
     ßÛÛÛÛÛÛß    ßÛÛÛÛÛß  ßÛÛÛÛÛÛÛÛÛÜÜ      ßÛÛÛÛÛß               ÜÛÛÛÛÛÛÛÜ
        ÛÛÛ        ÛÛ       ÛÛÛ     ßÛÛÛÜ     ÛÛÛ                ÛÛÛß   ßÛÛÛ
         ÛÛÛ      ÛÛ        ÛÛÛ        ÛÛÛ    ÛÛÛ               ÛÛß       ÛÛÛ
          ÛÛÛ    ÛÛ         ÛÛÛ         ÛÛÛ   ÛÛÛ              ÛÛÛ       ÛÛÛÛÛ
           ÛÛÛ  ÛÛ          ÛÛÛ         ÛÛÛ   ÛÛÛ              ÛÛÛ      ÛÛ ÛÛÛ
            ÛÛÛÛÛ           ÛÛÛ        ÛÛÛ    ÛÛÛ              ÛÛÛ     ÛÛ  ÛÛÛ
             ÛÛÛ            ÛÛÛ     ÜÛÛÛß     ÛÛÛ              ÛÛÛ    ÛÛ   ÛÛÛ
             ÛÛÛÛ           ÛÛÛÛÛÛÛÛßß        ÛÛÛ              ÛÛÛ   ÛÛ    ÛÛÛ
            ÛÛ ÛÛÛ          ÛÛÛ               ÛÛÛ              ÛÛÛ  ÛÛ     ÛÛÛ
           ÛÛ   ÛÛÛ         ÛÛÛ               ÛÛÛ              ÛÛÛ ÛÛ      ÛÛÛ
          ÛÛ     ÛÛÛ        ÛÛÛ               ÛÛÛ              ÛÛÛÛÛ       ÛÛÛ
         ÛÛ       ÛÛÛ       ÛÛÛ               ÛÛÛ               ÛÛÛ       ÜÛÛ
        ÛÛ         ÛÛÛ      ÛÛÛ               ÛÛÛ          ÜÛ    ÛÛÛÜ   ÜÛÛÛ
     ÜÛÛÛÛÛÜ     ÜÛÛÛÛÛÜ  ÜÛÛÛÛÛÜ           ÜÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛß     ßÛÛÛÛÛÛÛß

               P R O G R A M M I N G   L A N G U A G E   M A N U A L

                               V E R S I O N   3 . 0

                          ÚÄ¿ ÚÄ¿ ÚÄ¿ ÚÄ¿ ÚÄ¿ ÚÄ¿ ÚÄ¿ ÚÄ¿
                          ³ ÀÄÙ ³ ³ ÀÄÙ ³ ³ ÀÄÙ ³ ³ ÀÄÙ ³
                          ÀÄ¿ ÚÄÙ ÀÄ¿ ÚÄÙ ÀÄ¿ ÚÄÙ ÀÄ¿ ÚÄÙ
                          ÚÄÙ ÀÄÄÄÄÄÙ ÀÄ¿ ÚÄÙ ÀÄÄÄÄÄÙ ÀÄ¿
                          ³ ÚÄÄÄ¿ ÚÄÄÄ¿ ³ ³ ÚÄÄÄ¿ ÚÄÄÄ¿ ³
                          ÀÄÙ ÚÄÙ ÀÄ¿ ÀÄÙ ÀÄÙ ÚÄÙ ÀÄ¿ ÀÄÙ
                          ÚÄ¿ ÀÄ¿ ÚÄÙ ÚÄ¿ ÚÄ¿ ÀÄ¿ ÚÄÙ ÚÄ¿
                          ³ ÀÄÄÄÙ ÀÄÄÄÙ ÀÄÙ ÀÄÄÄÙ ÀÄÄÄÙ ³
                          ÀÄ¿ ÚÄÄÄ¿ ÚÄÄÄ¿ ÚÄÄÄ¿ ÚÄÄÄ¿ ÚÄÙ
                          ÚÄÙ ÀÄ¿ ÀÄÙ ÚÄÙ ÀÄ¿ ÀÄÙ ÚÄÙ ÀÄ¿
                          ³ ÚÄ¿ ³ ÚÄ¿ ÀÄ¿ ÚÄÙ ÚÄ¿ ³ ÚÄ¿ ³
                          ÀÄÙ ÀÄÙ ³ ÀÄÄÄÙ ÀÄÄÄÙ ³ ÀÄÙ ÀÄÙ
                          ÚÄ¿ ÚÄ¿ ³ ÚÄÄÄ¿ ÚÄÄÄ¿ ³ ÚÄ¿ ÚÄ¿
                          ³ ÀÄÙ ³ ÀÄÙ ÚÄÙ ÀÄ¿ ÀÄÙ ³ ÀÄÙ ³
                          ÀÄ¿ ÚÄÙ ÚÄ¿ ÀÄ¿ ÚÄÙ ÚÄ¿ ÀÄ¿ ÚÄÙ
                          ÄÄÙ ÀÄÄÄÙ ÀÄÄÄÙ ÀÄÄÄÙ ÀÄÄÄÙ ÀÄÄ

     All rights to the XPL0 software and its documentation are reserved by the
     authors. Copyright 2012 software: P. Boyle; manual: L. Fish; revisions:
     L. Blaney.



     This manual is for the small group of individuals who, despite massive
     support behind other programming languages, continue to use XPL0. It's
     also for anyone who wonders what all the fuss is about.

     Free, open-source versions of the compilers (interpreted, assembly-code
     compiled, and optimizing) along with many utilities, games and other
     examples are available from the official website: xpl0.org



                                 C O N T E N T S

                0: INTRODUCTION  .  .  .  .  .  .  .  .    1
                     0.0  Example Program: GUESS   .  .    1
                     0.1  Compiling and Running .  .  .    4
                     0.2  Syntax .  .  .  .  .  .  .  .    5

                1: FACTORS .  .  .  .  .  .  .  .  .  .    8
                     1.0  Integer Constants  .  .  .  .    8
                     1.1  Hex and Binary Constants .  .    8
                     1.2  ASCII Constants .  .  .  .  .    9
                     1.3  Real Constants  .  .  .  .  .    9
                     1.4  Variables .  .  .  .  .  .  .    9
                     1.5  Declarations .  .  .  .  .  .   10
                     1.6  Declared Constants *  .  .  .   10
                     1.7  Example Program .  .  .  .  .   12
                     1.8  Free Format  .  .  .  .  .  .   13

                2: EXPRESSIONS   .  .  .  .  .  .  .  .   15
                     2.0  Arithmetic Expressions   .  .   15
                     2.1  Mixed Mode   .  .  .  .  .  .   16
                     2.2  Unary Operators .  .  .  .  .   16
                     2.3  Comparisons  .  .  .  .  .  .   17
                     2.4  True and False *   .  .  .  .   18
                     2.5  Boolean Expressions * .  .  .   19
                     2.6  Example Program: SETS *  .  .   21
                     2.7  Shift Operators *  .  .  .  .   22
                     2.8  If Expression  *   .  .  .  .   23
                     2.9  Constant Expressions *   .  .   23
                     2.10 Conditional Compile * .  .  .   23
                     2.11 Hazards of Real Numbers *   .   24

                3: STATEMENTS .  .  .  .  .  .  .  .  .   26
                     3.0  Assignments  .  .  .  .  .  .   26
                     3.1  Begin - end  .  .  .  .  .  .   26
                     3.2  If - then - else   .  .  .  .   27
                     3.3  Case - of - other *   .  .  .   28
                     3.4  While - do   .  .  .  .  .  .   30
                     3.5  Repeat - until  .  .  .  .  .   30
                     3.6  Loop - quit  .  .  .  .  .  .   31
                     3.7  For - do  .  .  .  .  .  .  .   32
                     3.8  Exit   .  .  .  .  .  .  .  .   32
                     3.9  Subroutine Calls   .  .  .  .   33
                     3.10 Comments  .  .  .  .  .  .  .   33
                     3.11 Null Statements .  .  .  .  .   34
                     3.12 Example Program: THERMO  .  .   34



                4: SUBROUTINES   .  .  .  .  .  .  .  .   36
                     4.0  Procedures   .  .  .  .  .  .   36
                     4.1  Local and Global   .  .  .  .   37
                     4.2  Arguments .  .  .  .  .  .  .   37
                     4.3  Nesting   .  .  .  .  .  .  .   39
                     4.4  Return .  .  .  .  .  .  .  .   39
                     4.5  Functions .  .  .  .  .  .  .   40
                     4.6  Intrinsics   .  .  .  .  .  .   42
                     4.7  Scope *   .  .  .  .  .  .  .   43
                     4.8  Recursion *  .  .  .  .  .  .   45
                     4.9  Forward Procedures *  .  .  .   46
                     4.10 Forward Functions *   .  .  .   46
                     4.11 Include * .  .  .  .  .  .  .   46
                     4.12 External Procedures * .  .  .   47
                     4.13 Assembly-Language Externals *   50
                     4.14 External .I2L Procedures *  .   52

                5: ARRAYS *   .  .  .  .  .  .  .  .  .   54
                     5.0  Example Program: DICE .  .  .   55
                     5.1  How arrays work *  .  .  .  .   56
                     5.2  Strings * .  .  .  .  .  .  .   57
                     5.3  Multidimensional Arrays *   .   59
                     5.4  Complex Data Structures *   .   60
                     5.5  Constant Arrays *  .  .  .  .   63
                     5.6  Example Program: RECORDS *  .   65
                     5.7  Address Operator * .  .  .  .   67
                     5.8  Returning Multiple Values * .   68
                     5.9  Segment Arrays *   .  .  .  .   70

                6: INPUT AND OUTPUT .  .  .  .  .  .  .   75
                     6.0  Device 0  .  .  .  .  .  .  .   77
                     6.1  Device 1  .  .  .  .  .  .  .   77
                     6.2  Device 2  .  .  .  .  .  .  .   78
                     6.3  Device 3  .  .  .  .  .  .  .   78
                     6.4  Device 4  .  .  .  .  .  .  .   81
                     6.5  Device 5  .  .  .  .  .  .  .   81
                     6.6  Device 6  .  .  .  .  .  .  .   81
                     6.7  Device 7  .  .  .  .  .  .  .   82
                     6.8  Device 8  .  .  .  .  .  .  .   82

                APPENDIX   .  .  .  .  .  .  .  .  .  .   84
                     A.0  Intrinsics   .  .  .  .  .  .   84
                     A.1  Compile Errors  .  .  .  .  .  110
                     A.2  Run-time Errors .  .  .  .  .  115
                     A.3  Common Errors   .  .  .  .  .  117
                     A.4  Keyboard Scan Codes   .  .  .  119
                     A.5  Syntax Summary  .  .  .  .  .  120

                INDEX   .  .  .  .  .  .  .  .  .  .  .  122
                ADDENDUM
                SYNTAX DIAGRAMS

                * Advanced section



                          0 :   I N T R O D U C T I O N

     Welcome to XPL0!

     XPL0 is essentially a cross between Pascal and C. It looks somewhat like
     Pascal but works more like C. It was originally created in 1976 by Peter
     J. R. Boyle, who designed it to run on a 6502 microcomputer as an
     alternative to BASIC, which was the dominant language for personal
     computers at the time. XPL0 is based on PL/0, an example compiler in the
     book "Algorithms + Data Structures = Programs" by Niklaus Wirth.

     Since those early years, XPL0 has been steadily improved and ported to
     many different computers (6502, PDP-10, IBM-360, homebrews, 8080, 6800,
     65802, 680x0, PICs and 80x86). There are versions based on 32-bit
     integers with megabytes of address space and a version for Windows. This
     manual describes the 16-bit versions that run on IBM-style PCs under DOS
     and under versions of Windows that can still run DOS programs.

     Programs written in XPL0 include: compilers, operating systems, word
     processors, video games, and controllers for embedded systems such as
     medical instruments, astronomical telescopes, and banking machines. These
     programs might have been written in assembly language, but because they
     were written in XPL0 they were written quickly, and they are easy to
     modify.

     This manual is both a tutorial and a reference. The information is in a
     logical order for reference. However, in some cases this makes it more
     difficult when first learning the language. It's best to skip the
     sections marked "Advanced" when reading the manual for the first time.

     Readers familiar with XPL0 or other programming languages may want to
     skip to the back. The Addendum lists changes to XPL0 in the last few
     years. The Syntax Summary and Syntax Diagrams provide a quick way to
     learn the details of XPL0.

     0.0 EXAMPLE PROGRAM: GUESS

     A good way to learn a language is to simply jump in and get your feet
     wet. So let's write a small program in XPL0. We begin by describing the
     task in plain English.



     2     0: INTRODUCTION

     This program is a guessing game where the computer thinks of a number
     between 1 and 100, and we try to guess it. After each guess, the program
     tells us whether we are high or low. The program goes through these
     steps:

             1. Think of a number between 1 and 100.
             2. Get a guess from the keyboard.
             3. Test the guess against the number.
             4. Repeat steps 2 and 3 until the guess is the number.

     Here are the same steps translated into XPL0:

             begin
             MakeNumber;
             repeat  InputGuess;
                     TestGuess
             until Guess = Number
             end

     Note that the program is almost word for word the same as the description
     of the task. First we "make a number" then we repeatedly "input a guess"
     and "test the guess" until it is the number.

     There needs to be more to this program since it doesn't tell how to make
     a number, input a guess, or test the guess. Each of these operations is a
     subroutine to the main program. In XPL0 these subroutines are called
     procedures. We are now going to write each of these procedures.

             procedure MakeNumber;
             begin
             Number:= Ran(100) + 1
             end

     This procedure generates a random number between 1 and 100 and puts that
     number into the variable called "Number".

             procedure InputGuess;
             begin
             Text(0, "Input guess: ");
             Guess:= IntIn(0)
             end

     This procedure displays the message: "Input guess: " on the monitor
     (output device 0) and gets a number (INTeger IN) from the keyboard (input
     device 0). In XPL0 nine different input and output devices can be called
     from the program. This enables direct access to the monitor, keyboard,
     printer, disk files, and so forth.



                                                         0: INTRODUCTION     3

             procedure TestGuess;
             begin
             if Guess = Number then Text(0, "Correct!")
             else
                     if Guess > Number then Text(0, "Too high")
                     else Text(0, "Too low");
             CrLf(0)
             end

     This procedure is more complicated but still easy to understand. If the
     computer's number is equal to the guess then we execute one statement; if
     it's not equal then we execute another statement. If the numbers are
     equal, we tell the user that the guess is correct; if they are not equal,
     we test if the guess is high or low and tell the user. CrLf(0) starts a
     new line on the monitor (Carriage Return and Line Feed).

     Here is the complete program:

             code Ran=1, CrLf=9, IntIn=10, Text=12;
             integer Guess, Number;

             procedure MakeNumber;
             begin
             Number:= Ran(100) + 1
             end;

             procedure InputGuess;
             begin
             Text(0, "Input guess: ");
             Guess:= IntIn(0)
             end;

             procedure TestGuess;
             begin
             if Guess = Number then Text(0, "Correct!")
             else
                     if Guess > Number then Text(0, "Too high")
                     else Text(0, "Too low");
             CrLf(0)
             end;

             begin
             MakeNumber;
             repeat  InputGuess;
                     TestGuess
             until Guess = Number
             end

     Two new items are shown here. The command word "code" is used to give
     names to intrinsics. Intrinsics are built-in subroutines that do common
     operations. For example, "Ran" is the name of the random-number
     intrinsic, and "Ran" is used to call this random-number generator as a
     subroutine. The second item is the command word "integer". This declares



     4     0: INTRODUCTION

     a name and allocates memory space for each variable that follows it.

     Note that the main procedure is the last block in the program. An XPL0
     program is read starting at the bottom to get the main flow and working
     upward to get the details in the procedures.

     Here is an example of what this program does when it runs:

             Input guess: 50
             Too high
             Input guess: 25
             Too high
             Input guess: 9
             Too low
             Input guess: 18
             Correct!

     0.1 COMPILING AND RUNNING

     After you create a program using a text editor, you compile, assemble,
     and link it to produce an executable .EXE file. For example, to run the
     number guessing program, GUESS.XPL, type the following:

             XN GUESS
             GUESS

     XN is a batch file (XN.BAT) that does these three steps:

        1. Run the compiler (XPLNQ) to convert the .XPL source to an .ASM file.

        2. Run the assembler (MASM) to convert the .ASM to an .OBJ file.

        3. Run the linker (LINK) to combine the .OBJ file with the run-time
           code (NATIVE.OBJ) and produce an .EXE file.

                 ÚÄÄÄÄÄ¿              ÚÄÄÄÄÄÄ¿              ÚÄÄÄÄÄÄ¿
        .XPL ÄÄ> ³XPLNQ³ ÄÄ> .ASM ÄÄ> ³ MASM ³ ÄÄ> .OBJ ÄÄ> ³ LINK ³ ÄÄ> .EXE
                 ÀÄÄÄÄÄÙ              ÀÄÄÄÄÄÄÙ              ÀÄÄÄÄÄÄÙ

     You can make your program run faster by using the optimizing compiler,
     XPLX. To do this substitute XX for XN. Also, if your program does many
     floating-point calculations and is going to run on a computer that has an
     80387 math coprocessor (or 486DX or Pentium), you can make it run much
     faster by linking in NATIVE7 instead of NATIVE.



                                                         0: INTRODUCTION     5

     The above describes how to use the "native" versions of the compiler, but
     there's another version that compiles "interpreted" code. The native
     versions produce code in 8086 assembly language. The interpreted version
     produces code that runs with a program called an "interpreter". Each
     version has advantages, but the optimizing, native version (XX) is the
     one that's normally used. Programs are written the same way no matter
     which version of the compiler is used.

     To run the number guessing program using the interpreted version, type:

             X GUESS
             GUESS

     X is a batch file that does these steps:

       1. Run the compiler (XPLIQ) to convert the .XPL source to an .I2L file.

       2. Run the interpreter (I2L.COM) to load the .I2L file, combine it with
          the run-time code, and produce a .COM file.

     It's usually preferable to use one of the native versions of the com-
     piler because they produce code that runs about ten times faster than
     interpreted code. Also, native programs can be much larger than inter-
     preted programs because they are .EXE files instead of .COM files. COM
     files are limited to 64K bytes in size.

     On the other hand, the interpreted version does have some advantages. No
     assembler or linker is required (which can save a significant amount of
     space on a floppy diskette). Since the code is not assembled and linked,
     it can be compiled and run quicker, which may be useful when testing. The
     interpreted code is also more compact; thus programs require less memory
     and disk space. In some applications interpreted code is essential
     because it's being cross-compiled to run on a processor other than the
     8086.

     0.2 SYNTAX

     A program consists of a bunch of characters. The rules that organize
     these characters into meaningful patterns are called the syntax of a
     language. Beginning with the most detailed level, the syntax of XPL0 is
     broken down as follows:



     6     0: INTRODUCTION

             Factors
             Expressions
             Statements
             Blocks
             Subroutines

     A factor is the smallest part of a program that can have a numeric value.
     A factor is usually a constant or a variable. Constants are numbers such
     as 100, 5280, and 3.14. Variables are places to store numbers. They are
     given names by the programmer such as "Number", "Percent", and "FEET".

     Factors are combined using operators to form expressions. An operator is
     usually one of the familiar arithmetic operators such as add, subtract,
     multiply, or divide. An expression calculates to a single value. Here are
     some examples of expressions:

             Percent - 10
             12.0 * FEET
             (Frog + 20.5) / 0.23

     A statement is a request to do something. A typical statement combines
     expressions and commands. Here are two statements:

             Number:= Ran(100) + 1;
             if Guess = Number then Text(0, "Correct!")

     Several statements can be combined into a single statement called a
     block. A block must start with a "begin" and terminate with an "end".
     Statements within a block must be separated by a semicolon (;). Here is
     an example of a block:

             begin
             Number:= 52 + 6;
             InputGuess;
             if Guess > Number then Text(0, "Too high");
             CrLf(0)
             end

     XPL0 is very flexible in the way it allows statements and blocks to be
     combined. For example, blocks can be placed inside statements:

             if Guess < Number then
                     begin
                     Text(0, "Too low");
                     InputGuess;
                     if Guess < Number then Text(0, "Still too low")
                     end



                                                         0: INTRODUCTION     7

     Here we have an "if" statement containing a block. The block itself
     consists of three statements separated by semicolons.

     Subroutines are the highest level of organization. In XPL0 there are
     several different types of subroutines; the most common is the procedure.
     A procedure is a block of statements that does a specific job. A program
     can contain any number of procedures. Procedures are given names and
     called as subroutines from other parts of the program. Here is an example
     of a procedure:

             procedure InputGuess;
             begin
             Text(0, "Input guess: ");
             Guess:= IntIn(0)
             end

     This gives a you quick idea of what XPL0 is about. In the next sections
     we will examine each of these levels of syntactic organization in detail.

                     ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄ¿
                     ³                   ³   ³           ³   ³
                     ÃÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÙ   ÃÄÄÄ¿   ÚÄÄÄÙ   ³
                     ³           ³           ³   ³   ³       ³
                     ³   ÚÄÄÄÄÄÄÄÁÄÄÄ¿   ÚÄÄÄÙ   ³   ³   ÚÄÄÄ´
                     ³   ³           ³   ³       ³   ³   ³   ³
                     ³   ³   ÚÄÄÄ¿   ÃÄÄÄ´       ÃÄÄÄ´   ³   ³
                     ³   ³   ³   ³   ³   ³       ³   ³   ³   ³
                     ÃÄÄÄÁÄÄÄÙ   ÃÄÄÄ´   ÀÄÄÄÂÄÄÄÙ   ÀÄÄÄ´   ³
                     ³           ³   ³       ³           ³   ³
                     ³   ÚÄÄÄÄÄÄÄÙ   ÀÄÄÄ¿   ÀÄÄÄ¿   ÚÄÄÄÙ   ³
                     ³   ³               ³       ³   ³       ³
                     ÀÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÁÄÄÄÄÄÄÄÙ



     8

                               1 :   F A C T O R S

     A factor is the smallest part of a program that has a value. Most factors
     in XPL0 are either constants or variables. A constant is a value that
     remains unchanged throughout the execution of a program, while a variable
     is a value that can be changed. Factors are classified as integer or
     real. An integer is a 16-bit value that represents a whole number. A real
     number is a floating-point value that's not limited to a whole number
     and can cover a very large range of values. Thus there are basically
     four kinds of factors: integer constants, real constants, integer
     variables, and real variables.

     1.0 INTEGER CONSTANTS

     In XPL0 an integer constant is a whole number in the range -32768 through
     32767. Here are some examples:

             10              0
             -10000          1975

     1.1 HEX AND BINARY CONSTANTS

     Integers can also be written in hexadecimal form. A hex number is an
     integer in base 16. Hex numbers are indicated by a dollar sign ($). They
     range from $0000 through $FFFF. Hex is very useful when programming at
     the machine level. Here are some examples:

             $123            $1e0
             $FFC0           $00ff

     Note that both upper and lower case letters (A-F and a-f) can be used.

     Sometimes it's convenient to think in terms of binary instead of hex. The
     percent sign is used to represent a binary number. For example, %10011100
     is the same value as $9C.

     Because binary numbers can blur into meaningless strings of 1's and 0's,
     underlines can be used to visually break them up, for example, %1001_1100
     = $9C. In fact underlines can be inserted into any number, such as
     $12_34, or -10_000. The underlines are simply ignored by the compilers.



                                                              1: FACTORS     9

     1.2 ASCII CONSTANTS

     ASCII characters are often used as constants. A caret (^) converts a
     character to its ASCII value. For example:

             ^A    =    $41    =     65
             ^z    =    $7A    =    122
             ^$    =    $24    =     36
             ^^    =    $5E    =     94

     1.3 REAL CONSTANTS

     Real constants are distinguished from integer constants by having either
     a decimal point or an exponent. The exponent is indicated by an "E". For
     instance, "3E14" means 3 times 10 raised to the 14th power, or 3 followed
     by 14 zeros. The following are examples of real constants:

             2.5                     .2
             -1000000.               05.e-1
             1E6                     -0.00000000000000707
             6.63E-34                6.023e+023

     In XPL0 a real number represents values ranging between ñ2.23E-308 and
     ñ1.79E+308 with 16 decimal digits (53 bits) of precision.

     Expressions containing reals execute slower than corresponding expres-
     sions containing integers. Also, a real number requires four times as
     much memory as an integer. Thus when an integer is sufficient, it's
     preferred to a real.

     1.4 VARIABLES

     Variables are temporary storage places for values. These storage places
     are given names by the programmer that can be single letters or whole
     words. Usually names are chosen to describe what the variable contains.
     For example, if you were calculating interest rates, the interest could
     be stored in a variable called "Interest". Since XPL0 is a compiled
     language, long names don't slow execution speed or take up extra memory
     space at run time (unlike an interpreted language like BASIC).

     Variable names contain letters (A-Z, a-z), numbers (0-9), and underlines
     (_), but the first character must be an uppercase letter or an underline.
     Here are some examples:

             X               RATE12                  _drawLine
             Guess           I_AM_A_NAME             IAmAName



     10     1: FACTORS

     Names can be as long as you want, but only the first 16 characters are
     recognized by the compiler. Upper and lower case letters are equivalent.
     For example, the following all refer to the same name:

             Guess           GUESS           GueSS

     1.5 DECLARATIONS

     Before a variable can be used, it must be declared. The integer variable
     declaration has the general form:

             integer NAME, NAME, ... NAME;

     For example:

             integer Guess, Number, Frog;

     This declaration tells the compiler that the variables Guess, Number, and
     Frog are used later in the program.

     The word "integer" is a command word. Command words are words that have
     special meaning to the compiler. They are in lowercase letters. This, for
     instance, allows you to use the word "Integer" as a variable name.

     Since the compiler looks at only the first three characters of a command
     word, they can be abbreviated. For example, these are equivalent:

             integer         int

     Variables that contain real numbers are declared similar to the way
     integers are declared:

             real NAME, NAME, ... NAME;

     In XPL0 all named things, such as variables, procedures, and intrinsics,
     must be declared before they can be used. The rules for creating variable
     names, such as starting with a capital letter, apply to all names.

     1.6 DECLARED CONSTANTS (Advanced)

     Names can also be declared for constants. Constants are different from
     variables because once they are defined they cannot be changed. Using a



                                                             1: FACTORS     11

     constant is more efficient than using a variable. Giving names to numbers
     can add clarity to a program. For instance, the name "Highest" might be
     more meaningful than the number 29028.

     Declared constants have the form:

             define NAME = CONSTANT, ... NAME = CONSTANT;

     For example:

             define Summit = 14210, Highest = 29028, Median = 13489.72;

     In this example Summit and Highest are integer constants, and Median is a
     real constant.

     Any constant can be used in a "define", for example:

             define A = $41, B = 66, C = -^C, LETTER = B, Number= -3.1E-3;

     Note that B, once it's defined, can be used to define other constants.
     Also note that a constant can be signed (- or +).

     Sometimes it's useful to have distinct names for things, but the actual
     value is irrelevant. In fact sometimes we don't want to know the value
     so that we cannot come to depend on it. For example, we might be working
     with a set of colors that we just want to distinguish by name. If we come
     to depend on the particular numerical value of a color, later changes in
     the program might be difficult. XPL0 has a simple scheme for defining
     sets of things:

             define Red, Green, Blue;

     Here, all you need to know is that these constants have distinct values.

     The values actually assigned by the compiler are integers beginning with
     zero and incrementing up to the last item in the set. In the example, Red
     equals 0, Green equals 1, and Blue equals 2. This process is called
     "enumerating".

     If an integer value is specified then any following items progress from
     it. For example:

             define Jan=1,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec;



     12     1: FACTORS

     1.7 EXAMPLE PROGRAM

     This program shows some relationships between the various types of
     integer factors.

             code ChOut=8, CrLf=9, IntOut=11, Text=12;
             integer Counter;
             define Tab=$09;

             begin
             Counter:= $41;
             repeat  ChOut(0, Counter);
                     ChOut(0, Tab);
                     IntOut(0, Counter);
                     CrLf(0);
                     Counter:= Counter + 1
             until Counter = ^G;
             Text(0, "That's all folks!");   CrLf(0)
             end

     When run, this program displays:

             A       65
             B       66
             C       67
             D       68
             E       69
             F       70
             That's all folks!

     The program begins by declaring the things that are needed to run it. The
     first line tells which intrinsic subroutines are needed and gives each a
     name. The second line declares a single variable called "Counter" that
     will hold integer values. The last declaration tells us that the word
     "Tab" can be used as a direct replacement for the hex number $09. This
     replacement is convenient because the ASCII value of the tab character is
     equal to $09. These three lines of declarations can be in any order. It's
     conventional that "code" declarations are first.

     The rest of the program describes the actions it performs when it runs.
     Since this executable part of the program is a block, consisting of
     several statements, it's enclosed within a begin-end pair.

     The first statement in the program block puts the value $41 in the
     variable called Counter. $41 is the value of the ASCII character A.

     Next it repeatedly executes a sub-block until Counter contains a value
     equal to the ASCII character G.



                                                             1: FACTORS     13

     The sub-block begins by calling the intrinsic subroutine ChOut, to which
     we send 0 and the value in Counter (initially $41). ChOut (CHaracter OUT)
     sends a value to a specified output device. Here we are specifying device
     number 0, which is the monitor. When the monitor driver receives a value,
     it displays the ASCII character that corresponds to the value. So the
     first time we call ChOut, an "A" is displayed.

     The next line calls ChOut again and sends the ASCII value for a tab
     character. This moves over to the next tab stop on the monitor.

     Now it calls IntOut. IntOut (INTeger OUT) is similar to ChOut, but rather
     than the value being displayed as a character, it's displayed as a
     decimal integer. The first time IntOut is called, "65" (= $41) is
     displayed.

     The next statement, CrLf(0) (Carriage Return Line Feed), is an intrinsic
     that moves to the beginning of a new line on the monitor.

     Next, a 1 is added to the value in Counter, and the result is stored back
     into Counter. On the next line we test the value in Counter to see if
     it's equal to the value of ASCII G. If it's not then the program goes
     back to the beginning of the repeat block and repeats the statements
     starting with ChOut. If Counter has incremented up to G then our program
     falls through to the next line, which is the Text statement.

     Text is an intrinsic similar to ChOut, but it sends out a whole string of
     characters rather than just one.

     Notice the overall logic of the program. It started at A and counted up
     to G. For each count it displayed the character and its decimal value.
     When it got to G, it broke the repeat loop and displayed the message
     "That's all folks!"

     1.8 FREE FORMAT

     In the examples shown so far, a certain formatting has been implied.
     Statements, for instance, have been written one to a line. XPL0 is a
     free-format language, which means that the compiler ignores formatting
     characters such as spaces, tabs, carriage returns, and form feeds. These
     characters are only used to make the structure of the program more
     apparent to the reader.

     The previous example program could be rewritten as follows without
     changing the way it compiles or runs:



     14     1: FACTORS

             code ChOut=8, CrLf=9,IntOut=11,Text=12; integer
             Counter; define Tab = $09; begin Counter := $41;
             repeat ChOut ( 0,Counter);ChOut(0,Tab);IntOut( 0

             ,Counter ) ; CrLf(0);Counter := Counter + 1 until
             Counter  =^G;Text(0,"That's all folks!" );CrLf(0 ) end

     However this hides the structure, making it more difficult to see what
     the program does.

     Formatting characters can be left out, but they cannot be used
     everywhere. Just as with normal English, words cannot be split apart. For
     example, this would cause a compile error:

             Count er:=$41;



                                                                            15

                           2 :   E X P R E S S I O N S

     XPL0, like many computer languages, is a mathematical language. It does
     arithmetic and other operations on numbers. Expressions consist of
     factors and operators. Operators perform on anything that has a value,
     such as constants, variables, and sub-expressions. An expression
     calculates to a single value. In XPL0 an expression can be used anywhere
     a value is used and vice versa.

     2.0 ARITHMETIC EXPRESSIONS

     The common arithmetic operations are done using familiar symbols:

             +   Addition
             -   Subtraction
             *   Multiplication
             /   Division

     An arithmetic expression is evaluated from left to right, with multipli-
     cation and division done first followed by addition and subtraction. The
     order of evaluation is important because it can affect the result.

     Sometimes it's necessary to evaluate an expression in a different order.
     The part of an expression within parentheses is evaluated first.

     Here are some examples of arithmetic expressions:

             6 + 4/2      equals 8                   (6+4)/2   equals 5
             6 - 4*2      equals -2                  (6-4)*2   equals 4
             6/2*3        equals 9                   6/(2*3)   equals 1
             6-4+2        equals 4                   6-(4+2)   equals 0
             3*(6-(4-1))  equals 9

     Integer division gives a quotient and a remainder. The remainder of the
     most recent division is gotten from the intrinsic "Rem". For example,
     19/5 evaluates to 3, and Rem has the remainder 4.

     Note that integer division does not work the same way as division using
     real numbers. For example, these three expressions are not necessarily
     equal:



     16     2: EXPRESSIONS

             X/10 * 5
             X*5 / 10
             X * (5/10)

     For instance, if X is 15 then the first expression evaluates to 5, the
     second to 7, and the third to 0.

     Integer operations do not give an error if they overflow. Overflowing
     values wrap around. For example, if you add 32767 + 1, the result is
     -32768. This is desirable because $7FFF + 1 = $8000, and so forth.

     2.1 MIXED MODE

     XPL0 does not allow integer and real factors to be used directly together
     in the same expression. For instance:

             2 + 3.5

     This would cause a compile error. It should be changed to:

             2. + 3.5

     To do calculations on a mixture of reals and integers, you must convert
     the factors to a single data type using the Fix and Float intrinsics. Fix
     rounds a real to its nearest integer, and Float converts an integer to a
     real. For example, if the variable X is a real and I is an integer then
     calculations can be done as follows:

             Fix(X) + I
             X + Float(I)

     2.2 UNARY OPERATORS

     Since a constant can be negative, we could have an expression like:

             2 * -3

     Do not confuse the minus sign shown here for the minus sign used to do
     subtraction. This minus sign is called a unary operator because it
     operates only on the 3 and indicates that the 3 is negative.

     Any factor (or sub-expression) can have the unary operators "-" and "+".
     Because the "+" operator really doesn't do anything, it can always be
     left out. It's sometimes used to emphasize that a number is positive.



                                                         2: EXPRESSIONS     17

     When unary operators are used in expressions with other operators, the
     unary operations are done first unless parentheses are used to force a
     different order of evaluation.

     Here are some expressions with unary operators:

             2 * -3   equals -6              +2 +2      equals 4
             6+ -4    equals 2               -$40/16    equals -4
             -4 - -6  equals 2               -^A + $41  equals 0
             -(4+6)   equals -10             -2*-3      equals 6

     2.3 COMPARISONS

     It's often necessary to compare one value to another and make a decision
     based on the result. The following symbols are used to make comparisons:

             =   Tests for equal values.
             #   Tests for not equal values.
             <   Tests if the first value is less than the second.
             >   Tests if the first value is greater than the second.
             >=  Tests if the first value is greater than or equal
                 to the second.
             <=  Tests if the first value is less than or equal to
                 the second.

