Qt Designer Manual

Ot 3.0

Copyright (© 2001 Trolltech AS. All rights reserved.

TROLLTECH, Qt and the Trolltech logo are registered trademarks of Trolltech AS. Linux is a registered trademark of
Linus Torvalds. UNIX is a registered trademark of X/Open Company Ltd. Mac is a registered trademark of Apple Com-
puter Inc. MS Windows is a registered trademark of Microsoft Corporation. All other products named are trademarks

of their respective owners.

The definitive Qt documentation is provided in HTML format supplied with Qt, and available online at http://doc.trolltech.com.
This PDF file was generated automatically from the HTML source as a convenience to users, although PDF is not an official Qt

documentation format.

Contents

Preface e e e e e e 3
Creating a Qt Application e e e e e e 6
Creating Main Windows with Actions, Toolbarsand Menus 18
The Designer Approach e e e e e e e 28
Subclassing and Dynamic Dialogs e e e e e 33
Creating Custom Widgets e e e e e e e 43
Creating Database Applications e e e e e 54
Customizing and Integrating Qt Designer i i i i e e e e e e 69
Reference: Key Bindings i e e e e e e e e e e 77
Reference: Menu OPtiOnS L 0 ittt e et e e e e e e e e e e e e e e e 79
Reference: Toolbar BUttOnS 0 i i ittt e e i e e e e e e e e e e e e 88
Reference: Dialogs i i i i e e e e e e e e 93
Reference: Wizards 0 0 i i e e e e e e 123
Reference: WIindows L 0 i i i e e e e e e 134
IndeX e e e e e e 138

Preface

Introduction

This manual presents Qt Designer, a tool for designing and implementing user interfaces built with the Qt cross-platform
application development framework. Qt Designer makes it easy to experiment with user interface design. At any time
you can generate the code required to reproduce the user interface from the files Qt Designer produces, changing your
design as often as you like. If you used the previous version you will find yourself immediately productive in the
new version since the interface is fundamentally unchanged. But you will find new widgets and new and improved
functionality which have been developed as a result of your feedback.

Qt Designer helps you build user interfaces with layout tools that move and scale your widgets (controls in Windows
terminology) automatically at runtime. The resulting interfaces are both functional and attractive, comfortably suiting
your users operating environments and preferences. Qt Designer supports Qt’s signals and slots mechanism for type-safe
communication between widgets. Qt Designer includes a code editor which you can use to embed your own custom
slots inside the generated code. Those who prefer to separate generated code from hand crafted code can continue to
use the subclassing approach pioneered in the first version of Qt Designer.

The manual introduces you to Qt Designer by leading you through the development of example applications. The first
six chapters are tutorials, each designed to be as self-contained as possible. Every chapter, except the first, assumes that
you are familiar with the material in chapter one which covers the basics of building a Qt application with Qt Designer-.
Here’s a brief overview of the chapters:

e Chapter one, Creating a Qt Application, introduces Qt Designer and takes you step by step through the creation
of a small but fully functional application. Along the way you will learn how to create a form and add widgets
to it. In the course of this chapter you will use the form and property editors to customize the application, and
learn how to lay out a form using the layout tools. You'll also learn how to use Qt’s signals and slots mechanism
and Qt Designer’s built-in code editor to make the application functional. We will also explain how to use gqmake
to generate a Makefile so that you can compile and run the application.

e In chapter two, Creating Main Windows with Actions, Toolbars and Menus, we will create a simple text editor.
Through writing this application you will learn how to create a main window with menus and toolbars. We will
see how to use Qt’s built-in functionality to handle common tasks (e.g. copy and paste handling), and how to
create our own functionality for our own menu items and toolbar buttons.

e Chapter three, The Designer Approach, provides information on the Qt Designer approach to developing applica-
tions, and explains some of the rationale behind Qt Designer.

e Chapter four, Subclassing and Dynamic Dialogs, will show you how to subclass a form; this allows you to clearly
separate the user interface from the underlying code that implements its functionality. Additional information on
gmeke and ui ¢ is included in this chapter. This chapter will also explain how you can dynamically load dialogs
from . ui files into your application using QWidgetFactory and how to access the widgets and sub-widgets of
these dialogs.

e Chapter five, Creating Custom Widgets, explains how you can create your own custom widgets. Both the simple
method, that was introduced with the first version of Qt Designer, and the new more powerful method using

Preface 4

plugins, are explained.

e Chapter six, Creating Database Applications introduces Qt’s SQL classes and takes you through an example that
demonstrates how to execute SQL queries and how to set up master-detail relationships, perform drilldown and
handle foreign keys.

e Chapter seven, Customizing and Integrating Qt Designer, focuses on Qt Designer itself, showing you how to
customize Designer, how to integrate Designer with Visual Studio and how to create Makefiles.

The remaining chapters provide reference material that explains Qt Designer’s menu options, toolbars, key bindings
and dialogs in detail.

What You Should Know

This manual assumes that you have some basic knowledge of C++ and the Qt application development framework. If
you need to learn more about C++ or Qt there are a vast number of C++ books available, and a small but increasing
number of Qt books. Qt comes with extensive online documentation and many example applications that you can try.

The Enterprise Edition of Qt includes the Qt SQL module. In Creating Database Applications we demonstrate how to
build SQL applications with Qt Designer; this chapter requires some knowledge of SQL and relational databases.

What’s New in Qt Designer?

This version of Qt Designer has a great deal more functionality than its predecessor. The code for custom slots can be
edited directly in Qt Designer; main windows with actions, toolbars and menus can be created; layouts that incorporate
splitters can be used; plugins allow you to package any number of custom widgets and make them available to Qt De-
signer. Many other enhancements have been incorporated, from small improvements in the user interface to improved
efficiency, for example the ability to share pixmaps across all the forms in an application.

This version of Qt Designer introduces project files which make it easy to switch between all the forms in an application,
and to maintain a common set of database settings and images. Although subclassing is fully supported, writing code
directly in Qt Designer offers a number of advantages which are covered in The Designer Approach chapter.

A new library | i bqui has also been introduced which allows you to load dialogs dynamically at runtime from Qt
Designer’s . ui files. This allows you to provide your application’s users with considerable interface customizability
without them needing to use C++.

Although the new version of Qt Designer introduces new approaches and techniques you can ignore these aspects and
simply use it in exactly the same way as you used the version supplied with Qt 2.x, if you just want a simple but
powerful single dialog visual design tool.

Preface 5

[x] L Desianer by [rolftec, G+ =]

ile Edit Search Tools Layout Preview Mindow Help
Jom™ |[+|om 5 HIEL A M

richedit SRS

]
B m=ﬂmn© m\uuaun\ IIE]E]%HJ%EHE!HJ- MEEHNIEE L0
[

AR=mFEB v

e\ Rich Edit
FOmE | Eile Edit Format Help
EditorForm |richedit.ui
almages IDEBE v iR |E
-] ¥ editcut
---Eeditpaste
[flenew
[Zrfileopen
-{Iflesave
print
---S!redo - Ll
=)
Widgets | Source I |
EhFunctions ﬂ |
E |pub\|c |
@ fileExit()
H@fileNew() |
@ileGpen() =l
£}
Eroperties I |
Property |\falue FET
name |EditorForm|
enabled True non Editar
sizePolicy Preferrec/Preferrec _I
minimumSize [0,0]
maximumsize [32767, 32767 | %Ct'ons —
sizelncrement [0,0] LleC
haseSize [0,0] Ieﬂril‘rinA;n:In
palette | ghtalignAction
font Helvetica—11 enterAlignAction
cursor Arrow — U underlinection
caption Rich Edit I italicAction
icon B boldAction
iconText ~helpAboutAction
mouseTracking False ~helpindexAction
focusPolicy MoFocus halnCantants A etinn =
acceptlrops False Connect.
autohask False |
Ready 4
Qt Designer
Feedback

If you have any comments, suggestions, criticisms or even praise regarding this manual, please let us know at
doc@rol | tech. com Bug reports on Qt or Qt Designer should be sent to gt - bugs@rol | t ech. com You might also like
to join the gt-interest mailing list, which Qt Designer’s developers read and contribute to; see http://www.trolltech.com
for further details.

Creating a Qt Application

Starting and Exiting Qt Designer

Qt Designer is controlled in the same way as any other modern desktop application. To start Qt Designer under Windows
click the Start button and click Programs| Qt X.x.x| Designer. (X.x.x is the Qt version number, e.g. 3.0.0.) If you're
running a Unix or Linux operating system you can either double click the Qt Designer icon or enter desi gner & in an
xterm.

When you've finished using Qt Designer click File | Exit; you will be prompted to save any unsaved changes. Help is
available by pressing F1 or from the Help menu.

To get the most benefit from the tutorial chapters we recommend that you start Qt Designer now and create the example
applications as you read. Most of the work involves using Qt Designer’s menus, dialogs and editors, with only small
amounts of code to type in.

When you start Qt Designer, by default, you will see a menu bar and various toolbars at the top. On the left hand side
are three windows, the first is the Files window, the second is the Widgets and Source window (the Object Explorer)
and the third is the Properties window. The Files window lists the files and images associated with the project; to open
any form single click it in the Files list. The Widgets and Source window lists the current form’s widgets and slots.
The Properties window is used to view and change the properties of forms and widgets. We will cover the use of Qt
Designer’s windows, dialogs, menu options and toolbar buttons as we create example applications.

In this chapter we will build an application called 'multiclip’ which allows you to store and retrieve multiple text
clippings to and from the clipboard.

[maicip x|

Current Clipping |5ignals and slots are uzed for communication between objects. The signal/slot mechanizm iz

Frevious Clippings Length

return HEH:I[

Foo

Example . ¥ Auto Add Clippings

g an are used for communication betwee The signal/slat mec &dd Clipping |
hitp:/Adoc. trolltech. com/

hitp://doc. rolltech. com/classes. html Copy Previous |
hitp:/#dac. trolltech. com/appican. hirl =

hittp: / Avmanes tralltech. comdproducts/purchase/pricing. html Delete Clipping |
d | o m |

The Multiclip Application

Creating a New Project

Whenever you create a new application we strongly recommend that you create a project file and open the project
rather than individual . ui files. Using a project has the advantage that all the forms you create for the project are

Creating a Qt Application 7

available via a single mouse click rather than having to be loaded individually through file open dialogs. An additional
benefit of using project files is that they allow you to store all your images in a single file rather than duplicate them
in each form in which they appear. See The Designer Approach chapter’s Project management section for detailed
information on the benefits of using project files.

Start Qt Designer if you haven’t already. Click File |New to invoke the New File dialog. Click the ’C++ Project’ icon,
then click OK to invoke the Project Settings dialog. You need to give the project a name, and we recommend that you
put each project in its own subdirectory. Click the ellipsis ... button to invoke the Save As dialog and navigate to where
you want to put the new project. Click the Create New Folder toolbar button to create the 'multiclip’ directory. Double
click the 'multiclip’ directory to make it the current directory. Enter a file name of 'multiclip.pro’, and click the Save
button. The 'Project File’ field of the Project Settings dialog will have the path and name of your new project; click OK
to create the project.

The name of the current project is shown in the Files toolbar which is the top left toolbar by default. Once we have
a project we can add forms and begin to build our application. (See Customizing Qt Designer for information on
changing Qt Designer’s toolbars and windows to suit your preferences.)

Creating a New Form

Click File|New to invoke the New File dialog. Several default forms are supplied but we will use the default Dialog
form, so just click OK. A new form called 'Form1’ will appear. Note that the new form is listed in the Files list and the
Properties window shows the form’s default property settings.

Click the Value beside the name property and change the form’s name to 'MulticlipForm’. Change the form’s caption
to 'Multiclip’. The properties are ordered in accordance with the inheritance hierarchy, and caption is roughly in the
middle of the property editor. Save the form: click File|Save, enter the name 'multiclip.ui’, then click the Save button.

Using the Property Editor

The Property Editor has two columns, the Property column which lists property names and the Value column which
lists the values. Some property names have a plus sign '+’ in a square to their left; this signifies that the property
name is the collective name for a set of related properties. Click the form to make the Property Editor show the form’s
properties. Click the sizePolicy property’s plus sign; you will see four properties appear indented below sizePolicy,
hSizeType, vSizeType, horizontalStretch and verticalStretch. These properties are edited in the same way as any other
properties.

Some properties have simple values, for example, the name property has a text value, the width property (within
minimumSize for example) has a numeric value. To change a text value click the existing text and type in your new
text. To change a numeric value click the value and either type in a new number, or use the spin buttons to increase
or decrease the existing number until it reaches the value you want. Some properties have a fixed list of values, for
example the mouseTracking property is boolean and can take the values True or False. The cursor property also has a
fixed list of values. If you click the cursor property or the mouseTracking property the value will be shown in a drop
down combobox; click the down arrow to see what values are available. Some properties have complex sets of values;
for example the font property. If you click the font property an ellipsis button (...) will appear; click this button and
a Select Font dialog will pop up which you can use to change any of the font settings. Other properties have ellipsis
buttons which lead to different dialogs depending on what settings the property can have. For example, if you have a
lot of text to enter for a text property you could click the ellipsis button to invoke the multi-line text editor dialog.

The names of properties which have changed are shown in bold. If you've changed a property but want to revert it to
its default value click the property’s value and then click the red 'X’ button to the right of the value. Some properties
have an initial value, e.g. 'TextEditl’, but no default value; if you revert a property that has an initial value but no
default value (by clicking the red ’X’) the value will become empty unless the property, e.g. name, is not allowed to be
empty.

The property editor fully supports Undo and Redo (Ctrl+Z and Ctrl+Y, also available from the Edit menu).

Creating a Qt Application 8

Adding Widgets

The multiclip application consists of a text box to display the current clipboard text (if any), a list box showing the
previous clippings, a length indicator, a checkbox and buttons. If you run the application and resize it all the widgets
will scale properly.

The Qt Designer approach to laying out a form is to place the required widgets on the form in the approximate positions
that they should occupy and then use the layout tools to size and position them correctly. We’ll now add the multiclip
form’s widgets.

1. We'll start with the current clipping text box. Click the Text Label toolbar button and click towards the top left
of the form. (If you hover the mouse over a toolbar button its name will appear in a tooltip.) We won’t bother
renaming the label since we’ll never refer to it in code; but we need to change its text, so change its text property
to ’Current Clipping’. (See the Using the Property Editor sidebar for an explanation of the property editor.)

Click the Line Edit toolbar button and click towards the top right of the form. Use the Property Editor to change
the widget’s name to 'currentLineEdit’.

2. Now we’ll add another label and the list box. Click the Text Label toolbar button and click below the Current
Clipping label. Change the text property to 'Previous Clippings’. Don’t worry about positioning the widgets
precisely, nor about the fact that they are the wrong size; the layout tools (covered in the next section) will take
care of this.

Click the List Box toolbar button and click the form below the 'Previous Clippings’ label. Change the list box’s
name to ’clippingsListBox’. By default Qt Designer creates list boxes with a single initial value of 'New Item’. We
don’t want this value (we’ll be populating our list box in code later), so we need to remove the value. Right click
the list box then click the Edit menu item on the popup menu to invoke the listbox’s value editor dialog. Click
Delete Item to delete the default item, then click OK. (See the Value Editors sidebar.)

3. We want to know the length of the current clipping so we’ll add a label and an LCD Number widget.

Click the Text Label toolbar button and click below the Line Edit. Change its text property’s value to Length’.
Click the LCD Number toolbar button and click below the length label. Change the LCD Number’s name to
"lengthLCDNumber’.

4. Multiclip can be made to detect clipboard changes and automatically add new clippings. We want the user to
have control over whether this should happen or not so we will provide a check box which they can use to
indicate their preference.

Click the Check Box toolbar button and click below the LCD Number. Change the checkbox’s name to ’autoCheck-
Box’ and its text to ’A&uto Add Clippings’. Note that the accel property automatically changes to Alt+U because
the ampersand in the text signifies a keyboard shortcut.

5. The last widgets we require are the buttons. One way to add the same kind of widget multiple times is to add
one, copy it, then paste repeatedly. We will use another approach.

Double click the Push Button toolbar button; now click below the checkbox to place a button. Click below the
button we've just added to add a second button. Add a third and fourth button. Now click the Pointer toolbar
button to switch off automatically adding the same widget. Change the first button’s name to ’addPushButton’ and
its text to '&Add Clipping’. Change the second button’s name to ’copyPushButton’ and its text to ’&Copy Previous’.
Change the third button’s name and text properties to ’deletePushButton’ and ’&Delete Clipping’ respectively.
Similarly change the fourth button’s name and text to ’quitPushButton’ and "&Quit’.

All our widgets have been placed on the form with their properties changed to suit our application’s needs. In the next
section we will use Qt Designer’s layout tools to size and position the widgets correctly and in such a way that when
the user resizes the form the widgets will scale properly.

Value Editors

Whilst the Property Editor is used to customize the generic properties of widgets, value editors are used to edit values
held within instances of particular widgets. For example a QLineEdit can only contain a single line of text, but a

Creating a Qt Application 9

QListBox can contain any number of items each of which may be a line of text, a pixmap, or both. To invoke a widget’s
value editor double click the widget. (Alternatively right click the widget and a popup menu will appear; if the first
menu item is ’Edit’, you can click this to access the widget’s value editor dialog.) Different widgets have different value
editors. See the Value Editors chapter for more details.

Laying Out Widgets and Previewing

Introduction to Layouts

Layouts work by grouping together widgets and groups of widgets, horizontally, vertically or in a grid. Widgets that are
laid out together horizontally or vertically can be grouped either with a Layout or with a Splitter; the only difference
is that a user can manipulate a Splitter themselves.

If we want to lay out some widgets side by side we would select them and then click the Lay Out Horizontally toolbar
button. If we want our widgets to be lined up one above the other we would use the Lay Out Vertically toolbar
button. Once we’ve grouped some widgets together we can then lay out the groups in relation to each other, again
using vertical, horizontal or grid layouts. Once we have a collection of laid out groups we then click on the form itself
and lay out the groups within the form using one of the layout buttons.

Some widgets will grow to fill the available space, vertically or horizontally or both ways. Buttons and line edits will
fill horizontal space for example, whereas a ListView will fill space in both directions. The easiest way to achieve the
layout you want is to use Qt Designer’s layout tools. When you apply a layout to some widgets in some situations the
widgets may not lay out the way you want. If a widget does not fill up enough space try changing its sizePolicy to
Expanding. If a widget takes up too much space one approach is to change its sizePolicy, and another approach is to
use a Spacer to consume excess space.

Spacers have no visual appearance on the running form and are used purely to insert space between widgets or groups
of widgets. Suppose you have a widget that takes up too much space. You could break the layout and resize the widget
to make room for a spacer. Then you would insert the spacer and layout the spacer with the widgets and the spacer
will consume the excess space. If the spacer doesn’t take up the right amount of space you can change its sizePolicy for
finer control.

The best way to learn about layouts and spacers is to try them out. Experimenting with layouts is easy. If you make
any changes that you aren’t happy with you can easily undo them by clicking Edit| Undo or by pressing Ctrl+Z. In the
next section we’ll lay out our multiclip example step-by-step.

Laying Out Widgets

Layouts provide a means of grouping widgets and groups of widgets together in horizontal and vertical pairs and in
grids. If you use layouts your forms and the widgets they contain will scale automatically when the user resizes the
window. This is better than using absolute sizes and positions since you don’t have to write any code to achieve the
scaling and your users can make the most of their screen size whether they have a laptop or a very large screen desktop
machine. Layouts use standard sizes for margins and widget spacing which helps give your applications a consistent
and proportional look without requiring any effort on your part. Layouts are also easier and faster to use than absolute
positioning; you can just place your widgets on the form in approximate positions and leave the layout tools to size
and scale the widgets correctly.

Selecting Widgets and Inserting Widgets

To select an individual widget, either click the widget itself or click its Name in the Object Explorer window. To select a
group either click a fraction outside its red outline or click its Name in the Object Explorer window. To select multiple
widgets or groups, click the form to deselect any selected widgets, then Ctrl+Click one widget or group then drag the
rubber band so that it touches the other widgets or groups that you want to select. This technique is particularly useful

Creating a Qt Application 10

for selecting widgets that are inside another widget. For example to select the radio buttons in a button group but not
the button group itself you would click the form then Ctrl+Click one of the radio buttons and drag the rubber band to
touch the other radio buttons.

If we want to insert a widget into a gap between widgets which are in a layout we can click the toolbar button for the
new widget and then click in the gap. Qt Designer will ask us if we want to break the layout and if we click Break
Layout the layout will be broken and our widget inserted. We can then select the widgets and groups we want to
lay out and lay them out again. The same effect can be achieved by clicking the group and either clicking the Break
Layout toolbar button or pressing Ctrl+B.

The layout we want to achieve is to have the current clipping label and currentLineEdit side by side at the top of the
form. We want the previous clippings label and the clippingsListBox to occupy the left hand side of the form with the
remaining widgets in a column on the right. We want to divide left and right with a splitter and make the left hand side
larger by default. We'll leave the sizing of the widgets to Qt Designer. The layout controls are in the Layout toolbar.
(By default this is the fourth toolbar counting left to right.) We’ll now lay out the widgets we’ve placed on the form.

1. Click the current clipping label and Shift+Click the currentLineEdit Line Edit. (Shift+Click means hold down
the shift key whilst clicking; this will ensure that Qt Designer performs multiple selections.) Most of the layout
toolbar buttons will now be available. Click the Lay Out Horizontally toolbar button. (If you hover the mouse
over a toolbar button a tooltip giving the button’s name will appear.) The two widgets will be moved together
with a thin red line surrounding them. It doesn’t matter that the widgets aren’t the right size or in exactly the
right place; as we progress with the layout Qt Designer will size and place them correctly.

2. Click the Previous Clippings label and Shift+Click the clippingsListBox. Click the Lay Out Vertically toolbar
button.

3. We want the remaining widgets to be grouped together vertically. We could Shift+Click each one but instead
click the form above the Length label, then drag until the Length label, the LCD Number, the check box and all
the buttons are all touching the rubber band (a black outline rectangle) that appears when you drag. Release the
mouse, and all the remaining widgets should be selected. If you missed any Shift+Click them. Now click the
Lay Out Vertically toolbar button.

We now have three groups of widgets which must be laid out in relation to each other and then laid out in relation to
the form itself.

1. Shift+Clicking is used to select individual widgets. To select a group we must click the form to deselect any
selected widgets, then Ctrl+Click the group and drag so that the rubber band touches the groups we want to lay
out and then release. With the buttons and other widgets already laid out and selected, Ctrl+Click the list box
and drag the rubber band over the one of the buttons, then release. Both groups should now be selected. Click
the Lay Out Horizontally (in Splitter) toolbar button.

2. We now have two groups, the top one with the Current Clipping label and the line edit and the group we’ve just
created with the list box, buttons and other widgets. We now want to lay these out in relation to the form. Click
the form and click the Lay Out Vertically toolbar button. The widgets will be resized to fill the entire form.

Unfortunately the Length label and the LCD Number take up far too much space, so we will have to revise the layout.
With experience you will find that you do not need to rework layouts very often. We will insert a spacer which will use
the extra space.

1. First we must make some room for the spacer. Click the LCD Number to select it. Now click the Break Layout
toolbar button. Move the LCD Number up a little bit, there’s no need to be exact we just want to create some
space below it.

2. Now we'll add the spacer. Click the Spacer toolbar button, then click the form in the space you've created
between the LCD Number and the check box. A popup menu with two options, Horizontal and Vertical, will
appear; click Vertical. We choose vertical because we want the spacer to consume excess vertical space.

Creating a Qt Application 11

3. We need to regroup the buttons and other widgets in a vertical group. Drag the mouse from near the bottom
right of the form so that the rubber band includes or touches the buttons, the check box, the spacer, the LCD
Number and the Length label; then release. If you selected any other widgets by mistake, click the form and try
the drag again. Click the Lay Out Vertically toolbar button.

4. We now have three groups as we had before, only this time with the small addition of the spacer. Select the list
box and the buttons by clicking the form, dragging and releasing once the rubber band covers or touches both
groups. Click Lay Out Horizontally (in Splitter) to regroup them with the splitter.

5. The last step is to lay out the form itself. Click the form and click Lay Out Vertically. The form should now be
laid out correctly.

There are two small deficiencies in the layout that we have achieved. Firstly the list box and buttons take up an equal
width whereas we’d rather have the list box take up about three quarters of the width. Secondly the Length label, the
check box and the buttons extend right up to the splitter. They would look more attractive if there was a little bit of
space separating them from the splitter.

Expanding the list box half of the splitter would require us to add ani ni t () function with the following code:

void MulticlipForm:init()
{
Qval ueli st si zes;
sizes << 250 <set Sizes(sizes);

}

We won’t add this code now since we’ll deal with the code when we come to implement the application’s functionality
later in the chapter.

We will create some space around the splitter by changing the margins of the layout groups that it joins together. To
click a layout either click a fraction above the layout’s top red line or click the layout’s name in the Object Explorer
(the Widgets and Source window). (See Object Explorer Window sidebar for an explanation of the Object Explorer
window.) Click the layout that contains the list box, and change the layoutMargin property to 6, then press Enter. Click
the layout that contains the buttons and other widgets, and change its layoutMargin to the same value in the same way.

The Object Explorer

View the Object Explorer (Widgets and Source) window by clicking Window|Views|Object Explorer. The Object
Explorer has two tabs, the Widgets tab which shows the object hierarchy, and the Source tab which shows the source
code you have added to the form. Clicking the name of a widget in the Widget tab will select the widget and show its
properties in the Property Editor. It is easy to see and select widgets in the Object Explorer which is especially useful
for forms that have many widgets or which use layouts.

In the original version of Qt Designer if you wanted to provide code for a form you had to subclass the form and put your
code in the subclass. This version fully supports the subclassing approach, but now provides an alternative: placing
your code directly into forms. Writing code in Qt Designer is not quite the same as subclassing, for example you cannot
get direct access to the form’s constructor or destructor. If you need code to be executed by the constructor create a
slot called voi d init(); if it exists it will be called from the constructor. Similarly, if you need to be executed before
destruction create a slot called voi d destroy(). You can also add your own class variables which will be put in the
generated constructor’s code, and you can add forward declarations and any includes you require. To add a variable
or declaration right click the appropriate item, e.g. Class Variables, then click New then enter your text, e.g. QString
fil eNane. If one or more items exist right clicking will popup a two item menu with New and Delete as options. To
edit code just click the name of a function to invoke the code editor. Code editing and creating slots are covered later.

If you subclass the form you create your own . cpp files which can contain your own constructor, destructor, functions,
slots, declarations and variables as your requirements dictate. (See Subclassing for more information.)

In the example we used Qt Designer’s layout tools to lay out our widgets. We will use the layout tools again in the
examples presented in later chapters. If you want to use absolute positioning, i.e. to place and size your widgets with

Creating a Qt Application 12

exact pixel sizes you can easily do so. To place a widget click it and drag it to the desired position. To resize it, click it,
and drag one of the sizing handles (these are small blue squares) until the size is right. To stop the widget from resizing
when the window is resized change the hSizeType and vSizeType (these are properties within the sizePolicy property),
to Fixed.

Previewing

Although Qt Designer presents an accurate view of our forms we often want to see what a form looks like when it is
run. It is also useful to be able to test out some aspects of the form, for example how the form scales when resized or
how the splitters work in practice. If we’re building cross-platform applications it is also useful to see how the form
will look in different environments.

To see a preview either click Preview | Preview Form or press Ctrl+T. To leave preview mode close the window in the
standard way for your environment. To view previews which show how the application will look on other platforms
click the Preview menu and click one of the menu items that drop down.

Preview the multiclip form and try out the splitter and try resizing the form. In all probability you moved the splitter
to the right to reduce the size of the buttons to make the form more attractive. The splitter seemed like a good idea
but in practice we want the buttons and the other widgets on the right hand side to take up a fixed amount of space.
Qt Designer makes changing layouts very easy, so we'll fix this straight away.

Click the splitter then click the Break Layout toolbar button; the splitter will be removed. Now click the form itself,
near the bottom, and drag the rubber band so that it touches both the list box and some of the buttons, then release.
The list box group and the buttons group are selected; click the Lay Out Horizontally toolbar button. Click the form
then click the Lay Out Vertically toolbar button. The form is now laid out as we require. Preview the form (press
Ctrl+T) and try resizing it.

It would be useful if you experimented further with layouts since they work visually and are best learnt through
practice. To remove a layout click the Break Layout toolbar button; to apply a layout select the relevant widgets or
groups and click a layout button. You can preview as often as you like and you can always undo any changes that you
make.

Let’s try an experiment, to see how the grid layout works. Click the list box, then press Ctrl+B (break layout). Click one
of the buttons and press Ctrl+B. Click the form at the bottom and drag until all the widgets are touching or within the
rubber band, (but excluding the Current Clipping label and the currentLineEdit line edit); then release. Press Ctrl+G
(lay out in a grid). Click the form, then click Ctrl+L (lay out vertically). Our original design is back — but this time
using a grid layout.

Changing the Tab Order

Keyboard users press the Tab key to move the focus from widget to widget as they use a form. The order in which the
focus moves is called the tab order. Preview multiclip (press Ctrl+T) and try tabbing through the widgets. The tab
order may not be what we want so we’ll go into tab order mode and change it to the order we want.

When you click the Tab Order toolbar button a number in a blue circle will appear next to every widget that can accept
keyboard focus. The numbers represent each widget’s tab order, starting from 1. You change the tab order by clicking
the widgets in the order you want to be the new tab order. If you make a mistake and need to start again, double click
the widget you want to be first, then click the other widgets in the required order as before. When you’ve finished press
Esc to leave tab order mode. If you made a mistake or preferred the previous tab order you can undo your changes by
leaving tab order and undoing (press Esc then Ctrl+Z).

Click the Tab Order toolbar button, then click the current clipping Line Edit — even if it is already number one in the
tab order. Next click the previous clipping ListBox, then the auto add clippings CheckBox. Click each button in turn
from top (add clipping) to bottom (quit). Press Esc to finish tab order mode, then preview the form and try tabbing

Creating a Qt Application 13

through the widgets.

Note that you can stop clicking if the tab order numbers for all the widgets is correct; just press Esc to leave tab order
mode.

Connecting Signals and Slots

Qt provides the signals and slots mechanism for communicating between widgets. Signals are emitted by widgets
when particular events occur. We can connect signals to slots, either pre-defined slots or those we create ourselves. In
older toolkits this communication would be achieved using callbacks. (For a full explanation of Qt’s signals and slots
mechanism see the on-line Signals and Slots documentation.)

Connecting Predefined Signals and Slots

Some of an application’s functionality can be obtained simply by connecting pre-defined signals and slots. In multiclip
there is only one pre-defined connection that we can use, but in the richedit application that we’ll build in Creating
Main Windows with Actions, Toolbars and Menus we will use many pre-defined signals and slots to get a lot of the
functionality we need without having to write any code.

We will connect the Quit button’s cl i cked() signal to the form’s accept () slot. The accept () slot notifies the dialog’s
caller that the dialog is no longer required; since our dialog is our main window this will close the application. Preview
the form (press Ctrl+T); click the Quit button. The button works visually but does nothing. Press Esc or close the
preview window to leave the preview.

Click the Connect Signals/Slots toolbar button. Click the Quit button, drag to the form and release. The Edit Con-
nections dialog will pop up. The top left hand list box lists the Signals that the widget we’ve clicked can emit. At the
top right is a combobox which lists the form and its widgets; any of these are candidates for receiving signals. Since
we released on the form rather than a widget the slots combobox shows the form’s name, "MulticlipForm’. Beneath the
combobox is a list box which shows the slots available in the form or widget shown in the combobox. Note that only
those slots that can be connected to the highlighted signal are shown. If you clicked a different signal, for example the
t oggl ed() signal, the list of available slots would change. Click the cl i cked() signal, then click the accept () slot. The
connection will be shown in the Connections list box. Click OK.

We will make lots of signal/slot connections as we work through the examples, including connections to our own
custom slots. Signal/slot connections (using pre-defined signals and slots) work in preview mode. Press Ctrl+T to
preview the form; click the form’s Quit button. The button now works correctly.

Creating and Connecting Custom Slots

In the first version of Qt Designer you could create the signatures of your custom slots and make the connections, but
you could not implement your slots directly. Instead you had to subclass the form and code your slots in the subclass.
The subclassing approach is still available, and makes sense in some situations. But now you can implement your slots
directly in Qt Designer, so for many dialogs and windows subclassing is no longer necessary. (Qt Designer stores the slot
implementations in a . ui . h file; see The ui.h extension approach in The Designer Approach chapter for more about
these files.)

The multiclip application requires four slots, one for each button, but only three need to be custom slots since we
connected a signal to a pre-defined slot to make the Quit button functional. We need a slot for the Add Clipping
button; this will add the current clipping to the list box. The Copy Previous button requires a slot which will copy the
selected list box item to the current clipping line edit (and to the clipboard). The Delete Clipping button needs a slot
to delete the current clipping and the current list box item. We will also need to write some initialization code so that

Creating a Qt Application 14

when the application starts it will put the current clipboard text (if any) into the line edit. The code is written directly
in Qt Designer; the snippets are taken from the generated qt/ t ool s/ desi gner/exanpl es/multiclip/mlticlip.ui.h
file.

We'll need Qt’s global clipboard object throughout the code which would mean calling QAppl i cati on:: cl i pboard()
or gApp->clipboard() in several places. Rather than perform all these function calls we’ll keep a pointer to the
clipboard in the form itself. Click the Source tab of the Object Explorer. (If the Object Explorer isn’'t visible click
Window | Views | Object Explorer.) The Source tab shows us the functions in our form, the class variables, the forward
declarations and the names of the include files we’ve asked for.

Right click the Class Variables item, then click New on the popup menu. (If there had been any existing variables the
popup menu would also have a Delete option.) Type in 'QClipboard *cb;’ and press Enter. We will create an i nit ()
function in which we will assign this pointer to Qt’s global clipboard object. We also need to declare the clipboard
header file. Right click Includes (in Declaration), then click New. Type in ’<qclipboard.h>" and press Enter. Since we
need to refer to the global application object, gApp, we need to add another include declaration. Right click Includes
(in Implementation), then click New. Type in '<qapplication.h>" and press Enter. The variable and declarations will
be included in the code generated from Qt Designer’s . ui file.

We will invoke Qt Designer’s code editor and write the code.

We'll create the i nit() function first. One way of invoking the code editor is to click the Source tab, then click the
name of the function you want to work on. If you have no functions or wish to create a new function you need to
use the Source tab. Right click the *protected’ item in the Source tab’s Functions list, then left click New to launch the
Edit Slots dialog. Change the slot’s name from 'newSlot’ to 'init()’ then click OK. You can then click inside the editor
window that appears to enter your code.

Note that you are not forced to use Qt Designer’s code editor; so long as you add, delete and rename your slots all within
Qt Designer, you can edit the implementation code for your slots using a separate external editor and Qt Designer will
preserve the code you write.

void MilticlipForm:init()

{
| engt hLCDNunber - >set Backgr oundCol or (dar kBl ue);
currentLi neEdi t - >set Focus();
cb = qApp->clipboard();
connect (cb, SIGNAL(dataChanged()), SLOT(dataChanged()));
if (cb->supportsSelection())
connect (cb, SIGNAL(selectionChanged()), SLOT(selectionChanged()));
dat aChanged() ;
}

The first couple of lines change the LCD number’s background color and make the form start with the focus in the
line edit. We take a pointer to Qt’s global clipboard and keep it in our class variable, cb. We connect the clipboard’s
dat aChanged() signal to a slot called dat aChanged(); we will create this slot ourselves shortly. If the clipboard supports
selection (under the X Window system for example), we also connect the clipboard’s sel ecti onChanged() signal to a
slot of the same name that we will create. Finally we call our dat aChanged() slot to populate the line edit with the
clipboard’s text (if any) when the application begins.

