Additional Functionality with Qt

Ot 3.0

Copyright (© 2001 Trolltech AS. All rights reserved.

TROLLTECH, Qt and the Trolltech logo are registered trademarks of Trolltech AS. Linux is a registered trademark
of Linus Torvalds. UNIX is a registered trademark of X/Open Company Ltd. Mac is a registered trademark of Apple
Computer Inc. MS Windows is a registered trademark of Microsoft Corporation. All other products named are
trademarks of their respective owners.

The definitive Qt documentation is provided in HTML format supplied with Qt, and available online at http://doc.trolltech.com.
This PDF file was generated automatically from the HTML source as a convenience to users, although PDF is not an official Qt
documentation format.

Contents

QApplication Class Reference L e e e 4
QDate Class REfErenCe v v v v v et e e e e e e e e e e e e e e e e 36
QDateTime Class Reference i i i e e e e e e e 44
QDoubleValidator Class Reference @ i i i i ittt e e e e e 50
QEditorFactory Class Reference i i e e e 53
QErrorMessage Class Reference i i i i i it i e e e e e e e e 55
QFocusData Class Reference i i i i i it it i e e e e e e e e e e e 57
QFont Class Reference i i i i i i et e e e e e e e e e e e 59
QFontDatabase Class Reference i i i i it it e e e e e e e e 75
QFontDialog Class Reference i e e e e e e 81
QFontInfo Class Reference i i i i i i e et e e e e e e e e e e 85
QFontManager Class Reference i it e e e e e 88
QFontMetrics Class Reference i i i i i e e e e e e e 90
QGuardedPtr Class Reference o i i i i e e e e e e e e 98
QHeader Class Reference. i i i i i e e e e e e e e e e e 101
QIntValidator Class Reference i i i i it e e e e e e e e e e e e e e 113
QMetaObject Class Reference i i i ittt i e e e e e e e e e e e 116
QMetaProperty Class Reference e e 120
QObject Class Reference e e e e e 123
QRegExp Class Reference i i i i i it i e e e e e e e e e 139
QRegExpValidator Class Reference i ittt it i e e e 153
QSimpleRichText Class Reference i ittt e e 156
QSettings Class Reference i i e e e e e e 160
QSignal Class Reference i i i e e e e e e e 168
QSignalMapper Class Reference i i i i i e e e e e e e e 171
QSound Class Reference e e e e e e e e 173
QtClass Reference i i i i i e e e e e e e e 176
QTableSelection Class Reference i i i i i i it e e e e e e e 195
QTime Class Reference o i i i e e e e e e e e 198
QTimer Class Reference v v v i i i e e e e e e e e e e e e e 205

Contents

QApplication Class Reference

The QApplication class manages the GUI application’s control flow and main settings.
#incl ude <gapplication. h>

Inherits QObject [p. 123].

Inherited by QXtApplication [Widgets with Qt].

Public Members

m QApplication (int & argc, char ** argv)

m QApplication (int & argc, char ** argv, bool GUIenabled)

m enum Type { Tty, GuiClient, GuiServer }

m QApplication (int & argc, char ** argv, Type type)

» QApplication (Display * dpy, HANDLE visual = 0, HANDLE colormap = 0)
» QApplication (Display * dpy, int argc, char ** argv, HANDLE visual = 0, HANDLE colormap = 0)
» virtual ~QApplication ()

int arge () const

char ** argv () const

Type type () const

enum ColorSpec { NormalColor = 0, CustomColor = 1, ManyColor = 2 }
QWidget * mainWidget () const

virtual void setMainWidget (QWidget * mainWidget)

m virtual void polish (QWidget * w)

m QWidget * focusWidget () const

QWidget * activeWindow () const

int exec ()

void processEvents ()

void processEvents (int maxtime)

void processOneEvent ()

bool hasPendingEvents ()

int enter_loop ()

» void exit_loop ()

» int loopLevel () const

virtual bool notify (QObject * receiver, QEvent * e)
void setDefaultCodec (QTextCodec * codec)
QTextCodec * defaultCodec () const

void installTranslator (QTranslator * mf)

void removeTranslator (QTranslator * mf)
enum Encoding { DefaultCodec, UnicodeUTF8 }

QApplication Class Reference

m QString translate (const char * context, const char * sourceText, const char * comment = 0,
Encoding encoding = DefaultCodec) const

virtual bool winEventFilter (MSG *)
void winFocus (QWidget * widget, bool gotFocus)
bool isSessionRestored () const

QString sessionld () const

virtual void commitData (QSessionManager & sm)

virtual void saveState (QSessionManager & sm)

» void wakeUpGuiThread ()

= void lock ()

» void unlock (bool wakeUpGui = TRUE)

m bool locked ()

m bool tryLock ()

e void setEnableRemoteControl (bool enable, const QUuid appld = QUuid ())
bool remoteControlEnabled () const

QUuid applicationld () const

Public Slots

» void quit ()
= void closeAllWindows ()

Signals

= void lastWindowClosed ()
m void aboutToQuit ()
m void guiThreadAwake ()

Static Public Members

m QStyle & style ()

m void setStyle (QStyle * style)

m QStyle * setStyle (const QString & style)

» int colorSpec ()

» void setColorSpec (int spec)

m QCursor * overrideCursor ()

void setOverrideCursor (const QCursor & cursor, bool replace = FALSE)

void restoreOverrideCursor ()

bool hasGlobalMouseTracking ()

void setGlobalMouseTracking (bool enable)

QPalette palette (const QWidget * w = 0)

» void setPalette (const QPalette & palette, bool informWidgets = FALSE, const char * className = 0)
» QFont font (const QWidget * w = 0)

m void setFont (const QFont & font, bool informWidgets = FALSE, const char * className = 0)

m QFontMetrics fontMetrics ()

m QWidgetList * allWidgets ()

m QWidgetList * topLevelWidgets ()

QApplication Class Reference

QDesktopWidget * desktop ()

QWidget * activePopupWidget ()

QWidget * activeModalWidget ()

QClipboard * clipboard ()

QWidget * widgetAt (int x, int y; bool child = FALSE)
QWidget * widgetAt (const QPoint & pos, bool child = FALSE)
void exit (int retcode = 0)

bool sendEvent (QObject * receiver, QEvent * event)
void postEvent (QObject * receiver, QEvent * event)
void sendPostedEvents (QObject * receiver, int event_type)
void sendPostedEvents ()

void removePostedEvents (QObject * receiver)

bool startingUp ()

bool closingDown ()

void flushX ()

void flush ()

void syncX ()

void beep ()

void setWinStyleHighlightColor (const QColor & ¢) (obsolete)
const QColor & winStyleHighlightColor () (obsolete)
void setDesktopSettingsAware (bool on)

bool desktopSettingsAware ()

void setCursorFlashTime (int msecs)

int cursorFlashTime ()

void setDoubleClickInterval (int ms)

int doubleClickInterval ()

void setWheelScrollLines (int n)

int wheelScrollLines ()

void setGlobalStrut (const QSize & strut)

QSize globalStrut ()

void setLibraryPaths (const QStringList & paths)
QStringlList libraryPaths ()

void addLibraryPath (const QString & path)

void removeLibraryPath (const QString & path)
void setStartDragTime (int ms)

int startDragTime ()

void setStartDragDistance (int 1)

int startDragDistance ()

void setReverseLayout (bool b)

bool reverseLayout ()

int horizontalAlignment (int align)

bool isEffectEnabled (Qt::UlIEffect effect)

void setEffectEnabled (Qt::UlEffect effect, bool enable = TRUE)
WindowsVersion winVersion ()

QApplication Class Reference 7

Related Functions

void gAddPostRoutine (QtCleanUpFunction p)

const char * qVersion ()

bool qSysInfo (int * wordSize, bool * bigEndian)

void qDebug (const char * msg, ...)

void qWarning (const char * msg, ...)

void gFatal (const char * msg, ...)

void qSystemWarning (const char * msg, int code)
void Q_ASSERT (bool test)

void Q_CHECK_PTR (void * p)

QtMsgHandler qInstallMsgHandler (QtMsgHandler h)

Detailed Description

The QApplication class manages the GUI application’s control flow and main settings.

It contains the main event loop, where all events from the window system and other sources are processed and
dispatched. It also handles the application initialization and finalization, and provides session management. Finally,
it handles most system-wide and application-wide settings.

For any GUI application that uses Qt, there is precisely one QApplication object, no matter whether the application
has 0, 1, 2 or more windows at any time.

The QApplication object is accessible through the global variable gApp. Its main areas of responsibility are:

It initializes the application with the user’s desktop settings such as palette(), font() and doubleClickInter-
val(). It keeps track of these properties in case the user changes the desktop globally, for example through
some kind of control panel.

It performs event handling, meaning that it receives events from the underlying window system and dis-
patches them to the relevant widgets. By using sendEvent() and postEvent() you can send your own events
to widgets.

It parses common command line arguments and sets its internal state accordingly. See the constructor docu-
mentation below for more details about this.

It defines the application’s look and feel, which is encapsulated in a QStyle object. This can be changed at
runtime with setStyle().

It specifies how the application is to allocate colors. See setColorSpec() for details.

It specifies the default text encoding (see setDefaultCodec()) and provides localization of strings that are
visible to the user via translate().

It provides some magical objects like the desktop() and the clipboard().

It knows about the application’s windows. You can ask which widget is at a certain position using widgetAt(),
get a list of topLevelWidgets() and closeAllWindows(), etc.

It manages the application’s mouse cursor handling, see setOverrideCursor() and setGlobalMouseTracking().
On the X window system, it provides functions to flush and sync the communication stream, see flushX() and
syncX().

It provides support for sophisticated session management. This makes it possible for applications to terminate
gracefully when the user logs out, to cancel a shutdown process if termination isn’t possible and even to pre-
serve the entire application state for a future session. See isSessionRestored (), sessionId() and commitData()
and saveState() for details.

QApplication Class Reference 8

The Application walk-through example contains a typical complete main() that does the usual things with QAppli-
cation.

Since the QApplication object does so much initialization, it must be created before any other objects related to
the user interface are created.

Since it also deals with common command line arguments, it is usually a good idea to create it before any in-
terpretation or modification of argv is done in the application itself. (Note also that for X11, setMainWidget()
may change the main widget according to the - geonet ry option. To preserve this functionality, you must set your
defaults before setMainWidget() and any overrides after.)

Groups of functions:

e System settings: desktopSettingsAware(), setDesktopSettingsAware(), cursorFlashTime(), setCursor-
FlashTime(), doubleClickInterval(), setDoubleClickInterval(), wheelScrollLines(), setWheelScrollLines(),
palette(), setPalette(), font(), setFont(), fontMetrics().

e Event handling: exec(), processEvents(), enter loop(), exit loop(), exit(), quit(). sendEvent(), postEvent(),
sendPostedEvents(), removePostedEvents(), notify(), macEventFilter(), x11EventFilter (), x11ProcessEvent(),
winEventFilter().

e GUI Styles: style(), setStyle(), polish().
e Color usage: colorSpec(), setColorSpec().
e Text handling: setDefaultCodec(), installTranslator(), removeTranslator() translate().

e Widgets: mainWidget(), setMainWidget(), allWidgets(), topLevelWidgets(), desktop(), activePopupWid-
get(), activeModalWidget(), clipboard(), focusWidget(), activeWindow(), widgetAt().

e Advanced cursor handling: hasGlobalMouseTracking(), setGlobalMouseTracking(), overrideCursor(), se-
tOverrideCursor(), restoreOverrideCursor().

e X Window System synchronization: flushX(), syncX().
e Session management: isSessionRestored(), sessionld(), commitData(), saveState()

e Miscellaneous: closeAllWindows(), startingUp(), closingDown(),

Non-GUI programs: While Qt is not optimized or designed for writing non-GUI programs, it’s possible to use some
of its classes without creating a QApplication. This can be useful if you wish to share code between a non-GUI
server and a GUI client.

See also Main Window and Related Classes.

Member Type Documentation

QApplication::ColorSpec

e QApplication:: Normal Col or - the default color allocation policy

e QApplication:: CustonCol or - the same as NormalColor for X11; allocates colors to a palette on demand
under Windows

e QApplication::MnyCol or -the choice for applications that use thousands of colors

See setColorSpec() for full details.

QApplication::Encoding
This enum type defines the 8-bit encoding of character string arguments to translate():

e QApplication:: Default Codec - the defaultCodec()’s encoding (Latin-1 if none is set)

QApplication Class Reference 9

e QApplication:: UnicodeUTF8 - UTF-8

See also QObject::tr() [p. 1371, QObject::trUtf8() [p. 137] and QString::fromUtf8() [Datastructures and String
Handling with Qt].

QApplication::Type

e (QApplication:: Tty -a console application
e QApplication::CGuidient -a GUI client application
e QApplication:: Qui Server -a GUI server application

Member Function Documentation

QApplication::QApplication (int & argc, char ** argv)

Initializes the window system and constructs an application object with the command line arguments argc and
argv.
The global gApp pointer refers to this application object. Only one application object should be created.

This application object must be constructed before any paint devices (includes widgets, pixmaps, bitmaps etc.)

Note that argc and argv might be changed. Qt removes command line arguments that it recognizes. The original
argc and argv can be accessed later with qApp- >ar gc() and gApp- >ar gv(). The documentation for argv() contains
a detailed description of how to process command line arguments.

Qt debugging options (not available if Qt was compiled with the QT _NO_DEBUG flag defined):

e -nograb, tells Qt that it must never grab the mouse or the keyboard.
e -dograb (only under X11), running under a debugger can cause an implicit -nograb, use -dograb to override.

e -sync (only under X11), switches to synchronous mode for debugging.

See Debugging Techniques for a more detailed explanation.

All Qt programs automatically support the following command line options:

o -style= style, sets the application GUI style. Possible values are not i f, wi ndows, and pl at i num If you compiled
Qt with additional styles or have additional styles as plugins these will be available to the - st yl e command
line option.

e -session= session, restores the application from an earlier session.
The X11 version of Qt also supports some traditional X11 command line options:

e -display display, sets the X display (default is $DISPLAY).
e -geometry geometry, sets the client geometry of the main widget.
e -fnor-font font, defines the application font. The font should be specified using an X logical font description.

e -bg or - background color, sets the default background color and an application palette (light and dark shades
are calculated).

e -fg or - foreground color, sets the default foreground color.
e -btn or - but t on color, sets the default button color.

e -name name, sets the application name.

o -title title, sets the application title (caption).

QApplication Class Reference 10

e -visual TrueCol or, forces the application to use a TrueColor visual on an 8-bit display.

e -ncols count, limits the number of colors allocated in the color cube on an 8-bit display, if the application is
using the QApplication::ManyColor color specification. If count is 216 then a 6x6x6 color cube is used (ie. 6
levels of red, 6 of green, and 6 of blue); for other values, a cube approximately proportional to a 2x3x1 cube
is used.

e -cmap, causes the application to install a private color map on an 8-bit display.

See also argc() [p. 12] and argv() [p. 13].

QApplication::QApplication (int & argc, char ** argv, bool GUIenabled)
Constructs an application object with the command line arguments argc and argv. If GUlenabled is TRUE, a GUI
application is constructed, otherwise a non-GUI (console) application is created.

Set GUIenabled to FALSE for programs without a graphical user interface that should be able to run without a
window system.

On X11, the window system is initialized if GUlenabled is TRUE. If GUIenabled is FALSE, the application does not
connect to the X-server. On Windows and Macintosh, currently the window system is always initialized, regardless
of the value of GUIenabled. This may change in future versions of Qt.

For threaded configurations (i.e. when Qt has been built as a threaded library), the application global mutex will
be locked in the constructor and unlocked when entering the event loop with exec(). You must unlock the mutex
explicitly if you don’t call exec(), otherwise you might get warnings on application exit.

The following example shows how to create an application that uses a graphical interface when available.

int min(int argc, char **argv)

{
#ifdef QW5 X11
bool useG@J = getenv("DI SPLAY") != 0;
#el se
bool use@J = TRUE;
#endi f
QApplication app(argc, argv, useGUJ);
if (use@)) {
[Istart QU version
} else {
/lstart non-GU version
}
return app. exec();
}

QApplication::QApplication (int & argc, char ** argv, Type type)

Constructs an application object with the command line arguments argc and argv.

For Qt/Embedded, passing QApplication::GuiServer for type makes this application the server (equivalent to run-
ning with the -qws option).

QApplication Class Reference 11

QApplication::QApplication (Display * dpy, HANDLE visual = 0, HANDLE colormap = 0)
Create an application, given an already open display dpy. If visual and colormap are non-zero, the application will
use those as the default Visual and Colormap contexts.

This is available only on X11.

QApplication::QApplication (Display * dpy, int argc, char ** argv, HANDLE visual = 0,
HANDLE colormap = 0)

Create an application, given an already open display dpy and using argc command line arguments in argv. If visual
and colormap are non-zero, the application will use those as the default Visual and Colormap contexts.

This is available only on X11.

QApplication::~QApplication () [virtual]

Cleans up any window system resources that were allocated by this application. Sets the global variable gApp to
null.

void QApplication::aboutToQuit () [signal]
This signal is emitted when the application is about to quit the main event loop. This may happen either after a
call to quit() from inside the application or when the users shuts down the entire desktop session.

The signal is particularly useful if your application has to do some last-second cleanups. Note that no user interac-
tion is possible in this state.

See also quit() [p. 21].

QWidget * QApplication::activeModalWidget () [static]

Returns the active modal widget.

A modal widget is a special top level widget which is a subclass of QDialog that specifies the modal parameter
of the constructor as TRUE. A modal widget must be closed before the user can continue with other parts of the
program.

Modal widgets are organized in a stack. This function returns the active modal widget at the top of the stack.

See also activePopupWidget() [p. 11] and topLevelWidgets() [p. 29].

QWidget * QApplication::activePopupWidget () [static]

Returns the active popup widget.

A popup widget is a special top level widget that sets the WType Popup widget flag, e.g. the QPopupMenu widget.
When the application opens a popup widget, all events are sent to the popup. Normal widgets and modal widgets
cannot be accessed before the popup widget is closed.

Only other popup widgets may be opened when a popup widget is shown. The popup widgets are organized in a
stack. This function returns the active popup widget at the top of the stack.

See also activeModalWidget() [p. 11] and topLevelWidgets() [p. 29].

QApplication Class Reference 12

QWidget * QApplication::activeWindow () const

Returns the application top-level window that has the keyboard input focus, or null if no application window has
the focus. Note that there might be an activeWindow even if there is no focusWidget(), for example if no widget in
that window accepts key events.

See also QWidget::setFocus() [Widgets with Qt], QWidget::focus [Widgets with Qt] and focusWidget() [p. 16].

Example: network/mail/smtp.cpp.

void QApplication::addLibraryPath (const QString & path) [static]

Append path to the end of the library path list. If path is empty or already in the path list, the path list is not
changed.

See also removeLibraryPath() [p. 211, libraryPaths() [p. 18] and setLibraryPaths() [p. 26].

QWidgetList * QApplication::allWidgets () [static]

Returns a list of all the widgets in the application.

The list is created using new and must be deleted by the caller.
The list is empty (QPtrList::isEmpty()) if there are no widgets.
Note that some of the widgets may be hidden.

Example that updates all widgets:

QN dgetList *list = QApplication::allWdgets();

QN dgetListlt it(*list); /] iterate over the widgets
QN dget * w,
while ((w=it.current()) '=0) { // for each widget...
+HHit;
w>updat e() ;
}
delete list; Il delete the list, not the w dgets

The QWidgetList class is defined in the qwidgetlist.h header file.

Warning: Delete the list as soon as you have finished using it. The widgets in the list may be deleted by someone
else at any time.

See also topLevelWidgets() [p. 291, QWidget::visible [Widgets with Qt] and QPtrList::isEmpty() [Datastructures
and String Handling with Qt].