     Here are some expressions containing comparison operators:

             X = 3
             A < 0.91
             (X+1) >= Y

     We have already seen an example of how comparisons are used to make
     decisions. In the number guessing program, one of two statements were
     executed depending on a comparison:

             if Guess > Number then Text(0, "Too high")
             else Text(0, "Too low")

     If the Guess was greater than the Number then it was "Too high";
     otherwise it was "Too low".

     A comparison evaluates to true or false. These expressions evaluate to
     true:



     18     2: EXPRESSIONS

             55 > 23
             (3*4) # (3+4)

     And these expressions evaluate to false:

             (2+2) = 5
             -33.3 > -4.5

     WARNING: Since XPL0 treats all 16-bit integers as signed,

             $F000 > $A000   is true, but
             $F000 > $7000   is false.

     Converting the hex to decimal makes the reason apparent:

             -4096 > -24576   is true, and
             -4096 >  28672   is false.

     2.4 TRUE and FALSE (Advanced)

     When a comparison is made, it produces a true or false value, like 2 + 3
     produces the value 5. The reserved word "false" is just another way to
     represent the integer 0, and likewise "true" is equal to -1 (=$FFFF).

     Using these concepts and adding the new variable High, the previous
     example from the GUESS program can be rewritten as:

             High:= Guess > Number;
             if High = true then Text(0, "Too high")
             else Text(0, "Too low")

     Going one step further, since High is assigned either true or false and
     since:

             true = true    is true

     and:

             false = true    is false,

     the "if" statement can be simplified to:

             if High then Text(0, "Too high")
             else Text(0, "Too low")



                                                         2: EXPRESSIONS     19

     2.5 BOOLEAN EXPRESSIONS (Advanced)

     A boolean is a value that has two states: true or false. In XPL0 integers
     are used to represent booleans. Boolean expressions are formed by com-
     bining booleans with boolean operators.

     XPL0 has four boolean operators: "not", "and", "or", and "exclusive or".
     The following symbols and words perform these operations:

             ~   not
             &   and
             !   or
             |   xor

     The "not" operator operates on a single value--it's another unary
     operator like the minus sign. It simply changes the value to its
     opposite. For instance, "not true" evaluates to "false". The "and"
     operator requires two values. If either value is false then the result is
     false. If both are true then the result is true. The "or" operator also
     requires two values. If both values are false then the result is false.
     If either value is true then the result is true. The exclusive or
     operator "xor" requires two values. If both values are the same then the
     result is false. If the values are different, the result is true. Here
     are some examples:

             if Pig = ~true then Text(0, "Still ok");
             if Guess<20 & Number>70 then Text(0, "Way too low");
             if Pig ! Bombed then Text(0, "Blew it!")

     Boolean operators actually use all 16 bits of an integer. Here are some
     examples, showing 4-bit values for simplicity:

             ~ 1100            1100            1100            1100
             = 0011          & 1010          ! 1010          | 1010
                             = 1000          = 1110          = 0110

     Boolean operations set and clear specific bits. One frequent operation is
     masking, which uses the "and" operator to clear all the bits except the
     ones of interest. For example, Number & 1 would reveal if Number is even
     or odd by masking off all but the least significant bit.

     The value "true" is not limited to just $FFFF, but is defined as any
     non-zero value. Thus "anding" an odd number with 1 is 1, which is "true".
     However, be careful when using values other than $FFFF for "true". There
     are instances when the "not" of a true value is not false. For example,
     ~$33 is $FFCC, both of which are non-zero, and thus both are "true".



     20     2: EXPRESSIONS

     Expressions can contain boolean operations, comparisons, and mathematical
     operations. In mixed expressions, arithmetic operations are done first,
     then comparisons, then boolean "not", then "and", then "or" and "xor".
     Thus the following expressions are the same:

             (A = 1) & (B = 2)   is the same as   A=1 & B=2
             (X & Y) ! Z         is the same as   X&Y ! Z

     But these are different:

             (A & $80) = 0   is different than   A & $80=0
             ~(X ! Y)        is different than   ~X ! Y

     A common mistake is to forget to use parenthesis when masking an expres-
     sion such as this:

             Number & 7 = 3   is different than   (Number & 7) = 3

     Boolean operations cannot be done on real numbers. For example, this
     would give a compile error:

             Frog & 3.2

     However, the following example is legal because the comparisons are done
     first, which produce true or false values for the "and" operator:

             Frog<3.2 & Toad>=6.3E3

     Here are some more expressions using boolean operators:

             true & false            equals false
             $A ! 1                  equals $B
             false & false ! true    equals true
             false & (false ! true)  equals false
             ~$55AA & $F0F0          equals $A050
             ~($F0F ! $33)           equals $F0C0
             3+1 = 4                 equals true
             3=4 & true              equals false
             (1 ! $80) = $81         equals true (or $FFFF)
             1 ! $80 = $81           equals 1 (or true)
             4+1=6-1 & not 10>12     equals true
             17/3=5 & Rem(0)=2       equals true
             (A&~B ! ~A&B) = (A|B)   equals true



                                                         2: EXPRESSIONS     21

     2.6 EXAMPLE PROGRAM: SETS (Advanced)

     This program shows how boolean operators are used to operate on sets.
     A single integer can represent a set containing up to 16 elements. The
     elements are either present or absent, as indicated by set or cleared
     bits (1 or 0).

     The elements that are common to two or more sets are determined by
     "anding" the sets using the boolean "&" operator. These common elements
     are called the "intersection" of the sets. Similarly, the "union" of the
     sets is determined by the "!" operator.

             \SETS.XPL
             code ChOut=8, CrLf=9, Text=12;
             int Week, Work, Free;           \Sets of days
             int Day;
             def \Day\ Mon=1, Tue=2, Wed=4, Thr=8, Fri=$10, Sat=$20, Sun=$40;
             \Assign days of the week to the individual bits of an integer

             proc Show(SET); \Graphically show the set of days
             int Set, Day;
             begin
             Day:= Mon;
             while Day & Week do     \For all of the days of the week do:
                     begin
                     if Day & SET then ChOut(0, ^X) else ChOut(0, ^-);
                     Day:= Day * 2;  \Next day--shift bit left
                     end;
             CrLf(0);
             end;    \Show

             begin   \Main
                     \Initialize work days and free days to empty sets:
             Work:= 0;   Free:= 0;
                     \There are 7 days in a week, so set the first 7 bits:
             Week:= $7F;
                     \Saturday and Sunday are free days:
             Day:= Sat;
             Free:= Day ! Free ! Sun;   Show(Free);
                     \The rest of the week are work days:
             Work:= Week & ~Free;   Show(Work);
                     \Free is a subset of Week:
             if (Free & Week) = Free then ChOut(0, ^O);
                     \Week is a superset of Work:
             if (Week & Work) = Work then ChOut(0, ^K);
                     \Work and Free are mutually exclusive:
             if ~(Work & Free) then Text(0, " PETER?");
                     \We won't work on Sunday!
             if Sun & Work then Text(0, " FORGET IT!");
             CrLf(0);
             end;    \Main



     22     2: EXPRESSIONS

     This program produces the following output:

             -----XX
             XXXXX--
             OK PETER?

     2.7 SHIFT OPERATORS (Advanced)

     Those familiar with assembly language will recognize the shift operation.
     The general form of the shift expression is:

             EXPR << EXPR     or     EXPR >> EXPR     or     EXPR ->> EXPR

     EXPR is an integer sub-expression--a 16-bit value. "<<" means shift to
     the left, and ">>" means shift to the right. The value of the first
     sub-expression is shifted the number of bits specified by the second
     sub-expression. The value of the second sub-expression should range from
     0 through 15. Beware that only the low five bits are used (except on the
     8086, which uses 8 bits). This means that attempting to shift 33 places
     shifts only one place, and attempting to shift -1 places shifts 31
     places.

     "->>" means shift arithmetic right. The first two shift operators shift
     in zeros to fill the empty locations. An arithmetic shift fills the empty
     locations with whatever the most significant bit contains. If the expres-
     sion on the left side is positive then zeros are shifted in just like the
     >> operator, but if the expression is negative then ones are shifted in.
     This preserves the sign bit, and is the same as dividing by powers of
     two, except it truncates toward minus infinity rather than toward zero.

     Here are some examples:

             1 << 1          = 2
             $30 << 2        = $C0
             $50 >> 4        = $05
             $FF5A >> 4      = $0FF5
             $FF5A ->> 4     = $FFF5

     The shift operator's precedence (priority) is between the unary operators
     and the multiplication and division operators. The following expressions
     show this:

             -1>>8 * 2      =     (-1 >> 8) * 2      = $01FE
             2 + 1<<4       =     2 + (1 << 4)       = $0012

     Multiplying and dividing by powers of two is similar to doing a shift
     operation. However, note that dividing a negative number gives a negative
     result, which is not the same as shifting the negative number to the
     right. Shift operations are faster than multiplying or dividing.



                                                         2: EXPRESSIONS     23

     2.8 IF EXPRESSION (Advanced)

     Sometimes, rather than calculate a value, we simply want to choose
     between two values. This can be done using an "if" expression. Do not
     confuse "if" expressions with the much more common "if" statements that
     are described later.

     The general form of an "if" expression is:

             if BOOLEAN EXPRESSION then EXPRESSION else EXPRESSION

     For example:

             if Guess > Number then 75 else 20+5

     The "if" expression evaluates to either 75 or 25 depending on the outcome
     of the comparison. If the comparison is true, that is, if Guess is
     greater than Number then the entire expression is 75; otherwise it's 25.

     Like all expressions, an "if" expression can be used anywhere a value is
     used. For instance:

             Text(0, if Guess = Number then "Correct!" else "Incorrect")

     2.9 CONSTANT EXPRESSIONS (Advanced)

     An expression that consists entirely of constants can be used in place of
     any constant such as in a "define" declaration (or constant array). The
     compiler calculates the required constant. For example:

             def     SEC_PER_HR = 60.0 * 60.0;
             def     SEC_PER_DAY = SEC_PER_HR * 24.0;
             def     HI = ^I<<8 ! ^H;

     All expression operators can be used. However, function calls, such as
     Rem(17/5), cannot be used. This means that integers and reals cannot be
     mixed in an expression since the intrinsics Fix and Float cannot be used.

     2.10 CONDITIONAL COMPILE (Advanced)

     The command word "condition" is used to conditionally compile sections of
     code. "condition" must be followed by an expression that evaluates to
     true or false. If this expression is false then any following code is
     treated as a comment. This commented-out code must be terminated by a
     second "condition" that evaluates to true. "condition" works everywhere
     except inside comments and strings. It can be used to change declarations
     as well as executable code. For example:



     24     2: EXPRESSIONS

             def     Debug = true;

             condition Debug;
             int     X;
             condition not Debug;
             real    X;
             condition true;

             begin
             cond not Debug;
             X:= 3.0;
             cond Debug;
             X:= 3;
             cond true;
             . . .

     "Condition" is intended for commenting out code--not for comments in
     general. Even though the condition is false, the code that follows is not
     completely ignored. The compiler is scanning for a lowercase word that
     starts "con". Also, some minimal syntax checking is done. For instance,
     a dollar sign ($) must still be followed by a hex digit, otherwise an
     error is flagged.

     2.11 HAZARDS OF REAL NUMBERS (Advanced)

     Calculations with real numbers must be done carefully. Unlike integers,
     there are many instances where a real number is only an approximation of
     the desired value. For example, just as the value 1/3 cannot be exactly
     represented by a decimal number (only approximated by 0.333333333333...),
     it also cannot be exactly represented by an XPL0 real number. The
     discrepancy is called a rounding error. A real must round the true value
     to the nearest value it can represent.

     Because of rounding errors an expression like:

             9.0 * (1.0 / 3.0)

     does not evaluate to exactly 3.0. The intermediate result, 0.33333333333,
     is not 1/3, and 0.3333333333333333 times 9.0 is 2.9999999999999997. Yet
     if the order of this calculation is changed, the result is exactly 3.0:

             (9.0 * 1.0) / 3.0

     These two expressions are not exactly equal. Thus the first hazard of
     real numbers is testing for equality. Usually it's only a coincidence
     if a real expression evaluates to an exact value. This problem is
     obscured because if we were to output the values of the two preceding
     expressions using the RlOut intrinsic, we would get 3.0000000000000000
     in both cases. The reason is RlOut itself rounds to compensate for slight
     rounding errors.



                                                         2: EXPRESSIONS     25

     The second hazard of rounding errors is that they can accumulate to cause
     big errors. For example, if an expression such as:

             3.0 * (1.0 / 3.0)

     is multiplied by itself 1000 times, the result might be something like
     1.000000000000220.

     Another hazard to be wary of is loss of accuracy caused by subtracting.
     For example, the expression

             1234567890123456. - 1234567890123454. + 1.25

     equals 3.25, but the same expression evaluated in a different order

             1234567890123456. - (1234567890123454. + 1.25)

     equals 1.0.

     The discrepancy is caused by not having more than 16 digits of accuracy.
     When  1234567890123454  is added to 1.25, the result is rounded to
     1234567890123455. This discrepancy can be seen two ways. Certainly the
     difference between 3.25 and 1.0 seems significant, but 2.25 compared to
     1234567890123456 is really quite small.



     26

                            3 :   S T A T E M E N T S

     Expressions, command words, and sub-statements combine to form XPL0
     statements. A statement is a request to do something.

     3.0 ASSIGNMENTS

     The most fundamental statement is the assignment. It specifies that a
     value is to be stored into a variable. Assignments have the general form:

             VARIABLE:= EXPRESSION

     An assignment uses a colon-equal symbol (:=) to distinguish between
     comparing two values for equality and storing a value into a variable.
     The ":=" symbol is pronounced "gets". For instance, the statement
     X:= 5 + 1 is read: "X gets five plus one."

     Here are some assignment statements:

             Number:= 23;
             Time:= Time + 1;
             Pig:= Fish = 0

     In the first statement, 23 is stored into the variable named "Number".
     The second statement adds 1 to whatever is contained in Time and stores
     the result back into Time. In the last statement, Pig gets the value
     "true" or "false" depending on whether Fish is a zero.

     3.1 BEGIN - END

     "Begin" and "end" are used to designate blocks of code. A block consists
     of one or more statements that are combined to form a single new state-
     ment. This statement has the form:

             begin STATEMENT; STATEMENT; ... STATEMENT end



                                                          3: STATEMENTS     27

     Note that statements within the block are separated by semicolons.

     Each "begin" must have a matching "end". A common programming error is
     mismatched "begin-end" pairs.

     Square brackets ([ ]) can be used instead of "begin" and "end". For
     example, this is a block:

             [X:= 12;   Y:= 5]

     3.2 IF - THEN - ELSE

     A characteristic that makes programs seem intelligent is the ability to
     select alternative courses of action. The "if" statement enables alterna-
     tives to be selected based on a condition.

     The "if" statement has two forms:

             if BOOLEAN EXPRESSION then STATEMENT
             if BOOLEAN EXPRESSION then STATEMENT else STATEMENT

     The "if" statement is used to execute statements or blocks of code
     conditionally. For example:

             if Number = Guess then Correct:= true else Correct:= false

     This statement tests to see if Number is equal to Guess. If it's equal,
     the variable Correct gets the value "true"; if it's not equal then
     Correct gets "false".

     Usually the condition is based on a comparison, but any expression that
     evaluates to true or false can be used. Here are some examples:

             if A/B+C-D = (Time+1)/45 then Pig:= true;
             if Pig then [X:= 3;  Y:= 4] else [X:= 4;  Y:= 3];
             if A=B & C=D then Frog:= 1 else Frog:= 0

     Two of the examples shown in this section can be simplified:

             Correct:= Number = Guess;
             Frog:= if A=B & C=D then 1 else 0

     The first simplification is an often overlooked use of boolean expres-
     sions. The second simplification uses an "if" expression instead of an
     "if" statement. Note the difference between the two uses of "if".



     28     3: STATEMENTS

     3.3 CASE - OF - OTHER (Advanced)

     Often a program must decide between more than the two alternatives
     offered by an "if" statement. Since an "if" statement can contain other
     statements, "if" statements can be nested. For example:

             if Guess = Number then Text(0, "Correct!!")
             else if Guess < Number then Text(0, "Too low")
             else if Guess > 100 then Text(0, "Way too high")
             else Text(0, "Too high")

     However, many levels of nested "if" statements can be inefficient and
     confusing, so XPL0 has the "case" statement.

     The "case" statement has two forms, the first is:

             case of
                     BOOLEAN EXPRESSION: STATEMENT;
                     BOOLEAN EXPRESSION: STATEMENT;
                     ...
                     BOOLEAN EXPRESSION: STATEMENT
             other STATEMENT

     In this form the "case" statement is like the nested "if"s shown above.
     The first expression that evaluates to true causes the corresponding
     statement to be executed. If no expression is true then the "other"
     statement is executed. Note that there is no semicolon before "other".
     The nested "if" example translates as follows:

             case of
                     Guess = Number: Text(0, "Correct!!");
                     Guess < Number: Text(0, "Too low");
                     Guess > 100:    Text(0, "Way too high")
             other Text(0, "Too high")

     The "other" cannot be left out, but it can have a null statement:

             case of
                     Number = 1: DoOne;
                     Number = 2: DoTwo
             other   [];

     The second form of the "case" statement is used for efficiency. The
     expressions must all have a common component and must be a comparison for
     equality, like in the last example. This form is:



                                                          3: STATEMENTS     29

             case EXPRESSION of
                     EXPRESSION: STATEMENT;
                     EXPRESSION: STATEMENT;
                     ...
                     EXPRESSION: STATEMENT
             other STATEMENT

     The last example, in this form, looks like this:

             case Number of
                     1: DoOne;
                     2: DoTwo
             other   [];

     Sometimes several different expressions are associated with a single
     statement. For example:

             case Number of
                     1: DoOdd;
                     2: DoEven;
                     3: DoOdd;
                     4: DoEven;
                     5: DoOdd
             other   [];

     Here, if Number equals 1, 3, or 5 then the subroutine DoOdd is executed;
     if Number equals 2 or 4 then DoEven is executed. The "case" allows any
     number of expressions to select a statement. The form is:

             EXPRESSION, EXPRESSION, ... EXPRESSION: STATEMENT

     So, the example above could be rewritten:

             case Number of
                     1,3,5:  DoOdd;
                     2,4:    DoEven
             other   [];

     "Case" expressions must evaluate to integers. Reals cannot be used since
     it's generally a coincidence when two reals are exactly equal. However,
     a comparison containing reals, such as 2.3 > X, evaluates to true or
     false, which is an integer expression that can be used by the first
     "case-of" form.

     Note that "case" selectors are not limited to simple constants; they can
     be any integer expression.



     30     3: STATEMENTS

     3.4 WHILE - DO

     Much of the power of a computer is its ability to do repetitive tasks. In
     programming it's frequently necessary to make tasks execute over and
     over. This is called looping. XPL0 has four kinds of looping statements
     each of which repeatedly execute a block of code if certain conditions
     are met.

     The "while" statement is a conditional looping structure. As long as the
     condition is met, the following statement or block is repeatedly execu-
     ted. This statement has the form:

             while BOOLEAN EXPRESSION do STATEMENT

     For example:

             while Guess # Number do
                     begin
                     InputGuess;
                     TestGuess
                     end

     As long as the variables Guess and Number are not equal, the code within
     the begin-end block is repeated. The program tests the condition at the
     beginning of the "while" statement. If the condition is false, the block
     in the loop is ignored. If the condition is true, the block is executed
     and the code loops back to retest the condition. The condition must
     eventually become false, otherwise the loop continues forever.

     3.5 REPEAT - UNTIL

     The "repeat" statement has the form:

             repeat STATEMENT; ... STATEMENT until BOOLEAN EXPRESSION

     The "repeat" loop is similar to the "while" loop except that the
     decision to continue the loop is made after the block.



                                                          3: STATEMENTS     31

     These flow diagrams show the difference between the "while" and "repeat"
     statements:

                          WHILE                   REPEAT

                            ³                       ³
                ÚÄÄÄÄÄÄÄÄÄÄ>³                       ³<ÄÄÄÄ¿
                ³          / \                  ÚÄÄÄÁÄÄÄ¿ ³
                ³      ___/   \                 ³       ³ ³
                ³     ³   \   /                 ³ BLOCK ³ ³
                ³     ³    \ /                  ³       ³ ³
                ³ ÚÄÄÄÁÄÄÄ¿ ³                   ÀÄÄÄÂÄÄÄÙ ³
                ³ ³       ³ ³                       ³     ³
                ³ ³ BLOCK ³ ³                      / \    ³
                ³ ³       ³ ³                     /   \___³
                ³ ÀÄÄÄÂÄÄÄÙ ³                     \   /
                ³     ³     ³                      \ /
                ÀÄÄÄÄÄÙ     ³                       ³
                            v                       v

     An example of a repeat loop is:

             repeat  InputGuess;
                     TestGuess
             until Guess = Number

     Note that the command words "repeat" and "until" also act as "begin" and
     "end" for the block in the loop.

     3.6 LOOP - QUIT

     The "loop" statement has the form:

             loop STATEMENT

     A "loop" command repeatedly executes the following statement or block. A
     "quit" statement is used to exit from any point (or points) within the
     loop. Usually a "quit" is used in an "if" statement so that the loop
     exits under certain conditions. For example:

             loop    begin
                     InputGuess;
                     if Guess = Number then quit;
                     TestGuess
                     end



     32     3: STATEMENTS

     3.7 FOR - DO

     A "for" loop is a powerful looping statement. It counts one at a time,
     and for each count it executes a block of code. The starting and ending
     values of the count are specified, and the count is stored in a variable
     so that it can be used by the block. This statement has these forms:

             for VARIABLE:= EXPRESSION, EXPRESSION do STATEMENT
             for VARIABLE:= EXPRESSION to EXPRESSION do STATEMENT
             for VARIABLE:= EXPRESSION downto EXPRESSION do STATEMENT

     For example:

             for Guess:= 1, 100 do TestGuess

     Guess starts with a value of 1 and steps one at a time up to and includ-
     ing 100. TestGuess is executed 100 times.

     The control variable for the loop must be an integer; it cannot be a real
     nor have a subscript. Negative loop limits are allowed. If the starting
     and ending limits are expressions, they are evaluated one time before the
     looping begins. The starting value is assigned to the control variable,
     and this variable is compared to the ending limit before each pass
     through the loop.

     There are two kinds of "for" loops: incrementing and decrementing. The
     incrementing version is perhaps the more common, and is shown in the
     example above. The word "to" can be used instead of the comma if you
     prefer.

     In an incrementing "for" loop if the control variable is greater than the
     ending limit, the loop is exited; otherwise the block in the loop is
     executed, and then the control variable is incremented. A decrementing
     loop uses the "downto" word, and checks if the control variable is less
     than the ending limit to determine whether the loop is executed or not.

     Note that an incrementing "for" loop is not executed if the limits are
     not in ascending order, as in:

             X:= -10;
             for Guess:= 1, X do Text(0, "Way too low")

     Also note that 32767 cannot be used as the ending limit because there's
     not a larger signed number that can be represented with 16 bits. For
     example, writing "for I:= 32000, 32767 do" causes an infinite loop.

     3.8 EXIT

     Perhaps the simplest statement is "exit". It terminates the execution of
     a program at the point it's encountered. This statement is used to halt
     execution at a point other than the normal end of a program. It's not
     necessary to put "exit" at the end of a program.



                                                          3: STATEMENTS     33

     The "exit" statement can also return a code to DOS. The low byte of the
     value (0-255) of an optional expression following "exit" is returned to
     DOS interrupt $21 function $4C. This return code can be tested in a batch
     file with an IF ERRORLEVEL statement. For example, the batch file used to
     run the compiler (XN.BAT) uses this feature to skip the assembly and link
     steps if there's a compile error. By convention, a returned value of 0
     indicates no errors.

     3.9 SUBROUTINE CALLS

     Another simple statement is a call to a subroutine. It merely consists of
     the name of the subroutine, which can be a procedure, an intrinsic, or an
     external. (This is explained further in 4: SUBROUTINES.)

     A call can send some values, known as arguments, to the subroutine. In
     this case the call has the form:

             NAME(EXPRESSION, EXPRESSION, ... EXPRESSION)

     Here are some examples of subroutine calls:

             MakeNumber;
             CrLf(0);
             Text(0, "Too low")

     The first example is a procedure call. The second example calls the
     new-line intrinsic and passes the argument 0. The last example is an
     intrinsic call with two arguments.

     3.10 COMMENTS

     Comments are an important part of a program. Not only do they help
     others understand what a section of code does, but they often help the
     programmer understand weeks or years later what was done. A comment can
     go almost anywhere (except in the middle of a name, inside a string, or
     in an "include" file name). A comment is enclosed in backslash (\)
     characters, unless it's the last item on a line, in which case only the
     leading backslash is needed.

     Since backslashes turn comments on and off, a comment cannot ordinarily
     contain a backslash. However, if two backslashes are used together (\\)
     then anything on the rest of the line is treated as a comment. This
     is especially useful when commenting out lines of code that contain
     comments. Here are some examples:

             begin           \Move down the page
             for X:= -10, 10 \Twenty-one times\ do CrLf(0);
             \\for X:= -10, 10 \Twenty-one times\ do CrLf(0);   debug



     34     3: STATEMENTS

     3.11 NULL STATEMENTS

     The null statement does nothing. It consists of nothing, and it compiles
     into nothing. It's useful because in some circumstances we want to do
     nothing. An example of this was shown with the "other" part of a "case"
     statement. Here are some more examples:

             for I:= 1, 1000 do [];          \Kill some time
             while not Strobe do;            \Wait for Strobe to be "true"
             repeat until KeyStruck          \Another form of wait

     Each of these statements contains a null sub-statement.

     Null statements are frequently used as a coding convenience--a kind of
     XPL0 slang. For example, these two blocks compile into exactly the same
     code:

             begin                   begin
             X:= X + 1;              X:= X + 1;
             Y:= Y - 1               Y:= Y - 1;
             end                     end

     Note that the block on the right actually contains three statements: the
     two assignments and a null statement after the second semicolon.

     This is convenient because now we can simply insert or delete statements
     by inserting or deleting lines and not worry about a semicolon on the
     previous line. Here you might think of semicolons as statement term-
     inators, but they are actually statement separators.

     Unless you understand the concept of null statements, you can become
     confused by semicolons, especially in if-then-else statements. A semi-
     colon is used to separate statements and procedures and to terminate
     declarations.

     3.12 EXAMPLE PROGRAM: THERMO

     The following program uses real numbers to convert degrees Fahrenheit to
     degrees Celsius.



                                                          3: STATEMENTS     35

             \THERMO.XPL     01-AUG-2011
             \This program prints a table of Fahrenheit temperatures
             \ and their Celsius equivalents.

             code    CrLf=9, Text=12;
             code real RlOut=48, Format=52;
             real    Fahr,   \Fahrenheit temperature
                     Cel;    \Celsius temperature

             begin
             \Print table heading:
             Text(0, "FAHRENHEIT     CELSIUS");
             CrLf(0);

             Format(3, 1);           \Define real-number format

             Fahr:= -40.0;
             while Fahr <= 100.0 do
                     begin
                     Cel:= 5.0/9.0 * (Fahr - 32.0);  \Calculate Celsius
                     RlOut(0, Fahr);                 \Print out results
                     Text(0, "               ");     \(2 tabs)
                     RlOut(0, Cel);
                     CrLf(0);
                     Fahr:= Fahr + 20.0;             \Next step
                     end;
             end;

     When THERMO executes, it displays the following:

             FAHRENHEIT      CELSIUS
             -40.0           -40.0
             -20.0           -28.9
               0.0           -17.8
              20.0            -6.7
              40.0             4.4
              60.0            15.6
              80.0            26.7
             100.0            37.8

     CrLf and Text are intrinsics we have used before, but RlOut and Format
     are new. RlOut (ReaL OUT) outputs real numbers in a format specified by
     Format. Here we are specifying a format of three places (including the
     minus sign) before the decimal point and one place after it.



     36

                           4 :   S U B R O U T I N E S

     One of the most important constructs in programming is the subroutine.
     XPL0 has four different kinds of subroutines:

             Procedures
             Functions
             Intrinsics
             Externals

     4.0 PROCEDURES

     Scattered throughout most programs are certain operations that must be
     done over and over. To avoid writing the same code over and over, a
     programmer puts the common code into a single routine that is called
     whenever the operation is needed. After the common code is executed, the
     program resumes at the point following the call. Such a routine in XPL0
     is called a procedure.

     Any block of code can become a procedure simply by giving it a name. The
     process of naming a procedure is a declaration. Procedure declarations
     have the general form:

             procedure NAME(COMMENT);
             DECLARATIONS;
             STATEMENT;

     For example, here's a simple procedure:

             procedure MakeNumber;
             begin
             Number:= Ran(100) + 1;
             end;

     Once a procedure is declared, it can be executed simply by calling its
     name. For instance, here's a block that calls three procedures:



                                                         4: SUBROUTINES     37

             begin
             MakeNumber;
             InputGuess;
             TestGuess;
             end;

     A block of code does not necessarily need to be called more than once to
     justify making it into a procedure. An important use of procedures is to
     make a program more understandable by breaking it down into smaller,
     simpler pieces. By making a piece of code into a procedure, you can name
     it according to its use, test it separately, and keep the main body of
     code uncluttered.

     4.1 LOCAL AND GLOBAL

     Names are active only in certain areas of a program. These areas are
     defined by the rules of scope (see: 4.7 Scope). A name that's declared
     within a procedure is said to be local to that procedure. A name that's
     defined for several procedures is global to those procedures.

     A procedure is an independent piece of code that can contain its own
     declarations. For example:

             code Ran=1;
             integer Number;

                     procedure MakeNumber;
                     integer Times, X;       \Local variables
                     begin                   \Randomly pick a random number
                     Times:= Ran(10);
                     for X:= 0, Times do Number:= Ran(100) + 1;
                     end;

             begin
             MakeNumber;
             end;

     In this example Times and X are local names while Number, Ran, and
     MakeNumber are global names.

     4.2 ARGUMENTS

     It's often necessary to send information to a procedure. Values to be
     sent are separated by commas and placed between parentheses immediately
     after the procedure call. These values are the arguments of the proce-
     dure. When the procedure is called, these arguments are copied into the
     first local variables of the procedure. Here is an example:



     38     4: SUBROUTINES

             integer A, B, C, Result;

                     procedure AddTen;       \Subroutine
                     integer X, Y, Z;        \Arguments
                     begin
                     X:= X + 10;
                     Y:= Y + 10;
                     Z:= Z + 10;
                     Result:= X + Y + Z;
                     end;

             begin                   \Start of the program
             A:= 1;
             B:= 2;
             C:= 3;
             AddTen(A, B, C);        \Procedure call with arguments
             end;

     In this example the second block calls the first. In the process it sends
     the values of the variables A, B, and C, which are 1, 2, and 3 respec-
     tively. When AddTen is called, the values in A, B, and C are copied into
     X, Y, and Z. The procedure adds 10 to each of these values, sums them
     into Result (= 36), and returns. The original A, B, and C are not changed
     by the procedure call.

     XPL0 allows a special comment to be placed after the name of a procedure
     and before the semicolon in the declaration. This helps the programmer
     keep track of which variables are arguments and which are normal locals.
     Use the comment to list the arguments in the order they are sent when the
     procedure is called.

     Here is an example of an argument list as a comment:

             procedure Check(Area, Perimeter);
             integer Area, Perimeter;        \Arguments
             integer Side;                   \Normal local variable
             begin
             Side:= Perimeter / 4;
             if Side*Side = Area then Text(0, "square")
                     else Text(0, "rectangle");
             end;

     Writing Area and Perimeter in parenthesis on the first line shows that
     this procedure has these two values passed to it as arguments, while Side
     is simply a normal local variable.

     Real values can also be passed as arguments. Be sure to declare the local
     variables in the same order as they are passed. "Real" and "integer"
     declarations can be mixed in any order to accomplish this.



                                                         4: SUBROUTINES     39

     The ability to pass values to procedures, with the ability to declare in
     each procedure just those variables it needs, enables each procedure to
     be a complete and independent piece of code. This enables it to be de-
     bugged separately and copied from program to program.

     4.3 NESTING

     Since a procedure is an independent piece of code, it can itself contain
     procedures. Procedures can be nested inside each other. For example:

             procedure ONE;

                     procedure TWO;

                             procedure THREE;
                             begin
                             ...
                             end;

                     begin   \TWO
                     ...
                     end;

             begin   \ONE
             ...
             end;

     Look at how these procedures are nested. Procedure THREE is nested inside
     procedure TWO, which in turn is nested inside procedure ONE.

     Procedures can be nested up to eight levels deep. Here ONE is at the
     highest level, and THREE is at the lowest level. Note that the block for
     the highest level routine is last, but is executed first.

     The same order applies to an entire program. The code for the main
     routine is always the last block in the program, and this highest-level
     block is always executed first. In fact, a program is just one big
     procedure.

     4.4 RETURN

     Occasionally it's desirable to return from a procedure at a point other
     than its normal end. This is done using a "return" statement. "Return"
     forces a procedure to immediately return to its caller. At the end of a
     procedure, a "return" is implied and need not be written.



     40     4: SUBROUTINES

     The TestGuess procedure used in the number guessing program could be
     rewritten using a "return" statement:

             procedure TestGuess;
             begin
             if Guess = Number then [Text(0, "Correct!");   return];
             if Guess > Number then Text(0, "Too high")
                     else Text(0, "Too low");
             CrLf(0);
             end;

     4.5 FUNCTIONS

     The "return" statement is also used to return a value from a subroutine
     to the calling routine. A subroutine that returns a value is called a
     "function". A function is similar to a procedure except that it returns
     a value and is used as a value. A procedure call is a statement, but a
     function call represents a value and is therefore a factor. The general
     form of a function is:

             function TYPE NAME(COMMENT);
             DECLARATIONS;
             STATEMENT;

     Since all factors must be distinguished as either integers or reals, the
     function declaration includes a type specifier. This specifier is either
     "integer", "real", or none. If the type is not specified (none), the
     function defaults to integer.

     The value to be returned by the function is placed immediately following
     the "return" command. The general form is:

             return EXPRESSION;

     Here is an example of how a function is used:

             integer X, Y;

                     function integer Increment(A);
                     integer A;
                     begin
                     return A + 1;
                     end;

             begin
             X:= 3;
             Y:= Increment(X);       \Function call
             end;



                                                         4: SUBROUTINES     41

     This function increments a value. When the function is called, the value
     in X is sent to it. This value is incremented and passed back to the
     caller by the "return" statement. The result (4) is then stored into the
     variable Y.