Since we've referred to the dataChanged() and sel ecti onChanged() slots we’ll code them next, starting with
dat aChanged().

void MilticlipForm: dataChanged()

{
QString text;

Creating a Qt Application 15

text = ch->text();
cli ppi ngChanged(text);
i f (autoCheckBox->i sChecked())
addd i ppi ng();
}

We take a copy of the clipboard’s text and call our own cl i ppi ngChanged() slot with the text we’ve retrieved. If the
user has checked the Auto Add Clippings checkbox we call our addd i ppi ng() slot to add the clipping to the list box.

The sel ecti onChanged() slot is only applicable under the X Window System. Users of MS Windows can still include
the code to ensure that the application works cross-platform.

void Ml ticlipForm:selecti onChanged()

{
ch- >set Sel ecti onMbde(TRUE);
dat aChanged() ;
cb- >set Sel ecti onMbde(FALSE);
}

We tell the clipboard to use selection mode, we call our dat aChanged() slot to retrieve any selected text, then set the
clipboard back to its default mode.

In the dat aChanged() slot we called another custom slot, ¢l i ppi ngChanged().

void MilticlipForm:clippingChanged(const QString & clipping)
{

currentLineEdit->set Text(clipping);

| engt hLCDNunber - >di spl ay((int)clipping.length());
}

We set the line edit to whatever text is passed to the cl i ppi ngChanged() slot and update the LCD number with the
length of the new text.

The next slot we’ll code will perform the Add Clipping function. This slot is called by our code internally (see the
dat aChanged() slot above), and when the user clicks the Add Clipping button. Since we want Qt Designer to be able to
set up a connection to this slot instead of just typing it in the editor window we’ll let Qt Designer create its skeleton for
us. Click Edit|Slots to invoke the Edit Slots dialog. Click New Slot and replace the default name of new_slot()’ with
’addClipping()’. There is no need to change the access specifier or return type. Now that we’ve created our slot we can
implement it in the code editor where it has now appeared.

The Add Clipping button is used to copy the clipping from the Current Clipping line edit into the list box. We also
update the length number.

void Ml ticlipForm:addd ipping()

{
QString text = currentLineEdit->text();
if (! text.isEnpty()) {
| engt hLCDNunber - >di spl ay((int)text.length());
int i =0;
for (; 1 count(); i++) {
if (clippingsListBox->text(i) ==text) {
i =-1; // Do not add duplicates
break;

Creating a Qt Application 16

}
if (i 1=-1)
clippingsLi stBox->insertiten text, 0);

}

If there is some text we change the LCD’s value to the length of the text. We then iterate over all the items in the list
box to see if we have the same text already. If the text is not already in the list box we insert it.

To make the Add Clipping button functional we need to connect the button’s cl i cked() signal to our addd i ppi ng()
slot. Click the Connect Signals/Slots toolbar button. Click the Add Clipping button, drag to the form and release.
(Make sure you drag to the form rather than another widget — the form will have a thin pink border during the drag.
If you make a mistake simply change the name in the Slots combobox.) The Edit Connections dialog will appear. Click
the cl i cked() signal and our addC i ppi ng() slot. Click OK to confirm the connection.

The Copy Previous button is used to copy the selected clipping from the list box into the line edit. The clipping is also
placed on the clipboard. The procedure is the same as for the Add Clipping button: first we create the slot, then we
implement it and finally we connect to it:

1. Create the slot.

Click the Edit| Slots menu item to invoke the Edit Slots dialog. Click New Slot and replace the default 'new_slot()’
name with ’copyPrevious()’. Click OK.

2. Implement the slot.

void Ml ticlipForm:copyPrevious()

{
if (clippingsListBox->currentiten() !=-1) {
ch->set Text (clippingsLi st Box->currentText());
if (cb->supportsSelection()) {
cb- >set Sel ecti onMbde(TRUE);
ch->set Text (cli ppi ngsLi st Box->current Text());
cb- >set Sel ecti onMbde(FALSE);
}
}
}

The code for Copy Previous checks to see if there is a selected item in the list box. If there is the item is copied to
the line edit. If we are using a system that supports selection we have to repeat the copy, this time with selection
mode set. We don’t explicitly update the clipboard. When the line edit’s text is changed it emits a dat aChanged()
signal which our dat aChanged() slot receives. Our dat aChanged() slot updates the clipboard.

3. Connect to the slot.

Click the Connect Signals/Slots toolbar button. Click the Copy Previous button, drag to the form and release.
The Edit Connections dialog will pop up. Click the cl i cked() signal and the copyPrevi ous() slot. Click OK.

We take the same approach to the Delete Clipping button.

1. Click Edit|Slots to invoke the Edit Slots dialog. Click New Slot and replace the default name with 'deleteClip-
ping()’. Click OK.

2. The Delete button must delete the current item in the list box and clear the line edit.

void MulticlipForm:deletedipping()
{

Creating a Qt Application 17

cli ppi ngChanged("");
cli ppi ngsLi st Box- >removel ten{ cli ppingsListBox->currentlitem));

}

We call our own cl i ppi ngChanged() slot with an empty string and use the list box’s removel t en() function to
remove the current item.

3. Connect the Delete Clipping button’s ¢l i cked() signal to our del et eCl i ppi ng() slot. (Press F3 — which is the
same as clicking the Connect Signals/Slots toolbar button. Click the Delete Clipping button and drag to the
form; release. The Edit Connections dialog will appear. Click the clicked() signal and the del et ed i ppi ng()
slot. Click OK.)

Compiling and Building an Application

So far we have written about 99% of a Qt application entirely in Qt Designer. To make the application compile and run
we must create a mai n. cpp file from which we can call our form.

The simplest way to create a new source file is by clicking File|New to invoke the 'New File’ dialog, then click 'C++
Source’ or 'C++ Header’ as appropriate, then click OK. A new empty source window will appear. Click File|Save to
invoke the Save As dialog, enter 'main.cpp’, then click Save.

Enter the following code in the mai n. cpp C+ + editor window:

#i ncl ude <gapplication. h>
#include "multiclip.h"

int min(int argc, char *argv[])

{
QApplication app(argc, argv);
Miul ticlipForm clippingForm
app. set Mai nW dget (&cl i ppi ngForm);
cli ppi ngForm show();
return app. exec();
}

The program creates a QApplication object and an instance of our MulticlipForm, sets the form to be the main widget
and shows the form. The app. exec() call starts off the event loop.

Now start up a console (or xterm), change directory to the multiclip application and run qmake. A Makefile compatible
with your system will be generated:

gqmake -o Makefile multiclip.pro

You can now make the application, e.g. by running make or nmake. Try compililng and running multiclip. There are
many improvement you could make and experimenting with both the layout and the code will help you learn more
about Qt and Qt Designer.

This chapter has introduced you to creating cross-platform applications with Qt Designer. We've created a form, pop-
ulated it with widgets and laid the widgets out neatly and scalably. We've used Qt’s signals and slots mechanism to
make the application functional and generated the Makefile. These techniques for adding widgets to a form and laying
them out with the layout tools; and for creating, coding and connecting slots will be used time and again as you create
applications with Qt Designer. The following chapters will present further examples and explore more techniques for
using Qt Designer.

Creating Main Windows with Actions,
Toolbars and Menus

In this chapter we will explain how to create an application’s main window and how to add actions (explained shortly),
menus and toolbars. We will also demonstrate how some common actions, like cut and paste in a QTextEdit, can be
performed automatically simply by making the appropriate signals and slots connections. We will build the richedit
application to illustrate the necessary techniques.

S ~ia
Fil= Edit Format Help
”Di”'g) O {}{)H’% [B I u[lHe\valica R |

In Qt we have an alternative to the callback technique. WWe can use signals and slots. A signal
is a function which is called when a particular event occurs. Ot's widgets have many
pre-defined signals, but we can always subclass to add our own A slot is a function that is
caled when a signal occurs. Qt's widgets have many pre-defined slots, but it 15 commaon
practice to add your own slots so that vou can handle events that vou are interested in. The
signals and slots mechanism is type safe: the signature of a signal must match the signature of
the receiving slot. {In fact a slot may have a shorter signature than the signal it receives
because it can ignore extra arguments) Since the signatures match, the compiler can help us
detect type mismatches. Signals and slots are loosely coupled: a class which emits a signal
neither knows nor cares which slots receive the signal. @t's signals and slots mechanism
ensures that if vou connect a signal to a slot that the slot will be called with the signal's
paramsters at the right ime. Signals and slots can take any number of arguments of any typs.
They are completely typesafe: no mare calfback core durmps!

The Richedit Application

We begin by creating a project file. Start Qt Designer or if it is already running, close any existing projects and files.
Click File|New to invoke the New File dialog. Click the ’C++ Project’ icon, then click OK to invoke the Project Settings
dialog. Click the ellipsis button to invoke the Save As dialog and navigate to where you want to put the new project.
Use the Create New Folder toolbar button to create the ’richedit’ directory if it doesn’t exist. Make sure you’re in the
'richedit’ directory (double click it) and enter a file name of ’richedit.pro’. Click the Save button. The 'Project File’ field
of the Project Settings dialog will have the path and name of your new project; click OK to create the project.

If you’re unfamiliar with Actions and Action Groups the sidebar provides the necessary introduction; otherwise skip
ahead to "Designing the Main Window".

Actions and Action Groups

An action is an operation that the user initiates through the user interface, for example, saving a file or changing some
text’s font weight to bold.

We often want the user to be able to perform an action using a variety of means. For example, to save a file we might
want the user to be able to press Ctrl+S, or to click the Save toolbar button or to click the File| Save menu option.
Although the means of invoking the action are all different, the underlying operation is the same and we don’t want
to duplicate the code that performs the operation. In Qt we can create an action (a QAction object) which will call

18

Creating Main Windows with Actions, Toolbars and Menus 19

the appropriate function when the action is invoked. We can assign an accelerator, (e.g. Ctrl+S), to an action. We can
also add an action to a menu item and to a toolbar button.

If the action has an on/off state, e.g. bold is on or off, when the user changes the state, for example by clicking a
toolbar button, the state of everything associated with the action, e.g. menu items and toolbar buttons, are updated.

Some actions should operate together like radio buttons. For example, if we have left align, center align and right align
actions, only one should be ’on’ at any one time. An action group (a QActionGroup object) is used to group a set of
actions together. If the action group’s excl usi ve property is TRUE then only one of the actions in the group can be on
at any one time. If the user changes the state of an action in an action group where excl usi ve is TRUE, everything
associated with the actions in the action group, e.g. menu items and toolbar buttons, are updated.

Qt Designer can create actions and action groups visually, can assign accelerators to them, and can associate them with
menu items and toolbar buttons.

Designing the Main Window

We will use the main window wizard to build a main window. The wizard allows us to create actions and a menu bar
and a toolbar through which the user can invoke the actions. We will also create our own actions, menus and toolbar.
We will add some widgets to the toolbar and add a main widget to the main window. Finally we will connect signals
to slots to take advantage of Qt’s default functionality and minimize our coding.

Creating the Main Window

Click File|New to invoke the New File dialog, click Mainwindow;, then click OK. A new QMainWindow form will be
created and the Mainwindow Wizard will pop up.

1. The Choose available menus and toolbars wizard page appears first. It presents three categories of default actions,
File Actions, Edit Actions and Help Actions. For each category you can choose to have Qt Designer create menu
items, toolbar buttons and signal/slots connections for the relevant actions. You can always add or delete actions,
menu items, toolbar buttons and connections later.

We will accept the defaults for File Actions, i.e. have menu items, toolbar buttons and the relevant connections
created. But for the Edit Actions we don’t want any connections created since we’ll be connecting the actions
directly to the QTextEdit we’ll create later, so uncheck the Edit Action’s Create Slots and Connections checkbox.
We won’t have any Help Actions on the toolbar so uncheck the Help Action’s Toolbar checkbox. Click Next to
move on to the next wizard page.

2. The Setup Toolbar wizard page is used to populate a toolbar with actions from each of the default action cat-
egories. The Category combobox is used to select which set of actions you wish to work on. The Actions list
box lists the actions available for the current category. The Toolbar listbox lists the toolbar buttons you want to
create. The blue left and right arrow buttons are used to move actions into or out of the Toolbar list box. The
blue up and down arrow buttons are used to move actions up and down within the Toolbar list box. Note that
the ’<Separator>’ item in the Actions list box may be moved to the Toolbar list box as often as required and will
cause a separator to appear in the finished toolbar.

Copy the New, Open and Save Actions to the Toolbar list box. Copy a <Separator> to the Toolbar list box.
Change the Category to Edit and copy the Undo, Redo, Cut Copy and Paste actions to the Toolbar list box. Click
Next and then click Finish.

If you preview the form (Ctrl+T) the File and Edit menus will be available and youw’ll be able to drag the toolbar either
into an independent window of its own, or to dock it to the left, right, bottom or top of the window. The menus and
toolbars are not functional yet but we will rectify this as we progress.

Creating Main Windows with Actions, Toolbars and Menus 20

Creating and Deleting Actions and Action Groups
Creating Actions

Our application requires more menu items and toolbar buttons than the the defaults we created with the main window
wizard. But before we create the menu items and toolbar buttons we will create the actions that they’ll invoke. The
Action Editor appears automatically when you create a main window. You can also access it through the Window menu
(click Window | Action Editor).

For the richedit application we need to create actions for indicating bold, italic and underlined font attributes, and to
set text alignment.

Right click in the Action Editor where the actions are listed, then left click New Action. This will create a new action
called "Action’ at the top of the list of actions. The Property Editor will change to show the default settings for the new
action. We’ll now go through all the properties we need to change.

1. Change the name of the action to ’boldAction’.
2. Since bold can only be on or off change the toggleAction property to True.

3. The iconSet property is used to set an icon which will appear to the left of the action’s name in any menu you
associate the action with. The iconSet is also used for the toolbar button if you associate the action with a toolbar.
Click the ellipsis button (...) to invoke the Choose an Image dialog. The ellipsis button appears when you click
in the Value part of the Properties list by a pixmap or iconSet property. The pixmap we require is not in the
default collection. Click the Add button and a file dialog will appear. The icons we require are in the Qt examples
directory, qt / exanpl es/ t ext edi t/ . Navigate to the textedit directory and select the t ext bol d. xpmfile. Click the
new textbold icon in the pixmap collection then click OK.

4. Change the text property to 'bold’. This automatically changes the menuText, toolTip and statusTip properties.

5. Change the menu text to ’&Bold’. If we choose to associate this action with a menu item then this property is
used; otherwise it is ignored.

6. Change the accel property to '"CTRL+B’. This will associate the Ctrl+B keyboard accelerator with this action.

Note that at this point the only way to invoke this action is to use the keyboard accelerator (Ctrl+B), because we have
not yet associated the action with a menu item or with a toolbar button.

We need to add two more actions, italic and underline. For each one right click the Action Editor and click New Action.
Then repeat the steps listed above to change each action’s properties:

e For the italic action change its name to ’italicAction’ and ensure its toggleAction property is True. The iconSet
is in the textedit directory and is called textitalic.xpm add its pixmap in the same way that we added the
bold pixmap. (For example, click the ellipsis (...), click Add, navigate to the textedit directory and click the
textitalic.xpmpixmap. Then click the textitalic pixmap in the pixmap collection and click OK). Change the
action’s text to ’italic’, its menuText to ’&Italic’ and its accel to ’"CTRL+T.

e For the underline action change its name to 'underlineAction’ and set its toggleAction property to True. The iconSet
is in the same directory and is called t ext under. xpm add it in the same way as the previous pixmaps. Change its
text to 'underline’, its menuText to '&Underline’ and its accel to ’"CTRL+U’.

Creating Action Groups

It is perfectly possible to have bold, italic and underline all active at once. But for alignment, i.e. left align, right align
and centered, it only makes sense for one of them to be active at any one time. Because we need the alignment actions
to operate in sync with one another we must create an Action Group which will automatically manage the behaviour
of the actions it contains in the way we require.

Creating Main Windows with Actions, Toolbars and Menus 21

Right click the Action Editor then left click New Action Group. Change the action group’s name in the Property Editor
to ’alignActionGroup’, and change its text to ’align’. The ’exclusive’ property’s default is True. This ensures that only one
action within the action group can be ’on’ at any one time which is the behaviour we require.

We create the actions within the action group in almost the same way as before. The only difference is that we must
right click the alignActionGroup (rather than an Action) and then left click New Action to create a new action within
the action group. We will create three new actions within the alignActionGroup:

1. Create a new action within the alignActionGroup action group. Change the name of this action to "leftAlignAction’
and ensure its toggleAction property is True. Use the iconSet in the textedit directory called t ext | ef t . xpm adding
the pixmap to the pixmap collection in the same way as we added the textbold pixmap earlier. Change its text to
"left’, its menuText to '&Left’ and its accel to '"CTRL+T.

2. Create another new action within alignActionGroup. Change this action’s name to rightAlignAction’ and set its
toggleAction property to True. Set its iconSet to t ext ri ght . xpmusing the pixmap collection as before. Change its
text to right’, its menuText to '&Right’ and its accel to '"CTRL+R..

3. Create a third action within alignActionGroup. Change its name to 'centerAlignAction’ and make its toggleAction
property True. Change its iconSet to t ext cent er. xpm Change its text to 'center’ and its menuText to '&Center’.
We won’t set an accelerator for this action.

Note that the toolTip and statusTip properties were inherited from the action group; you may wish to change these to
be specific to the actions concerned.

Deleting Actions and Action Groups

We have some actions that we don’t intend providing for this first release, for example, the editFindAction and the
filePrintAction. Click editFindAction and then click the Delete Action toolbar button. Delete the filePrintAction in
the same way. Action Groups (including any actions they contain) can also be deleted with the Delete Action toolbar
button.

Creating and Populating a Toolbar

All the actions we require are now in place and we are ready to create a new toolbar and add some of our actions to
it. Right click on the right hand side of the toolbar area, or on the form, then left click Add Toolbar. The new toolbar
is empty and is visible only by its toolbar handle. (Toolbar handle’s are usually represented as a gray area containing
either two thick vertical lines or with many small pits).

We’ll add the new actions we've just created. Drag the alignActionGroup, (not any action it contains), to the new
toolbar and drop it on the toolbar handle to the right of the vertical lines. The three alignment actions will be added
to the toolbar. The bold, italic and underline actions do not belong to an action group, and must be dragged to the
toolbar individually. Drag the bold action to the toolbar: when the mouse is over the toolbar a thick red line will appear
indicating the position at which the toolbar button will be inserted; drop the bold action on the toolbar. Drag the italic
and underline actions to the toolbar and drop them next to the bold button. Separate the alignment toolbar buttons
from the font related buttons by right clicking the centered toolbar button and clicking Insert Separator.

Toolbar buttons and separators (usually represented as indented vertical gray lines), can be dragged and dropped into
new positions in the toolbar at any time. Separators can be inserted by right clicking a toolbar button and clicking Insert
Separator. Toolbar buttons and separators can be deleted by right clicking them and clicking Delete Item. Toolbars can
be deleted by right clicking their toolbar handle and clicking Delete Toolbar.

If you preview the application you’ll find that both the original and new toolbar can be dragged to different docking
points or dragged out of the application as independent tool windows.

Creating Main Windows with Actions, Toolbars and Menus 22

Adding Widgets to the Toolbar

We want our users to be able to choose the font and font size from the toolbar. To achieve this we’ll create a font
combobox and a font size spinbox and place them in the formatting toolbar we created in the previous section.

Click Qt Designer’s ComboBox toolbar button and click the last (right-most) toolbar button in the application’s new
toolbar. Change the combobox’s name to ’fontComboBox’. Click the SpinBox toolbar button and click the combobox
we've just added to insert the spinbox next to it. Change the spinbox’s minValue property to 6, its value property to 10
and its suffix to a space followed by ’pt’. Insert a separator to the left of the combobox.

Although you can put any widget into a toolbar we recommend that widgets which can be associated with an action
should not be added to the toolbar directly. For these widgets, i.e. menu items, toolbar buttons and lists of items, you
should create an action (drop down action for a list of items), associate the action with the widget, and add the action
to the toolbar. Widgets that can sensibly be inserted directly into a toolbar are ComboBoxes, SpinBoxes and Line Edits.

Creating Menus

We’ll now add the actions we added to the new toolbar to a new menu and modify the existing menus slightly.

Right click our application’s menu bar and click Add Menu Item. A new menu item called 'Menu’ will appear. Right
click this menu item and click Rename Item. Change its name to 'F&ormat’. Click the menu item and a red bar will
appear beneath it — this is the empty menu. Drag the alignActionGroup to the Format menu item and drop the action
group on the menu. (The menu’s red bar will appear and a thick red line will be drawn where the new menu items
will appear — drop when the red line is in the position you require.) Now if you click the Format menu item the
three alignment actions will be displayed. Just like the toolbar we must add the bold, italic and underline actions
individually. Drag the bold action to the Format menu and move the mouse so that the red line is positioned at the
bottom of the menu, then drop the action. Repeat this process for the italic and underline actions.

We’ll now deal with the separators in the menus. Firstly we’ll add a separator in the Format menu and then we’ll
remove some redundant separators from the other menus. Click the Format menu and right click the bold item; click
Insert Separator. Click the File menu and right click one of the separators above the Exit action; click Delete Item. Click
the Edit menu, right click the separator at the very bottom of the menu and click Delete Item. Delete Item can be used
to delete separators, menu items and menus.

Click the Format menu and drag it to the left of the Help menu, then drop the Format menu. (A thick red bar will appear
to indicate the insertion postion.) Both menus and menu items may be dragged and dropped to different positions in
the same way.

Preview the application and try clicking the alignment and font style toolbar buttons and menu items. Qt will auto-
matically keep the state of the menu items and the toolbar buttons synchronized.

Adding and Connecting the Main Widget

Our application is a rich text editor, but so far there has been nowhere for the user to edit text. We’ll add a QTextEdit
widget and use Qt’s signals and slots mechanism to minimize the code we have to write to make it functional.

Click Qt Designer’s Richtext Editor (Text Edit) toolbar button and click in the center of the form. Click the form, then
click the Lay Out Horizontally toolbar button. We’re now ready to make the connections we need; but first we will
do some renaming to make things easier to understand. Click on the Text Edit widget and change its name property to
"textEdit’. Change the textFormat property to 'RichText’. Change the name of the form to ’EditorForm’ and its caption
to 'Rich Edit’.

The QTextEdit widget contains built-in functionality for cut and paste and various other editing functions. By connect-
ing the appropriate signals to our textEdit we can take advantage of this functionality without the need to write any
code.

Creating Main Windows with Actions, Toolbars and Menus 23

Connecting Actions to Change Font Attributes

Click the underlineAction in the Action Editor, then click the Connect button. The Edit Connections dialog will appear.
Click the t oggl ed() signal. Since we wish to connect this signal to the text edit widget drop down the Slots combobox
and click textEdit. The text edit’s slots that can respond to a toggled signal will appear in the right hand list box. Click
the set Under | ine() slot, then click OK.

Connect up the bold and italic actions in the same way. (For example, click the bold action and click Connect. Click the
toggl ed() signal, change the Slots combobox item to textEdit and click the set Bol d() slot. Click OK.) If you preview
the form you’ll find that you can enter text and that choosing bold, italic or underline will work.

Connecting Actions to Implement Cut, Copy, Paste, Undo and Redo

The cut, copy, paste, undo and redo actions are connected in the same way as the font attributes. For example, click the
editPasteAction action and click Connect. Click the activated() signal, change the Slots combobox item to textEdit
and click the paste() slot. Click OK to save the connection. Connect the cut, copy, undo and redo actions in the
same way. (For example, click the editCopyAction action, click Connect, click the acti vat ed() signal, change the Slots
combobox item to textEdit, click the copy() slot then click OK.) Then the cut, copy, paste, undo and redo actions will
all work in preview mode.

Connecting for Text Alignment

We need to create a slot to receive signals from alignment actions and set the textEdit widget’s alignment state accord-
ingly. One approach would be to connect each individual alignment action to our slot, but because the align actions
are in a group we will connect the alignActionGroup to our slot and determine which alignment the user chose from
the QAction pointer that is passed.

Create a new slot with the signature changeAl i gnment (QAction *align). (Click Edit|Slots, click New Slot, enter
the slot’s signature and click OK.) Click alignActionGroup in the Action Editor, then click Connect. Connect the
sel ect ed(QActi on*) signal to our change alignment slot, then click OK.

We'll have to write the code to set the alignment ourselves; we’ll cover this in Aligning Text.

Connecting for Font Names and Sizes

We’ll start by dealing with font size since it’s easiest. Click the Connect Signals/Slots toolbar button then click the
spinbox and drag to the text edit widget; release on the text edit. Click the val ueChanged(int) signal and on the
textEdit’s set Poi nt Si ze(i nt) slot. Click OK and font sizes are done. (Since font sizes are handled purely through
built-in signals and slots they work in preview mode.)

Connect the fontComboBox’s act i vat ed() signal to the textEdit’s set Fami | y() slot. This connection will handle up-
dating the textEdit’s font family with the user’s choice of font. Note that when you invoke the Edit Connections dialog
the first signal that is highlighted is activated(int). Since the set Fam | y() slot takes a QString argument it does
not appear in the list of slots. Only those slots which are compatible with the highlighted signal are shown, in this
case, slots which take no argument or which take an integer argument. Click the activat ed(const QString&) signal
and the list of slots will change to those which take no argument or which take a QString argument; the list will now
include set Fami | y() since this takes a QString argument. We will have to populate the combobox with the font names
for the user to choose from in code. (See the init() function in Changing Fonts.) It’s a good idea to connect the
fontComboBox’s acti vat e() signal to the textEdit’s set Focus() slot; this will ensure that after the user has changed
font the focus will return to the text.

The richedit application is nearly complete. We will have to write code to handle text alignment, font family and file
loading and saving. We will also write the code for application exit to deal correctly with any unsaved changes.

Creating Main Windows with Actions, Toolbars and Menus 24

Converting the Design into an Executable Application

We've built the user interface through Qt Designer and connected those slots that provided sufficient default function-
ality. The last steps are to code the slots that require customization and then to create mai n. cpp so that we can compile
and build our application.

Implementing the Main Window’s Functionality

When the user starts the richedit application we want the focus to be in the textEdit widget so we need
to create an init() function with one line of code to achieve this. (All the code snippets are from
qt/tool s/ desi gner/exanpl es/richedit/richedit.ui.h.)

void EditorForm:init()
{

t ext Edi t - >set Focus() ;

}

We’ll add more to this function later.

New Files and Loading and Saving Existing Files

The code for these tasks is straightforward. When the user clicks File | New we check to see if there are unsaved changes
in the existing text and give them the opportunity to save, continue without saving or cancel the operation. When the
user opts to open an existing file or exit the application we perform the same check and offer them the same choices.

void EditorForm:fileNew)
{
if (saveAndContinue("New"))
text Edit->clear();

}

The fil eNew() function clears the text and the filename.

voi d EditorForm:fileCpen()
{
if (saveAndContinue("Open")) {
QString fn(QFileDialog::get OpenH | eNamg(
QString::null,
"Rich Text Files (*.htnt)", this));
if (!fnisBEmty()) {
fileName = fn;
QFile file(fileNane);
if (file.open(10 ReadOnly)) {
Qlext Streamts(&file);
text Edit->set Text(ts.read());

Creating Main Windows with Actions, Toolbars and Menus 25

The fileQpen() function asks the user to choose a file using QFi | eDi al og: : get OpenFi | eName(). If they choose a file
we set the fileName member to its name, open it and read its contents directly into the text edit via a text stream.

void EditorForm:fileSave()

{
if (fileName.isEmty()) {
fileSaveAs();
} else {
QFile f(fileName);
if (f.open(1O WiteOnly)) {
Qlext Streamts(&);
ts <text();
text Edi t - >set Modi fied(FALSE);
}
}
}

If there is no current file name we call fi | eSaveAs() which will prompt for a file name and if a file name is given calls
fileSave(). If we have a file name we open a file and write the text from the text edit into the file via a text stream.
We also set the text edit’s modified property to FALSE.

void EditorForm:fileSaveAs()

{
QString fn = QFil eDial og: : get SaveFi | eNang(
"' "Rich Text Files (*.htn)", this);
if (!fnisEmty()) {
fileName = fn;
fileSave();
}
}

The fil eSaveAs function prompts the user for a file name and if they give a file name, saves the text to the file by
calling fil eSave().

void EditorForm:fileExit()
{
if (saveAndContinue("Exit"))
qApp->exi t () ;
}

When we exit the application we must perform the same check for unsaved changes as we’ve done in the preceding
functions, so we’ve included the fil eExit () function’s code here.

int EditorForm:saveAndContinue(const QString & action)
{

int continueAction = 1;

if (textEdit->isMdified()) {
switch(QvessageBox: :infornation(
this, "Rich Edit",
"The document contains unsaved changes.\n"
"Do you want to save the changes?",

Creating Main Windows with Actions, Toolbars and Menus 26

"&Save", "&Don't Save", "&Cancel " + action,
0, // Enter == button O
2)) { !/ Escape == button 2
case 0: // Save; continue
fileSave();
br eak;
case 1. // Do not save; continue
br eak;
case 2. // Cancel
continueAction = 0;
br eak;

}

return continueAction;

}

The saveAndCont i nue() function is included for completeness.

Aligning Text

voi d EditorForm:changeAlignment (QAction * align)
{
if (align ==1leftAignAction)
textEdit->setAlignment(Q::AlignLeft);
else if (align ==rightAignAction)
textEdit->setAlignment(Q::AlignRight);
else if (align == centerAlignAction)
textEdit->setAlignment(Q::AlignCenter);

We compare the chosen alignment action’s pointer to the the pointers stored in the form and if we get a match set the
appropriate alignment in the textEdit widget.

Changing Fonts

We've already connected the fontComboBox’s act i vat ed() signal to the textEdit’s set Fam | y() slot so we just have to
populate the combobox with the font names when we callinit().

void EditorForm:init()
{

t ext Edi t - >set Focus() ;

QFont Dat abase fonts;
font ComboBox->i nsert StringList(fonts.famlies());
QString font = textEdit->fam|ly();
font = font.lower();
for (int i =0 ; i count(); i++) {
if (font == fontConboBox->text(i)) {
f ont ComboBox- >set Currentlten(i);
break;

Creating Main Windows with Actions, Toolbars and Menus 27

}

The first line sets the focus as we’ve already mentioned. We then create a QFontDatabase object and insert its list of
font families into the fontComboBox. Finally we set the fontComboBox’s current item to the textEdit’s current font.

Making the Application Run

With all the connections and code in place we are now ready to make our application run. Click on the Source tab of
the Object Hierarchy window and click on the Includes (in Implementation) item. We need to include the files that
our source code depends on. Right click the Includes item and click New. Type in <qappl i cation. h>forfileExit()’s
exit() call. In the same way add <qmessagebox. h> for saveAndCont i nue()’s message box, <qfi | edi al og. h> for the
fileOpen() and fil eSaveAs() functions, and <qf ont dat abase. h> for the QFontDatabase class ininit ().

We referred to a member variable, fi | eNane, in our source code so we must add it to the form. Click the Source tab,
right click the Class Variables item, click New from the pop up menu, then enter ’QString fileName;’.

The simplest way to create a new source file is by clicking File|New to invoke the 'New File’ dialog, then click 'C++
Source’ or 'C++ Header’ as appropriate, then click OK. A new empty source window will appear. Click File|Save to
invoke the Save As dialog, enter 'main.cpp’, then click Save. Enter the following code in the main. cpp C++ editor
window:

#i ncl ude <gapplication. h>
#include "richedit.h"

int min(int argc, char *argv[])

{
QApplication app(argc, argv);
Edi tor Form ri chedi t Form
app. set Mai nW dget (&richeditForm);
ri chedit Form show();
return app. exec();
}

All that’s left to do is to generate the Makefile, compile and run. The Makefile is created with qmake: gmake -0
Mekefile richedit. pro.

The richedit application demonstrates how easy it is to create a Qt application’s main window with menus and dockable
toolbars. A great deal of functionality was obtained by connecting the appropriate built-in signals and slots. The
remaining functionality was achieved by connecting built-in signals to our own custom slots. We could continue
developing the application, for example updating the fontComboBox, the font size spinbox and the actions with the
font attributes as the user moves the cursor through their text. But our objective has been to demonstrate the creation
of a main window with actions, menus and toolbars so we must stop at this point and leave further development and
experimentation to you.

The Designer Approach

Introduction

In Qt 2.x, Qt Designer was a visual form designer for editing files in the . ui file format. Qt Designer’s primary goal was
to turn the most tedious part of GUI programming — dialog design — into a pleasant experience. From an architectural
point of view, Qt Designer in 2.x is a fairly simple program. It reads and writes . ui files. Each . ui file contains an XML
description of a single dialog form. A second utility — the user interface compiler ui ¢ — is used during the build
process of an application to generate C++ code from those XML descriptions.

For Qt 3.0 our ambitions for Qt Designer have grown beyond single dialog editing. In addition to many new design
features like the ability to creating main windows and actions, the new version introduces:

e project management for the user interface part of your application;

e code in forms Qt Designer provides a code editor so that you can code your slots directly; the code is stored in
. ui. h files and eliminates the need for sub-classing (although you can still subclass if you prefer);

e dynamic form loading allows you to load . ui files at runtime which provides great scope for design customisation
separate from the underlying code.

The purpose of this chapter is to explain the motivation for making these changes, describe the new concepts involved
and show how these features work internally.

Qt Designer is and remains a visual design tool: it is not a complete integrated development environment. Our policy
is to make GUI development as easy and powerful as possible without locking our users into any particular tool: Qt
Designer makes it easy to create and modify GUI designs, but you can still achieve the same results directly in code
using a plain text editor if you prefer.

To make working more convenient, Qt Designer now includes a C+ + editor (as a plugin). If you want to create or edit
a form, use Qt Designer. If you want edit code for that form, you can use the C++ editor in Qt Designer as well. This
built-in editor has certain benefits stemming from its tight integration with the visual form design process that we will
explain later. However, if you prefer using the editor you're used to, vi m enacs, not epad, Microsoft Visual Studio, etc.
you can still do so.

Project management

Reading and writing single, non-connected . ui files is conceptually simple and worked fairly well in Qt 2.x. However,
it lacked certain features that made us introduce project management for the GUI part of an application in Qt Designer.
The main benefits of project management are:

e Grouping forms that belong together.
e Sharing images between different forms.

28

The Designer Approach 29

e Sharing database information between different forms.

The following sections explain these benefits in more detail, and why project management is required to achieve them.

Grouping forms

Grouping forms means that Qt Designer maintains a list of the . ui files that belong to the same project. This makes it
easy to switch between forms with a single mouse click.

Sharing images in a image collection

In Qt 2.x’s Qt Designer each form included the images it required and no images were shared. This led to duplication
when several forms needed to use the same images. Furthermore the images were stored in the XML . ui files which
made them large.

As a workaround, we introduced a pixmap-loading function that you could define in Qt Designer. It then was your
responsibility to provide the implementation of this function in your application code. The big disadvantage of this
approach was that you couldn’t see the images during the design process in Qt Designer. This not only makes designing
a form less visually interesting, but also has a noticeable impact on geometry management.

In the Qt 3.0 version of Qt Designer we’ve introduced the concept of a project image collection. If you use a project you
can add images to the project’s image collection, and these images can be shared and used by any of the forms you
include in the project. The images are stored as PNGs (portable network graphics) in a subdirectory, i mages/, inside
the project’s directory. Whenever you modify the image collection, Qt Designer creates a source file which contains both
the image data in binary format and a function to instantiate the images. The images are accessible by all forms in the
project and the data is shared.

A further benefit of using an image collection is that the images are added to the default QMimeSourceFactory. This
way they are accessible from rich-text labels, What’s This? context help and even tooltips through standard HTML
image tags. The source argument of the image tag is simply the image’s name in the image collection. This also works
during the design process in Qt Designer.

Sharing database settings

Qt 3.0 introduces a brand new database module, the Qt SQL module. Qt Designer is fully integrated with the SQL
module and can show live data from the databases that you connect to.

