XORP: An eXtensible Open
Router Platform

Atanu Ghosh Mark Handley Orion Hodson
Eddie Kohler Pavlin Radoslavov
International Computer Science Institute

Adam Greenhalgh Luigi Rizzo
University College London University of Pisa

Outline

. Motivations

. XORP introduction

. XORP IPC mechanism

. What does it take to implement a routing protocol?

. Dependency tracking mechanism

. Conclusions

Networking research: divorced from reality?

Gap between research and practice

Most of the important Internet protocols originated in
research

It used to be that researchers designed systems, build
implementations, tried them out, and standardized the
ones that survived and proved useful.

What happened?

Networking research: why the divorce?

e | he commercial Internet

— Network stability is critical, so experimentation is dif-
ficult

— Major infrastructure vendors not motivated to support
experimentation

e Network simulators

— Nice tool, but usually too abstract from reality

Simulation is not a substitute for experimentation

e Many questions require real-world traffic and/or routing
information

e Many people:

— Give up, implement their protocol in ns
— Set ns parameters based on guesses, existing scripts
— Write a paper that may or may not bear any relation-

ship to reality

e \We need to be able to run experiments when required!

Options

e Option 1:
— Persuade Cisco to implement your protocol;

— Persuade ISPs that your protocol won't destabilize
their networks;

— Conduct experiment.

Options (cont.)

e Option 2:

— Implement routing protocol part in MRTd, GateD, or
Zebra;

— Implement forwarding part in FreeBSD, Linux, Click,
etc;

— Persuade network operators to replace their Ciscos
with your PC;

— Conduct experiment.

Likelihood of success?

Possible solutions

e Solution 1: A router vendor opens their development en-
vironment and APIs:

— Third-party router applications

— Basic router functionality cannot be changed

e Solution 2: Someone (hint, hint) builds a complete open-
source router software stack explicitly designed for exten-
sibility and robustness:

— Adventurous network operators deploy this router on
their networks

— Result: a fully extensible platform suitable for re-
search and deployment

XORP: eXtensible Open Router Platform

Complete software stack for an IP router:

e Routing protocols: unicast and multicast

— Protocols can be run in simulation-like environment

e Management Interfaces

e Forwarding path

XORP Architecture

Management Processes

IPC router
finder manager CLI SNMP
BGP4+ PIM=SM
\ / A
OSPF 7 RIB
RIP IGMP/MLD
/I\/Iulticast Routing
IS-IS FEA

Unicast Routing

Forwarding Engine

RIB = routing information base
FEA = forwarding engine abstraction

[& =
mmi;t:éﬂ
Click Elements

10

Challenges

Features: real-world routers support a long feature list

Extensibility:
— Every aspect of the router should be extensible

— Multiple extensions should be able to coexist

Performance: raw forwarding performance; routing ta-
ble size (not core routers; even edge routing is hard
enough)

Robusthess: must not crash or misroute packets

11

XORP Features

IPv4 and IPv6

Unicast routing protocols: BGP4+4, OSPF, RIPv2/RIPng,
IS-IS

Multicast: PIM-SM/SSM, IGMPv1,2,3/MLDv1,2

DHCP, PPP

Management: CLI, SNMP, WWW

Forwarding path: UNIX (native), Click

12

Extensibility: Intra-router APIs

Separate abstract request (API) from concrete request (which
process? which arguments? which version?)

In particular, the caller:

e Should not care about IPC mechanism

e Should not know in advance which process is relevant
.. .unless required

13

Extensibility: XRLs (XORP Resource Locators)

XORP IPC mechanism (like URLs for IPC):

finder://fea/fea/1.0/add_address4?vif:txt=fxpO&addr:ipv4=10.0.0.1

e Library marshals arguments, implements transport, han-
dles responses

e Redirection into a single XRL or an XRL sequence

e Programmer explicitly handles failure

14

Extensibility: XRLs (XORP Resource Locators)

XORP IPC mechanism (like URLs for IPC):

finder://fea/fea/1.0/add_address4?vif:txt=fxpO&addr:ipv4=10.0.0.1
IPC mechanism: finder, xudp, snmp, ...

e Library marshals arguments, implements transport, han-
dles responses

e Redirection into a single XRL or an XRL sequence

e Programmer explicitly handles failure

15

Extensibility: XRLs (XORP Resource Locators)

XORP IPC mechanism (like URLs for IPC):

finder://fea/fea/1.0/add_address4?vif:txt=fxpO0&addr:ipv4=10.0.0.1
Module/process name: fea, rib, bgp, ...

e Library marshals arguments, implements transport, han-
dles responses

e Redirection into a single XRL or an XRL sequence

e Programmer explicitly handles failure

16

Extensibility: XRLs (XORP Resource Locators)

XORP IPC mechanism (like URLs for IPC):

finder://fea/fea/1.0/add_address4?vif:txt=fxpO0&addr:ipv4=10.0.0.1
Interface name: fea, routing-process, ...

e Library marshals arguments, implements transport, han-
dles responses

e Redirection into a single XRL or an XRL sequence

e Programmer explicitly handles failure

17

Extensibility: XRLs (XORP Resource Locators)

XORP IPC mechanism (like URLs for IPC):

finder://fea/fea/1.0/add_address4?vif:txt=fxpO0&addr:ipv4=10.0.0.1
Version number

e Library marshals arguments, implements transport, han-
dles responses

e Redirection into a single XRL or an XRL sequence

e Programmer explicitly handles failure

18

Extensibility: XRLs (XORP Resource Locators)

XORP IPC mechanism (like URLs for IPC):

finder://fea/fea/1.0/add_address4?vif:txt=fxpO0&addr:ipv4=10.0.0.1
Method name: delete_address4, get_mtu, ...

e Library marshals arguments, implements transport, han-
dles responses

e Redirection into a single XRL or an XRL sequence

e Programmer explicitly handles failure

19

Extensibility: XRLs (XORP Resource Locators)

XORP IPC mechanism (like URLs for IPC):

finder://fea/fea/1.0/add_address4?vif:txt=fxp0&addr:ipv4=10.0.0.1
Arguments

e Library marshals arguments, implements transport, han-
dles responses

e Redirection into a single XRL or an XRL sequence

e Programmer explicitly handles failure

20

Defining XRL interface

XRL interface is defined in XRL-specific files:

interface pim/0.1 {
/ *%

Enable a PIM virtual interface.

*
*
* @param vif_name the name of the vif to enable.
* @param fail true if failure has occurred.

*

Oparam reason contains failure reason if it occurred.

*/

enable_vif 7?7 vif_name:txt -> fail:bool & reason:txt

21

Using XRLs: C

All header files are auto-generated; developer implements
only XRL handlers:

Xr1CmdError XrlPimNode::pim_0O_1_enable_vif (
// Input values,
const stringk& vif_name,

// Output values,

bool& fail,
string& reason)
{
fail = enable_vif(vif_name, reason);
return XrlCmdError: :0KAY() ;
}

22

Using XRLs: Shell Script

Everything is ASCII text:

pim_enable_vif ()

{
vif_name=$1
XRL="finder://$PIM_TARGET/pim/0.1/enable_vif"
XRL_ARGS="7vif_name:txt=$vif_name"
call_xrl XRLXRL_ARGS

23

Extensibility:

RIB

connected
static

OSPF
EBGP

IBGP

CIFINEER -\erged
SFIRUERAR - Table

OriginTable

— > ResolvedTable

to forwarding engines

e Object-oriented routing table design

e Add new merged tables implementing new merging poli-

cies, ...

24

Extensibility/performance: Click forwarding

path

v
Clasdfier(...) Clasgfler
AP ARP
s repones 1P uuzis o 1
ARPRexponder ARPRSponer
(2001,..) (1002,..)
to Queue to ARPQuerier to Queue to ARPQuerier

Lookupl PRoute...)

CheckPaint(1) CheckPaint(2)
— T

MPError 1

IIIIII
III« 12

1
_

Fast kernel forwarding; easy to write extensions

25

Robustness

e Policy decision: Strong robustness for user-level processes

— Difficult to get performance, robustness, and extensi-
bility simultaneously

e Facilitated by multi-process design

— Automatically restart processes that crash

e XRL sandboxes
— All interaction with router through XRLs

— Redirect XRLs to run new protocols in a sandbox

26

Improving robustness and performance: distributed router

e XRLS can be sent across network

e Each routing process can run on a separate machine

e Only the FEA must run on the machine with the forward-
ing engine:

— The memory and the CPU are not the bottleneck

— Improved robustness through hot-swapping of routing
modules

27

Example of a distributed router

I SP (routing) network

Distributed router (virtual) network

Router
Manager

RIB_1

BGP 1

RIB_2

BGP 2

g (s

28

Distributed router (cont.)

e The Router Manager coordinates the modules and the
interaction among them.

e A routing protocol instance doesn’t care whether it is
part of a distributed router, or whether it is running as a
backup

e Potential issues:
— Communication latency
— Bandwidth overhead

— Synchronization

29

What does it take to implement a routing protocol?

PIM-SM (Protocol Independent Multicast-Sparse Mode): case-
study

e Fairly complicated protocol (protocol specification is 100
+ 25 pages), full of tiny details:

— Early specifications (two RFCs) easy to read, difficult
to decode and implement

— Lastest spec is much more “implementor-friendly”

e Lots of routing state and state dependency

30

0. Get yourself into the right mindset

Think SIMPLICITY and CONSISTENCY:

Simplicity gives you lots of space for maneuvers

Consistency (e.g., in variables naming): things don’t get
into your way when you shuffle them around

Which one comes first would be a trade-off

Don't go into extremes

31

Forget (for now) the word “optimization”!!