     Here is an example of a function that returns a real value:

             real Angle;

                     func real Deg(X);
                     real X;
                     return 57.2957795 * X;

             begin
             Angle:= Deg(3.141592654);
             end;

     This function converts radians to degrees. Angle gets 180.0.

     Here is an example of a function that returns a boolean:

             code ChIn=7, ChOut=8, Text=12, OpenI=13;
             integer Ch;

                     function Affirmative;
                     begin
                     OpenI(0);
                     return ChIn(0) = ^y;
                     end;

             begin
             Text(0, "Do you want to see the ASCII character set? ");
             if Affirmative then for Ch:= $20, $7E do ChOut(0, Ch);
             end;

     This function returns "true" if the first character typed on the keyboard
     is a "y" (as in "yes"), otherwise it returns "false". The OpenI (OPEN
     Input) intrinsic discards any characters that might already be in the
     keyboard's buffer, thus assuring that the intended character is used.

     If a "return" is used in the main (highest-level) procedure, it has the
     same effect as an "exit" statement. If an expression follows such a
     "return", it also has the same effect as an expression following an
     "exit" statement. (See: 3.8 Exit.)



     42     4: SUBROUTINES

     4.6 INTRINSICS

     Intrinsics are built-in subroutines that do a variety of operations,
     such as input and output, and math functions. There are 81 intrinsics in
     the run-time code (NATIVE).

     An intrinsic, like any named thing, must be declared before it can be
     used. When an intrinsic is declared, a name is given to its number. The
     general form of an intrinsic declaration is:

          code TYPE NAME(COMMENT) = INTEGER, ... NAME(COMMENT) = INTEGER;

     Here are some examples:

             code Ran=1, Text=12;
             code real Sin(real)=56, Cos(real)=60;

     Intrinsics can be given any name, but the established names are usually
     preferred because they are generally recognizable.

     Since some intrinsics are used as functions, and since the compiler must
     distinguish between integer and real functions, an intrinsic declaration
     includes an optional type specifier. This specifier works the same way as
     for function declarations except that it defines the data type of all the
     names following the declaration. In the example, Sin and Cos are trig
     functions that return real values.

     An intrinsic call is identical to a procedure or function call. Argu-
     ments, if any, are placed between parentheses immediately following the
     intrinsic name.

     Here are some examples of intrinsic calls:

             Cursor(20, 12);
             Number:= Ran(100);
             Height:= Sin(Angle) * 10.0;

     The first example sends the values 20 and 12 to the cursor positioning
     intrinsic. In the second example, a random number between 0 and 99
     (inclusive) is assigned to the variable "Number". The last example
     computes the sine of Angle, multiplies it by 10, and stores the result in
     Height.

     Some intrinsics return a value while others do not. Intrinsics that
     return a value must be used as functions (factors), not as statements,
     otherwise a run-time error occurs. Conversely, an intrinsic that does not
     return a value must not be used as a function.



                                                         4: SUBROUTINES     43

     The following is an example of the incorrect use of an intrinsic. This
     statement is illegal and will cause a run-time error:

             for I:= 10, 100 do Ran(I);      \A bad statement

     The error would occur because the random-number intrinsic returns a value
     that's not used.

     See appendix A.0 for a list of the intrinsics and a description of what
     they do.

     4.7 SCOPE (Advanced)

     Scope is the feature that makes names active only in certain parts of a
     program. A name declared in one part does not necessarily conflict with
     the same name declared in another part. Scope is what makes a program
     modular.

     When a name is active, it's in scope. At any point in the program certain
     names are in scope and available, while others are out of scope and
     nonexistent. A name is in scope from the point it's declared to the end
     of the procedure in which its declaration appears. It is active in any
     sub-procedures that might be nested in the procedure. Usually we think of
     scope applying to variable names, but it applies to procedure names, as
     well as all other names.

     Here are some nested procedures with a variable declared in each one:

             procedure ONE;
             integer X;

                     procedure TWO;
                     integer Y;

                             procedure THREE;
                             integer Z;
                             begin
                             . . .
                             end;

                     begin   \TWO
                     . . .
                     end;

             begin   \ONE
             . . .
             end;



     44     4: SUBROUTINES

     Here is another way of looking at these same nested procedures:

                     ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
                     ³ procedure ONE    X           ³
                     ³   ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿    ³
                     ³   ³ procedure TWO    Y  ³    ³
                     ³   ³   ÚÄÄÄÄÄÄÄÄÄÄÄÄ¿    ³    ³
                     ³   ³   ³ procedure  ³    ³    ³
                     ³   ³   ³  THREE   Z ³    ³    ³
                     ³   ³   ÀÄÄÄÄÄÄÄÄÄÄÄÄÙ    ³    ³
                     ³   ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ    ³
                     ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

     The statements inside procedure ONE can call procedure TWO because both
     the call and procedure TWO are within procedure ONE. However, the state-
     ments inside procedure ONE cannot call procedure THREE because the scope
     of THREE ends at the end of procedure TWO.

     For similar reasons, only the variable X is in scope for the statements
     inside procedure ONE. Procedure TWO can access variables X and Y, and it
     can call procedures ONE, TWO, and THREE. Procedure THREE can access all
     the variables, X, Y, and Z, and can call procedures, ONE, TWO, and THREE.

     Note that a procedure is in scope during its own body code, so a
     procedure can call itself. (See: 4.8 Recursion.)

     Two procedures at the same level, but nested inside different procedures,
     cannot call each other. For example:

                     ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
                     ³ procedure  A       ³
                     ³   ÚÄÄÄÄÄÄÄÄÄÄÄ¿    ³
                     ³   ³ procedure ³    ³
                     ³   ³  B        ³    ³
                     ³   ÀÄÄÄÄÄÄÄÄÄÄÄÙ    ³
                     ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

                     ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
                     ³ procedure  ONE     ³
                     ³   ÚÄÄÄÄÄÄÄÄÄÄÄ¿    ³
                     ³   ³ procedure ³    ³
                     ³   ³  TWO      ³    ³
                     ³   ÀÄÄÄÄÄÄÄÄÄÄÄÙ    ³
                     ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

     Procedures B and TWO cannot call each other because they are not in scope
     with each other. The scope of B ends at the end of procedure A. However,
     statements in procedures ONE and TWO can call procedure A, and con-
     versely, statements in A and B can call procedure ONE. (See: 4.9 Forward
     Procedures.)



                                                         4: SUBROUTINES     45

     In XPL0 names in scope with each other and at the same level must be
     unique in their first 16 characters, otherwise a compile error occurs
     (ERROR 11: NAME ALREADY DECLARED). However, there is no conflict if the
     identical names are declared in different scopes or in the same scope but
     in procedures nested at different levels. For example, "integer Frog" can
     be declared in all four of the procedures: A, B, ONE, and TWO, without
     conflict. Each declaration creates a separate variable, so there are four
     unique variables that have the same name.

     When the same name is declared at different levels in nested procedures,
     the most local declaration is used. In the last example suppose the
     nested procedures A and B both have "integer Frog" declared in them. When
     a statement in procedure B refers to Frog, it refers to the local Frog
     declared in B, not the global one in A. Statements in procedure A use the
     Frog declared in A. It's a good idea to avoid this kind of situation.

     4.8 RECURSION (Advanced)

     Recursion is a powerful programming technique. It's the ability of a
     routine to call itself. Recursion provides another approach to solving
     problems. Some things can be easily defined in a recursive way. For
     example, an ancestor is a person's father or mother or one of their
     ancestors. In programming, recursion is used for sorting, searching
     tree structures, parsing parenthesized expressions, and so on.

     XPL0 is designed to facilitate recursive programming. Any procedure (or
     function) can call itself. A procedure can also call itself indirectly.
     For instance, a procedure P could call a second procedure Q that calls
     the original procedure P. Each time a procedure calls itself, the current
     set of local variables for the procedure is saved and a new set is
     created.

     Here is an example using recursion to compute factorials:

             code IntOut=11;

                     function Factorial(N);          \Returns N!
                     integer N;
                     begin
                     if N = 0 then return 1          \(0! = 1)
                     else return N * Factorial(N-1);
                     end;

             begin   \Main
             IntOut(0, Factorial(7));
             end;

     Seven factorial (7!) is 7*6*5*4*3*2*1, which is equal to 5040.



     46     4: SUBROUTINES

     4.9 FORWARD PROCEDURES (Advanced)

     In XPL0 all names must be declared before they can be used. Procedures,
     in particular, must be declared before they are called. Occasionally a
     situation arises in recursive programs where a procedure must be called
     before it's declared. The forward-procedure declaration solves this
     problem. It has the form:

             fprocedure NAME(COMMENT), ... NAME(COMMENT);

     For example:

             fprocedure MakeNumber, TestGuess, Break, Repair;

     This declaration tells the compiler that the four names listed are
     procedures that occur within the present procedure and at the current
     level. Now that these procedures are declared, they can recursively call
     each other without regard to the order that they are written.

     4.10 FORWARD FUNCTIONS (Advanced)

     Forward declarations can also be made for functions. The form is:

             ffunction TYPE NAME(COMMENT), ... NAME(COMMENT);

     Forward-function declarations are similar to forward-procedure declar-
     ations with the exception that functions must be typed. The type is
     either "integer", "real", or none. (See: 4.5 Functions.) For example:

             ffunction real Sinh, Cosh, Tanh;

     4.11 INCLUDE (Advanced)

     Large programs can be broken into smaller, more manageable pieces in
     several ways. One way is to use the "include" command word to auto-
     matically insert another file when you compile your program. For example,
     it's convenient to "include" the file CODESI.XPL that declares all the
     intrinsics:

             include C:\CXPL\CODESI;



                                                         4: SUBROUTINES     47

     Note that backslashes specify the path name in the normal DOS manner, and
     do not indicate a comment in this situation. The default extension is
     .XPL, so it does not need to be written. Other extensions can be used.
     Only one file name can follow "include", and it must be terminated by a
     semicolon.

     Any number of files can be included in a program. An included file can
     itself include other files. Included files can be nested in this fashion
     up to eight levels.

     4.12 EXTERNAL PROCEDURES (Advanced)

     When developing a large program, it's inefficient to repeatedly edit,
     list, and compile the entire program when all the changes are concen-
     trated in one small area. To avoid this, procedures are broken off the
     main program and put into separate files. These are called "external
     procedures". They are compiled and assembled separately from the main
     program, and the resulting .OBJ files are combined using the linker.

     Like all named things, external procedures must be declared before they
     can be called. The form is:

             eprocedure NAME(COMMENT), ... NAME(COMMENT);

     For example:

             eprocedure Baker, Charlie;

     This means that Baker and Charlie are procedures that are called from the
     present file, but they exist in another, external file.

     The actual procedure in the external file must be prefixed by the command
     word "public". For example:

             public procedure Baker;
             begin
             . . .
             end;

     "Eprocedure" and "public" declarations must be in scope with each other.
     This means that "eprocedure" declarations must be made at the beginning
     of the main program, typically right after the "code" declarations, and
     that "public procedure" declarations must not be nested inside other
     procedures (except, of course, the main procedure).



     48     4: SUBROUTINES

     Functions also can be external. They are handled like procedures, but
     since they return a value, they must be identified as "integer", "real",
     or none. The form of the declaration is:

             efunction TYPE NAME(COMMENT), ... NAME(COMMENT);

     External procedures and functions handle local variables and argument
     passing just as you would expect, but global variables require special
     consideration. WARNING: Each file must declare global variables in the
     exact same order. This way the global variables correspond to the same
     memory locations for each file. A convenient way to make sure that each
     file has the exact same global variable declarations is to "include"
     them as shown below.

     Here is an example of a program that's divided into three files plus a
     common global variable file:

             \GLOBALS.XPL            -- COMMON GLOBALS --
             code CrLf=9, Text=12;
             code real RlOut=48;

             int Flag;
             real X;

             \PARENT.XPL             -- MAIN PROGRAM --
             include GLOBALS;
             efunc real Able;        \External procedures & functions
             eproc Baker;

             begin   \Main
             X:= 0.0;
             Flag:= false;
             Text(0, "EXTERNAL EXAMPLE");   CrLf(0);
             RlOut(0, Able(2.0));   CrLf(0);
             Text(0, "Global X = ");  RlOut(0, X);   CrLf(0);
             X:= X + 1.0;
             Baker;
             Text(0, "Global X = ");   RlOut(0, X);   CrLf(0);
             end;    \Main



                                                         4: SUBROUTINES     49

             \FILE1.XPL              -- SECONDARY FILE 1 --
             include GLOBALS;

             public func real Able(X);
             real    X;              \Local variable
             begin
             Text(0, "This is Able");   CrLf(0);
             if Flag then X:= X + 1.0;
             Flag:= true;
             return X * X;
             end;    \Able

             \FILE2.XPL              -- SECONDARY FILE 2 --
             include GLOBALS;

             efunc real Able;        \External function

             public proc Baker;
             begin
             Text(0, "This is Baker");   CrLf(0);
             RlOut(0, Able(3.0));   CrLf(0);
             Text(0, "Baker's global X = ");   RlOut(0, X);   CrLf(0);
             X:= X + 1.0;
             end;    \Baker

     After these files are compiled and assembled, they are linked by the
     command:

             LINK /SE:256 PARENT+FILE1+FILE2+NATIVE;

     The program is run by typing "PARENT", and it displays the following:

             EXTERNAL EXAMPLE
             This is Able
                 4.00000
             Global X =     0.00000
             This is Baker
             This is Able
                16.00000
             Baker's global X =     1.00000
             Global X =     2.00000

     Several public procedures can be combined into a single file and used as
     a library. This is like having your own set of intrinsics, and it keeps
     you from compiling and debugging the same subroutines over and over.



     50     4: SUBROUTINES

     4.13 ASSEMBLY-LANGUAGE EXTERNALS (Advanced)

     External subroutines can also be written in assembly language when you
     want maximum speed or need total control. Assembly-language subroutines
     are declared using the command word "external". The form is:

             external NAME(COMMENT), ... NAME(COMMENT);

     "External" can be declared at any level of procedure nesting, unlike
     "eprocedure" and "efunction".

     In the assembly code, the entry point label must be declared public. For
     example:

             CSEG    SEGMENT DWORD PUBLIC 'CODE'
                     ASSUME  CS:CSEG
                     PUBLIC  DOADD

             DOADD:  POP     CX              ;Save return address
                     POP     DX              ;Save return segment
                     POP     AX              ;Get second argument
                     POP     BX              ;Get first argument
                     ADD     AX,BX           ;Add arguments
                     PUSH    AX              ;Return result
                     PUSH    DX              ;Restore return address
                     PUSH    CX
                     RETF                    ;Far return to caller

             CSEG    ENDS
                     END

     This example takes two arguments that are passed on the stack, adds them
     and returns the result on the stack.

     Like intrinsics, it's essential to keep the stack balanced by popping
     and pushing the correct number of arguments. Also, if you change the
     stack pointer (SP) or segment registers (CS, DS, SS, ES), they must be
     restored to their original values before you return. The other registers
     (AX, BX, CX, DX, SI, DI, BP) need not be preserved. The direction flag
     bit (D) also does not need to be preserved.

     The last example shows one way of getting arguments on and off the stack
     using PUSH and POP instructions. Another way is to use BP to access all
     the arguments directly:

             DOADD:  MOV     BP,SP           ;Get stack pointer
                     MOV     AX,[BP+4]       ;Get second argument
                     ADD     [BP+6],AX       ;Add to first argument
                     RETF    2               ;Drop one argument



                                                         4: SUBROUTINES     51

     Local variables can be created by putting them on the stack. This makes a
     subroutine reentrant, which enables it to be called by an interrupt
     routine in addition to the XPL0 program (it also enables it to call
     itself, recursively). For example:

                     SUB     SP,4            ;Reserve space for two integers
                     MOV     BP,SP           ;Get stack pointer
                     MOV     AX,[BP]         ;Access one variable
                     ADD     AX,[BP+2]       ;Access the other
                     ADD     SP,4            ;Drop the local variables

     You can also create local variables by defining blocks of data using DB,
     DW, DQ, and so forth, but this makes the subroutine non-reentrant. These
     variables must be in a segment declared like this:

             DSEG    SEGMENT WORD PUBLIC 'DATA'
             COLOR   DB      0
             PIXEL   DW      0
             DSEG    ENDS

     This declaration tells the linker to group your data with the rest of the
     variables in the program. If you leave the DSEG directive out, your local
     variables will collide with variables in the XPL0 code. It is also
     important to link NATIVE last, otherwise similar problems occur.

     Accessing global variables is a little more complicated. Generally it's
     best to pass any variables as arguments. You can even pass the address of
     a global variable the way arrays are passed. However, global variables
     can also be accessed using the public label "HEAPLO".

     HEAPLO is the bottom of the heap memory space, which is where global
     variables start. HEAPLO is a public label defined in NATIVE. An assembly-
     language subroutine can use HEAPLO if HEAPLO is declared external
     (EXTRN). For example:

             \MAIN XPL0 PROGRAM
             \Start of global declarations
             integer Frog, Pig, Cow;
             . . .

             ;EXTERNAL ASSEMBLY-LANGUAGE SUBROUTINE
             EXTRN   HEAPLO:WORD             ;Declare HEAPLO as an external
             FROG    EQU     HEAPLO+8        ;Define global variables
             PIG     EQU     HEAPLO+10
             COW     EQU     HEAPLO+12

             CSEG    SEGMENT DWORD PUBLIC 'CODE'
                     MOV     AX,FROG         ;Accessing global FROG
                     MOV     AX,PIG          ;Accessing global PIG
                     MOV     COW,AX          ;Accessing global COW
             . . .



     52     4: SUBROUTINES

     Note that global variables actually start at HEAPLO+8. The first eight
     bytes are used for a special variable called "global zero". This is used
     by functions to return values. Eight bytes are used so that reals can be
     returned as well as integers.

     WARNING: Do not give your external assembly-language file the same name
     as an .XPL file, otherwise when the .XPL file is compiled with one of the
     native compilers, an .ASM file will be generated that will replace your
     .ASM file.

     4.14 EXTERNAL .I2L PROCEDURES (Advanced)

     Up to this point we've discussed externals for the native compilers. In
     these native versions .XPL code is converted to assembly language, and
     after being assembled the resulting .OBJ files are combined using the
     standard linker (LINK). However, the interpreted version does not compile
     into assembly language, so a different linker is used. XLINK combines the
     main program with files containing external procedures, and it produces a
     .C2L file that's loaded and run like a normal .I2L file. For example:

             XLINK PARENT.I2L+FILE1.I2L+FILE2.I2L
             I2L PARENT.C2L

     The first file after "XLINK" must be the main program, but the other
     files can be in any order. The linker allows up to 200 external pro-
     cedures and 1000 calls to those procedures. If two external procedures
     have the same name, the first one is always called.

     The interpreted version can also have external subroutines written in
     assembly language. An assembly-language subroutine is made into a .COM
     file, then combined with the main program using XLINK. For example:

             MASM DOADD;
             LINK DOADD;
             EXE2BIN DOADD.EXE DOADD.COM
             XPLIQ PARENT
             XLINK PARENT.I2L+DOADD.COM
             I2L PARENT.C2L

     Note the .COM extension in the XLINK command. This is how the linker
     distinguishes assembly subroutines from .I2L code.

     Assembly-language subroutines used with the interpreted version of XPL0
     have several restrictions compared to the native version. Since "public"



                                                         4: SUBROUTINES     53

     names are not used in these .COM files, XLINK uses the name of the file
     as the name of the subroutine. Because of this, each subroutine must be
     in a separate file and have its entry point as the first instruction of
     the file. Also, the name is restricted to eight characters.

     Another restriction involves local variables. Subroutines called from the
     interpreted version must use the stack for any local variables. They
     cannot be declared using DW or DB because these are not relocated by
     XLINK.

     To get around the limitations imposed by these .COM files, XLINK uses a
     special type of library file called a "supervisor" file. The supervisor
     file contains the names of files to be linked. XLINK handles these files
     just as though their names had been typed on the command line.

     The supervisor file does not contain the name of the main program, this
     must be entered on the command line. All file names in the supervisor
     file must have extensions, even the .I2L files. Paths can be used. File
     names are separated by either a plus sign, comma, space, tab, or a
     carriage return. The supervisor file itself must have the extension
     ".XLB". Here is an example of a supervisor file and its usage:

             FILE1.I2L+FILE2.I2L
             C:\LIBRARY\DOADD.COM

             XLINK PARENT.I2L+SUPER.XLB

     The simplest use of supervisor files saves the trouble of typing many
     names on the command line. However, supervisor files can also include
     other supervisor files to form complex trees of library routines.



     54

                                5 :   A R R A Y S

     It is often useful to handle variables as a group when the variables have
     something in common--like points on a graph or dollars in accounts. In
     XPL0 variables can be grouped using a single name with each item having a
     separate number. Such a group is called an array. For example:

             Account(11)

     This refers to the 12th item in the array named "Account". If there are
     20 items in an array, they are numbered 0 through 19.

     In XPL0 there are three types of arrays: integer, real, and character.

     Integer arrays are groups of variables where each variable is an
     integer. Each variable in the array can store a 2-byte value in the range
     -32768 through 32767 (or $0000 through $FFFF).

     The name of an array must be declared before it can be used. Integer
     array declarations have the general form:

             integer NAME(DIMENSIONS), ... NAME(DIMENSIONS);

     For example:

             integer Account(20);

     This sets aside memory space for 20 integers and gives this space the
     name "Account". Now, values can be moved in and out of the elements of
     this array. For example:

             begin
             Account(19):= 2050;
             I:= Account(9) + 100;
             . . .

     Array variables are normally used with an item number in parentheses.
     This number is called a "subscript", and it can be any integer expression
     as long as it evaluates to an item number that's in the array.



                                                              5: ARRAYS     55

             Account(I+2):= J;
             if Account(0)=$0C then FormFeed;

     Arrays that contain real numbers are similar to integer arrays. Here is
     an example:

             real  Dollars(70), X;
             int   I;
             begin
             for I:= 0, 70-1 do Dollars(I):= 0.00;
             Dollars(7):= 1.25;
             X:= Dollars(7) - 1.00;
             end;

     Note that subscripts are always integers, or integer expressions, even
     for a real array.

     Array elements can also be single bytes. Since a byte is often used to
     store an ASCII character, these arrays are called character arrays. Here
     are some examples:

             character  Name(20), Address(20), City(10), State(2);

     Character arrays can have subscripts larger than 32767 (or $7FFF). In
     this case it's logical to use hex numbers (although negative decimal
     numbers can be used).

     5.0 EXAMPLE PROGRAM: DICE

     This little program uses an integer array to represent the six sides of a
     die. The program simulates throwing the die 10000 times and counts the
     number of times each side lands up. The sides are numbered 0 through 5 in
     the array.

             \DICE.XPL                                          ÕÍÍÍÍÍÍÍ»
             \This program simulates dice throwing              ³ o   o º
             code  Ran=1, ChOut=8, CrLf=9, IntOut=11;           ³   o   º
             integer Side(6), I, N;                             ³ o   o º
                                                                ÀÄÄÄÄÄÄÄ½
             begin
             for I:= 0, 5 do Side(I):= 0;    \Initialize array with zeros
             for I:= 1, 10000 do             \Throw the die 10000 times
                     begin
                     N:= Ran(6);             \Randomly pick a side
                     Side(N):= Side(N) + 1;  \Increment counter for side
                     end;
                                             \Show the results
             for I:= 0, 5 do [IntOut(0, Side(I));   ChOut(0, \tab\$09)];
             CrLf(0);
             end;



     56     5: ARRAYS

     Running this program produced the following output:

             1701    1715    1711    1665    1601    1607

     5.1 HOW ARRAYS WORK (Advanced)

     When an array name is declared with a dimension in parentheses, memory
     space is set aside for the items that will be in the array. Memory space
     is also set aside for the name of the array, just like space is set aside
     for any variable name. However, the array name is automatically set up
     with the address in memory where the array items start. The only dif-
     ference between an array name and an ordinary variable name is that the
     array name has a value automatically stored into it. This starting
     address points to the items in the array, and it's called a "pointer".

     For example, the declaration

             integer Account(20);

     reserves memory space for 20 integers plus space for one more integer,
     the variable called Account. The variable called Account is set to point
     to the start of the space reserved for the 20 integers. Account is
     normally used with a subscript that refers to one of the items in the
     array. Account without a subscript refers to the starting address of the
     array. Here is what this array looks like:

                     ÚÄÄÄÄÄÄÄÄÄÄ¿
                     ³ Starting ³         ÚÄÄÄÄÄÄÄÄÄÄ¿
                     ³ address ÄÅÄÄÄÄÄÄÄ> ³   Item   ³
                     ÀÄÄÄÄÄÄÄÄÄÄÙ         ³    0     ³
                                          ³ÄÄÄÄÄÄÄÄÄÄ³
                                          ³   Item   ³
                                          ³    1     ³
                                          ³ÄÄÄÄÄÄÄÄÄÄ³
                                          ³   Item   ³
                                          ³    2     ³
                                          ³ÄÄÄÄÄÄÄÄÄÄ³

                                          ³ÄÄÄÄÄÄÄÄÄÄ³
                                          ³   Item   ³
                                          ³    19    ³
                                          ÀÄÄÄÄÄÄÄÄÄÄÙ

     The starting address of an array declared as "real" is handled as a real
     variable even though it contains a 16-bit address pointing to its data.
     The address is in the first two bytes, low byte first.



                                                              5: ARRAYS     57

     When an array is passed to a procedure, only the starting address is
     passed, not the actual items in the array. Thus an array passed to a
     procedure should never have its dimensions declared in the procedure. In
     other words, the local variable name of the array argument should never
     have parenthesis showing its size.

     Memory used for arrays, as well as variables, comes from an area known as
     the "heap". The heap has about 60000 bytes and works like a stack but
     is a little more versatile. When a procedure returns, any arrays and
     variables that were declared in it are no longer needed. The heap space
     used by these arrays and variables is released so that it can be used by
     other arrays and variables in other procedures. This efficient method of
     using memory is called "dynamic memory allocation". The amount of unused
     space available in the heap can be determined by calling the Free
     intrinsic (18). If you have large arrays and need more space, see: 5.9
     Segment Arrays.

     Declared array dimensions must be constants; they cannot be variables.
     This is rarely a limitation because any constant expression can be used.
     For example:

             def     Size=20;
             int     Array(Size);
             char    Name(Size*3);

     If a variable must be used to define the size of an array at run time, it
     can be done using the method described in: 5.4 Complex Data Structures.

     5.2 STRINGS (Advanced)

     Another way to set up a character array is to make a text string. For
     example:

             "This is a string"

     This allocates some memory space, fills it with the ASCII for each
     character, and returns the starting address. If this address is assigned
     to the character variable S then S is like any other character array
     except that the contents are already set.

     We can read the individual bytes, as in:

             character  S;
             begin
             S:= "This is a string";
             if S(3)=$73 then Text(0, "It's an s");
             . . .



     58     5: ARRAYS

     Or we can store bytes into this array, as in:

             S(3):= ^n;   S(5):= ^a;

     We can output the string to any device using the Text intrinsic. For
     example:

             Text(0, S);

     now displays:

             Thin as a string

     on the monitor (device 0).

     Note that the quoted string itself allocates the memory space; there is
     no dimension after the S in the declaration. Writing: "character S(16);"
     would allocate another 16 bytes that would not be used.

     The end of a string is marked by setting the high bit of the last
     character. This adds $80 (128) to the ASCII value of this character. In
     the example above, S(15) has the value $E7, which is $80 more than the
     ASCII for the letter g ($67).

     The method for terminating strings can be changed by using the "string"
     command. If "string 0;" is used then any strings that follow will be
     terminated with a zero byte instead of having the high bit set on their
     last character. This has the advantage of making them consistent with the
     way strings passed to DOS interrupt routines must be terminated. It also
     enables the extended characters ($80-$FF), such as the line draw char-
     acters, to be used in strings. Finally, it provides the possibility for
     a string that contains no characters, called a "null string".

     If you want to change the string termination back to having the high bit
     set then "string 1;" (or any non-zero integer) will do it. The Text
     intrinsic (12) works for strings that are terminated by either method.

     The caret character (^), besides indicating ASCII values (see: 1.2 ASCII
     Constants), enables quotes (") and carets to be in strings. For example:

             Text(0, "^"^^^" is called a ^"caret^"");

     displays:

             "^" is called a "caret"

     A string can contain any printable character. It can also contain control
     characters like tab, carriage return, bell, and form feed. However,
     putting a form feed in a string can mess up a program listing, and a
     control character, such as a bell ($07), won't show in the listing. Thus
     it's better to use the caret character to put a control character in a
     string.



                                                              5: ARRAYS     59

     Inside a string, ^A means control-A, ^Z means control-Z, and so forth. Do
     not confuse this use of the caret character with the way it's used to
     represent an ASCII character outside a string. ^G in a string means
     control-G ($07, the bell character), but outside a string it means the
     letter G ($47).

     Characters in addition to A-Z can be used with the caret to get the
     complete range of control characters. The symbols ^@, ^A...^Z, ^[, ^\,
     ^], and ^_ correspond to the values $00, $01...$1A, $1B, $1C, $1D, and
     $1F. Note the exception: ^^, which is not $1E but the caret character
     ($5E) described above. Lowercase letters and characters can also be used.
     ^`, ^a...^z, ^{, ^|, ^}, and ^~ correspond to the values $00, $01...$1A,
     $1B, $1C, $1D, and $1E.

     5.3 MULTIDIMENSIONAL ARRAYS (Advanced)

     Arrays can have more than one dimension. A multidimensional array has
     multiple subscripts to select an individual element.

     A 2-dimensional array can be visualized as a grid of rows and columns
     that contain data. For example, a 3-by-5 array named "Data" would look
     like this:

           ÚÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄ¿
           ³ Data(0,0) ³ Data(0,1) ³ Data(0,2) ³ Data(0,3) ³ Data(0,4) ³
           ÃÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄ´
           ³ Data(1,0) ³ Data(1,1) ³ Data(1,2) ³ Data(1,3) ³ Data(1,4) ³
           ÃÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄ´
           ³ Data(2,0) ³ Data(2,1) ³ Data(2,2) ³ Data(2,3) ³ Data(2,4) ³
           ÀÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÙ

     Notice that the order of the subscripts is row followed by column. The
     rows increase going down, and the columns increase going to the right.
     (You can reverse this order and think of a 3-by-5 array as having 3
     columns and 5 rows, but this is not the order used by matrices and
     constant arrays.) This kind of data structure is used for many things,
     such as board games, matrix calculations, and pixel coordinates.

     The 2-dimensional array shown above can be set up and used as follows:

             integer Data(3,5), I, J;
             begin
             for I:= 0, 3-1 do
                 for J:= 0, 5-1 do
                     Data(I,J):= 0;
             Data(1,3):= 42;
             . . .

     More dimensions can be easily added. Here is a 3-by-5-by-8 array, this
     time using a real variable:



     60     5: ARRAYS

             real    Data(3,5,8);
             int     I, J, K;
             begin
             for I:= 0, 3-1 do
                 for J:= 0, 5-1 do
                     for K:= 0, 8-1 do
                         Data(I,J,K):= 0.0;
             Data(1,3,7):= 42.0;
             . . .

     Character arrays can also be multidimensional. For example:

             character String(100,80);

     This reserves space for 100 strings that are each 80 bytes long. Note
     that the number of bytes is specified by the last dimension. Single bytes
     are accessed using a subscript:

             String(I,J):= ^A;
             ChOut(0, String(99,3));

     5.4 COMPLEX DATA STRUCTURES (Advanced)

     XPL0 implements arrays in a flexible way that lets you build complex data
     structures that are not limited to the uniform arrays that have been
     discussed so far.

     Each element in an integer array is a 16-bit value. This value can be an
     integer or the address of another integer array. When a 2-dimensional
     array is declared, XPL0 reserves the space and sets up pointers to the
     first and second dimensions. Here is how a 4-by-3 array works:

       integer Frog(4,3);

      ÚÄÄÄÄÄÄÄÄÄÄÄ¿    ÚÄÄÄÄÄÄÄÄÄÄÄ¿    ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
      ³   Frog   ÄÅÄÄÄ>³  Frog(0) ÄÅÄÄÄ>³ Frog(0,0) ³ Frog(0,1) ³ Frog(0,2) ³
      ÀÄÄÄÄÄÄÄÄÄÄÄÙ    ³ÄÄÄÄÄÄÄÄÄÄÄ³    ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
                       ³  Frog(1) ÄÅÄ¿  ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
                       ³ÄÄÄÄÄÄÄÄÄÄÄ³ ÀÄ>³ Frog(1,0) ³ Frog(1,1) ³ Frog(1,2) ³
                       ³  Frog(2) ÄÅÄ¿  ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
                       ³ÄÄÄÄÄÄÄÄÄÄÄ³ ³  ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
                       ³  Frog(3) ÄÅ¿ÀÄ>³ Frog(2,0) ³ Frog(2,1) ³ Frog(2,2) ³
                       ÀÄÄÄÄÄÄÄÄÄÄÄÙ³   ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
                                    ³   ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
                                    ÀÄÄ>³ Frog(3,0) ³ Frog(3,1) ³ Frog(3,2) ³
                                        ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ



                                                              5: ARRAYS     61

     Like the variable Frog, the elements Frog(0) through Frog(3) contain
     addresses that point to arrays. These arrays are the second dimension of
     the original array, Frog.

     Normally an element of the array Frog would be accessed like this:

             I:= Frog(1,2);

     But note that this is equivalent to these two steps:

             I:= Frog(1);
             I:= I(2);

     When XPL0 sets up a multidimensional array, it must be uniform. That is,
     the rows must all be the same length. But you can set up an array
     yourself and make it any shape you want. The above 2-dimensional array
     can be set up as follows:

             integer Frog, I;
             begin
             Frog:= Reserve(4*2);
             for I:= 0, 4-1 do Frog(I):= Reserve(3*2);
             . . .

     The Reserve intrinsic reserves the specified number of bytes and returns
     the starting address of the reserved memory space. The first statement
     reserves eight bytes of memory (four integers) and stores the address of
     this memory space into Frog. Thus the pointer to the first dimension is
     set. The second statement does the same thing but reserves three integers
     for each of the four elements in the first dimension of the array.

     You could make the first row of the second dimension larger than the
     others by adding a statement like this:

             Frog(0):= Reserve(100);

     Or you could add a third dimension to one of the elements in a row with a
     statement like this:

             Frog(1,1):= Reserve(17);

     Using the Reserve intrinsic, you can make linked lists; you can make
     trees; you can make any shape data structure you want.