QUuid QApplication::applicationld () const

Returns the application id that was set with setEnableRemoteControl.

int QApplication::argc () const

Returns the number of command line arguments.

The documentation for argv() contains a detailed description of how to process command line arguments.
See also argv() [p. 13] and QApplication::QApplication() [p. 9].

Example: scribble/scribble.cpp.

QApplication Class Reference 13

char ** QApplication::argv () const

Returns the command line argument vector.
argv()[0] is the program name, argv()[1] is the first argument and argv()[argc()-1] is the last argument.

A QApplication object is constructed by passing argc and argv from the mai n() function. Some of the arguments
may be recognized as Qt options and removed from the argument vector. For example, the X11 version of Qt knows
about - di spl ay, -font and a few more options.

Example:

/'l showargs.cpp - displays programargunents in a list box

#include <qgapplication. h>
#incl ude <qlistbox. h>

int min(int argc, char **argv)
{
QApplication a(argc, argv);
QLi st Box b;
a.set Mai nWdget (&);
for (int i=0; i<a.argc(); i++) Il a.argc() == argc
b.insertiten(a.argv()[i]); Il a.argv()[i] == argv[i]
b. show();
return a.exec();

}

If you run showargs -display unix:0 -font 9x15bol d hello world under X11, the list box contains the three
strings "showargs", "hello" and "world".

See also argc() [p. 12] and QApplication::QApplication() [p. 9].
Example: scribble/scribble.cpp.

void QApplication::beep () [static]

Sounds the bell, using the default volume and sound.

QClipboard * QApplication::clipboard () [static]

Returns a pointer to the application global clipboard.

Example: showimg/showimg.cpp.

void QApplication::closeAllWindows () [slot]

Closes all top-level windows.

This function is particularly useful for applications with many top-level windows. It could for example be connected
to a "Quit" entry in the file menu as shown in the following code example:

[l the "Quit" nmenu entry should try to close all wi ndows
QPopupMenu* file = new QPopupMenu(this);
file->insertlitem "&it", gApp, SLOT(closeAl | Wndows()), CTRL+Key Q);

/1 when the last windowis closed, the application should quit

QApplication Class Reference 14

connect (qApp, SIGNAL(|astWndowC osed()), gApp, SLOT(quit()));

The windows are closed in random order, until one window does not accept the close event.

See also QWidget::close() [Widgets with Qt], QWidget::closeEvent() [Widgets with Qt], lastWindowClosed ()
[p. 181, quit() [p. 211, topLevelWidgets() [p. 29] and QWidget::isTopLevel [Widgets with Qt].

Examples: action/application.cpp, application/application.cpp, helpviewer/helpwindow.cpp, mdi/application.cpp
and qwerty/qwerty.cpp.

bool QApplication::closingDown () [static]

Returns TRUE if the application objects are being destroyed.

See also startingUp(Q) [p. 29].

int QApplication::colorSpec () [static]

Returns the color specification.
See also QApplication::setColorSpec() [p. 23].

Example: showimg/showimg.cpp.

void QApplication::commitData (QSessionManager & sm) [virtual]
This function deals with session management. It is invoked when the QSessionManager wants the application to
commit all its data.

Usually this means saving all open files, after getting permission from the user. Furthermore you may want to
provide a means by which the user can cancel the shutdown.

Note that you should not exit the application within this function. Instead, the session manager may or may not do
this afterwards, depending on the context.

Important Within this function, no user interaction is possible, unless you ask the session manager sm for explicit
permission. See QSessionManager::allowsInteraction() and QSessionManager::allowsErrorInteraction() for details
and example usage.

The default implementation requests interaction and sends a close event to all visible top level widgets. If any
event was rejected, the shutdown is cancelled.

See also isSessionRestored() [p. 18], sessionld() [p. 23] and saveState() [p. 22].

int QApplication::cursorFlashTime () [static]

Returns the text cursor’s flash time in milliseconds. The flash time is the time required to display, invert and restore
the caret display.
The default value on X11 is 1000 milliseconds. On Windows, the control panel value is used.

Widgets should not cache this value since it may vary any time the user changes the global desktop settings.

See also setCursorFlashTime() [p. 24].

QTextCodec * QApplication::defaultCodec () const

Returns the default codec (see setDefaultCodec()). Returns 0 by default (no codec).

QApplication Class Reference 15

QDesktopWidget * QApplication::desktop () [static]

Returns the desktop widget (also called the root window).

The desktop widget is useful for obtaining the size of the screen. It may also be possible to draw on the desktop.
We recommend against assuming that it’s possible to draw on the desktop, as it works on some operating systems
and not on others.

Qeskt opW dget *d = QApplication::desktop();
int w=d->width(); /] returns desktop width
i nt h=d->hei ght(); /1 returns desktop hei ght

Examples: desktop/desktop.cpp, helpviewer/main.cpp, i18n/main.cpp, qmag/qmag.cpp, qwerty/main.cpp,
qwerty/qwerty.cpp and scribble/main.cpp.

bool QApplication::desktopSettingsAware () [static]

Returns the value set by setDesktopSettingsAware(), by default TRUE.
See also setDesktopSettingsAware() [p. 24].

int QApplication::doubleClickInterval () [static]

Returns the maximum duration for a double click.
The default value on X11 is 400 milliseconds. On Windows, the control panel value is used.

See also setDoubleClickInterval() [p. 25].

int QApplication::enter loop ()

This function enters the main event loop (recursively). Do not call it unless you really know what you are doing.

See also exit_loop() and loopLevel() [p. 18].

int QApplication::exec ()
Enters the main event loop and waits until exit() is called or the main widget is destroyed, and returns the value
that was set to exit() (which is 0 if exit() is called via quit()).

It is necessary to call this function to start event handling. The main event loop receives events from the window
system and dispatches these to the application widgets.

Generally speaking, no user interaction can take place before calling exec(). As a special case, modal widgets like
QMessageBox can be used before calling exec(), because modal widgets call exec() to start a local event loop.

To make your application perform idle processing, i.e. executing a special function whenever there are no pending
events, use a QTimer with 0 timeout. More advanced idle processing schemes can be achieved using processEv-
ents().

See also quit() [p. 21], exit() [p. 16], processEvents() [p. 20] and setMainWidget() [p. 26].

Examples: action/actiongroup/main.cpp, biff/main.cpp, fonts/simple-qfont-demo,/simple-qfont-demo.cpp,
life/main.cpp, t1/main.cpp, t4/main.cpp and xml/outliner/main.cpp.

QApplication Class Reference 16

void QApplication::exit (int retcode = 0) [static]

Tells the application to exit with a return code.

After this function has been called, the application leaves the main event loop and returns from the call to exec().
The exec() function returns retcode.

By convention, retcode O means success. Any non-zero value indicates an error.

Note that unlike the C library function of the same name, this function does return to the caller - it is event
processing that stops.

See also quit() [p. 21] and exec() [p. 15].

Example: picture/picture.cpp.

void QApplication::exit loop ()

This function exits from a recursive call to the main event loop. Do not call it unless you are an expert.

See also enter loop() and loopLevel() [p. 18].

void QApplication::flush () [static]

Flushes the window system specific event queues.

If you are doing graphical changes inside a loop that does not return to the event loop on asynchronous window
systems like X11 or double buffered window systems like MacOS X, and you want to visualize these changes
immediately (e.g. Splash Screens), call this function.

See also flushX() [p. 16], sendPostedEvents() [p. 22] and QPainter::flush() [Graphics with Qt].

void QApplication::flushX () [static]

Flushes the X event queue in the X11 implementation. This normally returns almost immediately. Does nothing on
other platforms.

See also syncX() [p. 29].

Example: xform/xform.cpp.

QWidget * QApplication::focusWidget () const
Returns the application widget that has the keyboard input focus, or null if no widget in this application has the
focus.

See also QWidget::setFocus() [Widgets with Qt], QWidget::focus [Widgets with Qt] and activeWindow() [p. 12].

QFont QApplication::font (const QWidget * w = 0) [static]

Returns the default font for the widget. Basically this function uses w->className() to find the font.
If w is O the default application font is returned.

See also setFont() [p. 25], fontMetrics() [p. 17] and QWidget::font [Widgets with Qt].

Examples: qfd/fontdisplayer.cpp, themes/metal.cpp and themes/themes.cpp.

QApplication Class Reference 17

QFontMetrics QApplication::fontMetrics () [static]

Returns display (screen) font metrics for the application font.

See also font() [p. 16], setFont() [p. 25], QWidget::fontMetrics() [Widgets with Qt] and QPainter::fontMetrics()
[Graphics with Qt].

QSize QApplication::globalStrut () [static]

Returns the application’s global strut.

The strut is a size object whose dimensions are the minimum that any GUI element that the user can interact with
should have. For example no button should be resized to be smaller than the global strut size.

See also setGlobalStrut() [p. 26].

void QApplication::guiThreadAwake () [signal]

This signal is emitted when the GUI thread is about to process a cycle of the event loop.

See also wakeUpGuiThread() [p. 30].

bool QApplication::hasGlobalMouseTracking () [static]

Returns TRUE if global mouse tracking is enabled, otherwise FALSE.
See also setGlobalMouseTracking() [p. 25].

bool QApplication::hasPendingEvents ()

This function returns TRUE if there are pending events, and returns FALSE if there are not. Pending events can be
either from the window system or posted events using QApplication::postEvent().

int QApplication::horizontalAlignment (int align) [static]

Strips out vertical alignment flags and transforms an alignment align of AlignAuto into AlignLeft or AlignRight
according to the language used. The other horizontal alignment flags are left untouched.

void QApplication::installTranslator (QTranslator * mf)

Adds the message file mf to the list of message files to be used for translations.

Multiple message files can be installed. Translations are searched for in the last installed message file, then the one
from last, and so on, back to the first installed message file. The search stops as soon as a matching translation is
found.

See also removeTranslator() [p. 211, translate() [p. 30] and QTranslator::load() [Accessibility and
Internationalization with Qt].

Example: i18n/main.cpp.

QApplication Class Reference 18

bool QApplication::isEffectEnabled (Qt::UlIEffect effect) [static]

Returns TRUE if effect is enabled, otherwise FALSE.
By default, Qt will try to use the desktop settings, and setDesktopSettingsAware () must be called to prevent this.
See also setEffectEnabled() [p. 25] and Qt::UlEffect [p. 192].

bool QApplication::isSessionRestored () const

Returns TRUE if the application has been restored from an earlier session.

See also sessionId() [p. 23], commitData() [p. 14] and saveState() [p. 22].

void QApplication::lastWindowClosed () [signal]

This signal is emitted when the user has closed the last top level window.

The signal is very useful when your application has many top level widgets but no main widget. You can then
connect it to the quit() slot.

For convenience, this signal is not emitted for transient top level widgets such as popup menus and dialogs.

See also mainWidget() [p. 19], topLevelWidgets([p. 29], QWidget::isTopLevel [Widgets with Qt] and
QWidget::close() [Widgets with Qt].

Examples: action/main.cpp, addressbook/main.cpp, application/main.cpp, helpviewer/main.cpp, mdi/main.cpp,
qwerty/main.cpp and showimg/main.cpp.

QStringList QApplication::libraryPaths () [static]

Returns a list of paths that the application will search when dynamically loading libraries.

See also setLibraryPaths() [p. 26], addLibraryPath() [p. 12], removeLibraryPath() [p. 21] and QLibrary [Plugins
with Qt].

void QApplication::lock ()

Lock the Qt library mutex. If another thread has already locked the mutex, the calling thread will block until the
other thread has unlocked the mutex.

See also unlock() [p. 30] and locked() [p. 18].

bool QApplication::locked ()

Returns TRUE if the Qt library mutex is locked by a different thread, otherwise returns FALSE.

Warning: Due to differing implementations of recursive mutexes on supported platforms, calling this function from
the same thread that previous locked the mutex will give undefined results.

See also lock() [p. 18] and unlock() [p. 30].

int QApplication::loopLevel () const

Returns the current loop level

QApplication Class Reference 19

See also enter_loop() and exit_loop().

QWidget * QApplication::mainWidget () const

Returns the main application widget, or a null pointer if there is not a defined main widget.

See also setMainWidget() [p. 26].

bool QApplication::notify (QObject * receiver, QEvent * e) [virtual]

Sends event e to receiver: receiver->event(e). Returns the value that is returned from the receiver’s event handler.

For certain types of events (e.g. mouse and key events), the event will be propagated to the receiver’s parent and
so on up to the top-level object if the receiver is not interested in the event (i.e., it returns FALSE).

Reimplementing this virtual function is one of five ways to process an event:

1. Reimplementing this function. Very powerful, you get complete control, but of course only one subclass can
be gApp.

2. Installing an event filter on gApp. Such an event filter gets to process all events for all widgets, so it’s just as
powerful as reimplementing notify(), and in this way it’s possible to have more than one application-global
event filter. Global event filters get to see even mouse events for disabled widgets, and if global mouse
tracking is enabled, mouse move events for all widgets.

3. Reimplementing QObject::event() (as QWidget does). If you do this you get tab key presses, and you get to
see the events before any widget-specific event filters.

4. Installing an event filter on the object. Such an even filter gets all the events except Tab and Shift-Tab key
presses.

5. Finally, reimplementing paintEvent(), mousePressEvent() and so on. This is the normal, easiest and least
powerful way.

See also QObject::event() [p. 131] and installEventFilter() [p. 132].

QCursor * QApplication::overrideCursor () [static]

Returns the active application override cursor.
This function returns 0O if no application cursor has been defined (i.e. the internal cursor stack is empty).

See also setOverrideCursor() [p. 26] and restoreOverrideCursor() [p. 21].

QPalette QApplication::palette (const QWidget * w = 0) [static]
Returns a pointer to the default application palette. There is always an application palette, i.e. the returned pointer
is guaranteed to be non-null.

If a widget is passed at w, the default palette for the widget’s class is returned. This may or may not be the
application palette. In most cases there isn’t a special palette for certain types of widgets, but one notable exception
is the popup menu under Windows, if the user has defined a special background color for menus in the display
settings.

See also setPalette() [p. 27] and QWidget::palette [Widgets with Qt].

Examples: desktop/desktop.cpp, themes/metal.cpp and themes/wood.cpp.

QApplication Class Reference 20

void QApplication::polish (QWidget * w) [virtual]

Initialization of the appearance of the widget w before it is first shown.

Usually widgets call this automatically when they are polished. It may be used to do some style-based central
customization of widgets.

Note that you are not limited to the public functions of QWidget. Instead, based on meta information like QOb-
ject::className() you are able to customize any kind of widget.

See also QStyle::polish() [Events, Actions, Layouts and Styles with Qt], QWidget::polish() [Widgets with Qt],
setPalette() [p. 271 and setFont() [p. 25].

void QApplication::postEvent (QObject * receiver, QEvent * event) [static]

Adds the event event with the object receiver as the reciever of the event to an event queue and returns immediately.

The event must be allocated on the heap since the post event queue will take ownership of the event and delete it
once it has been posted.

When control returns to the main event loop, all events that are stored in the queue will be sent using the notify()
function.

See also sendEvent() [p. 22], QThread::postEvent() [Threading with Qt] and notify() [p. 19].

void QApplication::processEvents ()

Processes pending events, for 3 seconds or until there are no more events to process, whichever is shorter.
You can call this function occasionally when your program is busy performing a long operation (e.g. copying a file).
See also exec() [p. 15] and QTimer [p. 205].

Example: fileiconview/qfileiconview.cpp.

void QApplication::processEvents (int maxtime)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Processes pending events for maxtime milliseconds or until there are no more events to process, whichever is
shorter.

You can call this function occasionally when you program is busy doing a long operation (e.g. copying a file).

See also exec() [p. 15] and QTimer [p. 205].

void QApplication::processOneEvent ()

Waits for an event to occur, processes it, then returns.

This function is useful for adapting Qt to situations where the event processing must be grafted into existing
program loops.

Using this function in new applications may be an indication of design problems.

See also processEvents() [p. 201, exec() [p. 15] and QTimer [p. 205].

QApplication Class Reference 21

void QApplication::quit () [slot]

Tells the application to exit with return code 0 (success). Equivalent to calling QApplication::exit(0).

It’s common to connect the lastWindowClosed() signal to quit(), and you also often connect e.g. QButton::clicked()
or signals in QAction, QPopupMenu or QMenuBar to it.

Example:

QPushButton *quitButton = new QPushButton("Quit");
connect (quitButton, SIGNAL(clicked()), gApp, SLOT(quit()));

See also exit() [p. 16], aboutToQuit() [p. 11], lastWindowClosed() [p. 18] and QAction [Events, Actions, Layouts
and Styles with Qt].

Examples: addressbook/main.cpp, helpviewer/main.cpp, qwerty/main.cpp, showimg/main.cpp, t2/main.cpp,
t4/main.cpp and t6/main.cpp.

bool QApplication::remoteControlEnabled () const

Returns TRUE if remote control access is enabled for the application; otherwise returns FALSE.

void QApplication::removeLibraryPath (const QString & path) [static]

Removes path from the library path list. If path is empty or not in the path list, the list is not changed.
See also addLibraryPath() [p. 12], libraryPaths() [p. 18] and setLibraryPaths() [p. 26].

void QApplication::removePostedEvents (QObject * receiver) [static]

Removes all events posted using postEvent() for receiver.

The events are not dispatched, instead they are removed from the queue. You should never need to call this
function. If you do call it, be aware that killing events may cause receiver to break one or more invariants.

void QApplication::removeTranslator (QTranslator * mf)

Removes the message file mf from the list of message files used by this application. (It does not delete the message
file from the file system.)

See also installTranslator() [p. 17], translate() [p. 30] and QObject::tr() [p. 137].

Example: i18n/main.cpp.

void QApplication::restoreOverrideCursor () [static]

Undoes the last setOverrideCursor().

If setOverrideCursor() has been called twice, calling restoreOverrideCursor() will activate the first cursor set. Call-
ing this function a second time restores the original widgets cursors.

See also setOverrideCursor() [p. 26] and overrideCursor() [p. 19].

Example: showimg/showimg.cpp.

QApplication Class Reference 22

bool QApplication::reverseLayout () [static]

Returns TRUE if all dialogs and widgets will be laid out in a mirrored fashion.

See also setReverseLayout() [p. 27].

void QApplication::saveState (QSessionManager & sm) [virtual]
This function deals with session management. It is invoked when the session manager wants the application to
preserve its state for a future session.

For a text editor this would mean creating a temporary file that includes the current contents of the edit buffers,
the location of the cursor and other aspects of the current editing session.

Note that you should never exit the application within this function. Instead, the session manager may or may
not do this afterwards, depending on the context. Futhermore, most session managers will very likely request a
saved state immediately after the application has been started. This permits the session manager to learn about the
application’s restart policy.

Important Within this function, no user interaction is possible, unless you ask the session manager sm for ex-
plicit permission. See QSessionManager::allowsInteraction() and QSessionManager::allowsErrorInteraction() for
details.

See also isSessionRestored() [p. 18], sessionId() [p. 23] and commitData() [p. 14].

bool QApplication::sendEvent (QObject * receiver, QEvent * event) [static]

Sends event event directly to receiver receiver, using the notify() function. Returns the value that was returned from
the event handler.

The event is not deleted when the event has been sent. The normal approach is to create the event on the stack,
e.g.

QwbuseEvent me(QEvent:: MuseButtonPress, pos, 0, 0);
QApplication::sendEvent (mai nW ndow, é&ne);

If you create the event on the heap you must delete it.
See also postEvent() [p. 20] and notify() [p. 19].
Example: popup/popup.cpp.

void QApplication::sendPostedEvents (QObject * receiver, int event_type) [static]

Immediately dispatches all events which have been previously queued with QApplication::postEvent() and which
are for the object receiver and have the event type event type.

Note that events from the window system are not dispatched by this function, but by processEvents().

void QApplication::sendPostedEvents () [static]

Dispatches all posted events, i.e. empties the event queue. This is an overloaded member function, provided for
convenience. It behaves essentially like the above function.

