com/beans/glasgow/jaf.html

This section explains how the JavaMail and JAF APIs work together to manage message content. It
describes how clients using the JavaMail API can access and operate on the content of Messages and
BodyParts. This discussion assumes you are familiar with the JAF specification posted at http://
java.sun.com. Service Providers who need to develop additional Stores (e.g. IMAP, POP3, NNTP) should
refer to the appendix that describes how to integrate with the JAF.

7.1 Accessing the Content
For a client using the JavaMail API, arbitrary data is introduced to the system in the form of mail messages.
The javax.mail.Part interface allows the client to access the content. Part consists of a set of
attributes and a "content". The Part interface is the common base interface for Messages and BodyParts. A
typical mail message has one or more body parts, each of a particular MIME type.

Anything which deals with the content of a Part will use the Part’s DataHandler. The content is available
through the DataHandlers either as an InputStream or as a Java Object. The Part also defines convience
methods which call through to the DataHandler. For example;Part.getContent() is the same as
Part.getDataHandler().getContent() andPart.getInputStream() is the same as
Part.getDataHandler().getInputStream() .

The content returned (either via an InputStream or a Java Object) depends on the MIME type. For example;
a Part which contains a picture (GIF) returns the following:

■ Part.getContentType() , returns image/gif
■ Part.getInputStream() , returns an InputStream with the bytes of the GIF

image as the stream
■ Part.getContent() , returns a java.awt.Image object

7-2 JavaMail API Design Specification • November 1997

When an InputStream is returned, any mail-specific encodings are decoded before this stream is returned.
As a java object - using thegetContent() method. This method returns the content as a Java object. The
returned object depends upon the content itself. In the JavaMail API, any Part with a content type of
"multipart/*" (any kind of multipart) should return ajavax.mail.Multipart object from
getContent() . A Part with a content type ofmessage/rfc822 returns ajavax.mail.Message object
from getContent() .

7.1.1 Example: Message Output
This example shows how you can traverse Parts and display the data contained in the message.

public void printParts(Part p) {

Object o = p.getContent();
if (o instanceof String) {

System.out.println("This is a String");
System.out.println((String)o);

} else if (o instanceof Multipart) {
System.out.println("This is a Multipart");
Multipart mp = (Multipart)o;
int count = mp.getCount();
for (int i = 0; i < count; i++) {

printParts(mp.getBodyPart(i));
}

} else if (o instanceof InputStream) {
 System.out.println("This is just an input stream");
 InputStream is = (InputStream)o;
 int c; //
 while ((c = is.read()) != -1)

System.out.write(c);
}

}

7.2 Operating on the Content
The DataHandler allows clients to discover the operations available on the content of a Message, and to
instantiate the appropriate JavaBeans to perform those operations. The most common operations on Message
content areview, edit andprint.

7.2.1 Example: Viewing a Message
Consider a Message "Viewer" Bean, which presents a user interface that displays a mail message. This
example shows how a viewer bean can be used to display the content of a message (which usually istext/
plain, text/html, or multipart/mixed).

Chapter 7 The JavaBeans Activation Framework 7-3

Note – Perform error checking to ensure that a valid Component was created.

// message passed in as parameter
void setMessage(Message msg) {

DataHandler dh = msg.getDataHandler();
BeanInfo binfo = dh.getCommand("view");
Component comp = dh.getBean(binfo);
this.setMainViewer(comp);

}

7.2.2 Example: Showing Attachments
In this example, the user has selected an attachment and wishes to display it ia separate dialog. The client
locates the correct viewer object as follows.

// Retrieve the BodyPart from the current attachment
BodyPart bp = getSelectedAttachment();

DataHandler dh = bp.getDataHandler();
BeanInfo binfo = dh.getCommand("view");
Component comp = dh.getBean(binfo);

// Add viewer to dialog Panel
MyDialog myDialog = new MyDialog();
myDialog.add(viewer);

// display dialog on screen
myDialog.show();

See “Setting Message Content” for examples which construct a message for asend operation.

7.3 Adding Support for Content Types
Support for commands acting on message data is an implementation task left to the JavaMail client.
JavaMail and JAC APIs intend for this support to be provided by a JAF-Aware JavaBean. Almost all data
will requireedit andview support.

Currently, the JavaMail API does not provideview support. The JAF API does provide two very simple
JAF-aware viewer beans: A Text Viewer and Image Viewer. These beans handle data where content-type
has been set to MIMEtext/plain or Image.

Developers writing a graphic-based JavaMail client will need to write additional viewers which support

7-4 JavaMail API Design Specification • November 1997

some of the basic content types-- specificallymessage/rfc822, multipart/mixed,and text/plain. These are the
usual content-types encountered when displaying a Message, and they provide the look and feel of the
application.

Content developers providing additional data types should refer to the JAF specification, which discusses
how to create DataContentHandlers and Beans that operate on those contents.

Chapter 8 Message Composition 8-1

8

Message Composition

This Section describes the process used to instantiate a message object, to add content to that message, and
to send it to its intended list of recipients.

The JavaMail API allows a client program to create a message of arbitrary complexity. Simple messages are
instantiated from the Message class or subclass. Complex (Multipart) messages are defined as Message
objects with a content-type attribute set to "multipart," and containing a Multipart container of Bodyparts,
where each Bodypart element contains a separate content body with its own content-type specifier. The
client program manipulate any message as if it had been retrieved from a store.