     62     5: ARRAYS

     Character arrays and arrays containing real values are set up similar to
     integer arrays. The only difference for a character array is that the
     number of bytes is reserved in the last dimension rather than the number
     of integers (bytes * 2). For example:

             character Frog(4,3);

     is equivalent to:

             character Frog;
             int       I;
             begin
             Frog:= Reserve(4*2);
             for I:= 0, 4-1 do Frog(I):= Reserve(3);

     Setting up real arrays uses the intrinsic RlRes instead of Reserve. The
     argument for RlRes (an integer) reserves enough memory to hold a real
     number instead of a byte. A 20-element array would use RlRes(20). For
     example:

             real Frog(4,3);

     is equivalent to:

             real Frog;
             int  I;
             begin
             Frog:= RlRes(4);
             for I:= 0, 4-1 do Frog(I):= RlRes(3);

     Be careful where you put calls to Reserve and RlRes. Note that the
     Reserve in the "for" loop reserves more memory each time it's called.
     Normally reserves are made at the beginning of a procedure to set up a
     data structure used by the procedure.

     Reserved space is allocated dynamically (like any local variable or array
     space). This means that when a procedure that calls Reserve (or RlRes)
     returns, the allocated space is released so that other routines can use
     it. If the procedure is called again, the space is allocated again, but
     usually the former contents are gone.

     A common mistake is to reserve a data structure and use it outside the
     scope of the procedure that reserves it. A data structure should be
     reserved in the same procedure that declares the name of the structure.
     If the name is a global variable then the reserve must be done in the
     main procedure. Do not call an initialization procedure to reserve this
     space because the space goes away when the initialization procedure
     returns.



                                                              5: ARRAYS     63

     5.5 CONSTANT ARRAYS (Advanced)

     Sometimes what's needed is a fixed table of values. It's possible to
     assign values to each element of an array, but a better way is to use a
     constant array. Its general form is:

             [CONSTANT, CONSTANT, ... CONSTANT]

     For example:

             integer Data;
             begin
             Data:= [2, 22, 222, 2222, 22222];
             . . .

     This array is similar to a text string. The difference is that the
     elements are 16-bit integer constants instead of 8-bit ASCII characters.
     In this example, Data(2) contains the value 222. The assignment (:= )
     stores the address of the array into Data. The elements of a constant
     array can be used just like other array elements.

     Constant arrays can contain real numbers as well as integers and have
     multiple dimensions. However, reals and integers cannot both be used in a
     single array. Here is a 2-dimensional, 3-by-5 array:

             real Data;
             begin
             Data:= [[70.0, 70.1, 70.2, 70.3, 70.4],
                     [71.0, 71.1, 71.2, 71.3, 71.4],
                     [72.0, 72.1, 72.2, 72.3, 72.4]];
             . . .

     Data(0,0) contains 70.0, and Data(1,4) contains 71.4. Note that the rows
     are the first dimension.

     A constant array can contain other constant arrays and text strings to
     make complex data structures. For example:

             Info:= [70, 71, [+720, ^A, [true, -7221] ], $73, "HELLO"];



     64     5: ARRAYS

     This array has a structure that looks like this:

         ÚÄÄÄÄÄÄÄÄÄÄ¿      ÚÄÄÄÄÄÄÄÄÄÄ¿       ÚÄÄÄÄÄÄÄÄÄÄ¿
         ³   Info  ÄÅÄÄÄÄ> ³    70    ³  ÚÄÄ> ³   +720   ³
         ÀÄÄÄÄÄÄÄÄÄÄÙ      ³ÄÄÄÄÄÄÄÄÄÄ³  ³    ³ÄÄÄÄÄÄÄÄÄÄ³
                           ³    71    ³  ³    ³    ^A    ³
                           ³ÄÄÄÄÄÄÄÄÄÄ³  ³    ³ÄÄÄÄÄÄÄÄÄÄ³      ÚÄÄÄÄÄÄÄÄÄÄ¿
                           ³     ÄÄÄÄÄÅÄÄÙ    ³     ÄÄÄÄÄÅÄÄÄÄ> ³   true   ³
                           ³ÄÄÄÄÄÄÄÄÄÄ³       ÀÄÄÄÄÄÄÄÄÄÄÙ      ³ÄÄÄÄÄÄÄÄÄÄ³
                           ³   $73    ³                         ³  -7221   ³
                           ³ÄÄÄÄÄÄÄÄÄÄ³       ÚÄÄÄÄÄÄ¿          ÀÄÄÄÄÄÄÄÄÄÄÙ
                           ³     ÄÄÄÄÄÅÄÄÄÄÄ> ³  ^H  ³
                           ÀÄÄÄÄÄÄÄÄÄÄÙ       ³ÄÄÄÄÄÄ³
                                              ³  ^E  ³
                                              ³ÄÄÄÄÄÄ³
                                              ³  ^L  ³
                                              ³ÄÄÄÄÄÄ³
                                              ³  ^L  ³
                                              ³ÄÄÄÄÄÄ³
                                              ³^O+$80³
                                              ÀÄÄÄÄÄÄÙ

     Here, Info(0) contains 70, Info(2,0) contains 720, and Info(2,2,0)
     contains "true". Also, after we store Info(4) into a character variable,
     we can use it as a character array and access the individual bytes in the
     string "HELLO". For example:

             character C;
             integer   Info;
             begin
             Info:= [70, 71, [+720, ^A, [true, -7221] ], $73, "HELLO"];
             C:= Info(4);
             ChOut(0, C(1));
             . . .

     This displays the character "E", and

             Text(0, Info(4));

     displays the string "HELLO".

     Variables local to a procedure normally don't retain their values from
     the previous time that the procedure was called. Usually this doesn't
     matter, but occasionally the value of a variable is needed the next time
     the procedure is called. A simple way to code this is to make the vari-
     able global. However, if the variable is not used by any other procedure,
     it's best to keep the procedure modular by keeping its variables local.
     Constant arrays can be used to do this. (Other languages call these
     "static variables".) Here's an example:



                                                              5: ARRAYS     65

             proc    MakeNumber;
             int     Counter;
             begin
             Number:= Ran(100) + 1;
             Counter:= [0];
             Counter(0):= Counter(0) + 1;
             if Counter(0) >= 3 then
                     begin
                     Number:= 50;
                     Counter(0):= 0;         \Reset the counter
                     end;
             end;

     This procedure sets Number (a global) to 50 every third time it's called.
     Counter could be declared and initialized in the main procedure, but this
     way it's kept local to the only procedure that uses it. This makes the
     overall program more modular and less confusing.

     5.6 EXAMPLE PROGRAM: RECORDS (Advanced)

     Because of the flexibility of XPL0 arrays, record structures can be made.
     A record structure is an array that contains elements of different types.
     In XPL0 integers and reals cannot both appear in a single array. However,
     integer values can be used to represent such diverse things as numbers,
     addresses of strings, and elements of a set.

     Here is a program that combines the concept of sets with constant arrays
     and complex data structures.

             \RECORDS.XPL
             code    ChOut=8, CrLf=9, Text=12;

             int     File, Person;

             def \Person\    Name, SS, Sex, Birth, Dependents, Status;

             def \Name\      Last, First;
             def \Sex\       Male, Female;
             def \Birth\     Month, Day, Year;
             def \Status\    Married, Widowed, Divorced, Single;

             def \Month\     Jan=1, Feb, Mar, Apr, May, Jun,
                             Jul,   Aug, Sep, Oct, Nov, Dec;



     66     5: ARRAYS

             begin   \Main
             File:=[ [ ["WIRTH", "NIKLAUS"],
                        "701-25-9412",
                        Male,
                        [Aug, 30, 1944],
                        4,
                        Married              ],

                     [ ["BOREAL", "LENNY"],
                        "521-54-1657",
                        Male,
                        [Oct, 27, 1948],
                        1,
                        Single               ],

                     [ ["MUPPET", "PIGGY"],
                        "345-51-7734",
                        Female,
                        [Feb, 25, 1955],
                        1,
                        Single               ] ];

             for Person:= 0, 2 do
                 if File(Person,Sex)=Female & File(Person,Status)=Single then
                     begin
                     Text(0, "MISS ");
                     Text(0, File(Person,Name,First));
                     ChOut(0 ,^ );
                     Text(0, File(Person,Name,Last));
                     CrLf(0);
                     end;
             end;    \Main

     This program scans File for nubile females (and old maids) and produces
     the following output:

             MISS PIGGY MUPPET

     The program begins by defining the elements of the set Person. The
     elements that describe Person are: Name, social security number (SS),
     Sex, date of Birth, number of Dependents, and marital Status. Some of
     these elements are in turn defined as consisting of sub-elements. Name,
     for instance, consists of a Last name and a First name.

     All these elements are mapped into the locations of the constant array
     called "File". The "def" declaration provides names for these locations
     (subscripts): Name=0, SS=1, Sex=2, etc. File consists of three major
     elements, or records, of "data type" Person.



                                                              5: ARRAYS     67

     5.7 ADDRESS OPERATOR (Advanced)

     The "address" operator gives the address where a variable is stored. It
     has the form:

             address VARIABLE

     When "address" is written in front of a variable name, the value is no
     longer the contents of the variable, but the address in memory where the
     variable contents are stored. Because variable space is dynamically
     allocated, this address is not determined until a program executes. The
     variable can be an integer, real, or character, and it can be an array
     with a subscript. The "address" of a real variable is a 16-bit integer.

     The "address" operation on a segment array (see: 5.9 Segment Arrays) is
     not supported because segment arrays do not have 16-bit addresses.

     "Address" is the reverse operation of subscripting an array name with
     zero. For example:

             integer Frog, Pointer;
             begin
             Pointer:= address Frog;
             if Pointer(0) = Frog then Text(0, "INVERSE OPERATORS");
             . . .

                     Pointer           Frog
                  ÚÄÄÄÄÄÄÄÄÄÄÄ¿    ÚÄÄÄÄÄÄÄÄÄÄÄ¿
                  ³      ÄÄÄÄÄÅÄÄÄ>³     ?     ³
                  ÀÄÄÄÄÄÄÄÄÄÄÄÙ    ÀÄÄÄÄÄÄÄÄÄÄÄÙ

     "INVERSE OPERATORS" is displayed despite the value contained in Frog
     because Pointer(0) and Frog both access the same memory location.

     The address operator can be used to solve a problem with multidimensional
     character arrays. Recall that a character array with a subscript always
     accesses a single byte. However, sometimes we want to access a 16-bit
     address. Look at this program:

             char    S;
             begin
             S:= ["one", "two", "three", "four"];
             ChOut(0, S(2,1));
             S(1,1):= ^W;
             Text(0, addr S(1,0));      \Caution: Text(0, S(1)); will not work
             end;



     68     5: ARRAYS

     When this runs, it displays:

             htWo

     Note that "addr S(1,0)" is used in the Text statement rather than "S(1)".
     This is because S(1) fetches a single byte rather than the entire word
     that holds the address of the string "tWo". Another solution would be to
     copy S into a temporary integer variable, for instance I, then I(1) would
     also fetch the desired address, but this is more awkward.

     5.8 RETURNING MULTIPLE VALUES (Advanced)

     An "address" operator can be used to return more than one value from a
     function. Values can always be returned by passing them through global
     variables, but a better way in some cases is to return them using
     pointers. For example:

             code    ChOut=8, CrLf=9, IntOut=11;
             int     Frog, Pig(11);
             int     Low1, High1, Low2, High2, I;

                     proc    MinMax(Array, Size, Min, Max);
                     \Returns the minimum and maximum values of the array
                     int     Array, Size, Min, Max;
                     int     I;
                     begin
                     Min(0):= Array(0);   Max(0):= Array(0);
                     for I:= 1, Size-1 do
                             begin
                             if Array(I) < Min(0) then Min(0):= Array(I);
                             if Array(I) > Max(0) then Max(0):= Array(I);
                             end;
                     end;    \MinMax

             begin   \Main
             Frog:= [16, 23, 127, -33, 0];
             MinMax(Frog, 5, addr High1, addr Low1);
             for I:= 0, 10 do Pig(I):= 2*I*I - 16*I + 20;
             MinMax(Pig, 11, addr High2, addr Low2);
             IntOut(0, High1);   ChOut(0, $09);   IntOut(0, Low1);   CrLf(0);
             IntOut(0, High2);   ChOut(0, $09);   IntOut(0, Low2);   CrLf(0);
             end;    \Main

     This program displays the following:

             -33     127
             -12     60



                                                              5: ARRAYS     69

     The program displays the minimum and maximum values for two arrays. The
     calls to MinMax pass the addresses of the High and Low variables, which
     get values returned to them. The MinMax procedure uses a zero subscript
     with Min and Max to access the original variables in the calling routine.
     Compare this to the normal way arguments are passed where only a value is
     passed to a procedure. This normal way of passing arguments is known as
     "call by value". What we've done here is what's known as "call by
     reference" (or "call by address").

     Here is another example of using an address operator to pass values to
     and from a procedure. This program converts rectangular coordinates to
     polar coordinates, and returns the two polar coordinates back to the
     calling procedure.

             code    CrLf=9;
             code real RlOut=48, Sqrt=53, ATan2=57;

             proc    Rect2Polar(X,Y,A,D);    \Return polar coordinates
             real    X,Y,A,D;
             begin
             A(0):= ATan2(Y,X);
             D(0):= Sqrt(X*X+Y*Y);
             end;    \Rect2Polar

             real    Ang, Dist;
             begin
             Rect2Polar(4.0, 3.0, @Ang, @Dist);
             RlOut(0, Ang);
             RlOut(0, Dist);
             CrLf(0);
             end;

     Note the use of "@" instead of "addr". The "addr" operator doesn't quite
     work in this situation because it returns an integer address, and what we
     need here are pointers to the real variables Ang and Dist. A real pointer
     is a 16-bit address, but it's packaged in a 64-bit value so it can be
     handled like a real. It's actually just a 16-bit integer with three more
     zero integers tacked on. The "@" works exactly the same way as "addr" on
     integer variables, but it returns a real pointer when used on real
     variables.

     When the above program runs, it displays (angle in radians):

                 0.64350    5.00000



     70     5: ARRAYS

     5.9 SEGMENT ARRAYS (Advanced)

     Segment arrays solve the problem of the limited 60K heap space. You can
     have arrays that approach one megabyte in size.

     The 8088 microprocessor used in the original IBM PC can address one
     megabyte of memory. Unfortunately, this memory is divided into 64K-byte
     blocks called segments. Memory is addressed by a combination of two
     16-bit values called a "segment" and an "offset". The value in a segment
     register is multiplied by 16 and added to the offset to give a 20-bit
     number that can address one megabyte. This method of accessing memory
     does not work well for high-level languages because each variable must be
     addressed using both a segment and an offset. This slows every memory
     access and complicates pointers.

     Other languages deal with this problem by using several different memory
     models. Each model addresses memory differently. For example, the "tiny
     memory model" is used by programs that run in less than 64K. In this
     case addressing is simple: The segment register is set once, and only the
     offset part of the address is used. If a program needs more than 64K, the
     "large memory model" might be chosen, which uses both a segment and an
     offset.

     The native versions of the XPL0 compilers (those that produce .EXE
     instead of .COM files) allow code up to one megabyte, and programs that
     use segment arrays can address up to one megabyte of data. Of course the
     actual memory space available is typically less than 640K, the size of
     conventional memory. If your program needs more memory, you can divide it
     into modules and use the Chain intrinsic to run a portion at a time. If
     your data requires more memory, you can use EMS (Expanded Memory Specifi-
     cation) BIOS interrupt $67 or XMS (eXtended Memory Specification)
     interrupt $15.

     Segment arrays are like other arrays except that they can reside in any
     segment of memory. They can be integer, real, or character arrays.
     Segment arrays are declared using the form:

             segment TYPE NAME(DIMENSION), ... NAME(DIMENSION);

     For example:

             seg int  Length, Angle, Depth;
             seg real Rain, Snow;
             seg char BitMask, OrMask, AndMask;

     Segment arrays are always 2-dimensional and are normally used with two
     subscripts. For example:

             Depth(X, Y):= 1530;



                                                              5: ARRAYS     71

     The first dimension contains a list of 16-bit "segment addresses". The
     second dimension contains a 16-bit offset. When an element of a segment
     array is accessed, the segment address and offset are combined to form a
     20-bit address. Since the microprocessor automatically combines segments
     and offsets, this operation is relatively fast.

     ALLOCATING MEMORY (Advanced)

     Segment arrays differ from normal arrays in the way they are reserved.
     Since segment arrays use memory outside the heap, size declarations
     (DIMENSIONS) and the Reserve intrinsic are not used for the second
     dimension. Instead, MAlloc, which stands for "memory allocation", is
     used. This intrinsic calls DOS and requests some memory. MAlloc allocates
     memory in 16-byte quantities called "paragraphs". For example, here's
     how to allocate 64000 bytes for a graphics image:

             segment char Pixel(1);
             int     I;
             begin
             Pixel(0):= MAlloc(4000);        \4000 paragraphs = 64000 bytes
             I:= 0;                          \(A "for" loop won't work here)
             repeat  Pixel(0, I):= 0;        \Clear the array
                     I:= I + 1;
             until I = 64*1000;
             . . .

     This provides a segment array that's 1 by 64000. Note that the first
     dimension is reserved like a normal integer array, and that integers, not
     bytes, are reserved. The second dimension uses MAlloc, which returns a
     segment address that points to the start of a 64000-byte block of memory.

     If we needed a 320K byte array, a similar process could be used:

             segment char Pixel(20);
             int     S, I;
             begin
             for S:= 0, 19 do
                     begin
                     Pixel(S):= MAlloc(1024);        \1024 * 16 = 16K bytes
                     for I:= 0, 16384-1 do Pixel(S, I):= 0;
                     end;
             . . .

     This provides a 20-by-16K array for a total of 320K bytes. Although you
     could make this a 16K-by-20 array, it's usually better to reserve the
     large dimension with MAlloc, since this makes better use of the limited
     (60K) heap space.



     72     5: ARRAYS

     Segment arrays also can be used for integer and real arrays. For example,
     here's how a 10-by-4K array of reals is set up:

             segment real Data(10);
             int     S, I;
             begin
             for S:= 0, 9 do
                     begin
                     Data(S):= MAlloc((4096*8)/16);
                     for I:= 0, 4096-1 do Data(S, I):= 0.0;
                     end;
             . . .

     In the MAlloc statement, 4096 is multiplied by 8 because there are eight
     bytes in a real number. Note that the total memory allocation is 4096 * 8
     * 10 = 320K. This is a large block of memory, and if you have other
     programs loaded or a limited amount of memory installed, you might not
     have enough for this array. If DOS is unable to allocate the requested
     memory, an "OUT OF MEMORY" run-time error occurs.

     The largest offset that can be used for each type of segment array is:

             seg char   $FFFF
             seg int    $7FFF
             seg real   $1FFF

     SHORT REALS (Advanced)

     To conserve memory, reals can also be stored in segment arrays in a
     4-byte short form. Short reals have a range of ñ1.2E-38 to ñ3.4E+38 with
     seven decimal digits of precision. Short reals are only used for storage;
     they are automatically converted to normal 8-byte reals when fetched. As
     a result, short reals can be used just like normal reals. Segment arrays
     of short reals are declared as:

             segment short NAME(DIMENSION);

     For example:

             segment short Data(10);
             int     S, I;
             begin
             for S:= 0, 9 do
                     begin
                     Data(S):= MAlloc((4096*4)/16);
                     for I:= 0, 4096-1 do Data(S, I):= 0.0;
                     end;
             . . .



                                                              5: ARRAYS     73

     RELEASING MEMORY (Advanced)

     A normal array dimensioned or reserved in a procedure only exists as long
     as the procedure is active. When the procedure returns, the memory used
     by the array is automatically released. However, a segment array that
     uses MAlloc does not release memory when the procedure returns. If the
     procedure is called a second time, more memory is allocated. The Release
     intrinsic is used to release memory allocated by MAlloc. It requires an
     argument that is the segment address returned by MAlloc. For example:

             proc    Demo;
             segment char Pixel(1);
             begin
             Pixel(0):= MAlloc(4000);
             . . .
             Release(Pixel(0));
             end;

     It is unnecessary to release memory that's allocated at the global level
     since the memory is automatically released when the program exits. If you
     release a block of memory that was not allocated by MAlloc, you get a
     run-time error. If you write beyond the end of an array, the memory
     control blocks used by DOS can be corrupted, and you can get a run-time
     error when you release the memory block. If this occurs, you can find the
     exact DOS error code by examining the registers in the array returned by
     GetReg. (See DOS call $21, function $49 for details.)

     DIRECTLY ACCESSING MEMORY (Advanced)

     A segment array can be used to directly access anything in the first
     megabyte of RAM. It can be used, for instance, to directly access the
     video memory, or the program segment prefix (PSP) set up by DOS, or the
     system interrupt vectors. Any segment address can be used, not just the
     one provided by MAlloc. Here is an example of a segment array used to
     clear the video text screen (for modes 0-3):

             seg int Video(1);
             int     I;
             begin   \Set up for bright white characters on a blue background
             Video(0):= $B800;
             for I:= 0, 2000-1 do Video(0, I):= $1F20;  \attribute:space char
             . . .



     74

                         ÚÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÂÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄ¿
                    ÄÄ>      ÚÄ¿     ³   ³   ÄÄÄÄÄÄÙ ÚÄ¿ ³
                         ³ ³ ³   ³ ÃÄÙ ³ ³ ÀÄÄÄÄÄÄÄÄÄÙ ³ ³
                         ³ ÀÄ´ ÄÄÅÄÙ ÚÄÁÄÁÄÄÄÄÄÄÄÄ ÚÄÄÄÙ ³
                         ³   ³ ÚÄÙ ÄÄ´ ÄÄÂÄ¿ ÄÄÂÄÄÄ´ ÄÄÂÄ´
                         ÃÄÙ ÀÄÙ ÄÄÄÄÁÄ¿ ³     ÀÄÄ ÀÄ¿ ³ ³
                         ³ ÄÄÄÄÄÄÂÄÄÄÂÄÙ ÃÄÄÄÅÄÄÄÂÄÂÄÙ ³ ³
                         ³ ÚÄ¿ ÄÄÙ     ÚÄÙ   ³     ³ ÄÄÙ ³
                         ³ ³ ÀÄÂÄÄÄÁÄÂÄÙ ÚÄÙ ³ ÀÄÄÄÁÄÂÄÄ ³
                         ³         ÚÄÙ ÚÄÅÄÄ ÃÄÄ ÚÄÄÄÙ   ³
                         ³ ÚÄÁÄÂÄÙ ³ ÚÄÙ ³ ÄÄÙ ÄÄÙ ÚÄÄÄÙ ³
                         ³ ³   ÀÄÄÄÙ ³ ÄÄÁÄÄ ÚÄÄÄÄÄÁÄÄÄÄÄ´
                         ³ ³ ÀÄÄÄÂÄÄÄÁÄÄÄÂÄÄÄÙ ÚÄÄÄÄÄÄÄ¿ ³
                         ³ ÃÄÄÄ¿   ÚÄÄÄÄ ³ ÄÄÄÄÁÄÄ   ÚÄÙ ³
                         ³ ³   ÃÄÂÄÙ ÄÄÄÄÅÄÂÄÄÄÄÄÂÄÁÄ´ ÄÄ´
                         ³   ³   ³ ÄÄÄÄÄÄÙ   ÄÄ¿     ÀÄÄ    ÄÄ>
                         ÀÄÄÄÁÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÁÄÄÄÄÄÙ



                                                                            75

                      6 :   I N P U T   A N D   O U T P U T

     Everything XPL0 can do is useless without a way to communicate with the
     outside world. Input and output (I/O) is done through intrinsics, most of
     which call I/O device drivers in DOS or BIOS.

     The fundamental I/O intrinsics are:

             variable:= ChIn(device) Input a character, or byte, from device
             ChOut(device, byte)     Output a byte to the device
             OpenI(device)           Make the device ready for input
             OpenO(device)           Make the device ready for output
             Close(device)           Close the device (flush output buffer)

     An input device, such as the keyboard, sends characters (or bytes) that
     are read in by ChIn. Each time ChIn is called, it returns with the next
     character. An output device, such as the monitor, receives characters (or
     bytes) that are sent by ChOut. ChOut sends a single character each time
     it's called. Some devices must be made ready, or "opened", before they
     can be used. For instance, a disk file has pointers that indicate where
     to start filling or emptying its buffer, and these pointers must be set
     to the beginning of the buffer. Bytes sent to an output file pass through
     an output buffer, and after the last byte has been sent, this buffer is
     "closed" so that any bytes remaining in it are written to the disk.

     There are other intrinsics that use the fundamental capabilities provided
     by ChIn and ChOut to input and output integers and reals. For example:

             variable:= IntIn(device)        Input an integer
             IntOut(device,expression)       Output an integer
             variable:= RlIn(device)         Input a real
             RlOut(device,expression)        Output a real

     IntIn and RlIn are similar to ChIn, but they input a number consisting of
     one or more digits instead of just a single character. If a series of
     numbers are typed on the keyboard and separated by spaces then each time
     IntIn(0) is called, it returns with the value of the next number. Any
     non-numeric character (except underline) is used to separate the numbers,
     such as space, comma, or a carriage return and line feed. If the numbers
     come from device 3, we have a numeric data file.



     76     6: INPUT AND OUTPUT

     Integers and reals are normally represented outside a program as strings
     of ASCII characters. For example, IntOut(0,35) converts the integer 35
     from its 16-bit binary form into an ASCII "3" character followed by an
     ASCII "5". Conversely, when numbers are input, strings of ASCII char-
     acters are converted into binary form.

     Unlike some other languages, XPL0 has simple output commands. The ad-
     vantage is that output can be formatted in a straightforward way. For
     example, when an integer is output, only the digits of the integer (and
     possibly a minus sign) are sent out. There are no "helpful" spaces or
     carriage returns sent that might not be wanted in some cases, and that
     might be confusing to eliminate. In XPL0 if you want formatting, you do
     it yourself.

     Intrinsics used for I/O specify a device number. Device numbers are
     assigned to physical devices as follows:

             DEVICE NUMBER    OUTPUT DEVICE    INPUT DEVICE
             ÄÄÄÄÄÄÄÄÄÄÄÄÄ    ÄÄÄÄÄÄÄÄÄÄÄÄÄ    ÄÄÄÄÄÄÄÄÄÄÄÄ
                  0           Monitor          Buffered Keyboard
                  1           Monitor          Unbuffered Keyboard
                  2           Printer             --
                  3           Disk File        Disk File
                  4           Serial Port      Serial Port
                  5           Printer          Printer Status
                  6           Monitor          Unbuffered keyboard
                  7           Null             Null
                  8           Buffer           Buffer

     Most intrinsics used for I/O call DOS and BIOS routines. You can learn
     more about how these intrinsics work by looking up these routines in a
     book such as "Advanced MS-DOS Programming" by Ray Duncan. This table
     shows the interrupt and function calls (in hex) used by each device:

             Device    OpenI   OpenO   ChIn    ChOut   Close
             ÄÄÄÄÄÄ    ÄÄÄÄÄ   ÄÄÄÄÄ   ÄÄÄÄ    ÄÄÄÄÄ   ÄÄÄÄÄ
               0       21 0C    --     21 0A   21 02    --
               1       16 01    --     21 08   10 0E    --
               2        --      --      --     21 05    --
               3       21 42   21 42   21 3F   21 40   21 40
               4        --      --     14 02   14 01    --
               5       17 01   17 01   17 02   17 00    --
               6        --     10 02   16 00   10 09*   --
               7        --      --      --      --      --
               8        *       *       *       *       --

             -- Does nothing; simply returns.
             *  Calls routines that are not in DOS or BIOS (see below).



                                                    6: INPUT AND OUTPUT     77

     6.0 DEVICE 0

     Output device 0 is the monitor. It displays ASCII characters and handles
     certain control characters such as tab, form feed (clears screen), bell,
     carriage return, line feed, and backspace. Text reaching the end of a
     line automatically wraps to the beginning of the next line. Text written
     beyond the bottom line scrolls the entire screen up one line. Tab stops
     are every eighth column. DOS interrupt $21 function $02 is called.

     Input device 0 is a buffered keyboard. Characters are echoed on the
     monitor as they are typed in, but the buffer holds them until the "Enter"
     (or Carriage Return) key is struck. This enables errors to be corrected,
     using the "Backspace" key (and other editing keys such as left arrow and
     F3) before the characters are sent to the program. The buffer holds up to
     128 characters including the carriage return ($0D) at the end. Typing an
     "Esc" deletes all the characters in the buffer (thus Esc cannot be
     entered as a character). Typing a control-C aborts the program. Typing a
     control-P turns printer echo on and off (strangely).

     Output and input can be redirected using the DOS commands ">" and "<" on
     the command line when starting your program. The "<" command is useful
     because it provides a way to make a type of batch file that works inside
     a program (.BAT files only perform DOS commands).

     OpenI(0) initializes the keyboard, which discards any characters that
     were previously struck and still residing in its buffers. It's a good
     idea to do an OpenI(0) before getting a reply to a critical question
     like: "Format Hard Drive?". OpenO(0) and Close(0) do nothing.

     6.1 DEVICE 1

     Device 1 is similar to device 0 for output, but it calls BIOS instead of
     DOS. This gives it the following differences: Form feeds and tabs are not
     handled, they are displayed as characters instead; output cannot be
     redirected with ">"; and attributes (such as color and flashing) already
     written to the screen are not changed to white characters on a black
     background.

     For input, keystrokes are not echoed on the monitor, although a flashing
     cursor is displayed. There is no buffer, so keystrokes are sent to the
     program as soon as they are struck. Of course, calling ChIn(1) waits
     until a key is struck. If a non-ASCII key is struck, such as "F1", a zero
     is returned. ChIn(1) must be called a second time to get the key's scan
     code (see: A.4: Keyboard Scan Codes). Typing a control-C aborts the
     program. [A "^C<CR><LF>" is echoed to the display even with TrapC(true)].
     Esc can be entered as a character. Input can be redirected from a file by
     typing "<" on the command line.

     OpenI(1) discards any pending keystrokes.



     78     6: INPUT AND OUTPUT

     6.2 DEVICE 2

     Device 2 is the printer (PRN or LPT1). If the printer is busy, ChOut(2)
     waits until the printer is ready to accept the character (there is no
     timeout). Output can be redirected to another printer port or to a serial
     port using the DOS "MODE" command. For example, to select LPT2 type:
     "MODE LPT2".

     Beware, if the printer is out of paper or powered off, an "Abort, Retry,
     Ignore?" error can occur. If the user types "A" for Abort, it aborts your
     program immediately, not giving it a chance to clean up such things as
     open output files (resulting in lost allocation units) or to restore text
     mode 3 from a graphics display. You can prevent this by changing DOS's
     critical-error-handler vector, interrupt $24, to point to your own
     routine; but an easier way is to use device 5 (see below).

     6.3 DEVICE 3

     Device 3 is a disk file. Opening, reading, writing, and closing device 3
     is more complicated than the other devices. The usual operations are:

             \Read an input file
             Hand:= FOpen("C:\DIR\FILENAME.EXT", 0); \Get handle for in file
             FSet(Hand, ^I);                         \Set device 3 to handle
             OpenI(3);                               \Initialize input buffer
             repeat until ChIn(3) = $1A;             \Read some characters
             FClose(Hand);                           \Close out this handle

             \Write an output file
             Hand:= FOpen("C:\DIR\FILENAME.EXT", 1); \Get handle for out file
             FSet(Hand, ^o);                         \Set device 3 to handle
             OpenO(3);                               \Initialize output buffer
             for Ch:= $20, $7E do ChOut(3, Ch);      \Write some characters
             ChOut(3, $1A);                          \Write end-of-file Ctrl-Z
             Close(3);                               \Flush output buffer
             FClose(Hand);                           \Close out this handle

     FOpen opens a file and returns a "handle", which is an integer used to
     refer to the file. FOpen has two arguments: the address of a string
     giving the name of the file; and the mode, which is either 0 for input or
     1 for output. The file name can include the drive and subdirectory path
     names. If these are omitted, the current drive and subdirectory are used.
     If you output to device 3 without opening a file, DOS sends this informa-
     tion to the monitor screen, and no error is detected.

     FSet assigns the handle to be used by device 3. It also selects a large
     or small buffer for input or output. The following modes can be selected:



                                                    6: INPUT AND OUTPUT     79

             ^i = Input using small buffer
             ^I = Input using large buffer
             ^o = Output using small buffer
             ^O = Output using large buffer

     The large buffers are faster than the small ones, but there are only two
     of them, one for input and one for output. Several files can be open
     simultaneously if the small buffers are used.

     OpenI(3) and OpenO(3) reset the file pointers to the beginning of the
     file. Close(3) flushes any characters that might be remaining in the
     large output buffer out to the disk file.

     FClose calls DOS interrupt $21 function $3E, which flushes all internal
     buffers associated with the file handle. If the file was created or
     changed then the time, date, and size are updated in the DOS directory.

     END OF FILE

     Character files are usually terminated by a control-Z ($1A). This is
     merely a programming aid since the file-handling intrinsics and DOS pay
     no attention to control-Z's. This enables them to handle any kind of data
     files (such as binary files), not just character files.

     Some character files are not terminated by a control-Z, so a control-Z is
     automatically generated if a program attempts to read beyond the end of
     the file. If the program attempts this a second time, a run-time I/O
     error occurs.

     When reading binary files, the program must know when to stop. It can
     get the size of the file from DOS (interrupt $21, function $4E), but an
     easier way is to use the error trapping intrinsics Trap (17) and GetErr
     (22) and read until an error is detected. If you use this method, note
     that an extra control-Z is returned at the end, and it is not part of
     the file.