QApplication Class Reference 23

QString QApplication::sessionld () const

Returns the identifier of the current session.

If the application has been restored from an earlier session, this identifier is the same as it was in that previous
session.

The session identifier is guaranteed to be unique both for different applications and for different instances of the
same application.

See also isSessionRestored() [p. 18], commitData() [p. 14] and saveState() [p. 22].

void QApplication::setColorSpec (int spec) [static]

Sets the color specification for the application to spec.

The color specification controls how your application allocates colors when run on a display with a limited amount
of colors, i.e. 8 bit / 256 color displays.

The color specification must be set before you create the QApplication object.

The choices are:

e QApplication::NormalColor. This is the default color allocation strategy. Use this choice if your application
uses buttons, menus, texts and pixmaps with few colors. With this choice, the application uses system global
colors. This works fine for most applications under X11, but on Windows machines it may cause dithering of
non-standard colors.

e QApplication::CustomColor. Use this choice if your application needs a small number of custom colors. On
X11, this choice is the same as NormalColor. On Windows, Qt creates a Windows palette, and allocates colors
to it on demand.

e QApplication::ManyColor. Use this choice if your application is very color hungry (e.g. it wants thousands of
colors). Under X11 the effect is:

— For 256-color displays which have at best a 256 color true color visual, the default visual is used, and
colors are allocated from a color cube. The color cube is the 6x6x6 (216 color) "Web palette", but the
number of colors can be changed by the -ncols option. The user can force the application to use the true
color visual by the -visual option.

— For 256-color displays which have a true color visual with more than 256 colors, use that visual. Silicon
Graphics X servers have this feature, for example. They provide an 8 bit visual by default but can deliver
true color when asked.

On Windows, Qt creates a Windows palette, and fills it with a color cube.
Be aware that the CustomColor and ManyColor choices may lead to colormap flashing: The foreground application
gets (most) of the available colors, while the background windows will look less attractive.
Example:

int min(int argc, char **argv)

{
QAppli cation::set Gol or Spec(QApplication::ManyQlor);

QApplication a(argc, argv);
}

QColor provides more functionality for controlling color allocation and freeing up certain colors. See
QColor::enterAllocContext() for more information.

To see what mode you end up with, you can call QColor::numBitPlanes() once the QApplication object exists. A
value greater than 8 (typically 16, 24 or 32) means true color.

QApplication Class Reference 24

The color cube used by Qt has all those colors with red, green, and blue components of either 0x00, 0x33, 0x66,
0x99, 0xCC, or OxFE.

See also colorSpec() [p. 141, QColor::numBitPlanes() [Graphics with Qt] and QColor::enterAllocContext()
[Graphics with Qt].

Examples: helpviewer/main.cpp, showimg/main.cpp, t9/main.cpp, tetrix/tetrix.cpp and themes/main.cpp.

void QApplication::setCursorFlashTime (int msecs) [static]

Sets the text cursor’s flash time to msecs milliseconds. The flash time is the time required to display, invert and
restore the caret display: A full flash cycle. Usually, the text cursor is displayed for msecs/2 milliseconds, then
hidden for msecs/2 milliseconds, but this may vary.

Note that on Microsoft Windows, calling this function sets the cursor flash time for all windows.

See also cursorFlashTime() [p. 14].

void QApplication::setDefaultCodec (QTextCodec * codec)

Sets the default codec of the application to codec.

If the literal quoted text in the program is not in the Latinl encoding, this function can be used to set the appro-
priate encoding. For example, software developed by Korean programmers might use eucKR for all the text in the
program, in which case the main() function might look like this:

int main(int argc, char** argv)

{
QApplication app(argc, argv);
install any additional codecs ...
app. set Def aul t Codec(QText Codec: : codecFor Name(" euckR'));
}

Note that this is not the way to select the encoding that the user has chosen. For example, to convert an application
containing literal English strings to Korean, all that is needed is for the English strings to be passed through tr() and
for translation files to be loaded. For details of internationalization, see the Qt internationalization documentation.

Note also that some Qt built-in classes call tr() with various strings. These strings are in English, so for a full
translation, a codec would be required for these strings.

void QApplication::setDesktopSettingsAware (bool on) [static]

By default, Qt will try to use the current standard colors, fonts etc. from the underlying window system’s desktop
settings, and use them for all relevant widgets. This behavior can be switched off by calling this function with on
set to FALSE.

This static function must be called before creating the QApplication object, like this:
int min(int argc, char** argv) {

QApplication:: setDeskt opSettingsAware(FALSE); // | know better than the user
QApplication nyApp(argc, argv); // give me default fonts & colors

See also desktopSettingsAware() [p. 15].

QApplication Class Reference 25

void QApplication::setDoubleClickInterval (int ms) [static]

Sets the time limit that distinguishes a double click from two consecutive mouse clicks to ms milliseconds.
Note that on Microsoft Windows, calling this function sets the double click interval for all windows.

See also doubleClickInterval() [p. 15].

void QApplication::setEffectEnabled (Qt::UlIEffect effect, bool enable = TRUE) [static]

Enables the Ul effect effect if enable is TRUE, otherwise the effect will not be used.
See also isEffectEnabled() [p. 18], Qt::UlEffect [p. 192] and setDesktopSettingsAware() [p. 24].

void QApplication::setEnableRemoteControl (bool enable, const QUuid appld = QUuid
)

Enables remote access to the application if enable is set to TRUE. You can use the appld to give your application a
unique identification that can be used by the remote control. If enable is set to FALSE a currently remote access is
terminated. Remote control access is disabled by default. You can call this function any time after having created
the application.

void QApplication::setFont (const QFont & font, bool informWidgets = FALSE,
const char * className = 0) [static]

Changes the default application font to font. If informWidgets is TRUE, then existing widgets are informed about
the change and may adjust themselves to the new application setting. Otherwise the change only affects newly
created widgets. If className is passed, the change applies only to classes that inherit className (as reported by
QObject::inherits()).

On application start-up, the default font depends on the window system. It can vary both with window system
version and with locale. This function lets you override the default font; but overriding may be a bad idea, for
example some locales need extra-large fonts to support their special characters.

See also font() [p. 161, fontMetrics() [p. 17] and QWidget::font [Widgets with Qt].

Examples: desktop/desktop.cpp, i18n/main.cpp, qfd/qfd.cpp, showimg/main.cpp, themes/metal.cpp and
themes/themes.cpp.

void QApplication::setGlobalMouseTracking (bool enable) [static]

Enables global mouse tracking if enable is TRUE or disables it if enable is FALSE.

Enabling global mouse tracking makes it possible for widget event filters or application event filters to get all mouse
move events, even when no button is depressed. This is useful for special GUI elements, e.g. tool tips.

Global mouse tracking does not affect widgets and their mouseMoveEvent(). For a widget to get mouse move
events when no button is depressed, it must do QWidget::setMouseTracking(TRUE).

This function uses an internal counter. Each setGlobalMouseTracking(TRUE) must have a corresponding setGlob-
alMouseTracking(FALSE):

/1 at this point global nouse tracking is off
Application:: setd obal MouseTracki ng(TRUE);
Appli cation:: set d obal MouseTracki ng(TRUE);
Appl i cation:: setd obal MouseTracki ng(FALSE);

QApplication Class Reference 26

[/ at this point it's still on
QApplication::setd obal MouseTracki ng(FALSE);
[/ but nowit’'s off

See also hasGlobalMouseTracking() [p. 17] and QWidget::mouseTracking [Widgets with Qt].

void QApplication::setGlobalStrut (const QSize & strut) [static]

Sets the application’s global strut to strut.

The strut is a size object whose dimensions are the minimum that any GUI element that the user can interact with
should have. For example no button should be resized to be smaller than the global strut size.

The strut size should be considered when reimplementing GUI controls that may be used on touch-screens or
similar I0-devices.

Example:

QSi ze& Wdget O ass: : sizeHi nt() const
{

}

return QSize(80, 25).expandedTo(QApplication::global Strut());

See also globalStrut() [p. 17].

void QApplication::setLibraryPaths (const QStringList & paths) [static]
Sets the list of directories to search when loading libraries to paths. If paths is empty, the path list is unchanged,
otherwise all existing paths will be deleted and the path list will consist of the paths given in paths.

See also libraryPaths() [p. 18], addLibraryPath() [p. 12], removeLibraryPath() [p. 21] and QLibrary [Plugins with
Qtl.

void QApplication::setMainWidget (QWidget * mainWidget) [virtual]

Sets the main widget of the application to mainWidget.
The main widget is like any other, in most respects except that if it is deleted, the application exits.
You need not have a main widget; connecting lastWindowClosed () to quit() is another alternative.

For X11, this function also resizes and moves the main widget according to the -geometry command-line option, so
you should set the default geometry (using QWidget::setGeometry()) before calling setMainWidget().

See also mainWidget() [p. 191, exec() [p. 15] and quit() [p. 211].

Examples: action/actiongroup/main.cpp, biff/main.cpp, fonts/simple-qfont-demo/simple-qfont-demo.cpp,
life/main.cpp, t1/main.cpp, t4/main.cpp and xml/outliner/main.cpp.

void QApplication::setOverrideCursor (const QCursor & cursor, bool replace =
FALSE) [static]

Sets the application override cursor to cursor.

Application override cursors are intended for showing the user that the application is in a special state, for example
during an operation that might take some time.

QApplication Class Reference 27

This cursor will be displayed in all the widgets of the application until restoreOverrideCursor() or another setOver-
rideCursor() is called.

Application cursors are stored on an internal stack. setOverrideCursor() pushes the cursor onto the stack, and re-
storeOverrideCursor() pops the active cursor off the stack. Every setOverrideCursor() must eventually be followed
by a corresponding restoreOverrideCursor(), otherwise the stack will never be emptied.

If replace is TRUE, the new cursor will replace the last override cursor (the stack keeps its depth). If replace is
FALSE, the new stack is pushed onto the top of the stack.

Example:
QApplication::setOverrideCursor(Q::WitCursor);
cal cul at eHugeMandel brot () ; Il lunch tinme...
Application::restoreOverrideCursor();

See also overrideCursor() [p. 19], restoreOverrideCursor() [p. 21] and QWidget::cursor [Widgets with Qt].

Example: showimg/showimg.cpp.

void QApplication::setPalette (const QPalette & palette, bool informWidgets = FALSE,
const char * className = 0) [static]

Changes the default application palette to palette. If informWidgets is TRUE, then existing widgets are informed
about the change and may adjust themselves to the new application setting. Otherwise the change only affects
newly created widgets. If className is passed, the change applies only to classes that inherit className (as reported
by QObject::inherits()).

The palette may be changed according to the current GUI style in QStyle::polish().

See also QWidget::palette [Widgets with Qt], palette() [p. 19] and QStyle::polish() [Events, Actions, Layouts and
Styles with Qt].

Examples: i18n/main.cpp, themes/metal.cpp, themes/themes.cpp and themes/wood.cpp.

void QApplication::setReverseLayout (bool b) [static]

If b is TRUE, all dialogs and widgets will be laid out in a mirrored fashion, as required by right to left languages
such as Hebrew and Arabic.

See also reverseLayout() [p. 22].
void QApplication::setStartDragDistance (int 1) [static]
Sets the distance after which a drag should start to [ms.

See also startDragDistance() [p. 28].

void QApplication::setStartDragTime (int ms) [static]

Sets the time after which a drag should start to ms ms.

See also startDragTime() [p. 29].

QApplication Class Reference 28

void QApplication::setStyle (QStyle * style) [static]
Sets the application GUI style to style. Ownership of the style object is transferred to QApplication, so QApplication
will delete the style object on application exit or when a new style is set.

Example usage:
QApplication::setStyle(new QN ndowStyle);
When switching application styles, the color palette is set back to the initial colors or the system defaults. This is

necessary since certain styles have to adapt the color palette to be fully style-guide compliant.

See also style() [p. 291, QStyle [Events, Actions, Layouts and Styles with Qt], setPalette() [p. 27] and
desktopSettingsAware() [p. 15].

Example: themes/themes.cpp.

QStyle * QApplication::setStyle (const QString & style) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Uses QStyleFactory to create a QStyle object for style.

void QApplication::setWheelScrollLines (int n) [static]

Sets the number of lines to scroll when the mouse wheel is rotated to n.

If this number exceeds the number of visible lines in a certain widget, the widget should interpret the scroll
operation as a single page up / page down operation instead.

See also wheelScrollLines() [p. 311].

void QApplication::setWinStyleHighlightColor (const QColor & c) [static]
This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Sets the color used to mark selections in windows style for all widgets in the application. Will repaint all widgets if
the color is changed.

The default color is dar kBl ue.

See also winStyleHighlightColor() [p. 31].

int QApplication::startDragDistance () [static]

If you support drag and drop in you application and a drag should start after a mouse click and after moving the
mouse a certain distance, you should use the value which this method returns as the distance. So if the mouse
position of the click is stored in st art Pos and the current position (e.g. in the mouse move event) is cur r Pos, you
can find out if a drag should be started with code like this:

if ((startPos - currPos).manhattanLength() > QApplication::startDragDi stance())
start TheDrag();

Qt internally uses this value too, e.g. in the QFileDialog.

The default value is 4 pixels.

QApplication Class Reference 29

See also setStartDragDistance() [p. 27], startDragTime() [p. 29] and QPoint::manhattanLength() [Graphics with
Qt].

int QApplication::startDragTime () [static]

If you support drag and drop in you application and a drag should start after a mouse click and after a certain time
elapsed, you should use the value which this method returns as delay (in ms).

Qt internally uses also this delay e.g. in QTextView or QLineEdit for starting a drag.

The default value is 500 ms.

See also setStartDragTime() [p. 27] and startDragDistance() [p. 28].

bool QApplication::startingUp () [static]

Returns TRUE if an application object has not been created yet.

See also closingDown() [p. 14].

QStyle & QApplication::style () [static]

Returns the style object of the application.

See also setStyle() [p. 28] and QStyle [Events, Actions, Layouts and Styles with Qt].

void QApplication::syncX () [static]

Synchronizes with the X server in the X11 implementation. This normally takes some time. Does nothing on other
platforms.

See also flushX() [p. 16].

QWidgetList * QApplication::topLevelWidgets () [static]

Returns a list of the top level widgets in the application.

The list is created using new and must be deleted by the caller.

The list is empty (QPtrList::isEmpty()) if there are no top level widgets.

Note that some of the top level widgets may be hidden, for example the tooltip if no tooltip is currently shown.

Example:

/1 Show all hidden top |evel widgets.
QN dgetList *list = QApplication::topLevel Wdgets();
QN dgetListlt it(*list); [/ iterate over the widgets
QN dget * w,
while ((w=sit.current()) !'=0) { // for each top level wdget...
+HHit;
if ('w>isVisible())
w>show() ;
}

delete list; Il delete the list, not the w dgets

QApplication Class Reference 30

Warning: Delete the list as soon you have finished using it. The widgets in the list may be deleted by someone else
at any time.

See also allWidgets() [p. 12], QWidget::isTopLevel [Widgets with Qt], QWidget::visible [Widgets with Qt] and
QPtrList::isEmpty() [Datastructures and String Handling with Qt].

QString QApplication::translate (const char * context, const char * sourceText,
const char * comment = 0, Encoding encoding = DefaultCodec) const

Returns the translation text for sourceText, by querying the installed messages files. The message files are searched
from the most recently installed message file back to the first installed message file.
QObject::tr() and QObject::trUtf8() provide this functionality more conveniently.

context is typically a class name (e.g., "MyDialog") and sourceText is either English text or a short marker text, if the
output text will be very long (as for help texts).

comment is a disambiguating comment, for when the same sourceText is used in different roles within one context.
By default, it is null.

See the QTranslator [Accessibility and Internationalization with Qt] documentation for more information about
contexts and comments.

If none of the message files contain a translation for sourceText in context, this function returns a QString equivalent
of sourceText. The encoding of sourceText is specified by encoding; it defaults to DefaultCodec.

This function is not virtual. You can use alternative translation techniques by subclassing QTranslator.

See also QObject::tr() [p. 1371, installTranslator() [p. 17] and defaultCodec() [p. 14].

bool QApplication::tryLock ()

Attempts to lock the Qt library mutex. If the lock was obtained, this function returns TRUE. If another thread has
locked the mutex, this function returns FALSE, instead of waiting for the lock to become available.

The mutex must be unlocked with unlock() before another thread can successfully lock it.

See also lock() [p. 18] and unlock() [p. 30].

Type QApplication::type () const

Returns the type of application, Tty, GuiClient or GuiServer.

void QApplication::unlock (bool wakeUpGui = TRUE)

Unlock the Qt library mutex. if wakeUpGui is TRUE (the default), then the GUI thread will be woken with QAppli-
cation::wakeUpGuiThread().

See also lock() [p. 18] and locked() [p. 18].

void QApplication::wakeUpGuiThread ()

Wakes up the GUI thread.
See also guiThreadAwake() [p. 17].

QApplication Class Reference 31

int QApplication::wheelScrollLines () [static]

Returns the number of lines to scroll when the mouse wheel is rotated.

See also setWheelScrollLines() [p. 28].

QWidget * QApplication::widgetAt (int x, int y, bool child = FALSE) [static]

Returns a pointer to the widget at global screen position (x,y), or a null pointer if there is no Qt widget there.

If child is FALSE and there is a child widget at position (x,y), the top-level widget containing it is returned. If child
is TRUE the child widget at position (x,y) is returned.

This function is normally rather slow.

See also QCursor::pos() [Graphics with Qt], QWidget::grabMouse() [Widgets with Qt] and
QWidget::grabKeyboard () [Widgets with Qt].

QWidget * QApplication::widgetAt (const QPoint & pos, bool child = FALSE) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns a pointer to the widget at global screen position pos, or a null pointer if there is no Qt widget there.

If child is FALSE and there is a child widget at position pos, the top-level widget containing it is returned. If child is
TRUE the child widget at position pos is returned.

bool QApplication::winEventFilter (MSG *) [virtual]

The message procedure calls this function for every message received. Reimplement this function if you want to
process window messages msg that are not processed by Qt.

void QApplication::winFocus (QWidget * widget, bool gotFocus)

If gotFocus is TRUE, widget will become the active window. Otherwise, the active window is reset to NULL.

const QColor & QApplication::winStyleHighlightColor () [static]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Returns the color used to mark selections in windows style.

See also setWinStyleHighlightColor() [p. 28].

WindowsVersion QApplication::winVersion () [static]

Returns the version of the Windows operating system running:

e Qt::WV_95 - Windows 95

e Qt::WV_98 - Windows 98

e Qt::WV_ME - Windows ME

o Qt::WV_NT - Windows NT 4.x

QApplication Class Reference 32

e Qt::WV_2000 - Windows 2000 (NT5)
e Qt::WV_XP - Windows XP

Note that this function is implemented for the Windows version of Qt only.

Related Functions

void Q_ASSERT (bool test)

Prints a warning message containing the source code file name and line number if test is FALSE.
This is really a macro defined in qglobal.h.
Q _ASSERT is useful for testing required conditions in your program.
Example:
1

[/ File: div.cpp
iy

#i ncl ude <qgl obal . h>
int divide(int a, int b)
{
QASSERT(b !'=0); Il thisis line 9

return al/b;

}

If b is zero, the Q_ASSERT statement will output the following message using the qWarning() function:
ASSERT: "b == 0" in div.cpp (9)

See also qWarning() [p. 35] and Debugging [Programming with Qt].

void Q_CHECK_PTR (void * p)

If p is null, a fatal messages says that the program ran out of memory and exits. If p is not null, nothing happens.
This is really a macro defined in qglobal.h.
Example:
int *a,
Q CHECK PTR(a = new int[80]); /1 never do this!
/1 do this instead:

a = new int[80];
Q CHECK_PTR(a); [l this is fine

See also gFatal() [p. 34] and Debugging [Programming with Qt].

void gAddPostRoutine (QtCleanUpFunction p)

Adds a global routine that will be called from the QApplication destructor. This function is normally used to add
cleanup routines for program-wide functionality.