8.1 Building a Message Object
To create a message, a client program instantiates a Message object, sets appropriate attributes, and then
inserts the content.

• The attributes specify the message address and other values necessary to send, route, receive, decode and
store the message. Attributes also specify the message structure and data content type.

• Message content is carried in a DataHandler object, which carries either data or a Multipart object. A
DataHandler carries the content body and provides methods the client uses to handle the content. A
Multipart object is a container which contains one or more Bodypart objects, each of which can in turn
contain either Multipart or DataHandler objects.

8.2 Message Creation
javax.mail.Message is an abstract class which implements the Part interface. Therefore; to create a
message object, select a message subclass that implements the appropriate format and transport protocol
intended for that message.

For example; to create a Mime message, a JavaMail client instantiates an empty
javax.mail.internet.MimeMessage object:

Message msg = new MimeMessage();

8.3 Setting Message Attributes
The Message class provides a set of methods that specify standard attributes common to all message access

8-2 JavaMail API Design Specification • November 1997

protocols. The MimeMessage class provides additional methods that set MIME-specific attributes. The
client program can also set non-standard attributes (custom headers) as name-value pairs.

The methods for setting standard MIME attributes are listed below:

public class Message {
public void setFrom(Address addr);
public void setFrom(); // retrieves from system
public void setRecipients(int type, Address[] addrs);
public void setReplyTo(Address[] addrs);
public void setSentDate(Date date);
public void setSubject(String subject);
...

}

The Part interface specifies the following method, that sets custom headers:

public void setHeader(String name, String value)

ThesetRecipients() method takes an integer argument as its first parameter, which specifies which
recipient field to use. Currently,setRecipients() acceptsMessage.TO , Message.CC , and
Message.BCC . as parameters.

The Message class provides two versions of the of thesetFrom() method:

• setFrom(Address addr) specifies the sender explicitly, from an Address object parameter.

• setFrom() retrieves the sender’s username from the local system.

The code sample below sets attributes for the MimeMessage just created. First, it instantiates address
objects to be used as ’To’ and ’From’ addresses. Then, it calls ’set’ methods, which equate those addresses
to appropriate message attributes.

Address toAddrs[] = new InternetAddress[1];
toAddrs[0] = new InternetAddress("luke@rebellion.gov");
Address fromAddr =
 new InternetAddress("han.solo@smuggler.com");

msg.setFrom(fromAddr);
msg.setRecipients(Message.TO, addrs);
msg.setSubject("Takeoff time.");
msg.setSentDate(new Date());

8.4 Setting Message Content
The Message object carries content data within a DataHandler object. To add content to a Message; a client
creates content, instantiates a DataHandler object; places content into that DataHandler Object, and places

Chapter 8 Message Composition 8-3

that object into a Message object that has had its attributes defined.

The JavaMail API provides two methods which set message content. The first method uses the
setDataHandler() method. The second method uses thesetContent() method.

Typically, clients add content to a DataHandler object by callingsetDataHandler(DataHandler) on
a Message object. The DataHandler is an object that encapsulates data. The data is passed to the
DataHandler's constructor as either a DataSource (a stream connected to the data) or as a Java Object. The
InputStream object creates the DataSource. See “The JavaBeans Activation Framework” for additional
information.

public class DataHandler {
DataHandler(DataSource dataSource);
DataHandler(Object data, String mimeType);

}

The code sample below shows how to place text content into an InternetMessage. First; create the text as a
string object. Then; pass the string into a DataHandler object, together with its MIME type. Finally; add the
DataHandler object to the message object:

// create brief message text
String content = "Leave at 300.";

// instantiate the DataHandler object and set its
// content type attribute to match the content
// attribute previously set using the
// msg.setContentType() accessor method above.

DataHandler data = new DataHandler(content, "text/plain");

// Use setDataHandler() to insert data into the
// new DataHandler object

 msg.setDataHandler(data);

Alternately,setContent() implements a simpler technique, which takes the data object and its MIME
type.setContent() creates the DataHandler object automatically:

// create the message text
String content = "Leave at 300.";

// call setContent to pass content and content type
// together into the message object

msg.setContent(content, "text/plain");

8-4 JavaMail API Design Specification • November 1997

When the client callsmsg.send() to send this message, the recipient will receive the message below,
using either technique:

Date: Wed, 23 Apr 1997 22:38:07 -0700 (PDT)
From: han.solo@smuggler.com
Subject: Takeoff time
To: luke@rebellion.gov

Leave at 300.

8.5 Building a MIME Multipart Message
Follow these steps to create a MIME Multipart Message:

1. Instantiate a new MimeMultipart object, or a subclass.

2. Create MimeBodyParts for the specific message parts. UsesetContent() or
setDataHandler() to create the content for each Bodypart, as described in the previous section.

Note – Both Message and BodyPart share the Part interface). The Part interface can also set the subtype
attribute if required. The default subtype for a MimeMultipart object is "mixed," but can be set to other
subtypes as required. MimeMultipart Subclasses might already have their subtype set appropriately.

3. Insert the Multipart object into the Message object by callingsetContent(Multipart) within a
newly-constructed Message object.