     OPENING FILES FROM THE COMMAND LINE (Advanced)

     The command tail in the program segment prefix (PSP) can be used to
     specify input and output files. The PSP is 256 bytes of memory that's
     loaded at the beginning of an .EXE file. It contains useful information
     such as the command tail, which is the rest of the line typed after the
     program name when starting the program. For example, the following
     command line starts the program called LOWCASE and opens FILE1 for input
     and FILE2 for output:

             LOWCASE FILE1.TXT, FILE2.TXT



     80     6: INPUT AND OUTPUT

             \LOWCASE.XPL    01-AUG-2011
             \This copies a file, shifting all characters to lowercase.

             code    Reserve=3,      ChIn=7,         ChOut=8,        OpenI=13,
                     OpenO=14,       Close=15,       FSet=24,        FOpen=29,
                     FClose=32,      GetReg=35,      Blit=36;

             int     CpuReg,          \Register array from GetReg
                     HandIn, HandOut, \File handles
                     I;               \Scratch
             char    CmdTail;         \Copy of command tail

             begin
             CpuReg:= GetReg;                \Get DOS PSP and data segment
             CmdTail:= Reserve($80);         \Get copy of command tail
             Blit(CpuReg(11), $81, CpuReg(12), CmdTail, $7F);

             HandIn:= FOpen(CmdTail, 0);     \Open first file name for input
             FSet(HandIn, ^I);
             OpenI(3);

             loop for I:= 1, $7F do          \Scan to second file name
                     if CmdTail(I) = ^, then quit;

             HandOut:= FOpen(CmdTail+I+1, 1); \Open second file name for output
             FSet(HandOut, ^O);
             OpenO(3);

             repeat  I:= ChIn(3);            \Copy and shift to lowercase
                     if I>=^A & I<=^Z then I:= I !$20;
                     ChOut(3, I);
             until I = \EOF\ $1A;

             Close(3);
             FClose(HandIn);
             FClose(HandOut);
             end;

     A much simpler version of this program takes advantage of DOS's ability
     to redirect I/O devices. FILE1.TXT must be terminated with an EOF. This
     second version of LOWCASE is run like this:

             LOWCASE <FILE1.TXT >FILE2.TXT

             code    ChIn=7, ChOut=8;
             int     C;
             repeat  C:= ChIn(1);    \Device 1 doesn't buffer nor echo chars
                     if C>=^A & C<=^Z then C:= C+$20;
                     ChOut(0, C);    \Device 0 can be redirected to a file
             until   C=\EOF\$1A;



                                                    6: INPUT AND OUTPUT     81

     6.4 DEVICE 4

     Device 4 is the serial communications port. The baud rate etc. can be set
     from DOS using the "MODE" command. For example: "MODE COM1:9600,N,8,1"
     sets COM1 to 9600 baud, no parity, 8 data bits, and 1 stop bit. The high
     byte of the device number is used to specify ports other than COM1:

             COM1    $0004
             COM2    $0104
             COM3    $0204
             COM4    $0304

     The 25-pin RS-232 COM ports are configured as data terminal equipment
     (DTE). They send data out on pin 2 and receive data on pin 3. When data
     is sent, input pins 5 (CTS) and 6 (DSR) must be high, and output pins 4
     (RTS) and 20 (DTR) are driven high. When data is received, pin 6 (DSR)
     must be high, and pin 20 (DTR) is set high. To make this all work, it's
     often convenient to jumper pin 6 to 20 and pin 4 to 5. The program waits
     until these signals are correct (timeouts are not used).

     6.5 DEVICE 5

     Device 5 sends characters to the printer like device 2, but it's much
     faster because it calls BIOS routines instead of DOS routines. The faster
     speed is noticeable, for instance, when sending graphic images to a laser
     printer. A consequence of calling BIOS routines is that output cannot be
     redirected using the DOS "MODE" command. Also, there's no "Abort, Retry,
     Ignore?" error (which might be desirable). Output can be sent to printers
     other than LPT1 by using the high byte of the device number:

             LPT1    $0005
             LPT2    $0105
             LPT3    $0205

     6.6 DEVICE 6

     Output device 6 is similar to devices 0 and 1, but it provides colors and
     windows. The foreground and background colors used for characters can be
     defined using the Attrib intrinsic (69), and a window size and location
     can be defined using the SetWind intrinsic (70). Device 6 is faster than
     devices 0 and 1 for display modes 0 through 3, 7 and $13 because it
     writes directly to video memory. Output for the other display modes is
     done using BIOS interrupt $10, function $09.



     82     6: INPUT AND OUTPUT

     Here is a table showing how the different devices handle control char-
     acters on the monitor:

        DEVICE   BEL (07)   BS (08)   TAB (09)   LF (0A)   FF (0C)   CR (0D)
        ÄÄÄÄÄÄ   ÄÄÄÄÄÄÄÄ   ÄÄÄÄÄÄÄ   ÄÄÄÄÄÄÄÄ   ÄÄÄÄÄÄÄ   ÄÄÄÄÄÄÄ   ÄÄÄÄÄÄÄ
          0         x         x          x         x         x         x
          1         x         x          -         x         -         x
          6         -         -          -         x         -         x

     An "x" means that the control function is done, while "-" means that a
     character is displayed instead. Control characters not shown are all
     displayed as characters, including DEL ($7F). All of the extended char-
     acters ($80-FF) are displayed. ($00, $20 and $FF are displayed as space
     characters.)

     Input from device 6 is similar to device 1 in that keystrokes are sent to
     the program as soon as they are struck (there is no line buffer). It
     differs from device 1 in that keystrokes are echoed to the display. Also,
     typing a control-C (or control-Break) does not abort the program; it's
     handled like any other keystroke. If a non-ASCII key is struck, such as
     "F1", a zero is returned (and echoed--looks like a space character), but
     the scan code is not available. Use ChIn(1) to handle these special keys.

     OpenO(6) resets any window set up by SetWind to the size of the full
     screen, selects an attribute with white characters on a black background,
     enables normal scrolling and cursor movement, and moves the cursor to the
     upper-left corner of the screen.

     6.7 DEVICE 7

     Device 7 is the null device. It's used to discard unwanted output. For
     example, the compiler sends its output to a disk file, but if it detects
     an error, it diverts the output to the null device.

     Input from device 7 returns a control-Z (EOF).

     6.8 DEVICE 8

     Device 8 is a 256-byte circular buffer. It has a variety of uses. For
     example, the following routine displays the number in X, replacing the
     decimal point with a comma, which is the format used in some European
     countries. Note that a control-Z (EOF) is returned when reading beyond
     the last character written, and it's used to detect the end of the
     number.



                                                    6: INPUT AND OUTPUT     83

             OpenO(8);               \Start writing at the beginning of buffer
             RlOut(8, X);            \Write the number to the buffer
             OpenI(8);               \Start reading at the beginning of buffer
             loop    begin
                     Ch:= ChIn(8);               \Read character from buffer
                     if Ch = ^. then Ch:= ^,;    \Change decimal point
                     if Ch = $1A then quit;      \Quit if EOF character
                     ChOut(0, Ch);               \Display the character
                     end;

     OpenO(8) and OpenI(8) reset their respective output and input pointers to
     the start of the buffer.

     When a program starts, any characters entered on the command line after
     the program name are copied into device 8's buffer. This provides a
     convenient way to pass information to a program, such as file names or
     numeric values.



     84

     APPENDIX

                          A . 0 :   I N T R I N S I C S

     Here is a list of the intrinsics in both numeric and alphabetic order:

     code    Abs=0,          Ran=1,          Rem=2,          Reserve=3,
             Swap=4,         Extend=5,       Restart=6,      ChIn=7,
             ChOut=8,        CrLf=9,         IntIn=10,       IntOut=11,
             Text=12,        OpenI=13,       OpenO=14,       Close=15,
             Abort=16,       Trap=17,        Free=18,        Rerun=19,
             GetHp=20,       SetHp=21,       GetErr=22,      Cursor=23,
             FSet=24,        SetRun=25,      HexIn=26,       HexOut=27,
             Chain=28,       FOpen=29,       Write=30,       Read=31,
             FClose=32,      ChkKey=33,      SoftInt=34,     GetReg=35,
             Blit=36,        Peek=37,        Poke=38,        Sound=39,
             Clear=40,       Point=41,       Line=42,        Move=43,
             ReadPix=44,     SetVid=45       Fix=50,         POut=64,
             PIn=65,         IntRet=66,      ExtJmp=67,      ExtCal=68,
             Attrib=69,      SetWind=70,     RawText=71,     Hilight=72,
             MAlloc=73,      Release=74,     TrapC=75,       TestC=76,
             Equip=77,       Shrink=78,      RanSeed=79,     Irq=80;
     code real
             RlRes=46,       RlIn=47,        RlOut=48,       Float=49,
             RlAbs=51,       Format=52,
             Sqrt=53,        Ln=54,          Exp=55,         Sin=56,
             ATan2=57,       Mod=58,         Log=59,         Cos=60,
             Tan=61,         ASin=62,        ACos=63;

                                 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

             Abort=16        Abs=0           ACos=63         ASin=62
             ATan2=57        Attrib=69       Blit=36         Chain=28
             ChIn=7          ChkKey=33       ChOut=8         Clear=40
             Close=15        Cos=60          CrLf=9          Cursor=23
             Equip=77        Exp=55          ExtCal=68       Extend=5
             ExtJmp=67       FClose=32       Fix=50          Float=49
             FOpen=29        Format=52       Free=18         FSet=24
             GetErr=22       GetHp=20        GetReg=35       HexIn=26
             HexOut=27       Hilight=72      IntIn=10        IntOut=11
             IntRet=66       Irq=80          Line=42         Ln=54
             Log=59          MAlloc=73       Mod=58          Move=43
             OpenI=13        OpenO=14        Peek=37         PIn=65
             Point=41        Poke=38         POut=64         Ran=1
             RanSeed=79      RawText=71      Read=31         ReadPix=44
             Release=74      Rem=2           Rerun=19        Reserve=3
             Restart=6       RlAbs=51        RlIn=47         RlOut=48
             RlRes=46        SetHp=21        SetRun=25       SetVid=45
             SetWind=70      Shrink=78       Sin=56          SoftInt=34
             Sound=39        Sqrt=53         Swap=4          Tan=61
             TestC=76        Text=12         Trap=17         TrapC=75
             Write=30



                                                        A.0: INTRINSICS     85

     This list has evolved over several years. The result is that the
     intrinsics tend to be grouped, with the fundamental ones first. For
     instance, intrinsics 40 through 45 all pertain to graphics.

     In the descriptions that follow, each heading shows the intrinsic's
     number and an example call. An assignment such as "variable:=" indicates
     that the intrinsic is a function that returns a value. All of the values
     and arguments are integers unless "real" is shown.

     0: variable:= Abs(value);

     This intrinsic returns the absolute value of the argument. If the value
     is negative, the sign is removed. For example:

             X:= Abs(X);

     WARNING: There's one exception:

             Abs(-32768) = -32768, or Abs($8000) = $8000

     A faster way to get the absolute value is to use the "abs" command word.
     It's available in the native versions but not in the interpreted version.
     This lowercase "abs" works for both integers and reals.

     1: variable:= Ran(value);

     This intrinsic returns a random number between zero and the argument
     minus one. For example:

             X:= Ran(100);           \Range is 0 through 99
             X:= Ran(0);             \Resets seed for a repeatable sequence
             X:= Ran(-4);            \Randomizes then returns Ran(4)

     The random number generator produces a repeatable sequence of random
     numbers from a particular seed. Each time a program starts, this seed is
     "randomized" using a counter that's incremented, about 18 times per
     second, by the system timer.

     2: variable:= Rem(expression);

     This intrinsic is used with integer division. It returns the value of the
     remainder of the division in the argument expression. If a zero argument
     is used, the intrinsic returns the remainder of the last division
     performed. For example:

             X:= Rem(7/3);           \X gets 1
             Y:= Rem(0);             \Y gets 1
             Z:= Rem(-18/-5);        \Z gets -3



     86     A.0: INTRINSICS

     The remainder gets the sign of the dividend (numerator), which is not
     necessarily the same sign as the quotient. The command word "rem", which
     is significantly faster and available in the native compilers, can be
     used instead of calling the Rem intrinsic.

     3: address:= Reserve(value);

     This intrinsic sets aside some memory space, which is usually used for an
     array, and returns the starting address of this space. The argument
     specifies the number of bytes to be reserved. For example:

             Data:= Reserve(1000);   \1000 bytes or 500 integers

     Space reserved in a procedure is released when the procedure returns.

     4: variable:= Swap(value);

     This intrinsic returns the value obtained by swapping the bytes of the
     argument. For example:

             X:= Swap($1234);        \X gets $3412

     The command word "swap", which is significantly faster and available in
     the native compilers, can be used instead of calling this intrinsic.

     5: variable:= Extend(value);

     This intrinsic extends the sign bit of the low byte to a 16-bit integer.
     It's useful when fetching signed numbers from a character array. For
     example:

             X:= Extend($FD);        \X gets $FFFD (= -3)
             X:= Extend(3);          \X gets $0003

     The command word "extend", which is significantly faster and available in
     the native compilers, can be used instead of calling this intrinsic.

     6: Restart;

     This intrinsic immediately terminates execution of the program, sets the
     Rerun flag to "true", and restarts the program from the beginning. This
     intrinsic is rarely used. Sometimes when procedure calls are nested many



                                                        A.0: INTRINSICS     87

     levels down and an error condition is detected that a high-level pro-
     cedure must handle, it's easier to start the program over than to pass
     the error indication back through many levels of procedure calls. See
     intrinsics Rerun (19) and SetRun (25).

     7: variable:= ChIn(device);

     This intrinsic reads in one byte from the specified input device. The
     byte is usually an ASCII character (hence: CHaracter IN), but it can be
     any 8-bit value. After the character is read in, ChIn is ready to read
     the next character. For example:

             X:= ChIn(0);            \Get byte from keyboard buffer

     8: ChOut(device, byte);

     This intrinsic sends a byte to the specified output device. For example:

             ChOut(0, ^=);           \Display "=" on the monitor
             ChOut(3, $FF);          \Send $FF to the output file

     9: CrLf(device);

     This intrinsic sends a carriage return ($0D) and line feed ($0A) to the
     specified output device. It begins a new line.

     10: variable:= IntIn(device);

     This intrinsic gets a decimal integer from the specified input device.
     It converts the integer from ASCII digits into a 16-bit binary value.
     Integers should be in the range: -32768 through 32767. For example:

             X:= IntIn(0);           \Get an integer from the keyboard buffer

     After the integer is read in, IntIn is ready to read the next integer.
     Any leading non-numeric characters, such as spaces and commas, are
     skipped, and any underlines are ignored. This intrinsic does not return
     until an integer (or control-Z) is read. The integer must be terminated
     by a non-numeric character.



     88     A.0: INTRINSICS

     11: IntOut(device, value);

     This intrinsic sends a decimal integer to the specified output device.
     It converts the integer from its signed 16-bit binary value into ASCII
     digits. For example:

             IntOut(0, X);           \Display the value in X on the monitor

     12: Text(device, address);

     This intrinsic outputs an ASCII text string, beginning at the specified
     address, to the specified output device. For example:

             Text(0, "This is a string");
             String:= "HELLO";
             Text(2, String);        \Print HELLO on the printer

     13: OpenI(device);

     This intrinsic executes the initialization routine for the specified
     input device. For example:

             OpenI(0);               \Clear the keyboard buffer

     14: OpenO(device);

     This intrinsic executes the initialization routine for the specified
     output device. For example:

             OpenO(3);               \Get ready to write to the disk

     15: Close(device);

     This intrinsic executes the close routine for the specified output
     device. For example:

             Close(3);               \Flush output buffer to disk



                                                        A.0: INTRINSICS     89

     16: Abort;

     This intrinsic aborts the program. It does the same thing as the "exit"
     statement except that it cannot return a value. It is included here for
     compatibility with other versions of XPL0. New code should use "exit"
     instead.

     17: Trap(integer);

     This intrinsic determines which run-time errors stop the program and
     display error messages. The default is to trap all errors, but they can
     be individually disabled. The argument is an integer, each set bit of
     which enables one of these run-time errors:

         bit 0: Integer division by 0     bit 7: Real underflow out of range
             1: Out of memory space           8: Fix argument out of range
             2: I/O error                     9: Square root error
             3: Invalid opcode               10: Logarithm error
             4: Invalid intrinsic            11: Exponential error
             5: Real division by 0.0         12: --
             6: Real overflow                13: ATan2(0.0, 0.0)

     For example, sometimes you don't care if you divide by zero and you
     certainly don't want your program to stop if you do. Trap($FFFE) will
     disable this error trap, and the divide will give the best answer it can
     (32767).

     WARNING: These bit assignments are different than those used by the
     non-PC versions of XPL0, such as on the 6502 and 68000.

     18: variable:= Free;

     This intrinsic returns the number of bytes of available heap space. Since
     variables and arrays are dynamically allocated space, the number of bytes
     returned varies depending on where and when Free is called. The largest
     possible Reserve is usually this value minus a few hundred bytes of
     working space. For example:

             Buffer:= Reserve(Free-300);     \A big buffer

     WARNING: If the free space is greater than 32767 ($7FFF), the number
     returned will appear to be negative.



     90     A.0: INTRINSICS

     19: boolean:= Rerun;

     This intrinsic returns the value of the Rerun flag, either true or false.
     The Rerun flag is false when a program starts. It is set "true" by the
     intrinsic Restart (6), and it can be set "true" or "false" by the
     intrinsic SetRun (25). These intrinsics are rarely used.

     20: address:= GetHp;

     This intrinsic returns the current value of the heap pointer. GetHp does
     the same thing as Reserve(0). For example:

             X:= GetHp;

     This intrinsic is rarely used.

     21: SetHp(address);

     This intrinsic sets the heap pointer to the specified memory address.
     This intrinsic is very rarely used.

     22: integer:= GetErr;

     This intrinsic returns the number of the most recently detected un-
     trapped error. If this number is 0 then no error was detected. After
     returning the error number, GetErr is internally reset to 0, ready for
     the next call. See the Trap intrinsic (17). For example:

             if GetErr # 0 then Text(0, "TROUBLE!");

     When a program terminates, a run-time error message appears if the
     internal error number is not 0.

     23: Cursor(X, Y);

     This intrinsic sets the position of the cursor on the monitor screen.
     The next character output appears at this location. X is horizontal, 0
     through 79 (left to right--other screen dimensions are also supported),
     and Y is vertical, 0 through 24 (top to bottom). For example:

             Cursor(3, 4);           \Forth column, fifth row



                                                        A.0: INTRINSICS     91

     WARNING: After calling this intrinsic, tabs can stop in the wrong
     position.

     24: FSet(handle, mode);

     This intrinsic assigns the file handle that is to be used by device 3.
     "Handle" is normally gotten from FOpen (29). "Mode" is one of the
     following:

             ^i = Input using small buffer
             ^I = Input using large buffer
             ^o = Output using small buffer
             ^O = Output using large buffer

     There is only one large buffer for input and one large buffer for output,
     but several small buffers can be open at the same time. The large buffers
     hold 1024 bytes and are much faster than the small buffers, which hold a
     single byte each.

     25: SetRun(boolean);

     This intrinsic sets the Rerun flag directly. This intrinsic is rarely
     used. See intrinsics Restart (6) and Rerun (19).

     26: variable:= HexIn(device);

     This intrinsic gets a hex integer from the specified input device. Hex
     values should be in the range: $0000 through $FFFF. For example:

             X:= HexIn(0);           \Get hex value from keyboard buffer

     This intrinsic skips any leading non-hex characters until a hex character
     is found, thus the dollar sign is optional. Hex numbers are unsigned, and
     any minus sign is ignored. Any underlines in the hex number are also
     ignored. Hex digits are read until a non-hex character (or control-Z) is
     found, thus numbers must be terminated by a non-hex character, and this
     intrinsic will not return until a hex number is read. If more than four
     hex digits are read, only the last four are used.

     27: HexOut(device, value);

     This intrinsic outputs a hex integer to the specified output device. For
     example:

             HexOut(0, $a12);        \Displays: "0A12" on the monitor



     92     A.0: INTRINSICS

     28: Chain("drive:path\filename.ext");

     This intrinsic executes another program as a subroutine. The called
     program is specified by a string containing the file and path name. No
     wild cards (* or ?) are allowed, and the extension (.EXE or .COM) must
     be given. The string must be less than 80 characters long, and must be
     terminated by one of four methods (see 29: FOpen). For example:

             Chain("C:\WORK\XDEMO.EXE");

     When an XPL0 program begins, it returns unused memory to DOS. This memory
     can be used by a subprogram called by Chain. If there's not enough memory
     or if the execution fails, this intrinsic returns with the carry flag set
     and error information in the CPU register array (see 35: GetReg). If the
     memory allocation fails, the DOS function is $4A; and if the execution
     fails, the DOS function is $4B.

             CPU Array         No Error  Memory Error  Chain Error
             ÄÄÄÄÄÄÄÄÄ         ÄÄÄÄÄÄÄÄ  ÄÄÄÄÄÄÄÄÄÄÄÄ  ÄÄÄÄÄÄÄÄÄÄÄ
              7 -  Carry flag    false       true         true
             14 - DOS function     -         $4A          $4B

     If there's an error, the DOS return code (GetReg item 15) gives detailed
     information:

                     15 - DOS Return Code
                     ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
             Memory Error ($4A) $7 = Memory control blocks destroyed
                                $8 = Insufficient memory
                                $9 = Incorrect segment in ES

             Chain Error ($4B)  $1 = Invalid function
                                $2 = File not found
                                $5 = Access denied
                                $8 = Insufficient memory
                                $A = Environment invalid
                                $B = Format invalid

     Large blocks of data can be passed to and from the chained program
     through the environment block. Every program has an environment block
     that contains system information. Normally it contains text strings that
     specify things like the default path and batch file information. For
     example, if you type "PATH" at a DOS prompt, the information displayed
     comes from the environment block. If you don't care about this infor-
     mation, or if you save and restore it, you can use the environment block
     to transfer other information.

     The segment address of the environment block is specified at location $2C
     in the program segment prefix (PSP). The Chain intrinsic automatically



                                                        A.0: INTRINSICS     93

     passes the environment block address of the main program to the sub-
     program. By overwriting $2C with a segment address of your choosing
     before the Chain call, you can pass a large block of data to the sub-
     program. Since only the segment address is passed, the data must be
     aligned to a segment boundary. For example:

             \MAIN PROGRAM PASSING DATA TO SUBPROGRAM
             CpuReg:= GetReg;                \Get info array
             PspSeg:= CpuReg(11);            \Get PSP segment

             Data:= Reserve(1024+16);        \Reserve data block
             Data:= ((Data/16)+1)*16;        \Align block with segment

             ThisSeg:= CpuReg(12);           \Get current segment
             DSeg:= ThisSeg+(Data/16);       \Calculate data segment
             Poke(PspSeg, $2C, DSeg);        \Set environment block
             Poke(PspSeg, $2D, Swap(DSeg));

             Chain("FROG.EXE");

     The subprogram can read the segment address of the data block and, using
     the Blit intrinsic (36), copy the data into an array of its own. Up to
     32K of data can be transferred this way.

     29: handle:= FOpen("drive:path\filename.ext", mode);

     This intrinsic opens a file and returns its handle. The file is specified
     by a string containing the file name and an optional drive and path name.
     No wild cards (* or ?) are allowed. Any leading or trailing spaces are
     ignored. The string must be less than 80 characters long and must be
     terminated by one of four methods:

             - Bit 7 set on the last character
             - A zero byte after the last character
             - A carriage return after the last character
             - A comma after the last character

     "Mode" is 0 for read and 1 for write.

     FOpen is typically used with other intrinsics as follows:

             Hand:= FOpen("C:\WORK\FILENAME.EXT", 1);
             FSet(Hand, ^O);
             OpenO(3);



     94     A.0: INTRINSICS

     When a file is opened for writing, if it already exists, its contents
     are discarded; if it does not exist, a new one is created. If you send
     characters to device 3 without opening a file with FOpen, DOS sends
     them to the monitor screen and no error is detected. DOS interrupt $21
     function $3C is called for writing output files, and function $3D is
     called for reading input files. (See: 6.3 Device 3).

     30: Write(drive, sector, buffer, size);

     This intrinsic writes data from memory to disk. "Drive" is 0=A:, 1=B:
     2=C:, and so forth. "Sector" is the starting logical sector number.
     Logical sectors start at 0 (the boot sector). "Buffer" is the address of
     the data to write. "Size" is the number of sectors to write. There are
     512 bytes per logical sector (even on a hard drive in this situation).
     DOS interrupt $26 is called.

     WARNING: Writing to a hard drive (C:) is a very dangerous operation (in
     fact Windows XP will not let you do it).

     31: Read(drive, sector, buffer, size);

     This intrinsic is the counterpart to the Write intrinsic described above.

     32: FClose(handle);

     This intrinsic closes a file handle. All internal buffers associated with
     the file are flushed, and the handle is released for possible reuse. If
     the file was modified, the time, date, and size are updated in the
     directory. DOS interrupt $21 function $3E is called.

     When a handle is closed, it ceases to exist. If additional operations
     need to be made to the file a new handle must be obtained using FOpen
     (29).

     WARNING: If you close handle 0, which DOS uses for the console, your
     program cannot input from device 0, which is the keyboard.

     33: boolean:= ChkKey;

     This intrinsic returns a "true" if a key was struck on the keyboard.
     Interrupt $16 function $01 is called.



                                                        A.0: INTRINSICS     95

     34: SoftInt(interrupt);

     This intrinsic is used to call a DOS or BIOS "interrupt" routine. Values
     are passed to and from interrupt routines using the hardware registers of
     the processor. These values are accessed using the GetReg intrinsic (35).
     The following example uses SoftInt and GetReg to get the time of day:

             code    Swap=4, SoftInt=34, GetReg=35;
             int     Hour, Minute, Second;
             int     CpuReg;
             begin                           \Get system time
             CpuReg:= GetReg;                \Get copy of CPU registers
             CpuReg(0):= $2C00;              \Set register AH to $2C
             SoftInt($21);                   \Call DOS function
             Hour:= Swap(CpuReg(2)) & $FF;   \Read returned values
             Minute:= CpuReg(2) & $FF;
             Second:= Swap(CpuReg(3)) & $FF;
             end;

     DOS and BIOS provide many useful routines. These are documented in
     "Advanced MS-DOS Programming" by Ray Duncan.

     35: address:= GetReg;

     This intrinsic provides access to the hardware registers in the proces-
     sor. It returns the address of an integer array that contains a copy of
     these registers. Before SoftInt calls an interrupt routine, it copies the
     contents of this array into the hardware registers. After the interrupt
     routine returns, SoftInt copies the registers back into the array before
     returning to your program.

     The array also contains additional information. The state of the carry
     flag is returned to aid in error checking. DOS error codes are also
     returned, which enables more precise error messages than those given by
     the run-time error traps (22: GetErr).

     Some useful values are in the array when an XPL0 program is started by
     DOS. The array is arranged as follows:



     96     A.0: INTRINSICS

              INDEX   CONTENTS         VALUE SET BY DOS
              ÄÄÄÄÄ  ÄÄÄÄÄÄÄÄÄÄÄ     ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
                0    AX register
                1    BX register
                2    CX register
                3    DX register
                4    DI register
                5    SI register
                6    BP register

                7    Carry flag ("true" or "false")

                8    CS register     Points to program's code segment
                9    DS register     Points to program's PSP
               10    SS register
               11    ES register     Points to program's PSP

               12    Data segment    Points to program's data segment
               13    DOS interrupt   ($21, $25, $26)
               14    DOS function
               15    DOS return code

               16    Flags register

     Flags Register Bits:

             15 14 13 12 ³11 10  9  8 ³ 7  6  5  4 ³ 3  2  1  0
              0 NT IOPL  ³ O  D  I  T ³ S  Z  0  A ³ 0  P  1  C

                   NesTed                    Sign
                   I/O Privilege Level       Zero
                   Overflow                  Auxiliary carry
                   Direction                 Parity
                   Interrupt enable          Carry
                   Trap

     This array is also filled by the Chain intrinsic (28). This enables
     values to be passed between programs just like values are passed with
     interrupt routines.

     The run-time code copies the array into the processor's registers when
     starting intrinsics ExtJmp (67) and ExtCal (68), and it copies the
     registers back into the array when finishing the IntRet (66) intrinsic.

     36: Blit(source seg, source off, destination seg, destination off, size);

     This intrinsic quickly copies a block of memory from one location to
     another. The source and destination locations are given by segment and
     offset addresses. The blocks of memory can overlap. "Size" is the number
     of bytes to copy, which can be as much as 65535.



                                                        A.0: INTRINSICS     97

     37: variable:= Peek(segment, offset);

     This intrinsic fetches a byte using segment and offset addressing. It can
     fetch from any location in the first megabyte of memory.

     38: Poke(segment, offset, value);

     This is the counterpart to the Peek intrinsic. It can be used to write a
     byte to any location in the first megabyte of memory. For example, this
     writes directly to video memory and displays an "A" (assuming the video
     mode is 2 or 3):

             Poke($B800, 160, ^A);   \Display "A" at line 1 column 0

     39: Sound(volume, duration, period);

     This intrinsic sounds the speaker. "Volume" is zero for no sound and
     non-zero for full sound. "Duration" is seconds times 18.2. "Period" is
     1190000 divided by the desired frequency. This intrinsic can also be used
     as a time delay by setting "volume" to zero. For example:

             Sound(1, 18, 4542);     \One second of Middle C (262 Hz)

     40: Clear;

     This intrinsic clears the screen for either graphics or text modes. The
     pen position for a graphics line is set to the upper-left corner (0,0).
     For text modes the cursor is set to the upper-left corner.

     41: Point(X, Y, color);

     When in a graphics mode, this intrinsic plots a point (pixel) located at
     the X and Y coordinates. The upper-left corner of the display is
     coordinate 0,0. X increases to the right, and Y increases downward. The
     ranges of X, Y, and "color" vary with the video mode (see 45: SetVid). If
     the mode has 16 colors, they are the foreground colors shown for the
     Attrib intrinsic (69). If bit seven of "color" is set, the low four bits
     of "color" are exclusive-ored with the pixel on the screen. If the mode
     has 256 colors, there is no exclusive-or feature. The colors can be
     adjusted using several subfunctions of BIOS interrupt $10 function $10.



     98     A.0: INTRINSICS

     42: Line(X, Y, color);

     This intrinsic draws a straight line from the last point plotted (or
     moved to with the Move intrinsic) to the specified X and Y coordinates.
     "Color" is the same as for Point (41), but bits 8 through 15 are used to
     specify various patterns of dotted and dashed lines. Pixels are not drawn
     at locations corresponding to set bits. For example, to draw a line with
     widely space dots, "color" could be $7F01. Horizontal lines are drawn
     much faster than other lines. This can be exploited when filling areas.
     For example:

             Move(0, 0);                     \Set the start of the line
             Line(160, 100, 1);              \Draw a solid blue line
             Line(319, 199, $AA04);          \Continue with a dotted red line

     43: Move(X, Y);

     This intrinsic is used to set the beginning of a line.

     44: color:= ReadPix(X, Y);

     This intrinsic returns the color of the pixel (point) at the specified
     coordinates.

     45: SetVid(mode);

     This intrinsic sets the video display mode. It also clears the screen
     (unless bit 7 of "mode" is set) and reinitializes the colors and fonts to
     their defaults. The text cursor and line pen position are set to the
     upper-left corner.

     Here is an example of a graphics program that plots a sine wave:

             code ChIn=7, Point=41, Line=42, Move=43, SetVid=45, Fix=50;
             code real Float=49, Sin=56;
             int X;
             begin
             SetVid($12);                            \640x480x16 colors (VGA)
             Move(320, 0);   Line(320, 479, 1);      \Draw axes in blue
             Move(0, 240);   Line(639, 240, 1);
             for X:= 0, 639 do                       \Plot in light red
                     Point(X, 240 - Fix(180.0 *Sin(Float(X-320) /60.0)), $C);
             X:= ChIn(1);                            \Wait for keystroke
             SetVid(3);                              \Restore text mode
             end;



                                                        A.0: INTRINSICS     99

             MODE RESOLUTION COLORS  TYPE    ADDRESS  MDA CGA EGA MCGA VGA
             ÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄ  ÄÄÄÄ    ÄÄÄÄÄÄÄ  ÄÄÄ ÄÄÄ ÄÄÄ ÄÄÄÄ ÄÄÄ
             $00    40x25      16    text    $B8000        x   x    x   x
                    color burst off
             $01    40x25      16    text    $B8000        x   x    x   x
             $02    80x25      16    text    $B8000        x   x    x   x
                    color burst off
             $03    80x25      16    text    $B8000        x   x    x   x

             $04    320x200     4    graph   $B8000        x   x    x   x
             $05    320x200     4    graph   $B8000        x   x    x   x
                    color burst off
             $06    640x200     2    graph   $B8000        x   x    x   x
             $07    80x25       2    text    $B0000    x       x        x

             $08    160x200    16    graph           PC JR
             $09    320x200    16    graph           PC JR
             $0A    640x200     4    graph           PC JR
             $0B                                     EGA BIOS
             $0C                                     EGA BIOS

             $0D    320x200    16    graph   $A0000            x        x
             $0E    640x200    16    graph   $A0000            x        x
             $0F    640x350     2    graph   $A0000           64K       x
             $10    640x350    16    graph   $A0000          128K       x

             $11    640x480     2    graph   $A0000                 x   x
             $12    640x480    16    graph   $A0000                     x
             $13    320x200   256    graph   $A0000                 x   x

             $6A    800x600    16    graph   $A0000  VESA

     Characters can be displayed in graphics as well as text modes.

     46: real:= RlRes(integer);

     This intrinsic reserves space for real arrays. RlRes(3) reserves enough
     memory to hold three real numbers. For example:

             Array:= RlRes(3);      \Reserve elements 0 through 2

     47: real:= RlIn(device);

     This intrinsic gets a real number from the specified input device. It
     converts the number from ASCII digits into binary form. After a number is
     read in, RlIn is ready to read the next number. Any leading non-numeric
     characters, such as spaces and commas, are skipped, and any underlines



     100     A.0: INTRINSICS

     in the number are ignored. This intrinsic does not return until a number
     (or control-Z) is read, thus the number must be terminated by a non-
     numeric character. For example:

             Array(2):= RlIn(0);     \Get real number from buffered keyboard

     48: RlOut(device, real);

     This intrinsic outputs a real number to the specified device. It converts
     the real number from its binary form into ASCII digits. For example:

             RlOut(2, 3600.0*24.0*365.25);   \Print seconds in a year

     The number of decimal places shown (etc.) can be specified by the Format
     intrinsic (52).

     49: real:= Float(integer);

     This intrinsic converts an integer into its equivalent real value. (See:
     2.1 Mixed Mode.) For example:

             RlOut(0, (Float(35));   \Display "35.00000"

     50: integer:= Fix(real);

     This intrinsic rounds a real to its nearest integer value. (See: 2.1
     Mixed Mode.) For example:

             IntOut(0, Fix(13.002)); \Display "13"

     Converting a value outside the range -65535.0 through 65535.0 causes a
     fix overflow run-time error. (It's possibly useful to be able to get an
     unsigned result.)

     51: real:= RlAbs(real);

     This intrinsic takes the absolute value of a real number. For example:

             X:= RlAbs(X);           \Remove the minus sign from X

     A faster way to get the absolute value is to use the "abs" command word.
     It's available in the native versions but not in the interpreted version.
     This lowercase "abs" works for both integers and reals.



                                                       A.0: INTRINSICS     101

     52: Format(integer, integer);

     This intrinsic specifies the format of reals that RlOut (48) outputs.
     The first integer is the number of characters before the decimal point,
     including any minus sign; and the second integer specifies the number
     of characters after the decimal point. If the first integer is 0 then
     scientific notation is used instead. If the first integer is -1 (or any
     value less than zero) then engineering notation is used. For example:

             Format(5,2)  gives 12345.67
                                    3.14
                                -12345.67
             Format(0,1)  gives  1.2E+004
             Format(-1,4) gives   12.3457E+003

     One purpose of Format is to align decimal points. However, if the number
     is too large to fit in the designated space, all of the digits are still
     sent out, and the decimal point is not aligned. If the format is not
     specified then RlOut uses the default: Format(5,5). If the number of
     characters specified after the decimal point is 0 then a decimal point
     is not sent out.