When you’ve opened or created a project you can set up its database connections using the Edit Database Connections
dialog (invoked by the Project|Database Connections menu option). The connections you make are stored in a
.db file. When you reload a project you can reconnect by going to the Edit Database Connections dialog, clicking a
connection in the list and clicking the Connect button.

In most non-trivial database applications you will want to access the database from more than one form. This is why
the . db file is part of a project, not just part of a single form.

.pro files

Qt Designer needs to store information on projects, for example, the list of forms, the image collection and information
about available databases and how to access them. The majority of Qt users already use a project file format to create
cross-platform makefiles: t make (and with Qt 3.0 gqmake) project . pr o files. These files already contain the list of forms,
. ui files, used in the project for ui c.

The Designer Approach 30

We've extended the sections in the . pr o file to include the extra information that Qt Designer needs to manage projects.
For example, when you add a form to your project in Qt Designer, it is automatically added to the FORMS section of
the project file, and thus qmake will generate the required build rules without any further work. Similarly, the images
are added to the IMAGES section and thus gets automatically compiled into your executable.

We don’t force you to use qmake; if you prefer another build system, for example automake/autoconf or jam, you can
still continue to use it. Look upon the . pr o file as a file that describes the GUI part of your application. All you need to
do — as previously — is add the . ui files and the images collection to your own Makefiles.

Extending the functionality of a form

First let us look at a small figure that shows the relationship between . ui files, generated code and application code:

farm.ui

form h

Taol

Revision confralled source file

enerated source file

Feads and writes

Genetates

Hi1ooe

#includes L o | formepp main.cop

Qt Designer reads and writes . ui files, e.g. form ui. The user interface compiler, ui ¢, creates both a header file, e.g.
formh, and an implementation file, e.g. form cpp, from the . ui file. The application code in mai n. cpp #i ncl udes
form h. Typically mai n. cpp is used to instantiate the QApplication object and start off the event loop.

While this approach is simple, it isn’t sufficient for more complex dialogs. Complex dialogs tend to have quite a lot
of logic attached to the form’s widgets, more logic than can usually be expressed with predefined signals and slots.
One way of handling this extra logic is to write a controller class in the application code that adds functionality to the
form. This is possible because ui ¢ generated classes expose a form’s controls and their signals to the public space. The
big disadvantage of this method is that it’s not exactly Qt-style. If you were not using Qt Designer, you would almost
always add the logic to the form itself, where it belongs.

This is why the capability of adding custom slots and member variables to a form was added to Qt Designer early on.
The big additional benefit with this approach is that you can use Qt Designer to connect signals to those custom slots,
in the same elegant graphical way that is used to connect signals to predefined slots. The ui ¢ then adds an empty stub
for each custom slot to the generated f or m cpp implementation file.

The big question now is how to add custom implementation code to those custom slots. Adding code to the generated
form cpp is not an option, as this file gets recreated by the ui ¢ whenever the form changes — and we don’t want a
combination of generated and handwritten code. There are two possible solutions, which we’ll cover next.

The subclassing approach

A very clean way to implement custom slots for generated forms is via C++ inheritance as shown in the next figure:

The Designer Approach 31

farm.ui

inherits
formh - |e——| formimplh

Taol

[Revision confralled source file

[cenersted source file

st Feads and writes

g Cenerates

—B= sincludes L | formepp Tormimpl.cp mrin cpp

Here the user wrote an additional class FormImpl, which is split into the header file f or mi npl . h and the implemen-
tation file f orm npl . cpp. The header file includes the ui ¢ generated form h and reimplements all the custom slots.
This is possible because ui ¢ generated custom slots are virtual. In addition to implementing custom slots, this ap-
proach gives the user a way to do extra initialization work in the constructor of the subclass, and extra cleanups in the
destructor.

Because of these benefits and its flexibility, this approach became the primary way of using Qt Designer in Qt 2.x.

Note: To keep the namespace clean, most users did not follow the Form and FormImpl naming scheme shown in
the figure, but instead named their Qt Designer forms FormBase and their subclasses Form. This made a lot of sense,
because they always subclassed and were using those subclasses in application code.

The ui.h extension approach
Despite its flexibility and cleanness, the subclassing approach has some disadvantages:

e Subclassing is not natural and easy for everybody. Newcomers to object-oriented techniques may feel uneasy
about being forced to subclass for such a simple and natural thing like the implementation of a custom slot.

e Inheriting generated classes is an additional possible source of programming mistakes, especially if the number
of reimplemented functions is high and the signatures change often during the design process. To make the
development process smoother, Ui ¢ generates empty stubs for custom slots rather than pure virtual functions.
While this approach keeps the code compiling and running, programmers can find themselves in a situation where
they miss a runtime warning message and lose time before they find a small spelling error in their subclass.

e In larger projects with hundreds of forms, the additional subclasses can make a noticeable difference in terms of
compilation speed and code size.

There may be more disadvantages, but these were reason enough for us to investigate alternative solutions. For Qt 3.0,
we came up with a new concept, the ui.h extension.

This is how it works:

o i farm.uih

&

| form.h

Taol

[Revision confralled source file

[cenersted source file

ot Feads and writes

o Cenerates

— inclides L . | formepp rain cpg

The Designer Approach 32

In addition to the . ui file, f or m ui, Qt Designer reads and writes another associated file f orm ui . h. This . ui . h file is an
ordinary C++ source file that contains implementations of custom slots. The file gets included from the generated form
implementation file f or m cpp and thus can be totally ignored by other user code. The reason we use a . h extension for
the . ui . h file even though it contains C++ code is because it is always included, and because it is easier to integrate
into the build process with a . h extension.

The form ui . h file has a special position among all other files. It is a shared source file that gets written and read by
both the user and Qt Designer. As such it is an ordinary revision controlled source file and not generated by ui c. Qt
Designer’s responsibility is to keep the file in sync with the custom slot definitions of the associated form:

1. Whenever the users adds a new slots to the form, Qt Designer adds a stub to the . ui . h file.
2. Whenever the user changes a custom slot’s signature, Qt Designer updates the corresponding implementation.

3. Whenever the user removes a custom slot, Qt Designer removes it from the . ui . h file.

This way integrity is guaranteed, there is no more need for subclassing and no more danger of forgotten or misspelled
slots in subclasses.

You can edit . ui . h files either directly in Qt Designer with the built-in C++ editor plugin, or with whatever editor you
prefer. You should only put slot implementations in the . ui . h file and you should always add, delete or rename slots
within Qt Designer. You can edit the implementations of the slots either within Qt Designer or using your own editor; if
you use your own editor Qt Designer will keep your changes.

Construction and destruction

The ui . h extension approach has one disadvantage compared to subclassing. The ui . h file only contains custom slot
implementations, but the objects are still entirely constructed and destructed inside the generated f or m cpp code. This
leaves the user without the possibility of doing further form initializations or cleanups that you normally would do
within the constructor and destructor functions of a C+ + class.

To work around this limitation, we created the init/destroy convention. If you add a slot Form:init() to your
form, this slot will be called automatically at the end of the generated form constructor. Similarly, if you add a slot
Form : destroy() to your form, the slot will automatically be invoked by the destructor before any form controls get
deleted. (These slots should return void.) If you prefer to use your own editor you must still create these functions in
Qt Designer; once created you can then write your implementation code either using Qt Designer’s C++ editor plugin
or using your own editor.

Loading forms dynamically

We extracted the part of Qt Designer that is responsible for loading and previewing a form into a library of its own,
libqui. A new class QWidgetFactory makes it possible to load . ui files at runtime and instantiate forms from them.

This dynamic approach keeps the GUI design and the code separate and is useful in environments where the GUI may
have to change more often than the underlying application logic. Ultimately, you can provide users of your application
the ability to modify the graphical user interface without the need for a complete C++ development environment.

Since the .ui file is not compiled it cannot include any C++ code, (e.g. custom slot implementations). We provide a
way of adding those implementations via a controlling QObject subclass that you pass as receiver to the widget factory.

This concept and its usage is explained in detail in the Subclassing and Dynamic Dialogs chapter.

Subclassing and Dynamic Dialogs

This chapter describes two different approaches that you can take to creating forms with Qt Designer. Subclassing is
used to extend the functionality of a form by creating your own class based upon a form you create in Qt Designer.
Dynamic dialogs are . ui files which can be executed by a Qt application; this keeps the GUI design and the code
separate and is useful in environments where the GUI may have to change more often than the underlying application
logic.

Subclassing

We'll start with a general description of how to subclass a form and follow with a short example. Note that subclassing
has some disadvantages compared with putting your code into a form directly; see Extending the functionality of a
form in The Designer Approach chapter for details.

Generating Source Code from Qt Designer .ui Files

Qt Designer reads and writes qnmake . pro (project) files which are used to record the files used to build the application
and from which Makefiles are generated. Qt Designer also reads and writes . ui (user interface) files. These are XML
files that record the widgets, layouts, source code and settings you've used for a form. Every . ui file is converted by
the ui ¢ (user interface compiler) into a C++ . h file and a C++ . cpp file. These C++ files are then read by noc (meta
object compiler), and finally compiled by your compiler into a working application.

If you create applications wholly within Qt Designer you only need to create a mai n. cpp.

If you create the mai n. cpp file within Qt Designer, it will automatically be added to your project file by Qt Designer. If
you create the mai n. cpp file outside of Qt Designer you must add it to the project file manually by adding the following
line at the end of your project’s . pr o file:

SOQURCES += nmi n. cpp

You can then use gnake to generate the Makefile. (For example qmake -o Makefile nmyproject.pro.) Running make
(Linux, Unix or Borland compilers), or nmake (Visual C++), will then call ui ¢, nmoc and your compiler as necessary to
build your application.

If you use Qt Designer to create your main window and dialogs, but also add other C+ + files, or if you subclass any of
your forms you will need to add these files to the . pr o file so that they are compiled with the rest of your application’s
source files. Each . h file that you create separately from Qt Designer should be added to the HEADERS line, and each
. cpp file should be added to the SOURCES line, just as we’ve done for mai n. cpp. If you get undefined reference errors it
is worth checking that you've added the names of all your header and implementation files to the . pr o file.

33

Subclassing and Dynamic Dialogs 34

Subclassing a Form

When subclassing a form it is helpful to use a naming convention to help us identify which files are generated from Qt
Designer’s . ui files and which are hand coded.

Suppose, for example, that we are developing a dialog and writing the code directly in Qt Designer. We might call our
dialog ’OptionsForm’ and the . ui file, opti onsform ui. The automatically generated files will be opti onsf orm h and
optionsform cpp.

If we were developing another dialog, but this time one that we intended to subclass, we want to make it easy to
distinguish between the automatically generated files and our hand coded files. For example, we might call our dialog
"SettingsFormBase’ and the . ui file settingsfornbase. ui. The automatically generated files would then be called
settingsfornbase. h and settingsfornbase. cpp. We would then call our subclass ’SettingsForm’ and code it in the
files settingsformh and settingsform cpp.

Any subclass of a form should include the Q OBJECT macro so that slots and signals will work correctly. Once you've
created your subclass be sure to add the . h and the . cpp files to the . pr o project file. For example we would add the
following lines for our subclassed ’SettingsForm’ at the end of the . pro file:

HEADERS += settingsformh
SOURCES += settingsformcpp

The simplest way to create a new source file is by clicking File|New to invoke the 'New File’ dialog, then click 'C++
Source’ or ’‘C++ Header’ as appropriate, then click OK. A new empty source window will appear. You don’t need to
manually edit the . pr o file since Qt Designer will add them for you automatically.

Qt Designer will have added
FORMS = settingsfornbase. ui

to the project file. The settingsfornbase. h and settingsfornbase. cpp files will be generated from the . ui file
automatically.

A Subclassing Example

We will write a small example dialog to show the use of subclassing in practice. The dialog will present a choice of
customer credit ratings with an option of choosing a ’special’ rating for which a specific amount must be given. We’ll
implement the functionality in a subclass. We'll start by creating the base form and connecting its signals and slots,
then we’ll create the subclass and a simple nmai n. cpp so that we can test it.

Designing the Form

We'll begin by creating a new project. Click File|New, then click the ’C++ Project’ icon to invoke the Project Settings
dialog. Click the ellipsis button to invoke the Save As dialog; navigate to the project’s directory (creating it if necessary).
Make sure you’re in the project’s directory, then enter a project name of ’credit.pro’. Click the Save button to return to
the Project Settings dialog, then click OK. Now we’ll add a form to the project. Click File|New to invoke the New File
dialog. The default form is Dialog which is what we want; click OK. Resize the form to make it smaller; it should be
about 2 inches (5 cm) square. Change the form’s name to ’CreditFormBase’ and the caption to ’Credit Rating’. Save the
form as credi tf ormbase. ui.

We’ll now add the widgets we need.

Subclassing and Dynamic Dialogs 35

1. Click the Button Group toolbar button, then click near the top left of the form. Resize the button group so that
it takes up approximately half the form. Change the button group’s name to ’creditButtonGroup’ and its title
property to ’Credit Rating’.

2. We'll now add some radio buttons. Double click the Radio Button toolbar button. Click towards the top of the
Credit Rating button group and a radio button will appear. Click below this button, to create a second radio
button, then click below the second button to create a third. Now we will switch off the effect of the double click
by clicking the Pointer (arrow) toolbar button. The pointer will now behave normally, i.e. clicking the form will
no longer create more radio buttons. Change the first radio button’s name to ’stdRadioButton’ and its text to
"&Standard’. Change its checked property to True. Change the second button’s name to 'noneRadioButton’ and its
text to '&None’. Change the third radio button’s properties to ’specialRadioButton’ and 'Sp&ecial’ respectively.

3. If the user chooses the special credit rating they must specify an amount. Click the SpinBox toolbar button and
click the form just below the button group. Change the spin box’s name to 'amountSpinBox’. Change its prefix to
’$ ’ (note the space), its maxValue to ’100000’ and its lineStep to ’10000’. Change its enabled property to False.

4. Click the Push Button toolbar button and click the form below the spin box. Change the button’s name to
’okPushButton’, its text to ’'OK’ and its default property to 'True’. Add a second button to the right of the first.
Change the second button’s name to ’cancelPushButton’ and its text to ’Cancel’.

We’ll now lay out the widgets and connect up the slots we need.

1. Click the credit rating group box then press Ctrl+L (lay out vertically).

2. Click the form so that the button group is no longer selected. Ctrl+Click the OK button and drag the rubber
band to touch the Cancel button, then release. Press Ctrl+H.

3. Click the form, then press Ctrl+L.

The widgets will be laid out vertically, each one stretching to fill up the maximum space both vertically and
horizontally. The buttons look rather large since they’ve expanded to take up the full width of the form. It might
look more attractive to make the buttons smaller using spacers. Click the OK button, then press Ctrl+B (break
layout). Resize both buttons to make them narrower leaving space on either side of them. Click the Spacer
toolbar button then click to the left of the OK button; click Horizontal from the pop up spacer menu. Copy this
spacer and place the copy between the two buttons. Copy the spacer again and place the copy to the right of the
Cancel button. (For the second and third spacers, click on the first spacer, press Ctrl+C then Ctrl+V. Drag the
new spacer to the desired position.) Ctrl+Click the left most spacer and drag the rubber band so that it touches
the buttons and the spacers, then release. Press Ctrl+H. Click the form then press Ctrl+L.

We'll now connect the signals and slots. Press F3 (connect signals/slots), then click the OK button. Drag to the form
and release. In the Edit Connections dialog that pops up connect the cl i cked() signal to the accept () slot. (Click the
clicked() signal, click the accept () slot, then click OK.) Connect the Cancel button to the rej ect () slot using the
same technique.

We want the amount spin box to be enabled only if the special radio button is checked. Press F3 (connect signals/slots),
then click the special radio button. Drag to the spin box and release. In the Edit Connections dialog that pops up click
the t oggl ed() signal and the set Enabl ed() slot.

If the user checks the standard or none radio buttons we want to set the amount accordingly. Press F3, then click the
credit rating button group. Drag to the form and release. Click the cl i cked() signal. We want to connect this signal
to our own custom slot, but we haven’t created one yet. Click the Edit Slots button and the Edit Slots dialog will pop
up. Click New Slot and change the Slot’s name to ’setAmount()’. Click OK. This new slot is now available in the list of
slots. Click the set Amount () slot then click OK.

We'll subclass the form to set the amount in the spin box depending on which radio button is checked. Save the form
as 'creditformbase.ui’ (press Ctrl+S).

Subclassing and Dynamic Dialogs 36

Creating the Test Harness

Although we intend our dialog to be used within an application it is useful to create a test harness so that we can
develop and test it stand-alone. Right click the ’Source Files’ entry in the Files window then click Add new source file
to project. This will invoke the Save As dialog; enter 'main.cpp’ and click Save. In the editor window that pops up,
enter the following code:

#i ncl ude
#incl ude "creditfornbase. h"

int min(int argc, char *argv[])

{
QApplication app(argc, argv);
Credit FormBase creditForm
app. set Mai nW dget (&creditForm);
creditForm show();
return app.exec();

}

Note that we’re including credi t f or nbase. h and instantiating a CreditFormBase object; once we’ve written our sub-
class we'll replace the header with our subclass, credi t f orm h, and instantiate a CreditForm.

We can now generate the application with qmake, e.g. qmake -0 Makefile credit. pro, make it and run it. The form
should run fine, but doesn’t yet have the behaviour we require.

Creating the Subclass

We need to create a header and an implementation file for our subclass. The code for our subclass is minimal. The
header file is qt / t ool s/ desi gner/ exanpl es/credit/creditform h:

#include "creditfornbase. h"
class CreditForm: public CreditFornmBase

{
Q OBJECT
public:
CreditForn{ QAN dget* parent = 0, const char* nane = 0,
bool modal = FALSE, Wl ags fl =0);
~Credi t Form();
public slots:
voi d set Amount () ;

b
We've declared the slot, set Amount (), that we created in Qt Designer. The Q OBJECT macro is included because it is
essential for classes that use signals and slots.
The implementation in qt / t ool s/ desi gner/ exanpl es/ credi t/creditform cpp is simple:

#i ncl ude <qradi obutton. h>

#i ncl ude <qgspi nbox. h>
#include "creditformh"

Subclassing and Dynamic Dialogs 37

CreditForm: CreditForm(QN dget* parent, const char* nang,
bool modal, W ags fl)
Credit FormBase(parent, nane, nodal, fl)

{
}

CreditForm:~CreditForm() { /* NOOP */ }

set Amount () ;

voi d CreditForm:setAnmount()

{
if (stdRadi oButton->i sChecked())
anmount Spi nBox- >set Val ue(amount Spi nBox- >maxVal ue() / 2);
el se if (noneRadi oButton->i sChecked())
anount Spi nBox- >set Val ue(anount Spi nBox- >ni nVal ue());
}

We call set Amount () in the constructor to ensure that the correct amount is shown when the form starts based on
whichever radio button we checked in Qt Designer. In set Amount () we set the amount if the standard or none radio
button is checked. If the user has checked the special radio button they are free to change the amount themselves.

To be able to test our subclass we change mai n. cpp to include credi t f or m h rather than credi t f or nhase. h and change
the instantiation of the creditForm object:

#i ncl ude <gapplication. h>
#include "creditformh"

int min(int argc, char *argv[])

{
QApplication app(argc, argv);
CreditForm creditForm
app. set Mai nW dget (&creditForm);
credit Form show() ;
return app. exec();

}

If you created the credi t form h and credi t f orm cpp files in Qt Designer, they are already in the project file, but if you
created them manually you must also update the project file by adding these two new lines at the end:

HEADERS += creditformh
SOURCES += creditformcpp

To test the form rerun gqmake to regenerate the Makefile, then make and run.

The subclassing example we’ve used is simple, but this reflects subclassing forms in Qt: it is easy to do.

Creating Dynamic Dialogs from .ui Files

Qt programs are capable of loading Qt Designer . ui files and instantiating the forms represented by the . ui files. Since
the . ui file is not compiled it cannot include any C++ code, (e.g. slot implementations). In this section we will explain

Subclassing and Dynamic Dialogs 38

how to load a dynamic dialog and how to create a class that can be used to implement the dynamic dialog’s custom
slots.

We will use the credit form that we created in the subclassing section as our example form. We will start by simply
instantiating and running the form and then we’ll cover how to implement custom slots.

We'll create a mai n. cpp file to use as a test harness, and manually create a project file.

Creating the Project File

The project file gt / t ool s/ desi gner/exanpl es/ recei ver 1/ recei ver. pro looks like this:

TEMPLATE = app
CONFI G += gt warn_on rel ease
TARGET = receiver

SQURCES += mai n. cpp

uni x: LIBS += -1 qui

win32: LIBS += $(QTDIR)/lib/qui.lib

FORMS = mai nf orm ui

LANGUAGE = CH+

| NCLUDEPATH += $(QTDI R)/t ool s/ designer/uilib

We do not include the creditfornbase. ui file since this file will be read at runtime, as we’ll see shortly. We must
include the gr esour ce library since the functionality we require is not part of the standard Qt library.

Creating main.cpp

The mai n. cpp is quite standard. It will invoke the form we’re going to create in Qt Designer as its main form. This form
will then load and execute the dynamic dialog.

#i ncl ude <gapplication. h>
#i ncl ude "mainformh"

int min(int argc, char *argv[])
{
QApplication app(argc, argv);

Mai nFor m *mai nFor m = new Mai nFor m
app. set Mai nW dget (mai nForm) ;
mai nFor m >show() ;

return app.exec();

}

We create a new instance of our MainForm class, set it to be the main widget, show it and enter the event loop in the
app. exec() call.

Subclassing and Dynamic Dialogs 39

Creating the Main Form

Designing the Form

1. Open the recei ver. pro project file in Qt Designer. We’ll create a dialog as our main window which we’ll use to
invoke the dynamic dialog. Press Ctrl+N to launch the New File dialog and click OK to get the default which is
a dialog. Change the dialog’s name to 'MainForm’ and its caption to 'Main Form’. Add two buttons, one called
‘creditPushButton’ with the text '&Credit Dialog’, and the other called ’quitPushButton’ with the text ’&Quit’. (For
each button click the Push Button toolbar button, then click the form. Change the properties in the property
window to those we’ve just described.)

2. We will now add a couple of labels so that we can show the settings the user chose in the dynamic dialog. Click
the Text Label toolbar button, then click the form below the Credit Dialog button. Change the label’s text to
"Credit Rating’. Add another text label below the Quit button. Change its name to 'ratingTextLabel’ and its text to
"Unrated’.

3. We'll now lay out the widgets. Click the form then press Ctrl+G (lay out in a grid).

4. We'll now handle the signals and slots connections. Press F3 (connect signals/slots). Click the Credit Dialog
button, drag to the form and release. Click the clicked() signal. We'll need to implement a custom slot. Click
Edit Slots to invoke the Edit Slots dialog. Click New Slot and type in the Slot name ’creditDialog()’. Click OK.
The new slot is now in the list of slots; click the creditDi al og() slot to make the connection then click OK.
Connect the Quit button’s cl i cked() signal to the dialog’s accept () function. (Press F3. Click the Quit button
and drag to the form; release. Click the cl i cked() signal and the accept () slot, then click OK.)

Save the form and call it mai nf orm ui . (Press Ctrl+S and enter the filename.) In the next section we’ll write the code
for loading and launching the dynamic dialog directly in Qt Designer.

Loading and Executing a Dynamic Dialog

We’ll now add the code to invoke the credit dialog. Before we can do this we need to add the widget factory’s header
file to the form. Click the Source tab in the Object Hierarchy. Right click Included (in Implementation), then click New.
Type in ’<gwi dget f act ory. h>, then press Enter. Because we will need to access the spin box in the dynamic dialog we
must add its header file. Right click Included (in Implmentation), then click New. Type in ’<gspi nbox. h>’, then press
Enter.

In our main form we created a slot called creditDialog(). We will implement this slot directly
in Qt Designer and use it to load and execute the dynamic dialog. The code is taken from
qt/t ool s/ desi gner/exanpl es/ recei ver 1/ mai nf or m ui . h which contains the C++ implementation of mai nf or m ui’s
slots.

voi d MainForm :creditDial og()
{
Qi alog *creditForm= (QDalog *)
QN dget Factory: :create("../credit/creditfornbase.ui");
Il Set up the dynam c dialog here

if (creditForm>exec()) {
Il The user accepted, act accordingly
QSpi nBox *ampunt = (QSpinBox *) creditForm >child("amunt Spi nBox", "QSpinBox");
if (amount)
ratingText Label - >set Text (amount->text());

}
del ete creditForm

Subclassing and Dynamic Dialogs 40

The create() function is a static QWidgetFactory function. It loads the specified . ui file and returns a pointer
to the toplevel QWidget created from the . ui file. We have cast the pointer to QDialog since we know that the
creditfornbase. ui file defines a QDialog. After creating the dialog we exec() it. If the user clicked OK the dialog
returns Accepted and we enter the body of the i f statement. We want to know the amount of credit that the user
selected. We call the chi | d() function on the dialog passing it the name of the widget we’re interested in. The chi | d()
function returns a pointer to the widget with the name we passed, or returns 0 if no widget of that name was found.
In the example we call chi | d() to get a pointer to the ’amountSpinBox’. If the pointer we get back is not 0 we set the
rating text to the amount in the dialog’s spin box. At the end we delete the dynamic dialog. Deleting the dialog ensures
that we free up its resources as soon as it is no longer required.

We used the chil d() to gain access to a widget within the dynamic dialog, passing it the name of the widget we were
interested in. In some situations we might not know what a widget is called. We can access the first widget of a specified
class by calling chi | d() with a null widget name and a classname, e.g. chi |l d(0, " QPushButton"). This will return a
pointer to the first QPushButton it finds (or O if there isn’t one). If you want pointers to all the widgets of a given class
you can call the QObj ect: : querylLi st() function, passing it the name of the class. It returns a QObjectList pointer
which points to every object in the dialog that is derived from the given class. See the online QObject documentation
for further details.

Implementing Slots for Dynamic Dialogs

There is one outstanding issue that we haven’t addressed: the dynamic dialog does not have the behaviour of the
original credit dialog because we have not implemented the set Ampunt () slot. We can implement slots for dynamic
dialogs by creating a QObject subclass. We then create an instance of this subclass and pass a pointer to it to the
QW dget Factory:: create() function which will connect the dynamic dialog’s signals to the slots implemented in our
subclass.

We need to create a QObject subclass and change our creditDial og() to create an instance of our subclass that
can be passed to the QN dget Factory: :create() function. Here is the modified credit D al og() function from the
qt/tool s/ desi gner/exanpl es/ recei ver 2/ mai nf orm ui . h file that contains the code for mai nf or m ui’s slots:

voi d MainForm:creditDialog()
{
Recei ver *receiver = new Receiver;
Qi alog *creditForm= (QDialog *)
QN dget Factory::create("../credit/creditfornbase.ui", receiver);
recei ver->set Parent(creditForm);

Il Set up the dynam c¢ dialog here

if (creditForm>exec()) {
Il The user accepted, act accordingly
QSpi nBox *ampunt = (QSpinBox *) creditForm >child("amount Spi nBox", "QSpinBox");
if (anount)
ratingText Label - >set Text (amount->text());

}

del ete receiver;
del ete creditForm

}

We create a new instance of our 'Receiver’ subclass. (We’ll write the code for this class shortly.) We then create the
QDialog using QN dget Fact ory: : creat e() . This call differs from our previous example because we pass in the subclass
object so that the creat () function can set up the signals/slots connections automatically for us. Since our slot must

Subclassing and Dynamic Dialogs 41

access the widgets in the dynamic form we pass a pointer to the form to the receiver object through our set Parent ()
function. The remainder of the function is the same as before except that we delete our receiver object.

We'll now look at the implementation of our ’Receiver’ subclass. The code is taken from
qt/t ool s/ desi gner/exanpl es/ recei ver 2/ recei ver. h and the corresponding r ecei ver. cpp file. We'll start with the
header file.

#i ncl ude <qobj ect. h>
#incl ude <qdi al og. h>

cl ass Receiver : public Qbject
{
Q OBJECT
public:
voi d setParent(QDialog *parent);
public slots:
voi d set Anount ();
private:
Qi al og *p;
b

Our class must be a QObject subclass and because we’re using signals and slots it must include the Q OBJECT macro.
We declare a function and the set Amount () slot that we wish to implement as well as a private QDialog pointer.

We’ll discuss the implementation of each function in r ecei ver. cpp separately.

voi d Receiver::setParent(QDialog *parent)
{

p = parent;

set Amount () ;
}

The set Parent () function assigns a pointer to the dynamic dialog to our private pointer. We could not do this in a
constructor call because we have to construct our Receiver object before we call QN dget Fact ory: : create(), since we
must pass the Receiver object to the create() function. Once we’ve called create() we then have a pointer to the
dynamic dialog which we can then pass via set Parent () to our Receiver class. In the subclass version of this example
we called set Ampunt () in the constructor; but we cannot do that here because the implementation of set Amount ()
depends on knowledge of the dynamic dialog which is not available at construction time. Because of this we call
set Amount () in the set Parent () function.

voi d Recei ver: : set Amount ()
{
QSpi nBox *amount =
(QSpi nBox *) p->child("amount Spi nBox", "QSpinBox");

QRadi oButton *radio =
(QRadi oButton *) p->child("stdRadioButton", "QRadioButton");
if (radio & radio->i sChecked()) {
if (amount)
amount - >set Val ue(amount - >maxVal ue() / 2);
return;

}

radio =

Subclassing and Dynamic Dialogs 42

(QRadi oButton *) p->child("noneRadi oButton", "QRadioButton");
if (radio &% radio->i sChecked())
if (amount)
amount - >set Val ue(amount - >mi nVal ue());

}

Since we may be updating the amount spin box we need to get a pointer to it. We call chi | d() on the pointer p which
points to the dynamic dialog assigned in the set Parent () call. We cast the resulting pointer to the correct type so that
we can call any functions relevant to that type. In the example we call chi | d() to get a pointer to the amount spin
box, and then call chil d() again to get a pointer to the ’stdRadioButton’. If we get a pointer to the radio button and
the button is checked we set the amount providing we have a pointer to the amount spin box. If this radio button was
checked we're finished so we return. If the ’stdRadioButton’ isn’t checked we get a pointer to the 'noneRadioButton’
and set the amount if this button is checked. We do nothing if the ’specialRadioButton’ is checked because the user is
free to enter a value of their choice.

Compiling vs Dynamically Loading Dialogs

The differences between using a ’compiled in’ . ui file and a dynamically loaded . ui file are these:

e Dynamic dialogs cannot have any C++ code in the . ui file; any custom slots must be implemented via a QObject
subclass. Compiled dialogs can contain code either in the . ui file or in a subclass.

e Dynamic dialogs will load slower because the . ui file must be read and a QWidget instance instantiated based
on the . ui file’s parse tree. Compiled code will load much faster because no file reading or parsing is necessary.
Note that the user may not notice any difference in speed since the difference may be mere fractions of a second.

e Dynamic dialogs allow you to change the . ui file independently of the code so long as none of the changes
impact the code. This means that you can change the appearance of the form, e.g. move widgets and lay them
out differently. If you want to change a compiled dialog you must change the . ui file and recompile. If you are
building an application and want your customers to be able to customize aspects of the user interface you can
give them a copy of Qt Designer and use dynamic dialogs.

Creating Custom Widgets

Custom widgets are created in code. They may comprise a combination of existing widgets but with additional func-
tionality, slots and signals, or they may be written from scratch, or a mixture of both.

Qt Designer provides two mechanisms for incorporating custom widgets:

1. The original method involves little more than completing a dialog box. Widgets incorporated this way appear as
flat pixmaps when added to a form in Qt Designer, even in preview mode. They only appear in their true form at
runtime. We’ll explain how to create custom widgets using the original approach in "Simple Custom Widgets".

2. The new method involves embedding the widgets in a plugin. Widgets that are incorporated through plugins
appear in their true form in Qt Designer, both when laying out the form and in preview mode. This approach
provides more power and flexibility than the original method and is covered in Creating Custom Widgets with
Plugins.

Simple Custom Widgets

There are two stages to creating a custom widget. Firstly we must create a class that defines the widget, and secondly
we must incorporate the widget into Qt Designer. Creating the widget has to be done whether we are creating a simple
custom widget or a plugin, but for simple custom widgets the incorporation into Qt Designer is very easy.

We will create a VCR style widget comprising four buttons, rewind, play, next and stop. The widget will emit signals
according to which button is clicked.

Coding the Custom Widget
A custom widget may consist of one or more standard widgets placed together in a particular combination, or may be
written from scratch. We will combine some QPushButton widgets to form the basis of our custom widget.

We'll look at the header file, gt/ t ool s/ desi gner/ exanpl es/ ver/vcer. h first.

#include <qw dget. h>
class Vcr : public QN dget

{
Q OBJECT
public:
Ver(QN dget *parent = 0, const char *name =0);
~ver () {}
signal s:
voi d rew nd();

43

Creating Custom Widgets 44

void play();
voi d next();
void stop();

}s

We include gwi dget . h since we’ll be deriving our custom widget from QWidget. We declare a constructor where the
widget will be created and the four signals we want our widget to emit. Since we’re using signals we must also include
the Q OBJECT macro.

The implementation is straightforward. The only function we implement is the constructor. The rest of the file consists
of include statements and embedded . xpmimages.

Ver::Ver(QN dget *parent, const char *nane)
QN dget (parent, name)
{

QHBoxLayout *layout = new QHBoxLayout(this);
[ayout ->setMargin(0);

QPushButton *rew nd = new QPushButton(QPi xmap(rewi nd_xpm), 0, this, "vcr_rew nd");
| ayout - >addW dget (rewind);

We create a QHBoxLayout in which we’ll place the buttons. We’ve only shown the rewind button in the code above
since all the others are identical except for the names of the buttons, pixmaps and signals. For each of the buttons
we require we call the QPushButton constructor passing it the appropriate embedded pixmap. We then add it to the
layout. Finally we connect the button’s cl i cked() signal to the appropriate signal. Since the cl i cked() signals aren’t
specific to our widget we want to emit signals that reflect the widget’'s use. The rewi nd(), play(), etc. signals are
meaningful in the context of our widget so we propagate each button’s cl i cked() signal to the appropriate widget-
specific signal.

The implementation is complete, but to make sure that our widget compiles and runs we’ll create a
tiny test harness. The test harness will require two files, a .pro project file and a main.cpp. The
gt/t ool s/ desi gner/exanpl es/ vcr/ver. pro project file:

SOQURCES += vcr. cpp main. cpp
HEADERS += vcr. h

TARGET = vcr

TEMPLATE =app

CONFIG += gt warn_on rel ease
DBFILE = ver.db

PROJECTNAME = Ver
LANGUACE = C++
CPP_ALWAYS_CREATE_SOURCE = TRUE

The qt/t ool s/ desi gner/ exanpl es/ vcr/ mai n. cpp file is also brief:

#incl ude <qgapplication. h>
#include "ver. h"

int min(int argc, char ** argv)
{
QApplication app(argc, argv);
Ver *ver = new Vcr;
ver->show() ;
return app. exec();

Creating Custom Widgets 45

Once we're satisfied that the custom widget compiles and runs we are ready to incorporate it into Qt Designer.

In Base-class Templates the creation of a container custom widget is described.

Adding the Custom Widget to Qt Designer
Click Tools | Custom | Edit Custom Widgets to invoke the Edit Custom Widgets dialog.

1. Click New Widget so that we are ready to add our new widget.
2. Change the Class name from 'MyCustomWidget’ to "Vcr'.

3. Click the ellipsis (...) button to the right of the Headerfile line edit to invoke the file Open dialog. Locate vcr. h,
select it, and click Open. It will now appear as the header file.

4. If you have a pixmap that you want to use to identify your widget on the toolbar click the ellipsis button to the
right of Pixmap property. (The ellipsis button appears when you click in the Value part of the Properties list by a
pixmap or iconSet property.)

