Advantages of Inline Assmbly

Because the inline aseembler doesn’t require separate aseembly and link steps, it ismore mnvenient than a separate
assembler. Inline assembly code @an use any C variable or function name that isin scope, so it is easy to integrate it
with your program’s C code. Because the assambly code @an be mixed inlinewith C or C++ statements, it can do
tasksthat are aumbersome or impossblein C or C++.
The uses of inline assembly include:

» Writing functionsin assembly language.

* Spot-optimising spead-criticd sedions of code.
* Making dred hardware accessfor devicedrivers.

* Writing prolog and epilog code for “naked” calls.
Inlineasembly is a spedal-purpose tod. If you plan to port an application to diff erent machines, you'll probably
want to place machine-spedfic code in a separate module. Because the inline assembler doesn’t support al of
Microsoft Macro Assmbler’s (MASM) macro and data diredives, you may find it more mnvenient to use MASM
for such modules.

The am Keyword

The __asm keyword invokes theinline assembler and can appea wherever a C or C++ statement islegal. It cannot
appea by itsalf. It must be followed by an assmbly instruction, a group of instructions enclosed in braces, or, at the
very least, an empty pair of braces. Theterm*__asm block” hererefers to any instruction or group of ingtructions,
whether or not in braces.

The foll owing code fragment isa smple ___asm block enclosed in braces:

__asm
{
mov al, 2
mov dx, 0xD007
out al, dx
}

Alternatively, you can put ___asm in front of each assembly instruction:

__asmmov al, 2

__asm mov dx, 0xD007

__asm out al, dx

Becausethe __asm keyword is a Satement separator, you can also put aseembly instructions on the same line:
__asmmoval,2 __asm mov dx, 0xDO0O7 __asm out al, dx

All three examples generate the same de, but thefirg style (enclosingthe __asm block in braces) has some
advantages. The braces clearly separate assembly code from C or C++ code and avoid neeadlessrepetition of the
__am keyword. Braces can also prevent ambiguities. If you want to put aC or C++ statement on the sameline as
an __asm block, you must enclose the block in braces. Without the braces, the compiler cannot tell where assembly
code stops and C or C++ statements begin. Finally, because the text in braces has the same format as ordinary
MASM text, you can easily cut and paste text from existing MASM sourcefil es.

Unlike bracesin C and C++, the braces enclosing an __asm block don’t affed variable scope. You can also nest
__am blocks; nesting does not aff ect variable scope.

Instruction Set for Inline Assembly

Theinline asembler supports the full instruction set of the Intel 486 processor. Additional ingructions supported by
the target processor can be aeaed with the _emit Pseudoinstruction.

The _emit pseudoinstruction is smilar to the DB diredive of MASM. You use _emit to define asingle immediate
byte at the arrent location in the aurrent text segment. However, _emit can define only one byte at atime, and it
can only define bytes in the text segment. It uses the same syntax asthe INT instruction.

The foll owing fragment places the given bytesinto the code:

#define randasm __asm _emit Ox4A __asm _emit 0x43 __asm _emit 0x4B

__asm{
randasm

}

MASM Expressonsin Inline Asseembly

Inlineaseembly code @n use any MASM expresson, which is any combination of operands and operators that
evaluatesto asingle value or address

Data Directives and Operatorsin Inline
Asembly

Although an ___asm block can reference C or C++ datatypes and oljeds, it cannot define data objeds with MASM
diredives or operators. Spedfically, you cannot use the definition dredives DB, DW, DD, DQ, DT, and DF, or the
operators DUP or THIS. MASM structures and records are also unavailable. Theinline assembler doesn’t accept
the diredives STRUC, RECORD, WIDTH, or MASK.

Although the inline assembler doesn’t support most MASM diredives, it does sipport EVEN and ALIGN. These
diredives put NOP (no gperation) instructions in the assembly code as neaded to align labelsto spedfic boundaries.
This makes instruction-fetch operations more dficient for some processors.

MASM M acro Diredivesin Inline Assmbly

Theinline aseembler isnot amacro assmbler. You cannot use MASM macro dredives (MACRO, REPT, IRC,
IRP, and ENDM) or macro goerators (<>, !, &, %, and .TYPE). An __asm block can use C preprocessor
diredives, however.