     53: real:= Sqrt(real);

     This intrinsic returns the square root of the argument. If the argument
     is negative, a run-time error occurs. For example:

             Root2:= Sqrt(2.0);        \1.414213562

     54: real:= Ln(real);

     This intrinsic returns the natural logarithm (base e) of the argument.
     The argument must be > 0.0, otherwise a run-time error occurs.

     55: real:= Exp(real);

     This intrinsic computes the exponential function (e^X). This is the
     inverse operation of Ln.

     56: real:= Sin(real);

     This intrinsic computes the sine function. All of the trig functions use
     angles measured in radians. To convert from radians to degrees, multiply
     by 57.2957795 degrees/radian (= 180 deg/pi). To convert degrees to
     radians, divide by 57.2957795. For example:

             X:= Sin(30.0/57.2957795); \Sine of 30 degrees (=0.5)



     102     A.0: INTRINSICS

     57: real:= ATan2(real Y, real X);

     This intrinsic computes the arc-tangent in radians of Y divided by X. If
     the computed angle is in the range ñpi/2 (ñ90 degrees) then X can be 1.0.
     However, if an angle over the entire range of a circle (ñpi or ñ180ø) is
     to be computed then the signed values of the Y and X coordinates are
     used. This converts rectangular coordinates to polar coordinates. For
     example:

             Angle:= ATan2(0.5, 1.0);        \Angle:= ATan(0.5) (= 26.56505ø)
             Angle:= ATan2(13.0, -13.0);     \Angle:= 3/4 pi (= 135ø)
             Angle:= ATan2(-5.0, -5.0);      \Angle:= -3/4 pi (= -135ø)

     58: real:= Mod(real, real);

     This intrinsic computes the modulo function. This is the real counterpart
     to the Rem intrinsic (2). Mod(A, B) is defined as A modulo B, which is
     defined as A - Int(A/B) * B. Where Int(A/B) extracts the largest integer
     <= Abs(A/B) and attaches the sign of A/B (i.e. it truncates toward zero).
     For example:

             X:= Mod(10.2, 3.0);     \X:= 1.2
             X:= Mod(-10.2, 3.0);    \X:= -1.2
             X:= Mod(123.456, 1.0);  \Get the fractional part (0.456)

     59: real:= Log(real);

     This intrinsic computes the common logarithm function (base 10). The
     argument must be > 0.0, otherwise a run-time error occurs.

     60: real:= Cos(real);

     This intrinsic computes the cosine function. The argument is the angle in
     radians.

     61: real:= Tan(real);

     This intrinsic computes the tangent function. The argument is the angle
     in radians.



                                                       A.0: INTRINSICS     103

     62: real:= ASin(real);

     This intrinsic computes the arc-sine function in radians. It loses
     accuracy when arguments are very close to ñ1.0 because of an internal
     subtraction from 1.0.

     63: real:= ACos(real);

     This intrinsic computes the arc-cosine function in radians. It loses
     accuracy when arguments are very close to ñ1.0 because of an internal
     subtraction from 1.0.

     64: POut(value, port, size);

     This intrinsic writes to an output port. "Port" specifies the port
     address. "Value" is the value written. If "size" is 0 then eight bits are
     written; if "size" is not zero then 16 bits are written. A faster and
     more intuitive method to write a byte to a port is to use the command
     word "port" (see below).

     65: variable:= PIn(port, size);

     This intrinsic reads an input port. "Port" specifies the port address. If
     "size" is 0 then eight bits are read; if "size" is not zero then 16 bits
     are read. A faster and more intuitive method to read a byte from a port
     is to use the command word "port". For example:

             POut(PIn($61,0)&$FC, $61, 0);   \Disable speaker
             port($61):= port($61) & $FC;    \Disable speaker

     66: IntRet;

     This intrinsic executes an interrupt return (IRET) opcode. This enables
     an XPL0 program to be used as an interrupt service routine. Just before
     returning, the processor's registers are restored to the values they had
     when the XPL0 program was started (unless SoftInt was executed).

     67: ExtJmp(segment, offset);

     This intrinsic executes a far jump to an external routine. This is useful
     when XPL0 code is inserted in front of an existing interrupt service
     routine and control must be passed on to this routine. Just before
     jumping, the processor's registers are restored to the values they had
     when the XPL0 program was started (unless SoftInt was executed).



     104     A.0: INTRINSICS

     68: ExtCal(segment, offset);

     This intrinsic executes a far call to an external routine. The GetReg
     register array is loaded into the processor's registers just before this
     call is executed, and the processor's registers are saved into the GetReg
     array immediately after the call returns. This provides a way to pass
     arguments to and from the external routine.

     69: Attrib(colors);

     This intrinsic specifies the colors (attribute) used when sending
     characters to device 6. The high nibble of the argument sets the
     background color, and the low nibble sets the foreground color. For
     example, Attrib($17) displays white characters on a blue background.

                     BACKGROUND              FOREGROUND
                     ÄÄÄÄÄÄÄÄÄÄ              ÄÄÄÄÄÄÄÄÄÄ
                     $00: Black              $00: Black
                     $10: Blue               $01: Blue
                     $20: Green              $02: Green
                     $30: Cyan               $03: Cyan
                     $40: Red                $04: Red
                     $50: Magenta            $05: Magenta
                     $60: Brown              $06: Brown
                     $70: White              $07: White
                     $80: Flashing Black     $08: Gray
                     $90: Flashing Blue      $09: Light Blue
                     $A0: Flashing Green     $0A: Light Green
                     $B0: Flashing Cyan      $0B: Light Cyan
                     $C0: Flashing Red       $0C: Light Red
                     $D0: Flashing Magenta   $0D: Light Magenta
                     $E0: Flashing Brown     $0E: Yellow
                     $F0: Flashing White     $0F: Bright White

     On a monochrome display (mode 7) the attribute "colors" are as follows:

                      VGA                                HERCULES
                      ÄÄÄ                                ÄÄÄÄÄÄÄÄ
           $00:   No display (black)                 Same
           $01:   Underlined                 Same
           $07:   Normal                             Same
           $09:   Underlined intense                 Same
           $0F:   Intense                            Same
           $70:   Reverse (black on white)           Same
           $77:   No display (white)                 Normal
           $7F:   Intense on white                   Intense on black

           $81:   Flashing underlined                Same
           $87:   Flashing                           Same
           $89:   Flashing underlined intense        Same
           $8F:   Flashing intense                   Same
           $F0:   Flashing black on white            Same
           $FF:   Flashing intense on white          Flashing intense on black



                                                       A.0: INTRINSICS     105

     The underline is continuous on a Hercules display, is dashed on a VGA
     display, and is nonexistent on a Compaq portable.

     Attributes are handled a little differently when the display is in a
     graphics mode rather than a text mode. The graphics hardware cannot flash
     characters so bit 7 from the Attrib intrinsic is used to specify intense
     (bright) colors for the background instead. This gives 16 background
     colors identical to the 16 foreground colors. Characters with a black
     background (Attrib($0x)) are written almost twice as fast as characters
     with colored backgrounds. If the foreground color is the same as the
     background color and the color is not black (0) then the character is
     written by XORing it with the screen. This makes the background trans-
     parent. In other words, characters can be drawn on top of a pattern
     without a surrounding background box. If the character is XORed a second
     time, it's erased, and the original background pattern is restored.

     Graphics mode $13 is different because it has 256 colors. The high byte
     of the argument (Attrib($xx00)) sets the background color, and the low
     byte sets the foreground color. There is no XOR feature.

     OpenO(6) sets the attribute to white on black ($07) (and also sets the
     cursor to the upper-left corner of the display).

     70: SetWind(X0, Y0, X1, Y1, mode, fill);

     This intrinsic specifies the window used when sending characters out to
     device 6. X0, Y0 sets the upper-left corner of the window; and X1, Y1
     sets the lower-right corner.

     "Mode" specifies how the window behaves. The high byte controls the
     visible cursor:

             = 0: Visible cursor moves normally.

             # 0: Visible cursor does not move (but the invisible character
                  insertion point moves normally).

     The low byte of "mode" controls the text:

             0 = Scroll: Text scrolls up when the cursor reaches the bottom of
             the window, and an automatic CR and LF is done at the right edge.
             (Writing to the bottom-rightmost character cell scrolls.)

             1 = Wrap: Text does an automatic CR and LF at the right edge, but
             it wraps to the top of the window when it exceeds the bottom edge.

             2 = Clip: Text is clipped beyond the right edge and beyond the
             bottom of the window.



     106     A.0: INTRINSICS

     The visible cursor moves when sending a character out to device 0, even
     if visible cursor movement is turned off for device 6. Visible cursor
     movement can only be turned off for video modes 0, 1, 2, 3, and 7. When
     the visible cursor is off, text can be output about twice as fast.

     If the "fill" flag is "true", the window is erased and filled with the
     background color specified by Attrib (69). When in graphics video modes
     4, 5 and 6, the background is not filled with a color as you would expect
     but is instead filled with vertical stripes. If the "fill" flag is
     "false", the window is set up without changing any characters on the
     screen.

     Opening device 6 for output resets the window to the full screen size and
     enables normal scrolling and cursor movement.

     WARNING: The Cursor intrinsic (23) is not affected by the position of a
     window; it always uses the upper-left corner of the entire screen as
     position 0,0.

     71: RawText(device, address);

     This intrinsic is the same as the Text intrinsic except that strings are
     terminated by a space character with its most significant bit set ($A0).
     This enables the extended ASCII codes to be used. The terminating space
     is not sent out. For example:

             RawText(0, "ÉÍÍÍÍÍÍÍ» ");

     The normal Text intrinsic (12) can display strings containing extended
     ASCII characters if the command word "string" is used to specify zero-
     terminated strings. For example:

             string 0;
             Text(0, "ÉÍÍÍÍÍÍÍ»");
             RawText(0, "ÉÍÍÍÍÍÍÍ» ");       \will not work with string 0;

     72: Hilight(X0, Y0, X1, Y1, attribute);

     This intrinsic changes the colors in a specified area on the text screen
     without changing the characters. The area is defined by the corners of a
     rectangle. X0, Y0 is the upper-left corner, and X1, Y1 is the lower-right
     corner. "Attribute" defines the background and foreground colors (see 69:
     Attrib).

     Hilight is typically used to highlight selected menu items, but it can
     also be used to make such things as drop shadows for windows. If the
     foreground color is the same as the background color, characters are
     invisible (there is no XOR feature).



                                                       A.0: INTRINSICS     107

     73: segment address:= MAlloc(paragraphs);

     This intrinsic returns the starting segment address of a block of memory.
     (A segment address is a physical address divided by 16.) Memory is
     allocated in 16-byte quantities called "paragraphs". For example:

             Seg:= MAlloc(4000);     \Allocate 64000 bytes

     Unlike the Reserve intrinsic (3), MAlloc does not automatically release
     memory when a procedure returns. If MAlloc is used in a procedure and the
     procedure is repeatedly executed, more memory can be allocated each time
     (resulting in the infamous "memory leak" problem). If insufficient memory
     is available then run-time error 2: OUT OF MEMORY is trapped. Allocated
     memory is automatically released when a program terminates. DOS interrupt
     $21 function $48 is called.

     74: Release(segment address);

     This intrinsic deallocates a block of memory that was allocated by
     MAlloc. The segment address of the block is passed to indicate which
     block to deallocate. For example, this would deallocate the 64000 bytes
     allocated above:

             Release(Seg);

     75: TrapC(boolean);

     This intrinsic turns control-C trapping on and off. "True" is passed to
     turn on control-C trapping, which prevents the control-C and control-
     Break keys from aborting a program. Control-C trapping is normally off.
     Any change to the way control-C and control-Break are handled is restored
     when a program terminates.

     76: boolean:= TestC;

     When control-C trapping is on, TestC is used to determine if the control-
     C or control-Break keys were struck. If either one was then TestC returns
     "true".

     Each time the control-C or control-Break key is struck, a status flag is
     set. When TestC is called, it returns the state of this status flag and
     then resets it to "false".

     TestC can give unexpected results. A control-C is not checked for until
     some I/O is done through DOS or BIOS. Also, the keyboard hardware is
     buffered, and a control-C is not detected until it's actually read in.
     Control-Break, on the other hand, is detected immediately.



     108     A.0: INTRINSICS

     77: address:= Equip;

     This intrinsic returns the address of an array that describes the
     equipment that the program is running on. The array contains the
     following information:

             0: Processor type
             1: Math coprocessor type
             2: Video configuration
             3: Processor speed
             4: Run-time code version
             5: Run-time code type

     0: PROCESSOR TYPE. The type of processor is indicated by one of the
     following integers: 86, 286, 386, 486, or 586.

     1: MATH COPROCESSOR TYPE. The type of math coprocessor is indicated by
     one of the following integers: 0, 87, or 387. The 80287 is indistinguish-
     able from the 8087, so 87 refers to both the 8087 and 80287. Zero means
     there is no math coprocessor. A DX386 or Pentium (586) effectively has a
     387 math coprocessor built into it.

     2: VIDEO CONFIGURATION. This gives the type of video adapter and monitor.
     The possible configurations are:

             VIDEO ADAPTER (low byte)
             ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
             $01: MDA  Monochrome Display Adapter
             $02: CGA  Color Graphics Adapter
             $04: EGA  Enhanced Graphics Adapter
             $08: VGA  Video Graphics Array
             $10: MCGA Multi-Color Graphics Array
             $20: HGC  Hercules Graphics Card

             MONITOR (high byte)
             ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
             $01: Monochrome
             $02: Color (or enhanced monochrome emulating color)
             $04: Enhanced color
             $08: Analog monochrome only
             $10: Analog color only
             $18: Analog monochrome and color

     3: PROCESSOR SPEED. This gives an indication of the processor's speed.
     The original 4.77 MHz IBM PC-XT returns a value of 5. Interrupts are
     left enabled so the value reflects the actual running environment.
     Interrupt-intensive environments, such as Microsoft Windows, give lower
     speeds. The speed test takes 55 to 110 milliseconds to run no matter how
     fast the processor.

     4: RUN-TIME CODE VERSION. This gives the run-time code (NATIVE or I2L)
     version number. The value is the version number times 10. For example, if
     the current version is 3.0, the value returned is 30.



                                                       A.0: INTRINSICS     109

     5: RUN-TIME CODE TYPE. This gives the type of run-time code used.

             ^N: NATIVE
             ^7: NATIVE7
             ^S: NAT
             ^I: I2L

     For example, this displays the processor type:

             int     EqList;
             begin
             EqList:= Equip;
             IntOut(0, EqList(0));
             . . .

     78: Shrink(value);

     This intrinsic returns unused heap space to DOS. The argument is the
     number of bytes to keep (above the current heap pointer). A minimum of a
     couple hundred bytes are usually kept for local variables and small,
     temporary arrays.

     When an XPL0 program starts, it's given about 60K of memory space for
     its heap, which is where variables and arrays are stored. Usually this is
     more than what is needed. In situations where memory is scarce, any
     excess can be given back to DOS and used by other programs that are also
     loaded in memory at the same time. This can occur, for instance, when
     using the Chain intrinsic (28).

     Shrink is normally called from the main procedure after reserving global
     arrays. This sets a new limit for the heap space. You'll get a run-time
     error (OUT OF MEMORY) if you attempt to reserve past this limit.

     79: RanSeed(integer);

     This intrinsic sets the seed for the random number generator (1: Ran).
     This allows up to 65536 different, repeatable random number sequences.

     80: Irq(boolean);

     This intrinsic turns interrupts on if boolean is "true" and off if
     boolean is "false". This is useful, for instance, to prevent a mouse
     interrupt from interfering while manipulating the VGA registers. The
     NMI interrupt is not affected. Interrupts, of course, should not be
     left turned off for very long. Be aware that most BIOS and DOS calls
     will temporarily re-enable interrupts.



     110

                      A . 1 :   C O M P I L E   E R R O R S

     XPL0 has two different types of error messages. The first type, called
     "compile errors", occur when a program is being compiled; and the second
     type, called "run-time errors", occur when the program runs.

     If the compiler detects an error, it stops and asks if it should attempt
     to continue. A "Y" (or just hitting the Enter key) continues; an "N"
     aborts the compile. The ASM output file is discarded if any error is
     detected.

     For example, if we try to compile:

             Frog:= 2 + 3.5 + Frog;

     the compiler stops and displays:

             Frog:= 2 + 3.5 + F
             ***** ERROR NO. 46 *****
             MIXED MODE
             ATTEMPT TO CONTINUE (Y/N)?

     Compile error messages can sometimes be misleading because the actual
     error might have occurred prior to the point that the compiler flags as
     the error. The reason these two points don't always coincide is because
     the compiler finds the code at the actual error to be syntactically
     correct, but it interprets it in a way other than what was intended. This
     alternate interpretation can go for several lines before an error is
     finally flagged. An extreme example of this is failing to terminate a
     string with a close quote. In this case the compiler simply interprets
     the following code as being part of the string, and an error is not
     detected until either a quote mark or the end-of-file is encountered.
     Particularly misleading error messages can result from unpaired begin-
     ends.

     All of the compile error messages are listed below along with some
     helpful comments and suggestions.

     1: TOO MANY VARIABLES. Procedures with too many variables should be
     broken into smaller procedures. Perhaps the variables are more global
     than necessary. Perhaps several variables could be combined into an
     array.



                                                   A.1: COMPILE ERRORS     111

     2: TOO MANY REAL CONSTANT NAMES. There are too many constants "define"d
     as real values in scope at one time. The maximum number is 160. Perhaps
     they are more global than necessary.

     3: TOO MANY NAMES. There are too many names (variables, procedures,
     intrinsics, constants, etc.) in scope at one time causing the symbol
     table to overflow. The maximum number is 1600. Perhaps some intrinsics
     are declared but not used. Perhaps some names are more global than
     necessary. Perhaps several variables could be combined into an array.

     4: TOO MANY 'QUITS'. There cannot be more than 160 total "quit" state-
     ments inside a "loop". This total includes "quit"s for other "loop"s that
     are nested inside the outer "loop".

     5: TOO MANY STATIC LEVELS. Procedures can be nested to a maximum depth
     of eight levels.

     6: NUMBER OUT OF RANGE. Integers are limited to the range of -32768
     through +32767.

     7: NUMBER OUT OF RANGE. Intrinsic "code" declarations are limited to 0
     through 127.

     10: UNDECLARED NAME. The name is undefined here. It might be out of scope
     or be forward referenced. A procedure declaration that is missing a
     semicolon causes the rest of the line to not be seen (it's taken as a
     comment).

     11: NAME ALREADY DECLARED. This name conflicts with a previous declara-
     tion at this level. Only the first 16 characters are significant to the
     compiler.

     20: ILLEGAL START OF A STATEMENT. Missing an "end"? Unpaired "begin-
     end"s? If "procedure" is flagged then there's a missing "end" in the
     previous procedure.

     21: ":=" EXPECTED BUT NOT FOUND. Illegal variable in a "for" or an
     assignment statement? The control variable in a "for" loop cannot have a
     subscript.

     22: 'THEN' EXPECTED BUT NOT FOUND. Illegal expression in an "if" state-
     ment?



     112     A.1: COMPILE ERRORS

     23: 'DO' EXPECTED BUT NOT FOUND. Illegal expression in a "for" or "while"
     statement?

     24: 'TO' OR 'DOWNTO' EXPECTED BUT NOT FOUND. Illegal expression in a
     "for" statement? A comma does the same thing as 'to'.

     26: ILLEGAL FACTOR. Incomplete expression or an illegal operator?
     Semicolon or "of" before an "other" in a "case" statement? Perhaps
     parentheses are needed around an "if" expression. Perhaps a word should
     start with a capital letter.

     27: STATEMENT STARTING WITH A CONSTANT. The name is declared as a
     constant, which cannot be assigned a value.

     28: 'UNTIL' EXPECTED BUT NOT FOUND. Perhaps the previous statement is
     missing a semicolon. Unpaired "begin" "end"s within a "repeat" block?

     29: 'OTHER' EXPECTED BUT NOT FOUND. A "case" statement must be terminated
     with an "other" statement. Perhaps the previous statement is missing a
     semicolon.

     30: 'ELSE' EXPECTED BUT NOT FOUND. An "if" expression must have the
     "else" clause. Illegal expression after the "then"? Do not confuse an
     "if" expression for the more common "if" statement.

     31: DIGIT EXPECTED BUT NOT FOUND. Either the exponent of a real number or
     a hex digit is missing.

     33: INTEGER VARIABLE EXPECTED BUT NOT FOUND. The control variable in a
     "for" statement must be an integer or character variable.

     38: ">" EXPECTED BUT NOT FOUND. Arithmetic shift right "->>" incomplete?

     39: "(" EXPECTED BUT NOT FOUND. Parentheses must enclose arguments.

     40: "=" EXPECTED BUT NOT FOUND. In a "code" declaration every name must
     be set equal to an integer.

     41: ";" EXPECTED BUT NOT FOUND. A semicolon must be at the end of a
     declaration, must separate procedures, and must separate statements
     within a "begin-end" (or a "repeat-until") block. The first letter of a
     variable name must be uppercase.

     42: CONSTANT EXPECTED BUT NOT FOUND. In a "define" or a constant array
     the values must be previously declared constants or be integer or real
     constants; they cannot be variables.



                                                   A.1: COMPILE ERRORS     113

     43: VARIABLE EXPECTED BUT NOT FOUND. The "address" and "@" operators can
     only return the address of a variable.

     44: ")" EXPECTED BUT NOT FOUND. Parentheses must be balanced. Even though
     balanced, extra sets of parentheses around arguments and subscripts are
     illegal.

     45: NAME EXPECTED BUT NOT FOUND. There must be a name in a declaration.
     At least the first letter of a variable name must be uppercase.

     46: MIXED MODE. Reals and integers cannot be mixed within an expression
     without explicitly doing the type conversions using the intrinsics Fix
     and Float. This message can be triggered if a variable is undefined.
     Also, a forward-function declaration and its function must be the same
     data type.

     47: INTEGER EXPECTED BUT NOT FOUND. The indicated value or expression is
     not of type integer. Subscripts, the control variable in a "for" loop,
     and "case" expressions cannot be reals.

     48: 'OF' EXPECTED BUT NOT FOUND. Illegal expression in a "case" state-
     ment?

     49: ":" EXPECTED BUT NOT FOUND. Illegal expression in a "case" statement?

     50: "]" EXPECTED BUT NOT FOUND. Constant-array brackets must be balanced.
     Perhaps a comma is missing.

     51: NO ARGUMENTS DECLARED. The called procedure has no local variables
     declared and therefore cannot have arguments passed to it.

     52: STATEMENT STARTING WITH 'ELSE'. An "else" is never preceded by a
     semicolon.

     53: STATEMENT STARTING WITH 'OTHER'. An "other" is never preceded by a
     semicolon.

     60: 'QUIT' NOT IN A 'LOOP'. The "quit" statement is legal only inside a
     "loop" block.

     61: EOF EXPECTED BUT NOT FOUND. More code after the apparent end of the
     program. Unpaired "begin" "end"s? Too many "end"s or missing a "begin"?

     62: EOF INSIDE A BLOCK. End-of file (Control-Z, $1A) is inside a block
     statement. Too many "begin"s or not enough "end"s? Incomplete or missing
     statement?



     114     A.1: COMPILE ERRORS

     63: EOF INSIDE A STRING. Unpaired double quote (")? A caret (^) can cause
     a quote to not be seen.

     65: 'FPROC' & ITS 'PROC' NOT AT SAME LEVEL. A forward procedure declar-
     ation and its corresponding procedure declaration must be at the same
     static level and must be in scope with each other.

     66: 'FPROC' REFERENCE NOT FOUND. Unresolved forward procedure or function
     reference. Perhaps it's out of scope. "fproc" and its corresponding
     "proc" must be at the same static level. Maybe a "begin" is missing.

     67: 'PROC' OR 'FUNC' EXPECTED BUT NOT FOUND. "public" must be followed by
     "procedure" or "function".

     68: 'EPROC'S AND 'PUBLIC'S MUST BE GLOBAL. "eproc"s, "efunc"s, and
     "public"s must be at level zero; they cannot be inside a procedure
     (except the main routine).

     69: 'INCLUDE'S NESTED TOO DEEP. A file that is included can itself
     include other files. These files also can include files, but the chain of
     includes is limited to eight levels. Perhaps a file is including itself,
     or is including a file that includes the original file.

     70: BAD FILE SPEC. The specification should be: C:\path\filename.ext;
     Everything but the file name is optional. The semicolon is required.
     Backslashes do not designate comments in a file name.

     71: FILE NOT FOUND. Perhaps the file is not in the current directory.

     72: 'INT', 'REAL', 'CHAR', or 'ADDR' EXPECTED BUT NOT FOUND.

     73: DIVIDE BY ZERO. A constant expression is attempting to divide by 0.

     74: MATH ERROR IN A CONSTANT EXPRESSION. A floating point overflow or
     underflow occurred.

     75: EXPRESSION MUST BE ENCLOSED IN PARENTHESES. Exclusive-or operations
     (|) and "if" expressions must be enclosed in parentheses when the short-
     circuit boolean command-line switch (/b) is used.

     L2002: FIXUP OVERFLOW. This error is generated by the linker (LINK).
     There is more than 64K of code in external routines that are declared
     after a dimensioned array declaration. Rearrange your declarations,
     putting "external" "eproc" and "efunc" ahead of any dimensioned arrays.
     This moves the EXTRN declarations in the assembly code ahead of the code
     segment.



                                                                           115

                     A . 2 :   R U N - T I M E   E R R O R S

     If an error is detected while a program is running, it aborts and a
     run-time error message is displayed.

     Aborting points out errors in the code, but sometimes it's more of a
     nuisance than a help. The Trap intrinsic (17) can be used to disable the
     abort for selected run-time errors.

     This is a list of all of the run-time error messages:

     1: DIV BY 0. Illegal division by zero for an integer. If this is untrap-
     ped, 32767 is returned.

     2: OUT OF MEMORY. No more memory space. An array declaration, a Reserve,
     or the I2L loader tried to exceed the allotted memory bounds.

     3: I/O ERROR. Some device driver returned with an error. The most common
     I/O errors are caused by forgetting to specify an input or output file on
     the command line, or mistyping the name of an input file. Perhaps a
     device number in an intrinsic call is missing.

     4: BAD OPCODE. Invalid opcode encountered. When this occurs, the stack is
     out of balance and the program has probably blown-up. It's not a bad idea
     to reboot your computer to be absolutely safe, although this is unneces-
     sary if running under a protected operating system such as Windows XP.
     The common causes of this error are an array subscript was incorrectly
     computed or an intrinsic was incorrectly used.

     5: BAD INTRINSIC. Invalid intrinsic number used. This is usually due to
     an incorrect "code" declaration, but it could be caused in the same way
     as error 4. Some versions of the run-time code (NAT) do not support
     floating-point calculations and their related intrinsics (such as Fix).

     6: DIV BY 0.0. Floating-point divide by zero. If untrapped, the largest
     possible real value is returned.

     7: OVERFLOW. Floating-point overflow. Some calculation exceeded the upper
     limit of ñ1.79E+308. If untrapped, the largest possible real value is
     returned.



     116     A.2: RUN-TIME ERRORS

     8: UNDERFLOW. Floating-point underflow. A calculation exceeded the lower
     limit of ñ2.23E-308. If untrapped, 0.0 is returned.

     9: FIX OVERFLOW. Fixed-point overflow. Attempted to Fix too large or too
     small a number (greater than 65535.0 or less than -65535.0). If untrapped
     32767 is returned with the appropriate sign. This error can also be
     caused by the Mod intrinsic if an internal calculation exceeds 15 bits of
     precision.

     10: SQRT < 0. Square-root error. Attempted to take the square root of
     a negative number. This error is also trapped by the ASin and ACos
     intrinsics if the argument is outside of its legal range (-1.0 <= arg <=
     1.0). If untrapped, the square root of the absolute value is returned.

     11: LOG <= 0. Logarithm error. Attempted to take the logarithm of a
     number that's less than or equal to zero. If untrapped and the argument
     is 0.0, the smallest possible negative value is returned (minus infin-
     ity). If the argument is less than 0.0, the logarithm of the absolute
     value is returned.

     12: EXP OVERFLOW. Exponential error. Exp intrinsic caused an overflow.
     If untrapped, the largest possible value is returned.

     13: Unused.

     14: ATAN2(0.0, 0.0). ATan2(0.0, 0.0) is undefined. Returns 0.0 if
     untrapped.

     ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄ¿
     ³ ÚÄÄÄÄÄ¿ ³ ³ ÚÄÄÄÄÄ¿ ³ ³ ÚÄÄÄÄÄ¿ ³ ³ ÚÄÄÄÄÄ¿ ³ ³ ÚÄÄÄÄÄ¿ ³ ³ ÚÄÄÄÄÄ¿ ³
     ³ ³ ÚÄ¿ ³ ³ ³ ³ ÚÄ¿ ³ ³ ³ ³ ÚÄ¿ ³ ³ ³ ³ ÚÄ¿ ³ ³ ³ ³ ÚÄ¿ ³ ³ ³ ³ ÚÄ¿ ³ ³
     ³ ³ ³ ÀÄÙ ³ ³ ³ ³ ÀÄÙ ³ ³ ³ ³ ÀÄÙ ³ ³ ³ ³ ÀÄÙ ³ ³ ³ ³ ÀÄÙ ³ ³ ³ ³ ÀÄÙ ³
     ³ ³ ÀÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÙ
     Ù ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄ



                                                                           117

                       A . 3 :   C O M M O N   E R R O R S

     There are some errors that seem to catch everyone when they first start
     programming in XPL0. Here is a list of these errors beginning with the
     most common.

     1. There are several commands or symbols that must be used in pairs. Many
     newtimers omit one of the pairs. The most likely place that you might do
     this is with "begin-end"s. It's easy to get the wrong number of "end"s
     at the end of a complex procedure. The easiest way to keep track of these
     is to use indentation:

             begin
             . . .
                     begin
                     . . .
                             begin
                             . . .
                             end;
                     end;
             end;

     Each indentation must have a "begin" and a corresponding "end".

     Here are some other pairs to watch out for:

             " . . . "       Double quotes around text strings
             ( . . . )       Parentheses
             [ . . . ]       Brackets (same as  "begin-end"s)
             \ . . . \       Comments (when not the last item on the line)

     2. A semicolon can catch you in two ways. One is that there must be a
     semicolon between all statements in the program. The other is that you
     must not place a semicolon before the "else" of an "if" statement or the
     "other" of a "case" statement. For example:



     118     A.3: COMMON ERRORS

             if N = Guess then
                     begin
                     Restart;
                     MakeNumber;
                     end  <ÄÄÄÄÄÄÄÄÄÄÄÄ semicolon is illegal here
             else    begin
                     N:= N + 1; <ÄÄÄÄÄÄ semicolon is required here
                     Restart; <ÄÄÄÄÄÄÄÄ semicolon is optional here
                     end;

     3. Intrinsics require various numbers of arguments. A common error is to
     pass the wrong number of arguments or the wrong type of arguments
     (integer versus real). This causes a stack imbalance and your program
     blows up.

                  WRONG                  CORRECT
                  ÄÄÄÄÄ                  ÄÄÄÄÄÄÄ
             Text("message");        Text(0, "message");
             ChIn(0);                I:= ChIn(0);
             I:= ChOut(0,^A);        ChOut(0, ^A);
             X:= Sqrt(100);          X:= Sqrt(100.);

     4. When arguments are passed to a procedure, the values passed are stored
     into the first variables declared and in the same order that they are
     passed. As a program is written, it's easy to add new variables to the
     declarations, which shift their order and change which arguments are
     passed into which variables. "Integer", "real", and "character" declar-
     ations can be mixed in any way necessary to properly pass values into the
     correct variables. It's often useful to have completely separate declar-
     ations for arguments and local variables. For example:

             procedure Oink(I, X, Ch);
             integer I;              \Arguments
             real X;
             integer Ch;
             integer A, B, C;        \Local variables
             begin
             . . .

     5. XPL0 does not do run-time array bounds checking. Thus it's possible
     to store something into an incorrect location in memory. Almost always,
     this is due to an error in the calculation of a subscript for an array.

     6. Avoid using the same name both locally and globally. You can easily
     get confused as to which is which, and this can be a difficult error
     to find. If you use a local variable with the same name as a global
     variable, the compiler does not give a NAME ALREADY DECLARED error; the
     local variable is used instead of the global variable. As a consequence
     you should make global names longer and more formal than local names. For
     example, avoid using a name like "I" for a global. At the very least call
     it "II".