In our example we have the file qt / t ool s/ desi gner/exanpl es/ vcr/ pl ay. xpmwhich we’ll use for this purpose.

5. Since we know the minimum sensible size for our widget we’ll put these values into the Size Hint spin boxes.
Enter a width of 80 (in the left hand spin box), and a height of 20 (in the right hand spin box).

The remaining items to be completed will depend on the characteristics of the widget you've created. If, for example,
your widget can be used to contain other widgets you’d check the Container Widget checkbox. In the case of our Ver
example the only items we need to add are its signals.

Click the Signals tab. Click the New Signal button and type in the signal name 'rewind()’. Click New Signal again and
this time type in ’play()’. Add the 'next()’ and ’stop()’ signals in the same way.

Since our example hasn’t any slots or properties we've finished and can click Close. A new icon will appear in Qt
Designer’s toolbars which represents the new widget. If you create a new form you can add Vcr widgets and connect
the Ver’s signals to your slots.

Incorporating custom widgets that have their own slots and properties is achieved in a similar way to adding signals.
All the required information is in our custom widget’s header file.

Creating Custom Widgets with Plugins

This section will show you how to write a custom widget and how to embed the custom widget into a plugin. There
are no restrictions or special considerations that must be taken into account when creating a widget that is destined
to become a plugin. If you are an experienced Qt programmer you can safely skip the section on creating a custom
widget and go directly to Creating a Plugin.

Creating a Custom Widget

A custom widget is often a specialization (subclass) of another widget or a combination of widgets working together
or a blend of both these approaches. If you simply want a collection of widgets in a particular configuration it is easiest
to create them, select them as a group, and copy and paste them as required within Qt Designer. Custom widgets are
generally created when you need to add new functionality to existing widgets or groups of widgets.

We have two recommendations that you should consider when creating a custom widget for a plugin:

Creating Custom Widgets 46

1. Using Qt’s property system will provide Qt Designer users with a direct means of configuring the widget through
the property editor. (See the Qt Properties documentation.)

2. Consider making your widget’s public ’set’ functions into public slots so that you can perform signal-slot connec-
tions with the widget in Qt Designer.

In the course of this chapter we will create a simple but useful widget, 'FileChooser’, which we’ll later make available
in Qt Designer as a plugin. In practice most custom widgets are created to add functionality rather than to compose
widgets, so we will create our widget in code rather than using Qt Designer to reflect this approach. FileChooser consists
of a QLineEdit and a QPushButton. The QLineEdit is used to hold a file or directory name, the QPushButton is used
to launch a file dialog through which the user can choose a file or directory.

The FileChooser Custom Widget

If you've followed the manual up to this point you may well be able to create this custom widget yourself. If you're
confident that you can make your own version of the widget, or have another widget that you want to turn into a
plugin, skip ahead to Creating a Plugin. If you prefer to read how we created the widget then read on.

Coding the Widget’s Interface
We will work step-by-step through the widget’s header file, qt / t ool s/ desi gner/ exanpl es/ fi | echooser/ wi dget/fil echooser. h.

#i ncl ude <qwi dget. h>

class QLineEdit;
class QPushButton;

Our widget will be derived from QWidget so we include the gwi dget . h header file. We also forward declare the two
classes that our widget will be built from.

We include the Q OBJECT macro since this is required for classes that declare signals or slots. The Q ENUMS declaration
is used to register the Mode enumeration. Our widget has two properties, mode, to store whether the user should
select a File or a Directory and fileName which stores the file or directory they chose.

class FileChooser : public QAN dget

{

Q OBJECT

Q ENUMS(Mbde)

Q PROPERTY(Mde mode READ mode WRI TE set Mode)

Q PROPERTY(@string fileName READ fil eNane WRI TE set Fi |l eName)
public:

Fi | eChooser(QN dget *parent = 0, const char *nanme = 0);
enum Mode { File, Directory };

QString fileName() const;
Mbde rmode() const;

Creating Custom Widgets 47

The constructor is declared in the standard way for widgets. We declare two public functions, fil eNane() to return
the filename, and node() to return the mode.

public slots:
voi d setFileName(const QString &n);
voi d set Mbde(Mde m);

signal s:
voi d fileNameChanged(const QString &);

private slots:
voi d chooseFile();

The two ’set’ functions are declared as public slots. set Fi | eNane() and set Mode() set the filename and mode respec-
tively. We declare a single signal, fil eNameChanged(). The private slot, chooseFi | e() is called by the widget itself
when its button is clicked.

private:
QLineEdit *lineEdit;
QPushButton *button;
Mode nd;

};

A pointer to QLineEdit and QPushButton, as well as a Mode variable are held as private data.

Coding the Implementation
We will work step-by-step through the implementation which isin gt / t ool s/ desi gner/ exanpl es/ fi | echooser/wi dget/fi | echoc

Fi | eChooser:: Fi | eChooser(QAN dget *parent, const char *name)
QN dget(parent, name), nd(File)
{

The constructor passes the parent and name to its superclass, QWidget, and also initializes the private mode data, md,
to File mode.

HBoxLayout *layout = new QHBoxLayout(this);
[ayout ->setMargin(0);

lineEdit = new QLineEdit(this, "filechooser _lineedit");
[ayout - >addW dget (lineEdit);

We begin by creating a horizontal box layout (QHBoxLayout) and add a QLineEdit and a QPushButton to it.

connect (lineEdit, SIGNAL(textChanged(const QString &)),
this, SIGNAL(fil eNameChanged(const QString &)));

button = new QPushButton("...", this, "filechooser button");
button->set Fi xedWdth(button->fontMetrics().width(" ... "));
| ayout - >addW dget (button);

Creating Custom Widgets 48

connect (button, SIGNAL(clicked()),
this, SLOT(chooseFile()));

We connect the lineEdit’s t ext Changed() signal to the custom widget’s f i | eNaneChanged() signal. This ensures that if
the user changes the text in the QLineEdit this fact will be propagated via the custom widget’s own signal. The button’s
clicked() signal is connected to the custom widget’s chooseFi | e() slot which invokes the appropriate dialog for the
user to choose their file or directory.

set FocusProxy(lineEdit);
}

We set the lineEdit as the focus proxy for our custom widget. This means that when the widget is given focus the focus
actually goes to the lineEdit.

voi d FileChooser::setFileName(const QString &n)

{
lineEdit->setText(fn);
}
QString FileChooser::fileName() const
{
return [ineEdit->text();
}

The set Fi | eName() function sets the filename in the QLineEdit, and the fil eNane() function returns the filename
from the QLineEdit. The set Mode() and node() functions (not shown) are similarly set and return the given mode.

voi d FileChooser:: chooseFil e()

{
QString fn;
if (node() == File)
fn = QFileDialog::getQpenFileNane(lineEdit->text(), Qtring::null, this);
el se
fn = QFileDialog::getExistingDirectory(lineEdit->text(),this);
if ('fn.isEmty()) {
lineEdit->setText(fn);
emt fileNaneChanged(fn);
}
}

When chooseFi | e() is called it presents the user with a file or directory dialog depending on the mode. If the user
chooses a file or directory the QLineEdit is updated with the chosen file or directory and the f i | eNameChanged() signal
is emitted.

Although these two files complete the implementation of the FileChooser widget it is good practice to write a test
harness to check that the widget behaves as expected before attempting to put it into a plugin.

Testing the Implementation

We present a rudimentary test harness which will allow us to run our custom widget. The test harness re-
quires two files, a main.cpp to contain the FileChooser, and a .pro file to create the Makefile from. Here is
qt/tool s/ desi gner/exanpl es/ fil echooser/wi dget/ mai n. cpp:

Creating Custom Widgets 49

#i ncl ude <gapplication. h>
#include "filechooser.h"

int min(int argc, char ** argv)

{
QApplication a(argc, argv);
Fi | eChooser *fc = new Fil eChooser;
fc->show();
return a.exec();
}

And here is qt/t ool s/ desi gner/ exanpl es/ fil echooser/w dget/fil echooser. pro

SQURCES += fil echooser. cpp main. cpp
HEADERS += fil echooser. h

TARGET = fil echooser
TEMPLATE =app

CONFIG += gt warn_on rel ease
DBFILE = filechooser.db
PROJECTNAME = Fil echooser
LANGUAGE = C++

We can create the makefile using qmake: qmake -o Makefile filechooser. pro, then we can make and run the harness
to test our new widget. Once we're satisfied that the custom widget is robust and has the behaviour we require we can
embed it into a plugin.

Creating a Plugin

Qt Plugins can be used to provide self-contained software components for Qt applications. Qt currently supports the
creation of five kinds of plugins: codecs, image formats, database drivers, styles and custom widgets. In this section
we will explain how to convert our filechooser custom widget into a Qt Designer custom widget plugin.

A Qt Designer custom widget plugin is always derived from QWidgetPlugin. The amout of code that needs to be written
is minimal.

To make your own plugin it is probably easiest to start by copying our example pl ugi n. h and pl ugi n. cpp files and
changing ’CustomWidgetPlugin’ to the name you wish to use for your widget plugin implementation class. Below we
provide an introduction to the header file although it needs no changes beyond class renaming. The implementation

file requires simple changes, mostly more class renaming; we will review each function in turn and explain what you
need to do.

The CustomWidgetPlugin Implementation

We have called our header file pl ugi n. h and we’ve called our plugin class CustomWidgetPlugin since we will be using
our plugin class to wrap our custom widgets. We present the entire header file to give you an impression of the scope
of the implementation required. Most of the functions require just a few lines of code.

#incl ude <qw dget pl ugi n. h>
class CustomW dget Pl ugin : public QN dgetPlugin

{
public:

Creating Custom Widgets 50

Cust omW dget Pl ugi n() ;

QStringList keys() const;

QN dget* create(const QString &classname, QN dget* parent = 0, const char* name =0);
QString group(const QString&) const;

Q conSet iconSet(const QString&) const;

@String includeFile(const QString&) const;

@String tool Tip(const QString&) const;

@String whatsThis(const QString&) const;

bool isContainer(const QString&) const;

}s

From qt / t ool s/ desi gner/ exanpl es/fil echooser/ pl ugi n/ pl ugi n. h

The QWidgetPlugin Functions

Create your own plugin . cpp file by copying our pl ugi n. cpp file and changing all occurrences of ’CustomWidgetPlugin’
to the name you wish to use for your widget plugin implementation. Most of the other changes are simply replacing
the name of our custom control, ’FileChooser’, with the name of your custom control. You may need to add extra el se
i f clauses if you have more than one custom control in your plugin implementation.

We'll now look at the constructor.
Cust om dget Pl ugi n: : Cust om dget Pl ugi n()

{
}

The constructor does not have to do anything. Simply copy ours with the class name you wish to use for your widget
plugin implementation.
No destructor is necessary.

The keys function.

@St ringLi st CustonmA dget Pl ugi n::keys() const

{
QStringList list;
list << "FileChooser";
return |ist;

}

For each widget class that you want to wrap in the plugin implementation you should supply a key, (often the class
name), by which the class can be identified. In our example we add a single key, ’FileChooser’.

The creat e() function.

QN dget* Cust omW dget Pl ugi n::create(const QString &ey, QAN dget* parent, const char* nane)
{
if (key == "FileChooser")
return new Fil eChooser(parent, nane);
return 0;

Creating Custom Widgets 51

In this function we create an instance of the requested class and return a QWidget pointer to the newly created widget.
Copy this function changing the class name and the feature name and create an instance of your widget just as we've
done here. (See the Qt Plugin documentation for more information.)

The i ncl udeFi | e() function.

@String Customh dget Pl ugin: :includeFile(const QStringé& feature) const

{
if (feature == "FileChooser")
return "filechooser.h";
return Qstring::null;
}

This function returns the name of the include file for the custom widget. Copy this function changing the class name,
key and include filename to suit your own custom widget.

The group(), iconSet (), tool Ti p() and what sThi s() functions.

QString CustomA dget Pl ugi n:: group(const QString& feature) const

{
if (feature == "FileChooser")
return "lnput";
return Qstring::null;
}
Q conSet CustomW dget Pl ugi n::i conSet(const QString&) const
{
return QconSet(QPi xmap(filechooser pixmap));
}
@String CustomN dget Pl ugin::includeFile(const QString& feature) const
{
if (feature == "FileChooser")
return "filechooser.h";
return Qstring::null;
}
QString Custom dget Pl ugin::tool Tip(const QString& feature) const
{
if (feature == "FileChooser")
return "File Chooser Wdget";
return Qstring::null;
}
@St ring CustomA dget Pl ugi n: : what sThis(const QString& feature) const
{
if (feature == "FileChooser")
return "A widget to choose a file or directory";
return @string::null;
}

We use the group() function to identify which Qt Designer toolbar group this custom widget should be part of. If we
use a name that is not in use Qt Designer will create a new toolbar group with the given name. Copy this function,
changing the class name, key and group name to suit your own widget plugin implementation.

Creating Custom Widgets 52

The i conSet () function returns the pixmap to use in the toolbar to represent the custom widget. The t ool Tip()
function returns the tooltip text and the what sThi s() function returns the Whats This text. Copy each of these functions
changing the class name, key and the string you return to suit your own widget plugin implementation.

The i sCont ai ner () function.

bool Cust omN dget Pl ugi n: :isContainer(const QString&) const
{

}

return FALSE;

Copy this function changing the class name to suit your widget plugin implementation. It should return TRUE if your
custom widget can contain other widgets, e.g. like QFrame, or FALSE if it must not contain other widgets, e.g. like
QPushButton.

The Q EXPORT_PLUG N macro.
Q EXPORT_PLUG N(Cust omW dget Pl ugin)
This macro identifies the module as a plugin — all the other code simply implements the relevant interface, i.e. wraps

the classes you wish to make available.

This macro must appear once in your plugin. It should be copied with the class name changed to the name of your
plugin’s class. (See the Qt Plugin documentation for more information on the plugin entry point.)

Each widget you wrap in a widget plugin implementation becomes a class that the plugin implementation offers. There
is no limit to the number of classes that you may include in an plugin implementation.

The Project File

The project file for a plugin is somewhat different from an application’s project file but in most cases you can use our
project file changing only the HEADERS and SOURCES lines.

SOURCES += plugin.cpp ../widget/filechooser.cpp
HEADERS += plugin.h ../widget/filechooser.h
DESTDI R ool ool I plugi ns/ desi gner
TARGET fil echooser

target. pat h=$$pl ugi ns. path
i sEmpty(target.path):target.pat h=$$QT_PREFI X/ pl ugi ns
I NSTALLS += target

TEMPLATE =1lib

CONFI G += qt warn_on rel ease plugin

| NCLUDEPATH += $(QTDI R)/t ool s/ desi gner/interfaces
DBFI LE = plugin.db

PROQIECTNAME = Pl ugin

LANGUAGE = Ct+

gt/ t ool s/ desi gner/ exanpl es/ fil echooser / pl ugi n/ pl ugi n. pro

Change the HEADERS line to list your plugin’s header file plus a header file for each of your widgets. Make the equivalent
change for the SOURCES line. If you create a Makefile with gmake and make the project the plugin will be created and
placed in a directory where Qt Designer can find it. The next time you run Qt Designer it will detect your new plugin
and load it automatically, displaying its icon in the toolbar you specified.

Creating Custom Widgets 53

Using the Widget Plugin

Once the plugin has been compiled it will automatically be found and loaded by Qt Designer the next time Qt Designer
is run. Use your custom widget just like any other.

When you want to distribute your application, include the compiled plugin with the executable. Install the plugin in
$QTDI R/ pl ugi ns/wi dget s. If you don’t want to use the standard plugin path, have your installation process determine
the path you want to use for the plugin, and save the path, e.g. using QSettings, for the application to read when it
runs. The application can then call QApplication::addLibraryPath () with this path and your plugins will be available to
the application. Note that the final part of the path, i.e. styl es, wi dget s, etc. cannot be changed.

Creating Database Applications

This chapter shows you how to use Qt’s data-aware widgets from within Qt Designer. It demonstrates | NSERT, UPDATE
and DELETE in both QDataTables (tables) and QDataBrowsers (forms). It also shows how to code Master-Detail
relationships and Drilldown. A simple approach to foreign key handling is presented here; a more sophisticated
approach is shown in the online SQL module documentation.

If you wish to run the examples or create your own applications using these widgets you need access to an SQL
database and a Qt database driver that can connect to the database. At the time of writing the drivers that Qt supports
are QODBC3 (Open Database Connectivity), QOCI8 (Oracle), QPSQL7 (PostgreSQL 6 and 7) and QMYSQL3 (MySQL).

Although you can use the Qt data-aware widgets to browse and edit data in SQL databases without having to write any
SQL, a basic understanding of SQL is highly recommended. We assume that you have some familiarity with SELECT,
| NSERT, UPDATE and DELETE statements. We also assume a basic understanding of the concepts of normalisation and of
primary and foreign keys. A standard text covering SQL databases is An Introduction to Database Systems (7th ed.) by
C. J. Date, ISBN 0201385902.

In the following text we describe the creation of a ’book’ database application. The application demonstrates how to use
QDataTables including in-place record editing and how to set up master-detail relationships between QDataTables.
It also explains how to drill down from a QDataTable to another widget, for example, to a QDataBrowser or a
QDataView and how to perform record editing in a QDataBrowser. A great deal of functionality is available from the
classes directly in Qt Designer although subclassing is always available for finer control. If you want to build the ’book’
examples you will need to create the example schema on your database.

Surname | Forename |
Philip K

Rohert

Sarah

Title | Price | Format |
1_|Bitter hedicine] 14.95 Paperback
2 |Burn harks 9.95 Paperhack
3 |Deadlock 9.99 Paperback
Edit Books Quit |

54

Creating Database Applications 55

The Book Application
The Example Schema

Note that the examples in this chapter all use the tables, views and records which are defined in the
gt/t ool s/ desi gner/exanpl es/ book/ book. sql file. This file has been tested with PostgreSQL 6 and PostgreSQL 7.
You may need to modify the SQL in this file to recreate the example database on your own system.

Schema CREATE TABLE Statements

The ’book’ table is simplified for the purposes of the example. It can only relate a book to a single author (authorid)
and lacks an ISBN field. The ’sequence’ table is used for generating unique index values for the example tables. Note
that SQL databases often provide their own method for creating sequences (for example, using the CREATE SEQUENCE
command) which is very likely to be a more optimal solution. For the sake of portability the examples will use a
’sequence’ table which will work with the vast majority of SQL databases.

Setting Up Database Connections

There are two aspects of database connections that we must consider. Firstly the connection we wish to use within Qt
Designer itself, and secondly the connection we wish to use in the applications that we create.

Setting Up Qt Designer’s Connections

[=] : Database Connections =
Mew Connection |_ Conngction
Mame: [default)
Delete Connectionl Driver lm
Database Mame: [bookdb -

Username: Ibookused
Password: I
Hostname: IbooKhust

Connectl
Help | Close |

7|

Database Connections Dialog

Choose Project|Database Connections from the menu bar. The Database Connections dialog will appear. Click New
Connection. For applications that use a single database it will probably be most convenient to use the default con-
nection name of ’(default)’. If you use more than one database then each one must be given a unique name. A driver
must be chosen from the Driver combo box. The database name may be available in the Database Name combo box or
may have to be typed in. The database name, username, password and hostname should be provided by your database
system administrator. When the Connection information has been completed click Connect. If the connection is made

Creating Database Applications 56

the connection name will appear in the list box on the left hand side of the dialog. You can now close the dialog; the
connection settings will remain in effect until you change or delete them or exit from Qt Designer.

Qt Designer can remember database connection settings in gmake project files. Create a new project, e.g. click File| New,
then click the ’C++ Project’ icon to invoke the Project Settings dialog. Click the ellipsis button to invoke the Save As
dialog; navigate to the project’s directory (creating it if necessary). Make sure you’re in the project’s directory, then
enter a project name of ’book.pro’. Click the Save button to return to the Project Settings dialog, then click OK. Next
time you start Qt Designer instead of opening individual . ui files open the . pr o project file instead and Qt Designer will
automatically reload the project’s connection settings. To activate the connection click Project | Database Connections.
The connections previously saved with the project will be listed in the left hand list box. Click the connection you wish
to use and then click Connect. This connection will be used from now on, e.g. for previewing QDataTables. Opening a
project file also causes Qt Designer to load in the list of forms associated with the project into the Form List window. In
most of the explanation that follows we will assume that you use project files and have clicked Connect so that there
is always a connection available when you work in Qt Designer.

Setting Up Connections for Applications
The applications you create must make their own connections to the SQL database. cr eat eConnecti ons() function

bool createConnections()

{
/1 create the default database connection
QSql Dat abase *defaul t DB = QSql Dat abase: : addDat abase("QPSQL7");
if (! defaultDB) {
gwarning("Failed to connect to driver");
return FALSE,
}
def aul t DB- >set Dat abaseNane("book");
def aul t DB- >set User Name("bookuser");
def aul t DB- >set Passwor d("bookpw');
def aul t DB- >set Host Name("bookhost");
if (! defaultDB->open()) {
gwarning("Failed to open books database: " +
defaul t DB->l astError().driverText());
gwarni ng(defaul t DB- >l astError (). databaseText());
return FALSE,
}
return TRUE;
}

We call addDat abase() passing it the name of the driver we wish to use. We then set the connection information by
calling the set ... functions. Finally we attempt to open the connection. If we succeed we return TRUE, otherwise we
output some error information and return FALSE. From qt/ t ool s/ desi gner/ exanpl es/ book/ book1/ mai n. cpp

int min(int argc, char *argv[])
{
QApplication app(argc, argv);

if (! createConnections())
return 1,

Creating Database Applications 57

BookFor m bookFor m
app. set Mai nW dget (&ookForm);
bookFor m show() ;

return app.exec();

}

All the examples presented in this chapter call cr eat eConnecti ons() after creating the QApplication object in their
mai n. cpp file and make use of the default connection. If you need to connect to multiple databases use the two-
argument form of addDat abase(), passing it both the name of the driver and a unique identifier. This is explained
further in the Qt SQL Module documentation.

You do not need to keep a reference to database connections. If you use a single database connection, this becomes
the default connection and database functions will use this connection automatically. We can always get a pointer to
any of our connections by calling QSql Dat abase: : dat abase() .

If you create a mai n. cpp file using Qt Designer, this file will not include cr eat eConnect i ons(). We do not include this
function because it needs the username and password for the database connection, and you may prefer to handle these
differently from our simple example function. As a result, applications that preview correctly in Qt Designer will not
run unless you implement your own database connections function.

Using QDataTable

QDataTables may be placed on any form to provide browsing of database tables and views. QDataTables can also be
used to update or delete records in-place, i.e. inside the cells themselves. Inserting records via a QDataTable usually
requires connecting to the pri nel nsert () signal, so that we can generate primary keys for example, or provide default
values. If we wish to present records using a form view (perhaps combining data from several tables and views) we
might use several QDataBrowsers and QDataViews.

Quickly Viewing a Database Table

This example, along with all the other examples in this chapter, has the project name 'book’ and uses the database
created by the book. sgl script. As we work through the chapter we will build the ’book’ application step by step.
Create or copy the qt/t ool s/ desi gner/ exanpl es/ book/ book1/ mai n. cpp file shown earlier. The project file for this
first example is qt / t ool s/ desi gner/ exanpl es/ book/ book1/ book. pro. Start a new project by clicking File |New, then
click the ’C++ Project’ icon to invoke the Project Settings dialog. Click the ellipsis button to invoke the Save As dialog;
navigate to the project’s directory (creating it if necessary). Make sure you're in the project’s directory, then enter a
project name of ’book.pro’. Click the Save button to return to the Project Settings dialog, then click OK. Now click
Project|Database Connections. Fill in the connection information appropriate to your database then press Connect.
The connection name should now appear in the left hand list box. (If this doesn’t happen you’ll need to contact your
database systems administrator for help.) Close the dialog.

We will now create a new form with a QDataTable that’s connected to one of our database tables.

Click File|New. The New File dialog presents us with a number of form templates to choose from. Choose the 'Dialog’
form and click OK. Now click File |Save. You will be prompted for a filename, call it book. ui .

Setting up a QDataTable

To place a QDataTable widget on the form either click Tools|Views|QDataTable or click the QDataTable toolbar
button. Click on the form and the SQL Table Wizard will appear.

Creating Database Applications 58

. The Database Connection and Table wizard page is used to set up a connection if one doesn’t exist and to choose

the table or view for the QDataTable. (See Setting Up Qt Designer’s Connections.)

Click the connection you wish to use, listed in the left hand list box, e.g. "(default)". The available tables and
views will appear in the right hand Table list box. Click the ’author’ table and then click the Next button.

. The Displayed Fields wizard page provides a means of selecting which fields should be displayed in the QDataT-

able and in what order. By default all fields except the primary key (if there is one) are in the Displayed Fields
list box. The left- and right-pointing blue arrow buttons can be used to move fields between the Displayed Fields
and the Available Fields list boxes. The blue up and down pointing arrow buttons are used to select the display
order of the displayed fields.

The default settings are the ones we want so simply click Next.

. The Table Properties wizard page provides convenient access to some of the database-related properties of the

QDataTable.
Make sure the Confirm Deletes checkbox is checked, then click Next.

The SQL wizard page is used to set the QDataTable’s Filter and Sort properties. The Filter is an SQL WHERE clause
(without the word 'WHERE’). For example, to only list authors whose surnames begin with 'P’, we would enter
title LIKE ' P% . We'll leave the filter empty. The Available Fields list box lists all the fields. The Sort By list box
lists the fields that the QDataTable is to sort by and the direction of their sorting (ASCending or DESCending).
The left and right blue arrows are used to move fields between the two list boxes. The up and down blue arrows
move fields up and down within the Sort By list box. The ASC or DESC setting is changed with the ’sort order’
toolbar button.

Move the surname and forename fields into the Sort By list box and click Next.

. The Finish wizard page gives us the opportunity to go back and change any of our settings. We will be able to

change them later through the QDataTable’s properties so we can finish with the wizard.
Click Finish.

The table will appear on the form with each column labelled with a default column name. If you wish to change
the settings then most of them are available in the property window. The display names, the fields they are based
upon, and the order of appearance of the columns can be changed using the Edit Table dialog (explained later) by right
clicking the QDataTable and left clicking Edit.

Laying out the Form

Click on the form and click the Lay Out Vertically toolbar button. Now click Preview |Preview Form; the form will
run and the table will automatically display all the records.

To turn the form we’ve created into an executable application we must add the mai n. cpp file to the project file and
make the project. We should also do some renaming to make things easier to understand.

1.

Click on the form and change its name to 'BookForm’ and its caption to 'Book’. Click on the QDataTable and
change its name to ’AuthorDataTable’.

2. Click File|Save AlL
3. Open the project file, e.g. book. pro, in a plain text editor and add the line: SOURCES += mai n. cpp at the end of

4.

the file.
Run gnake to generate the make file, e.g. qmake -0 Makefile book. pro, then make and run the book program.

This example shows how easy it is to use QDataTable to show the contents of a database table or view. You can use the
application we’ve just built to update and delete author records. In the examples that follow we will cover insertions,
setting up master-detail relationships, drilldown and foreign key lookups.

Creating Database Applications 59

A Note on Foreign Keys

In most relational databases tables contain fields which are foreign keys into other tables. In our ’book’ database
example the authorid in the book table is a foreign key into the author table. When we present a form to the end user
we do not usually want the foreign key itself to be visible but rather the text associated with it. Thus, we would want
the author’s name to appear rather than the author id when we show book information. In many databases, this can
be achieved by using a view. See your database’s documentation for details.

Inserting Records in QDataTables

Record insertion into a relational database usually requires the generation of a primary key value which uniquely
identifies the record in the table. Also we often want to create default values for some fields to minimize the user’s
work. We will create a slot to capture the QDataTables pri nel nsert () signal and populate the QSqlRecord insertion
buffer with a unique primary key.

1. Click Edit|Slots to invoke the Edit Slots dialog. Click New Slot, then enter the slot name
primel nsert Aut hor (QSgl Recor d*) into the Slot Properties’ Slot line edit box. Click OK.

2. Click the Connect Signals/Slots toolbar button, then click the AuthorDataTable, drag to the form and re-
lease the mouse. The Edit Connections dialog will now appear. Click the prinelnsert() signal and then the
primel nsert Aut hor () slot to make the connection. Now click OK.

3. Click the Source tab of the Object Hierarchy window (click Window | Object Hierarchy to make the window
visible if necessary). Click the pri nel nsert Aut hor () slot and an editor window will appear.

4. We must change the BookFor m : pri mel nsert Aut hor () slot to specify the parameter name and perform the nec-
essary action:

voi d BookForm : primelnsertAuthor(QSql Record * buffer)

{
QSql Query query;
query. exec("UPDATE sequence SET sequence = sequence + 1 WHERE tabl enane="author’;");
query. exec("SELECT sequence FROM sequence WHERE tabl ename="author’;");
if (query.next()) {
buf fer->setVal ue("id", query.value(0));
}
}

A QSqlQuery object is used to increment and retrieve a unique ’sequence’ number for the author table. The
signal passed us a pointer to the insertion buffer and we then put the value we’ve retrieved, i.e. the next sequence
number, into the buffer’s id field. (Again, note that SQL databases often support a native ’sequence’ function. The
method used here is inappropriate for production systems, and is for example purposes only. See your database’s
documentation for details on how to generate unique keys in code. In many cases, the database can generate
them automatically, or the database may provide a special syntax for dealing with sequences.)

If we rebuild the application it will now support | NSERT as well as UPDATE and DELETE. We could easily have added
additional code to insert default values, e.g. today’s date into a date field, if necessary.

Browsing is supported by clicking records and by using the arrow keys. Once a record is active (highlighted) we can
edit the it. Press the Insert key to | NSERT a new record; press F2 to UPDATE the current record; press the Del key to
DELETE the current record. All these operations take place immediately. Users can be given the opportunity to confirm
their edits by setting the QDataTable’s confirmEdits property to True. If the confirmEdits property is True then user
confirmation will be required for all insertions, updates and deletes. For finer control you can set the confirmlInsert,
confirmUpdate and confirmDelete properties individually.

QDataTable User Interface Interaction

Creating Database Applications 60

The default user-interface behaviour for QDataTables is as follows:

e Users can move to records by clicking the scrollbar and clicking records with the mouse. They can also use the
keyboard’s navigation keys, e.g. Left Arrow, Right Arrow, Up Arrow, Down Arrow, Page Up, Page Down,
Home and End.

e | NSERT is initiated by right-clicking the record and clicking Insert or by pressing the Ins (Insert) key. The user
moves between fields using Tab and Shift+Tab. The | NSERT will take place if the user presses Enter or Tabs off
the last field. If autoEdit is TRUE the insert will take place if the user navigates to another record. | NSERT is
cancelled by pressing Esc (Escape). If autoEdit is FALSE navigating to another record also cancels the | NSERT.
Setting confirmInsert to TRUE will require the user to confirm each | NSERT.

e UPDATE is initiated by right-clicking the record and clicking Update or by pressing F2. The update will take place if
the user presses Enter or Tabs off the last field. If autoEdit is TRUE the update will take place if the user navigates
to another record. UPDATE is cancelled by pressing Esc. If autoEdit is FALSE navigating to another record also
cancels the UPDATE. Setting confirmUpdate to TRUE will require the user to confirm each UPDATE.

e DELETE is achieved by right-clicking the record and clicking Delete or by pressing the Del (Delete) key. Setting
confirmDelete to TRUE will require the user to confirm each DELETE.

You can change this default behaviour programmatically if required.

Relating Two Tables Together (Master-Detail)

Databases often have pairs of tables that are related. For example, an invoice table might list the numbers, dates and
customers for invoices, but not the actual invoice items, which an invoice item table might store. In the ’book’ applica-
tion we wish to have a QDataTable that we can use to browse through the authors table and a second QDataTable to
show the books they’ve written.

Open the book project if it isn’t already open Qt Designer. We will modify this project to show two QDataTables that
relate the author table to the book table.

1. Click the author QDataTable and then click the Break Layout toolbutton.
2. Resize the QDataTable so that it only occupies the top half of the form.

3. Now click on the QDataTable toolbutton and click on the bottom half of the form. The SQL Table Wizard will
appear. (This Wizard is explained in Quickly Viewing a Database Table.)

(a) Click the connection you're using and click the book table. Click the Next button.

(b) Since we do not want them visible, make sure the authorid and id fields are moved to the Available Fields
list box by using the arrow buttons. Move the title field to the top of the Displayed Fields, and move the
price field above the notes field. Click the Next button.

(c) On the Table Properties page click the Read Only checkbox then click the Next button.

(d) On the SQL page we will leave the Filter (WHERE clause) empty. Move the title field to the Sort By list box
and click Next. Now click Finish.

(e) Change this QDataTable’s name to "BookDataTable".

Shift+Click the top QDataTable so that both QDataTables are selected and then click the Lay Out Vertically (in
Splitter) toolbar button.

8. Click on the form and click the Lay Out Vertically toolbar button.

Run the form by clicking Preview|Preview Form. All the authors are displayed in the top QDataTable and all the
books are displayed in the bottom QDataTable. However we only want the books of the currently selected author
showing in the bottom QDataTable. We will deal with this by filtering the records in the book table according to the
author selected in the author table.

Creating Database Applications 61

Using the Table Editor
[x]

Surname |Forename | Columns IBows |

Sumame
Forename

Mew Column

|

Delete Columnl

Table: authar

Eleld: Isumame vl

Label: W

Pixmap: A
(i\l I

R

ﬂl Apply | OK I Qanoel|
v

Edit Table Dialog

QDataTables are created and set up using the SQL Table Wizard. Like any other Qt Designer widget their properties
may be changed in the Properties window. Some of the column and row based properties can also be be changed using
the Edit Table dialog. This dialog is invoked by right clicking the QDataTable and left clicking the Edit menu item. The
right hand half of the Edit Table dialog is where we choose the fields we wish to display, their order and their labels.
The procedure for creating columns is as follows:

Click the New Column button.

Drop down the Field combobox to list the available fields.
Click the field you wish to include at this point.
Optionally edit the Label if the default isn’t appropriate.

SAE ST

Optionally click the Pixmap ellipsis (...) button to choose a pixmap to be displayed to the left of the column’s
label. (The ellipsis button appears when you click in the Value part of the Properties list by a pixmap or iconSet
property.)

Repeat the steps listed above for each column you wish to add. Once all the fields have been added you can change
their ordering by using the blue up and down arrow buttons. At any point you can press Apply to see how the table
will look. Finally click the OK button to save the properties you have set. You can always return to the table editor to
change these settings later.

Filtering One QDataTable by Another

To filter the book table’s records we need to capture the author QDataTable’s cur r ent Changed() signal and change the
BookDataTable’s filter accordingly.

1. Click Edit]Slots. In the Edit Slots dialog click New Slot and enter a slot name of
newCur r ent Aut hor (QSgl Recor d*) . Click OK.

2. Click Connect Signals/Slots, then click the AuthorDataTable QDataTable and drag to the form; release the
mouse on the form. The Edit Connections dialog will appear. Click the current Changed() signal and the
newCur r ent Aut hor slot. Click OK.

3. Click the Source tab of the Object Hierarchy window (click Window | Object Hierarchy to make the window
visible if necessary). Click the newCur r ent Aut hor () slot and an editor window will appear.

Creating Database Applications 62

4. We must change the BookFor m : newCur r ent Aut hor () slot to specify the parameter name and perform the neces-
sary action:

voi d BookForm : newCurrent Aut hor (QSql Record *aut hor)

{
BookDat aTabl e->set Fil ter("authorid=" + author->value("id").toString());

BookDat aTabl e->ref resh();
}

All that’s required now is to change the BookDataTable’s filter and refresh the QDataTable to show the results of
the filter.

Preparing the Interface for Drilldown

We can now browse and edit authors and see their books in the BookDataTable. In the next section we explore
QDataBrowser, which will allow us to drill down to a dialog through which we can edit books. For now we will add
some buttons to the main BookForm which we will use to invoke the book editing dialog.

1. Click the form, then click the Break Layout toolbar button. Resize the form to make room for some buttons at
the bottom.

2. Add two buttons to the bottom of the form. Change their names and labels to the following:

o EditPushButton — &Edit Books
e QuitPushButton — &Quit

Hold down the Shift key and Click both buttons (i.e. Shift+Click the buttons) and click the Lay Out Horizontally
toolbar button. Click the form and click the Lay Out Vertically toolbar button.

3. We will provide the Quit button with functionality now and work on the rest shortly. Click Connect Signals/Slots,
then click the Quit button and drag to the form; release the mouse on the form. The Edit Connections dialog will
appear. Click the cl i cked() signal and the accept () slot. Click OK.

Using QDataBrowser and QDataView

Title |Burn harks

Price IQ‘QQ

Author | Sarah Paretsky =l

|= Eirst | <= Prew | Mext == | Last =| |

Insert | Update I Delete | Close |

The Book Application’s Edit Books Dialog

Creating Database Applications 63

Drilling Down to a Form using QDataBrowser
Setting up a QDataBrowser

We will now create a new form to allow users to edit book records. Click the New toolbar button, click the Dialog
template from the New File dialog and click OK. Change the name of the form to EditBookForm and its caption to
’Edit Books’. Click the Save toolbar button and call the file edi t book. ui. Now that we have the form we can add a
QDataBrowser to show the book records.

1. Click the Data Browser toolbar button, then click the form. The Data Browser Wizard will appear.

2. The Database Connection and Table wizard page is used to set up a connection if one doesn’t exist and to choose
the table or view for the QDataBrowser. (See Setting Up Qt Designer’s Connections.)

Click the connection you wish to use, listed in the Connection list box, e.g. "(default)". The available tables and
views will appear in the Table list box. Click the book table and then click the Next button.

3. The Displayed Fields wizard page provides a means of selecting which fields should be displayed in the
QDataBrowser and in what order. By default all fields except the primary key (if there is one) are in the right
hand Displayed Fields list box. The left and right blue arrow buttons can be used to move fields between the
Displayed Fields and the Available Fields list boxes. The blue up and down arrow buttons are used to select the
display order of the displayed fields.

We don’t want to see the authorid foreign key field on the form, so move it to the Available Fields list box. Also,
move the title field to the top of the Displayed Fields list. Click the Next button.

4. The Navigation and Editing wizard page allows us to choose which navigation and editing buttons should appear
on the form.

We will accept the defaults and simply click the Next button.

5. The SQL wizard page is used to set the QDataBrowser’s Filter and Sort properties. The Filter is an SQL WHERE
clause (without the word "'WHERE’). For example, to only list books that cost less than 50 (of some currency, e.g.
dollars), we would enter price < 50. We will leave the filter empty. The Available Fields list box lists all the
fields. The Sort By list box lists the fields that the QDataBrowser is to sort by and the direction of their sorting
(ASCending or DESCending). The left and right blue arrows are used to move fields between the two list boxes.
The up and down blue arrows move fields up and down within the Sort By list box. The ASC or DESC setting is
changed with the sort order button.

Move the title field into the Sort By list box and click Next.
6. The Layout wizard page is used to specify the initial layout of the form.
Change the Number of Columns to 1, then click Next. Now click Finish.

7. The QDataBrowser will now appear on the form. Resize the form to make it shorter. Click the QDataBrowser
then click the Break Layout toolbar button. Click the buttons then click the Break Layout toolbar button. Add
another button called 'PushButtonClose’ with the text '&Close’ and place it to the right of the Delete button.

8. Shift+Click the Insert, Update, Delete and Close buttons, then click the Lay Out Horizontally toolbar button.
Click the QDataBrowser, then click the Lay Out in a Grid toolbar button. Finally click the form and click the
Lay Out Vertically toolbar button. Now click the QDataBrowser and rename it ‘BookDataBrowser’.

9. Qt Designer will generate the necessary code to make the browser operational (including generating the appro-
priate cursor, sort and filter code).

For finer control over the form, we will be creating our own database cursor. Therefore, set the Book-
DataBrowser’s frameworkCode property to FALSE in the Properties window to prevent Qt Designer from gen-
erating redundant code for the cursor.

QDataBrowser User Interface Interaction

The user-interface behaviour for QDataBrowsers is created by connecting slots and signals. The slots provided are:

Creating Database Applications 64

insert(), update() and del () for editing;
first(), next(),prev(), and | ast() for navigation;

refresh() to refresh the cursor from the database;

readFi el ds() to read data from the cursor’s edit buffer and wri t eFi el ds() to write the form’s data to the cursor’s
edit buffer;

e cl earVal ues() to clear the form’s values.

If you use Qt Designer’s QDataBrowser wizard you will be given the option of creating a default set of buttons for
navigation and editing. The behaviour of these buttons is set up using the slots described above to provide the following
functionality:

e | NSERT is initiated by pressing the Ins (Insert) button. The user moves between fields using Tab and Shift+Tab.
If the user presses the Update button the | NSERT will take place and the user will be taken to the record they
have just inserted. If the user presses the Insert button (i.e. a second time) the | NSERT will take place and a
new insertion will be initiated. If autoEdit is TRUE the | NSERT will take place if the user navigates to another
record. | NSERT is cancelled by pressing the Esc key or by pressing the Del (Delete) button. If autoEdit is FALSE
then navigating to another record also cancels the | NSERT. Setting confirmInsert to TRUE will require the user to
confirm each | NSERT.

e UPDATE is automatically initiated whenever the user navigates to a record. An update will take place if the user
presses the Update button. If autoEdit is TRUE the update will take place if the user navigates to another record.
UPDATE is cancelled by pressing the Esc key or by pressing the Del button. If autoEdit is FALSE then navigating
to another record also cancels the UPDATE. Setting confirmUpdate to TRUE will require the user to confirm each
UPDATE.

e DELETE is achieved by pressing the Del button. Setting confirmDelete to TRUE will require the user to confirm
each DELETE.

Performing the Drilldown

We now have a working form for editing book records. We need to start the form when the user clicks our ’Edit Books’
button, and to navigate to the record they have selected in the BookDataTable. We also need to provide a means of
editing the foreign keys, e.g. authorid.

1. We need to make a new slot to connect the Edit Books’ button’s ¢l i cked() signal to. Click on the Book form to
make it Qt Designer’s active form. Invoke the Edit Slots dialog and create a new slot called edi t C i cked(). Now
click the Connect Signals/Slots toolbar button. Click the Edit Books button and drag to the form; release the
mouse on the form. In the Edit Connections dialog connect the cl i cked() signal to the edi t i cked() slot. Click
OK to leave the dialog.

2. In the Object Hierarchy window click Source and then click the edi t 0 i cked function. We need to change it to
the following:

voi d BookForm :editdicked()
{
Edi t BookForm *di al og = new Edi t BookFornm(this, "Edit Book Fornf, TRUE);
QSql Cursor cur("book");
di al og- >BookDat aBr owser - >set Sql Cursor (&cur);
di al og- >BookDat aBr owser - >set Fi | t er (BookDat aTabl e->filter());
di al og- >BookDat aBr owser - >set Sort (QSqgl | ndex: : fronft ri ngli st (
BookDat aTabl e->sort(), &cur));
di al og- >BookDat aBr owser - >ref resh();
int i = BookDataTabl e->current Row();

Creating Database Applications 65

if (i =-1)1i =0;// Aways use the first row
di al og- >BookDat aBr owser - >seek(i);

di al og- >exec();

del ete dial og

BookDat aTabl e- >refresh();

}

We create our dialog as before. We also create a cursor over the book table and set the dialog’s QDataBrowser,
BookDataBrowser, to use this new cursor. We set the QDataBrowser’s filter and sort to those that applied to the
main form’s book QDataTable. We refresh the QDataBrowser and seek to the same record the user was viewing
on the main form. Then we exec the dialog and delete it when the user has finished with it. Finally we update
the BookDataTable in the main form to reflect any changes that were made in the dialog.

3. Because our code refers to a class declared in edi t book. h and to a QDataBrowser we need to add two additional
include files. Click on the BookForm, then click on the Source tab of the Object Hierarchy window. Right click
the ’Includes (In Declaration)’ item and click New. Type in "edi t book. h". Now add a second include, this time,
<qdatabrowser.h>.

Now when we navigate through the author and book records in the BookForm we can click the Edit Books button
to launch our Edit Books dialog. Although the dialog supports UPDATE, DELETE and navigation over the book table,
we cannot edit the foreign keys nor perform inserts. We will deal with insertion in the same way as we did with the
QDataTable, then we will handle the foreign key relationship to author.

Inserting into a QDataBrowser
We will create a slot to receive the Edit Books form’s pri nel nsert () signal so that we can insert a unique primary key.

1. Click on the Edit Books form, then create a new Slot called pri nel nsert Book(QSgl Recor d*) .

Click Edit| Slots, then click the New Slot button and type the new slot name in the Slot Properties Slot edit box.
Click OK.

2. Connect the BookDataBrowser’s pri nel nsert () signal to the pri nel nsert Book() slot.

Click the Connect Signals/Slots toolbar button, then click the BookDataBrowser and drag to the form; release
the mouse on the form. Now click the pri nel nsert () signal and the primelnsertBook slot. Click OK.

3. In the Object Hierarchy window click Source and then click the pri mel nsert Book slot. We need to change it to
the following:

voi d Edit BookForm : prinel nsert Book(QSgl Record * buffer)

{
QSql Query query;
query. exec("UPDATE sequence SET sequence = sequence + 1 WHERE tabl enane=' book’;");
query. exec("SELECT sequence FROM sequence WHERE t abl ename='book’ ;");
if (query.next()) {
buf fer->setVal ue("id", query.value(0));
}
}

We will also tidy up the user interface slightly. Click the Update button and set its default property to True.
Connect the Close button’s cl i cked() signal to the EditBookForm’s accept () slot.

Creating Database Applications 66

Handling Foreign Keys in a QDataBrowser

Qt’s SQL module provides two approaches to dealing with foreign keys. The most powerful and flexible is to subclass
widgets and use property maps to relate the widgets to the database. This approach is described in the Qt SQL Module
documentation, particularly the StatusPicker example. A simpler approach that can be taken wholly within Qt Designer
is presented here.

We will add a new field to the EditBookForm so that authors can be edited along with the title and price. Once we've
handled the visual design we’ll write the code to make it all work.

4. First we'll add the new widgets. Click the BookDataBrowser and click the Break Layout toolbar button. Resize
the form to make it larger and drag each set of buttons down to make some room below the title and price
QLineEdits. Click the Text Label toolbar button and click on the form beneath the Price label. Click the Text
Label and change its text to ’Author’. Click the ComboBox toolbar button and click on the form beneath the price
QLineEdit. In the Property Window change the ComboBox’s name to ComboBoxAuthor and change its sizePolicy
hSizeType to Expanding.

2. Now we’'ll lay out the dialog. Shift+Click the Author label and the ComboBox then click the Lay Out Horizontally
toolbar button. Now click the BookDataBrowser and click the Lay Out in a Grid toolbar button.

We need to write some code so that the ComboBox will be populated with author names and scroll to the current book’s
author. We also need to ensure that we put the author’s id into the book table’s authorid field when a book record is
inserted or updated. We’ll ensure the code is executed at the right time by putting it in slots and connecting signals to
our slots.

1. Create two new slots called bef oreUpdat eBook(QSgl Record *buffer) and primeUpdat eBook(QSql Record
*puffer). (Click Edit|Slots, then in the Edit Slots dialog click New Slot and enter the first new slot. Click
New Slot again and enter the second slot then click OK.)

2. When the user navigates through the dialog, each time they move to a new record, a pri neUpdat e() signal is emit-
ted. We connect to this so that we can update the ComboBox’s display. Just before a record is updated or inserted
into the database a bef or eUpdat e() or beforel nsert () signal is emitted. We connect our bef or eUpdat eBook()
slot to both these signals so that we can ensure that the book’s authorid field is correctly populated.

Click the BookDataBrowser and drag the mouse to the form; release the mouse and the Edit Connections dialog
will appear. Connect the bef or eUpdat e() signal to our bef or eUpdat eBook() slot. Connect the bef orel nsert ()
signal to our bef or eUpdat eBook() slot. Finally connect the pri meUpdat e() signal to our pri neUpdat eBook() slot.

3. All that remains is to write the underlying code. All the code snippets are taken from
qt/tool s/ desi gner/ exanpl es/ book/ book7/ edi t book. ui .

(a) We start with theinit() function; this is called after the dialog is constructed and we will use it to populate
the ComboBox with author names.

voi d Edit BookForm :init()

{
QSql Query query("SELECT surname FROM aut hor ORDER BY surnane;");
while (query.next())
ConboBoxAut hor->i nsertlten(query.value(0).toString());
}

Here we execute a query to get a list of author names and insert each one into the ComboBox.
(b) We next write the code which will be executed just before a record is updated (or inserted) in the database.

voi d Edi t BookFor m : bef or eUpdat eBook(QSql Record * buffer)

{
QSql Query query("SELECT id FROM aut hor WHERE surname ="" +

ConboBoxAut hor - >current Text () + "' ;");

Creating Database Applications 67

if (query.next())
buf f er->set Val ue("authorid", query.value(0));

}

We look up the id of the ComboBox’s current author and place it in the update (or insert) buffer’s authorid
field.

(c) As the user navigates through the records we ensure that the ComboBox reflects the current author.

voi d Edit BookForm : pri nelpdat eBook(QSgl Record * buffer)

{
[l Who is this book’'s author?
QSql Query query("SELECT surnane FROM author WHERE id="" +
buf fer->val ue("authorid").toString() + "";");
QString author = "";
if (query.next())
author = query.value(0).toString();
Il Set the ConmboBox to the right author
for (int i =0; i count(); i++) {
if (ComboBoxAuthor->text(i) == author) {
ConmboBoxAut hor - >setCurrentlitem i) ;
br eak;
}
}
}

Firstly we look up the book’s author and secondly we iterate through the ComboBox’s items until we find the
author and set the ComboBox’s current item to the matching author.

If the author name has changed or been deleted the query will fail and no author id will be inserted into the
buffer causing the | NSERT to fail. An alternative is to record the author id’s as we populate the ComboBox and
store them in a QMap which we can then look up as required. This approach requires changes to the init(),
bef or eUpdat eBook() and pri mel nsert Book() functions and the addition of a new function, mapAut hor (). The rel-
evant code from qt/t ool s/ desi gner/ exanpl es/ book/ book8/ edi t book. ui is shown below.

1. First we need to create a class variable to map author names to author id’s. Click in the Source tab of the Object
Hierarchy, then right click the Class Variables item and click New. Type in ‘QMap <QString,int> authorMap;’.

2. We now record the author id’s in the i ni t () function.

voi d Edi t BookForm :init()

{
QSql Query query("SELECT surnane, id FROM aut hor ORDER BY surnane;");
while (query.next()) {
ConmboBoxAut hor - >i nsertlten{ query.value(0).toString());
int id = query.value(1).tolnt();
mapAut hor (query.value(0).toString(), id, TRUE);
}
}

After inserting each author’s name into the ComboBox we populate a QMap with the author’s name and id.

3. Instead of looking up the author’s id in the database we look it up in the QMap.

voi d Edi t BookFor m : bef oreUpdat eBook(QSqgl Record * buffer)

{
int id;

Creating Database Applications 68

mapAut hor (ComboBoxAut hor - >current Text (), id, FALSE);
buf f er->set Val ue("authorid", id);

}
We use a single function for storing author id’s and returning them so that we can use a static data structure.
4. voi d Edi t BookFor m : mapAut hor (const QString & nane, int & id, bool populate)
{

if (populate)
authorMap[name | = id;
el se
id = authorMap[nane |;
}

If the populate flag is TRUE, we store the author’s name and id in the QMap, otherwise we look up the given
author name and set id appropriately.

Another approach which is especially useful if the same foreign key lookups are required in different parts of the
application is to subclass a cursor and use this for our lookups. This is described in the Qt SQL Module documentation,
particulary the section on subclassing QSqlCursor.

The ’book’ example demonstrates the basic techniques needed for SQL programming with Qt. Additional information

on the Qt SQL classes, especially the QSqlQuery and QSqlCursor classes is provided in the Qt SQL Module documen-
tation.

Customizing and Integrating Qt Designer

Customizing Qt Designer

Qt Designer can be customized in two ways: you can add custom widgets, and you can change aspects of how Qt
Designer works. Custom widgets are covered in Creating Custom Widgets. This section will focus on customizing Qt
Designer itself.

Qt Designer’s toolbars are all dockable so they can be dragged by their toolbar handles and arranged how you like.
The Files, Object Hierarchy, Property Editor and Output Windows are also dockable so you can also drag them to the
positions that you prefer. You can also make them into floating windows by dragging them outside Qt Designer’s dock
areas.

General preferences can be set by clicking Edit | Preferences to invoke the Preferences dialog. If you check the 'Restore
Last Workspace on Startup’ checkbox then Qt Designer will remember the sizes and positions of the toolbars and the
dockable windows. You can change Qt Designer’s main window background either by selecting a color or a pixmap.
You can also switch off the grid (uncheck Show Grid) since using layouts makes the grid redundant.

The Preferences dialog may have additional tabs, depending on what plugins you have installed. We’ll describe the
C++ Editor tab since this is installed by default.

The C++ Editor tab is used to set your preferred fonts for syntax highlighting in Qt Designer’s code editor. The base
font for all elements is set in the ’Standard’ element which is the last item in the list. If you want one font to be used
throughout then set the ’Standard’ font and all the other elements will inherit its setting.

Qt Designer’s Code Editor

The code editor is available if an Editor plugin is installed. The C++ Editor plugin is installed by default.

The code editor provides the following keystrokes:

e Left Arrow — Moves the cursor one character left

e Right Arrow — Moves the cursor one character right

e Up Arrow — Moves the cursor one line up

e Down Arrow — Moves the cursor one line down

e Page Up — Moves the cursor one page up

e Page Down — Moves the cursor one page down

e Backspace — Deletes the character to the left of the cursor
e Home — Moves the cursor to the beginning of the line

e End — Moves the cursor to the end of the line

e Delete — Deletes the character to the right of the cursor

69

Customizing and Integrating Qt Designer 70

e Ctrl+A — Moves the cursor to the beginning of the line

e Ctrl4+B — Moves the cursor one character left

e Ctrl4+C — Copies the selected text to the clipboard (also Ctrl+Insert under Windows)
e Ctrl+D — Deletes the character to the right of the cursor

e Ctrl+E — Moves the cursor to the end of the line

e Ctrl+F — Invokes the Find Text dialog

e Ctrl+G — Invokes the Goto Line dialog

e Ctrl+H — Deletes the character to the left of the cursor

e Ctrl+I — Indent the line or selected text that contains the cursor

e Alt+I — Starts incremental search (see below)

e Ctrl+K — Deletes from the cursor position to the end of the line

e Ctrl4+N — Moves the cursor one line down

e Ctrl+P — Moves the cursor one line up

e Ctrl+R — Invokes the Replace Text dialog

e Ctrl+V — Pastes the clipboard text into line edit (also Shift+Insert under Windows)
e Ctrl+X — Cuts the marked text, copy to clipboard (also Shift+Delete under Windows)
e Ctrl4+Y — Redoes the last operation

e Ctrl+Z — Undoes the last operation

e Ctrl+Left Arrow — Moves the cursor one word left

e Ctrl+Right Arrow — Moves the cursor one word right

e Ctrl+Up Arrow — Moves the cursor one word up

e Ctrl+Down Arrow — Moves the cursor one word down

e Ctrl+Home Arrow — Moves the cursor to the beginning of the text

e Ctrl+End Arrow — Moves the cursor to the end of the text

e Tab — Completion (see below)

To select (mark) text hold down the Shift key whilst pressing one of the movement keystrokes, for example,
Shift+Right Arrow will select the character to the right, and Shift+Ctrl+Right Arrow will select the word to the
right, etc.

Pressing Alt+1 starts incremental search. The characters you type will appear in the Incremental Search line edit in
the Search toolbar and the cursor will be moved to the first matching text in the editor. As you type the search will
continue. Press Return to move to the next match and press Esc to cancel the search at the position you've reached.

Pressing Tab after you've typed one or more characters invokes completion. Completion works like this: start typing
some text then press Tab. If the editor can find another item of text that begins with the same characters it will
complete your text for you; if it finds more than one possibility it will pop up a list of choices. You can use the arrow
keys to choose a piece of text then press Return, or press Esc to continue typing. You can switch off completion in the
Preferences dialog.

When you enter - > or . the editor will pop up a command completion list; use the arrow keys to move to the item you
want and press Return, or press Esc to ignore the list.

Customizing and Integrating Qt Designer 71

Creating and Using Templates

Qt Designer supports two approaches to creating template forms. The simplest approach involves little more than
saving a . ui file into the templates directory. The second approach involves creating a container widget class to be
used as a base class for forms that use the template. We will explain both techniques.

Simple Templates

These templates are most useful when you want to create a whole set of forms which all have some common widgets.
For example, you might have a project that will require many forms, all of which need to be branded with a company
name and logo.

First we'll create the simple template.

1. Click File|New to invoke the New File dialog. Click the Dialog template then click OK.

2. Click the Text Label toolbar button, then click near the top left of the form. Change the font Point Size property
to 16 and change the text property to your or your company’s name. Click the Line toolbar button, then click the
form below the label; click Horizontal on the pop-up menu.

3. Select the label and the line. (Ctrl+Click the form, then drag the rubber band so that it touches or includes the
line and the label.) Press Ctrl+L to lay them out vertically.

4. Click the Save toolbar button. In the Save As dialog, navigate to Qt Designer’s templates directory, e.g.
(qt/t ool s/ desi gner/tenpl at es. Type in the name ’Simple Dialog.ui’ and click Save.

5. Right click the form in the Forms list, then click Remove form from project.

Now that we have the simple template we are ready to use it. Click File|New to invoke the New File dialog. One of
the templates that will appear is ’Simple Dialog’. Click the simple dialog, then click OK. A new form will appear with
the same widgets and layout as the template. Add any other widgets and functionality. When you attempt to save the
form you will be prompted for a new form name.

Base-class Templates

These templates are useful when you want to provide some default functionality that all the forms based on the base
class can inherit. In our example we’ll use a class called SizeAware that remembers and restores its size as the basis of
a template. We won’t describe the class itself, but will focus instead on making use of it as a Qt Designer template. The
source for the class is in gt/ t ool s/ desi gner/ exanpl es/ si zeavar e.

The template can either be based on a custom widget or on any existing container widget.

If you want to base the template on a custom widget you must first add it to Qt Designer’s custom widgets. Click
Tools| Custom | Edit Custom Widgets to invoke the Edit Custom Widgets dialog. (This dialog is explained in more
detail in Simple Custom Widgets.) Click New Widget. Change the Class from 'MyCustomWidget’ to 'SizeAware’. Click
the Headerfile ellipsis button and select the file qt/t ool s/ desi gner/ exanpl es/ si zeawar e/ si zeawar €. h. Check the
Container Widget checkbox. This class provides two properties. Click the Properties tab. Click New Property and
change the property name to ’company’. Click the New Property again and change the property name to ’settingsFile’.
Click Close.

To create a template, based on an existing widget or on your own custom widget, click File| Create Template to invoke
the Create Template dialog. Change the Template Name to 'SizeAware’ and click the SizeAware base class, then click
Create. The dialog will create the template and close itself immediately. Close Qt Designer and restart it.

A new template, 'SizeAware’ is now available from the list of templates. Click File|New, click SizeAware and click
OK. Note that the two properties, company and settingsFile, are available in the Properties window. Any forms based

Customizing and Integrating Qt Designer 72

on this template will remember their size and resize when reloaded. (In practical applications having one settingsFile
per form is not recommended, so this template would only really be useful for applications that have a single main
window.)

Integrating Qt Designer with Visual Studio

Qt Designer can be integrated into Visual Studio using the qnsdev. dsp file that is supplied with Qt.

Start up Visual Studio and click File| Open Workspace. Open %JTDl RO\tools\designer\integration\qmsdev\gmsdev.dsp.
Click Build|Set Active Configuration and in the list click ’'QMsDev - Win32 Re-
lease’, then click OK. Now «click Build|Build qmsdev.dll You should now copy
the file Y%QTDl RMtools\designer\integration\gmsdev\Release\qmsdev.dll into M crosoft Visual

St udi o\ Conmon\ MSDev98\ Addl ns. Now click Tools| Customize. Click the Add-in Macro Files tab, then click the Browse
button. Change the file type to ’Add-ins (.dll)’ and navigate to M crosoft Visual Studi o\ Common\ MSDev98\ AddI ns.
Click the gmsdev. dI | file, click Open, then click Close.

A new toolbar will appear in Visual Studio with the following toolbar buttons:

New Qt Project — A small application wizard

Generate Qt Project — Runs gnmake (or the functionally equivalent t make) with a . pro file

New Qt Dialog — Add an empty Qt Dialog to the active project
Qt GUI Designer — Run Qt Designer

Use Qt — Add the Qt libraries to the active project

Add MOC — Add the noc precompiler to the active file

Add UIC — Add the ui ¢ precompiler to the active file

Double clicking a . ui file in the workspace overview will now launch Qt Designer-.

If you create a . cpp file which contains the Q OBJECT macro you will need an additional file which is generated by the
moc to be included in your project. For example, if you have ’file.cpp’, then the last line would be #i ncl ude "fil e. moc"
and the additional file would be called ’file.moc’. To ensure that Visual Studio executes the moc and generates this
file you must create a custom dependency. Double click the . cpp file (in your project workspace) that contains the
Q_OBJECT macro. Click the Add MOC toolbar button; this will create an empty . noc file in your project workspace.
Right click the newly created . noc file, then click Settings from the pop-up menu to invoke the Project Settings dialog.
Click the Custom Build tab. Click the Dependencies button to pop up the User Defined Dependencies dialog. Type in
$(1 nput Di r)\ $(I nput Pat h) , then press Return. Click OK to leave the Dependencies dialog, then click OK to leave the
Project Settings dialog.

If you wish to delete the add-in remove it from the toolbar then delete the qnsdev. dl | file from the add-ins directory.

Creating Makefiles without gmake

The gnmake tool provided with Qt can create Makefiles appropriate to your platform based on . pr o project files. This sec-
tion describes the dependencies involved in building a Qt application and gives a couple of simple example Makefiles.
This section assumes that you have a good understanding of Makefiles.

Qt Designer produces . ui files which are used to generate . h and . cpp files for the compiler to compile. The . ui files
are processed by ui c. Classes which inherit from QObject, e.g. those which use slots and signals, require an additional
. cpp file to be generated. These files are generated by the moc and are named ’moc_file.cpp’ where the original . cpp
file is called ’file.cpp’. If your . cpp file contains the Q OBJECT macro an additional file *file.moc’ should be generated
which must be #i ncl uded in the . cpp, normally at the end. This requires an extra dependency being created.

Customizing and Integrating Qt Designer 73

Processing . ui files with ui ¢ is done twice:

uic myformui -o nmyformh
uic myformui -i nmyformh -o nyformecpp

The first execution creates the header file, the second creates the . cpp file. If you wish to subclass a form you can use
ui ¢ to generate subclass skeletons:

uic fornbase.ui -o fornbase.h

uic formbase.ui -i fornmbase.h -o fornbase.cpp

ui ¢ -subdecl Form fornbase.h fornbase.ui -0 formh
uic -subinpl Formfornbase.h fornbase.ui -o formcpp

First we generate the header and implementation file for our base class. Then we generate the header and implemen-
tation skeletons for our subclass. Note that the use of ui ¢ to generate skeletons is not something that would be done
in a Makefile, we mention it here because it can be useful for command line users.

For implementation files that contain classes which inherit from QObject we must create moc files:
moc myformh -o moc_nyform cpp
We’ll look at a simple Makefile to see the dependencies in practice.

myapp: moc_nyformo nyformo nain.o
g++ -1qt -o myapp noc_nmyformo nyformo nain.o

mai n. 0: main. cpp
g++ -0 main.o nain.cpp

moc_nyformo: moc_nyform cpp
g++ -0 moc_nyformo noc_nyform cpp

moc_nyformcpp: nyformh
moc nyformh -o noc_nyformcpp

myformo: nyform cpp
g++ -0 myformo nmyformcpp

myform cpp: myformh nyform ui
uic nyformui -i nyformh -o myformcpp

myform h: nyform ui
uic myformui -o myformh

Note that you may need to include the full path to the commands in your Makefile, and under Windows the filenames
are noc. exe and ui c. exe.
In Unix/Linux environments the make command may be able to do more for us, so we should be able to use a simpler

Makefile like this:

myapp: moc_nyformo nyformo nain.o
g++ -1q -0 $@$"

Customizing and Integrating Qt Designer 74

%o0: %cpp
g++ -0 $" $@

moc_%cpp: % h
mc $" -0 $@

myform cpp: myformh nyform ui
uic myformui -i nmyformh -o myformcpp

myformh: nyformui
uic myformui -o nyformh

To see more sophisticated Makefiles simply generate them using gmake on any of your Qt projects or any of the examples
supplied with Qt.

Importing Foreign File Formats

To import a file in a supported foreign file format click File| Open, then click the File Type combobox to choose the file
type you wish to load. Click the required file and Qt Designer will convert and load the file.

The filters that Qt Designer uses to read foreign file formats are 'works in progress’. You may have different filters
available in your version of Qt Designer than those described here. The easiest way to see which filters are available is
to invoke the file open dialog; all your filters are listed in the File Type combobox.

Importing Qt Architect Files

Qt Architect is a free GUI builder for Qt written by Jeff Harris and Klaus Ebner. The . dl g extension is associated with
Qt Architect dialog files.

Qt Designer can read files generated by Qt Architect version 2.1 and above. When given a . dl g file from a previous
version of Qt Architect, Qt Designer tells you how to convert it to the file format of version 2.1. (The conversion
procedure varies depending on the version of the . dl g file.)

The import filter does a good job of importing . dl g files; the result is almost identical to what you get in Qt Architect.
However, the C++ code that uses the dialogs will probably need some adaptation.

There are a few drawbacks to converting Qt Architect files to Qt Designer’s format due to differences between the two
tools; these are listed below:

e Layout spacing and margins

If the . dl g file layouts use the Qt Architect defaults for layout spacing and margins, Qt Designer will override
these with its standard defaults. You can change the "layoutSpacing" and "layoutMargin" properties manually
afterwards if necessary.

e Layout stretches and spacings

Qt Architect gives access to more features of Qt’s layout system than Qt Designer, namely stretches and spacings.
Qt Designer will attempt to cope with . dl g files that use these features, but sometimes the resizing will not be
what you want. The solution typically involves setting the "sizePolicy" properties of some widgets and inserting
or deleting spacers.

e Mixing managed and unmanaged widgets

Customizing and Integrating Qt Designer 75

Qt Architect allows a widget to have some child widgets managed by a layout and other child widgets with fixed
positions. When presented with a . dl g file that uses this facility, Qt Designer will silently put the fixed position
widgets into the layout.

e Pixmaps

Qt Designer ignores pixmaps specified in . dl g files. These have to be restored manually in Qt Designer.

Importing Glade Files

Glade is a free GUI builder for GTK+ and GNOME written by Damon Chaplin. The . gl ade extension is associated with
Glade files.

Qt Designer has been tested with Glade files up to version 0.6.0 and might work with later versions as well.

Although Glade does not target Qt, the layout system and the widget set of GTK+ are similar to those of Qt, so the
filter will retain most of the information in the . gl ade file.

There are some considerations regarding the conversion of Glade files, as listed below:

e Ampersands (&) in labels

Qt displays an ampersand when a QLabel has no buddy. (A buddy is a widget that accepts focus on behalf of
a QLabel.) Glade allows GtkLabel widgets with an (underlined) accelerator key but with no buddy. This is an
error since users expect underlined characters to be accelerators. In this situation, Qt displays the ampersand
itself instead of underlining the accelerator key. You should go over these QLabel widgets and set their "buddy"
property.
e Layout placeholders

GTK allows a layout position to be occupied by a placeholder. Qt Designer converts those placeholders into
QLabels whose text is "?" in red, so that you can find them and fix them manually.

e GTK+ or GNOME widget with no Qt equivalent

Qt has equivalents for most GTK+ widgets, but Glade also supports GNOME, whose goal is to provide a complete
desktop environment. Because Qt’s scope is narrower, when Qt Designer encounters a widget it cannot convert,
it replaces it with a label that indicates the problem. For example, a GnomePaperSelector will be replaced by
a QLabel whose text is "GnomePaperSelector?" in red. If you are porting to KDE, you might want to use the
corresponding KDE widget.

Other GTK+/GNOME widgets are only supported in certain contexts. For example, the GnomeDruid can be
embedded in another widget, whereas the corresponding QWizard class cannot.

e Message boxes and other high-level dialogs

Glade supports editing of GnhomeMessageBox, GtkFileSelection, GtkFontSelectionDialog and others. This is triv-
ially achieved in Qt by means of a QMessageBox dialog, a QFileDialog, a QFontDialog, etc., in C++ code.

e Stand-alone popup menus

Qt Designer only supports popup menus inside a QMainWindow. If you need a stand-alone popup menu (pre-
sumably a context menu), you can easily write code that does this using QPopupMenu.

e Size policy parameters

Glade provides size policies in the "Place" tab of the property editor. Qt Designer does not attempt to make use of
the padding, expand, shrink and fill information, as the Qt defaults are usually good enough. In a few cases, you
might have to set the "sizePolicy" property manually to obtain the effect you want.

o GNOME standard icons

GNOME provides a large set of standard icons. Qt Designer will ignore references to these. If you are porting to
KDE, you might want to manually set the standard KDE icons.

Customizing and Integrating Qt Designer 76

e Packer layout

GTK+ provides a class called GtkPacker that provides for exotic layouts; Qt provides no QPackerLayout and
never will. Qt Designer will treat packer layouts as if they were vertical layouts and you will probably have to
change them to whatever combination of layouts that produces the right effect.

e Incorrectly-justified text after conversion

The "hAlign" property is sometimes set wrongly, in which case you have to change it manually. It is caused by a
quirk in Glade.

Reference: Key Bindings

e Ctrl+A — Selects all GUI elements in the active form.

e Ctrl+B — Breaks the selected layout so that you can add or delete GUI elements.

e Ctrl+C — Copies the selected GUI elements from the active form into the clipboard.
e Alt+E — Pulls down the Edit menu.

e Alt+F — Pulls down the File menu.

e Ctrl+G — Applies a grid layout to the selected container, or creates a new container containing the selected GUI
elements and applies a grid layout to this container.

e Ctrl+H — Applies a horizontal box layout to the selected container, or creates a new container containing the
selected GUI elements and applies a horizontal box layout to this container.

e Alt+H — Pulls down the Help menu.

e Ctrl+J Adjusts the size of the selected GUI element (or elements) so that it has the minimal size needed for
displaying itself properly.

e Ctrl4+L — Applies a vertical box layout to the selected container, or creates a new container containing the
selected GUI elements and applies a vertical box layout to this container.

e Alt+L — Pulls down the Layout menu.

e Ctrl+M — Opens an online version of this manual in Qt Assistant.

e Ctrl+N — Invokes the New File dialog.

e Ctrl+0O — Invokes the Open File dialog.

e Alt+P — Pulls down the Preview menu.

e Ctrl+R — Checks the accelerators in the active form for duplicates.

e Ctrl+S — Saves the active form.

e Ctrl+T — Previews the active form in the default GUI style of the platform.
e Alt+T — Pulls down the Tools menu.

e Ctrl+V — Pastes the GUI element (or elements) in the clipboard into the active form at the position it had in its
original form plus a little offset. Does nothing if the clipboard does not contain a GUI element.

e Alt+W — Pulls down the Window menu.

e Ctrl+X — Cuts the selected GUI element (or elements) from the active form and puts it into the clipboard.
e Ctrl+Y — Redoes the last undo action.

e Ctrl4+Z — Undoes the last action.

e Del — Deletes the selected GUI elements from the active form.

e F1 — Opens the introductory page of the Qt Designer manual in Qt Assistant.

e Shift-F1 — Turns on What’s This mode, which lets you click on a GUI element in Qt Designer to get a small
description window for this element.

77

Reference: Key Bindings

e F2 — Activates the pointer tool that lets you select GUI elements.

e F3 — Activates the connection tool that lets you edit the connections between signals and slots in a form.

F4 — Activates the tab order tool that lets you change the tab order of the GUI elements on the active form.

Ctrl+F4 — Closes the active window.

Ctrl+F6 — Activates the next window in the order of window creation.

Ctrl+Shift-F6 — Activates the previous window in the order of window creation.

78

Reference: Menu Options

Introduction

Qt Designer provides menu options that invoke actions that are used to help create applications. Many menu options
lead to dialog boxes that provide specific functionality. The most common menu options also have corresponding
toolbar buttons. This chapter explains each menu option and its use. For menu options that invoke a dialog box or
which have a corresponding toolbar button, there is a cross-reference to the detailed explanation that appears in the
relevant chapter.

Ctrl+M

= Open.. Ctrl+0

Close

Save Ctri+3
Save As.
Save All

Create Template...

Fecently opened files »
Recently opened projects 3
Exit

The File Menu

The File Menu

This menu is invoked with Alt+F, and provides the following options:

e File|New Click this menu option (or press Ctrl+N) to create a new project, form or file. This option invokes the
New File Dialog.

¢ File|Open Click this menu option (or press Ctrl4+0) to open existing projects, forms or files. The File Open
Dialog is invoked through which a file name can be selected.

¢ File|Close Click this menu option to close the currently open project. If the project has unsaved changes, the
Save Form Dialog appears.

¢ File|Save Click this menu option (or press Ctrl+S) to save the project along with its forms and files. For a project
that has forms or files, click ’Save’ to save the project before exiting. For new forms, click ’Save’ and the Save
Form As Dialog appears. For forms that have been saved previously click ’Save’. For new files or for files that have
been changed, click "Save’.

e File|Save As Click this menu option to save and name the current form or file. This option invokes the Save
Form As Dialog.

e File|Save All Click this menu option to save every open file and form in every open project.

79

Reference: Menu Options 80

File | Create Template Click this menu option to create a form template. This option invokes the Create Template
Dialog dialog.

File | Recently Opened Files Click this menu option to list the most recently opened files. Click one of the files
listed to open it. Note that we recommend that you open projects rather than files. You can open a file by clicking
the file’s name in the project’s File Overview Window.

File | Recently Opened Projects Click this menu option to list the most recently opened projects. Click one of the
projects listed to open it.

File | Exit Click this menu option to exit Qt Designer. If any open files have unsaved changes, the Save Form Dialog
message box will appear for each of them, before Qt Designer exits. Note that for a form that has not been saved
previously but has had changes made to it or that has been saved but has had changes made to it, the Save Form
Dialog is invoked. Click Yes to invoke the Save Form As dialog.

See also The File Toolbar Buttons.

La] Undo: hove

¢ Bedo: Layout horizontally Ctrl+Y
& Cut Cirl+
Copy Ctrl+C
% Paste Ctrl+
Delete Cel
Select All Ctrl+4
Check Accelerators Alt+R

é- Slots...
@3 Connections...

Eorm Settings...

Preferences...

The Edit Menu

The Edit Menu

This menu is invoked with Alt+E, and provides the following options:

Edit| Undo Click this menu option (or press Ctrl+Z) to undo an action. The name of the last action that was
performed appears after the word 'Undo’.

Edit|Redo Click this menu option (or press Ctrl+Y) to redo an action. The name of the last action that was
performed appears after the word 'Redo’.

Edit| Cut Click this menu option (or press Ctrl+X) to delete the selected item from the current form or file and
copy it to the clipboard.

Edit| Copy Click this menu option (or press Ctrl+C) to copy the selected item from the current form or file to the
clipboard.

Edit| Paste Click this menu option (or press Ctrl+V) to paste the clipboard item (if any) into the current form or
file.

Edit| Delete Click this menu option (or press Del) to delete the selected item from the current form or file.

Edit| Select All Click this menu option (or press Ctrl+A) to highlight all the widgets on the current form or all
the text in the current file.

Edit| Check Accelerators Click this menu option (or press Alt+R) to verify that all the accelerators are used only
once. If an accelerator is used more than once, a message box appears with the statement "The accelerator ’x’ is
used 'y’ times’. Click Select to highlight the widgets with the same accelerator, or click Cancel to exit the message
box without taking any action.

Reference: Menu Options 81

Edit| Slots Click this menu option to edit and create slots. This option invokes the Edit Slots Dialog.

Edit| Connections Click this menu option to invoke the View Connections Dialog.

Edit| Form Settings Click this menu option to invoke the Form Settings Dialog.

Edit| Preferences Click this menu option to invoke the Preferences Dialog.

See also The Edit Toolbar Buttons.

Active Project
Add File...
Image Collection...

Datahase Connections...
Project Seftings...

The Project Menu

The Project Menu

This menu is invoked with Alt+0, and provides the following options:

e Project|Active Project Click this menu option to toggle between projects if there is more than one project open.
You can also toggle between projects using the Active Project drop-down combobox in the The File Toolbar
Buttons.

Project|Add File Click this menu option to invoke the Add Dialog

Project|Project Settings Click this menu option to invoke the Project Settings Dialog.

Project|Image Collection Click this menu option to invoke the Image Collection Dialog.

Project| Database Connections Click this menu option to invoke the Edit Database Connections Dialog.

See also The File Toolbar Buttons.

DENETE

Find ncremental Alt+]
Eeplace.. Ctrl+R
Goto Line... Alt+G

The Search Menu

The Search Menu

This menu is invoked with Alt+S, and provides the following options:

e Search|Find Click this menu option (or press Ctrl+F) to invoke the Find Text Dialog.

e Search|Find Incremental Click this menu option (or press Alt+1I) to place the cursor in the text box located
next to the Find toolbar button. Type characters into the text box; as you type, Qt Designer will highlight the first
occurrence of the text that it finds in the file. Press the Enter key to go to the next occurrence of the text. Press
the Esc key once you have found the word you are looking for to place the cursor in the editor.

e Search|Replace Click this menu option (or press Ctrl+R) to invoke the Replace Text Dialog to replace specific
words or characters.

Reference: Menu Options 82

e Search|Goto line Click this menu option (or press Alt+G) to invoke the Goto Line Dialog to go to a specific line
in the file.

See also The Search Toolbar Buttons.

Pointer

@3 Connect Signal/Slots Fa
¢2 Tah Order F4

Buttons
Containers
Views
Database
[nput
Display

* ¥ ¥ ¥ ¥ w ¥

Custom

The Tools Menu

The Tools Menu

This menu is invoked with Alt+T, and provides the following options:

e Tools|Pointer Click this menu option (or press F2) to de-select any selected widget toolbar button. The pointer
is also used to stop inserting new widgets on the form if you double clicked a widget toolbar button. Press the
Esc key to return to the pointer at any time.

¢ Tools|Connect Signals and Slots Click this menu option (or press F3) to connect signals and slots. Click on a
widget and drag the connection line to the widget (or form) that you want to connect to. Release the mouse
button and the Edit Connections Dialog will appear.

¢ Tools|Tab Order Click this menu option (or press F4) to set the tab order for all the widgets on the form that can
accept keyboard focus. Choose this option and blue circles with numbers on them appear next to the widgets.
Click the widget that you want to be first in the tab order, then click the widget that should be next in the tab
order, and continue until all the widgets have the tab order numbers you want. If you make a mistake, double
click the first widget and start again. Press Esc to leave tab order mode. If you want to revert your changes, leave
tab order mode, then undo.

¢ Tools|Buttons |PushButton Click this menu option and then click the form to place a PushButton on the form.
¢ Tools|Buttons | ToolButton Click this menu option and then click the form to place a ToolButton on the form.

¢ Tools|Buttons|RadioButton Click this menu option and then click the form to place a RadioButton on the form.
It is recommended that you place RadioButtons inside ButtonGroups so that Qt will automatically ensure that
only one RadioButton in the group is active at any one time.

e Tools|Buttons | CheckBox Click this menu option and then click the form to place a CheckBox on the form.
¢ Tools| Containers|GroupBox Click this menu option and then click the form to place a GroupBox on the form.

¢ Tools| Containers|ButtonGroup Click this menu option and then click the form to place a ButtonGroup on the
form.

¢ Tools|Containers|Frame Click this menu option and then click the form to place a Frame on the form.

¢ Tools| Containers| TabWidget Click this menu option and then click the form to place a TabWidget on the form.
To add or remove tabs, right click the tab widget and choose ’Add Page’ or 'Remove Page’.

¢ Tools|Views|ListBox Click this menu option and then click the form to place a ListBox on the form.

e Tools|Views|ListView Click this menu option and then click the form to place a ListView on the form.

Reference: Menu Options 83

Tools|Views|Icon View Click this menu option and then click the form to place an IconView on the form.
Tools | Views| Table Click this menu option and then click the form to place a Table on the form.
Tools|Database | DataTable Click this menu option and then click the form to place a DataTable on the form.

Tools|Database | DataBrowser Click this menu option and then click the form to place a DataBrowser on the
form,

Tools|Database | DataView Click this menu option and then click the form to place a DataView on the form.
Tools | Input|LineEdit Click this menu option and then click the form to place a LineEdit on the form.
Tools|Input| SpinBox Click this menu option and then click the form to place a SpinBox on the form.
Tools|Input|DateEdit Click this menu option and then click the form to place a DateEdit on the form.

Tools | Input | TimeEdit Click this menu option and then click the form to place a TimeEdit on the form.
Tools|Input|DateTimeEdit Click this menu option and then click the form to place a DateTimeEdit on the form.
Tools| Input| TextEdit Click this menu option and then click the form to place a TextEdit on the form.

Tools | Input| ComboBox Click this menu option and then click the form to place a ComboBox on the form.
Tools|Input| Slider Click this menu option and then click the form to place a Slider on the form.

Tools|Input| ScrollBar Click this menu option and then click the form to place a Scrollbar on the form.

Tools | Input|Dial Click this menu option and then click the form to place a Dial on the form.

Tools| Display | TextLabel Click this menu option and then click the form to place a TextLabel on the form.
Tools | Display | PixmapLabel Click this menu option and then click the form to place a PixmapLabel on the form.
Tools | Display | LCDNumber Click this menu option and then click the form to place a LCDNumber on the form.
Tools|Display | Line Click this menu option and then click the form to place a Line on the form.

Tools| Display | ProgressBar Click this menu option and then click the form to place a ProgressBar on the form.
Tools| Display | TextBrowser Click this menu option and then click the form to place a TextBrowser on the form.
Tools| Custom | Edit Custom Widgets Click this menu option to invoke the Edit Custom Widgets Dialog.

Tools|Custom| Click this menu option and then click the form to place the Custom Widget on the form. Note
that this menu option only appears if you have created a widget using Tools|Custom | Edit Custom Widgets.

See also The Tools Toolbar Buttons.

é Adjust Size

a8 Lay Qut Horizontally Ctrl+H
S Lay Qut Vertically Cirl+L
222 Lay Outin a Grid Crl+G

n'[l Lay Cut Horizontally (in Splitter)
2 Lay Out Vertically (in Splitter)
3; Break Layout Ctrl+B

Il Add Spacer

The Layout Menu

The Layout Menu

This menu is invoked with Alt+L, and provides the following options:

e Layout|Adjust Size Click this menu option (or press Ctrl+J) to adjust the size of the widget to it’s recommended

size.

Reference: Menu Options 84

Layout|Lay Out Horizontally Click this menu option (or press Ctrl+H) to lay out the selected widgets or layouts
side by side. Use Shift+Click to select each widget or layout, and then choose this menu option to group them
horizontally. Note that for complex widgets it is sometimes easiest to select widgets and layouts by clicking them
in the Widgets tab of the Object Explorer Window. If only one widget is selected, its child widgets will be laid out
horizontally.

Layout|Lay Out Vertically Click this menu option (or press Ctrl+L) to lay out the selected widgets one above
the other. Use Shift+Click to select each widget or layout, and then choose this menu option to group them
vertically. Note that for complex widgets it is sometimes easiest to select widgets and layouts by clicking them in
the Widgets tab of the Object Explorer Window. If only one widget is selected, its child widgets will be laid out
vertically.

Layout|Lay Out in a Grid Click this menu option (or press Ctrl+G) to lay out the selected widgets in a grid. If
only one widget is selected, its child widgets will be laid out in a grid.

Layout|Lay Out Horizontally (in Splitter) Click this menu option to lay out the selected widgets or layouts side
by side with a splitter between each. Use Shift+Click to select each widget or layout, and then choose this menu
option to group them horizontally. Note that for complex widgets it is sometimes easiest to select widgets and
layouts by clicking them in the Widgets tab of the Object Explorer Window.

Layout|Lay Out Vertically (in Splitter) Click this menu option to lay out the selected widgets or layouts one
above the other with a splitter between each. Use Shift+Click to select each widget or layout, and then choose
this menu option to group them vertically. Note that for complex widgets it is sometimes easiest to select widgets
and layouts by clicking them in the Widgets tab of the Object Explorer Window.

Layout|Break Layout Click this menu option (or press Ctrl+B) to break a layout. Click on the layout, then select
this option; the layout is deleted.

Layout|Add Spacer Click this menu option to add a vertical or horizontal spacer to widgets that take up too
much space on the form. The spacer consumes extra space in the layout.

See also The Layout Toolbar Buttons.

Preview Eorm Cirl+T

. in Windows Style
. i MAotif Style
. in CDE Style
... In MotiPlus Style
... in Platinum Style
. in 3G Style

The Preview Menu

The Preview Menu

This menu is invoked with Alt+P, and provides the following options:

e Preview|Preview Form Click this menu option (or press Ctrl+T) to preview the form within Qt Designer.

e Preview|...in Windows Style Click this menu option to preview the form in the Windows style.
e Preview|...in Motif Style Click this menu option to preview the form in the Motif style.

e Preview|...in CDE Style Click this menu option to preview the form in the CDE style.

e Preview|...in MotifPlus Style Click this menu option to preview the form in the MotifPlus style.
e Preview|...in Platinum Style Click this menu option to preview the form in the Platinum style.

e Preview|...in SGI Style Click this menu option to preview the form in the SGI style.

Reference: Menu Options 85

Close All

Mext Ctrl+FE
Previous Cirl+3hift+F&
Tile

Cascade

Wiews 4
Toolbars 4

1 hulticlipForm

|T 2 Farmi

The Window Menu

The Window Menu

This menu is invoked with Alt+W, and provides the following options:

¢ Window| Close Click this menu option (or press Ctrl+F4) to close the window that is currently active.
¢ Window|Close All Click this menu option to close all the windows that are currently open.

e Window|Next Click this menu option (or press Ctrl+F6) to make the next window active. The order is the order
in which the windows were opened.

e Window|Previous Click this menu option (or press Ctrl+Shift+F6) to make the previous window active. The
order is the order in which the windows were opened.

e Window|Tile Click this menu option to arrange all the open files and forms side by side so that each window is
visible.

¢ Window|Cascade Click this menu option to stack all the open file and forms, one on top of the other, but with
an overlap so that each window’s title bar is visible.

¢ Window|Views|File Overview Click this menu option to make the File Overview Window visible, or to hide it if
it is already visible. If the window is currently visible, a check mark will appear next to the name in the menu.

e Window|Views | Property Editor/Signal Handlers Click this menu option to make the Property Editor/Signal
Handlers Window visible, or to hide it if it is already visible. If the window is currently visible, a check mark will
appear next to the name in the menu.

¢ Window|Views| Object Explorer Click this menu option to make the Object Explorer Window visible, or to hide
it if it is already visible. If the window is currently visible, a check mark will appear next to the name in the
menu.

¢ Window|Views|Line Up Click this menu option to eliminate any extra space between toolbars and line them up
next to each other all at once, rather than moving each individual toolbar into place.

¢ Window|Toolbars|File Click this menu option to make the File toolbar buttons visible, or to hide them if they
are already visible. If the toolbar buttons are currently visible, a check mark will appear next to the name in the
mentu.

¢ Window|Toolbars|Edit Click this menu option to make the Edit toolbar buttons visible, or to hide them if they
are already visible. If the toolbar buttons are currently visible, a check mark will appear next to the name in the
menu.

¢ Window|Toolbars|Search Click this menu option to make the Search toolbar buttons visible, or to hide them if
they are already visible. if the toolbar buttons are currently visible, a check mark will appear next to the name in
the menu.

Reference: Menu Options 86

e Window|Toolbars|Layout Click this menu option to make the Layout toolbar buttons visible, or to hide them if
they are already visible. If the toolbar buttons are currently visible, a check mark will appear next to the name in
the menu.

e Window|Toolbars|Tools Click this menu option to make the Tools toolbar buttons visible, or to hide them if
they are already visible. If the toolbar buttons are currently visible, a check mark will appear next to the name in
the menu.

¢ Window|Toolbars|Buttons Click this menu option to make the Buttons toolbar buttons visible, or to hide them
if they are already visible. If the toolbar buttons are currently visible, a check mark will appear next to the name
in the menu.

¢ Window|Toolbars|Containers Click this menu option to make the Containers toolbar buttons visible, or to hide
them if they are already visible. If the toolbar buttons are currently visible, a check mark will appear next to the
name in the menu.

¢ Window|Toolbars|Views Click this menu option to make the Views toolbar buttons visible, or to hide them if
they are already visible. If the toolbar buttons are currently visible, a check mark will appear next to the name in
the menu.

¢ Window|Toolbars|Database Click this menu option to make the Database toolbar buttons visible, or to hide
them if they are already visible. If the toolbar buttons are currently visible, a check mark will appear next to the
name in the menu.

e Window|Toolbars|Input Click this menu option to make the Input toolbar buttons visible, or to hide them if
they are already visible. If the toolbar buttons are currently visible, a check mark will appear next to the name in
the menu.

¢ Window|Toolbars|Display Click this menu option to make the Display toolbar buttons visible, or to hide them
if they are already visible. If the toolbar buttons are currently visible, a check mark will appear next to the name
in the menu.

¢ Window|Toolbars|Custom Click this menu option to make the Custom toolbar buttons visible, or to hide them
if they are already visible. If the toolbar buttons are currently visible, a check mark will appear next to the name
in the menu.

¢ Window|Toolbars|Help Click this menu option to make the Help toolbar buttons visible, or to hide them if they
are already visible. If the toolbar buttons are currently visible, a check mark will appear next to the name in the
menu.

¢ Window|Toolbars|Line Up Click this menu option to eliminate extra space between toolbars and line them up
next to each other all at once, rather than moving each individual toolbar into place.

¢ Window|n Click one of the numbered menu options that list the currently open files and forms to switch to the
named file or form.

Contents
hdanual Ctrl+h4

About...
Ahout Git..,
K? What's This? Shift+F 1

The Help Menu

The Help Menu

This menu is invoked with Alt+H, and provides the following options:

Reference: Menu Options 87

e Help| Contents Click this menu option (or press F1) to invoke the Qt Assistant application which provides on-line
help. The on-line help is context sensitive, so you can type the item you want more information about in the line
edit and Qt Assistant will automatically find it if it is available.

e Help|Manual Click this menu option (or press Ctrl+M) to invoke the Qt Assistant application which opens
showing this manual.

e Help|About... Click this menu option to invoke the About Qt Designer dialog which gives the version number
and some licensing information.

e Help|About Qt... Click this menu option to invoke a dialog which provides information about Qt.

¢ Help|What’s This? Click this menu option to invoke a small question mark that is attached to the mouse pointer.
Click on a feature which you would like more information about. A popup box appears with information about
the feature.

See also The Help Toolbar Button.

Reference: Toolbar Buttons

Introduction

Qt Designer’s toolbar buttons provide fast access to common functionality.

Toolbar buttons are grouped in several toolbars. Toolbars have a handle at the left hand side which can be clicked to
minimize the toolbar. Toolbars that have been minimized have their handle appear just under the menu bar; click the
handle to restore the toolbar to the last position it occupied. You can drag a toolbar’s handle to move the toolbar to a
different position in the toolbar area. Toolbars can be dragged out of the toolbar area entirely and made into stand-
alone tool dock windows. To hide a tool dock window click its close button. To restore a hidden tool dock window,
right click the tool area, then click the name of the tool dock window you wish to restore.

D ﬁ; I multiclip vl

File Toolbuttons

The File Toolbar Buttons

e New Click this toolbar button (or press Ctrl+N) to create a new project, form or file. This option invokes the
New File Dialog.

e Open Click this toolbar button (or press Ctrl+0) to open existing projects, forms or files. This button invokes
the File Open Dialog which is used to select files.

e Save Click this toolbar button (or press Ctrl+S) to save the project, forms and files. For a new project that has
no forms or files, click ’Save’ to save the project before exiting. For new forms, click ’Save’ and the Save Form As
Dialog appears.

e Active Project Click the combobox to view the names of the projects that are currently open and select a project
name to toggle between the projects.

EEIFEY.

Edit Toolbuttons

The Edit Toolbar Buttons

e Undo Click this toolbar button (or press Ctrl+Z) to undo an action. The name of the last action that was
performed appears after the word 'Undo’ in this toolbar button’s tooltip.

88

Reference: Toolbar Buttons 89

e Redo Click this toolbar button (or press Ctrl+Y) to redo an action. The name of the last action that was performed
appears after the word 'Redo’ in this toolbar button’s tooltip.

e Cut Click this toolbar button (or press Ctrl+X) to delete the selected item from the current form or file and copy
it to the clipboard.

e Copy Click this toolbar button (or press Ctrl+C) to copy the selected item from the current form or file to the
clipboard.

e Paste Click this toolbar button (or press Ctrl+V) to paste the selected item (if any) from the clipboard into the
current form or file.

[Tn—

Search Toolbuttons

The Search Toolbar Buttons

e Find Click this toolbar button (or press Ctrl+F) to invoke the Find Text Dialog.

¢ Find Incremental Click this toolbar button (or press Alt+1I) to place the cursor in the text box located next to the
Find toolbar button. Type characters into the text box; as you type, Qt Designer will highlight the first occurrence
of the text that it finds in the file. Press the Enter key to go to the next occurrence of the text. Press the Esc key
once you have found the word you are looking for to place the cursor in the editor.

The Tools Toolbar Buttons

If you want to add the same kind of widget several times to a form, for example, several push buttons, double click the
widget’s toolbar button. After this, every time you click the form a new widget will be added. Click the Pointer toolbar
button to leave this mode.

Tools

Tools

e Pointer Click this toolbar button (or press F2) to de-select any selected widget toolbar button. The pointer is also
used to stop inserting new widgets if you double clicked a widget toolbar button. Press the Esc key to return to
the pointer at any time.

e Connect Signals and Slots Click this toolbar button (or press F3) to connect signals and slots. Then click on a
widget and drag the connection line to the widget (or the form) that you want to connect to. Release the mouse
button and the Edit Connections Dialog will appear.

e Tab Order Click this toolbar button (or press F4) to set the tab order for all the widgets on the form that can
accept keyboard focus. Click this toolbar button and blue circles with numbers on them appear next to the
widgets. Click the widget that you want to be first in the tab order, then click the widget that should be next in
the tab order, and continue until all the widgets have the tab order numbers you want. If you make a mistake,
double click the first widget and start again. Press Esc to leave tab order mode. If you want to revert your
changes, leave tab order mode, then undo.

Reference: Toolbar Buttons 90

EEE

Buttons

Buttons

e PushButton Click this toolbar button, then click the form, to place a Pushbutton on the form.
e ToolButton Click this toolbar button, then click the form, to place a Toolbutton on the form.

e RadioButton Click this toolbar button, then click the form, to place a Radiobutton on the form. It is recommended
that you place RadioButtons inside ButtonGroups so that Qt will automatically ensure that only one RadioButton
in the group is active at any one time.

e CheckBox Click this toolbar button, then click the form, to place a CheckBox on the form.

Contalners EX

O®0 5

Containers

Containers

GroupBox Click this toolbar button, then click the form, to place a GroupBox on the form.

ButtonGroup Click this toolbar button, then click the form, to place a ButtonGroup on the form.

Frame Click this toolbar button, then click the form, to place a Frame on the form.

TabWidget Click this toolbar button, then click the form, to place a TabWidget on the form. To add or remove
tabs, right click the tab widget and choose ’Add Page’ or 'Remove Page’.

Views

Views

e ListBox Click this toolbar button, then click the form, to place a ListBox on the form.
e ListView Click this toolbar button, then click the form, to place a ListView on the form.
e Icon View Click this toolbar button, then click the form, to place an IconView on the form.

e Table Click this toolbar button, then click the form to place a Table on the form.

[sichl=

Database Toolbuttons

Database

e DataTable Click this toolbar button, then click the form, to place a DataTable on the form.

e DataBrowser Click this toolbar button, then click the form, to place a DataBrowser on the form.

Reference: Toolbar Buttons 91

e DataView Click this toolbar button, then click the form, to place a DataView on the form.

@HAO0DEErmo

Input Toolbuttons

Input

e LineEdit Click this toolbar button, then click the form, to place a LineEdit on the form.

e SpinBox Click this toolbar button, then click the form, to place a SpinBox on the form.

e DateEdit Click this toolbar button, then click the form, to place a DateEdit on the form.

e TimeEdit Click this toolbar button, then click the form, to place a TimeEdit on the form.

e DateTimeEdit Click this toolbar button, then click the form, to place a DateTimeEdit on the form.
e TextEdit Click this toolbar button, then click the form, to place a TextEdit on the form.

e ComboBox Click this toolbar button, then click the form, to place a ComboBox on the form.

e Slider Click this toolbar button, then click the form, to place a Slider on the form.

e ScrollBar Click this toolbar button, then click the form, to place a Scrollbar on the form.

e Dial Click this toolbar button, then click the form, to place a Dial on the form.

ABRE=wE

Display Toolbuttons

Display

e TextLabel Click this toolbar button, then click the form, to place a TextLabel on the form.

PixmapLabel Click this toolbar button, then click the form, to place a PixmapLabel on the form.
LCDNumber Click this toolbar button, then click the form, to place a LCDNumber on the form.

Line Click this toolbar button, then click the form, to place a Line on the form.

ProgressBar Click this toolbar button, then click the form, to place a ProgressBar on the form.

TextBrowser Click this toolbar button, then click the form, to place a TextBrowser on the form.

]

Custom Widget Toolbutton

Custom

e My Custom Widget Click this toolbar button, then click the form, to place a Custom Widget on the form. Note:
this toolbar button only appears if you have created a custom widget using Tools | Custom | Edit Custom Widgets.

+
BT 1
+

w2 e T 3E (1

Layout Toolbuttons

Reference: Toolbar Buttons 92

The Layout Toolbar Buttons

o

Adjust Size Click this toolbar button (or press Ctrl+J) to adjust the size of the widget to it’s recommended size.

Lay Out Horizontally Click this toolbar button (or press Ctrl+H) to lay out the selected widgets or layouts side
by side. Use Shift+Click to select each widget or layout, and then choose this toolbar button to group them
horizontally. Note that for complex widgets it is sometimes easiest to select widgets and layouts by clicking them
in the Widgets tab of the Object Explorer Window.

Lay Out Vertically Click this toolbar button (or press Ctrl+L) to lay out the selected widgets one above the other.
Use Shift+Click to select each widget or layout, and then choose this toolbar button to group them vertically.
Note that for complex widgets it is sometimes easiest to select widgets and layouts by clicking them in the Widgets
tab of the Object Explorer Window.

Lay out in a Grid Click the widgets you want and then click this toolbar button (or press Ctrl+G) to lay out
widgets in a grid.

Lay Out Horizontally (in Splitter) Click this toolbar button to lay out the selected groups of widgets or layouts
side by side with a splitter between each group. Use Shift+Click to select each widget or layout, and then choose
this toolbar button to group them horizontally. Note that for complex widgets it is sometimes easiest to select
widgets and layouts by clicking them in the Widgets tab of the Object Explorer Window.

Lay Out Vertically (in Splitter) Click this toolbar button to lay out the selected groups of widgets or layouts
one above the other with a splitter between each group. Use Shift+Click to select each widget or layout, and
then choose this toolbar button to group them vertically. Note that for complex widgets it is sometimes easiest to
select widgets and layouts by clicking them in the Widgets tab of the Object Explorer Window.

Break Layout Click this toolbar button (or press Ctrl+B) to break a layout. Click on the layout and select this
option; the layout is deleted.

Add Spacer Click this toolbar button to add a spacer to widgets that take up too much space on the form. The
spacer consumes extra space in the layout.

Help Toolbutton

The Help Toolbar Button

e What’s This? Click this menu option to invoke a small question mark that is attached to the mouse pointer. Click

on a feature which you would like more information about. A message box appears with information about the
feature.

Reference: Dialogs

Introduction

This chapter describes and explains every Qt Designer dialog.

The File Dialogs

[x]

Insert Into: |<N0 Project= =

=

=

C++ Project Wyizard Yidget
lain Window Configuration Dialog with Dialog with
Dialog Buttons (Bottom) Buttons (Right)
NewTemplate Tab Dialog C++ Source File C++ Header File
C++ hain-File
{main.cpp)

Help | QK I Cancel

7

New File Dialog

New File Dialog

Click File|New (or press Ctrl+N) to invoke the New File dialog. This dialog offers four kinds of file to choose from:
C++ Project, Forms, Source files, and Main files.

The ’Insert Into’ drop-down combobox lists the open projects, defaulting to the current project. New files are added to
the project displayed in this combobox. To add a new file to a different project, choose the project you want to use in
the ’Insert Into’ combobox.

The "Dialog’ file type is highlighted by default when the New File dialog pops up. Click on the file type you want to use
and click OK to create it. Click Cancel to leave the dialog without creating a new file. Note that if you select C++
Project, the Insert Into’ combobox will be disabled, since it is not possible to insert a new C+ + Project into an existing

93

Reference: Dialogs 94

project.

C++ Project Files

Click C++ Project to start a new project. This option invokes the Project Settings Dialog. C++ projects are saved as
. pr o files, which include the information Qt Designer needs to manage projects. When you add a form to your project
in Qt Designer, it is automatically added to the FORMS section of the project file. The . pr o file contains the list of forms
(. ui files) used in the project. Qt Designer reads and writes . ui files, e.g. form.ui. The uic (user interface compiler)
creates both a header file, e.g. form.h, and an implementation file, e.g. form.cpp, from the . ui file.

Dialog Forms

Click Dialog to create a plain dialog form. Typically, this type of form is used to present the user with configuration
options, or to present related sets of choices, for example, printer setting dialogs and find and replace dialogs.

Wizard Forms

Click Wizard to create a wizard form. A wizard is a special type of input dialog that consists of a sequence of dialog
pages. A wizard’s purpose is to assist a user by automating a task by walking the user through the process step by step.
Wizards are useful for complex or infrequently occurring tasks that people may find difficult to learn or do. Initially the
wizard form consists of a single dialog page. Use the right click context menu to add additional pages and to change
page titles.

Widget Forms

Click Widget to create a form whose superclass is QWidget rather than QDialog.

Main Window Form

Click Main Window to invoke the Main Window Wizard. This wizard is used to create actions, menu options and
toolbars through which the user can invoke actions. This form is used to create typical main-window style applications.

Configuration Dialog Form

Click Configuration Dialog creates a form with a listbox on the left, and a tabwidget filling the body of the form, along
with Help, OK and Cancel buttons.

Dialog with Buttons (Bottom) Form

The Dialog with Buttons (Bottom) form is a template with default buttons at the bottom of the form.

Dialog with Buttons Form (Right)

The Dialog with Buttons (Right) form is a template with default buttons at the right of the form.

Reference: Dialogs 95

Tab Dialog Form

The Tab Dialog form has a tab widget as its central widget, along with Help, OK and Cancel buttons along the bottom.

C++ Source File

Click C++ Source File to create a new empty C+ + file. The file will automatically be added to the project when it is
saved.

C+ + Header File

Click C++ Header File to create a new empty C++ header file. The file will automatically be added to the project
when it is saved.

C+ + Main File

Click C++ Main File to invoke the Configure Main-File Dialog which will create a basic mai n. cpp file automatically.

Look [n: | =/

(bin dmnt

(boot proc

Jcdrom _droot

dew 1shin

[etc atmp

[floppy dusr

haome dvar

Cdinitrd

i

(local

[lost+found

File name: |
File type: |Designer Files (*.ui *.pra) j Cancel

File Open Dialog

File Open Dialog

Click File|Open (or pressCtrl+0) to invoke the Open dialog. Use this dialog to open existing files.

The Open dialog shows the current directory and default file type. To choose a different directory, click the 'Look In’
combobox. Choose a file and the name will appear in the 'File Name’ combobox. To choose a different file type, click
the "File Type’ combobox. Click the 'Create New Folder’ toolbar button to create a new directory. Click the ’List View’
toolbar button to view folders and files in a list with only the names showing. Click the 'Details’ toolbar button to view
the folders and file names along with their size, type, date, and attributes. Click the Size, Type, Date, or Attributes
column headers to sort the folders or files.

Click Open to open the selected file. Click Cancel to leave the dialog without opening a new file.

Note: For Windows, the System File Dialogs are used.

Reference: Dialogs 96

ave form "Form1™ as ...

Look in: |JIhomea’monicaftestfmulticlipi

3.

Llimages

[multiclip.ui

[multiclipform.ui

File name: |m\/f0rm‘ui
File type: |@t User-Interface Files (*.ui) j Cancel

7|

Save As

Save As

Click File|Save As to invoke the Save As dialog. Use this dialog to save files to a directory.

The Save As dialog shows the current directory and default file type. To choose a different directory, click the 'Look In’
combobox. Choose a file and the name will appear in the 'File Name’ combobox. To choose a different file type, click
the ’File Type’combobox. Click the 'Create New Folder’ toolbar button to create a new directory. Click the ’'List View’
toolbar button to view folders and files in a list with only the names showing. Click the 'Details’ toolbar button to view
the folders and file names along with their size, type, date, and attributes. Click the Size, Type, Date, or Attributes
column headers to sort the folders or files.

Click Save to save the selected file. Click Cancel to leave the dialog without saving the file.

Note: For Windows, the System File Dialogs are used.

[x]

Template MName: |I\IewTempIate

Baseclass for Template: |Gvidget =
GDialog

GGEroupBox

QFrame

iizard
QDesigneryizard
GlayoutVWidget

GiSplitter |

Create | Cancel |

7

Create Template

Create Template Dialog

Click File|Create Template to invoke the Create Template dialog. Use this dialog to create templates.

The 'Template Name’ line edit defaults to 'New Template’. To change the name to a different name, type it in the line
edit. Click the ‘Baseclass for Template’ scroll bar to choose a base class for the template.

Click Create to create the template. Click Cancel to leave the dialog without creating a template.

If you create a template it will appear in the New File Dialog. Templates are useful when you have to produce a large

Reference: Dialogs 97

number of similar forms, or where you want to ’brand’ your forms.

The Edit Dialogs

Access
i-c\ippingChanged(const QString & clipping) void virtual public
i-copyPrevious() wvoid virtual public
i-dataChanged() wvoid virtual public
i-de\eteCIipping() wvoid virtual public
B i) void virtual public
:—,—.n\nn&-lnnf‘hnnnn.“\ vindAl bk ald ol lia hlm LI

Mew Slot | Delete S\otl

r =lot Properties

Slot: |addC\ipping() Beturn type: Iuoid
Specifier: | virtual 'l Access: Ipublic 'l
Help | ak Cancel |

7|

Edit Slots

Edit Slots Dialog

Click Edit|Slots to invoke the Edit Slots dialog. Use this dialog to edit or create slots which are used in conjunction
with signals to provide communication between objects.