Segment Referencesin Inline Asseembly

Y ou must refer to segments by register rather than by name (the segment name TEXT isinvalid, for ingance).
Segment overrides must use theregister explicitly, asin ES:[BX].

Typeand Variable Sizesin Inline Aseembly

The LENGTH, SIZE, and TY PE operators have alimited meaningin inline assembly. They cannot be used at all
with the DUP operator (because you cannot define data with MASM diredives or operators). But you can use them
to find the 9ze of C or C++ variables or types:
» TheLENGTH operator can return the number of elementsin an array. It returnsthe value 1 for non-array
variables.

* TheSIZE operator can return the size of a C or C++ variable. A variable's szeisthe product of its
LENGTH and TYPE.

* TheTYPE operator can return the size of aC or C++ type or variable. If the variableisan array, TY PE
returnsthe size of asingle dement of the aray.
For example, if your program has an 8-element int array,

int arr[8];
the f0||[03Ni ng C and aseembly expressonsyield the size of arr and its elements.
__am C Size
LENGTH arr sizeof (arr)/sizeof (arr[0]) 8
SIZE arr sizeof(arr) 16
TYPE ar sizeof (arr[0]) 2

Asembly-L anguage Comments

Ingructionsinan __asm block can use assembly-language comments:

__asm mov ax, offset buff ; Load address of buff

Because C macros expandinto asingelogical line, avoid using assembly-language comments in macros.
(SeeDefining __asm Blocks as C Macros.) An __asm block can also contain C-style comments; for more
information, seeUsing C or C++ in __asm Blocks.

Debugging and Listingsfor Inline Assembly

Programs containing inline assembly code @an be debugged with a sourcelevel debugger if you compil e with the /Zi
option.

Within the debugger, you can set breakpoints on bath C or C++ and assembly-language lines. If you enable mixed
assembly and source mode, you can display both the source and dsassembled form of the assembly code.

Note that putting multiple assembly instructions or sourcelanguage statements on one line can hamper debuggng.
In source mode, you can use the debugger to set bregpoints on a single line but not on individual statements on the
same line. The same principle appliesto an __asm block defined as a C macro, which expandsto asingle logicd
line.

If you create a mixed source and assmbly li sting with the /FAs compil er option, the li sting contains bath the source
and aseembly forms of each assmbly-language line. Macros are not expanded in listings, but they are expanded
during compilation

|ntel'sMM X Instruction Set

The Visual C++ compiler al ows you to use Intel's MM X (multimedia extension) ingruction set in theinline
asembler. The MM X ingructions are dso supported by the debugger disaseembly. The MM X registers are not
supported in the debugger register window. The cmpil er generates awarning message if the function contains
MM X instructions, but does not have an EMM Sinstruction to empty the multimedia state. For more information,
seethe Intd Web site.

Using C or C++1in __asm Blocks

Because inline aseembly instructions can be mixed with C or C++ statements, they can refer to C or C++ variables
by name and use many other e ements of those languages.
An__asm block can use the foll owing language dements:

* Symbols, including labels and variable and function names

e Congtants, including symboli c constants and enum members
* Macrosand preprocessor diredives

e Comments (bath /* */and //')

* Type names (wherever aMASM type would be legal)

» typedef names, generaly used with operators such as PTR and TY PE or to spedfy structure or union
members
Within an __asm block, you can spedfy integer constants with either C notation or assembler radix notation (0x100
and 1(0h are equivalent, for example). This all ows you to define (using #define) a mnstant in C andthen useit in
both C or C++ and asembly portions of the program. Y ou can also spedfy constantsin octal by preceling them
with a0. For example, 0777 spedfies an octal constant.