                                                                           119

                 A . 4 :   K E Y B O A R D   S C A N   C O D E S

           3B   F1               68   Alt-F1           1E   Alt-A
           3C   F2               69   Alt-F2           1F   Alt-S
           3D   F3               6A   Alt-F3           20   Alt-D
           3E   F4               6B   Alt-F4           21   Alt-F
           3F   F5               6C   Alt-F5           22   Alt-G
           40   F6               6D   Alt-F6           23   Alt-H
           41   F7               6E   Alt-F7           24   Alt-J
           42   F8               6F   Alt-F8           25   Alt-K
           43   F9               70   Alt-F9           26   Alt-L
           44   F10              71   Alt-F10
                                                       2C   Alt-Z
           54   Shift-F1         78   Alt-1            2D   Alt-X
           55   Shift-F2         79   Alt-2            2E   Alt-C
           56   Shift-F3         7A   Alt-3            2F   Alt-V
           57   Shift-F4         7B   Alt-4            30   Alt-B
           58   Shift-F5         7C   Alt-5            31   Alt-N
           59   Shift-F6         7D   Alt-6            32   Alt-M
           5A   Shift-F7         7E   Alt-7
           5B   Shift-F8         7F   Alt-8            03   Ctrl-2
           5C   Shift-F9         80   Alt-9            0F   Shift-Tab
           5D   Shift-F10        81   Alt-0            47   Home
                                 82   Alt-Hyphen       48   Up arrow
           5E   Ctrl-F1          83   Alt-=            49   PgUp
           5F   Ctrl-F2                                4B   Left arrow
           60   Ctrl-F3          10   Alt-Q            4D   Right arrow
           61   Ctrl-F4          11   Alt-W            4F   End
           62   Ctrl-F5          12   Alt-E            50   Down arrow
           63   Ctrl-F6          13   Alt-R            51   PgDn
           64   Ctrl-F7          14   Alt-T            52   Insert
           65   Ctrl-F8          15   Alt-Y            53   Delete
           66   Ctrl-F9          16   Alt-U            73   Ctrl-Left arrow
           67   Ctrl-F10         17   Alt-I            74   Ctrl-Right arrow
                                 18   Alt-O            75   Ctrl-End
                                 19   Alt-P            76   Ctrl-PgDn
                                                       77   Ctrl-Home
                                                       84   Ctrl-PgUp



     120

                      A . 5 :   S Y N T A X   S U M M A R Y

     FACTORS                                                         SECTION
                                                                     ÄÄÄÄÄÄÄ
     CONSTANTS:      Decimal integers: 123, -19375  .  .  .  .  .  .   1.0
                     Hex and binary integers: $FE00, %11_0110   .  .   1.1
                     ASCII characters: ^A, ^z .  .  .  .  .  .  .  .   1.2
                     Real numbers: 6.63e-34   .  .  .  .  .  .  .  .   1.3
                     Declared constants:  define  Pi=3.14;   .  . 1.5, 2.9
                     True and false     .  .  .  .  .  .  .  .  .  .   2.4
     VARIABLES:      Integers: Guess .  .  .  .  .  .  .  .  .  .  .   1.4
                     Reals     .  .  .  .  .  .  .  .  .  .  .  .  .   1.4
                     Array elements: Side(N)  .  .  .  .  .  .  .  .   5
     FUNCTIONS     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   4.5
     INTRINSICS that return a value     .  .  .  .  .  .  .  .  .  .   4.6
     EXTERNALS that return a value   .  .  .  .  .  .  .  .  .  .  .   4.13
     TEXT STRINGS: "..."    .  .  .  .  .  .  .  .  .  .  .  .  .  .   5.2
     CONSTANT ARRAYS: [CONSTANT, ... CONSTANT]      .  .  .  .  .  .   5.5
     ADDRESS of a variable or array: addr Frog, @Array(3) .  .  .  .   5.7

     OPERATORS

     The operator precedence (priority) is shown in parentheses; 1 is highest.
     Unary minus (or plus):  - (+)   (1)   .  .  .  .  .  .  .  .  .   2.2
     Shifts:             <<  >>  ->> (2)   .  .  .  .  .  .  .  .  .   2.7
     Multiplication:         *       (3)   .  .  .  .  .  .  .  .  .   2.0
     Division:               /       (3)   .  .  .  .  .  .  .  .  .   2.0
     Addition:               +       (4)   .  .  .  .  .  .  .  .  .   2.0
     Subtraction:            -       (4)   .  .  .  .  .  .  .  .  .   2.0
     Equal:                  =       (5)   .  .  .  .  .  .  .  .  .   2.3
     Not equal:              #       (5)   .  .  .  .  .  .  .  .  .   2.3
     Less than:              <       (5)   .  .  .  .  .  .  .  .  .   2.3
     Less than or equal:     <=      (5)   .  .  .  .  .  .  .  .  .   2.3
     Greater than:           >       (5)   .  .  .  .  .  .  .  .  .   2.3
     Greater than or equal:  >=      (5)   .  .  .  .  .  .  .  .  .   2.3
     Boolean "not":          ~       (6)   .  .  .  .  .  .  .  .  .   2.5
     Boolean "and":          &       (7)   .  .  .  .  .  .  .  .  .   2.5
     Boolean "or":           !       (8)   .  .  .  .  .  .  .  .  .   2.5
     Boolean "xor":          |       (8)   .  .  .  .  .  .  .  .  .   2.5
     If expression:          if      (9)   .  .  .  .  .  .  .  .  .   2.8

     SPECIAL CHARACTERS

     Space, tab, carriage return, and form feed are formatters     .   1.8
     ()      Expression evaluation priority, arguments, and subscripts.
                                                        2.0, 3.9, 4.2, 5.0
     ;       Statement and procedure separator and declaration terminator
                                                                  3.1, 3.11
     \\  \   Comment (except in strings and "include" path names)      3.10
     ^       ASCII constants, and ", ^ and ctrl chars in strings  1.2, 5.2
     _       Underline in a variable or procedure name or in a number  1.4
     {}      Assembly code  .  .  .  .  .  .  .  .  .  .  .  .  .  .  Addendum



                                                   A.5: SYNTAX SUMMARY     121

     STATEMENTS

     VARIABLE:= EXPRESSION;    .  .  .  .  .  .  .  .  .  .  .  .  .   3.0
     begin STATEMENT; STATEMENT; ... STATEMENT end;    .  .  .  .  .   3.1
     [STATEMENT; STATEMENT; ... STATEMENT];   .  .  .  .  .  .  .  .   3.1
     if BOOLEAN EXPRESSION then STATEMENT;    .  .  .  .  .  .  .  .   3.2
     if BOOLEAN EXPRESSION then STATEMENT else STATEMENT;    .  .  .   3.2
     case of    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   3.3
             BOOLEAN EXPRESSION, ... BOOLEAN EXPRESSION: STATEMENT;
             ...
             BOOLEAN EXPRESSION, ... BOOLEAN EXPRESSION: STATEMENT
             other STATEMENT;
     case INTEGER EXPRESSION of   .  .  .  .  .  .  .  .  .  .  .  .   3.3
             INTEGER EXPRESSION, ... INTEGER EXPRESSION: STATEMENT;
             ...
             INTEGER EXPRESSION, ... INTEGER EXPRESSION: STATEMENT
             other STATEMENT;
     while BOOLEAN EXPRESSION do STATEMENT;   .  .  .  .  .  .  .  .   3.4
     repeat STATEMENT; ... STATEMENT until BOOLEAN EXPRESSION;  .  .   3.5
     loop STATEMENT;  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   3.6
     quit;   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   3.6
     for VARIABLE:= INTEGER EXPRESSION, INTEGER EXPRESSION   .  .  .   3.7
             do STATEMENT;
     for VARIABLE:= INTEGER EXPRESSION downto INTEGER EXPRESSION   .   3.7
             do STATEMENT;
     exit;   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   3.8
     exit BYTE EXPRESSION;  .  .  .  .  .  .  .  .  .  .  .  .  .  .   3.8
     SUBROUTINE NAME(EXPRESSION, ... EXPRESSION);   .  .  .  .  . 3.9, 4.0
     return;    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   4.4
     return EXPRESSION;  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   4.5
     ;    (null statement)  .  .  .  .  .  .  .  .  .  .  .  .  .  .   3.11

     DECLARATIONS

     integer NAME, NAME, ... NAME;   .  .  .  .  .  .  .  .  .  .  .   1.5
     real NAME, NAME, ... NAME;   .  .  .  .  .  .  .  .  .  .  .  .   1.5
     define NAME=CONSTANT, ... NAME=CONSTANT;    .  .  .  .  .  .  .   1.6
     define NAME, NAME, ... NAME;    .  .  .  .  .  .  .  .  .  .  .   1.6
     procedure NAME(COMMENT);     .  .  .  .  .  .  .  .  .  .  .  .   4.0
     function TYPE NAME(COMMENT);    .  .  .  .  .  .  .  .  .  .  .   4.5
     code TYPE NAME(COMMENT)=INTEGER, ... NAME(COMMENT)=INTEGER;   .   4.6
     fprocedure NAME(COMMENT), NAME(COMMENT), ... NAME(COMMENT);   .   4.9
     ffunction TYPE NAME(COMMENT), NAME(COMMENT), ... NAME(COMMENT);   4.10
     eprocedure NAME(COMMENT), NAME(COMMENT), ... NAME(COMMENT);   .   4.12
     efunction TYPE NAME(COMMENT), NAME(COMMENT), ... NAME(COMMENT);   4.12
     public procedure NAME(COMMENT);    .  .  .  .  .  .  .  .  .  .   4.12
     public function TYPE NAME(COMMENT);   .  .  .  .  .  .  .  .  .   4.12
     external TYPE NAME(COMMENT), NAME(COMMENT), ... NAME(COMMENT);    4.13
     integer NAME(DIMENSIONS), ... NAME(DIMENSIONS);   .  .  .  .  .   5
     real NAME(DIMENSIONS), ... NAME(DIMENSIONS);   .  .  .  .  .  .   5
     character NAME(DIMENSIONS), ... NAME(DIMENSIONS);    .  .  .  .   5
     segment TYPE NAME(DIMENSION), ... NAME(DIMENSION);   .  .  .  .   5.9



     122

                                    I N D E X

     A                                  ASin 103
     Abort 89                           assembler 4
     Abort, Retry, Ignore? 78, 81       assembly language 50
     Abs 85                             Assignments 26
     absolute value 85, 100             ATan2 102
     ACos 103                           Attrib 81, 104
     Addition 15                        attribute 77
     address 67, 68, 69
     address, segment 71                B
     Advanced 1                         backslash 33, 47
     align decimal points 101           baud rate 81
     allocation, dynamic memory 57      begin 6, 26, 117
     allocation, memory 71              BEL 82
     and 19                             binary files 79
     arc-cosine function 103            BIOS or DOS interrupts 95
     arc-sine function 103              bit, sign 86
     arc-tangent 102                    Blit 80, 96
     arguments 33, 37, 118              block 6
     argument, array 57                 block, environment 92
     array 54, 86                       boolean 19, 27
     array argument 57                  brackets 27
     array bounds checking 118          Break, control- 107
     array dimensions 57                BS 82
     arrays, character 55               buffer, circular 82
     arrays, constant 63                buffer, large & small 79, 91
     arrays, Integer 54
     ARRAYS, MULTIDIMENSIONAL 59        C
     arrays, multidimensional char 67   call 104
     arrays, segment 67, 70             CALLS, SUBROUTINE 33
     arrays, 2-dimensional 59           cards, wild 92
     .ASM 4                             caret 9, 58
     ASCII 57, 87                       Carriage Return 13, 87
     ASCII characters 9                 Carry flag 96
     ASCII, extended 106



                                                                 INDEX     123

     case 28                            control characters 58, 82
     CGA 99, 108                        control-Break 82, 107
     Chain 92                           control-C 82
     character 55                       control-C trapping 107
     character arrays 55                control-Z 79
     characters, ASCII 9                coordinates, polar 102
     characters, control 58, 82         Cos 102
     checking, array bounds 118         cosine function 102
     ChIn 75, 87                        CR 82
     ChkKey 94                          CrLf 3, 13, 87
     ChOut 13, 75, 87                   CTS 81
     circular buffer 82                 Cursor 90, 105
     Clear 97                           .C2L 52
     Close 75, 78, 88
     code 3, 42                         D
     code segment 96                    data segment 96
     CODESI.XPL 46                      DATA STRUCTURES 60
     codes, DOS error 95                date 79
     CODES, KEYBOARD SCAN 77, 82, 119   day, time of 95
     code, run-time 4                   decimal integer 87
     color 81, 97, 98, 104, 106         decimal point 9
     COM RS-232 81                      declaration 10
     .COM 5, 52                         Declared constants 11
     command tail 79                    define 11
     command word 3, 10                 degrees 101
     COMMAND LINE, OPENING FILES 79     device drivers 75
     command, PATH 92                   device 6 104, 105
     comments 23, 33                    device, input 87
     COMMON ERRORS 117                  device, null 82
     common mistake 20, 62              device, output 87
     common-logarithm function 102      DICE 55
     comparisons 17                     dimensions, array 54, 57
     compile errors 110                 disk file 78
     compiler 4                         divide by zero 89, 115
     COMPILING 4                        Division 15, 85
     condition 23                       do 30, 32
     configuration, Video 98, 108       dollar 8, 91
     constant 6                         DOS error codes 95
     constant array 63                  DOS or BIOS interrupts 95
     CONSTANT EXPRESSIONS 23            drive 94
     constants, Declared 10             drivers, device 75
     constants, Real 9                  DSEG 51
     constant, integer 8



     124     INDEX

     DSR 81
     DTE 81                             F
     DTR 81                             factor 6, 8
     DW 53                              Factorial 45
     dynamic memory allocation 57       false 17, 18
                                        FClose 78, 79, 80, 94
     E                                  FF 82
     E 9                                ffunction 46
     efunction 48                       files, binary 79
     EGA 99, 108                        file, disk 78
     else 3, 27                         FILE, END OF 79
     end 6, 26, 117                     file, library 53
     END OF FILE (EOF) 79, 80, 82       file, supervisor 53
     engineering notation 101           Fix 16, 100
     environment block 92               flag, Carry 96
     eprocedure 47                      flag, Rerun 86
     Equip 108                          Flashing 104
     error trapping 79                  Float 16, 100
     ERRORS, COMMON 117                 fonts 98
     errors, compile 110                FOpen 78, 80, 91, 93
     errors, run-time 89, 90, 115       for 32
     error, I/O 79, 115                 form feed 13
     error, rounding 24                 Format 35, 101
     even 19                            Forward-function 46
     exclusive or 19                    forward-procedure 46
     EXE2BIN 52                         fprocedure 46
     .EXE 4, 79                         Free 57, 89
     exit 32, 89                        free-format 13
     Exp 101                            FSet 78, 80, 91
     exponent 9                         function 40
     exponential function 101           function, arc-cosine 103
     Expressions 6, 15                  function, arc-sine 103
     EXPRESSIONS, CONSTANT 23           function, common-log 102
     expression, if 22                  function, cosine 102
     ExtCal 96, 104                     function, exponential 101
     Extend 86                          function, modulo 102
     extended ASCII 106                 function, natural log 101
     external 50                        function, sine 101
     external procedures 47             function, tangent 102
     external routine 104
     ExtJmp 96, 103                     G
                                        GetErr 79, 90



                                                                 INDEX     125

     GetHp 90                           intrinsics 3, 42, 118
     GetReg 80, 92, 95                  IRET 103
     global 37                          I2L 5, 52, 53, 109, 115
     global zero 52                     I/O 75
     graphics 97                        I/O error 79, 115
     GUESS 1                            .I2L 5, 52, 53

     H                                  J
     handle 78, 91                      jump 103
     heap 51, 57, 71
     heap pointer 90                    K
     heap space 89                      keyboard 77, 94, 107
     HEAPLO 51                          KEYBOARD SCAN CODES 119
     HERCULES 104
     hexadecimal 8                      L
     HexIn 91                           large buffer 79, 91
     HexOut 91                          LF 82
     HGC 108                            library 49
     Hilight 106                        library file 53
                                        Line 98
     I                                  Line Feed 13, 87
     if 3, 27                           line, new 87
     if expression 22                   link 4, 49
     include 46, 48                     linked lists 61
     initialization 88                  linker 4, 114
     INPUT AND OUTPUT 75                Ln 101
     input device 87                    local 37
     input port 103                     local variables 53, 64
     InputGuess 2                       Log 102
     int 10                             logarithm, common 102
     integer 10, 54                     logarithm, natural 101
     Integer arrays 54                  loop 31
     integer constant 8                 LOWCASE 80
     integer, decimal 87                LPT1 78
     Intense 104
     interpreted 5                      M
     interrupt Irq 103, 109             main procedure 4
     intersection 21                    MakeNumber 2
     IntIn 2, 75, 87                    MAlloc 71, 107
     IntOut 13, 75, 88
     IntRet 96, 103



     126     INDEX

     masking 19                         OpenI 75, 78, 88
     MASM 4                             OPENING FILES FR COMMAND LINE 79
     Math coprocessor 108               OpenO 75, 78, 88
     matrices 59                        operator 6
     MCGA 99, 108                       operator priority 120
     MDA 99, 108                        operator, unary 16
     memory allocation 71               or 19
     memory model 70                    or, exclusive 19
     memory, video 73                   other 28
     mistake, common 20, 62             output device 87
     MIXED MODE 16                      output port 103
     Mod 102                            OUTPUT, INPUT AND 75
     MODE 78, 81                        output, unwanted 82
     modulo function 102                out-of-memory 72, 115
     monitor 77                         overflow 16, 115
     monochrome 104
     Move 98                            P
     MULTIDIMENSIONAL ARRAYS 59         paragraphs 71, 107
     multidimensional char array 67     parentheses 15
     Multiplication 15                  parity 81
     MUPPET, PIGGY 66                   passing back reals 69
                                        PATH command 92
     N                                  path, subdirectory 78
     names 9                            Peek 97
     name, same 45                      PIGGY MUPPET 66
     NATIVE 4, 5                        PIn 103
     natural logarithm 101              pixel 98
     new line 87                        Point 97, 98
     not 19                             pointers 56, 68
     notation, engineering 101          Pointer(0) 67
     notation, scientific 101           pointer, heap 90
     null device 82                     points, align decimal 101
     null statement 34                  point, decimal 9
     numbers, real 24                   Poke 97
     number, random 85                  polar coordinates 102
                                        port, I/O 103
     O                                  POut 103
     .OBJ 4                             precision 9
     odd 19                             prefix, program segment 79, 92
     of 28                              printer 78, 81
     offset 70                          priority, operator 120
                                        PRN 78



                                                                 INDEX     127

     procedure 7, 36                    RlAbs 100
     procedures, external 47            RlIn 75, 99
     procedure, main 4                  RlOut 24, 35, 75, 100
     Processor type 108                 RlRes 62, 99
     program segment prefix 79, 92      root, square 101
     PSP 79, 92, 96                     rounding error 24
     public 47, 50                      routine, external 104
                                        RS-232, COM 81
     Q                                  RTS 81
     quit 31                            RUNNING 4
     quotient 15                        run-time code 4
                                        run-time errors 89, 90, 115
     R
     radians 101                        S
     Ran 2, 85                          same name 45
     random number 85, 109              Scan Code 77, 82, 119
     rate, baud 81                      scientific notation 101
     RawText 106                        Scope 43
     Read 94                            scroll, Text 105
     ReadPix 98                         sector 94
     real 10, 55, 56                    segment address 71
     Real constants 9                   segment arrays 67, 70
     real numbers 24                    segments 70
     reals, short 72                    segment, code 96
     reals, passing back 69             segment, data 96
     RECORDS 65                         semicolons 6, 34, 117
     Recursion 45                       SetHp 90
     reentrant 51                       SetRun 90, 91
     registers 95                       sets 11, 21
     Release 73, 107                    SetVid 98
     Rem 15, 85                         SetWind 81, 105
     remainder 15, 85                   shift 22
     repeat 13, 30                      Short reals 72
     Rerun 90, 91                       Shrink 109
     Rerun flag 86                      sign bit 86
     Reserve 61, 86                     Sin 98, 101
     Restart 86, 90                     sine function 101
     return 39, 40                      sine wave 98
     RETURNING MULTIPLE VALUES 68       small buffer 79, 91
     Return, Carriage 13, 87            SoftInt 95
     return, interrupt 103              Sound 97
                                        spaces 13



     128     INDEX

     space, heap 89                     U
     speed 85, 108                      unary operator 16
     Sqrt 101                           underline 9
     square root 101                    Underlined 104
     statements 6, 26                   union 21
     statement, null 34                 until 30
     static variables 64                unwanted output 82
     string 88
     string, text 57                    V
     STRUCTURES, DATA 60                variable 6, 9
     subdirectory path 78               variables, local 53, 64
     SUBROUTINE CALLS 33                variables, static 64
     subroutines 7, 36                  version 108
     subscript 54                       VGA 99, 104, 108
     Subtraction 15                     Video configuration 98, 108
     SUMMARY, SYNTAX 120                video memory 73
     supervisor file 53
     Swap 86                            W
     syntax 5                           wave, sine 98
     SYNTAX SUMMARY 120                 while 30
                                        wild cards 92
     T                                  windows 81, 105, 106
     Tab 12, 13, 82, 91                 word, command 3, 10
     tail, command 79                   Write 94
     Tan 102
     tangent function 102               X
     temperature 35                     X 5
     TestC 107                          XLINK 52
     TestGuess 2                        XN.BAT 4
     Text 2, 13, 88                     .XPL 4
     Text scroll 105                    XPLIQ 5
     text string 57                     XPLNQ 4
     then 3, 27                         XPLX 4
     THERMO 34
     time 79                            Z
     time of day 95                     zero, divide by 89
     Trap 79, 89, 90, 115               zero, global 52
     TrapC 107
     trapping, control-C 107
     trapping, error 79
     trees 61
     true 17, 18, 19



                                                                 INDEX     129

     2-dimensional array 59
     ! 19
     " 57, 117
     # 17
     $ 8, 91
     % 8
     & 19
     ( ) 15, 38, 54, 117
     * 15, 92
     + 15, 16
     - 15, 16
     ->> 22
     . 9
     / 15
     : 28
     := 26
     ; 6
     < 17, 77
     << 22
     <= 17
     = 11, 17, 42
     > 17, 77
     >= 17
     >> 22
     @ 69
     ? 92
     [ ] 27, 63, 117
     \ 33, 46, 117
     \\ 33
     ^ 9, 58
     _ 8, 9
     | 19
     ~ 19



                                  A D D E N D U M

     VERSION 3.0

     The double backslash "\\" comments out everything on the rest of line
     regardless of any backslashes it might contain. This is handy for
     commenting out sections of code.

     When a program starts, any characters entered on the command line after
     the program name are copied into device 8's buffer. This provides a
     convenient way to pass information to a program, such as file names or
     numeric values.

     The at-sign (@) is an alternative "addr" operator that works better
     when returning reals from a procedure that uses the call-by-reference
     technique. It works exactly the same as "addr" when used on an integer
     variable, but it returns a real pointer when used on a real variable.
     Note that "addr" and @ also work on subscripted variables.

     The starting (integer) value for an enumeration can be specified instead
     of always starting at zero. For example:

             define Jan=1,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec;

     The "string 0" option for zero-terminated strings is now available in all
     versions. The Text intrinsic works no matter which termination is used.

     The random number generator has been improved over several versions to
     where it now passes all the Diehard tests.

     VERSION 2.9

     The command-line switch /? displays a compiler's usage and lists its
     switch options.

     VERSION 2.8

     The command words "and", "or" and "xor" can be used in place of "&", "!"
     and "|".

     VERSION 2.7

     "For" loops can decrement using the "downto" command. What was previously
     kludged using negative values can now be written in a straightforward
     way, for example:

             for I:= -10, -1 do    [IntOut(0,-I); CrLf(0)];  \old method
             for I:= 10 downto 1 do [IntOut(0,I); CrLf(0)];  \new method



                                                                ADDENDUM     2

     For symmetry, a normal incrementing "for" loop can use the command word
     "to" in place of the comma, for example:

             for I:= 1, 10 do   [IntOut(0,I); CrLf(0)];      \existing method
             for I:= 1 to 10 do [IntOut(0,I); CrLf(0)];      \makes same code

     An arithmetic shift right (that preserves the sign bit) can be done using
     the "->>" symbol. This provides a fast way to divide integers by powers
     of 2. This is obvious for positive integers, but it does not give the
     exact same value as a divide for negative integers. The difference is
     that if there is a remainder, an integer divide truncates the quotient
     toward zero, whereas the arithmetic shift right truncates the quotient
     toward negative infinity. Here are some examples:

              27 / 4 = 6
              27 >> 2 = 6
              27 ->> 2 = 6
             -27 / 4 = -6
             -27 >> 2 = 16377
             -27 ->> 2 = -7
             -24 ->> 2 = -6

     The interpreted version, XPLI, supports the "port" command, like all the
     other compilers, but it does not support the "abs", "rem", "swap" or
     "extend" commands. These commands must be replaced with their equivalent
     intrinsic calls.

     I2LS.COM is a version of the interpreter that makes programs about 7K
     bytes smaller. It has no floating point capability or high-speed line
     draw.

     VERSION 2.6

     Variables can be declared after procedures. This makes it easier to break
     programs up into separate files, which can make them more modular and
     easier to understand and manipulate.

     For example, oftentimes there is a group of procedures that share common
     variables that are not used by the rest of the program. You can put these
     procedures and their variables into a single file and "include" the file
     in the main body of the program. Previously, these global variables had
     to be declared at the beginning of the program.

     Another advantage of this feature is that you can declare a variable
     immediately above the Main procedure if that's the only place it's used.
     For example, if you use "I" as a scratch index in Main, it's nice if "I"
     is not global to the entire program where it might mistakenly be used by
     a nested procedure.



     3        ADDENDUM

     The percent sign can be used to represent binary numbers. For example,
     %10011100 is the same value as $9C. Because binary numbers can blur into
     meaningless strings of 1's and 0's, underlines can be used to make them
     more recognizable, for example: %1001_1100 = $9C.

     For consistency underlines can be inserted into any number. For example,
     $12_34, or 123_456.78. The underlines are simply ignored by the compiler.
     Underlines may also appear in any number read in by the intrinsics IntIn,
     HexIn and RlIn.

     VERSION 2.5

     Assembly code can be inserted directly into an .XPL source file using the
     new command word "asm". This is described in detail in a section ahead.

     SWITCHES

     Command-line switches are used to modify the behavior of the compilers.
     Many of them are not normally used. However, for completeness of doc-
     umentation they're all listed here.

     The command-line switches for XPLNQ are:

             /?  Display list of switches
             /A  divert Assembly code to monitor instead of the output file
             /C  insert I2L Comments into the output file
             /L  List source code to the monitor screen

     XPLX also recognizes these switches:

             /B  do short-circuit evaluation of Boolean expressions
             /D  Debug: include XPL0 source code in .ASM output file
             /J  generate short conditional Jumps (to be fixed by MASM 6)
             /S  generate near procedure calls for code Smaller than 64K
             /2  align loops to word boundaries to speed them up
             /3  align loops to double-word boundaries to speed them up

     XPLIQ only recognizes these switches:

             /?  Display list of switches
             /D  list Debug information to the monitor screen
             /L  List source code to the monitor screen
             /W  display Warning messages

     Procedure calls can be optimized if a program is less than 64K by using
     the /S (Small) switch. This replaces the normal far call instruction with
     a near call. Calls to external XPL0 procedures (eprocs) are handled the
     same as normal procedures. Calls to intrinsics and external assembly
     language routines are always far regardless of the /S switch. (These
     calls can be optimized a little using the /F switch in LINK.) If several
     modules are linked together, they must all be compiled the same way--
     either with /S or without it.



                                                                ADDENDUM     4

     Conditional jumps can be optimized using the /J switch and MASM 6. The /J
     switch makes XPLX output short conditional jumps, such as JNE. It relies
     on MASM 6 to automatically replace them with jumps over long jumps if
     necessary. For example, MASM 6 automatically replaces JNE with JE $+5 and
     JMP if the target location is more than 128 bytes away. It also replaces
     a normal 3-byte JMP with a short JMP wherever possible.

     MASM 5.10 nor TASM 3.1 support the /J switch, that is, they do not fix
     short jumps that are out of range. TASM does not support the environment
     variable INCLUDE, which tells MASM where to look for include files (such
     as RUNTIME.ASM) if they are not in the current directory.

     SHORT-CIRCUIT BOOLEANS

     Some boolean expressions can be executed more quickly by using the /B
     command-line switch to enable short-circuit evaluation. Short-circuit
     evaluation is used in conditional statements to bypass the rest of a
     boolean expression when the result is already known. For example:

             if A=3 ! B=5 ! C=7 ! D=11 then Prime:= true;

     In this expression if B is equal to 5 then there's no reason to compare
     C to 7 and D to 11 because Prime will be assigned the value "true"
     despite these additional comparisons.

     The reason this feature uses a command-line switch rather than being done
     automatically is that it can cause some errors, although they're very
     unlikely.

     An error can occur if a term in the boolean expression contains a
     function call that does more than simply return a value. Such a function
     is said to have a "side effect", and it's generally considered a bad
     programming practice. Here is an example:

             if P<10 & P/3=N then DoSomething;
             R:= Rem(0);

     Rem(0) is not defined when P is >= 10 and short-circuit evaluation is
     enabled. The divide operation not only returns the quotient, but also
     sets the remainder as a side effect.

     Another reason for not automatically using short-circuit evaluation is
     that some older programs might give a compile error unless a small
     modification is made. For instance, the statement: "while A | B do..."
     gives the new compile error 75: EXPRESSION MUST BE ENCLOSED IN
     PARENTHESES. Adding parentheses solves the problem: "while (A | B) do..."
     This problem only occurs with the exclusive-or operator and the "if"
     expression, and these are rarely used in the boolean expression of a
     conditional statement. For example: while (if A=1 then F1 else F2) do....



     5        ADDENDUM

     Since expressions are evaluated from left to right, it's faster to test
     for frequent conditions on the left side, for example:

             if Ch>=^0 & Ch<=^9  !  Ch>=^A & Ch<=^F then DoHex;

     (Hint: There are ten digits in the range 0..9 and only six in the range
     A..F.) Also, it's more efficient to do comparisons before testing flags.
     For example, this takes advantage of short-circuit evaluation:

             if Printer=Epson & Pin9 then ...

     This does not:

             if Pin9 & Printer=Epson then ...

     Avoid using unnecessary parentheses because expressions enclosed in
     parentheses are not short-circuit evaluated.

     IN-LINE ASSEMBLY CODE

     The native compilers have the ability to handle assembly code that's
     inserted directly into a program. The reserved word "asm" designates that
     the following characters on the line are assembly code, and they are to
     be copied to the output (.ASM) file. For example:

             asm     cli
             asm     mov     ax, 102         ;comment
             asm     mov     bx, Frog        ;Comment

     Assembly code must be written in lowercase characters except when an XPL
     variable or constant name is used. These are written in the usual way
     with at least the first letter capitalized. This enables the compiler to
     distinguish them from the rest of the assembly code and to substitute
     them with their corresponding code. For instance, in the above example,
     "Frog" might be replaced with something like "[SI+4]". Capital letters
     may be used in comments because comments are ignored by the compiler.

     If several lines of assembly code are needed, they may be written this
     way:

             asm     {
                     cli
                     mov     ax, 102         ;comment
                     mov     bx, Frog        ;Comment
                     }

     The ability to insert assembly code into a high-level language program
     is a two-edged sword. In general it should be avoided, but there are
     instances when it's very useful.



                                                                ADDENDUM     6

     The most obvious application is to replace compiled code with more
     efficient assembly code. For instance "Irq(false)" can be replaced with
     "asm cli", which is at least ten times faster (except under Windows XP,
     which simulates the cli). Similarly, "POut(Time, $40, 1)" could be
     replaced with:

             asm     mov ax, Time
             asm     out 40h, ax

     Assembly language provides low-level control that a high-level language
     can't. Consider this expression: Frog * 777 / 1000. If Frog is above 42,
     the calculation will overflow in 16-bit XPL. However, the following will
     not overflow even when Frog is 32767:

             asm     {
                     mov     ax, 777
                     imul    Frog            ;ax:dx := ax * Frog
                     mov     cx, 1000
                     idiv    cx              ;ax := ax:dx / cx
                     }

     Here is an example of a double-precision add:

             TimeLo:= TimeLo + 143;
             asm     {jnc    tm10
                      inc    TimeHi
                     tm10:};

     RULES AND RESTRICTIONS

     With the power of assembly language, it's easy to shoot yourself in the
     foot. When using XPLX, the SI and DI registers must not be altered, and
     of course altering DS, SS or CS is fatal.

     The compilers generate the correct code for named constants such as: "def
     Frog=123; asm mov ax, Frog". XPLX also generates the correct code for
     variables except as follows. If the variable is at an intermediate level
     (neither local or global), the inserted assembly code must make sure the
     correct BASEn is loaded into the BP register. With XPLN the correct BASEn
     must be loaded in the SI register for all variables other than globals.

     Here is an example that fills an integer array with a pattern. It runs
     about seven times faster than the equivalent "for" loop in XPLX, and 24
     times faster than XPLN (as measured on a Duron 850).



     7        ADDENDUM

             \XPLN needs the following line, but it must not be in XPLX
             \asm    mov     si, base1
             asm     {
                     push    ds              ;es:= ds
                     pop     es
                     push    di              ;save di register
                     mov     di, Array
                     mov     ax, Pattern
                     mov     cx, Size
                     cld                     ;set direction flag to increment
                     rep stosw               ;es:[di++] := ax; cx--
                     pop     di              ;restore di register
                     }

     Segment variables are not supported by in-line assembly code.

     Line labels are allowed if they are in lowercase and don't conflict with
     names generated by the compiler. Certain names are reserved and cannot be
     used such as: l208, ll3, cseg, dseg, base2, intr10. The assembler will
     flag an error if there's a conflict.

     Expressions are evaluated by the assembler, not by the compiler. Thus,
     for instance, hex numbers are represented with a trailing "h" instead of
     a leading "$".

     The bracket "}" ends an assembly-code section, even if it occurs inside a
     "; comment", but not if occurs inside a "\ comment".

     WARNINGS

     A separate version of the run-time code is required for XPLX (XX.BAT).
     Code compiled with XPLX must be linked to NATIVEX, NATIVE7X, or NATX.
     Code compiled with XPLN must be linked to NATIVE, NATIVE7, or NAT. This
     is handled automatically when using the batch files (X, XX, XN, XJSB,
     and XS).

     XJSB.BAT makes programs about 7K smaller than with XX.BAT. It accom-
     plishes this mostly by linking in NATX.OBJ instead of NATIVEX.OBJ. This
     small version of the run-time code does not support floating-point
     calculations nor does it support high-speed line draw (intrinsic 42:
     Line). XJSB also enables the /J /S /B switches. This means that MASM 6
     must be used to fix any short jumps, that the program code cannot be
     larger than 64K, and that short-circuit boolean evaluation is done.
     Floating point calculations will not give a compile error, but they will
     give the run-time errors 4 and 5 (unless they are turned off with the
     Trap intrinsic). Line draw still works, but it's many times slower than
     with the full version of the run-time code. XS.BAT does the same thing
     but with the interpreted version instead.



                                                                ADDENDUM     8

     Beware of STDLIB.OBJ. It must be compiled with the same compiler used to
     make other .OBJ files. If your main program module uses XPLX then
     STDLIB.XPL must be compiled using XPLX, not XPLN. One critical difference
     between these two compilers is that XPLX returns integer values from
     function calls in the AX register while XPLN returns them in global 0.
     Another difference is that XPLX uses the DI register as the heap pointer.
     Also, be sure that the /S switch is used consistently on all .XPL modules
     that are linked together.

     XPLX puts the control variable of a "for" loop in a register. Although
     extremely unlikely, a possible problem is using a pointer to change this
     variable. For example, the following is not an infinite loop if compiled
     by XPLX, but it is if it's compiled by the other compilers:

             A:= addr I;
             for I:= 1, 10 do
                     A(0):= 3;

     XPLI's /W switch displays a warning message for the above situation.

     Be aware that using the Reserve intrinsic to reserve an odd number of
     bytes in a character array can misalign the heap, which makes any
     variable declared from that point on (including in called procedures)
     misaligned, which can significantly slow a program. The Reserve intrinsic
     does not automatically align to a word boundary because some early
     programs took advantage of consecutive Reserves allocating contiguous
     space.

     Consecutive dimensioned arrays cannot allocate contiguous space because
     the pointer to the array precedes the reserved space. (Declared arrays
     are automatically aligned by the native compilers to a word boundary
     regardless of whether an odd number of bytes are used in a character
     array.)

     It is more efficient to declare dimensioned arrays last, after all other
     variables have been declared. This allows single-byte offsets to address
     these variables; whereas if an array is declared with 128 bytes or more,
     then double-byte offsets are required to access the variables.