QApplication Class Reference 33

The function given by p should take no arguments and return nothing, like this:
static int *global ptr = 0;

static void cleanup_ptr()
{
delete [] global ptr;
gl obal _ptr = 0;
}

void init_ptr()

gl obal _ptr = new int[100]; /1 allocate data
gAddPost Routi ne(cl eanup_ptr); // delete later

}

Note that for an application- or module-wide cleanup, gAddPostRoutine() is often not suitable. People have a
tendency to make such modules dynamically loaded, and then unload those modules long before the QApplication
destructor is called, for example.

For modules and libraries, using a reference-counted initialization manager or Qt’ parent-child delete mechanism
may be better. Here is an example of a private class which uses the parent-child mechanism to call a cleanup
function at the right time:

class MyPrivatelnitStuff: public Qoject {
private:
M/PrivatelnitStuff(QObject * parent): QObject(parent) {
Il initialization goes here

}
M/PrivatelnitStuff * p;
public:
static MyPrivatelnitStuff * initStuff(QObject * parent) {
it (!p)
p = new MPrivatelnitStuff(parent);
return p;
}

~MyPrivatelnitStuff() {
Il cleanup (the "post routine") goes here
}

}

By selecting the right parent widget/object, this can often be made to clean up the module’s data at the exact right
moment.

void gDebug (const char * msg, ...)

Prints a debug message msg, or calls the message handler (if it has been installed).
This function takes a format string and a list of arguments, similar to the C printf() function.

Example:
qDebug("my window handle = %", myWdget->id());

Under X11, the text is printed to stderr. Under Windows, the text is sent to the debugger.

QApplication Class Reference 34

Warning: The internal buffer is limited to 8196 bytes (including the O-terminator).

See also qWarning() [p. 351, qFatal() [p. 341, glnstallMsgHandler() [p. 34] and Debugging [Programming with
Qt].
void qgFatal (const char * msg, ...)

Prints a fatal error message msg and exits, or calls the message handler (if it has been installed).
This function takes a format string and a list of arguments, similar to the C printf() function.

Example:

int divide(int a, int b)

{
if (b==20) Il program error
qFatal ("divide: cannot divide by zero");
return alb;
}

Under X11, the text is printed to stderr. Under Windows, the text is sent to the debugger.
Warning: The internal buffer is limited to 8196 bytes (including the O-terminator).

See also gDebug() [p. 331, gWarning() [p. 351, qInstallMsgHandler() [p. 34] and Debugging [Programming with
Qt].

QtMsgHandler gInstallMsgHandler (QtMsgHandler h)

Installs a Qt message handler h. Returns a pointer to the message handler previously defined.

The message handler is a function that prints out debug messages, warnings and fatal error messages. The Qt
library (debug version) contains hundreds of warning messages that are printed when internal errors (usually
invalid function arguments) occur. If you implement your own message handler, you get total control of these
messages.

The default message handler prints the message to the standard output under X11 or to the debugger under
Windows. If it is a fatal message, the application aborts immediately.

Only one message handler can be defined, since this is usually done on an application-wide basis to control debug
output.

To restore the message handler, call gl nst al | MsgHandl er (0) .

Example:

#i ncl ude <qgapplication. h>
#incl ude
#incl ude

voi d nmyMessageCQut put (Q MsgType type, const char *nsg)
{
switch (type) {
case Q¢ DebugMsg:
fprintf(stderr, "Debug: %\n", nsg);
br eak;
case Q Varni nghsg:
fprintf(stderr, "\Warning: %\n", nsg);
break;

QApplication Class Reference 35

case QX Fatal Msg:
fprintf(stderr, "Fatal: %\n", msg);

abort(); /'l dunp core on purpose
}
}
int min(int argc, char **argv)
{
ql nstal | MsgHandl er (nyMessageQut put);
QApplication a(argc, argv);
return a.exec();
}

See also gqDebug() [p. 33], qWarning() [p. 35], qFatal() [p. 34] and Debugging [Programming with Qt].

bool gSysInfo (int * wordSize, bool * bigEndian)

Obtains information about the system.

The system’s word size in bits (typically 32) is returned in wordSize. The bigEndian is set to TRUE if this is a
big-endian machine, or to FALSE if this is a little-endian machine.

In debug mode, this function calls qFatal() with a message if the computer is truly weird (i.e. different endianness
for 16 bit and 32 bit integers), in release mode it returns FALSE.

void qSystemWarning (const char * msg, int code)
Prints the message msg and uses code to get a system specific error message. When code is -1 (default), the system’s
last error code will be used if possible. Use this method to handle failures in platform specific API calls.

This function does nothing when Qt is built with Q_NO_DEBUG defined.

const char * qVersion ()

Returns the Qt version number for the library, typically "1.44" or "2.3.0".

void qWarning (const char * msg, ...)

Prints a warning message msg, or calls the message handler (if it has been installed).
This function takes a format string and a list of arguments, similar to the C printf() function.
Example:

void f(int c)
{
if (¢c>200)
gwarning("f: bad argunent, ¢ == %", c);
}
Under X11, the text is printed to stderr. Under Windows, the text is sent to the debugger.
Warning: The internal buffer is limited to 8196 bytes (including the O-terminator).

See also gDebug() [p. 331, qFatal() [p. 341, gqInstallMsgHandler() [p. 34] and Debugging [Programming with Qt].

QDate Class Reference

The QDate class provides date functions.

#incl ude <qdatetime. h>

Public Members

QDate ()

QDate (inty, int m, int d)

bool isNull () const

bool isValid () const

int year () const

int month () const

int day () const

int dayOfWeek () const

int dayOfYear () const

int daysInMonth () const

int daysInYear () const

QString toString (Qt::DateFormat f = Qt::TextDate) const
QString toString (const QString & format) const
bool setYMD (int y, int m, int d)

QDate addDays (int ndays) const

QDate addMonths (int nmonths) const
QDate addYears (int nyears) const

int daysTo (const QDate & d) const

bool operator== (const QDate & d) const
bool operator!= (const QDate & d) const
bool operator< (const QDate & d) const
bool operator<= (const QDate & d) const
bool operator> (const QDate & d) const
bool operator>= (const QDate & d) const

Static Public Members

QString monthName (int month) (obsolete)
QString dayName (int weekday) (obsolete)
QString shortMonthName (int month)
QString shortDayName (int weekday)
QString longMonthName (int month)

36

QDate Class Reference 37

m QString longDayName (int weekday)

m QDate currentDate ()

m QDate fromString (const QString & s, Qt::DateFormat f = Qt::TextDate)
m bool isValid (int y; int m, int d)

m bool leapYear (int y)

Related Functions

m QDataStream & operator<< (QDataStream & s, const QDate & d)
m QDataStream & operator>> (QDataStream & s, QDate & d)

Detailed Description

The QDate class provides date functions.

A QDate object contains a calendar date, i.e. year, month, and day numbers in the modern western (Gregorian)
calendar. It can read the current date from the system clock. It provides functions for comparing dates and for
manipulating dates, e.g. by adding a number of days or months or years.

A QDate object is typically created either by giving the year, month and day numbers explicitly, or by using the
static function currentDate(), which makes a QDate object which contains the system clock’s date. An explicit date
can also be set using setYMD(). The fromString() function returns a QDate given a string and a date format which
is used to interpret the date within the string.

The year(), month(), and day() functions provide access to the year, month, and day numbers. Also, dayOfWeek()
and dayOfYear() functions are provided. The same information is provided in textual format by the toString(),
shortDayName(), longDayName(), shortMonthName() and longMonthName() functions.

QDate provides a full set of operators to compare two QDate objects where smaller means earlier and larger means
later.

You can increment (or decrement) a date by a given number of days using addDays(). Similarly you can use
addMonths() and addYears(). The daysTo() function returns the number of days between two dates.

The daysInMonth() and daysinYear() functions return how many days there are in this date’s month and year,
respectively. The leapYear() function indicates whether this date is in a leap year.

Note that QDate should not be used for date calculations for dates prior to the introduction of the Gregorian
calendar. This calendar was adopted by England from 14th September 1752 (hence this is the earliest valid QDate),
and subsequently by most other western countries, until 1923.

The end of time is reached around 8000, by which time we expect Qt to be obsolete.

See also QTime [p. 198], QDateTime [p. 44], QDateEdit [Widgets with Qt], QDateTimeEdit [Widgets with Qt]
and Time and Date.

Member Function Documentation

QDate::QDate ()

Constructs a null date. Null dates are invalid.

See also isNull() [p. 39] and isValid() [p. 39].

QDate Class Reference 38

QDate::QDate (int y, int m, int d)

Constructs a date with year y, month m and day d.

y must be in the range 1752..8000, m must be in the range 1..12, and d must be in the range 1..31. Exception: if y
is in the range 0..99, it is interpreted as 1900..1999.

See also isValid() [p. 391.

QDate QDate::addDays (int ndays) const

Returns a QDate object containing a date ndays later than the date of this object (or earlier if ndays is negative).

See also daysTo() [p. 391].

QDate QDate::addMonths (int nmonths) const

Returns a QDate object containing a date nmonths later than the date of this object (or earlier if nmonths is
negative).

QDate QDate::addYears (int nyears) const

Returns a QDate object containing a date nyears later than the date of this object (or earlier if nyears is negative).

QDate QDate::currentDate () [static]

Returns the current date, as reported by the system clock.
See also QTime::currentTime() [p. 200] and QDateTime::currentDateTime() [p. 46].

Example: dclock/dclock.cpp.

int QDate::day () const

Returns the day of the month (1..31) of this date.
See also year() [p. 421, month() [p. 40] and dayOfWeek() [p. 38].
Example: dclock/dclock.cpp.

QString QDate::dayName (int weekday) [static]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use shortDayName() instead.

int QDate::dayOfWeek () const

Returns the weekday (Monday=1..Sunday=7) for this date.
See also day() [p. 38] and dayOfYear() [p. 39].

QDate Class Reference 39

int QDate::dayOfYear () const

Returns the day of the year (1..365) for this date.
See also day() [p. 38] and dayOfWeek() [p. 38].

int QDate::daysInMonth () const

Returns the number of days in the month (28..31) for this date.

See also day() [p. 38] and daysInYear() [p. 39].

int QDate::daysInYear () const

Returns the number of days in the year (365 or 366) for this date.
See also day() [p. 38] and daysInMonth() [p. 39].

int QDate::daysTo (const QDate & d) const

Returns the number of days from this date to d (which is negative if d is earlier than this date).

Example:

Qate d1(1995, 5, 17); [/ My 17th 1995
Qate d2(1995, 5, 20); // My 20th 1995
dl. daysTo(d2); Il returns 3
d2. daysTo(dl1); Il returns -3

See also addDays() [p. 38].

QDate QDate::fromString (const QString & s, Qt::DateFormat f = Qt::TextDate) [static]

Returns the QDate represented by the string s, using the format f, or an invalid date if this is not possible.
Qt::LocalDate cannot be used here.

Note for Qt::TextDate: It is recommended to use the English short month names (e.g. Jan). Localized month names
may also be used, but they depend on the user’s locale settings.

bool QDate::isNull () const

Returns TRUE if the date is null; otherwise returns FALSE. A null date is invalid.

See also isValid() [p. 39].

bool QDate::isValid () const

Returns TRUE if this date is valid; otherwise returns FALSE.
See also isNull() [p. 39].

QDate Class Reference 40

bool QDate::isValid (int y, int m, int d) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if the specified date (year y, month m and day d) is valid.

Example:
Qpate::isvValid(2002, 5, 17); [// TRUE My 17th 2002 is valid
Qpate::isValid(2002, 2, 30); // FALSE Feb 30th does not exi st
Qate::isValid(2004, 2, 29); // TRUE 2004 is a |leap year
Qate::isvValid(1202, 6, 6); [l FALSE 1202 is pre-Gegorian

Note that a y value in the range 00..99 is interpreted as 1900..1999.
See also isNull() [p. 39] and setYMDQ) [p. 41].

bool QDate::leapYear (int y) [static]

Returns TRUE if the specified year y is a leap year.

QString QDate::longDayName (int weekday) [static]

Returns the long name of the weekday.
1 = "Monday", 2 = "Tuesday", ... 7 = "Sunday"
The day names will be localized according to the system’s locale settings.

See also toString() [p. 42], shortDayName() [p. 41], shortMonthName() [p. 41] and longMonthName() [p. 40].

QString QDate::longMonthName (int month) [static]

Returns the long name of the month.
1 = "January", 2 = "February", ... 12 = "December”
The month names will be localized according to the system’s locale settings.

See also toString() [p. 421, shortMonthName() [p. 411, shortDayName() [p. 41] and longDayName() [p. 40].

int QDate::month () const

Returns the month (January=1..December=12) of this date.
See also year() [p. 42] and day() [p. 38].
Example: dclock/dclock.cpp.

QString QDate::monthName (int month) [static]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use shortMonthName() instead.

QDate Class Reference 41

bool QDate::operator!= (const QDate & d) const

Returns TRUE if this date is different from d; otherwise returns FALSE.

bool QDate::operator< (const QDate & d) const

Returns TRUE if this date is earlier than d, otherwise returns FALSE.

bool QDate::operator<= (const QDate & d) const

Returns TRUE if this date is earlier than or equal to d, otherwise returns FALSE.

bool QDate::operator== (const QDate & d) const

Returns TRUE if this date is equal to d; otherwise returns FALSE.

bool QDate::operator> (const QDate & d) const

Returns TRUE if this date is later than d, otherwise returns FALSE.

bool QDate::operator>= (const QDate & d) const

Returns TRUE if this date is later than or equal to d, otherwise returns FALSE.

bool QDate::setYMD (int y; int m, int d)

Sets the date’s year y, month m and day d.

y must be in the range 1752..8000, m must be in the range 1..12, and d must be in the range 1..31. Exception: if y
is in the range 0..99, it is interpreted as 1900..1999.

Returns TRUE if the date is valid, otherwise returns FALSE.

QString QDate::shortDayName (int weekday) [static]

Returns the name of the weekday.
1 = "Mon", 2 = "Tue", ... 7 = "Sun"
The day names will be localized according to the system’s locale settings.

See also toString() [p. 42], shortMonthName() [p. 41], longMonthName() [p. 40] and longDayName() [p. 40].

QString QDate::shortMonthName (int month) [static]

Returns the name of the month.
1 ="Jan", 2 = "Feb", ... 12 = "Dec"
The month names will be localized according to the system’s locale settings.

See also toString() [p. 42], longMonthName() [p. 40], shortDayName() [p. 41] and longDayName() [p. 40].

QDate Class Reference 42

QString QDate::toString (const QString & format) const

Returns the datetime as a string. The format parameter determines the format of the result string.

These expressions may be used:

e d - the day as number without a leading zero (1-31)

e dd - the day as number with a leading zero (01-31)

e ddd - the abbrevated day name (Mon - Sun). Uses QDate::shortDayName().

e dddd - the long day name (Monday - Sunday). Uses QDate::longDayName().

e M - the month as number without a leading zero (1-12)

e MM - the month as number with a leading zero (01-12)

e MMM - the abbrevated month name (Jan - Dec). Uses QDate::shortMonthName().

e MMMM - the long month name (January - December). Uses QDate::longMonthName().
e yy - the year as two digit number (00-99)

e yyyy - the year as four digit number (0000-9999)

All other input characters will be ignored.

Example format Strings (assumed that the QDate is 21. May 2001)

e "dd.MM.yyyy" will result in "21.05.2001"
e "ddd MMMM d yy" will result in "Tue May 21 01"

See also QDate::toString() [p. 42] and QTime::toString() [p. 203].

QString QDate::toString (Qt::DateFormat f = Qt::TextDate) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the date as a string. The f parameter determines the format of the string.

If f is Qt::TextDate, the string format is "Sat May 20 1995" (using the shortDayName() and shortMonthName()
functions to generate the string).

If f is Qt::ISODate, the string format corresponds to the ISO 8601 specification for representations of dates, which
is YYYY-MM-DD where YYYY is the year, MM is the month of the year (between 01 and 12), and DD is the day of
the month between 01 and 31.

If f is Qt::LocalDate, the string format depends on the locale settings of the system.
See also shortDayName() [p. 41] and shortMonthName() [p. 41].
int QDate::year () const

Returns the year (1752..8000) of this date.
See also month() [p. 40] and day() [p. 38].

Related Functions

QDataStream & operator<< (QDataStream & s, const QDate & d)

Writes the date, d, to the data stream, s.

QDate Class Reference

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QDataStream & operator>> (QDataStream & s, QDate & d)

Reads a date from the stream s into d.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

43

QDateTime Class Reference

The QDateTime class provides date and time functions.

#incl ude <qdatetime. h>

Public Members

= QDateTime ()

m QDateTime (const QDate & date)

m QDateTime (const QDate & date, const QTime & time)
m bool isNull () const

m bool isValid () const

m QDate date () const

QTime time () const

void setDate (const QDate & date)

void setTime (const QTime & time)

void setTime_t (uint secsSincelJan1970UTC)

m QString toString (Qt::DateFormat f = Qt::TextDate) const
m QString toString (const QString & format) const

m QDateTime addDays (int ndays) const

m QDateTime addMonths (int nmonths) const

m QDateTime addYears (int nyears) const

m QDateTime addSecs (int nsecs) const

» int daysTo (const QDateTime & dt) const

m int secsTo (const QDateTime & dt) const

m bool operator== (const QDateTime & dt) const
m bool operator!= (const QDateTime & dt) const
m bool operator< (const QDateTime & dt) const

m bool operator<= (const QDateTime & dt) const
m bool operator> (const QDateTime & dt) const

e bool operator>= (const QDateTime & dt) const

Static Public Members

m QDateTime currentDateTime ()
» QDateTime fromString (const QString & s, Qt::DateFormat f = Qt::TextDate)

44

QDateTime Class Reference 45

Related Functions

m QDataStream & operator<< (QDataStream & s, const QDateTime & dt)
m QDataStream & operator>> ((QDataStream & s, QDateTime & dt)

Detailed Description

The QDateTime class provides date and time functions.

A QDateTime object contains a calendar date and a clock time (a "datetime"). It is a combination of the QDate
and QTime classes. It can read the current datetime from the system clock. It provides functions for comparing
datetimes and for manipulating a datetime by adding a number of seconds, days, months or years.

A QDateTime object is typically created either by giving a date and time explicitly in the constructor, or by using
the static function currentDateTime(), which returns a QDateTime object set to the system clock’s time. The date
and time can be changed with setDate() and setTime(). A datetime can also be set using the setTime t() function,
which takes a POSIX-standard "number of seconds since 00:00:00 on January 1, 1970" value. The fromString()
function returns a QDate given a string and a date format which is used to interpret the date within the string.

The date() and time() functions provide access to the date and time parts of the datetime. The same information
is provided in textual format by the toString() function.

QDateTime provides a full set of operators to compare two QDateTime objects where smaller means earlier and
larger means later.

You can increment (or decrement) a datetime by a given number of seconds using addSecs() or days using add-
Days(). Similarly you can use addMonths() and addYears(). The daysTo() function returns the number of days
between two datetimes, and sectTo() returns the number of seconds between two datetimes.

The range of a datetime object is constrained to the ranges of the QDate and QTime objects which it embodies.

See also QDate [p. 36], QTime [p. 198], QDateTimeEdit [Widgets with Qt] and Time and Date.

Member Function Documentation

QDateTime::QDateTime ()

Constructs a null datetime (i.e. null date and null time). A null datetime is invalid, since the date is invalid.

See also isValid() [p. 471.

QDateTime::QDateTime (const QDate & date)

Constructs a datetime with date date and null time (00:00:00.000).

QDateTime::QDateTime (const QDate & date, const QTime & time)

Constructs a datetime with date date and time time.