Using Operatorsin _am Blocks

An__asm block cannot use C or C++ spedfic operators, such asthe << operator. However, operators shared by C
and MASM, such asthe * operator, are interpreted as assembly-language operators. For instance outside an __asm
block, square brackets ([]) areinterpreted as enclosing array subscripts, which C automatically scales to the size of
an element in the aray. Insidean ___asm block, they are seen asthe MASM index operator, which yields an
unscaed byte offset from any data object or label (not just an array). The following code il lustrates the difference
int array[10];

__asm mov array[6], bx ; Store BX at array+6 (not scaled)

array[6] = O; [* Store 0 at array+12 (scaled) */

Thefirg referenceto arra y isnot scaled, but the second is. Note that you can use the TY PE operator to achieve
scaling based on a constant. For example, the foll owing statements are equivalent:

__asm mov array[6 * TYPE int], O ; Store O at array + 12

array[6] = O; /* Store O at array + 12 */

Using C or C++ Symbolsin _ asm Blocks

An___asm block can refer to any C or C++ symbd in scope where the block appeas. (C and C++ symbols are
variable names, function names, and labels; that is, names that aren’t symboli ¢ constants or enum members. You
cannot call C++ member functions.)
A few restrictions apply to the use of C and C++ symbols:
» Each asembly-language statement can contain only one C or C++ symbd. Multiple symbols can appea in
the same assembly instruction only with LENGTH, TYPE, and SIZE expressons.

* Functionsreferenced in an ___asm block must be dedared (prototyped) earlier in the program. Otherwise,
the compiler cannot distinguish between function names and labelsin the __asm block.

 An__am block cannot use any C or C++ symbols with the same spelling asMASM reserved words
(regardlessof case). MASM reserved words include ingruction names such as PUSH and register names
suchasSl.

* Structure and union tags are not reaognized in ___asm blocks.

Accessng C or C++ Datain __asm Blocks

A great convenienceof inline assembly is the ability to refer to C or C++ variables by name. An __asm block can
refer to any symbols, including variable names, that are in scope where the block appeas. For instance, if the C
variablevar isin scope, theingruction

__asm mov eax, var

storesthe value of var in EAX.

If aclass, structure, or union member has auniquename, an ___asm block can refer to it using anly the member
name, without spedfying the variable or typedef name before the period (.) operator. If the member nameis not
unique, however, you must place avariable or typedef name immediately before the period operator. For example,
the foll owing structure types are same_name as their member name:

struct first_type

char *weasel,
int same_name;

h
struct second_type
{
int wonton;
long same_name;
¥

If you dedare variables with the types
struct first_type hal;
struct second_type oat;
all references to the member same_name must use the variable name because same_name isnot unique. But the
member weasel hasaunique name, so yau can refer to it using only its member name:
asm

{
mov ebx, OFFSET hal
mov ecx, [ebx]hal.same_name ; Must use 'hal’
mov esi, [ebx].weasel ; Can omit 'hal

}

Note that omitting the variable name is merely a coding convenience The same assembly instructions are generated
whether or not the variable nameis present.

Y ou can accessdatamembers in C++ without regard to accessrestrictions. However, you cannot call member
functions.

Writing Functionswith Inline Assembly

If you write afunction with inline assembly code, it’s easy to passarguments to the function and return a value from
it. The foll owing examples compare afunction first written for a separate assembler and then rewritten for theinline
asembler. The function, called power2 , recaves two parameters, multiplying the first parameter by 2 to the power
of the second parameter. Written for a separate assembler, the function might look like this:
; POWER.ASM
; Compute the power of an integer

PUBLIC _power2
_TEXT SEGMENT WORD PUBLIC 'CODE'
_power2 PROC

push ebp ; Save EBP
mov ebp, esp ; Move ESP into EBP so we can refer
; to arguments on the stack

mov eax, [ebp+4] ; Get first argument
mov ecx, [ebp+6] ; Get second argument
shleax,cl ; EAX=EAX*(2"CL)
pop ebp ; Restore EBP

ret ; Return with sum in EAX

_power2 ENDP
_TEXT ENDS

END
Sinceit’ swritten for a separate assembler, the function requires a separate sourcefile axd assembly andlink steps. C
and C++ function arguments are usualy passed on the stack, so thisversion of the power2 function accesesits
arguments by their positions on the stack. (Note that the M ODEL diredive, availablein MASM and some other
asemblers, also all ows you to access $ack arguments and local stack variables by name.)
The POWER2.C program writes the power 2 function with inline assambly code;
/* POWER2.C */
#include <stdio.h>

int power2(int num, int power);
void main(void)

printf("3 times 2 to the power of 5 is % d\n”, \
power2(3, 5));
}

int power2(int num, int power)