PROGRAM:     ÉÍÍÍÍÍÍÍÍÍ»
ÄÄÄÄÄÄÄÄÄÄÄÄ>ºPROCEDUREºÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄ>
             ÈÍÍÍÍÍÍÍÍÍ¼       ³  ÚÄ¿  ³
                               À<Ä´;³<ÄÙ
PROCEDURE:                        ÀÄÙ
 Ú<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ<¿
 ³  ÚÄÄÄÄÄÄÄ¿           ÉÍÍÍÍ»                                 ÚÄ¿            ³
ÄÅÄ>³integerÃÄÄÄ>ÂÄÄÄÂÄ>ºNAMEÇÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄ>³;ÃÄÄÄÄÄÄÄÄÄÄÄ>´
 ³  ÀÄÄÄÄÄÄÄÙ    ³   ³  ÈÍÍÍÍ¼ ³         ÉÍÍÍÍÍÍÍÍ»         ³  ÀÄÙ            ³
 ³  ÚÄÄÄÄ¿       ³   ³         ³  ÚÄ¿    ºINT CON º    ÚÄ¿  ³                 ³
 ÃÄ>³realÃÄÄÄÄÄÄ>´   ³         ÀÄ>³(ÃÄÂÄ>ºEXPRESS ÇÄÂÄ>³)ÃÄ>´                 ³
 ³  ÀÄÄÄÄÙ       ³   ³            ÀÄÙ ³  ÈÍÍÍÍÍÍÍÍ¼ ³  ÀÄÙ  ³                 ³
 ³  ÚÄÄÄÄÄÄÄÄÄ¿  ³   ³                ³     ÚÄ¿     ³       ³                 ³
 ÃÄ>³characterÃÄ>Ù   ³                À<ÄÄÄÄ´,³<ÄÄÄÄÙ       ³                 ³
 ³  ÀÄÄÄÄÄÄÄÄÄÙ      ³   ÚÄ¿                ÀÄÙ             ³                 ³
 ³                   À<ÄÄ´,³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ                 ³
 ³                       ÀÄÙ                                                  ³
 ³                         ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿                            ³
 ³  ÚÄÄÄÄÄÄ¿        ÉÍÍÍÍ» ³  ÚÄ¿   ÉÍÍÍÍÍÍÍÍÍÍ» ³  ÚÄ¿                       ³
 ÃÄ>³defineÃÄÄÄÄÄÂÄ>ºNAMEÇÄÁÄ>³=ÃÄÄ>ºCONSTANT  ÇÄÅÄ>³;ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³  ÀÄÄÄÄÄÄÙ     ³  ÈÍÍÍÍ¼    ÀÄÙ   ºEXPRESSIONº ³  ÀÄÙ                       ³
 ³               ³   ÚÄ¿            ÈÍÍÍÍÍÍÍÍÍÍ¼ ³                            ³
 ³               À<ÄÄ´,³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ                            ³
 ³                   ÀÄÙ                                                      ³
 ³             ÚÄÄÄÄÄÄÄÄÄÄÄ>¿                              ÉÍÍÍÍÍÍÍÍ»         ³
 ³  ÚÄÄÄÄ¿     ³  ÚÄÄÄÄÄÄÄ¿ ³    ÉÍÍÍÍ»  ÚÄÄÄÄÄÄÄÄÄ¿  ÚÄ¿  ºINTEGER º    ÚÄ¿  ³
 ÃÄ>³codeÃÄÄ>ÄÄÅÄ>³integerÃ>ÅÄÂÄ>ºNAMEÇÄ>³(comment)ÃÄ>³=ÃÄ>ºCONSTANTÇÄÂÄ>³;ÃÄ>´
 ³  ÀÄÄÄÄÙ     ³  ÀÄÄÄÄÄÄÄÙ ³ ³  ÈÍÍÍÍ¼  ÀÄÄÄÄÄÄÄÄÄÙ  ÀÄÙ  ÈÍÍÍÍÍÍÍÍ¼ ³  ÀÄÙ  ³
 ³             ³  ÚÄÄÄÄ¿    ³ ³                 ÚÄ¿                   ³       ³
 ³             ÀÄ>³realÃÄÄÄ>Ù À<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´,³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ       ³
 ³                ÀÄÄÄÄÙ                        ÀÄÙ                           ³
 ³                ÚÄÄÄÄÄÄÄÄÄÄÄÄ>¿                                             ³
 ³  ÚÄÄÄÄÄÄÄÄÄ¿   ³  ÚÄÄÄÄÄÄÄ¿  ³ ÉÍÍÍÍ»  ÚÄÄÄÄÄÄÄÄÄ¿  ÚÄ¿  ÉÍÍÍÍÍÍÍÍÍ»  ÚÄ¿  ³
 ÃÄ>³procedureÃ>ÂÄÅÄ>³integerÃÄ>ÅÄ¶NAMEÇÄ>³(comment)ÃÄ>³;ÃÄ>ºPROCEDUREÇÄ>³;ÃÄ>´
 ³  ÀÄÄÄÄÄÄÄÄÄÙ ³ ³  ÀÄÄÄÄÄÄÄÙ  ³ ÈÍÍÍÍ¼  ÀÄÄÄÄÄÄÄÄÄÙ  ÀÄÙ  ÈÍÍÍÍÍÍÍÍÍ¼  ÀÄÙ  ³
 ³  ÚÄÄÄÄÄÄÄÄÄ¿ ³ ³  ÚÄÄÄÄ¿     ³                                             ³
 ÃÄ>³function Ã>Ù ÀÄ>³realÃÄÄÄÄ>Ù                                             ³
 ³  ÀÄÄÄÄÄÄÄÄÄÙ      ÀÄÄÄÄÙ                                                   ³
 ³                 ÚÄÄÄÄÄÄÄÄÄÄÄ>¿                                             ³
 ³  ÚÄÄÄÄÄÄÄÄÄÄ¿   ³  ÚÄÄÄÄÄÄÄ¿ ³    ÉÍÍÍÍ»   ÚÄÄÄÄÄÄÄÄÄ¿    ÚÄ¿              ³
 ÃÄ>³fprocedureÃ>ÂÄÅÄ>³integerÃ>ÅÄÂÄ>ºNAMEÇÄÄ>³(comment)ÃÄÂÄ>³;ÃÄÄÄÄÄÄÄÄÄÄÄÄÄ>Ù
 ³  ÀÄÄÄÄÄÄÄÄÄÄÙ ³ ³  ÀÄÄÄÄÄÄÄÙ ³ ³  ÈÍÍÍÍ¼   ÀÄÄÄÄÄÄÄÄÄÙ ³  ÀÄÙ
 ³  ÚÄÄÄÄÄÄÄÄÄÄ¿ ³ ³  ÚÄÄÄÄ¿    ³ ³        ÚÄ¿            ³
 ÃÄ>³ffunction Ã>´ ÀÄ>³realÃÄÄÄ>Ù À<ÄÄÄÄÄÄÄ´,³<ÄÄÄÄÄÄÄÄÄÄÄÙ
 ³  ÀÄÄÄÄÄÄÄÄÄÄÙ ³    ÀÄÄÄÄÙ               ÀÄÙ
 ³  ÚÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÃÄ>³eprocedureÃ>´
 ³  ÀÄÄÄÄÄÄÄÄÄÄÙ ³
 ³  ÚÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÃÄ>³efunction Ã>´
 ³  ÀÄÄÄÄÄÄÄÄÄÄÙ ³               Not shown: public, segment, short, port
 ³  ÚÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÃÄ>³external  Ã>Ù
 ³  ÀÄÄÄÄÄÄÄÄÄÄÙ
 ³
 ³  ÉÍÍÍÍÍÍÍÍÍ»
 ÀÄ>ºSTATEMENTÇÄÄÄÄÄÄÄÄÄÄÄÄÄ>
    ÈÍÍÍÍÍÍÍÍÍ¼



STATEMENT:           ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿
     ÉÍÍÍÍÍÍÍÍÍÍÍÍÍ» ³         ÉÍÍÍÍÍÍÍÍÍÍ»        ³
     ºINTEGER, REALº ³  ÚÄ¿    ºINTEGER   º    ÚÄ¿ ³  ÚÄÄ¿   ÉÍÍÍÍÍÍÍÍÍÍ»
ÄÂÄÄ>ºOR CHAR NAME ÇÄÁÄ>³(ÃÄÂÄ>ºEXPRESSIONÇÄÂÄ>³)ÃÄÁÄ>³:=ÃÄÄ>ºEXPRESSIONÇÄÄÄ>¿
 ³   ÈÍÍÍÍÍÍÍÍÍÍÍÍÍ¼    ÀÄÙ ³  ÈÍÍÍÍÍÍÍÍÍÍ¼ ³  ÀÄÙ    ÀÄÄÙ   ÈÍÍÍÍÍÍÍÍÍÍ¼    ³
 ³                          ³      ÚÄ¿      ³                                ³
 ³                          À<ÄÄÄÄÄ´,³<ÄÄÄÄÄÙ                                ³
 ³        ÉÍÍÍÍÍÍÍÍÍÍÍÍÍ»          ÀÄÙ     ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿   ³
 ³        ºPROCEDURE,   º                  ³  ÚÄ¿    ÉÍÍÍÍÍÍÍÍÍÍ»    ÚÄ¿ ³   ³
 ÃÄÄÄÄÄÄÄ>ºINTRINSIC OR ÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄ>³(ÃÄÂÄ>ºEXPRESSIONÇÄÂÄ>³)ÃÄÁÄÄ>´
 ³        ºEXTERNAL NAMEº                     ÀÄÙ ³  ÈÍÍÍÍÍÍÍÍÍÍ¼ ³  ÀÄÙ     ³
 ³        ÈÍÍÍÍÍÍÍÍÍÍÍÍÍ¼                         ³      ÚÄ¿      ³          ³
 ³    ÚÄÄÄÄÄ¿       ÉÍÍÍÍÍÍÍÍÍ»       ÚÄÄÄ¿       À<ÄÄÄÄÄ´,³<ÄÄÄÄÄÙ          ³
 ÃÄÂÄ>³beginÃÄÂ>ÄÂÄ>ºSTATEMENTÇÄÂÄÄÂÄ>³endÃÄ¿            ÀÄÙ                 ³
 ³ ³  ÀÄÄÄÄÄÙ ³  ³  ÈÍÍÍÍÍÍÍÍÍ¼ ³  ³  ÀÄÄÄÙ ³                                ³
 ³ ³    ÚÄ¿   ³  ³      ÚÄ¿     ³  ³   ÚÄ¿  ³                                ³
 ³ ÀÄÄÄ>³[ÃÄÄÄÙ  À<ÄÄÄÄÄ´;³<ÄÄÄÄÙ  ÀÄÄ>³]ÃÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³      ÀÄÙ             ÀÄÙ            ÀÄÙ                                   ³
 ³        ÉÍÍÍÍÍÍÍÍÍÍ»                     ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿            ³
 ³  ÚÄÄ¿  ºBOOLEAN   º  ÚÄÄÄÄ¿  ÉÍÍÍÍÍÍÍÍÍ»³ ÚÄÄÄÄ¿  ÉÍÍÍÍÍÍÍÍÍ»³            ³
 ÃÄ>³ifÃÄ>ºEXPRESSIONÇÄ>³thenÃÄ>ºSTATEMENTÇÁ>³elseÃÄ>ºSTATEMENTÇÁÄÄÄÄÄÄÄÄÄÄÄ>´
 ³  ÀÄÄÙ  ÈÍÍÍÍÍÍÍÍÍÍ¼  ÀÄÄÄÄÙ  ÈÍÍÍÍÍÍÍÍÍ¼  ÀÄÄÄÄÙ  ÈÍÍÍÍÍÍÍÍÍ¼             ³
 ³                                            ÚÄ¿                            ³
 ³        ÚÄÄÄÄÄÄÄÄÄÄÄÄ>¿     Ú<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´;³<ÄÄÄÄÄÄÄÄÄÄÄÄ¿              ³
 ³        ³ ÉÍÍÍÍÍÍÍÍÍÍ»³     ³ ÉÍÍÍÍÍÍÍÍÍÍ»  ÀÄÙ             ³              ³
 ³  ÚÄÄÄÄ¿³ ºINTEGER   º³ ÚÄÄ¿³ ºINTEGER   º  ÚÄ¿  ÉÍÍÍÍÍÍÍÍÍ»³ ÚÄÄÄÄÄ¿      ³
 ÃÄ>³caseÃÁ>ºEXPRESSIONÇÁ>³ofÃÅ>ºEXPRESSIONÇÂ>³:ÃÄ>ºSTATEMENTÇÁ>³otherÃÄ¿    ³
 ³  ÀÄÄÄÄÙ  ÈÍÍÍÍÍÍÍÍÍÍ¼  ÀÄÄÙ³ ÈÍÍÍÍÍÍÍÍÍÍ¼³ ÀÄÙ  ÈÍÍÍÍÍÍÍÍÍ¼  ÀÄÄÄÄÄÙ ³    ³
 ³                            ³     ÚÄ¿     ³               ÚÄÄÄÄÄÄÄÄÄÄÄÙ    ³
 ³                            À<ÄÄÄÄ´,³<ÄÄÄÄÙ               ³  ÉÍÍÍÍÍÍÍÍÍ»   ³
 ³             ÉÍÍÍÍÍÍÍÍÍÍÍ»        ÀÄÙ                     ÀÄ>ºSTATEMENTÇÄÄ>´
 ³  ÚÄÄÄÄÄ¿    ºBOOLEAN    º     ÚÄÄ¿     ÉÍÍÍÍÍÍÍÍÍ»          ÈÍÍÍÍÍÍÍÍÍ¼   ³
 ÃÄ>³whileÃÄÄÄ>ºEXPRESSION ÇÄÄÄÄ>³doÃÄÄÄÄ>ºSTATEMENTÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³  ÀÄÄÄÄÄÙ    ÈÍÍÍÍÍÍÍÍÍÍÍ¼     ÀÄÄÙ     ÈÍÍÍÍÍÍÍÍÍ¼                        ³
 ³  ÚÄÄÄÄÄÄ¿    ÉÍÍÍÍÍÍÍÍÍ»     ÚÄÄÄÄÄ¿   ÉÍÍÍÍÍÍÍÍÍÍ»                       ³
 ÃÄ>³repeatÃÄÂÄ>ºSTATEMENTÇÄÄÂÄ>³untilÃÄÄ>ºBOOLEAN   ÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³  ÀÄÄÄÄÄÄÙ ³  ÈÍÍÍÍÍÍÍÍÍ¼  ³  ÀÄÄÄÄÄÙ   ºEXPRESSIONº                       ³
 ³           ³      ÚÄ¿      ³            ÈÍÍÍÍÍÍÍÍÍÍ¼                       ³
 ³           À<ÄÄÄÄÄ´;³<ÄÄÄÄÄÙ                                               ³
 ³                  ÀÄÙ         ÚÄÄÄÄ¿    ÉÍÍÍÍÍÍÍÍÍ»                        ³
 ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³loopÃÄÄÄ>ºSTATEMENTÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³                              ÀÄÄÄÄÙ    ÈÍÍÍÍÍÍÍÍÍ¼        ÚÄÄÄÄ¿          ³
 ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³quitÃÄÄÄÄÄÄÄÄÄ>´
 ³                                      ÚÄ¿                  ÀÄÄÄÄÙ          ³
 ³         ÉÍÍÍÍÍÍÍ»                 ÚÄ>³,ÃÄÄ¿                               ³
 ³         ºINTEGERº        ÉÍÍÍÍÍÍÍ»³  ÀÄÙ  ³ ÉÍÍÍÍÍÍÍ»                     ³
 ³  ÚÄÄÄ¿  ºOR CHARº  ÚÄÄ¿  ºINTEGERº³  ÚÄÄ¿ ³ ºINTEGERº  ÚÄÄ¿  ÉÍÍÍÍÍÍÍÍÍ»  ³
 ÃÄ>³forÃÄ>ºNAME   ÇÄ>³:=ÃÄ>ºEXPRESSÇÅÄ>³toÃÄÅ>ºEXPRESSÇÄ>³doÃÄ>ºSTATEMENTÇÄ>´
 ³  ÀÄÄÄÙ  ÈÍÍÍÍÍÍÍ¼  ÀÄÄÙ  ÈÍÍÍÍÍÍÍ¼³  ÀÄÄÙ ³ ÈÍÍÍÍÍÍÍ¼  ÀÄÄÙ  ÈÍÍÍÍÍÍÍÍÍ¼  ³
 ³  ÚÄÄÄÄÄÄ¿      ÉÍÍÍÍÍÍÍÍÍÍ»      ÚÙ       À¿                              ³
 ÃÄ>³returnÃÄÄÂÄÄ>ºEXPRESSIONÇÄÄÄ¿  ³ ÚÄÄÄÄÄÄ¿³                              ³
 ³  ÀÄÄÄÄÄÄÙ  ³   ÈÍÍÍÍÍÍÍÍÍÍ¼   ³  À>³downtoÃÙ                              ³
 ³            ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´    ÀÄÄÄÄÄÄÙ                               ³
 ³  ÚÄÄÄÄ¿        ÉÍÍÍÍÍÍÍÍÍÍ»   ³                                           ³
 ÃÄ>³exitÃÄÄÄÄÂÄÄ>ºBYTE EXPR ÇÄÄ>ÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³  ÀÄÄÄÄÙ    ³   ÈÍÍÍÍÍÍÍÍÍÍ¼   ³                                           ³
 ³            ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>Ù                                           ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>ÁÄ>



EXPRESSION:
              ÉÍÍÍÍÍÍÍÍÍÍÍÍÍ»
         ÚÄÄÄ>ºIF EXPRESSIONÇÄÄÄÄ¿
         ³    ÈÍÍÍÍÍÍÍÍÍÍÍÍÍ¼    ³
         ³    ÉÍÍÍÍÍÍÍÍÍÍÍÍÍ»    ³
   ÄÄÄÄÄÄÁ>ÂÄ>ºBOOLEAN TERM ÇÄÄÂ>ÁÄÄÄÄÄ>       BOOLEAN TERM:
           ³  ÈÍÍÍÍÍÍÍÍÍÍÍÍÍ¼  ³                           ÉÍÍÍÍÍÍÍÍÍÍ»
           ³       ÚÄ¿         ³                  ÄÄÄÄÄÄÂÄ>ºCOMPARISONÇÄÄÂÄÄÄÄ>
           Ã<ÄÄÄÄÄÄ´!³<ÄÄÄÄÄÄÄÄ´                        ³  ÈÍÍÍÍÍÍÍÍÍÍ¼  ³
           ³       ÀÄÙ         ³                        ³      ÚÄ¿       ³
           ³       ÚÄÄ¿        ³                        Ã<ÄÄÄÄÄ´&³<ÄÄÄÄÄÄ´
           Ã<ÄÄÄÄÄÄ´or³<ÄÄÄÄÄÄÄ´                        ³      ÀÄÙ       ³
           ³       ÀÄÄÙ        ³                        ³     ÚÄÄÄ¿      ³
           ³       ÚÄ¿         ³                        À<ÄÄÄÄ´and³<ÄÄÄÄÄÙ
           Ã<ÄÄÄÄÄÄ´|³<ÄÄÄÄÄÄÄÄ´                              ÀÄÄÄÙ
           ³       ÀÄÙ         ³
           ³      ÚÄÄÄ¿        ³
           À<ÄÄÄÄÄ´xor³<ÄÄÄÄÄÄÄÙ
                  ÀÄÄÄÙ

IF EXPRESSION:
              ÉÍÍÍÍÍÍÍÍÍÍ»
        ÚÄÄ¿  ºBOOLEAN   º  ÚÄÄÄÄ¿  ÉÍÍÍÍÍÍÍÍÍÍ»  ÚÄÄÄÄ¿   ÉÍÍÍÍÍÍÍÍÍÍ»
   ÄÄÄÄ>³ifÃÄ>ºEXPRESSIONÇÄ>³thenÃÄ>ºEXPRESSIONÇÄ>³elseÃÄÄ>ºEXPRESSIONÇÄÄÄÄÄÄÄ>
        ÀÄÄÙ  ÈÍÍÍÍÍÍÍÍÍÍ¼  ÀÄÄÄÄÙ  ÈÍÍÍÍÍÍÍÍÍÍ¼  ÀÄÄÄÄÙ   ÈÍÍÍÍÍÍÍÍÍÍ¼

COMPARISON:
     ÚÄÄÄÄÄÄÄÄÄ>¿   ÉÍÍÍÍÍÍÍÍÍÍ»
     ³   ÚÄÄÄ¿  ³   ºARITHMETICº
   ÄÄÅÄÄ>³notÃÄÄÅÄÄ>ºEXPRESSIONÇÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿
     ³   ÀÄÄÄÙ  ³   ÈÍÍÍÍÍÍÍÍÍÍ¼    ³                                    ³
     ³    ÚÄ¿   ³    ÚÄÄÄÄÄÂÄÄÄÄÄÂ<ÄÁÄ>ÂÄÄÄÄÄÂÄÄÄÄÄÄ¿                    ³
     ÀÄÄÄ>³~ÃÄÄÄÙ   ÚÁ¿   ÚÁ¿   ÚÁ¿   ÚÁ¿   ÚÁÄ¿   ÚÁÄ¿                  ³
          ÀÄÙ       ³=³   ³#³   ³>³   ³<³   ³>=³   ³<=³    ÉÍÍÍÍÍÍÍÍÍÍ»  ³
                    ÀÂÙ   ÀÂÙ   ÀÂÙ   ÀÂÙ   ÀÂÄÙ   ÀÂÄÙ    ºARITHMETICº  ³
                     ÀÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄ>ºEXPRESSIONÇÄÄÁÄÄÄÄ>
                                                           ÈÍÍÍÍÍÍÍÍÍÍ¼
ARITHMETIC
EXPRESSION:   ÉÍÍÍÍÍÍÍÍÍÍ»                   TERM:         ÉÍÍÍÍÍÍÍÍÍÍ»
   ÄÄÄÄÄÄÄÄÂÄ>º   TERM   ÇÄÄÂÄÄÄÄÄÄÄ>           ÄÄÄÄÄÄÄÄÂÄ>ºSHIFT EXPRÇÄÄÂÄÄÄÄ>
           ³  ÈÍÍÍÍÍÍÍÍÍÍ¼  ³                           ³  ÈÍÍÍÍÍÍÍÍÍÍ¼  ³
           ³      ÚÄ¿       ³                           ³      ÚÄ¿       ³
           Ã<ÄÄÄÄÄ´+³<ÄÄÄÄÄÄ´                           Ã<ÄÄÄÄÄ´*³<ÄÄÄÄÄÄ´
           ³      ÀÄÙ       ³                           ³      ÀÄÙ       ³
           ³      ÚÄ¿       ³                           ³      ÚÄ¿       ³
           À<ÄÄÄÄÄ´-³<ÄÄÄÄÄÄÙ                           À<ÄÄÄÄÄ´/³<ÄÄÄÄÄÄÙ
                  ÀÄÙ                                          ÀÄÙ

SHIFT EXPR:   ÉÍÍÍÍÍÍÍÍÍÍ»
   ÄÄÄÄÄÄÄÄÄÄ>º  FACTOR  ÇÄÄÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿
              ÈÍÍÍÍÍÍÍÍÍÍ¼       ³     ³      ³                   ³
                                 ³     ³      ³                   ³
                                ÚÁÄ¿  ÚÁÄ¿  ÚÄÁÄ¿                 ³
                                ³<<³  ³>>³  ³->>³   ÉÍÍÍÍÍÍÍÍÍÍ»  ³
                                ÀÂÄÙ  ÀÂÄÙ  ÀÄÂÄÙ   º INTEGER  º  ³
                                 ÀÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄ>º FACTOR   ÇÄÄÁÄÄÄÄÄÄÄÄÄÄÄ>
                                                    ÈÍÍÍÍÍÍÍÍÍÍ¼



FACTOR:        ÚÄ¿    ÉÍÍÍÍÍÍ»
   ÄÂÄÄÄÄÄÂÄÂÄ>³-ÃÄÄÄ>ºFACTORÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿
    ³ ÚÄ¿ ³ ³  ÀÄÙ    ÈÍÍÍÍÍÍ¼                                         ³
    ÀÄ´+³<Ù ³  ÉÍÍÍÍÍÍÍÍ»                                              ³
      ÀÄÙ   ÃÄ>ºCONSTANTÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
            ³  ÈÍÍÍÍÍÍÍÍ¼   ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿            ³
            ³  ÉÍÍÍÍÍÍÍÍÍÍ» ³         ÉÍÍÍÍÍÍÍÍÍÍ»        ³            ³
            ³  ºINTEGER,  º ³  ÚÄ¿    ºINTEGER   º    ÚÄ¿ ³            ³
            ÃÄ>ºCHAR OR   ÇÄÁÄ>³(ÃÄÂÄ>ºEXPRESSIONÇÄÂÄ>³)ÃÄÁÄÄÄÄÄÄÄÄÄÄÄ>´
            ³  ºREAL NAME º    ÀÄÙ ³  ÈÍÍÍÍÍÍÍÍÍÍ¼ ³  ÀÄÙ              ³
            ³  ÈÍÍÍÍÍÍÍÍÍÍ¼        ³      ÚÄ¿      ³                   ³
            ³                      À<ÄÄÄÄÄ´,³<ÄÄÄÄÄÙ                   ³
            ³                             ÀÄÙ                          ³
            ³  ÚÄ¿    ÉÍÍÍÍÍÍÍÍÍÍ»    ÚÄ¿                              ³
            ÃÄ>³(ÃÄÄÄ>ºEXPRESSIONÇÄÄÄ>³)ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
            ³  ÀÄÙ    ÈÍÍÍÍÍÍÍÍÍÍ¼    ÀÄÙ                              ³
            ³                                                          ³
            ³  ÉÍÍÍÍÍÍÍÍÍÍÍÍÍ» ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿         ³
            ³  ºFUNCTION,    º ³  ÚÄ¿    ÉÍÍÍÍÍÍÍÍÍÍ»    ÚÄ¿ ³         ³
            ÃÄ>ºINTRINSIC OR ÇÄÁÄ>³(ÃÄÂÄ>ºEXPRESSIONÇÄÂÄ>³)ÃÄÁÄÄÄÄÄÄÄÄ>´
            ³  ºEXTERNAL NAMEº    ÀÄÙ ³  ÈÍÍÍÍÍÍÍÍÍÍ¼ ³  ÀÄÙ           ³
            ³  ÈÍÍÍÍÍÍÍÍÍÍÍÍÍ¼        ³      ÚÄ¿      ³                ³
            ³                         À<ÄÄÄÄÄ´,³<ÄÄÄÄÄÙ                ³
            ³  ÉÍÍÍÍÍÍÍÍÍÍ»                  ÀÄÙ                       ³
            ÃÄ>º  STRING  ÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
            ³  ÈÍÍÍÍÍÍÍÍÍÍ¼                                            ³
            ³  ÉÍÍÍÍÍÍÍÍÍÍ»                                            ³
            ³  º CONSTANT º                                            ³
            ÃÄ>º ARRAY    ÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
            ³  ÈÍÍÍÍÍÍÍÍÍÍ¼                                            ³
            ³                           ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
            ³  ÚÄÄÄÄÄÄÄ¿     ÉÍÍÍÍÍÍÍÍ» ³         ÉÍÍÍÍÍÍÍÍÍÍ»         ³
            ÃÄ>³addressÃÄÂÄÄ>ºVARIABLEº ³  ÚÄ¿    ºINTEGER   º    ÚÄ¿  ³
            ³  ÀÄÄÄÄÄÄÄÙ ³   ºNAME    ÇÄÁÄ>³(ÃÄÂÄ>ºEXPRESSIONÇÄÂÄ>³)ÃÄ>ÁÄÄÄÄÄÄ>
            ³     ÚÄ¿    ³   ÈÍÍÍÍÍÍÍÍ¼    ÀÄÙ ³  ÈÍÍÍÍÍÍÍÍÍÍ¼ ³  ÀÄÙ
            ÀÄ>ÄÄÄ´@ÃÄÄÄÄÙ                     ³      ÚÄ¿      ³
                  ÀÄÙ                          À<ÄÄÄÄÄ´,³<ÄÄÄÄÄÙ
                                                      ÀÄÙ
CONSTANT ARRAY:
               ÉÍÍÍÍÍÍÍÍÍÍ»
       ÚÄ¿     ºCONSTANT  º      ÚÄ¿
   ÄÄÄ>³[ÃÄÄÂÄ>ºEXPRESSIONÇÄÄÂÄÄ>³]ÃÄÄÄÄÄÄÄÄÄ>
       ÀÄÙ  ³  ÈÍÍÍÍÍÍÍÍÍÍ¼  ³   ÀÄÙ
            ³  ÉÍÍÍÍÍÍÍÍÍÍ»  ³
            ³  º CONSTANT º  ³
            ÃÄ>º ARRAY    ÇÄÄ´
            ³  ÈÍÍÍÍÍÍÍÍÍÍ¼  ³
            ³  ÉÍÍÍÍÍÍÍÍÍÍ»  ³
            ÃÄ>º  STRING  ÇÄÄ´
            ³  ÈÍÍÍÍÍÍÍÍÍÍ¼  ³
            ³      ÚÄ¿       ³
            À<ÄÄÄÄÄ´,³<ÄÄÄÄÄÄÙ
                   ÀÄÙ
STRING:
           ÚÄ¿    ÚÄÄÄÄÄÄÄÄÄ¿    ÚÄ¿
   ÄÄÄÄÄÄÄ>³"ÃÄÂÄ>³characterÃÄÂÄ>³"ÃÄÄÄÄÄÄÄÄÄ>
           ÀÄÙ ³  ÀÄÄÄÄÄÄÄÄÄÙ ³  ÀÄÙ
               À<ÄÄÄÄÄÄÄÄÄÄÄÄÄÙ



CONSTANT:  ÚÄ¿
        ÚÄ>³-ÃÄ¿       ÉÍÍÍÍÍÍÍÍ»
        ³  ÀÄÙ ³       ºUNSIGNEDº
   ÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄ>ÄÂÄ>ºINTEGER ÇÄÄÄÄÄÄÄÄÄ>¿
        ³  ÚÄ¿ ³    ³  ÈÍÍÍÍÍÍÍÍ¼          ³
        ÀÄ>³+ÃÄÙ    ³  ÉÍÍÍÍÍÍÍÍ»          ³
           ÀÄÙ      ³  ºUNSIGNEDº          ³
                    ÃÄ>ºREAL    ÇÄÄÄÄÄÄÄÄÄ>´
                    ³  ÈÍÍÍÍÍÍÍÍ¼          ³
                    ³  ÉÍÍÍÍÍÍÍÍ»          ³
                    ³  ºCONSTANTº          ³
                    ÃÄ>ºNAME    ÇÄÄÄÄÄÄÄÄÄ>´
                    ³  ÈÍÍÍÍÍÍÍÍ¼          ³
                    ³  ÚÄÄÄÄÄ¿             ³
                    ÃÄ>³true ÃÄÄÄÄÄÄÄÄÄÄÄÄ>´
                    ³  ÀÄÄÄÄÄÙ             ³
                    ³  ÚÄÄÄÄÄ¿             ³
                    ÃÄ>³falseÃÄÄÄÄÄÄÄÄÄÄÄÄ>´
                    ³  ÀÄÄÄÄÄÙ             ³
                    ³  ÚÄ¿   ÚÄÄÄÄÄÄÄÄÄ¿   ³
                    ÀÄ>³^ÃÄÄ>³characterÃÄÄ>ÁÄÄÄÄÄÄ>
                       ÀÄÙ   ÀÄÄÄÄÄÄÄÄÄÙ

NAME:      ÚÄÄÄÄÄÄÄÄÄ¿
           ³uppercase³
   ÄÄÄÄÄÂÄ>³letter   ÃÄÂÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄ>
        ³  ÀÄÄÄÄÄÄÄÄÄÙ ³ ³  ÚÄÄÄÄÄÄ¿     ³
        ³  ÚÄÄÄÄÄÄÄÄÄ¿ ³ Ã<Ä´letter³<ÄÄÄÄ´
        ÀÄ>³underlineÃÄÙ ³  ÀÄÄÄÄÄÄÙ     ³
           ÀÄÄÄÄÄÄÄÄÄÙ   ³  ÚÄÄÄÄÄÄ¿     ³
                         Ã<Ä´digit ³<ÄÄÄÄ´
                         ³  ÀÄÄÄÄÄÄÙ     ³
                         ³  ÚÄÄÄÄÄÄÄÄÄ¿  ³
                         À<Ä´underline³<ÄÙ
                            ÀÄÄÄÄÄÄÄÄÄÙ
UNSIGNED INTEGER:
               ÚÄÄÄÄÄ¿
   ÄÄÄÄÄÂÄ>ÄÂÄ>³digitÃÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>ÂÄÄÄÄÄÄÄÄ>
        ³   ³  ÀÄÄÄÄÄÙ ³                 ³
        ³   ÀÄÄÄÄÄ<ÄÄÄÄÙ                 ³
        ³  ÚÄ¿    ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿     ³
        ÃÄ>³$ÃÄÂÄ>³0..9, A..F, a..fÃÄÂÄÄ>´
        ³  ÀÄÙ ³  ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³   ³
        ³      ÀÄÄÄÄÄÄÄÄÄÄÄ<ÄÄÄÄÄÄÄÄÄÙ   ³
        ³  ÚÄ¿    ÚÄÄÄÄÄÄÄÄÄÄ¿           ³
        ÀÄ>³%ÃÄÂÄ>³   0..1   ÃÄÂÄÄÄÄÄÄÄÄ>Ù
           ÀÄÙ ³  ÀÄÄÄÄÄÄÄÄÄÄÙ ³
               À<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

UNSIGNED REAL:    ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿  ÚÄ¿     ÚÄ¿
                  ³        ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿  ³Ú>³EÃ¿ ÚÄ>³-ÃÄ¿
        ÚÄÄÄÄÄ¿   ³    ÚÄ¿ ³    ÚÄÄÄÄÄ¿   ³  ³³ ÀÄÙ³ ³  ÀÄÙ ³    ÚÄÄÄÄÄ¿
ÄÄÄÂÄÂÄ>³digitÃÄÂÄÁ>ÂÄ>³.ÃÄÁÄÂÄ>³digitÃÄÂÄÁÂ>Á´    ÃÄÅÄÄÄÄÄ>ÅÄÂÄ>³digitÃÄÂ>ÂÄÄ>
   ³ ³  ÀÄÄÄÄÄÙ ³   ³  ÀÄÙ   ³  ÀÄÄÄÄÄÙ ³  ³  ³ ÚÄ¿³ ³  ÚÄ¿ ³ ³  ÀÄÄÄÄÄÙ ³ ³
   ³ À<ÄÄÄÄÄÄÄÄÄÙ   ³        À<ÄÄÄÄÄÄÄÄÄÙ  ³  À>³eÃÙ ÀÄ>³+ÃÄÙ À<ÄÄÄÄÄÄÄÄÄÙ ³
   ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>Ù                      ³    ÀÄÙ     ÀÄÙ                ³
                                           ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>Ù
�


