A new way to embed Tcl/Tk in windows applications

David Gravereaux

2557 West Winton Ave. #7C

Hayward, CA 94545

(510) 785-0613

mailto:davygrvy@pobox.com
ABSTRACT

The windows’ message pump or Tcl’s event loop – who owns the center point of execution when embedding Tcl/Tk into a windows application? In this presentation, I’ll explain the problem with embedding Tcl/Tk into windows applications and present a solution.
Keywords
Threading, Windows, Tcl_DoOneEvent, Tcl_AsyncMark, embedding.

1. INTRODUCTION

The center-point for execution of Tcl/Tk in wish is the following (from tkEvent.c):

 void

 Tk_MainLoop()

 {

 while (Tk_GetNumMainWindows() > 0) {

 Tcl_DoOneEvent(0);

 }

 }

This is the entrance to the event loop and is called from Tk_Main(). In comparison, a standard windows program looks like this:

 WINAPI BOOL

 WinMain (...)

 {

 MSG msg;

 RegisterClass(...);

 CreateWindow(...);

 while (GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 return msg.wParam;

 }

Notice the similarities? They both block in an alertable state and process event when received. Both fall-out of the loop to end the application. But how can these two co-exist when one wants to embed Tcl into an existing windows program?

To use Tk widgets and fileevents we will need to have an active Tcl event loop. Just doing Tcl_Eval() at the opertune moments isn’t enough to have Tk controls, fileevents or background callbacks service themselves. I needed a solution to this problem.

2. Why not blend the two?

I tried the following blend:

 WINAPI BOOL WinMain (...)

 {

 MSG msg;

 RegisterClass(...);

 CreateWindow(...);

 while (GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

-> Tcl_DoOneEvent(TCL_DONT_WAIT);

 }

 return msg.wParam;

 }

That's polling (or flushing). Not alertable and CPU inefficient. Tcl isn't alertable in this way. If a non-blocking socket becomes readable (an event posted to the event loop) while the windows message pump is idle, Tcl has to wait until the next windows' message happens before its event is serviced.

Trying to use this method with MFC probably wouldn’t be a good idea. Direct access to the message pump isn’t provided or, at least, abstracted away from the user.

3. Let’s try threading.

If we run Tcl’s execution in a separate thread from the main thread, this solves the isuue, but introduces a new complexity.

 WINAPI BOOL WinMain (...)

 {

 MSG msg;

 RegisterClass(...);

 CreateWindow(...);

-> CreateThread(TclThreadFunc,...);

 while (GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 return msg.wParam;

 }

 WINAPI int TclThreadFunc(void *)

 {

 while (!done)

Tcl_DoOneEvent(TCL_ALL_EVENTS);

 }

This launches Tcl’s event loop in a thread separate from the main, and is now in an alertable state. At first glance, this looks like we’ll need to compile Tcl for thread support. In truth, we won’t need to. If we take on the responsibility of thread safety, and only access Tcl from the thread it’s running in, we’ll be fine. Our new concers are:

1) The original thread that creates an interpreter must always be the same thread that accesses it. Which leads into…

2) Work asked of Tcl from the application's thread must be posted to Tcl instead of being run directly.

3) Tcl commands specific to the application are now always executed in Tcl's thread context.

In a sense, Tcl’s event loop is like a waitable Queue (or FIFO). All we need now is a way to send Tcl work. For an alerting method, I’ll choose Tcl_AsyncMark().

Tcl_AsyncMark() was designed to be called from signal handlers and is the perfect method for alerting Tcl from a "far away" thread. And then from within the AsyncProc callback, we can use Tcl_QueueEvent() for posting it into Tcl's event loop.

Why not use Tcl_ThreadQueueEvent() and Tcl_ThreadAlert() instead and post the event directly? Tcl_ThreadQueueEvent() isn't, actually, thread-safe. The mutex lock on the events’ linkedlist is only turned on when compiled for multithreading support. Therefore, we risk corrupting the linkedlist.

Turning Tcl's event loop into a thread-safe work queue using

Tcl_AsyncMark() and Tcl_QueueEvent() looks like this:

1) Create an async token in the target Tcl thread (the one where the event loop is running) with Tcl_AsyncCreate(). The use of this token with Tcl_AsyncMark() is unlimited and is our secret sause.

2) Queue an event into Tcl's event loop from the AsyncProc with Tcl_QueueEvent(). The handler function associated to the token is always entered in Tcl's thread context. From here it's unsafe to use the interp pointer in the params, even if it is valid. Only allocation Tcl API calls are allowed such as Tcl_NewStringObj(), Tcl_GetHashValue() and pretty much anything that doesn't use an interp pointer.

3) In the EventProc, we switch to our interp pointer and run anything, Tcl_Eval(), etc...

For this to work effectively, in between time Tcl_AsyncMark() is called with our token, and our AsyncProc is entered, we'll need to store the "job" in our own work queue.

 Tcl_AsyncHandler OurToken;

 Tcl_Interp *OurInterp;

 SomeFIFOClass OurQ;

 WINAPI BOOL WinMain (...)

 {

 MSG msg;

 RegisterClass(...);

 CreateWindow(...);

 CreateThread(TclThreadFunc,...);

 while (GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 return msg.wParam;

 }

 WINAPI int TclThreadFunc(void *)

 {

 Tcl_FindExecutable(...);

 OurInterp = Tcl_CreateInterp();

 Tcl_Init(OurInterp);

-> OurToken =

 Tcl_AsyncCreate(OurAsyncProc, NULL);

 OurAppInit(OurInterp);

 While (!done)

 Tcl_DoOneEvent(TCL_ALL_EVENTS);

 Tcl_DeleteInterp(OurInterp);

 Tcl_AsyncDelete(OurToken);

 Tcl_Finalize();

 return 0;

 }

 typedef struct {

 char *script;

 } ASYNCPAYLOAD, *LPASYNCPAYLOAD;

 typedef struct {

 Tcl_Event header;

 LPASYNCPAYLOAD apl;

 } ASYNCEVENT, *LPASYNCEVENT;

 LRESULT CALLBACK

 OurWndProc(HWND h,UINT m,WPARAM w,LPARAM l)

 {

 switch (m) {

 case SOME_MSG_CONSTANT:

 LPASYNCPAYLOAD apl = new ASYNCPAYLOAD;

 apl->script = w;

 OurQ.Put(apl);

-> Tcl_AsyncMark(OurToken);

 break;

 default:

 DefWindowProc(h, m, w, l);

 }

 }

 int OurAsyncProc(void*,Tcl_Interp*,int code)

 {

 // This is Tcl's thread context.

 LPASYNCPAYLOAD apl;

 LPASYNCEVENT ae;

 while (OurQ.Get(&apl)) {

 ae = (LPASYNCEVENT) Tcl_Alloc(

 sizeof(ASYNCEVENT));

 ae->header.proc = OurEventProc;

 ae->apl = apl;

-> Tcl_QueueEvent((Tcl_Event *)ae,

 TCL_QUEUE_TAIL);

 }

 return code;

 }

 int OurEventProc(Tcl_Event *evPtr, int flags)

 {

 // Again, this is Tcl's thread context.

 LPASYNCEVENT ae = (LPASYNCEVENT) evPtr;

 // We only handle file-type events here.

 if (!(flags & TCL_FILE_EVENTS)) return 0;

-> Tcl_Eval(OurInterp, ae->apl->script);

 delete ae->apl->script;

 delete ae->apl;

 return 1;

 }

4. The Static Library.

Let’s not stop. I’ve described a method for alerting and transfering jobs to Tcl. Let’s make it into a static library for inclution into an application.

There’s some issue that need to be addressed regarding Stubs and the search algorithym for finding tclXX.dll, but I’m quite happy with what I do have finished.

Introducing ‘TES’ -- a development library for running Tcl on windows, using the method just descibed. Its use would look something like the following:

 TclEventSystem *Tcl;

 WINAPI BOOL WinMain (...)

 {

 MSG msg;

 RegisterClass(...);

 CreateWindow(...);

 Tcl = TES::Instance(“8.1”, 0 /*exact*/,

 0 /*debug library*/);

 while (GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 Tcl->Shutdown();

 return msg.wParam;

 }

To post work to Tcl, we now have to create an instance of a class derived from TclAsyncJob. The base class looks like this:

// Base class for all work to be handed over to

// Tcl.

class TclAsyncJob

{

public:

 //Needs a copy constructor.

 //Needs an overloaded assignment operator.

 //Must also create instance only with 'new'.

 //Returning true means an event does not

 //need to be queue'd and the only use was

 //to yield Tcl for just the AsyncProc.

 //NOTE: Only Tcl_* allocation functions are

 //allowed to be called from this function

 //(Ie. pretty much any that doesn't use an

 //interp pointer).

 virtual bool AsyncProc (void) = 0;

 // Call any Tcl function in here.

 virtual void EventProc (void) = 0;

};

Using the previous WinProc, we’ll post a job using the library.

 class OurTclRun : public TES::TclAsyncJob

 {

 char *script;

 public:

 OurTclRun(char *script_)

 : script(script_)

 {

 (TES::Instance)->QueueJob(this);

 }

 ~OurTclRun() {delete script;}

 bool AsyncProc() {return false;}

 void EventProc()

 {

 Tcl_Eval(interp, script);

 }

 };

 LRESULT CALLBACK

 OurWndProc(HWND h,UINT m,WPARAM w,LPARAM l)

 {

 switch (m) {

 case SOME_MSG_CONSTANT:

 LPASYNCPAYLOAD apl = new ASYNCPAYLOAD;

 new OurTclRun(w);

 break;

 default:

 DefWindowProc(h, m, w, l);

 }

 }

CONCLUTIONS

This new method is experimental. I’ve been playing around with it, but haven’t used it in a “real” application. The library itself (called ‘TES’) can be found at:

http://sourceforge.net/projects/tomasoft
Please give this a try and let me know what you think.

-- David Gravereaux

1