The example below creates a Multipart object and then adds two message parts to it. The first
message part is a text string “Spaceport Map,” and the second contains a document of type
“application/postscript.” Finally, this multipart object is added to a simple MimeMessage object of
the type described above.

// Instantiate a Multipart object
MimeMultipart mp = new MimeMultipart();

// create the first bodypart object
MimeBodyPart b1 = new MimeBodyPart();

// create textual content
// and add it to the bodypart object
b1.setContent("Spaceport Map");
mp.addBodyPart(b1);

Chapter 8 Message Composition 8-5

// Multipart messages usually have more than
// one body part. Create a second body part
// object, add new text to it, and place it
// into the multipart message as well. This
// second object holds postscript data.

MimeBodyPart b2 = new MimeBodyPart();
b2.setContent(agenda,"application/postscript");
mp.addBodyPart(b2);

// Create a new message object as described above,
// and set its attributes. Set the msg.ContentType
// attribute to "multipart, to match the ’multipart’
// content that this message will carry. Add
// the multipart object to this message and call
// saveChanges() to write other message headers
// automatically.

Message msg = new MimeMessage();
msg.setContent(mp); // add Multipart
msg.saveChanges(); // save changes

After all message parts are created and inserted, callsaveChanges() to ensure that the client writes
appropriate message headers. This is identical to the process followed with a single part message. Note that
the JavaMail API callssaveChanges() implicitly during thesend() process, so invoking it is
unnecessary and expensive if the message is to be sent immediately.

8-6 JavaMail API Design Specification • November 1997

Chapter 9 Transport Protocols and Mechanisms 9-1

9

Transport Protocols and
Mechanisms

The Transport abstract class defines the message submission and message transport protocol. Transport
subclasses implement SMTP and other transport protocols.

9.1 Obtaining the Transport Object
The Transport object is never explicitly created.getTransport() obtains a transport object from the
Session factory. The JavaMail API provides two versions ofgetTransport() :

public class Session {
public Transport getTransport(Address address);
public Transport getTransport(String protocol);

}

• getTransport(Address address) returns the implementation of the transport class based on the
address type. A user-extensible map defines which transport type to use for a particular address. For
example, if the address is an InternetAddress, and InternetAddress is mapped to a protocol that supports
SMTP, then SMTPTransport can be returned.

• The client can also call getTransport("SMTP") to request SMTP, or another transport implementation
protocol.

See “The Mail Session” for details.

9.1.1 Transport Methods
The Transport class providesconnect() andprotocolConnect() methods, which operate similarly
to those on the Store class. See “The Store Class” for details.

Note – Some Transports, such as SMTP, do not require authentication informationand therefore won’t
use connect() or protocolConnect().

9-2 JavaMail API Design Specification • November 1997

Transport fires a ConnectionEvent to notify its listeners of a successful or a failed connection. Transport can
throw an IOException if the connection fails. Once Transport establishes a successful connection to the
host, the client invokes thesend() method to initiate the transport process. See “Transport Events” for
details.

At this point, Transport implementations can ensure that the message specified is of a known type. If the
type is known, then the transport object sends the message to its specified destinations. If the type is not
known, then the Transport object can attempt to reformat the Message into a suitable version using
gatewaying techniques, or it can throw a MessagingException, indicating failure. For example; the SMTP
transport implementation recognizes MimeMessages. It invokes theputByteStream() method on
MimeMessage to generate a RFC822 format byte stream which is sent to the SMTP host.

Note that theAddress[] argument passed to thesend() method does not need to match the addresses
provided in the message headers. Although these arguments usually will match, the end-user actually
determines where the messages are actually sent. This is useful for implementing the Bcc: header, and other
similar functions.

9.2 Transport Events
The TransportEvent is fired when the client invokes thesend() method. If the message was sent successfully,
the delivered event’sgetType() method returnsMESSAGE_DELIVERED. getValidAddresses ()
returns all the addresses to which the message was sent using this transport andgetInvalidAddresses()
returns null.

If send() failed to send the message, then it sets the TransportEventMESSAGE_NOT_DELIVERED flag.
getInvalidValidAddresses() returns the addresses that were not accepted by the host, and
getValidAddresses() returns any addresses that would have been accepted. Note that a successful send
operation does not imply message delivery - only that the message submission was accepted by the relay host.

9.3 Using The Transport Class
The code segment below sends an InternetMessage using a Transport class implementing the SMTP
protocol. The client creates two InternetAddresses that specify the recipients, and retrieves transport object
from the default Session that supports sending messages to InternetAddresses. Then the transport object
sends the message.

// Create an empty MimeMessage object.
Message msg = new MimeMessage();

// (create message parts here)

// create two destination addresses

Address[] addrs = Address[2];
addrs[0] =
 new InternetAddress("mickey.mouse@disneyland.com");

Chapter 9 Transport Protocols and Mechanisms 9-3

addrs[1] = new InternetAddress("goofy@disneyland.com");

// Instantiate a session in order to access
// the session factory, which provides the
// appropriate transport object automatically

Session session = Session.getDefaultInstance();

// Use the session.getTransport() method to
// retrieve the appropriate transport object from
// the session factory. Pass recipient addresses to
// the transport object.