PIM-SM may have lots of routing state:

e SO what, by the time the implementation is ready for
prime-time, the price of memory will fall in half!

e Premature optimization results in complicated design, which
IS a sure sign for disaster!

e Solve performance issues when you do testing and profil-
ing (i.e., after the implementation is completed)

32

1. Design and understand the interaction with other modules

Receive multicast
membership info

Send/receive PIM
RIB control messages, MLD/IGMP
communicate with

the forwarding engine,
join/leave multicast groups

Send/receive MLD/IGMP
control messages

MFEA

Send/receive control messages,
manage multicast—specific state, etc.

Multicast Forwarding Engine

33

2. Break-down the protocol into semi-independent

units

Set/get configuration

PimConfig

PimNode

Multicast forwarding
state to the MFEA
=

PimMribTable

Set MRIB info

Receive MFEA signals

PimVif

PimVif

PimVif

PimVif

PimVif

PimVif

Send/receive PIM messages

Receive membership
info (from MLD/IGMP)

34

Protocol units break-down

e Probably the most difficult part

e There is no way you will get it right the first time!

e Simplicity comes first!

35

3. Protocol units implementation

If you got your design right, in this stage you need to
concentrate only on the protocol detail

Be consistent!

Each unit must respond to common methods/commands.
E.g.: start/stop/enable/disable.

Try to avoid implementation-specific assumptions

36

4. Testing, testing, testing

If you don’t test it, it doesn’t work!

Detailed testing takes time

If you can, build a testing framework that allows you to
perform automated testing any time you change some-
thing

Now you can profile and optimize

37

Dependency tracking mechanism

e For each input event, what are the operations to perform
and their ordering

e If the protocol is simple, you can take care of this by hand

e Unfortunately, this is not the case with PIM-SM: total of
50 input events, and 70 output operations.

38

PIM-SM dependency tracking mechanism

PIM-SM spec has tens of macros like:

pim_include(S,G) =
{ all interfaces I such that:
((I_am_DR(I) AND lost_assert(S,G,I) == FALSE)
OR AssertWinner(S,G,I) == me)
AND 1local_receiver_include(S,G,I) }

The corresponding state dependency rule is:

void

PimMreTrackState::track_state_pim_include_sg(list<PimMreAction> action_list)

{
track_state_i_am_dr(action_list);
track_state_lost_assert_sg(action_list);
track_state_assert_winner_sg(action_list);
track_state_local_receiver_include_sg(action_list);

39

Dependency tracking

Send Join message Removerouting state Send Prune message

(Update internal state)
o

Receive Joinmessage RP changed Neighbor removed

40

Dependency tracking (2)

Send Join message Remove routing state Send Prune message

1. Create all top—down paths

@ @ (Update internal state)

Receive Join message RP changed Neighbor removed

D6 D4 D1 D6 D4 D2 D7 D5 D2
D7 D4 D1 D7 D4 D2
D7 D5 D2

41

Dependency tracking (3)

Send Join message Remove routing state Send Prune message

1. Create all top—down paths

reverse the paths. E.g.:

@ (Update internal state)
D3D2D2D1->D1D2D3 % /

Receive Join message RP changed Neighbor removed

2. Remove duplicates and

D1 D4 D6 D2 D4 D6 D2 D5 D7
D1 D4 D7 D2 D4 D7
D2 D5 D7

42

Dependency tracking (4)

Send Join message Remove routing state Send Prune message

1. Create all top—down paths \

2. Remove duplicates and

reverse the paths. E.g.:
P J (Update internal state)

D3 D2 D2 D1 ->D1 D2 D3

3. Remove non-output nodes
from each list

Receive Join message RP changed Neighbor removed
D6 D6 D5 D7
D7 D7
D5 D7

43

Dependency tracking (5)

Send Join message Remove routing state

1. Create all top—down paths

2. Remove duplicates and

reverse the paths. E.g.:

D3 D2 D2 D1 ->D1D2 D3

3. Remove non—output nodes
from each list

4. Recursively pop-up the @ @

actions that are at the
head of a list only

Receive Join message RP changed

D6 D6
D7 D7
D5 D7
D6 D7 D6 D5 D7

(Update internal state)

Neighbor removed

D5 D7

D5 D7

Send Prune message

44

Dependency tracking usage

The unidirectional “graph” is semi-defined by the state
computation macros

For each macro, write the corresponding state depen-
dency rule

All state dependency is pre-computed once on start-up

If the spec changes, the rules are easy to update

If the spec does not use macros for state computation,
write your own macros

45

Status

Completed: core design, IPC, RIB, BGP, PIM-SM, IGMP,
FEA

In progress: OSPF, RIP adaptation, IPv6, Click integra-
tion,

Future work: create XORP simulation environment

First preliminary release early December:
http://www.xorp.org/

46

Summary

XORP tries to close the gap between research and prac-
tice

Routing architecture designed for extensibility and ro-
bustness.

Can be used to build distributed routers

XORP simulation environment can facilitate protocol de-
velopment: the simulation and the real-world prototype
use exactly same code

47