__asm
{

mov eax, num ; Get first argument

mov ecx, power ; Get second argument

shleax, cl ; EAX =EAX* (2 to the power of CL)

}

/* Return with result in EAX */
}
Theinline version of the power 2 function refersto its arguments by name and appeasin the same sourcefile as
therest of the program. This version also requires fewer assmbly instructions.
Because the inline version of power2 doesn’t exeaute a C return statement, it causes aharmlesswarningif you
compil e at warning level 2 or higher. The function does return avalue, but the cmpil er cannot tell that in the
absenceof areturn statement. You can use #pragmawarning to disable the generation of this warning.

Using and Preserving Registersin Inline
Asembly

In general, you should not assume that aregister will have a given value when an __asm block begins. Register
values are not guaranteed to be preserved across gparate asm blocks. If you end a block of inline ade and begin
another, you cannot rely on the registersin the second block to retain their values from the first block. An __asm
block inheritswhatever register values result from the normal flow of control.

If you usethe _ fastcall cdling convention, the cmpiler passes function argumentsin registersinstead o on the
stack. This can create problemsin functionswith __asm blocks because a function has no way to tell which
parameter isin which register. If the function happensto recave a parameter in EAX and immediately stores
something elsein EAX, the origina parameter islost. In addition, you must preserve the ECX register in any
function dedared with __ fastcall.

To avoid such register conflicts, don't usethe __ fastcall convention for functions that contain an __asm block. If
you specify the _ fastcall convention globally with the /Gr compil er option, dedare every function containing an
__asmblock with __cdecl or __stdcall. (The __cdecl attribute tell sthe aompiler to usethe C calling convention for
that function.) If you are not compiling with /Gr, avoid dedaring the function with the __ fastcall attribute.

When using___asm to write assembly language in C/C++ functions, you don't need to preservethe EAX, EBX,
ECX, EDX, ESI, or EDI regigers. For example, in the POWER2.C example in Writing Functions with Inline
Assmbly, the power 2 function doesn't preserve the value in the EAX register. However, using these registers will
affea code quality because the register al ocator cannot use them to store values across___asm blocks. In addition,
by using EBX, ESI or EDI in inline assembly code, you forcethe ampil er to save and restore those registersin the
function prologue and epil ogue.

Y ou should preserve other registers you use (such as DS, SS SP, BP, and flags registers) for the scope of the __asm
block. You should preserve the ESPand EBP registers unlessyou have some reason to change them (to switch
stacks, for example). Also seeOptimizing Inline Assembly.

Note If your inline assembly code dangesthe diredion flag usingthe STD or CLD ingructions, you must restore
the flag to itsoriginal value.

Jumping to Labelsin Inline Assembly

Like an ordinary C or C++ label, alabd in an ___asm block has scope throughout the function in which it is defined
(not only in the block). Both assembly ingtructions and goto statements can jump to labelsinside or outside the
___asm block.
Labelsdefined in ___asm blocks are not case sensitive; bath goto statements and assembly instructions can refer to
those labels without regard to case. C and C++ labels are @se sensitive only when used by goto statements.
Asembly instructions can jump to a C or C++ label without regard to case.
The foll owing code shows all the permutations:
void func(void)
{

goto C_Dest; /* Legal: correct case */

goto c_dest; /* Error: incorrect case */

goto A_Dest; /* Legal: correct case */
goto a_dest; /* Legal: incorrect case */

__asm

{

jmp C_Dest ; Legal: correct case
jmp c_dest ; Legal: incorrect case

jmp A_Dest ; Legal: correct case
jmp a_dest ; Legal: incorrect case

a dest: ;__asm label

}

C_Dest: /* C label */
return;
}
Don't use C library function names aslabelsin __asm blocks. For instance, you might be tempted to use exit asa
label, as foll ows:
; BAD TECHNIQUE: using library function name as label
jne exit

exit:

; More __asm code follows
Because exit isthe name of a C library function, this code might cause ajump to the exit function instead o to the
desired location.
Asin MASM programs, the dollar symbd ($) serves as the current location counter. It isalabel for theinstruction
currently being aseembled. In ___asm blocks, its main use isto make long conditional jumps:
jne $+5 ; next instruction is 5 bytes long
jmp farlabel
; $45

farlabel:

Calling C Functionsin Inline Assembly

An__asm block can call C functions, including C library routines. The foll owing example cdl sthe printf library
routine:
#include <stdio.h>

char format[] = "%s %s\n";
char hello[] = "Hello";
char world[] = "world";
void main(void)
{
__asm
{
mov eax, offset world
push eax
mov eax, offset hello
push eax
mov eax, offset format
push eax
call printf
/lclean up the stack so that main can exit cleanly
/luse the unused register ebx to do the cleanup
pop ebx
pop ebx
pop ebx
}
}

Because function arguments are passed on the stack, you simply push the neaded arguments—string pointers, in the
previous example—before @lling the function. The arguments are pushed in reverse order, so they come off the
stack in the desired order. To emulate the C statement

printf(format, hello, world);

the example pushes pointerstoworld , hell o, and format , inthat order, and then calls printf.

Calling C++ Functionsin Inline Assembly

An__asm block can call only global C++ functionsthat are not overloaded. If you call an overloaded gobal C++
function or a C++ member function, the compil er isaues an error.

You can dso call any functions dedared with extern " C" linkage. Thisallowsan __asm block within a C++
program to call the C library functions, because all the standard header fil es dedare the library functionsto have
extern " C" linkage.

Defining __am Blocksas C Macros

C macros offer a mnvenient way to insert assembly code into your source @de, but they demand extra care because
amacro expandsinto asinglelogical line. To creae trouble-freemacros, follow theserules:
* Enclosethe___asm block in braces.

* Putthe__asm keyword in front of each assambly instruction.

* Usedd-style C comments(/* comment* /) instead of assembly-style comments (; comment) or
single-line C comments (// comment).

Toillustrate, the foll owing example defines a simple macro:
#define PORTIO __asm \
/* Port output */ \
{ \

__asmmov al, 2 \

__asm mov dx, 0xD007 \

__asmout al, dx \
}
At first glance thelast three__asm keywords seam superfluous. They are neaded, however, because the macro
expandsinto asingle line:
__asm /* Portoutput */{ _asm mov al, 2 __asm mov dx, 0xDO07 __asm out al,
dx }
Thethird and fourth ___asm keywords are nealed as datement separators. The only statement separators recognized
in __asm blocks are the newline character and ___asm keyword. Because a block defined as a macro is one logical
line, you must separate each ingruction with __asm.
The braces are essntial aswell. If you omit them, the compiler can be onfused by C or C++ statements on the
same lineto the right of the macro invocation. Without the dosing brace, the mmpiler cannot tell where assembly
code stops, and it sees C or C++ statements after the ___asm block as assembly instructions.
Asembly-style comments that start with a semicolon (;) continue to theend o the line. This causes problemsin
macros because the mmpil er ignores everything after the comment, al the way to the end o the logical line. The
same istrue of single-line C or C++ comments (// comment). To prevent errors, use old-style C comments (/*
comment */) in__asm blocks defined as macros.
An__asm block written asa C macro can take aguments. Unlike an ordinary C macro, however, an __asm macro
cannot return avalue. So you cannot use such macrosin C or C++ expressons.
Be areful not to invoke macros of thistype indiscriminately. For instance invoking an assembly-language macro in
afunction dedared with the __fastcall convention may cause unexpeded results. (SeeUsing and Preserving
Registersin Inline Assmbly.)

Optimizing Inline Assembly

The presenceof an __asm block in a function affeds optimization in several ways. Firgt, the compiler doesn't try to
optimize the __asm block itself. What you write in assembly language is exactly what you get. Seand, the presence
of an __asm block affects register variable storage. The compil er avoids enregistering variables acrossan __asm
block if theregister's contents would be dhanged by the___asm block. Finally, some other function-wide
optimizations will be affeded by the inclusion of assembly language in afunction