When this dialog is invoked, all existing slots are shown in the ’Slot’ listbox. The column headers Slot, Type, Specifier,
Access, and In-Use provide details about each slot that is listed. Click on any of the column headers to sort the slots.
To create a new slot, click the New Slot button. The new slot has a default name that you should replace by typing
the new name in the ’Slot’ line edit. The 'Return Type’ is also a default that can be changed by typing in the line edit.
To change the Specifier’ or ’Access’, click the combobox and choose the required specifier or access. To remove a slot,
click the slot you want to delete, and then click the Delete Slot button.

Click OK to save all changes made to slots. Click Cancel to leave the dialog without making any changes to slots.

[x]

Edit... |
Disconnect |

Receiver

- addPushButton clicked() kulticlipForm
@ copyPushButton clicked() MulticlipForm copyPrevious()
@ deletePushButton clicked() MulticlipForm deleteClipping()
@ quitFushButton clicked() MulticlipForm accepti)

addClippingr)

Close |

View Connections

Reference: Dialogs 98

View Connections Dialog

Click Edit|Connections to invoke the View Connections dialog. This dialog displays the current signals and slots
connections.

When this dialog is invoked, all existing connections are shown in the listbox. The column headers Sender, Signal,
Receiver, and Slot provide details about each connection. Click the column headers to sort the connections. To remove
a connection from the listbox, click the connection you want to disconnect and then click Disconnect. To edit a
connection, click the Edit... button to invoke the Edit Connections Dialog.

Changes made in this dialog take immediate effect. Click the Close button to leave the dialog.

Form Settinas

r Settings

Class MName:

Comment:

Author:
r Pimaps Layouts

& Save Inline Default hMargin: |11 33
¢ Use Function: | Default Spacing: IE e
" Project Imagefile

Help | Ok | Cancel |

)

| L

Form Settings

Form Settings Dialog

Click Edit|Form Settings to invoke the Form Settings dialog. Use this dialog to save the form’s settings, pixmap, and
layout properties.

Settings

In the Settings section, you can change or add the name of the class that will be created by typing in the ’Class Name’
line edit. Note that the default name is the form name, but it can be changed. You can also enter text to the ’‘Comment’
and ’Author’ line edits or leave them blank, since they are not required.

Pixmaps

The default (for projects) is 'Project Imagefile’. This is the recommended option. Images are handled automatically,
with Qt Designer storing the images in a subdirectory, and ui ¢ producing code that contains the images and the
necessary supporting code. Each image is stored just once, no matter how many forms it is used in.

If you do not want Qt Designer to handle the images, (or are not using a project) choose either ’Save Inline’ or "Use
Function’. ’Save Inline’ saves the pixmaps in the . ui files. The disadvantage of this approach is that it stores images in
the forms in which they’re used, meaning that images cannot be shared across forms. Click 'Use Function’ to use your

Reference: Dialogs 99

own icon-loader function for loading pixmaps. Type the function’s name (with no signature) in the 'Use Function’ line
edit. This function will be used in the generated code for loading pixmaps. Your function will be called with the text
you put in the pixmap property (e.g. the image name) whenever an image is required.

Layouts
Click the 'Default Margin’ spinbox or the 'Default Spacing’ spinbox to change the default layout of the current form.
Click OK to accept changes to the form settings. Click Cancel to leave the dialog without making any changes.

Preferences Dialog

Click Edit | Preferences to invoke the Preferences dialog. This dialog has a tab for ’General’ preferences. If you have the
C+ + Editor plugin, the dialog will also have a tab for the C++ Editor.

[x]
’ | c++ Editor |
r Background ¥ Show Grid
 Color l:ll rGld ———
& Pixmap -l ¥ Snap to Grid
Grid-x; |1D 3:
Grid-Y" 10 =
— General — Toolbars
¥ Restore Last Workspace on Startup I Show Text Labels

™ Show Splash Screen on Startup

¥ Disable Database Auto—Edit in Preview
Documentation Path:

[$aTCIRdoc/htrml [d

Help | QK I Cancel

Preferences- General Tab

General Tab

The ’General’ tab has sections for Background, Grid, General, and Toolbars.

The Background section defaults to 'Pixmap’. To change the default, click the Select a Pixmap button next to the
"Pixmap’ radio button to invoke the Choose a Pixmap... Dialog. Click the 'Color’ radio button to change the background
to a color instead of a pixmap. Click the Choose a Color button located to the right of the ’Color’ radio button to
invoke the Select Color Dialog.

The ’General’ section of the General tab has three checkboxes that are checked by default. Click the 'Restore last
workspace on startup’ checkbox to save the size and positions of the windows and toolbars of Qt Designer. The next
time you start up Qt Designer, the windows and toolbars are restored to their last positions. Click the ’Show Splash
Screen on startup’ checkbox to display the Qt Designer splash screen when you start up the application. Click the
'Disable Database Auto-Edit in Preview’ checkbox to disable the ability to update or delete data in the database to
which you are connected when working with database widgets. To change the path Qt Designer uses to find it’s online
documentation, click the 'Documentation Path’ line edit and type a new path. It would be unlikely to have to change
this path. Another way to change the path is to click the (ellipsis) button located to the right of the line edit. This
invokes the Find Directory Dialog.

Reference: Dialogs 100

The *Grid’ section has options for customizing the grid on the form. The ’Show Grid’ checkbox located above the ’Grid’
section is checked by default. Developers using Qt Designer almost always use Qt’s layouts to design their forms and
rarely make any use of the grid. The grid is provided for the rare occasions when a form is created using widgets with
fixed sizes and positions. When ’Show Grid’ is checked, you can customize the grid’s appearance. When it is unchecked,
the ’Grid’ section is disabled. The ’Snap to Grid’ checkbox is also checked by default. When it is checked, widgets are
placed on a dot (snap to the grid) using the X|Y resolution. When it is unchecked, the ’Grid-X’ and ’Grid-Y’ spin boxes
are disabled. Click the ’Grid X’ and ’Grid Y’ spinboxes to customize the grid settings for all forms.

The "Toolbars’ section has a ’Show Text Labels’ checkbox. Click the checkbox to display the text labels for each icon
shown in the Qt Designer toolbar.

r 3yntax Highlighting
Element:

| <] Eamily: |times |

Sizer |1 e
" Bold

Keyword)

Preprocessor | ke ltalio

Preview: ™ Underline

\Some Text Color: .

r Options
I Word Wrap ¥ Parentheses Matching

I Completion

Help | oK Cancel

Preferences- C++ Editor Tab

C+ + Editor Tab

The C+ + Editor tab provides options for customizing the editor. The ’Syntax Highlighting’ section lets you change the
way the syntax is viewed in the editor. Click the ’Element’ listbox and choose an element. Click the 'Family’ listbox to
change the font style for that element. Click the ’Size’ spinbox to choose a font size. You can change the font to Bold,
Italic, or Underline by clicking the corresponding checkbox. Note, that all the fonts used derive from the ’Standard’
element, so if you want to change the font used for everything, change the ’Standard’ element. Click the Color button
to invoke the Select Color Dialog. As you make changes to each element, you can view the changes in the 'Preview’ line
edit.

The ’Options’ section has the Wordwrap, Completion, and Parentheses Matching checkboxes checked by default. Click
the checkboxes to de-select them.

Click OK to accept changes to Preferences dialog. Click Cancel to leave the dialog without making any changes.

Reference: Dialogs 101

The Project Dialogs

i

Look [n: | 4 /home/

5

limages

[multiclip.ui

[multiclipform.ui

File name: |
File type: |@t User-Interface Files (*.ui) =l Cancel

7

Add Dialog

Add Dialog

Click Project|Add File to invoke the Add dialog. Use this dialog to add files to the current project.

The Add dialog defaults the directory and file type. To choose a different directory, click the Look In’ combobox.
Choose a file and the name will appear in the 'File Name’ combobox. To choose a different file type, click the ’File Type’
combobox. Click the 'Create New Folder’ toolbar button to create a new directory. Click the "List View’ toolbar button
to view folders and files in a list with only the names showing. Click the 'Details’ toolbar button to view the folders and
file names along with their size, type, date, and attributes. Click the Size, Type, Date, or Attributes column headers to
sort the folders or files.

Click Open to open the selected file. Click Cancel to leave the dialog without opening a file.

[x @ - Manaage Image Collection iz

& O & B

editcut editpaste filenew fileopen filesave

@ ™ 0O B
print redo searchfind texthold.png textcenter.png

1 u X

textitalic.png textlefpng textrightpng textunderpng undo

Add.. | Delere |

Manage Image Collection

Image Collection Dialog
Click Project|Image Collection to invoke the Manage Image Collection Dialog. Use this dialog to view the project’s
images, add new images, or delete images.

To add an image, click the Add button to invoke the Choose Images... Dialog. To delete an image from from the
iconview, click the image and then click the Delete button.

Reference: Dialogs 102

Changes made to the image collection are applied immediately. Click the Close button to leave the dialog.

Edit Database Connections
(default) “l — Connection
Delete Connectionl Name: ICU””EC“U”Z
Driver I vl
Database Mame: I
Username: |
Password: I
Hostname: I
Part |Defau\t 3:
_Connect |
Help | Close |

2

Edit Database Connections

Edit Database Connections Dialog

Click Project|Database Connections to invoke the Edit Database Connections Dialog. Use this dialog to connect your
project to a database or to edit the current connections.

Click New Connection to create a new database connection. For applications that use a single database it will probably
be most convenient to use the default connection name of ’(default)’. If you use more than one database then each
one must be given a unique name. A driver must be chosen from the Driver combo box. The database name may
be available in the Database Name combo box or may have to be typed in. The database name, username, password
and hostname should be provided by your database system administrator. When the Connection information has been
completed click Connect. If the connection is made the connection name will appear in the list box on the left hand
side of the dialog.

To remove a connection, click the connection in the listbox and then click the Delete Connection button.

Click Close to leave the Database Connections dialog.

Project Settings Dialog

Click Project|Project Settings to invoke the Project Settings Dialog. Use this dialog to make changes to the project
settings.

Proiect Settinas

Settings | Files |C++ |

Project File: |fh0mefmonica.-ftestfmu\ticlipfmulticlip.pro J
Language | J
Description:

Help | QK Cancel

Reference: Dialogs 103

Project Settings- Settings Tab

Settings Tab

The ’Settings’ tab shows information about the project. The Project File line edit defaults the project name. To change
the name, type a new name in the line edit. To save the project, click the (ellipsis) button located next to Project File
to invoke the Save As Dialog. The 'Language’ combobox is disabled. Click the 'Description’ line edit if you want to add
additional information about the project.

Project Settinas =

Settings | Files |C++ |

Database File: |multiclip.db J

Help | QK Cancel

Project Settings- Files Tab

Files Tab

Click the ’Files’ tab to enter a name in the ’Database File’ line edit. Click the (ellipsis) button to invoke the Save As
Dialog.

Settings | Eiles |C++ |

Template: app -

Config: |(a||) j Itham_on release
Libs: faly =]
Defines: |(a||) -l
Includepath: |(al|) j |

Help | QK Cancel

Project Settings- C++ Tab

C++ Tab

Click the C++ Tab to change the gmake options. See the qmake documentation for details on what these options
mean. Click the "Template’ combobox and choose application or library to create makefiles for building applications
or libraries. Click the ’Config’ combobox to select the project configuration and compiler options for all platforms, or
specific platforms. Type the Config value in the line edit. Click the ’Libs’ combobox to select a platform. Type the
libraries in the line edit. Click the 'Defines’ combobox and select a platform. ’Defines’ values are added as compiler

Reference: Dialogs 104

pre-processor macros. Type the 'Defines’ values in the line edit. Click the 'Includepath’ combobox to select a platform.
Includepath specifies the directories that should be searched for include files when compiling the project. Type the
‘Includepath’ values in the line edit.

Cick OK to accept changes to the project settings. Click Cancel to exit the dialog without making any changes to the
project settings.

The Search Dialogs

- Find Text

Eind: | =
Qptions —— — Direction —
[~ Whole words only & Fonvard

[T Case sensitive ¢ Backward

v Start at Beginning

Eind I Close

Find Text

Find Text Dialog

Click Search|Find (or press Ctrl+F) to invoke the Find Text Dialog. Use this dialog to find specific text in a project
file.

To find the text you want in a file, type the text in the ’Find’ combobox. You can make the search more specific by
checking any or all of the checkboxes in the ’Options’ section. Click the 'Whole words only’ checkbox to narrow the
search to whole words. Click ’Case Sensitive’ to search for text that is identical to the text typed in the combobox. Click
"Start at Beginning’ to start the search from the beginning of the file. The 'Direction’ section offers the 'Forward’ radio
button and the 'Backward’ radio button to specify the direction to perform the search in the file. Click the Find button
to start the search. When the text is found, it is highlighted in the file. Continue clicking Find to search for subsequent
occurrences of the search text.

Click the Close button to leave the dialog.

End | =
Replace | j
Qptions ——— — Direction —

™ Whole words onky & Fonvard
[Case sensitive ¢ Backward

¥ Start at Beginning

Beplace I Feplace All Close

Replace Text

Replace Text Dialog

Click Search|Replace (or press Ctrl+R) to invoke the Replace Text Dialog. Use this dialog to replace text in a project
file.

Reference: Dialogs 105

To replace text, type the text you would like to replace in the '’Find’ combobox. Type the new text in the 'Replace’
combobox. You can make the search more specific by checking any or all of the checkboxes in the ’Options’ section.
Click the 'Whole words only’ checkbox to narrow the search to whole words. Click ’Case Sensitive’ to search for text
that identical to the text you typed in the combobox. Click 'Start at Beginning’ to start the search from the beginning
of the file. The ’Direction’ section offers the 'Forward’ radio button and the 'Backward’ radio button to specify the
direction to perform the search in the file.

Click the Replace button to search and replace the text. When the text is found, it is highlighted in the file. Continue
clicking Replace button to search and replace each occurrence of the text in the file. Click Replace All button to replace
all occurences of the search text in the file at once.

Click the Close button to leave the dialog.

© Goto Line

Hoto | Close |

Goto Line

Goto Line Dialog

Click Search|Goto line (or press Alt+G) to invoke the Goto Line Dialog. Use this dialog to go to a specific line in the
file.

To choose a line number, type the number in the "Line’ spinbox, or click the up and down arrows in the spinbox. Click
the Goto button. The cursor is placed at the beginning of the line in the file.

Click the Close button to leave the dialog.

The Help Dialogs

Qt Designer Dialog

Click Help|About... to invoke the Qt Designer Dialog. This dialog provides information about Qt Designer such as the
version, the licensing terms, conditions, and disclaimers.

Click the ’x’ located at the top right corner of the dialog to close the dialog.

Qt Designer Dialog

Click Help| About Qt... to invoke the Qt Designer Dialog. This dialog provides information about Qt.

Click the ’x’ located at the title of the dialog to close the dialog.

Reference: Dialogs 106

© Configure kain-File

Filename: main.c Dp

hain—-Form:

Help | QK. I Cance\l

Configure Main-File Dialog

Configure Main-File Dialog

Click File |New| C++ Main-File to invoke the Configure Main-File dialog. Use this dialog to configure the main file and
its forms.

To change the default file name, type it in the 'Filename’ line edit. Choose the form to use as the application’s main
form from the line edit by clicking it.

Click OK to accept the configurations and Qt Designer will create a default mai n. cpp file. Click Cancel to leave the
dialog.

Note for database programmers: If you create a main.cpp file using Qt Designer, this file will not include the
creat eConnections() function. We do not include this function because it needs the username and password for
the database connection, and you may prefer to handle these differently from our simple example function. As a result,
applications that preview correctly in Qt Designer will not run unless you implement your own database connections
function.

[x]

Save Project Settings

Save Project Settings Dialog

The Save Project Settings message box is invoked by clicking File| Close or File |Exit for an open project with unsaved
changes. The dialog displays the text 'Save changes to your project.pro’?. Click Yes to save the changes. If the project
has any forms with unsaved changes, the Save Form As dialog is invoked when you click Yes. Click No to close the
project without saving any changes. Click Cancel to leave the dialog without closing the project and without making
any changes.

=]
& Save changes to the form “unnamed1.ui’?

Mo Cancel

Reference: Dialogs 107

Save Form

Save Form Dialog

The Save Form message is invoked in several ways. One way is to click File| Close for a form that has never been saved,
or has been saved previously but has had changes made to it. The dialog is also invoked by clicking File|Exit for a
form that has never been saved, or has been saved previously but has had changes made to it. The dialog displays
’Save Changes to the Form?’. Click Yes to save the form. If the form has not been previously saved, the Save Form As
Dialog is invoked. Click No to close the form without saving any changes or without saving the form if it has not been
saved previously. Click Cancel to leave the dialog without closing or exiting the form and without saving the form.

[x] Save form "Form1” as
Look in: |JIhomea’monicaftestfmulticlipi j ﬁll_ =
3.
Llimages
[multiclip.ui

[multiclipform.ui

File name: |m\/f0rm‘ui
File type: |@t User-Interface Files (*.ui) j Cancel

7|

Save Form As Dialog

Save Form As Dialog

The Save Form As dialog is invoked in three different ways. One way is to click File|Save for a form in a project that
has never saved. Another way to invoke the dialog is by clicking File|Close for a form that has not been previously
saved and has had changes made to it. The third way to invoke the dialog is by clicking File | Exit for a form that has
not been saved previously or that has been saved but has had changes made to it. File|Close and File | Exit invoke the
Save Form Dialog. Click Yes to invoke the Save Form As dialog.

The Save Form As dialog shows the current directory and the default file type. To choose a different directory, click
the Look In’ combobox. Choose a file and the name will appear in the 'File Name’ combobox. To choose a different
file type, click the 'File Type’combobox. Click the ’Create New Folder’ toolbar button to create a new directory. Click
the ’List View’ toolbar button to view folders and files in a list with only the names showing. Click the 'Details’ toolbar
button to view the folders and file names along with their size, type, date, and attributes. Click the Size, Type, Date, or
Attributes column headers to sort the folders or files.

Click Save to save the selected form. Click Cancel to leave the dialog without saving the form.

Reference: Dialogs

" Edit Connections

Signals [addPushButton): Slots: |MulticlipF0rm j

close() =
execi)
accept()
toggledibool) reject()
stateChangediint) init{)
dataChanged()

Connections:

|Sender v |Signal |Receiuer |Slot
haddPushButton clicked() MulticlipF orm addClipping()

Help | QK

[caes |
Edit Slots |

Qisconnectl

Cancel

Edit Connections

Edit Connections Dialog

Invoke the Edit Connections dialog to modify connections between signals and slots.

108

The top left hand listbox displays the Signals that the widget can emit. The top right combobox lists the form and its
widgets. Beneath the combobox is the ’Slots’ listbox which shows the slots available in the form or widget displayed in
the ’Slots’ combobox which are compatible with the highlighted signal. To connect a signal to a slot, choose a signal
from the ’Signals’ listbox by clicking on it. Then choose a form or widget from the ’Slots’ combobox. Choose a slot
for the widget or form you select from the listbox. The Connect button will flash and the new connection will appear
in the ’Connections’ listbox, along with any existing connections. Click the column headers Sender, Signal, Receiver,
or Slot to sort the connections. To disconnect an existing connection, choose the connection from the ’Connections’

listbox and click the Disconnect button. Click Edit Slots to invoke the Edit Slots Dialog.

Click OK to accept changes to the connections. Click Cancel to leave the dialog without making changes to the

connections.

Look n: |Ja’humefmonicaftestfmulticlip!

[x] Find Directory

.
limages

File name: |
File type: | J Cancel

7

Find Directory

Reference: Dialogs 109

Find Directory Dialog

Invoke this dialog to locate a directory.

The Find Directory dialog shows the current directory and the default file type. To choose a different directory, click
the "Look In’ combobox. Choose a file and the name will appear in the 'File Name’ combobox. To choose a different
file type, click the ’File Type’ combobox. Click the ’Create New Folder’ toolbar button to create a new directory. Click
the ’List View’ toolbar button to view folders and files in a list with only the names showing. Click the ’Details’ toolbar
button to view the folders and file names along with their size, type, date, and attributes. Click the Size, Type, Date, or
Attributes column headers to sort the folders or files.

Click OK to accept the directory. Click Cancel to leave the dialog without choosing a directory.

“ Choose a Pixmap...

Look in: |JIhomea’monicaftestfmulticlipi

(3.
Llimages

File narme: |

File type: |AH Pixmaps (*‘bmp;*.pbm;*.pgm;*.png;*.ppm;*.xbm;*.xpm;:j Cancel

Z|

Choose a Pixmap

Choose a Pixmap Dialog

Invoke this dialog to select a pixmap to use in the current project.

The Choose a Pixmap dialog shows the current directory and the default file type. To choose a different directory, click
the "Look In’ combobox. Choose a file and the name will appear in the 'File Name’ combobox. To choose a different
file type, click the ’File Type’combobox. Click the ’Create New Folder’ toolbar button to create a new directory. Click
the ’List View’ toolbar button to view folders and files in a list with only the names showing. Click the ’Details’ toolbar
button to view the folders and file names along with their size, type, date, and attributes. Click the Size, Type, Date, or
Attributes column headers to sort the folders or files. View a sample of the pixmap file you select in the preview box
located on the right side of the dialog.

Click OK to accept the pixmap file. Click Cancel to leave the dialog without choosing a pixmabp file.

Edit Custom Widgets Dialog

Invoke this dialog by clicking Tools | Custom | Edit Custom Widgets. Use this dialog to create custom widgets.

Custom widgets are created in code. They may contain a combination of existing widgets but with additional func-
tionality, slots and signals, or they may be written from scratch, or a mixture of both. A custom widget is often a
specialization (subclass) of another widget or a combination of widgets working together or a blend of both these
approaches. If you simply want a collection of widgets in a particular configuration it is easiest to create them, select

Reference: Dialogs 110

them as a group, and copy and paste them as required within Qt Designer. Custom widgets are generally created when
you need to add new functionality to existing widgets or groups of widgets. To add create a new widget, click the New
Widget button. You will find more information about adding new widgets in the 'Definitions Section’. To load a file
which contains descriptions of custom widgets, click the Load Descriptions button. Clicking this button invokes the
Open Dialog. To save the descriptions of the listed custom widgets, click the Save Descriptions button, which invokes
the Save As Dialog. To delete a widget, click the widget in the listbox and then click the Delete Widget button.

Click Close to leave the Edit Custom Widgets dialog.

Edit Custom Widqets

, MNew Widget Definition ISignaIs | Slots | Properties |
Delete \Widget | Class: II\a’IyCusmmWidget

Headerfile: |mywidgeth] |Local -l
Fizma: _|
Size Hint: [~ -1 |
Size Policy IPreferred j |Preferred j

M Container Widget

Load Descriptions.‘.l

4 || Save Descriptions...l

Help | Close |

Edit Custom Widgets- Definition Tab

The Definition Tab

To create a custom widget, click New Widget. Click the Definition tab if you are not already there. You should change
the ’Class’ name from 'MyCustomWidget’ to a unique name by typing in the line edit. Type in the 'Headerfile’ line edit
to change the name or type the name of a header file you want to use. To search for a saved header file in a directory,
click the (ellipsis) button to the right of the Headerfile line edit to invoke the Open Dialog. Click the ’Select Access’
combobox to choose how the file will be included. Global include files will be included using angle brackets (<>).
Local files will be included using quotation marks. If you have a pixmap that you want to use to identify your widget on
the toolbar, click the (ellipsis) button to the right of the 'Pixmap’ label. This invokes the Choose a Pixmap Dialog. Click
the ’Size Hint’ spin boxes to select the recommended size for the widget. If you do not want to have a recommended
size, enter -1/-1 in the spinboxes. Click the ’Size Policy’ comboboxes to select the vertical size properties of the widget.
Click the ’Container Widget’ checkbox if the custom widget you are creating should be able to contain other widgets
(children).

Reference: Dialogs 111

" Edit Custom Widqets

Mew Widget Definition Signals I Slots | Properties
Delete Widget |

Load Descriptions.‘.l Mew S|gna|| Delete S|gnal|

Signal: |signal()

4 || Save Descriptions...l

Help | Close |

22

Edit Custom Widgets- Signals Tab

The Signals Tab

Click the Signals tab to view a list of all the signals the selected custom widget can emit. To add a new signal, click
the New Signal button. Click the ’Signal’ line edit and provide an argument for the signal and give the signal a unique
name. To delete a signal from the listbox, click the signal to choose it and then click the Delete Signal button.

Edit Custom Widaets

Mew Widget Definition | Signals ‘ Slots IEmperties |

Delete \Widget | Slot |Access |

Load Descriptions.‘.l Y e | |
. Slot: | Access: I I
4« | »| Sawe Descnptmns...l

Help | Close |

7

Edit Custom Widgets- Slots Tab

The Slots Tab

Click the Slots tab to view a list of all the slots for the selected custom widget. Click the ’Slot’ or ’Access’ cloumn
headers to sort the slots in the listbox. To add a slot, click the New Slot button. Click the ’Slot’ line edit and provide
an argument for the slot and give the slot a unique name. Click the ’Access’ combobox to choose between public or
protected access for your widget. To delete a slot from the listbox, click the slot and then click Delete Slot.

Reference: Dialogs 112

- Edit Custom Widqets

Mew Widget Definition | Signals | Slots | Properties
Delete \Widget |

stomWidge|

property String

LeEs Descriptions.‘.l Mew Proper‘tyl Delete Propertyl

Property MName: |pr0perty Type: |String j

4 || Save Descriptions...l

Help | Close |

22

Edit Custom Widgets- Properties Tab

The Properties Tab

Click the Properties tab to view the list of properties for the selected widget. Click the ’Property’ or 'Type’ column
headers to sort the properties in the listbox. To add a property, click the New Property button. Click the "Property
Name’ line edit if you want to change the default name of the property. Note that properties must be implemented in
the class using the property system of Qt. To choose a property type, click the "'Type’ combobox. To delete a property
from the listbox, click the property and then click the Delete Property button.

Click Close to leave the Edit Custom Widgets dialog.

Choose Images...

Look in: |JIhomea’monicaftestfmulticlipi

(3.
Llimages

File name: |
File type: |AH Pixmaps (*‘bmp;*.pbm;*.pgm;*.png;*.ppm;*.xbm;*.xpm;:j Cancel

7|

Choose Images

Choose Images Dialog

Invoke the Choose Images dialog to choose images to use in a project.

This dialog shows the current the directory and the default file type. To choose a different directory, click the ‘Look In’
combobox. Choose a file and the name will appear in the 'File Name’ combobox. To choose a different file type, click
the ’File Type’combobox. As you choose different files, you can preview the images in the window located on the right

Reference: Dialogs 113

side of the dialog. Click the ’Create New Folder’ toolbar button to create a new directory. Click the "List View’ toolbar
button to view folders and files in a list with only the names showing. Click the 'Details’ toolbar button to view the
folders and file names along with their size, type, date, and attributes. Click the Size, Type, Date, or Attributes column
headers to sort the folders or files.

Click Open to open the selected file. Click Cancel to leave the dialog without opening a file.
3|

]

an
3 0 & &
editcut editpaste filenew fileopen filesave
o O @, B £
print redo searchfind textbold.png textcenter.png

1 U)
textitalic.png textleftpng textrightpng textunderpng undo

Add. | Delete | o< | cancel

Choose an Image

Choose an Image Dialog

The Choose an Image dialog is used to choose an image to use for a widget.

To choose an image from the listbox, click the image and then click OK. To add an image, click the Add button to
invoke the Choose Images... Dialog. To delete an image, click the image in the listbox and then click the Delete button.

Click Cancel to leave the dialog without making any changes to images.

4
L [l ol el
Ll el el o
1l el el
Ll ol e e
1l ol ol
Custom colors -
e r Hug [1 Bed: poo
|—|—|—|—|—|—|—|— Sat (0 green:lﬁ

| Val 20 Blue: IE
Ok I Cancel | Add to Custom Colors |

74

Select Color

Select Color Dialog

The Select Color dialog is used to select color preferences or to create color palettes.

Choose a color from the 'Basic Colors’ section and a sample of the color will appear in the small preview box at the

Reference: Dialogs 114

bottom of the dialog. To the right of the color sample, you will see line edits that have information about the location
of the color in the color spectrum. In addition, the crosshairs in the larger color spectrum window show the location
of the color. You can also create a palette of custom colors. There are two ways to do add custom colors. Click a color
on the color spectrum window. When the color appears in the small box below the window, click the color and drag it
to one of the blank boxes in the ’Custom Color’ section of the dialog. You can also click and drag colors from the 'Basic
Colors’ section. Another way to add colors is to click the Add to Custom Colors when you have chosen a color.

Click OK to accept changes to the Select Color dialog. Click Cancel to exit the dialog without selecting a color or adding
custom colors.

r Build Palette

2-D Effects: |:|| Background: |:|| Tune F’alette...l
r Preview

Select Palette: |Active Palette j

r ButtonGroup
& RadioButton

|LineEdit

¢ RadioButton2 |C0mboBox j

 RadioButton3 ID 3: PushButton

r ButtonGroupz 4l i
¥ CheckBox1 [0;

© CheckBoxz

htf, :a’a’www.tro\ltech.comi’
EEmmEEs ... |hipdfwwwkdeorg -

Help | QK | Qancell

Edit Palette

Edit Palette Dialog

The Edit Palette dialog is used to change the palette of the current widget or form. You can use a generated palette, or
select colors for each color group and each color role. The palette can be tested with different widget layouts in the
preview section.

The ’Build Palette’ section contains three buttons to help you build the palette. Click the 3-D Effects button to invoke
the Select Color Dialog. Click the Background to invoke the Select Color Dialog. Click the Tune Palette button to invoke
the Tune Palette Dialog. Click the ’Select Palette’ combobox in the 'Preview’ section to choose a palette to preview.

Click OK to accept the changes to the palette. Click Cancel to leave the dialog without making changes to the palette.

Reference: Dialogs

Select Palette:
r Auto

W Build inactive palette from active.

¥ Build disabled palette from active.

— Central color roles
| Background =

Choose Pixmap: -|§elect Color: |:||

— 3-D shadow effects

¥ Build from button color I l

Select Color: |:||

Help |

74

QK I Cancel |
L

Tune Palette

Tune Palette Dialog

The Tune Palette dialog is used to choose options for a widget’s palette.

115

Click the ’Select Palette’ combobox to choose options for active, inactive, or disabled palettes. If you choose ’Active
Palette’, the dialog presents three categories used for designing the palette. The categories are the Auto, Central Color
Roles, and 3-D Shadow Effects. If you choose 'Inactive Palette’ or 'Disabled Palette’, all categories are disabled except
’Auto’. Click the ’Auto’ section checkboxes to build the inactive or disabled palettes from the active palette. For an
active palette, click the 'Central color roles’ combobox to select a color role for the palette. Click the Choose Pixmap
button to invoke the Choose a Pixmap Dialog. Click the Select Color button to invoke the Select Color Dialog. Check the
"Build from button color’ checkbox in the ’3-D shadow effects’ section to allow 3-D effects colors to be calculated from
the button color. Uncheck the checkbox to enable the ’Choose 3-D effect color role’ combobox. Click the combobox to

select a color role for the 3-D effects. Click the Select Color button to invoke the Select Color Dialog.

Click OK to accept changes to the palette. Click Cancel to leave the dialog without making changes to the palette.

Select Font

Helvetica [Adobe]

Helvetica [Cronyx]

Font style Size
[Mormal 11
Fixed [Jis] | 8 =
Fixed [Misc] Ohligue 3
Fixed [Sony] _I|Boid 10
Gothic

Bold Oblique
12
14 |

~ Effects
I~ Strikeout

I~ Underline

- Sample

AaBbAazz

Script

|Latin

I

Cancel

Select Font

Reference: Dialogs 116

Select Font Dialog

The Select Font dialog is used to make changes to the font size and style.

Click the ’Font’ listbox to choose a font type. The current selected type appears in the line edit above the "Font’ listbox.
Click the ’Font Style’ listbox to choose a style for the font. The choices available in the listbox are limited to the type of
font you choose. Not all fonts have all styles available. The selected style appears in the line edit above the "Font Style’
listbox. Click the ’Size’ listbox to choose a size for the font. The current selected size appears in the line edit above the
"Size’ line edit. Click the checkboxes in the ’Effects’ section to create a ’Strikeout’ or 'Underline’ effect for the selected
font. Click the ’Script’ and choose a style of writing. View your font selections and styles in the ’Sample’ listbox.

Click OK to accept changes to the font. Click Cancel to leave the dialog without making any changes to the font.

Text

Help | QK I Cancel

7

Text Dialog

Text Dialog

The Text dialog is used to type text.

Click OK to accept the text. Click Cancel to leave the dialog without saving any text.

[x]
MNew title
ButtonGroup1
QK I Cancel
I 1
Title Dialog

Title Dialog

Use this dialog to change the title of a selected widget by typing the new title in the line edit.

Click OK to accept changes to the title. Click Cancel to leave the dialog without making changes to the title.

] = itle
MNew page title

Ok I Cancel

Page Title Dialog

Reference: Dialogs 117

Page Title Dialog

Right click a tab widget on the form and select Edit Page Title to invoke the Page Title dialog. Use this dialog to change
the name of each tab in the Tab widget.

Click OK to accept new page titles. Click Cancel to leave the dialog without making any changes.

Mew Item ew ltem ltem Properties
Text: INew Item

MI Bixmap: _I _I

Apply | oK | Cancel |

7

Edit Listbox

Edit Listbox Dialog

Right click or double click a Listbox on the form and select 'Edit’ to invoke the Edit Listbox dialog. Use this dialog to
add items to the list box and to change the item’s properties.

To add an item to the listbox, click the New Item. If you want to change the default name of the item, click the *Text’
line edit in the 'Item Properties’ section and type a new name for the item. Click the Select a Pixmap to invoke the
Choose an Image Dialog. Click a pixmap and then click the Delete Pixmap button to delete the selected pixmap. To
delete an item from the listbox, click the item and then click the Delete button. To move an item up or down in the
listbox, click the Move Up or Move Down buttons. Click Apply to accept the changes.

Click Apply to accept changes to the listbox widget. Click OK to leave the dialog once the changes have been accepted.
Click Cancel to leave the dialog without saving any changes.

Edit Listview

Right click or double click a listview widget on the form and select ’Edit’ to invoke the Edit Listview dialog. Use this
dialog to add items to the listview. The Edit Listview dialog has two tabs, one for items and one for columns.

[I W L e]

Column 1 New Iterm | - Item Eroperties

Column: |0 3:
Text Mew [tem
Celete Item Pizrmag: _I _I

i

Mew Item

MNew Subitem

D

=»

ﬂl Apply | Ok I Cancel

Reference: Dialogs 118

Edit Listview- Items Tab

The Items Tab

The dialog defaults to the Items tab. Use this tab to add, change, or remove items in the listview. To add a new item,
click the New Item button. The new item is shown at the top of the listbox. To add sub-items to an existing item, click
the item and then click the New Subitem button. Click the ’Column’ spinbox to choose a column for which the item
text or pixmap will be placed. Click the 'Text’ line edit to type text for a column, or to change the name of an item or
subitem. Click a pixmap and then click the Delete Pixmap button to delete the selected pixmap. To delete an item
from the listbox, click the item and then click the Delete button. To move an item up or down within the hierarchy
level, click the Move Up or Move Down buttons. To move an item up or down one level, click the Move Left or Move
Right buttons.

- Edit Listview

tems |

N Counn | -Gl Properes -
Text: Column 1
Delete Columnl o _I _I
v Clickable
¥ Resizable

|

$ |

ﬂl Apply | OK I Cancel

Edit Listview- Columns Tab

The Columns Tab

Click this tab to change the column configuration of the listview. To add a column, click the New Column button. The
new column is shown at the top of the listbox. To change the column name, click a column in the listbox and then
click the 'Text’ line edit and type a new name. To add a pixmap, click the (ellipsis) button, which invokes the Choose
an Image Dialog. To remove a pixmap, click the Delete Pixmap button. Click the 'Clickable’ checkbox if you want the
columns to respond to mouse clicks. Click the 'Resizeable’ checkbox if you want to be able to change the column’s
width. To remove a column, click the column in the listbox and then click the Delete Column button. To move a
column up or down in the listbox, click the Move Up or the Move Down buttons.

Click Apply to accept changes to the listview widget. Click OK to leave the dialog once the changes have been accepted.
Click Cancel to leave the dialog without saving any changes.

Reference: Dialogs 119

Edit lconview

Mew ltermn | r ltem Propertes ————
Tet [Newnem

Pivmap: ﬁ il _|

ﬂl Apply | OK I Cancel

Edit Iconview

Edit Iconview

Right click or double click an iconview widget on the form and select 'Edit’ to invoke the Edit Iconview dialog. Use the
dialog to add, change, or remove items from the iconview. To add an item to the iconview, click the New Item button.
To change the name of the item, click the "Text’ line edit and type a new name. To add a pixmap, click the (ellipsis)
button, which invokes the Choose an Image Dialog. To remove a pixmap, click the Delete Pixmap button. To delete an
item from the iconview, click the item and then click the Delete Item button.

Click Apply to accept changes to the iconview widget. Click OK to leave the dialog once the changes have been
accepted. Click Cancel to leave the dialog without saving any changes.

Edit Table

Right click or double click a table widget on the form and select 'Edit’ to invoke the Edit Table dialog. Use the dialog to
add, change, or remove columns or rows from the table.

Columns IBOWS |

MNew Columnl
z

wml_n

3 Delete Column

Label: |1
Pixmap: il _|

|
_ % |
| | |

ﬂl Apply ”TI Cancel |
L

74

Edit Table- Columns Tab

Reference: Dialogs 120

The Column Tab

To add a column to the table, click the New Column button. To delete a column from the table, click the column you
want to delete from the table, or click the column number in the ’Columns’ listbox and then click the Delete Column
button. To change a column name, click the 'Label’ line edit and type the new text. To add a pixmap, click the (ellipsis)
button, which invokes the Choose an Image Dialog. To remove a pixmap from the current column of the selected item,
click the Delete Pixmap button. To move a column in the listbox, click the Move Up or Move Down buttons.

1 |2 |3 Columns | Bows |

[e Row |
. New Row

3 Delete Rowl
Label: |1
Phamap: | _. |

:.ar\:l_A

_ 2 |
&
4] | | 4|

ﬂl Apply | oK I Cancel |

7|

Edit Table- Rows Tab

The Rows Tab

To add a row to the table, click the New Row button. To delete a row from the table, click the row you want to delete
from the table, or click the row number in the 'Rows’ listbox and then click the Delete Column button. To change
a row’s name, click the row, or the row number, and then click the 'Label’ line edit and type the new text. To add a
pixmap, click the (ellipsis) button, which invokes the Choose an Image Dialog. To remove a pixmap from the current

row of the selected item, click the Delete Pixmap button. To move a row in the listbox, click the Move Up or Move
Down buttons.

Click Apply to accept changes to the table widget. Click OK to leave the dialog once the changes have been accepted.
Click Cancel to leave the dialog without saving any changes.

[- Edit Forward Declarations

Bemove |
Rename |

Close |

Edit Forward Declarations

Reference: Dialogs 121

Edit Forward Declarations Dialog

From the Source tab in the Object Explorer Window, right click the "Forward Declarations’ folder and select ’Edit’ from
the context menu to invoke the Edit Forward Declarations dialog. Use this dialog to add, edit, or remove declarations
in the source code.

To add a new declaration, click the Add button. A line edit will appear for you to type the declaration. Press Enter after
you have typed the declaration. To delete a declaration from the listbox, click the declaration and then click Remove.
To rename an existing declaration, click the declaration and then click Rename. The cursor will appear in the line edit,
allowing you to change the name.

Click Close to leave the Edit Forward Declarations dialog.

[x] " Edit Includes (in Declaration)

Add

Eemoue |
Rename |

Close |

Edit Includes (in Declaration)

Edit Includes (in Declaration) Dialog

From the Source tab in the Object Explorer Window, right click the 'Includes (in Declaration)’ folder and select "Edit’
from the context menu to invoke the Edit Includes (in Declarations) dialog. Use this dialog to add, edit, or remove
includes in the source code.

To add a new include, click the Add button. A line edit will appear for you to type the include. Press Enter after you
have typed the include. To delete an include from the listbox, click the include and then click Remove. To rename
an existing include, click the include and then click Rename. The cursor will appear in the line edit, allowing you to
change the name.

Click Close to leave the Edit Include (in Declaration) dialog.

Add

Bemove |
Rename |

Close |

Reference: Dialogs 122

Edit Includes (in Implementation)

Edit Includes (in Implementation) Dialog

From the Source tab in the Object Explorer Window, right click the ’Includes (in Implementation)’ folder and select
’Edit’ from the context menu to invoke the Edit Includes (in Implementation) dialog. Use this dialog to add, edit, or
remove includes in the source code.

To add a new include, click the Add button. A line edit will appear for you to type the include. Press Enter after you
have typed the include. To delete an include from the listbox, click the include and then click Remove. To rename
an existing include, click the include and then click Rename. The cursor will appear in the line edit, allowing you to
change the name.

Click Close to leave the Edit Include (in Implementation) dialog.

[Edit Class Variables

Add

Bemove |
Rename |

Close |

Edit Class Variables

Edit Class Variables Dialog

From the Source tab in the Object Explorer Window, right click the ’Class Variables’ folder and select 'Edit’ from the
context menu to invoke the Edit Class Variables dialog. Use this dialog to add, edit, or remove class variables in the
source code.

To add a new variable, click the Add button. A line edit will appear for you to type the variable. Press enter after you
have typed the variable. To delete an include from the listbox, click the variable and then click Remove. To rename
an existing variable, click the variable and then click Rename. The cursor will appear in the line edit, allowing you to
change the name.

Click Close to leave the Edit Class Variables dialog.

Reference: Wizards

Introduction

In Qt Designer, some of the toolbars, menu options and templates invoke wizards to take you step-by-step through
particular tasks. In this chapter we explain each Qt Designer wizard.

Main Window Wizard

The Main Window Wizard is invoked by clicking the Main Window form template in the New File Dialog. This wizard
helps you to create a main window with actions, menu options and toolbars.

[x] “Main Window Wizar [zl =]
Choose available menus and toolbars

~ File Actions
like Mew, Open File, Save, Print, etc.

I Toolbar ™ Create Slots and Connections for the actions

— Edit Actions
like Cut, Copy, Paste, Undo and Redo, etc.

¥ tenu # Toolbar W Create Slots and Connections for the actions

 Help Actions
like Contents and About, etc.

¥ tenu W Toolbar W Create Slots and Connections for the actions

Cancel | | MNext = I Help

Choose Available Menus and Toolbars

The 'Choose available menus and toolbars’ wizard page appears first. It presents three categories of default actions,
File Actions, Edit Actions and Help Actions. For each category you can choose to have Qt Designer create menu items,
toolbar buttons and signal/slots connections for the relevant actions. You can always add or delete actions, menu
items, toolbar buttons and connections later. Check or uncheck the checkboxes to reflect your preferences.

Click Next to move on to the next wizard page.

123

Reference: Wizards 124

Setup Toolbar

Category |Fi|e j
Actions Toolhar

COpen

Save |
Save As ’;i
Print |
Exit @

<3eparator=

Cancel | < Back | MNext = Help

Setup Toolbar

The ’Setup Toolbar’ wizard page is used to populate a toolbar with actions from each of the default action categories.
Click the Category combobox to select which set of actions you wish to work on. The Actions listbox lists the actions
available for the current category. The Toolbar listbox lists the toolbar buttons you want to create. Click the blue left
and right arrow buttons to move actions into or out of the Toolbar list box. Click the blue up and down arrow buttons
to move actions up and down within the Toolbar list box. Note that the ’<Separator>’ item in the Actions list box may
be moved to the Toolbar list box as often as required and will cause a separator to appear in the finished toolbar.

Click Back if you want to return to the ’Choose available menus and toolbars’ wizard page. Click Finish to populate
the main window and to exit the wizard. Click Cancel on any of the wizard pages to leave the wizard without making
any changes.

Data Table Wizard

The Data Table Wizard is automatically invoked by clicking the datatable widget and placing it on the form. The
datatable widget is used to create tabular views of database data.

[x] Data Table Wizard El=]
Choose the Database and Table

Datahase Connection: Table:

author
book
contacts
creditors
invoiceitem
people
prices
sequence
simpletahle
staff

status

iSetup Database Cnnnections...§|

Cancel | | Help

Reference: Wizards 125

Choose the Database and Table

The ’Choose the Database and Table’ wizard page appears first. The available databases are displayed in the 'Database
Connection’ listbox. Choose a connection by clicking it. If there are no connections listed in the listbox, click Setup
Database Connections to invoke the Edit Database Connections Dialog. The "Table’ listbox shows all the tables and
views that are available through the selected database connection. Select a table or view by clicking it.

Click Next to move on to the next wizard page.

[x] Data Table Wizard <2> El=]
Displayed Fields

wvailable Fields: Displayed Fields:

d forename
SUrnarme

Cancel | = Back | Mext = Help

Displayed Fields

The 'Displayed Fields’ wizard page is used to select fields that will be displayed in the table. By default, every field
except the table or view’s primary key, is initially placed in the 'Displayed Fields’ list. Click the blue left and right arrow
buttons to move fields from the ’Available Fields’ listbox and into or out of the 'Displayed Fields’ listbox. Click the blue
up and down arrow buttons to move fields up and down within the 'Displayed Fields’ listbox. The order in which fields
appear in the ’Displayed Fields’ listbox is the order they are shown in the Data Table, with the top-most field being in
the left-most column.

Click Next to move on to the next wizard page. Click Back if you want to return to the ’Choose the Database and Table’
wizard page.

[x] Data Table Wizard <2> El=]
Table Properties

Editing
™ Bead-Only
Confirmations
I Confirm [nserts

™ Confirm Updates

I Confirm Deletes

™ Confirm Cancels

Cancel | = Back | Mext = | Help

Reference: Wizards 126

Table Properties

The 'Table Properties’ wizard page is used to set the Data Table’s initial editing options. Check the 'Read-Only’ checkbox
to prevent records from being edited, deleted or added. Check the checkboxes in the ’Confirmations’ section to force
the user to confirm their changes. By default users must confirm deletions. Click ’Allow column sorting’ to allow the
user to sort the data by clicking a column’s header (which displays the field name).

Click Next to move on to the next wizard page. Click Back if you want to return to the 'Displayed Fields’ wizard page.

SEL

Eilter; (a valid WHERE clause, e.g. id = 100)

Sort: Awvallable Fields Sort By

forename
surname

= lebs e lo

Cancel | < Back

Mext = | Help

SQL

The ’SQI. wizard page is used to apply filters and sorts to the data in the table. Click the ’Filter’ line edit and enter a
valid SQL WHERE clause without the WHERE keyword. The filter applies to the data shown in the table.

To sort the available fields in the table, click the blue left and right arrow buttons to move fields from the ’Available
Fields’ listbox into or out of the ’Sort By’ listbox. Click the blue up and down arrow buttons to move fields up and down
within the ’Sort By’ listbox. Click the A-Z button to change the sort order of the selected field in the 'Sort By’ listbox
from ascending to descending and vice versa.

Click Next to move on to the next wizard page. Click Back if you want to return to the 'Table Properties’ wizard page.

Reference: Wizards

] Data Table Wizard <2> E=]
Finish
Press Finish to create the widget.
Cancel | = Back Finish Help

Finish

127

The ’Finish’ wizard page is used to select auto-editing and to leave the wizard. If you want user edits, e.g. inserts and
updates, to be automatically applied when the user navigates to another record, check the ’AutoEditing’ checkbox. If
’AutoEditing’ is unchecked, users must press Enter to confirm their edit before moving to another record, or their edit

will be lost.

Click Finish to create the datatable widget with all of the options you selected in the wizard. Click Back if you want
to return to the 'SQI’ wizard page. Click Cancel on any of the wizard pages to leave the wizard without making any

changes.

Data Browser Wizard

The Data Browser wizard is automatically invoked by clicking the DataBrowser widget and placing it on the form. The

DataBrowser widget is used to create a form view of database data.

[x] Data Browser Wizard El=]
Choose the Database and Table
Datahase Connection: Table:
author
book
contacts
creditors
invoiceitem
people
prices
sequence
simpletahle
staff
status
iSetup Database Cnnnections...§|
Cancel | | Help
| L

Reference: Wizards

Choose the Database and Table

The ’Choose the Database and Table’ wizard page appears first. The available databases are displayed in the 'Database
Connection’ listbox. Choose a connection by clicking it. If there are no connections listed in the listbox, click Setup
Database Connections to invoke the Edit Database Connections Dialog. The "Table’ listbox shows all the tables and
views that are available through the selected database connection. Select a table or view by clicking it.

Click Next to move on to the next wizard page.

[x] Data Browser Wizard El=]
Displayed Fields
wvailable Fields: Displayed Fields:
d forename
surname
2
4|
Cancel | = Back | Mext = Help

Displayed Fields

The 'Displayed Fields’ wizard page is used to select fields that will be displayed in the table. Click the blue left and
right arrow buttons to move fields from the ’Available Fields’ listbox and into or out of the 'Displayed Fields’ listbox.
Click the blue up and down arrow buttons to move fields up and down within the 'Displayed Fields’ listbox.

Click Next to move on to the next wizard page. Click Back if you want to return to the ’Choose the Database and Table’

wizard page.

3|
Mavigation and Editing

Data Browser Wizard

=]

iInclude Navigation Eutton5§

Mavigation
¥ Previous

¥ et

¥ Eirst
¥ Last

Include Edit Buttons

Editing
¥ Insert

¥ Update

¥ Delete

Cancel |

< Back | MNext = |

Help

Reference: Wizards 129

Navigation and Editing

The 'Navigation and Editing’ wizard page is used to create navigation and editing buttons.

Check the ’Include Navigation Buttons’ checkbox to include navigation buttons. In the 'Navigation section, click 'Previ-
ous’ to display the "Previous’ button on the form. This option allows you to navigate to the previous record in the table.
Click 'Next’ to display the 'next’ button on the form. This button allows you to navigate to the next record in the table.
Click ’First’ to display the First’ button on the form. This option allows you to navigate to the first record in the table.
Click ’Last’ to display the ’Last’ button on the form. This button allows you to navigate to the last record in the table.

Click the 'Include Edit Buttons’ checkbox to include editing buttons. In the ’Editing’ section, check the "Insert’ checkbox
to create an ’Insert’ button for adding new records. Check the 'Update’ checkbox to create an 'Update’ button for
updating existing records. Check the 'Delete’ checkbox to create a 'Delete’ button for deleting records.

The navigation buttons, and 'Update’ and 'Delete’ buttons will work without requiring any code. Since most database
designs expect new records to be created with a unique key the "Insert’ button will not work. This can easily be fixed
by generating the key in a slot connected to the QDat aBr owser : : bef orel nsert () signal.

Click Next to move on to the next wizard page. Click Back if you want to return to the 'Displayed Fields’ wizard page.

; Data Browser Wizard
0L

Eilter: (a valid WHERE clause, e.g. id = 100)

Sort: Avallable Fields Sort By

forename
surname

&

N,
-

b 1t

M

}

I
Cancel | = Back | TMext = | Help
L L
SQL

The "SQIL wizard page is used to apply filters and sorts to the data in the table. Click the ’Filter’ line edit and type a
valid SQL WHERE clause without the WHERE keyword. The filter applies to the data shown in the table.

To sort the available fields in the table, click the blue left and right arrow buttons to move fields from the ’Available
Fields’ listbox into or out of the Sort By’ listbox. Click the blue up and down arrow buttons to move fields up and down
within the ’Sort By’ listbox. Click the A-Z button to change the sort order of the selected field in the 'Sort By’ listbox
from ascending to descending and vice versa.

Click Next to move on to the next wizard page. Click Back if you want to return to the 'Navigation and Editing’ wizard
page.

Reference: Wizards 130

[x] Data Browser Wizard E=]
Layout

Mumber of Columns: |2 —

Labels
&« Lahels to left

Create labels to the left of data entry fields.
" Labels on top

Creafe labels above data entry fields.

W Create layout for fields

W Create layout for buttons

Cancel | = Back | TMext = | Help

Layout

The ’Layout’ wizard page is used to design the layout of the database browser. To choose the number of columns the
form will use, click the 'Number of Columns’ spinbox. To make labels appear to the left of the data entry fields, click the
"Labels to left’ radio button. To make labels appear above the data entry fields, click the "Labels on top’ radio button.

Click the ’Create layout for fields’ checkbox to arrange all fields inside of a box layout. Click the 'Create layout for
buttons’ checkbox to arrange all buttons inside of a box layout. Click ‘Create layout for all’ to create a box layout for
the whole widget.

You can always break the layouts and redo them later if you change your mind.

Click Next to move on to the next wizard page. Click Back if you want to return to the ’SQI wizard page.

[x] Data Browser Wizard E=]
Finish

R AutoEditing:

Press Finish to create the widget.

Cancel | < Back Finish Help

Finish

The ’Finish’ wizard page is used to select auto-editing and to leave the wizard. If you want user edits, e.g. inserts and
updates, to be automatically applied when the user navigates to another record, check the ’AutoEditing’ checkbox. If
’AutoEditing’ is unchecked, users must press Enter to confirm their edit before moving to another record, or their edit

Reference: Wizards 131

will be lost. This property can be changed later if desired.

Click Finish to create the databrowser widget with all of the options you selected in the wizard. Click Back if you want
to return to the 'Layout’ wizard page. Click Cancel on any of the wizard pages to leave the wizard without making any
changes.

Data View Wizard

The Data View wizard is automatically invoked by clicking the dataview widget and placing it on the form. The
Dataview widget is used to create a read-only form view of database data.

Data View Wizal
Choose the Database and Table

Datahase Connection: Table:

author

book
contacts
creditors
invoiceitem
people
prices
sequence
simpletahle
staff

status

iSetup Database Cnnnections...§|

| Help

Choose the Database and Table

The ’Choose the Database and Table’ wizard page appears first. The available databases are displayed in the 'Database
Connection’ listbox. Choose a connection by clicking it. If there are no connections listed in the listbox, click Setup
Database Connections to invoke the Edit Database Connections Dialog. The ’Table’ listbox shows all the tables and
views that are available through the selected database connection. Select a table or view by clicking it.

Click Next to move on to the next wizard page.

Reference: Wizards 132

Displayed Flelds

Available Fields: Displayed Fields:

id forename
surname

<

By
o

Cancel | = Back | TMext = Help

Displayed Fields

The 'Displayed Fields’ wizard page is used to select fields that will be displayed in the table. Click the blue left and
right arrow buttons to move fields from the ’Available Fields’ listbox and into or out of the ’Displayed Fields’ listbox.
Click the blue up and down arrow buttons to move fields up and down within the 'Displayed Fields’ listbox.

Click Next to move on to the next wizard page. Click Back if you want to return to the ’Choose the Database and Table’
wizard page.

=] Data Yiew Wizard El=]
Layout

Mumber of Columns: |2 =

Labels
« Labels o left

Create labels to the left of data entry fields.
¢ Labels ontop

Creafe labels above data entry fields.

Cancel | = Back | Mext = | Help
L

Layout

The "Layout’ wizard page is used to design the layout of the data view. To choose the number of columns the form will
use, click the 'Number of Columns’ spinbox. To make labels appear to the left of the data entry fields, click the "Labels
to left’ radio button. To make labels appear above the data entry fields, click the 'Labels on top’ radio button.

Click Next to move on to the next wizard page. Click Back if you want to return to the 'Displayed Fields’ wizard page.

Reference: Wizards 133

Finish

Press Finish to create the widget.

Cancel | = Back Finish Help

Finish

The ’Finish’ wizard page is used to create the wizard once you have selected all the option you want on the previous
wizard pages.

Click Finish to create the databrowser widget with all of the options you selected in the wizard. Click Back if you want
to return to the 'Layout’ wizard page. Click Cancel on any of the wizard pages to leave the wizard without making any
changes.

Reference: Windows

Introduction

By default Qt Designer starts up with three windows on the left hand side. They are the File Overview Window, the
Object Explorer Window, and the Property Editor/Signal Handlers Window. This chapter explains each window in
detail.

_1multiclip.pro

E 0 ome’mo e 0
: ‘home/monicaitest/multiclip/multiclipform.uih
“[Qmaincpp

File Overview Window

File Overview Window

This window lists all the files associated with the project. To open a form or file single click it in the Files list. To
rapidly switch between forms and files, type the name of the file in the line edit above the files list and Qt Designer will
perform an incremental search to show any matching files or forms.

Right-click a file (or the project) to get a context menu of options, for example, ’‘Open form’ or 'Remove form from
project’.

Object Explorer Window

The Object Explorer window lists the current form’s widgets and slots. The window contains two tabs, the Widgets tab
and the Source tab.

134

Reference: Windows 135

Ohject Explorer

&
Widgets ISnurce |

GiLahel
GLineEdit
HBox
Box
GiLahel
GiListBox
Box
HBox

A Textl ahels Ql ahel

I=

Widget Tab

Widget Tab

Click the Widgets tab to view all the widgets for the current form. The widgets are listed by name and class. Click a
widget in the list to highlight it in the corresponding form.

Chiect Explorer
Widgets | Source |
_15lots =
BHpublic

~{@=init() (Constructor)
- (@= dataChanged()

== selectionChanged()

== ;lippingChanged(const @String & clipping)
: == addClipping()
- {@=copyPrevious()

‘. [B= deleteClipping()
-lprotected
-|private

_1Forward Declarations
Mmoo o (erEorefiorel =l

Source Tab

Source Tab

Click the Source tab to view the current form’s slots, forward declarations, includes, and class variables. The Source tab
uses a tree view to display its information. Items which have a ’+’ sign have sub-items which are revealed by clicking
the ’+’. Right click any item in the tree view to popup a context menu.

To edit or add slots, right click the Slots folder and select ’Edit’ to invoke the Edit Slots Dialog. Right click the Public,
Protected, or Private subdirectories and click 'New’ to invoke the Edit Slots Dialog. Right click a slot in the list to invoke
a menu with additional options for the slot. To add new slots, choose 'New’ from the menu, which invokes the Edit
Slots Dialog. To change the properties of the selected slot, choose "Properties’ which invokes the Edit Slots Dialog. To
open the C++ editor and jump to the implementation of the selected slot, choose ’Goto Implementation’. To remove
the selected slot, choose 'Delete’. Signals can be added or deleted in the same way as slots.

Right click "Forward Declarations’, 'Includes (in declaration)’, ’Class Variables’, and "Includes (in implementation)’ to
invoke a context menu with the 'new’ or ’edit’ options. Choose 'New’ to invoke a line edit for typing a declaration,
variable, or include. Right click 'Forward Declarations’ and choose ’Edit’ to invoke the Edit Forward Declarations Dialog.
Right click 'Includes (in declaration)’ and choose’Edit’ to invoke the Edit Includes (in Declaration) Dialog. Right click

Reference: Windows 136

"Class variables’ and choose 'Edit’ to invoke the Edit Class Variables Dialog. Right click 'Includes (in Implementation)’
and choose ’Edit’ to invoke the Edit Includes (in Implementation) Dialog.

Property Editor/Signal Handlers Window

Click the Property Editor/Signal Handlers window to view and change the properties of forms and widgets. This
window has a 'Properties’ tab and a ’Signal Handlers’ tab.

Property Editor/Signal Handlers

Properties I Signal Handlers |

Property |Va|ue =
name |MulticlipF orm]

enabled True

slzePolicy Preferred/Preferred/0/0

minimum3ize [0,0]

maximumsize [32787, 32767]

sizelncrement [0,0]

basesize [0,0]

]

paletteBackgroundColor

paletteBackgroundPixmap
palette [|
hackground3rigin WidgetOrigin
font cronyx-helvetica—11
cursor Arrow
caption kulticlin

|[cx

Properties Tab

The Properties Tab

Click the 'Properties’ tab to change the appearance and behaviour of the selected widget. The Property Editor has
two columns, the Property column which lists property names and the Value column which lists the values. Click the
column headers to sort the properties or values. Some property names have a plus sign '+’ in a square to their left; this
signifies that the property name is the collective name for a set of related properties.

Some properties have simple values, for example, the name property has a text value, the width property (within
minimumSize for example) has a numeric value. To change a text value click the existing text and type in your new
text. To change a numeric value click the value and either type in a new number, or use the spin buttons to increase
or decrease the existing number until it reaches the value you want. Some properties have a fixed list of values, for
example the mouseTracking property is boolean and can take the values True or False. The cursor property also has a
fixed list of values. If you click the cursor property or the mouseTracking property the value will be shown in a drop
down combobox; click the down arrow to see what values are available.

Some properties have complex sets of values; for example the font property. If you click the font property an ellipsis
button (...) will appear; click this button and a Select Font dialog will pop up which you can use to change any of
the font settings. Other properties have ellipsis buttons which lead to different dialogs depending on what settings the
property can have. For example, if you have a lot of text to enter for a text property you could click the ellipsis button
to invoke the multi-line text editor dialog. The names of properties which have changed are shown in bold. If you've
changed a property but want to revert it to its default value click the property’s value and then click the red ’X’ button
to the right of the value. Some properties have an initial value, e.g. "TextEdit1’, but no default value; if you revert a
property that has an initial value but no default value (by clicking the red ’X’) the value will become empty unless the
property, e.g. name, is not allowed to be empty.

The property editor fully supports Undo and Redo (Ctrl+Z and Ctrl+Y, also available from the Edit menu).

Reference: Windows 137

Property Editor/Signal Handlers
Properties Signal Handlers I
oolBarPositionChanged(QToolBar~) =
ockiindowPositionChanged{GDockWindow®)
sesTextLahelChanged(bool)
ixmapSizeChanged(bool)
destroyed(@Chject™)

e

Signal Handlers Tab

The Signal Handlers Tab

Click the ’Signal Handlers’ tab to view or create the connections between signals of widgets and custom slots of the
form.

Index

.cpp, 11, 33, 34,72, 73

.dlg, 74, 75

.glade, 75

.h, 33, 34,72

.moc, 72

.pro, 33, 34,44, 72

.ui, 3, 6, 14, 33, 34, 37, 40, 42, 71-73
.Xpm, 44

Absolute positioning, 9, 11
accept(), 13, 35, 39, 62, 65
Actions and Action Groups, 18, 19
Adding Action Groups, 20
Adding Actions, 20
Adding to a Toolbar, 21
Deleting, 21
Exclusive Actions, 20
activate(), 23
activated(), 23, 26
addDatabase(), 56, 57
Adding
Actions and Action Groups, 18-20
Actions and Action Groups to a
Toolbar, 21
Class variables, 11, 14, 27
Code, 11, 14
Code Editing, 24
Custom Widgets to Qt Designer, 45
Duplicate Widgets, 8
Files to Projects, 17, 33
Forms, 7
Forward declarations, 11, 14, 27
Includes, 11, 14, 27
Labels, 8
Main Widgets, 22
Menu Items, 22
Menu Separators, 22
Menus, 18, 19, 22
Pixmaps, 20, 21
Push Buttons, 8
Source Files to Project Files, 17, 27
Text Labels, 8
Toolbar Buttons, 18, 19
Toolbar Separators, 21
Toolbars, 18, 19, 21
Widgets, 8, 22

Automatically scaling widgets and
application windows, 9

beforelnsert(), 66
beforeUpdate(), 66
book.pro, 58

book.sql, 57

Break layout, 10
Browsing Databases, 59

child(), 40, 42
Class variables, 11, 14, 27
clearValues(), 64
clicked(), 13, 16, 17, 35, 39, 44, 48, 62,
64, 65
Clipboard, 14, 22, 23
Cross-platform, 15
Code Editing, 11, 14, 24
Not in Dynamic Dialogs, 37
Preferences, 69
Compiling and Building Applications, 17
Component
Plugins, 49
Connecting
Databases to Database Servers, 55
Signals and Slots, 13, 23
Controls
Widgets, 3
copy(Q), 23
create(), 40, 41, 50
createConnections(), 56, 57
Creating Custom Widgets, 45
Creating Forms
Dialogs, 7
Creating Main Windows, 18, 19
Creating Menus, 18, 19, 22
Creating Plugins, 49
Creating Projects
Projects, 6
Creating Templates, 71
Creating Test Harnesses for Forms, 36
Creating Toolbars, 18, 19, 21
Cross-platform
Clipboard, 15
Cross-platform previewing, 12
currentChanged(), 61

138

Custom Widgets, 43
Adding to Qt Designer, 45
Plugins, 45
Previewing, 43
Simple, 43
Cut and Paste (in Applications), 8, 22, 23

Data Aware Widgets, 54
Databases, 54
Browsing, 59
Confirmations, 59
Connecting to Database Servers, 55
Connecting to Multiple Database
Servers, 57
Data Aware Widgets, 54
Data Browser Wizard, 63
Deleting Records, 59
Drilldown, 62-64
Drivers, 54
QMYSQLS3, 54
QOCI8, 54
QODBC3, 54
QPSQL7, 54
Foreign Keys, 59, 66, 68
In-place Editing, 54
Inserting Records, 59
Master-Detail Relationships, 60
Relating Tables, 61
SQL Table Wizard, 57
Updating Records, 59
User Interface Interaction, 59
dataChanged(), 14-16
delQ, 64
Deleting
Actions and Action Groups, 21
Class variables, 11, 14
Forward declarations, 11, 14
Includes, 11, 14
ListBox Items, 8
Menu Items, 22
Menu Separators, 22
Menus, 22
Records
Databases, 59
Toolbar Separators, 21
Toolbars, 21

Index

destroy(), 11

Dialogs
Creating New, 7
Dynamic, 33, 37, 39
Value Editors, 8

Drilldown, 62-64

Dynamic Dialogs, 33, 37, 40, 41
Compared with Compiling, 42
Loading and Executing, 39
Subclassing, 42

Errors
Undefined reference, 33
Exclusive Actions, Actions and Action
Groups, 20
exec(), 40
exit(), 27
Exiting Qt Designer, 6

first(), 64
Font Sizes, 23
Foreign File Formats, 74
Glade, 75
Qt Architect, 74
Foreign Keys, 59, 66, 68
Forms
Adding, 7
Adding Widgets, 8
Class variables, 11, 14, 27
Code editing, 11, 14
constructor, 11
Creating Test Harnesses, 36, 44, 48
destructor, 11
Forward declarations, 11, 14, 27, 39
Forward declarations, 11, 14, 27, 39

Getting Help, 6

Glade, 75

group(), 51

Grouping Widgets, 9, 10

iconSet(), 51

In-place Editing, 54

includeFile(), 51

Includes, 11, 14, 27, 39

initQ), 11, 14, 23, 24, 26, 27, 66, 67
insert(), 64

Inserting Records, 59

isContainer(), 52

Keypresses (Qt Designer’s code editor), 69
Keypresses (Qt Designer), 77
keys(Q), 50

last(), 64

Layouts, 9
Break layout, 10, 12
Grid, 9, 12
Horizontal, 9, 11

Rubber band, 10, 12
Space filling, 9
Spacers, 9-11, 35
Spacing, 11
Splitters, 11, 12
Undo and Redo

Undo and Redo, 9
Vertical, 9

Macros
Q_ENUMS, 46
Q_EXPORT_PLUGIN, 52
Q_OBJECT, 34, 36, 41, 44, 46, 72
Main Widget, 22
Main Window
Adding a Main Widget, 22
Creating, 18, 19
Wizard, 19
main.cpp, 17, 24, 33, 34, 37, 38, 44, 48,
57, 58
Makefiles, 17, 27, 33, 37, 72
Master-Detail Relationships, 60
Menus
Adding, 18, 19, 22
Adding Menu Items, 22
Adding Menu Separators, 22
Deleting, 22
Moving, 22
moc.exe, 73

next(), 64

Object Explorer, 6, 9, 11
Object Hierarchy, 27, 64

paste(), 23
Pixmaps, 6
Adding, 20, 21
Adding to Forms, 6
In Projects, 6
plugin.cpp, 49, 50
plugin.h, 49
Plugins, 43, 69
Creating a Plugin, 49
Implementing Custom Widgets, 45
Preferences
Code Editing, 69
prev(), 64
Preview Mode
Previewing, 12
Previewing, 12
Custom Widgets, 43
Menus, 22
Signals and Slots, 23
Toolbars, 21
primelnsert(), 57, 59, 65
primeUpdate(), 66
Projects, 6, 18
Adding Files, 17, 33

139

Creating New, 6, 34
Database Connections, 56
Properties, 7
Creating Custom Properties, 45
DataTable, 58
Initial values, 7
Property Editors, 8
Reverting changes, 7
Undo and Redo
Undo and Redo, 7

Q_ENUMS, 46
Q_EXPORT PLUGIN, 52
Q_OBJECT, 36, 44, 46, 72
Macros, 34, 41
gqApp->clipboard(), 14
QApplication::clipboard(), 14
QFileDialog::getOpenFileName(), 25
gmake
HEADERS, 33, 37
SOURCES, 33, 37
gmsdev.dll, 72
gqmsdev.dsp, 72
QMYSQL3, Database driver, 54
QObject::queryList(), 40
QOCI8, Database driver, 54
QODBC3, Database driver, 54
QPSQL?7, Database driver, 54
QSqlDatabase::database(), 57
Qt Architect, 74
QWidgetFactory::create(), 40, 41

readFields(), 64
receiver.pro, 39
Redo
Undo and Redo, 7
refresh(), 64
reject(), 35
Rubber band, Selecting, 9, 10

Scaling widgets and application windows,
9
selected (QAction®), 23
Selecting
Rubber band, 9, 10
Selecting Widgets, 9-11
selectionChanged(), 14, 15
Separator
Menu item, 19, 22
Toolbar button, 19, 21, 22
setBold(), 23
setEnabled(), 35
setFamily(), 23, 26
setFocus(), 23
setPointSize(int), 23
setUnderline(), 23
Signals and Slots, 13, 15-17, 22, 35
Connecting Actions, 19, 23
Connecting for Copy, 23

Index

Connecting for Cut, 23
Connecting for Font Names, 23
Connecting for Font Sizes, 23
Connecting for Paste, 23
Connecting for Redo, 23
Connecting for Text Alignment, 23
Connecting for Undo, 23
Connecting to Close a Dialog, 39
Dynamic Dialogs, 40
Previewing, 23
Q_OBJECT, 34

Slots
Signals and Slots, 13

SQL, 54

Starting Qt Designer, 6

Subclassing, 11, 13, 33, 34, 36
Dynamic Dialogs, 42
Widgets, 45

Tab Order, 12

Tab Order Mode
Tab Order, 12

Templates
Base Class Templates, 71
Creating and Using, 71

Text Alignment, 23
textChanged(), 48
toggled(), 13, 23, 35
Toolbar Buttons

Adding, 18, 19
Toolbars

Adding Widgets, 22
Toolbars, Creating, 18, 19, 21
toolTip(), 51
Tooltips, 8

uic.exe, 73
Undefined references, Error, 33
Undo and Redo
Layouts, 9, 12
Properties, 7
update(), 64
Updating Records, 59
User Interface Interaction, Databases, 59
Using the Property Editor, 7

Value Editors, 8
Dialogs, 8
List Box, 8
SQL Table Editor, 61

valueChanged(int), 23
Visual Studio, 72

whatsThis(), 51
Widgets
Adding a Main Widget, 22
Adding to Toolbars, 22
ComboBox, 22
Creating a Custom Widget, 45
Custom, 43
Data Aware, 54
Grouping, 9, 10
Line Edit, 9
Push Button, 9
Repeatedly Adding, 8
SpinBox, 22
Widgets and Source window
Object Explorer, 6
Windows, Microsoft, 15
Wizards
Data Browser, 63
Main Window, 19
SQL Table, 57
writeFields(), 64

140