Transport transport = session.getTransport(addrs[0]);

// connect method determines the host to use.
// Use transport.send() to send the message.

transport.connect();
transport.send(msg, addrs);

9.4 Transport Usage in Message.send()
Thesend() method in your Message object encapsulates the Transport class. It creates a session object and
calls the session factory in order to return the appropriate transport implementation object; connects to it,
and sends itself automatically; all based on its attributes.

Once a client creates a message and sets its attributes, invoking thesend() method on the message object
invokes the transport mechanism to send it to its destination addresses. See “Message Composition” for
details. Message.send() performs a slightly more complicated series of steps than shown in “Using The
Transport Class," yet the idea is the same.

9-4 JavaMail API Design Specification • November 1997

Chapter 10 Internet Mail 10-1

10

Internet Mail

The JavaMail specification does not define any implementation. However, the API does include a set of
classes that implement Internet Mail standards. Although not part of the specification, these classes can be
considered part of the JavaMail package. They show how to adapt an existing messaging architecture to the
JavaMail framework.

These classes implement the Internet Mail Standards defined by the RFCs listed below:

• RFC822 (Standard for the Format of Internet Text Messages)

• RFC2045, RFC2046, RFC2047 (MIME)

RFC822 describes the structure of messages exchanged across the Internet. Messages are viewed as having a
header and contents. The header is composed of a set of standard and optional header fields. The header and
its contents are separated by a blank line. The RFC specifies the syntax for all header fields and the
semantics of the standard header fields. It does not however, impose any structure on the message contents.

The MIME RFCs 2045, 2046 and 2047 define message content structure by defining structured body parts,
defining a typing mechanism for identifying different media types, and defining a set of encoding schemes
to encode data into mail-safe characters.

The Internet Mail package allows clients to create, to use and to send messages conforming to the standards
listed above. It gives service providers a set of base classes and utilities they can use to implement Stores
and Transports that use the Internet mail protocols. See “MimeMessage Object Hierarchy” for a Mime class
and interface hierarchy diagram.

The JavaMail MimePart interface implements the Entity defined in RFC2045, Section 2.4. MimePart
extends the JavaMail Part interface to add MIME-specific methods and semantics. The MimeMessage and
MimeBodyPart classes implement the MimePart interface. The following figure shows the class hierarchy of
these classes.

10-2 JavaMail API Specification • October 1997

10.1 The MimeMessage Class
The MimeMessage class extends Message and implements MimePart. This class implements an email
message that conforms to the RFC822 and MIME standards.

MimeMessage provides a default constructor that creates an empty MimeMessage object. The client can fill
the message later by invoking theparse() method on an RFC822 input stream. Note thatparse() is
protected, so that only this class and its subclasses are expected to use this method. Service providers
implementing ’light-weight’ Message objects that are filled on demand, can generate the appropriate byte
stream and invokeparse() when a component is requested from a message. Service providers that can
provide a separate byte stream for the message body (distinct from the message header) can override the
getContentStream() method.

The client can also use the default constructor to create new MimeMessage objects for sending. The client
sets appropriate attributes and headers, inserts content into the message object, and finally calls thesend()
method for that MimeMessage object.

This code sample creates a new MimeMessage object for sending. See “Message Composition” and
“Transport Protocols and Mechanisms” for details.

MimeMessage m = new MimeMessage();

MimePartMessage

MimeMessage

MimePartBodyPart

MimeBodyPart

Legend

Extends

Implements

Chapter 10 Internet Mail 10-3

// Set FROM:
m.setFrom(new InternetAddress("jmk@Sun.COM"));
// Set TO:
InternetAddress a[] = new InternetAddress[1];
a[0] = new InternetAddress("javamail@Sun.COM");
m.setRecipients(Message.TO, a);
// Set content
m.setContent(data, "text/plain");
// Send message
m.send();

MimeMessage also provides a constructor that uses an input stream to instantiate itself. The constructor
internally invokesparse() to fill the message. The InputStream object is left positioned at the end of the
message body.

InputStream in = getMailSource(); // a stream of mail
messages
MimeMessage m = null;
for (; ;) {
 try {

m = new MimeMessage(in);
 } catch (EOFException eof) {

// reached end of message stream
break;

 }
}

MimeMessage implements the putByteStream() method by writing an RFC822-formatted byte stream
of its headers and body. This is accomplished in two steps: First, the MimeMessage object writes out its
headers; then it delegates the rest to the DataHandler object representing the content.

10.2 The MimeBodyPart Class
The MimeBodyPart class extends BodyPart and implements the MimePart interface. This class represents a
Part inside a Multipart. MimeBodyPart implements a Body Part as defined by RFC2045, Section 2.5.

getBodyPart(int index) returns the MimeBodyPart object at the given index. MimeMultipart also
allows the client to fetch MimeBodyPart objects based on their Content-IDs.

addBodyPart() adds a new MimeBodyPart object to a MimeMultipart as a step towards constructing a
new multipart MimeMessage.

10.3 The MimeMultipart Class
The MimeMultipart class extends Multipart and models a MIME multipart content within a message or a
body part.

10-4 JavaMail API Specification • October 1997

A MimeMultipart is obtained from a MimePart containing a ContentType attribute set to "multipart," by
invoking that part'sgetContent() method.

The client creates a new MimeMultipart object by invoking its default constructor. To create a new
multipart MimeMessage, create a MimeMultipart object (or its subclass); use set methods to fill the
appropriate MimeBodyParts; and finally, usesetContent(Multipart) to insert it into the
MimeMessage.

MimeMultipart also provides a constructor that takes an input stream positioned at the beginning of a MIME
multipart stream. This class parses the input stream and creates the child body parts.

ThegetSubType() method returns the multipart message MIME subtype. The subtype defines the
relationship among the individual body parts of a multipart message. More semantically complex multipart
subtypes are implemented as subclasses of MimeMultipart, providing additional methods that expose
specific functionality.

Note that a multipart content object is treated like any other content. When parsing a MIME Multipart
stream, the JavaMail implementation uses the JAF framework to locate a suitable DataContentHandler for
the specific subtype and uses that handler to create the appropriate Multipart instance. Similarly, when
generating the output stream for a Multipart object, the appropriate DataContentHandler is used to generate
the stream. See “” for details.

10.4 The MimeUtility Class
MimeUtility is a Utility class that provides MIME-related functions. All methods in this class are static
methods. These methods currently perform the functions listed below:

10.4.1 Content Encoding and Decoding
Data sent over RFC 821/822-based mail systems are restricted to seven bit US-ASCII bytes. Therefore, any
non-US-ASCII content needs to be encoded into the seven-bit US-ASCII (mail-safe) format. MIME (RFC
2045) specifies the "base64" and "quoted-printable" encoding schemes to perform this encoding. The
following methods support content encoding:

• ThegetEncoding() method takes a DataSource object and returns the Content-Transfer-Encoding
that should be applied to the data in that Datasource object to make it mail-safe.

• Theencode() method wraps an encoder around the given output stream based on the specified
Content-Transfer-Encoding. Thedecode() method decodes the given input stream, based on the
specified Content-Transfer-Encoding.

10.4.2 Header Encoding and Decoding
RFC 822 restricts the data in message headers to 7bit US-ASCII characters. MIME (RFC 2047) specifies a
mechanism to encode non 7bit US-ASCII characters so that they are suitable for inclusion in message
headers. This section describes the methods that enable this functionality.

Chapter 10 Internet Mail 10-5

The header-related methods (getHeader, setHeader) in Part and Message operate on Strings. String objects
contain (16 bit) Unicode characters.

Since RFC 822 prohibits non US-ASCII characters in headers, clients invoking thesetHeader()
methods must ensure that the header values are appropriately encoded if they contain non US-ASCII
characters.

The encoding process (based on RFC 2047) consists of two steps:

1. Convert the Unicode String into an array of bytes in another charset. This step is required because
Unicode is not yet a widely used charset. Therefore, a client must convert the Unicode characters into a
charset that is more palatable to the recipient.

2. Apply a suitable encoding format which ensures that the bytes obtained in the previous step are mail-
safe.

TheencodeText() method combines the two steps listed above to create an encoded header. Note that as
RFC 2047 specifies, only "unstructured" headers and user-defined extension headers can be encoded. It is
prudent coding practice to run such header values through the encoder to be safe. Also note that
encodeText() encodes header values only if they contain non US-ASCII characters.

The reverse of this process (decoding) needs to be performed when handling header values obtained from a
MimeMessage or MimeBodyPart using thegetHeader() set of methods, since those headers might be
encoded as per RFC 2047. ThedecodeText() method takes a header value, applies RFC 2047 decoding
standards, and returns the decoded value as a Unicode String. Note that this method should be invoked only
on "unstructured" or user-defined headers. Also note thatdecodeText() attempts decoding only if the
header value was encoded in RFC 2047 style. It is advised that you always run header values through the
decoder to be safe.

10.5 The ContentType Class
The ContentType class is a utility class which parses and generates MIME content-type headers.

To parse a MIME content-Type value, create a ContentType object and invoke thetoString() method.

The ContentType class also provides methods which match Content-Type values.

The following code fragment illustrates the use of this class to extract a MIME parameter.

String type = part.getContentType();
ContentType cType = new ContentType(type);

if (cType.match("application/x-foobar"))
iString color = "cType.getParameter(color");

This code sample uses this class to construct a MIME Content-Type value:

10-6 JavaMail API Specification • October 1997

ContentType cType = new ContentType();
cType.setPrimaryType("application");
cType.setSubType("x-foobar");
cType.setParameter("color", "red");

String contentType = cType.toString();

Chapter A Environment Properties A-1

A

Environment Properties

This section lists the environment properties that are used by the JavaMail APIs.

Property Description

mail.store.protocol Specifies the default Message Access Protocol.
TheSession.getStore() method returns a
Store object that implements this protocol. The
protocol can be explicitly specified by using
Session.getStore(String protocol) .

mail.transport.
protocol

Specifies the default Transport Protocol. The
Session.getTransport() method returns a
Transport object that implements this protocol.
The client can explicitly specify the protocol by
usingSession.getTransport(String
protocol) .

mail.host Specifies the default Mail server. The Store and
Transport connect() methods use this property
(if the protocol-specific host property is absent) to
locate the target host.

mail.user Specifies the username provided when connecting
to a Mail server. The Store and Transport con-
nect() methods use this property (if the proto-
col-specific username property is absent) to obtain
the username.

mail.<protocol>.host Specifies the protocol-specific default Mail server.
This overrides the mail.host property.

A-2 JavaMail API Design Specification • November 1997

mail.<protocol>.user Specifies the protocol-specific default username
for connecting to the Mail server. This overrides
the mail.user property.

Property Description

Chapter B Examples Using the Mail API B-1

B

Examples Using the Mail API

Following are some example programs that illustrate the use of the Java Mail APIs.

B.1 Example: The Basic Store Access
Operation
import java.util.*;
import java.io.InputStream;
import java.io.IOException;
import javax.mail.*;
import javax.mail.internet.*;

public class msgshow {
 // Usage: msgshow <host> <user> <passwd> <mbox> <msgnum>
 public static void main(String argv[]) throws Exception

String host = argv[0];
String user = argv[1];
String password = argv[2];
String mbox = argv[3];
int msgnum = Integer.parseInt(argv[4]);
// Get the default Session object
Session session =

Session.getDefaultInstance(
System.getProperties(), null);

 // Get a Store object that implements the IMAP protocol
Store store = session.getStore("imap");
// Connect to 'host' as 'user'.

B-2 JavaMail API Design Specification • November 1997

store.connect(host, user, password);
// Open the specified Folder.
Folder folder = store.getFolder(mbox);
folder.open(Folder.READ_WRITE);

int totalMessages = folder.getMessageCount();

// Total messages
System.out.println("Total = " + totalMessages);

// Fetch Envelope for all the messages ..
Message[] msgs = folder.getMessages();
FetchProfile fp = new FetchProfile();
fp.set(FetchProfile.ENVELOPE);
fp.add("X-mailer");
folder.fetch(msgs, fp); // prefetch ENVELOPE

// Print out headers ...
for (int i = 0; i < msgs.length; i++) {
 int j;
 Address[] addr;
 // "To" attribute:
 if ((addr = msgs[i].getRecipients(

Message.TO)!= null) {
for (j = 0; j < addr.length; j++)
 System.out.println("TO: "

+ addr[j].getAddress());
 }
 // "Subject" field :
 System.out.println("SUBJECT: "

+ msgs[i].getSubject());
 // Sent date
 Date d = msgs[i].getSentDate();
 if (d != null)

System.out.println("SendDate: "
+ d.toLocaleString());

}
// Display a Message ...
 // The simplest way to do this would be to use the
 // Activation Framework to get the list of valid
 // commands for a Message, and apply the "view"
 // command to this Message object.

Chapter B Examples Using the Mail API B-3

 //
 // We do this the hard way here to illustrate
 // how to obtain & display the different
 // components of a Message

 //

dumpPart(msgs[msgnum]);
// Close folder
folder.close(false); // Don't expunge deleted messages
System.exit(0);

 }

 /** Dump out the contents of this Message object. Print
 * out the headers and the content of this message
 */
 static void dumpPart(Part p) throws Exception {

Enumeration e = p.getAllHeaders();
while (e.hasMoreElements()){

Header h = (Header)e.nextElement();
System.out.println(h.getName());
System.out.println(h.getValue());

}
// Print out the body & content
dumpContent(m.getDataHandler());

 }

Object o = p.getContent();

if(o instanceof String) {
System.out.println("This is a string");
System.out.println((String)o);
}

else if (o instanceof Multipart) {

System.out.println("This is a Multipart");

Multipart mp = (Multipart)o;

int count = mp.getCount();

for (int i = 0; i < count; i++){

System.out.println("Body#" + (i + 1))));

dumpPart(mp.getBodyPart(i)));

B-4 JavaMail API Design Specification • November 1997

}
else

System.out.println("unknown content-type");

 }

B.2 Example : Listing Folders

import javax.mail.*;

public class folderlist {
 // folderlist <host> <user> <passwd> <root > <pattern>
 public static void main(String argv[]) throws Exception {

String host = argv[0];
String user = argv[1];
String password = argv[2];
String root = argv[3];
String pattern = argv[4];
// Get the default Session object
Session session =

Session.getDefaultInstance(
System.getProperties(), null);

// Get a Store object for the IMAP protocol.
Store store = session.getStore("imap");
store.connect(host, user, password);
// Get this user’s Default Folder
Folder root_folder = null;
if (root == null)
 root_folder = store.getDefaultFolder();
else
 root_folder = store.getFolder(root);
Folder[] f = root_folder.list(pattern);
for (int i = 0; i < f.length; i++)
 dumpFolder(f[i]);

 }

 // Dump out info about this Folder
 static void dumpFolder(Folder folder) throws Exception {

Chapter B Examples Using the Mail API B-5

System.out.println("Name: " + folder.getName());
System.out.println("Full Name: "

+ folder.getFullName());
if (folder.isSubscribed())
 System.out.println("Is Subscribed");
if ((folder.getType() & Folder.HOLDS_MESSAGES) != 0)
 System.out.println("Is Mail folder");
if ((folder.getType() & Folder.HOLDS_FOLDERS) != 0) {
 System.out.println("Is Directory");
 // Now recurse ..
 Folder[] f = folder.list();
 for (int i=0; i < f.length; i++)

dumpFolder(f[i]);
}

 }
}

B.3 Example: Copy or Move a Message
Between Folders

import java.util.*
import javax.mail.*;
import javax.mail.internet.*;

public class copier {
 public static void main(String argv[]) throws Exception {

String host = argv[0];
String user = argv[1];
String password = argv[2];
String src = argv[3];
String dest = argv[4];
int start = Integer.parseInt(argv[5]);
int end = Integer.parseInt(argv[6]);
// Get the default Session object
Session session =

Session.getDefaultInstance(
System.getProperties(), null);

B-6 JavaMail API Design Specification • November 1997

// Get a Store object that implements
// the IMAP protocol.

Store store = session.getStore("imap");

// Connect to 'host' as 'user'
store.connect(host, user, password);
// Open Source Folder
Folder folder = store.getFolder(src);
folder.open(Folder.READ_WRITE);

// Open destination folder, create if reqd

Folder dfolder = store.getFolder(dest);
if (!dfolder.exists()) // create
 dfolder.create(Folder.HOLDS_MESSAGES);

Message[] msgs = folder.getMessages(start, end);

// Copy messages into destination,
// then delete them from the source

if (folder.copyMessages(msgs, dfolder))
 folder.setFlags(msgs, Message.DeletedFlag, true);
// Close folder, expunge it too.
folder.close(true);

 }
}

B.4 Example: Folder Search
import java.util.*;
import java.io.InputStream;
import java.io.IOException;
import javax.mail.*;
import javax.mail.internet.*;
import javax.mail.search.*;

Chapter B Examples Using the Mail API B-7

public class search {
 public static void main(String argv[]) throws Exception {

String host = argv[0];
String user = argv[1];
String password = argv[2];
String mbox = argv[3];
String pattern = argv[4];
// Get the default Session object
Session session =

Session.getDefaultInstance(
System.getProperties(), null);

// Get a Store object that implements the IMAP
protocol.

Store store = session.getStore("imap");
// Connect to 'host' as 'user'
store.connect(host, user, password);
// Open the specified Folder.
Folder folder = store.getFolder(mbox);
folder.open(Folder.READ_WRITE);
/* Search for the specified pattern in the From, To,
 * CC & Subject headers
 */
Term t = new OrTerm(

new OrTerm(new HeaderTerm("From", pattern),
 new HeaderTerm("To", pattern)),

new OrTerm(new HeaderTerm("Cc", pattern),
 new SubjectTerm(pattern)));

Message[] matches = folder.search(t);
int num_matches = matches != null ? matches.length: 0;
System.out.println(num_matches + " Matches found!");
for (int i=0; i < num_matches; i++) {
 Message m = matches[i];
 // Dump out this message ...
 m.putByteStream(System.out);
 }

// Close folder
folder.close(false); // Don't expunge deleted messages
System.exit(1);

 }
}

B-8 JavaMail API Design Specification • November 1997

B.5 Example: Creating and Sending an
RFC822 Message
import java.util.Date;
import javax.mail.*;
import javax.mail.internet.*;

public class MsgSinglepart {
 // Usage: MsgSinglepart <toaddr> <fromaddr>
 // Ex: MsgSinglepart javamail@Sun.COM max.spivak@Sun.COM

 // text used in msg body
 String text = "message text\nline 2\n";

 public static void main(String[] argv) {
// create an empty message
Message msg = new MimeMessage();
try {
 // create and fill the envelope
 Address toAddrs[] = new InternetAddress[1];
 toAddrs[0] = new InternetAddress(argv[0]);
 Address fromAddr = new InternetAddress(argv[1]);
 msg.setFrom(fromAddr);
 msg.setRecipients(Envelope.TO, addrs);
 msg.setSubject("Java Mail APIs are great!");
 msg.setSentDate(new Date());
 msg.setHeader("X-Mailer", "JavaMail APIs");

 // create and fill the text body
 msg.setContent(text, "text/plain");

 // send the message
 msg.send();

} catch (MessagingException mex) {
 mex.printStackTrace();
}

 }
}

Chapter B Examples Using the Mail API B-9

B.6 Example: Creating and Sending a MIME
Multipart Message

import java.util.Date;
import javax.mail.*;
import javax.mail.internet.*;

public class MsgMultipart {
 // Usage: MsgMultipart <toaddr> <fromaddr>
 // Ex: MsgMultipart javamail@Sun.COM max.spivak@Sun.COM

 // text used in msg body
String text = "message text\nline 2";

 Appointment appt = new Appointment(new Date(),
"Java Mail Mtg");

 public static void main(String[] argv) {
 // create an empty message

Message msg = new MimeMessage();
try {
 // create and fill the envelope
 Address toAddrs[] = new InternetAddress[1];
 toAddrs[0] = new InternetAddress(argv[0]);
 Address fromAddr = new InternetAddress(argv[1]);
 msg.setFrom(fromAddr);
 msg.setRecipients(Envelope.TO, addrs);
 msg.setSubject("Java Mail APIs are great!");
 msg.setSentDate(new Date());
 msg.setHeader("X-Mailer", "JavaMail APIs");

 // create the main body and the multipart object
 MimeMultipart multi = new MimeMultipart();

 // create the main text body
 MimeBodyPart b1 = new MimeBodyPart();
 b1.setContent(text, "text/plain");

B-10 JavaMail API Design Specification • November 1997

 multi.addPart(b1);

 // create the appointment body and fill it in
 MimeBodyPart b2 = new MimeBodyPart();
 b2.setContent(appt, "application/cal");
 multi.addPart(b2);

 // send the message
 msg.setContent(multi);
 msg.send();
} catch (Exception ex) {
 ex.printStackTrace();
}

 }
}

Chapter C Message Security C-1

C

Message Security

C.1 Overview
This is not a full specification of how Message Security will be integrated into the JavaMail system. This is
a description of implementation strategy. The purpose of this section is to declare that it is possible to
integrate message security; not to define how it will be integrated. The final design for Message Security
will change based on feedback and finalization of the S/MIME IETF specification.
This section discusses encrypting/decrypting messages, and signing/verifying signatures. It will not discuss
how Security Restrictions on untrusted or signed applets will work, nor will it discuss a general
authentication model for Stores For example; a GSS API in Java.

C.1.1 Displaying an Encryted/Signed Message
Displaying an encrypted or signed message is the same as displaying any other message. The client uses the
Datahandler for that encrypted message together with the "view" command. This returns a bean which
displays the data. There will be both a multipart/signed and multipart/encrypted viewer bean (can be the
same bean). The beans will need to be aware of the MultiPartSigned/MultiPartEncrypted classes.

C.1.2 MultiPartEncrypted/Signed Classes
The JavaMail API will probably add two new content classes: MultiPartEncrypted and MultiPartSigned.
They subclass the MultiPart class and handle the MIME types multipart/encrypted and multipart/signed.
There are many possible "protocols" which specify how the message has been encrypted and/or signed. The
MPE/MPS classes will find all the installed protocols. The ContentType’s protocol parameter determines
which the protocol class to use. There needs to be a standard registration of protocol objects, or a way to
search for valid packages and instantiate a particular class. The MultiPart classes will hand off the control
information, other parameters, and the data to be manipulated (either the signed/encrypted block) through

C-2 JavaMail API Design Specification • November 1997

some defined Protocol interface.

C.1.3 Reading the Contents
There will be times when an applet/application needs to retrieve the content of the message without
displaying its content. The code sample below shows one possible technique, with a message containing
encrypted content:

Message msg = // message gotten from some folder, or somehow
if (msg.getContentType().equals("multipart/encrypted")) {

Object o = msg.getContent();
if (o instanceof MultiPartEncrypted) {

MultiPartEncrypted mpe = (MultiPartEncrypted) o;
mpe.decrypt();

// use the default keys/certs from the user
// also, should be able to determine
// whether or not to interact with the user

// should then be able to use the multipart methods to
// get any contained blocks }
}

}

getContent() returns a MultiPartEncrypted object. There will be methods on this class to decrypt the
content. The decryption could either determine which keys needed to be used, or use the defaults (maybe
the current user’s keys) or could pass in explicitly which keys/certificates to use.

C.1.4 Verifying Signatures
Applications/applets will need to verify the validity of a signature. The code sample below shows how this
might be done:

Message msg = // message gotten from some folder
if (msg.getContent().equals("multipart/signed")) {

Object o = msg.getContent();
if (o instanceof MultiPartSigned) {

MultiPartSigned mps = (MultiPartSigned) o;
boolean validsig = mps.verifySignature();

// could already get the other blocks
// even if it wasn't a valid signature
}

}

If the signature is invalid, the application can still access the data. There will also be other methods on

Chapter C Message Security C-3

MultiPartSigned which allow setting of which keys or certificates to use when verifying the signature.

C.1.5 Creating a Message
There are two methods for creating an Encrypted/Signed message. Users will probably see an editor bean
for the content types multipart/signed and multipart/encrypted. These beans would handle the UI
components of allow the user to select how they wanted to encrypt/sign the message. The beans could be
integrated into an application’s Message Composition window.

C.1.5.1 Encrypted/Signed
The non-GUI method of creating the messages involves using the MultiPartEncrypted/Signed classes. The
classes can be created and used as the content for a message. The following code shows how might work:

MultiPartEncrypted mpe = new MultiPartEncrypted();
// can setup parameters for how you want to encrypt the
// message otherwise it will use the user's preferences
// set the content you wish to encrypt (to encrypt multiple
// contents a multipart/mixed block should be used)
String ourContent = "Please encrypt me!";
mpe.setContent(ourContent);

MimeMessage m = new MimeMessage();
m.setContent(mpe);

The message will be encrypted when the message is sent. There will be other methods which would allow
the setting which encryption scheme is used and the keys involved.
The version is very similar to the Encrypted Message version, except that a MultiPartSigned object is
created instead.

C-4 JavaMail API Design Specification • November 1997

Chapter D Part and Multipart Class Diagram D-1

D

Part and Multipart Class Diagram

This Appendix illustrates relationships between Part interfaces and Message classes.

D-2 JavaMail API Design Specification • November 1997

Chapter E MimeMessage Object Hierarchy E-1

E

MimeMessage Object Hierarchy

This Appendix illustrates the MimeMessage object hierarchy.

E-2 JavaMail API Design Specification • November 1997