QDateTime QDateTime::addDays (int ndays) const

Returns a QDateTime object containing a datetime ndays days later than the datetime of this object (or earlier if
ndays is negative).

QDateTime Class Reference 46
See also daysTo() [p. 46], addMonths() [p. 461, addYears() [p. 46] and addSecs() [p. 46].

QDateTime QDateTime::addMonths (int nmonths) const

Returns a QDateTime object containing a datetime nmonths months later than the datetime of this object (or earlier
if nmonths is negative).

See also daysTo() [p. 46], addDays() [p. 45], addYears() [p. 46] and addSecs() [p. 46].

QDateTime QDateTime::addSecs (int nsecs) const

Returns a QDateTime object containing a datetime nsecs seconds later than the datetime of this object (or earlier if
nsecs is negative).
See also secsTo() [p. 471, addDays() [p. 45], addMonths() [p. 46] and addYears() [p. 46].

Example: listviews/listviews.cpp.

QDateTime QDateTime::addYears (int nyears) const

Returns a QDateTime object containing a datetime nyears years later than the datetime of this object (or earlier if
nyears is negative).

See also daysTo() [p. 461, addDays() [p- 45], addMonths() [p. 46] and addSecs() [p. 46].

QDateTime QDateTime::currentDateTime () [static]

Returns the current datetime, as reported by the system clock.
See also QDate::currentDate() [p. 38] and QTime::currentTime() [p. 200].

Example: listviews/listviews.cpp.

QDate QDateTime::date () const

Returns the date part of the datetime.
See also setDate() [p. 48] and time() [p. 48].

int QDateTime::daysTo (const QDateTime & dt) const

Returns the number of days from this datetime to dt (which is negative if dt is earlier than this datetime).

See also addDays() [p. 451 and secsTo() [p. 471.

QDateTime QDateTime::fromString (const QString & s, Qt::DateFormat f =
Qt::TextDate) [static]

Returns the QDateTime represented by the string s, using the format f, or an invalid datetime if this is not possible.
Note that Qt::LocalDate cannot be used here.

Note for Qt::TextDate: It is recommended to use the English short month names (e.g. Jan). Localized month names
may also be used, but they depend on the user’s locale settings.

QDateTime Class Reference

bool QDateTime::isNull () const
Returns TRUE if both the date and the time are null; otherwise returns FALSE. A null datetime is invalid.

See also QDate::isNull() [p. 39] and QTime::isNull() [p. 201].

bool QDateTime::isValid () const

Returns TRUE if both the date and the time are valid; otherwise returns FALSE.
See also QDate::isValid() [p. 39] and QTime::isValid() [p. 201].

bool QDateTime::operator!= (const QDateTime & dt) const
Returns TRUE if this datetime is different from dt; otherwise returns FALSE.

See also operator==() [p. 47].

bool QDateTime::operator< (const QDateTime & dt) const

Returns TRUE if this datetime is earlier than dt, otherwise returns FALSE.

bool QDateTime::operator<= (const QDateTime & dt) const

Returns TRUE if this datetime is earlier than or equal to dt, otherwise returns FALSE.

bool QDateTime::operator== (const QDateTime & dt) const

Returns TRUE if this datetime is equal to dt; otherwise returns FALSE.

See also operator!=() [p. 471.

bool QDateTime::operator> (const QDateTime & dt) const

Returns TRUE if this datetime is later than dt, otherwise returns FALSE.

bool QDateTime::operator>= (const QDateTime & dt) const

Returns TRUE if this datetime is later than or equal to dt, otherwise returns FALSE.

int QDateTime::secsTo (const QDateTime & dt) const

Returns the number of seconds from this datetime to dt (which is negative if dt is earlier than this datetime).

Example:

QateTime dt = QDateTime: : currentDateTi me();
QateTime xmas(QDate(dt.year(),12,24), Qrlinme(17,00));
gqDebug("There are % seconds to Christmas", dt.secsTo(xmas));

See also addSecs() [p. 461, daysTo() [p. 46] and QTime::secsTo() [p. 202].

47

QDateTime Class Reference 48

void QDateTime::setDate (const QDate & date)

Sets the date part of this datetime to date.
See also date() [p. 46] and setTime() [p. 48].

void QDateTime::setTime (const QTime & time)

Sets the time part of this datetime to time.

See also time() [p. 48] and setDate() [p. 48].

void QDateTime::setTime_t (uint secsSince1Jan1970UTC)

Sets the date and time to local time given the number of seconds that have passed since 00:00:00 on January 1,
1970, Coordinated Universal Time (UTC). On systems that do not support timezones this function will behave as if
local time were UTC.

Note that Microsoft Windows supports only a limited range of values for secsSincelJan1970UTC.

QTime QDateTime::time () const

Returns the time part of the datetime.

See also setTime() [p. 48] and date() [p. 461.

QString QDateTime::toString (const QString & format) const

Returns the datetime as a string. The format parameter determines the format of the result string.

These expressions may be used for the date:

e d - the day as number without a leading zero (1-31)

e dd - the day as number with a leading zero (01-31)

e ddd - the abbrevated day name (Mon - Sun). Uses QDate::shortDayName().

e dddd - the long day name (Monday - Sunday). Uses QDate::longDayName().

e M - the month as number without a leading zero (1-12)

e MM - the month as number with a leading zero (01-12)

e MMM - the abbrevated month name (Jan - Dec). Uses QDate::shortMonthName().

e MMMM - the long month name (January - December). Uses QDate::longMonthName().
e yy - the year as two digit number (00-99)

e yyyy - the year as four digit number (0000-9999)

These expressions may be used for the time:

e h - the hour without a leading zero (0-23 or 1-12 if AM/PM display)
e hh - the hour with a leading zero (00-23 or 01-12 if AM/PM display)
e m - the minute without a leading zero (0-59)
e mm - the minute with a leading zero (00-59)

e s - the second whithout a leading zero (0-59)

QDateTime Class Reference 49

e ss - the second whith a leading zero (00-59)

e 2 - the milliseconds without leading zeroes (0-999)

e 22z - the milliseconds with leading zeroes (000-999)

e AP - switch to AM/PM display. AP will be replaced by either "AM" or "PM".
e ap - switch to AM/PM display. ap will be replaced by either "am" or "pm".

All other input characters will be ignored.

Example format Strings (assumed that the QDateTime is 21. May 2001 14:13:09)

e "dd.MM.yyyy" will result in "21.05.2001"
e "ddd MMMM d yy" will result in "Tue May 21 01"
e "hh:mm:ss.zzz" will result in "14:13:09.042"

e "h:m:s ap" will result in "2:13:9 pm"

See also QDate::toString() [p. 42] and QTime::toString() [p. 203].

QString QDateTime::toString (Qt::DateFormat f = Qt::TextDate) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the datetime as a string. The f parameter determines the format of the string.

If f is Qt::TextDate, the string format is "Wed May 20 03:40:13 1998" (using QDate::shortDayName(),
QDate::shortMonthName(), and QTime::toString() to generate the string).

If f is Qt::ISODate, the string format corresponds to the ISO 8601 specification for representations of dates and
times, which is YYYY-MM-DDTHH:MM:SS.

If f is Qt::LocalDate, the string format depends on the locale settings of the system.
If the format f is invalid, toString() returns a null string.

See also QDate::toString() [p. 42] and QTime::toString() [p. 203].

Related Functions

QDataStream & operator<< (QDataStream & s, const QDateTime & dt)

Writes the datetime dt to the stream s.
See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QDataStream & operator>> (QDataStream & s, QDateTime & dt)

Reads a datetime from the stream s into dt.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QDoubleValidator Class Reference

The QDoubleValidator class provides range checking of floating-point numbers.
#include <qval idator. h>

Inherits QValidator [p. 208].

Public Members

= QDoubleValidator (QObject * parent, const char * name = 0)
QDoubleValidator (double bottom, double top, int decimals, QObject * parent, const char * name = 0)
» ~QDoubleValidator ()

virtual QValidator::State validate (QString & input, int &) const

virtual void setRange (double minimum, double maximum, int decimals = 0)
void setBottom (double)

void setTop (double)

void setDecimals (int)

double bottom () const

» double top () const

e int decimals () const

Properties

» double bottom — the validator’s minimum acceptable value
m int decimals — the validator’s maximum number of digits after the decimal point
m double top — the validator’s maximum acceptable value

Detailed Description

The QDoubleValidator class provides range checking of floating-point numbers.

QDoubleValidator provides an upper bound, a lower bound and a limit on the number of digits after the decimal
point. It does not provide a fixup() function.

You can set the acceptable range in one call with setRange(), or with setBottom() and setTop(). Set the number of
decimal places with setDecimals(). The validate() function returns the validation state.

See also QIntValidator [p. 113], QRegExpValidator [p. 153] and Miscellaneous Classes.

50

QDoubleValidator Class Reference 51

Member Function Documentation

QDoubleValidator::QDoubleValidator (QObject * parent, const char * name = 0)

Constructs a validator object with parent parent, called name, which accepts any double.

QDoubleValidator::QDoubleValidator (double bottom, double top, int decimals,
QObject * parent, const char * name = 0)

Constructs a validator object with parent parent, called name. This validator will accept doubles from bottom to top
inclusive, with up to decimals digits after the decimal point.

QDoubleValidator::~QDoubleValidator ()

Destroys the validator, freeing any resources used.

double QDoubleValidator::bottom () const

Returns the validator’s minimum acceptable value. See the "bottom" [p. 52] property for details.

int QDoubleValidator::decimals () const

Returns the validator’s maximum number of digits after the decimal point. See the "decimals" [p. 52] property for
details.

void QDoubleValidator::setBottom (double)

Sets the validator’s minimum acceptable value. See the "bottom" [p. 52] property for details.

void QDoubleValidator::setDecimals (int)

Sets the validator’s maximum number of digits after the decimal point. See the "decimals" [p. 52] property for
details.

void QDoubleValidator::setRange (double minimum, double maximum, int decimals =
0) [virtual]

Sets the validator to accept doubles from minimum up to and including maximum with at most decimals digits after
the decimal point.

void QDoubleValidator::setTop (double)

Sets the validator’s maximum acceptable value. See the "top" [p. 52] property for details.

double QDoubleValidator::top () const

Returns the validator’s maximum acceptable value. See the "top" [p. 52] property for details.

QDoubleValidator Class Reference 52

QValidator::State QDoubleValidator::validate (QString & input, int &) const [virtual]

Returns Acceptable if the string input contains a double that is within the valid range and is in the correct format.

Returns Intermediate if input contains a double that is outside the range or is in the wrong format, e.g. with too
many digits after the decimal point or is empty.

Returns Invalid if the input is not a double.

Reimplemented from QValidator [p. 209].

Property Documentation

double bottom

This property holds the validator’s minimum acceptable value.
Set this property’s value with setBottom() and get this property’s value with bottom().

See also setRange() [p. 511.

int decimals

This property holds the validator’s maximum number of digits after the decimal point.
Set this property’s value with setDecimals() and get this property’s value with decimals().

See also setRange() [p. 51].

double top

This property holds the validator’s maximum acceptable value.
Set this property’s value with setTop() and get this property’s value with top().

See also setRange() [p. 511.

QEditorFactory Class Reference

The QEditorFactory class is used to create editor widgets for QVariant data types.
#include <geditorfactory. h>

Inherits QObject [p. 123].

Inherited by QSqlEditorFactory [Databases with Qt].

Public Members

» QEditorFactory (QObject * parent = 0, const char * name = 0)
m ~QEditorFactory ()
m virtual QWidget * createEditor (QWidget * parent, const QVariant & v)

Static Public Members
m QEditorFactory * defaultFactory ()

» void installDefaultFactory (QEditorFactory * factory)

Detailed Description

The QEditorFactory class is used to create editor widgets for QVariant data types.

Each editor factory provides the createEditor() function which given a QVariant will create and return a QWidget
that can edit that QVariant. For example if you have a QVariant::String type, a QLineEdit would be the default
editor returned, whereas a QVariant::Int’s default editor would be a QSpinBox.

If you want to create different editors for fields with the same data type, subclass QEditorFactory and reimplement
the createEditor() function.

See also Advanced Widgets.

Member Function Documentation

QEditorFactory::QEditorFactory (QObject * parent = 0, const char * name = 0)

Constructs an editor factory with parent parent and name name.

53

QEditorFactory Class Reference 54

QEditorFactory::~QEditorFactory ()

Destroys the object and frees any allocated resources.

QWidget * QEditorFactory::createEditor (QWidget * parent, const QVariant & v) [virtual]

Creates and returns the appropriate editor for the QVariant v. If the QVariant is invalid, 0 is returned. The parent
is passed to the appropriate editor’s constructor.

Reimplemented in QSqlEditorFactory.

QEditorFactory * QEditorFactory::defaultFactory () [static]

Returns an instance of a default editor factory.

void QEditorFactory::installDefaultFactory (QEditorFactory * factory) [static]

Replaces the default editor factory with factory. QEditorFactory takes ownership of factory, and destroys it when it is
no longer needed.

QErrorMessage Class Reference

The QErrorMessage class provides an error message display dialog.
#i ncl ude <gerrornessage. h>

Inherits QDialog [Dialogs and Windows with Qt].

Public Members

m QErrorMessage (QWidget * parent, const char * name = 0)
m ~QErrorMessage ()

Public Slots

m void message (const QString & m)

Static Public Members

m QErrorMessage * qtHandler ()

Detailed Description

The QFErrorMessage class provides an error message display dialog.
This is basically a QLabel and a "show this message again" checkbox which remembers what not to show.

There are two ways to use this class:

1. For production applications. In this context the class can be used to display messages which you don’t need
the user to see more than once. To use QErrorMessage like this, you create the dialog in the usual way and
call the message() slot, or connect signals to it.

2. For developers. In this context the static qtHandler() installs a message handler using gqlnstallMsgHandler()
and creates a QErrorMessage that displays gDebug(), qWarning() and qFatal() messages.

In both cases QErrorMessage will queue pending messages, and display them (or not) in order, as soon as the user
presses Enter or clicks OK after seeing each message.

See also QMessageBox [Dialogs and Windows with Qt], QStatusBar::message() [Widgets with Qt], Dialog Classes
and Miscellaneous Classes.

55

QErrorMessage Class Reference 56

Member Function Documentation

QErrorMessage::QErrorMessage (QWidget * parent, const char * name = 0)

Constructs and installs an error handler window. The parent parent and name name are passed on to the QDialog
constructor.

QErrorMessage::~QErrorMessage ()

Destroys the object and frees any allocated resources. Notably, the list of "do not show again" messages is deleted.

void QErrorMessage::message (const QString & m) [slot]

Shows message m and returns immediately. If the user has requested that m not be shown, this function does
nothing.

Normally, m is shown at once, but if there are pending messages, m is queued for later display.

QErrorMessage * QErrorMessage::qtHandler () [static]

Returns a pointer to a QErrorMessage object that outputs the default Qt messages. This function creates such an
object, if there isn’t one already.

QFocusData Class Reference

The QFocusData class maintains the list of widgets in the focus chain.

#incl ude <qgf ocusdata. h>

Public Members

» QWidget * focusWidget () const
m QWidget * home ()

m QWidget * next ()

m QWidget * prev ()

m int count () const

Detailed Description

The QFocusData class maintains the list of widgets in the focus chain.

This read-only list always contains at least one widget (i.e. the top-level widget). It provides a simple cursor which
can be reset to the current focus widget using home(), or moved to its neighboring widgets using next() and prev().
You can also retrieve the count() of the number of widgets in the list. The list is a loop, so if you keep iterating, for
example using next(), you will never come to the end.

Some widgets in the list may not accept focus. Widgets are added to the list as necessary, but not removed from it.
This lets widgets change focus policy dynamically without disrupting the focus chain the user experiences. When a
widget disables and re-enables tab focus, its position in the focus chain does not change.

When reimplementing QWidget::focusNextPrevChild() to provide special focus flow, you will usually call QWid-
get::focusData() to retrieve the focus data stored at the top-level widget. A top-level widget’s focus data contains
the focus list for its hierarchy of widgets.

The cursor may change at any time.
This class is not thread-safe.

See also QWidget::focusNextPrevChild() [Widgets with Qt], QWidget::setTabOrder() [Widgets with Qt],
QWidget::focusPolicy [Widgets with Qt] and Miscellaneous Classes.

Member Function Documentation

int QFocusData::count () const

Returns the number of widgets in the focus chain.

57

QFocusData Class Reference 58

QWidget * QFocusData::focusWidget () const

Returns the widgets in the hierarchy that are in the focus chain.

QWidget * QFocusData::home ()

Moves the cursor to the focusWidget() and returns that widget. You must call this before next() or prev() to iterate
meaningfully.

QWidget * QFocusData::next ()

Moves the cursor to the next widget in the focus chain. There is always a next widget because the list is a loop.

QWidget * QFocusData::prev ()

Moves the cursor to the previous widget in the focus chain. There is always a previous widget because the list is a
loop.

QFont Class Reference

The QFont class specifies a font used for drawing text.

#include <gfont. h>

Public Members

» enum StyleHint { Helvetica, SansSerif = Helvetica, Times, Serif = Times, Courier, TypeWriter = Courier,
OldEnglish, Decorative = OldEnglish, System, AnyStyle }

m enum StyleStrategy { PreferDefault = 0x0001, PreferBitmap = 0x0002, PreferDevice = 0x0004,
PreferOutline = 0x0008, ForceOutline = 0x0010, PreferMatch = 0x0020, PreferQuality = 0x0040,
PreferAntialias = 0x0080, NoAntialias = 0x0100 }

m enum Weight { Light = 25, Normal = 50, DemiBold = 63, Bold = 75, Black = 87 }
m QFont ()

m QFont (const QString & family, int pointSize = 12, int weight = Normal, bool italic = FALSE)
= QFont (const QFont & font)

m ~QFont ()

m QString family () const

m void setFamily (const QString & family)

» int pointSize () const

m float pointSizeFloat () const

» void setPointSize (int pointSize)

m void setPointSizeFloat (float pointSize)

m int pixelSize () const

void setPixelSize (int pixelSize)

void setPixelSizeFloat (float pixelSize) (obsolete)

m int weight () const

m void setWeight (int weight)

= bool bold () const

m void setBold (bool enable)

m bool italic () const

void setItalic (bool enable)

bool underline () const

= void setUnderline (bool enable)

= bool strikeOut () const

= void setStrikeOut (bool enable)

m bool fixedPitch () const

void setFixedPitch (bool enable)

StyleHint styleHint () const

StyleStrategy styleStrategy () const

void setStyleHint (StyleHint hint, StyleStrategy strategy = PreferDefault)

59

QFont Class Reference

m void setStyleStrategy (StyleStrategy s)

= bool rawMode () const

m void setRawMode (bool enable)

= bool exactMatch () const

m QFont & operator= (const QFont & font)

» bool operator== (const QFont & f) const

m bool operator!= (const QFont & f) const

» bool isCopyOf (const QFont & f) const

= HFONT handle () const

m void setRawName (const QString & name)

m QString rawName () const

m QString key () const

m QString toString () const

» bool fromString (const QString & descrip)

m enum Script { Latin, Greek, Cyrillic, Armenian, Georgian, Runic, Ogham, SpacingModifiers,
CombiningMarks, Hebrew, Arabic, Syriac, Thaana, Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil,
Telugu, Kannada, Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar, Khmer, Han, Hiragana, Katakana,
Hangul, Bopomofo, Yi, Ethiopic, Cherokee, CanadianAboriginal, Mongolian, CurrencySymbols,
LetterlikeSymbols, NumberForms, MathematicalOperators, TechnicalSymbols, GeometricSymbols,
MiscellaneousSymbols, EnclosedAndSquare, Braille, Unicode, NScripts, UnknownScript = NScripts,
NoScript, HanX11, LatinBasic = Latin, LatinExtendedA 2 = HanX11 + 1, LatinExtendedA 3,
LatinExtendedA 4, LatinExtendedA 14, LatinExtendedA 15, LastPrivateScript }

e QString defaultFamily () const
e QString lastResortFamily () const
e QString lastResortFont () const

Static Public Members

m QString substitute (const QString & familyName)

m QStringList substitutes (const QString & familyName)

QStringList substitutions ()

void insertSubstitution (const QString & familyName, const QString & substituteName)

void insertSubstitutions (const QString & familyName, const QStringList & substituteNames)
void removeSubstitution (const QString & familyName)

QFont defaultFont () (obsolete)

void setDefaultFont (const QFont & f) (obsolete)

Protected Members
» bool dirty () const
m int deciPointSize () const
Related Functions

m QDataStream & operator< < (QDataStream & s, const QFont & font)
m QDataStream & operator>> (QDataStream & s, QFont & font)

60

QFont Class Reference 61

Detailed Description

The QFont class specifies a font used for drawing text.

When you create a QFont object you specify various attributes that you want the font to have. Qt will use the
font with the specified attributes, or if no matching font exists, Qt will use the closest matching installed font. The
attributes of the font that is actually used are retrievable from a QFontInfo object. If the window system provides an
exact match exactMatch() returns TRUE. Use QFontMetrics to get measurements, e.g. the pixel length of a string
using QFontMetrics::width().

Use QApplication::setFont() to set the application’s default font.

If a choosen X11 font does not include all the characters that need to be displayed, QFont will try to find the
characters in the nearest equivalent fonts. When a QPainter draws a character from a font the QFont will report
whether or not it has the character; if it does not, QPainter will draw an unfilled square.

Create QFonts like this:

Qront serifFont("Times", 10, Bold);
Qront sansFont("Helvetica [Cronyx]", 12);

The attributes set in the constructor can also be set later, e.g. setFamily(), setPointSize(), setPointSizeFloat(),
setWeight() and setltalic(). The remaining attributes must be set after contstruction, e.g. setBold(), setUnderline(),
setStrikeOut() and setFixedPitch(). QFontInfo objects should be created after the font’s attributes have been set.
A QFontInfo object will not change, even if you change the font’s attributes. The corresponding "get" functions,
e.g. family(), pointSize(), etc., return the values that were set, even though the values used may differ. The actual
values are available from a QFontInfo object.

If the requested font family is unavailable you can influence the font matching algorithm by choosing a particular
QFont::StyleHint and QFont::StyleStrategy with setStyleHint(). The default family (corresponding to the current
style hint) is returned by defaultFamily().

The font-matching algorithm has a lastResortFamily() and lastResortFont() in cases where a suitable match cannot
be found. You can provide substitutions for font family names using insertSubstitution() and insertSubstitutions().
Substitutions can be removed with removeSubstitution(). Use substitute() to retrieve a family’s first substitute, or
the family name itself if it has no substitutes. Use substitutes() to retrieve a list of a family’s substitutes (which may

be empty).

Every QFont has a key() which you can use, for example, as the key in a cache or dictionary. If you want to store
a user’s font preferences you could use QSettings, writing the font information with toString() and reading it back
with fromString(). The operator<<() and operator>>() functions are also available, but they work on a data
stream.

It is possible to set the height of characters shown on the screen to a specified number of pixels with setPixelSize();
however using setPointSize() has a similar effect and provides device independence.

Under the X Window System you can set a font using its system specific name with setRawName().

Loading fonts can be expensive, especially on X11. QFont contains extensive optimizations to make the copying of
QFont objects fast, and to cache the results of the slow window system functions it depends upon.

The font matching algorithm works as follows:

The specified font family is searched for.

If not found, the styleHint() is used to select a replacement family.

Each replacement font family is searched for.

If none of these are found or there was no styleHint(), "helvetica" will be searched for.

If "helvetica" isn’t found Qt will try the lastResortFamily().

o U R Wb

If the lastResortFamily() isn’t found Qt will try the lastResortFont() which will always return a name of some
kind.

QFont Class Reference 62

Once a font is found, the remaining attributes are matched in order of priority:

fixedPitch ()
pointSize() (see below)
weight()

H L=

italic()

If you have a font which matches on family, even if none of the other attributes match, this font will be chosen in
preference to a font which doesn’t match on family but which does match on the other attributes. This is because
font family is the dominant search criteria.

The point size is defined to match if it is within 20% of the requested point size. When several fonts match and are
only distinguished by point size, the font with the closest point size to the one requested will be chosen.

The actual family, font size, weight and other font attributes used for drawing text will depend on what’s available
for the chosen family under the window system. A QFontInfo object can be used to determine the actual values
used for drawing the text.

Examples:
Qront f("Helvetica");
If you had both an Adobe and a Cronyx Helvetica, you might get either.

Qront f1("Helvetica [Cronyx]"); [/ Q@ 3.x
Qront f2("Cronyx-Hel vetica"); /I Q@ 2.x conpatibility

You can specify the foundry you want in the family name. Both fonts, f1 and f2, in the above example will be set
to "Helvetica [Cronyx]".
To determine the attributes of the font actually used in the window system, use a QFontInfo object, e.g.

QFontInfo info(f1);
@String famly = info.famly();

To find out font metrics use a QFontMetrics object, e.g.

Qront Metrics f(f1);
int pixelWdth = fmw dth("How many pixels wide is this text?");
int pixel Hight = fmheight();

For more general information on fonts, see the comp.fonts FAQ. Information on encodings can be found from
Roman Czyborra’s page.

See also QFontMetrics [p. 901, QFontInfo [p. 85], QFontDatabase [p. 751, QApplication::setFont() [p. 25],
QWidget::font [Widgets with Qt], QPainter::setFont() [Graphics with Qt], QFont::StyleHint [p. 65], QFont::Weight
[p. 65], Widget Appearance and Style, Graphics Classes and Implicitly and Explicitly Shared Classes.

Member Type Documentation

QFont::Script

This enum represents Unicode allocated scripts. For exhaustive coverage see The Unicode Standard Version 3.0.
The following scripts are supported:

Modern European alphabetic scripts (left to right):

QFont Class Reference 63

e QFont::Latin - consists of most alphabets based on the original Latin alphabet.

e QFont:: Greek - covers ancient and modern Greek and Coptic.

e QFont:: Cyrillic - covers the Slavic and non-Slavic languages using cyrillic alphabets.
e (Font:: Arneni an - contains the Armenian alphabet used with the Armenian language.
e (QFont:: Ceorgi an - covers at least the language Georgian.

e (QFont: : Runi ¢ - covers the known constituents of the Runic alphabets used by the early and medieval societies
in the Germanic, Scandinavian, and Anglo-Saxon areas.

e (QFont:: Ogham- is an alphabetical script used to write a very early form of Irish.
e QFont: : Spaci nghbdi fiers - are small signs indicating modifications to the preceeding letter.

e QFont : : Conbi ni ngMar ks - consist of diacritical marks not specific to a particular alphabet, diacritical marks
used in combination with mathematical and technical symbols, and glyph encodings applied to multiple
letterforms.

Middle Eastern scripts (right to left):

e QFont: : Hebrew - is used for writing Hebrew, Yiddish, and some other languages.
e (Font: : Arabi ¢ - covers the Arabic language as well as Persian, Urdu, Kurdish and some others.

e QFont:: Syriac - is used to write the active liturgical languages and dialects of several Middle Eastern and
Southeast Indian communities.

e QFont:: Thaana - is used to write the Maledivian Dhivehi language.
South and Southeast Asian scripts (left to right with few historical exceptions):

e (Font::Devanagari - covers classical Sanskrit and modern Hindi as well as several other languages.

e QFont::Bengali - is a relative to Devanagari employed to write the Bengali language used in West Ben-
gal/India and Bangladesh as well as several minority languages.

e (QFont:: Gurmukhi - is another Devanagari relative used to write Punjabi.

e QFont:: Cujarati - is closely related to Devanagari and used to write the Gujarati language of the Gujarat
state in India.

e QFont:: Oriya - is used to write the Oriya language of Orissa state/India.

e QFont:: Tam | -isused to write the Tamil language of Tamil Nadu state/India, Sri Lanka, Singapore and parts
of Malaysia as well as some minority languages.

e QFont:: Telugu - is used to write the Telugu language of Andhra Pradesh state/India and some minority
languages.

e (QFont: : Kannada - is another South Indian script used to write the Kannada language of Karnataka state/India
and some minority languages.

e (QFont: : Mal ayal am- is used to write the Malayalam language of Kerala state/India.

e (QFont:: Sinhal a - is used for Sri Lanka’s majority language Sinhala and is also employed to write Pali, San-
skrit, and Tamil.

e QFont:: Thai -is used to write Thai and other Southeast Asian languages.
e (QFont:: Lao - is a language and script quite similar to Thai.

e QFont:: Tibetan - is the script used to write Tibetan in several countries like Tibet, the bordering Indian
regions and Nepal. It is also used in the Buddist philosophy and liturgy of the Mongolian cultural area.

e QFont:: Myanmar - is mainly used to write the Burmese language of Myanmar (former Burma).

e (QFont:: Khner - is the official language of Kampuchea.
East Asian scripts (traditionally top-down, right to left, modern often horizontal left to right):

e (QFont: : Han - consists of the CJK (Chinese, Japanese, Korean) idiographic characters.

QFont Class Reference

64

e QFont:: Hiragana - is a cursive syllabary used to indicate phonetics and pronounciation of Japanese words.

e (QFont:: Kat akana - is a non-cursive syllabic script used to write Japanese words with visual emphasis and
non-Japanese words in a phonetical manner.

e (QFont:: Hangul -is a Korean script consisting of alphabetic components.

e (QFont : : Boponof o - is a phonetic alphabet for Chinese (mainly Mandarin).

e QFont::Yi - (also called Cuan or Wei) is a syllabary used to write the Yi language of Southwestern China,
Myanmar, Laos, and Vietnam.

Additional scripts that do not fit well into the script categories above:

e (Font::
e (QFont::
e (Font::
e (QFont::

Symbols:

e (QFont::
e (QFont::
e (Font::
e (QFont::

Et hi opi ¢ - is a syllabary used by several Central East African languages.
Cher okee - is a left-to-right syllabic script used to write the Cherokee language.
Canadi anAborigi nal - consists of the syllabics used by some Canadian aboriginal societies.

Mongol i an - is the traditional (and recently reintroduced) script used to write Mongolian.

CurrencySynbol s - contains currency symbols not encoded in other scripts.
LetterlikeSynbol s - consists of symbols derived from ordinary letters of an alphabetical script.

Nunber For ns - are provided for compatibility with other existing character sets.

Mat hemat i cal Qper at or s - consists of encodings for operators, relations and other symbols like arrows
used in a mathematical context.

e QFont: : Techni cal Synhol s - contains representations for control codes, the space symbol, APL symbols and

other symbols mainly used in the context of electronic data processing.

e QFont:: GeonetricSynbol s - covers block elements and geometric shapes.

e (QFont:: M scel | aneousSynbol s - consists of a heterogeneous collection of symbols that do not fit any other
Unicode character block, e.g. Dingbats.

e (QFont: : Encl osedAndSquar e - is provided for compatibility with some East Asian standards.

e QFont::Braille -is an international writing system used by blind people. This script encodes the 256 eight-

dot patterns with the 64 six-dot patterns as a subset.

e (Font:
The values below are provided for completeness and must not be used in user programs.

e (QFont::
e (Font::
e (QFont::
e (QFont::
e (Font::
e (QFont::
e (Font::
e (QFont::
e (Font::
e (QFont::
e (QFont:

: Uni code - includes all the above scripts.

HanX11 - For internal use only.

Lati nBasi ¢ - For internal use only.

Lati nExt endedA 2 - For internal use only.
Lati nExt endedA 3 - For internal use only.
Lati nExt endedA 4 - For internal use only.
Lati nExt endedA 14 - For internal use only.
Lati nExt endedA 15 - For internal use only.
Last PrivateScript - For internal use only.
NScri pt's - For internal use only.

NoScri pt - For internal use only.

: UnknownScri pt - For internal use only.

QFont Class Reference 65

QFont::StyleHint

Style hints are used by the font matching algorithm to find an appropriate default family if a selected font family is
not available.

e (QFont:: AnyStyl e - leaves the font matching algorithm to choose the family. This is the default.
e QFont:: SansSerif - the font matcher prefer sans serif fonts.

e QFont:: Helvetica - is a synonym for SansSerif.

e QFont::Serif - the font matcher prefers serif fonts.

e QFont:: Ti mes - is a synonym for Serif.

e QFont:: TypeWiter - the font matcher prefers fixed pitch fonts.

e QFont:: Courier - a synonym for TypeWriter.

e QFont:: O dEnglish - the font matcher prefers decorative fonts.

e (QFont:: Decorative - is a synonym for OldEnglish.

e QFont: : Syst em- the font matcher prefers system fonts.

QFont::StyleStrategy

The style strategy tells the font matching algorithm what type of fonts should be used to find an appropriate default
family.

The following strategies are available:

e QFont:: PreferDefault - the default style strategy. It does not prefer any type of font.
e QFont:: PreferBitmap - prefers bitmap fonts (as opposed to outline fonts).

e QFont:: PreferDevi ce - prefers device fonts.

e QFont:: PreferQutline - prefers outline fonts (as opposed to bitmap fonts).

e QFont:: ForceQut!ine - forces the use of outline fonts.

e QFont:: NoAntialias - don’t antialias the fonts.

e QFont::PreferAntialias - antialias if possible.

Any of these may be OR-ed with one of these flags:

e QFont:: PreferMatch - prefer an exact match. The font matcher will try to use the exact font size that has
been specified.

e QFont::PreferQuality - prefer the best quality font. The font matcher will use the nearest standard point
size that the font supports.

Whilst all strategies work on Windows, they are currently ignored under X11.

QFont::Weight

Qt uses a weighting scale from 0 to 99 similar to, but not the same as, the scales used in Windows or CSS. A weight
of 0 is ultralight, whilst 99 will be an extremely black.

This enum contains the predefined font weights:

e (Font::Light -25

e QFont:: Normal -50
e QFont:: DemiBold - 63
e (QFont::Bold-75

e (QFont::Black - 87

QFont Class Reference 66

Member Function Documentation

QFont::QFont ()

Constructs a font object that uses the application’s default font.

See also QApplication::setFont() [p. 25] and QApplication::font() [p. 16].
QFont::QFont (const QString & family, int pointSize = 12, int weight = Normal,
bool italic = FALSE)

Constructs a font object with the specified family, pointSize, weight and italic settings.
If pointSize is <= 0 it is set to 1.

The family name may optionally also include a foundry name, e.g. "Helvetica [Cronyx]". (The Qt 2.x syntax, i.e.
"Cronyx-Helvetica", is also supported.) If the family is available from more than one foundry and the foundry isn’t
specified, an arbitrary foundry is chosen. If the family isn’t available a family will be set using the font matching
algorithm.

See also Weight [p. 65], setFamily() [p. 701, setPointSize() [p. 711, setWeight() [p. 721, setltalic() [p. 701,
setStyleHint() [p. 72] and QApplication::font() [p. 16].

QFont::QFont (const QFont & font)

Constructs a font that is a copy of font.

QFont::~QFont ()

Destroys the font object and frees all allocated resources.

bool QFont::bold () const

Returns TRUE if weight() is a value greater than QFont::Normal; otherwise returns FALSE.

See also weight() [p. 731, setBold() [p. 70] and QFontInfo::bold() [p. 86].

int QFont::deciPointSize () const [protected]

Returns the point size in 1/10ths of a point.
The returned value will be -1 if the font size has been specified in pixels.

See also pointSize() [p. 69] and pointSizeFloat() [p. 69].

QString QFont::defaultFamily () const

Returns the family name that corresponds to the current style hint.

See also StyleHint [p. 651, styleHint() [p. 72] and setStyleHint() [p. 72].

QFont Class Reference 67

QFont QFont::defaultFont () [static]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Please use QApplication::font() instead.

bool QFont::dirty () const [protected]

Returns TRUE if the font attributes have been changed and the font has to be (re)loaded; otherwise returns FALSE.

bool QFont::exactMatch () const

Returns TRUE if a window system font exactly matching the settings of this font is available.

See also QFontInfo [p. 85].

QString QFont::family () const

Returns the requested font family name, i.e. the name set in the constructor or the last setFont() call.
See also setFamily() [p. 70], substitutes() [p. 73] and substitute() [p. 73].

Example: fonts/simple-qfont-demo/viewer.cpp.

bool QFont::fixedPitch () const

Returns TRUE if fixed pitch has been set; otherwise returns FALSE.
See also setFixedPitch() [p. 70] and QFontInfo::fixedPitch() [p. 86].

bool QFont::fromString (const QString & descrip)
Sets this font to match the description descrip. The description is a comma-separated list of the font attributes, as
returned by toString().

See also toString() [p. 73] and operator>>() [p. 74].

HFONT QFont::handle () const

Returns the window system handle to the font, for low-level access. Using this function is not portable.

Example: i18n/main.cpp.

void QFont::insertSubstitution (const QString & familyName,
const QString & substituteName) [static]

Inserts the family name substituteName into the substitution table for familyName.

See also insertSubstitutions() [p. 68], removeSubstitution() [p. 70], substitutions() [p. 731, substitute() [p. 73]
and substitutes() [p. 731.

Example: fonts/simple-qfont-demo/viewer.cpp.

QFont Class Reference 68

void QFont::insertSubstitutions (const QString & familyName,
const QStringList & substituteNames) [static]

Inserts the list of families substituteNames into the substitution list for familyName.

See also insertSubstitution() [p. 671, removeSubstitution() [p. 701, substitutions() [p. 73] and substitute()
[p. 731.

Example: fonts/simple-qfont-demo/viewer.cpp.

bool QFont::isCopyOf (const QFont & f) const
Returns TRUE if this font and f are copies of each other, i.e. one of them was created as a copy of the other and
neither has been modified since. This is much stricter than equality.

See also operator=() [p. 69] and operator==() [p. 69].

bool QFont::italic () const

Returns TRUE if italic has been set; otherwise returns FALSE.

See also setltalic() [p. 70].

QString QFont::key () const
Returns the font’s key, a textual representation of a font. It is typically used as the key for a cache or dictionary of
fonts.

See also QMap [Datastructures and String Handling with Qt].

QString QFont::lastResortFamily () const

Returns the "last resort” font family name.

The current implementation tries a wide variety of common fonts, returning the first one it finds. Is is possible that
no family is found in which case a null string is returned.

See also lastResortFont() [p. 68].

QString QFont::lastResortFont () const
Returns a "last resort" font name for the font matching algorithm. This is used if the last resort family is not
available. It will always return a name, if necessary returning something like "fixed" or "system".

The current implementation tries a wide variety of common fonts, returning the first one it finds. This implemen-
tation may change at any time, but this function will always return a string containing something.

It is theoretically possible that there really isn’t a lastResortFont() in which case Qt will abort with an error message.
We have not been able to identify a case where this happens. Please report it as a bug if it does, preferably with a
list of the fonts you have installed.

See also lastResortFamily() [p. 68] and rawName() [p. 70].

QFont Class Reference 69

bool QFont::operator!= (const QFont & f) const

Returns TRUE if this font is different from f; otherwise returns FALSE.

Two QFonts are considered to be different if their font attributes are different. If rawMode() is enabled for both
fonts, only the family fields are compared.

See also operator==() [p. 69].

QFont & QFont::operator= (const QFont & font)

Assigns font to this font and returns a reference to it.

bool QFont::operator== (const QFont & f) const

Returns TRUE if this font is equal to f; otherwise returns FALSE.

Two QFonts are considered equal if their font attributes are equal. If rawMode() is enabled for both fonts, only the
family fields are compared.

See also operator!=() [p. 69] and isCopyOf() [p. 68].

int QFont::pixelSize () const

Returns the pixel size of the font if it was set with setPixelSize(). Returns -1 if the size was set with setPointSize()
or setPointSizeFloat().

See also setPixelSize() [p. 711, pointSize() [p. 691, QFontInfo::pointSize() [p. 87] and QFontInfo::pixelSize()
[p. 871.

int QFont::pointSize () const

Returns the point size of the font. Returns -1 if the font size was specified in pixels.
See also setPointSize() [p. 71], deciPointSize() [p. 66] and pointSizeFloat() [p. 69].

Example: fonts/simple-qfont-demo/viewer.cpp.

float QFont::pointSizeFloat () const

Returns the point size of the font. Returns -1 if the font size was specified in pixels.

See also pointSize() [p. 691, setPointSizeFloat() [p. 711, pixelSize() [p. 691, QFontInfo::pointSize() [p. 87] and
QFontInfo::pixelSize() [p. 871.

bool QFont::rawMode () const

Returns TRUE if raw mode is used for font name matching; otherwise returns FALSE.

See also setRawMode() [p. 71] and rawName() [p. 70].

QFont Class Reference 70

QString QFont::rawName () const

Returns the name of the font within the underlying window system. On Windows, this is usually just the family
name of a truetype font. Under X, it is an XLFD (X Logical Font Description). Using the return value of this function
is usually not portable.

See also setRawName() [p. 71].

void QFont::removeSubstitution (const QString & familyName) [static]

Removes all the substitutions for familyName.

See also insertSubstitutions() [p. 681, insertSubstitution() [p. 671, substitutions() [p. 73] and substitute() [p. 73].

void QFont::setBold (bool enable)

If enable is true sets the font’s weight to QFont::Bold; otherwise sets the weight to QFont::Normal.
For finer boldness control use setWeight().
See also bold() [p. 66] and setWeight() [p. 72].

Examples: menu/menu.cpp and themes/metal.cpp.

void QFont::setDefaultFont (const QFont & f) [static]
This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Please use QApplication::setFont() instead.

void QFont::setFamily (const QString & family)

Sets the family name of the font. The name is case insensitive and may include a foundry name.

The family name may optionally also include a foundry name, e.g. "Helvetica [Cronyx]". (The Qt 2.x syntax, i.e.
"Cronyx-Helvetica", is also supported.) If the family is available from more than one foundry and the foundry isn’t
specified, an arbitrary foundry is chosen. If the family isn’t available a family will be set using the font matching
algorithm.

See also family() [p. 671, setStyleHint() [p. 72] and QFontInfo [p. 85].
void QFont::setFixedPitch (bool enable)

If enable is TRUE, sets fixed pitch on; otherwise sets fixed pitch off.
See also fixedPitch() [p. 67] and QFontInfo [p. 85].

void QFont::setltalic (bool enable)

If enable is TRUE, italic is set on; otherwise italic is set off.
See also italic() [p. 68] and QFontInfo [p. 85].

Examples: fileiconview/qfileiconview.cpp, fonts/simple-qfont-demo/viewer.cpp and themes/metal.cpp.

QFont Class Reference 71

void QFont::setPixelSize (int pixelSize)

Sets the font size to pixelSize pixels.

Using this function makes the font device dependent. Use setPointSize() or setPointSizeFloat() to set the size of
the font in a device independent manner.

See also pixelSize() [p. 69].
Example: qwerty/qwerty.cpp.

void QFont::setPixelSizeFloat (float pixelSize)
This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Sets the logical pixel height of font characters when shown on the screen to pixelSize.

void QFont::setPointSize (int pointSize)

Sets the point size to pointSize. The point size must be greater than zero.
See also pointSize() [p. 69] and setPointSizeFloat() [p. 711.

Example: fonts/simple-qfont-demo/viewer.cpp.

void QFont::setPointSizeFloat (float pointSize)
Sets the point size to pointSize. The point size must be greater than zero. The requested precision may not be
achieved on all platforms.

See also pointSizeFloat() [p. 69], setPointSize() [p. 71] and setPixelSize() [p. 71].

void QFont::setRawMode (bool enable)

If enable is TRUE, turns raw mode on; otherwise turns raw mode off. This function only has an affect under X11.

If raw mode is enabled, Qt will search for an X font with a complete font name matching the family name, ignoring
all other values set for the QFont. If the font name matches several fonts, Qt will use the first font returned by X.
QFontInfo cannot be used to fetch information about a QFont using raw mode (it will return the values set in the
QFont for all parameters, including the family name).

Warning: Do not use raw mode unless you really, really need it! In most (if not all) cases, setRawName() is a much
better choice.

See also rawMode() [p. 69] and setRawName() [p. 71].

void QFont::setRawName (const QString & name)

Sets a font by its system specific name. The function is in particular useful under X, where system font settings (for
example X resources) are usually available in XLFD (X Logical Font Description) form only. You can pass an XLFD
as name to this function.

In Qt 2.0 and later, a font set with setRawName() is still a full-featured QFont. It can be queried (for example with
italic()) or modified (for example with setItalic()) and is therefore also suitable for rendering rich text.

If Qt’s internal font database cannot resolve the raw name, the font becomes a raw font with name as its family.

QFont Class Reference 72

Note that the present implementation does not handle wildcards in XLFDs well, and that font aliases (file
fonts. alias in the font directory on X11) are not supported.

See also rawName() [p. 701, setRawMode() [p. 71] and setFamily() [p. 70].

void QFont::setStrikeOut (bool enable)

If enable is TRUE, sets strikeout on; otherwise sets strikeout off.

See also strikeOut() [p. 72] and QFontInfo [p. 85].

void QFont::setStyleHint (StyleHint hint, StyleStrategy strategy = PreferDefault)

Sets the style hint and strategy to hint and strategy, respectively.
If these aren’t set explicitly the style hint will default to AnyStyle and the style strategy to PreferDefault.
See also StyleHint [p. 651, styleHint() [p. 72], StyleStrategy [p. 651, styleStrategy() [p. 73] and QFontInfo [p. 85].

Examples: desktop/desktop.cpp and fonts/simple-qfont-demo/viewer.cpp.

void QFont::setStyleStrategy (StyleStrategy s)

Sets the style strategy for the font to s.
See also QFont::StyleStrategy [p. 65].

void QFont::setUnderline (bool enable)

If enable is TRUE, sets underline on; otherwise sets underline off.
See also underline() [p. 73] and QFontInfo [p. 85].

Examples: fonts/simple-qfont-demo/viewer.cpp and menu/menu.cpp.

void QFont::setWeight (int weight)

Sets the weight the font to weight, which should be a value from the QFont::Weight enumeration.
See also weight() [p. 73] and QFontInfo [p. 85].

Example: fonts/simple-qfont-demo/viewer.cpp.

bool QFont::strikeOut () const

Returns TRUE if strikeout has been set; otherwise returns FALSE.

See also setStrikeOut() [p. 72] and QFontInfo::strikeOut().

StyleHint QFont::styleHint () const

Returns the StyleHint.
The style hint affects the font matching algorithm. See QFont::StyleHint for the list of strategies.

See also setStyleHint() [p. 72], QFont::StyleStrategy [p. 65] and QFontInfo::styleHint() [p. 87].

QFont Class Reference 73

StyleStrategy QFont::styleStrategy () const

Returns the StyleStrategy.
The style strategy affects the font matching algorithm. See QFont::StyleStrategy for the list of strategies.
See also setStyleHint() [p. 72] and QFont::StyleHint [p. 65].

QString QFont::substitute (const QString & familyName) [static]

Returns the first family name to be used whenever familyName is specified. The lookup is case insensitive.
If there is no substitution for familyName, familyName is returned.
To obtain a list of substitutions use substitutes().

See also setFamily() [p. 70], insertSubstitutions() [p. 681, insertSubstitution() [p. 67] and removeSubstitution()
[p. 701.

QStringList QFont::substitutes (const QString & familyName) [static]

Returns a list of family names to be used whenever familyName is specified. The lookup is case insensitive.
If there is no substitution for familyName, an empty list is returned.

See also substitute() [p. 73], insertSubstitutions() [p. 68], insertSubstitution() [p. 67] and removeSubstitution()
[p. 701.

Example: fonts/simple-qfont-demo/viewer.cpp.
QStringList QFont::substitutions () [static]

Returns a sorted list of substituted family names.

See also insertSubstitution() [p. 671, removeSubstitution() [p. 70] and substitute() [p. 73].

QString QFont::toString () const

Returns a description of the font. The description is a comma-separated list of the attributes, perfectly suited for
use in QSettings.

See also fromString() [p. 67] and operator<<() [p. 741.

bool QFont::underline () const

Returns TRUE if underline has been set; otherwise returns FALSE.

See also setUnderline() [p. 72] and QFontInfo::underline().

int QFont::weight () const

Returns the weight of the font which is one of the enumerated values from QFont::Weight.

See also setWeight() [p. 72], Weight [p. 65] and QFontInfo [p. 85].

QFont Class Reference 74

Related Functions

QDataStream & operator<< (QDataStream & s, const QFont & font)

Writes the font font to the data stream s. (toString() writes to a text stream.)
See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QDataStream & operator>> (QDataStream & s, QFont & font)

Reads the font font from the data stream s. (fromString() reads from a text stream.)

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QFontDatabase Class Reference

The QFontDatabase class provides information about the fonts available in the underlying window system.

#i ncl ude <qgf ont dat abase. h>

Public Members

= QFontDatabase ()

m QStringList families () const

m QStringList styles (const QString & family) const

m QValueList<int> pointSizes (const QString & family, const QString & style = QString::null)

m QValueList<int> smoothSizes (const QString & family, const QString & style)

m QString styleString (const QFont & f)

» QFont font (const QString & family, const QString & style, int pointSize)

» bool isBitmapScalable (const QString & family, const QString & style = QString::null) const

» bool isSmoothlyScalable (const QString & family, const QString & style = QString::null) const

m bool isScalable (const QString & family, const QString & style = QString::null) const

m bool isFixedPitch (const QString & family, const QString & style = QString::null) const

m bool italic (const QString & family, const QString & style) const

m bool bold (const QString & family, const QString & style) const

m int weight (const QString & family, const QString & style) const

m QStringList families (bool) const (obsolete)

m QStringlList styles (const QString & family, const QString &) const (obsolete)

m QValuelist<int> pointSizes (const QString & family, const QString & style, const QString &) (obsolete)

m QValueList<int> smoothSizes (const QString & family, const QString & style, const QString &) (obsolete)
m QFont font (const QString & familyName, const QString & style, int pointSize, const QString &) (obsolete)
m bool isBitmapScalable (const QString & family, const QString & style, const QString &) const (obsolete)

m bool isSmoothlyScalable (const QString & family, const QString & style, const QString &) const (obsolete)
m bool isScalable (const QString & family, const QString & style, const QString &) const (obsolete)

m bool isFixedPitch (const QString & family, const QString & style, const QString &) const (obsolete)

m bool italic (const QString & family, const QString & style, const QString &) const (obsolete)

m bool bold (const QString & family, const QString & style, const QString &) const (obsolete)

e int weight (const QString & family, const QString & style, const QString &) const (obsolete)

Static Public Members

m QValueList<int> standardSizes ()
m QString scriptName (QFont::Script script)
m QString scriptSample (QFont::Script script)

75

QFontDatabase Class Reference 76

Detailed Description

The QFontDatabase class provides information about the fonts available in the underlying window system.

The most common uses of this class are to query the database for the list of font families() and the pointSizes()
and styles() that are available for each family. An alternative to pointSizes() is smoothSizes() which returns the
sizes at which a given family and style will look attractive.

If the font family is available from two or more foundries the foundry name is included in the family name, e.g.
"Helvetica [Adobe]" and "Helvetica [Cronyx]". When you specify a family you can either use the hyphenated
"foundry-family" format, e.g. "Cronyx-Helvetica", or the bracketed format, e.g. "Helvetica [Cronyx]". If the family
has a foundry it is always returned, e.g. by families(), using the bracketed format.

The font() function returns a QFont given a family, style and point size.

A family and style combination can be checked to see if it is italic() or bold(), and to retrieve its weight(). Similarly
we can call isBitmapScalable(), isSmoothlyScalable(), isScalable() and isFixedPitch().

A text version of a style is given by styleString().

The QFontDatabase class also supports some static functions, for example, standardSizes(). You can retrieve the
Unicode 3.0 description of a script using scriptName(), and a sample of characters in a script with scriptSample().

Example:

#incl ude <gapplication. h>
#i ncl ude <qgf ont dat abase. h>

int main(int arge, char **argv)

{
QApplication app(argc, argv);
QFont Dat abase fdb;
StringList famlies = fdb.famlies();
for (QStringList::Iterator f = fanmilies.begin(); f !=famlies.end(); ++) {
QString famly = *f;
qDebug(fanmily);
@StringList styles = fdb.styles(famly);
for (QStringList::lterator s = styles.begin(); s !=styles.end(); ++s) {
@String style = *s;
QString dstyle = "\t" + style + " (";
Qval ueLi st snoot hies = fdb. snoot hSi zes(fanily, style);
for (Qvaluelist::Iterator points = snoothies.begin(); points !'= snoothies.end(); ++points) {
dstyle += QString::nunber(*points) + " ";
}
dstyle = dstyle.left(dstyle.length() - 1) +")";
qDebug(dstyle);
}
}
return 0;
}

This example gets the list of font families, then the list of styles for each family and the point sizes that are available
for each family/style combination.

See also Environment Classes and Graphics Classes.

QFontDatabase Class Reference 77

Member Function Documentation

QFontDatabase::QFontDatabase ()

Creates a font database object.

bool QFontDatabase::bold (const QString & family, const QString & style) const

Returns TRUE if the font that has family family and style style is bold; otherwise returns FALSE.
See also italic() [p. 78] and weight() [p. 80].

bool QFontDatabase::bold (const QString & family, const QString & style,
const QString &) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

QStringList QFontDatabase::families () const

Returns a list of the names of the available font families.

If a family exists in several foundries, the returned name for that font is in the form "family [foundry]". Examples:
"Times [Adobe]", "Times [Cronyx]", "Palatino".

QStringList QFontDatabase::families (bool) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

QFont QFontDatabase::font (const QString & family, const QString & style, int pointSize)

Returns a QFont object that has family family, style style and point size pointSize. If no matching font could be
created, a QFont object that uses the application’s default font is returned.

QFont QFontDatabase::font (const QString & familyName, const QString & style,
int pointSize, const QString &)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

bool QFontDatabase::isBitmapScalable (const QString & family, const QString & style =
QString::null) const

Returns TRUE if the font that has family family and style style is a scalable bitmap font; otherwise returns FALSE.
Scaling a bitmap font usually produces an unattractive hardly readable result, because the pixels of the font are
scaled. If you need to scale a bitmap font it is better to scale it to one of the fixed sizes returned by smoothSizes().

See also isScalable() [p. 78] and isSmoothlyScalable() [p. 78].

QFontDatabase Class Reference 78

bool QFontDatabase::isBitmapScalable (const QString & family, const QString & style,
const QString &) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

bool QFontDatabase::isFixedPitch (const QString & family, const QString & style =
QString::null) const

Returns TRUE if the font that has family family and style style is fixed pitch; otherwise returns FALSE.

bool QFontDatabase::isFixedPitch (const QString & family, const QString & style,
const QString &) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

bool QFontDatabase::isScalable (const QString & family, const QString & style =
QString::null) const

Returns TRUE if the font that has family family and style style is scalable; otherwise returns FALSE.
See also isBitmapScalable() [p. 77] and isSmoothlyScalable() [p. 78].

bool QFontDatabase::isScalable (const QString & family, const QString & style,
const QString &) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

bool QFontDatabase::isSmoothlyScalable (const QString & family, const QString & style
= QString::null) const

Returns TRUE if the font that has family family and style style is smoothly scalable; otherwise returns FALSE. If this
function returns TRUE, it’s safe to scale this font to any size, and the result will always look attractive.

See also isScalable() [p. 78] and isBitmapScalable() [p. 77].

bool QFontDatabase::isSmoothlyScalable (const QString & family, const QString & style,
const QString &) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

bool QFontDatabase::italic (const QString & family, const QString & style) const

Returns TRUE if the font that has family family and style style is italic; otherwise returns FALSE.
See also weight() [p. 80] and bold() [p. 771.

QFontDatabase Class Reference 79

bool QFontDatabase::italic (const QString & family, const QString & style,
const QString &) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

QValuelList<int> QFontDatabase::pointSizes (const QString & family,
const QString & style = QString::null)

Returns a list of the point sizes available for the font that has family family and style style. The list may be empty.

See also smoothSizes() [p. 79] and standardSizes() [p. 79].

QValueList<int> QFontDatabase::pointSizes (const QString & family,
const QString & style, const QString &)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

QString QFontDatabase::scriptName (QFont::Script script) [static]

Returns a string that gives a default description of the script (e.g. for displaying to the user in a dialog). The name
matches the name of the script as indicated by the Unicode 3.0 standard.

See also QFont::Script [p. 62].

QString QFontDatabase::scriptSample (QFont::Script script) [static]

Returns a string with sample characters from script.

See also QFont::Script [p. 62].
QValueList<int> QFontDatabase::smoothSizes (const QString & family,
const QString & style)

Returns the point sizes of a font that has family family and style style that will look attractive. The list may be
empty. For non-scalable fonts and smoothly scalable fonts, this function is equivalent to pointSizes().

See also pointSizes() [p. 791 and standardSizes() [p. 791.

QValueList<int> QFontDatabase::smoothSizes (const QString & family;
const QString & style, const QString &)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

QValueList<int> QFontDatabase::standardSizes () [static]

Returns a list of standard font sizes.

See also smoothSizes() [p. 79] and pointSizes() [p. 79].

QFontDatabase Class Reference 80

QString QFontDatabase::styleString (const QFont & f)

Returns a string that describes the style of the font f. For example, "Bold Italic", "Bold", "Italic" or "Normal". An
empty string may be returned.

QStringList QFontDatabase::styles (const QString & family) const

Returns a list of the styles available for the font family, family. Some example styles: "Light", "Light Italic", "Bold",
"Oblique", "Demi". The list may be empty.

QStringList QFontDatabase::styles (const QString & family, const QString &) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

int QFontDatabase::weight (const QString & family, const QString & style) const

Returns the weight of the font that has family family and style style. If there is no such family and style combination,
returns -1.

See also italic() [p. 78] and bold() [p. 77].

int QFontDatabase::weight (const QString & family, const QString & style,
const QString &) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

QFontDialog Class Reference

The QFontDialog class provides a dialog widget for selecting a font.
#incl ude <qgfontdi al og. h>

Inherits QDialog [Dialogs and Windows with Qt].

Signals

m void fontSelected (const QFont & font)
» void fontHighlighted (const QFont & font)

Static Public Members

m QFont getFont (bool * ok, const QFont & initial, QWidget * parent = 0, const char * name = 0)
m QFont getFont (bool * ok, QWidget * parent = 0, const char * name = 0)

Protected Members

m virtual bool eventFilter (QObject * o, QEvent * e)
m QListBox * familyListBox () const

m virtual void updateFamilies ()

m QListBox * styleListBox () const

m virtual void updateStyles ()

m QListBox * sizeListBox () const

» virtual void updateSizes ()

m QComboBox * scriptCombo () const

m virtual void updateScripts ()

Protected Slots

m void sizeChanged (const QString & s)

Detailed Description

The QFontDialog class provides a dialog widget for selecting a font.

The usual way to use this class is to call one of the static convenience functions, getFont(), e.g.

81

QFontDialog Class Reference

Examples:

bool ok

82

Qront font = QFontDi al og: : get Font (&k, QFont("Helvetica [Cronyx]", 10), this);

if (ok) {

/] font is set to the font the user selected

} else {

Il the user cancelled the dialog; font is set to the initial
Il value, in this case Helvetica [Cronyx], 10

}

The dialog can also be used to set a widget’s font directly:

aW dget . set Font (QFont Di al og: : get Font (0, aWdget.font()));

If the user clicks OK the font they chose will be used for aWidget, and if they click cancel the original font is kept.

See also QFont [p. 59], QFontInfo [p. 85], QFontMetrics [p. 90] and Dialog Classes.

— QFontDialog — QFontDialog O
Eant Font style Size Font stule Size
ICuurier [adobe] INurmaI IB INormaI il
Coutier [adobe] A A
Courier [hitstream] I Italic =} Italic |
Terminal [hitstream] Ohligue 10 Terminal [hitstream] Ohligque 10
Charter Bold 1 Charter Bald 11
Clean Bold Italic 1z Clean EBold Halic 1z
Terminal [dec] Bald Obligue 14 Terminal [dec] Eold Obligue 14
Fixad [at] ki 16 ¥ Fixed [et] = 16 E
- Effects - Sample — Effects ~ Sampla
) sl J maabhiaz I~ Stikeout [wsbiigs
| Unceriina ™ Undetline
Script Script
[Westem (1SO 8853-1) 1 | western 130 8853-1) =
Apply | Close |

Apply I

Close

Member Function Documentation

bool QFontDialog::eventFilter (QObject * 0, QEvent * e) [virtual protected]

An event filter to make the Up, Down, PageUp and PageDown keys work correctly in the line edits. The source of

the event is the object o and the event is e.

QListBox * QFontDialog::familyListBox () const [protected]

Returns a pointer to the "font family” list box. This is mainly useful if you reimplement updateFontFamilies();

void QFontDialog::fontHighlighted (const QFont & font) [signal]

This signal is emitted when the user changed a setting in the dialog. The font that is highlighted is passed in font.

void QFontDialog::fontSelected (const QFont & font) [signal]

This signal is emitted when the user has chosen a font and clicked OK. The font that was selected is passed in font.

QFontDialog Class Reference 83

QFont QFontDialog::getFont (bool * ok, const QFont & initial, QWidget * parent = 0,
const char * name = 0) [static]

Executes a modal font dialog and returns a font.

If the user clicks OK, the selected font is returned. If the user clicks Cancel, the initial font is returned.

The dialog has parent parent and is called name. initial is the initial selected font. If the ok parameter is not-null,
*ok is set to TRUE if the user clicked OK, and set to FALSE if the user clicked Cancel.

This static function is less flexible than the full QFontDialog object, but is convenient and easy to use.

Examples:
bool ok;
Qront font = QFontDi al og: : get Font (&k, QFont("Tinmes", 12), this);
if (ok) {
[l font is set to the font the user selected
} else {

Il the user cancelled the dialog; font is set to the initial
/1 value, in this case Times, 12.

}

The dialog can also be used to set a widget’s font directly:
myW dget . set Font (QFont Di al og: : get Font(0, nyWdget.font()));

In this example, if the user clicks OK the font they chose will be used, and if they click cancel the original font is
kept.

Examples: qfd/fontdisplayer.cpp, qwerty/qwerty.cpp and xform/xform.cpp.

QFont QFontDialog::getFont (bool * ok, QWidget * parent = 0, const char * name =
0) [static]
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Executes a modal font dialog and returns a font.
If the user clicks OK, the selected font is returned. If the user clicks Cancel, the Qt default font is returned.

The dialog has parent parent and is called name. If the ok parameter is not-null, * ok is set to TRUE if the user
clicked OK, and FALSE if the user clicked Cancel.

This static function is less functional than the full QFontDialog object, but is convenient and easy to use.

Example:
bool ok;
Qront font = QFontDi al og: : get Font (&ok, this);
if (ok) {
Il font is set to the font the user selected
} else {

Il the user cancelled the dialog; font is set to the default
Il application font, QApplication::font()

QComboBox * QFontDialog::scriptCombo () const [protected]

Returns a pointer to the "font style" list box. This is mainly useful if you reimplement updateFontStyles();

QFontDialog Class Reference 84

void QFontDialog::sizeChanged (const QString & s) [protected slot]

This slot is called if the user changes the font size. The size is passed in the s argument as a string.

QListBox * QFontDialog::sizeListBox () const [protected]

Returns a pointer to the "font size" list box. This is mainly useful if you reimplement updateFontSizes();

QListBox * QFontDialog::styleListBox () const [protected]

Returns a pointer to the "font style" list box. This is mainly useful if you reimplement updateFontStyles();

void QFontDialog::updateFamilies () [virtual protected]

Updates the contents of the "font family" list box. This function can be reimplemented if you have special require-
ments.

void QFontDialog::updateScripts () [virtual protected]

Updates the contents of the "font script" combo box. This function can be reimplemented if you have special
requirements.

void QFontDialog::updateSizes () [virtual protected]

Updates the contents of the "font size" list box. This function can be reimplemented if you have special require-
ments.

void QFontDialog::updateStyles () [virtual protected]

Updates the contents of the "font style" list box. This function can be reimplemented if you have special require-
ments.

QFontInfo Class Reference

The QFontInfo class provides general information about fonts.

#include <qgfontinfo.h>

Public Members

= QFontInfo (const QFont & font)

m QFontInfo (const QFontInfo & fi)

m ~QFontInfo ()

QFontInfo & operator= (const QFontInfo & fi)
QString family () const

int pixelSize () const

int pointSize () const

bool italic () const

int weight () const

m bool bold () const

= bool fixedPitch () const

» QFont::StyleHint styleHint () const
= bool rawMode () const

e bool exactMatch () const

Detailed Description

The QFontlInfo class provides general information about fonts.

The QFontInfo class provides the same access functions as QFont, e.g. family(), pointSize(), italic(), weight(),
fixedPitch(), styleHint() etc. But whilst the QFont access functions return the values that were set, a QFontInfo
object returns the values that apply to the font that will actually be used to draw the text.

For example, when the program asks for a 25pt Courier font on a machine that has a 24pt Courier font but not a
scalable one, QFont will (normally) use the 24pt Courier for rendering. In this case, QFont::pointSize() returns 25
and QFontInfo::pointSize() 24.

There are three ways to create a QFontInfo object.

1. Calling the QFontInfo constructor with a QFont creates a font info object for a screen-compatible font, i.e. the
font cannot be a printer font*. If the font is changed later, the font info object is not updated.

2. QWidget::fontInfo() returns the font info for a widget’s font. This is equivalent to calling QFontInfo(widget-
>font()). If the widget’s font is changed later, the font info object is not updated.

3. QPainter::fontInfo() returns the font info for a painter’s current font. The font info object is automatically
updated if you set a new painter font.

85

QFontlInfo Class Reference 86

* If you use a printer font the values returned will almost certainly be inaccurate. Printer fonts are not always
accessible so the nearest screen font is used if a printer font is supplied.

See also QFont [p. 591, QFontMetrics [p. 90], QFontDatabase [p. 75], Graphics Classes and Implicitly and
Explicitly Shared Classes.

Member Function Documentation

QFontInfo::QFontInfo (const QFont & font)

Constructs a font info object for font.
The font must be screen-compatible, i.e. a font you use when drawing text in widgets or pixmaps.

The font info object holds the information for the font that is passed in the constructor at the time it is created, and
is not updated if the font’s attributes are changed later.

Use the QPainter::fontInfo() function to get the font info when painting. This is a little slower than using this
constructor, but it always gives correct results because the font info data is updated.

QFontInfo::QFontInfo (const QFontInfo & fi)

Constructs a copy of fi.

QFontInfo::~QFontInfo ()

Destroys the font info object.

bool QFontInfo::bold () const

Returns TRUE if weight() would return a value greater than QFont::Normal; otherwise returns FALSE.

See also weight() [p. 87] and QFont::bold() [p. 66].

bool QFontInfo::exactMatch () const

Returns TRUE if the matched window system font is exactly the same as the one specified by the font.

See also QFont::exactMatch() [p. 67].

QString QFontInfo::family () const

Returns the family name of the matched window system font.
See also QFont::family() [p. 671.

Example: fonts/simple-qfont-demo/viewer.cpp.

bool QFontInfo::fixedPitch () const

Returns the fixed pitch value of the matched window system font.

See also QFont::fixedPitch() [p. 67].

QFontlInfo Class Reference 87

bool QFontInfo::italic () const

Returns the italic value of the matched window system font.

See also QFont::italic() [p. 68].

QFontInfo & QFontInfo::operator= (const QFontInfo & fi)

Assigns the font info in fi.

int QFontInfo::pixelSize () const

Returns the pixel size of the matched window system font.

See also QFont::pointSize() [p. 69].

int QFontInfo::pointSize () const

Returns the point size of the matched window system font.
See also QFont::pointSize() [p. 69].

Example: fonts/simple-qfont-demo/viewer.cpp.

bool QFontInfo::rawMode () const

Returns TRUE if the font is a raw mode font.

If it is a raw mode font, all other functions in QFontInfo will return the same values set in the QFont, regardless of
the font actually used.

See also QFont::rawMode() [p. 69].

QFont::StyleHint QFontInfo::styleHint () const

Returns the style of the matched window system font.
Currently only returns the style hint set in QFont.

See also QFont::styleHint() [p. 72] and QFont::StyleHint [p. 65].

int QFontInfo::weight () const

Returns the weight of the matched window system font.

See also QFont::weight() [p. 73] and bold() [p. 86].

QFontManager Class Reference

The QFontManager class implements font management in Qt/Embedded.

#i ncl ude <qgf ont manager _qws. h>

Public Members

= QFontManager ()
= ~QFontManager ()
m QDiskFont * get (const QFontDef & f)

Static Public Members

m void initialize ()
m void cleanup ()

Detailed Description

The QFontManager class implements font management in Qt/Embedded.

There is one and only one QFontManager per Qt/Embedded application (qt_fontmanager is a global variable that
points to it). It keeps a list of font factories, a cache of rendered fonts and a list of fonts available on disk.
QFontManager is called when a new font needs to be rendered from a Freetype-compatible or BDF font on disk;
this only happens if there isn’t an appropriate QPF font already available.

See also Qt/Embedded.

Member Function Documentation

QFontManager::QFontManager ()

Creates a font manager. This method reads in the font definition file from $QTDIR/lib/fonts/fontdir (or
/ust/local/qt-embedded/lib/fonts/fontdir if QTDIR isn’t defined) and creates a list of QDiskFonts to hold the infor-
mation in the file. It also constructs any defined font factories.

QFontManager::~QFontManager ()

Destroys the QFontManager and sets qt_fontmanager to 0.

88

QFontManager Class Reference

void QFontManager::cleanup () [static]

Destroys the font manager

QDiskFont * QFontManager::get (const QFontDef & f)

Returns the QDiskFont that best matches f, based on family, weight, italicity and font size.

void QFontManager::initialize () [static]

Creates a new QFontManager and points qt_fontmanager to it

89

QFontMetrics Class Reference

The QFontMetrics class provides font metrics information.

#include <qgfontmetrics. h>

Public Members

m QFontMetrics (const QFont & font)

m QFontMetrics (const QFontMetrics & fm)
~QFontMetrics ()

QFontMetrics & operator= (const QFontMetrics & fm)
int ascent () const

int descent () const

int height () const

» int leading () const

» int lineSpacing () const

int minLeftBearing () const

int minRightBearing () const

int maxWidth () const

bool inFont (QChar ch) const

int leftBearing (QChar ch) const

int rightBearing (QChar ch) const

int width (const QString & str, int len = -1) const
m int width (QChar ch) const

m int width (char ¢) const (obsolete)

m int charWidth (const QString & str, int pos) const

m QRect boundingRect (const QString & str, int len = -1) const

m QRect boundingRect (QChar ch) const

m QRect boundingRect (int x, int y, int w, int h, int flgs, const QString & str, int len = -1, int tabstops = 0,
int * tabarray = 0, QTextParag ** intern = 0) const

m QSize size (int flgs, const QString & str, int len = -1, int tabstops = 0, int * tabarray = 0,
QTextParag ** intern = 0) const

m int underlinePos () const

e int strikeOutPos () const

o int lineWidth () const

90

QFontMetrics Class Reference 91

Detailed Description

The QFontMetrics class provides font metrics information.

QFontMetrics functions calculate size of characters and strings for a given font. There are three ways you can create
a QFontMetrics object:

1. Calling the QFontMetrics constructor with a QFont creates a font metrics object for a screen-compatible font,
i.e. the font cannot be a printer font*. If the font is changed later, the font metrics object is not updated.

2. QWidget::fontMetrics() returns the font metrics for a widget’s font. This is equivalent to
QFontMetrics(widget->font()). If the widget’s font is changed later, the font metrics object is not updated.

3. QPainter::fontMetrics() returns the font metrics for a painter’s current font. The font metrics object is auto-
matically updated if you set a new painter font.

* If you use a printer font the values returned will almost certainly be inaccurate. Printer fonts are not always
accessible so the nearest screen font is used if a printer font is supplied.

Once created, the object provides functions to access the individual metrics of the font, its characters, and for
strings rendered in the font.

There are several functions that operate on the font: ascent(), descent(), height(), leading() and lineSpacing()
return the basic size properties of the font. The underlinePos(), strikeOutPos() and lineWidth() functions, return
the properties of the line that underlines or strikes out the characters. These functions are all fast.

There are also some functions that operate on the set of glyphs in the font: minLeftBearing(), minRightBearing()
and maxWidth(). These are by necessity slow, and we recommend avoiding them if possible.

For each character, you can get its width(), leftBearing() and rightBearing() and find out whether it is in the font
using inFont(). You can also treat the character as a string, and use the string functions on it.

The string functions include width(), to return the width of a string in pixels (or points, for a printer), boundin-
gRect(), to return a rectangle large enough to contain the rendered string, and size(), to return the size of that
rectangle.

Example:
Qront font("times", 24);
Qront Metrics fm(font);

int pixelsWde = fmwidth("What's the width of this text?");
int pixelsH gh = fmheight();

See also QFont [p. 59], QFontInfo [p. 85], QFontDatabase [p. 75], Graphics Classes and Implicitly and Explicitly
Shared Classes.

Member Function Documentation

QFontMetrics::QFontMetrics (const QFont & font)

Constructs a font metrics object for font.

The font must be screen-compatible, i.e. a font you use when drawing text in QWidget or QPixmap objects, not
QPicture or QPrinter.

The font metrics object holds the information for the font that is passed in the constructor at the time it is created,
and is not updated if the font’s attributes are changed later.

Use QPainter::fontMetrics() to get the font metrics when painting. This is a little slower than using this constructor,
but it always gives correct results because the font info data is updated.

QFontMetrics Class Reference 92

QFontMetrics::QFontMetrics (const QFontMetrics & fm)

Constructs a copy of fm.

QFontMetrics::~QFontMetrics ()

Destroys the font metrics object and frees all allocated resources.

int QFontMetrics::ascent () const

Returns the maximum ascent of the font.
The ascent is the distance from the base line to the uppermost line where pixels may be drawn.
See also descent() [p. 931.

Examples: drawdemo/drawdemo.cpp and scrollview/scrollview.cpp.

QRect QFontMetrics::boundingRect (const QString & str, int len = -1) const

Returns the bounding rectangle of the first len characters of str, which is the set of pixels the text would cover if
drawn at (0,0).

If len is negative (the default), the entire string is used.

Note that the bounding rectangle may extend to the left of (0,0), e.g. for italicized fonts, and that the text output
may cover all pixels in the bounding rectangle.

Newline characters are processed as normal characters, not as linebreaks.

Due to the different actual character heights, the height of the bounding rectangle of e.g. "Yes" and "yes" may be
different.

See also width() [p. 96] and QPainter::boundingRect() [Graphics with Qt].

Example: xform/xform.cpp.

QRect QFontMetrics::boundingRect (QChar ch) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the bounding rectangle of the character ch relative to the left-most point on the base line.

Note that the bounding rectangle may extend to the left of (0,0), e.g. for italicized fonts, and that the text output
may cover all pixels in the bounding rectangle.

Note that the rectangle usually extends both above and below the base line.

See also width() [p. 96].

QRect QFontMetrics::boundingRect (int x, int y, int w, int h, int flgs, const QString & str,
int len = -1, int tabstops = 0, int * tabarray = 0, QTextParag ** intern = 0) const
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the bounding rectangle of the first len characters of str, which is the set of pixels the text would cover if
drawn at (0,0). The drawing, and hence the bounding rectangle, is constrained to the rectangle (x, y, w, h).

QFontMetrics Class Reference 93

If len is negative (which is the default), the entire string is used.

The flgs argument is the bitwise OR of the following flags:

e AlignAut o aligns to the left border for all languages except Hebrew and Arabic where it aligns to the right.

Ali gnLeft aligns to the left border.

Al'i gnRi ght aligns to the right border.

Ali gnJustify produces justified text.

Al'i gnHCent er aligns horizontally centered.

Al'i gnTop aligns to the top border.

Al i gnBot t omaligns to the bottom border.

Al'i gnVCent er aligns vertically centered
AlignCenter (= AlignHCenter | AlignVCenter)

Si ngl eLi ne ignores newline characters in the text.

ExpandTabs expands tabs (see below)

ShowPr ef i x interprets "&x" as "x" underlined.

\Wr dBr eak breaks the text to fit the rectangle.

Horizontal alignment defaults to AlignAuto and vertical alignment defaults to AlignTop.
If several of the horizontal or several of the vertical alignment flags are set, the resulting alignment is undefined.
These flags are defined in gnamespace.h.

If ExpandTabs is set in fIgs, then: if tabarray is non-null, it specifies a O-terminated sequence of pixel-positions for
tabs; otherwise if tabstops is non-zero, it is used as the tab spacing (in pixels).

Note that the bounding rectangle may extend to the left of (0,0), e.g. for italicized fonts, and that the text output
may cover all pixels in the bounding rectangle.

Newline characters are processed as linebreaks.

Despite the different actual character heights, the heights of the bounding rectangles of "Yes" and "yes" are the
same.

The bounding rectangle given by this function is somewhat larger than that calculated by the simpler boundin-
gRect() function. This function uses the maximum left and right font bearings as is necessary for multi-line text
to align correctly. Also, fontHeight() and lineSpacing() are used to calculate the height, rather than individual
character heights.

The intern argument should not be used.

See also width() [p. 96], QPainter::boundingRect() [Graphics with Qt] and Qt::AlignmentFlags [p. 179].

int QFontMetrics::charWidth (const QString & str, int pos) const

Returns the width of the character at position pos in the string str.

The whole string is needed, as the glyph drawn may change depending on the context (the letter before and after
the current one) for some languages (e.g. Arabic).

This function also takes non spacing marks and ligatures into account.

int QFontMetrics::descent () const

Returns the maximum descent of the font.

QFontMetrics Class Reference

94

The descent is the distance from the base line to the lowermost line where pixels may be drawn. (Note that this is

different from X, which adds 1 pixel.)
See also ascent() [p. 92].

Examples: drawdemo/drawdemo.cpp and hello/hello.cpp.

int QFontMetrics::height () const

Returns the height of the font.

This is always equal to ascent()+descent()+1 (the 1 is for the base line).
See also leading() [p. 941 and lineSpacing() [p. 941.

Examples: grapher/grapher.cpp, hello/hello.cpp and qfd/fontdisplayer.cpp.

bool QFontMetrics::inFont (QChar ch) const

Returns TRUE if character ch is a valid character in the font; otherwise returns FALSE.

Example: gqfd/fontdisplayer.cpp.

int QFontMetrics::leading () const

Returns the leading of the font.
This is the natural inter-line spacing.
See also height() [p. 941 and lineSpacing() [p. 941.

int QFontMetrics::leftBearing (QChar ch) const

Returns the left bearing of character ch in the font.

The left bearing is the right-ward distance of the left-most pixel of the character from the logical origin of the

character. This value is negative if the pixels of the character extend to the left of the logical origin.

See width(QChar) for a graphical description of this metric.
See also rightBearing() [p. 951, minLeftBearing() [p. 95] and width() [p. 96].
Example: qfd/fontdisplayer.cpp.

int QFontMetrics::lineSpacing () const

Returns the distance from one base line to the next.
This value is always equal to leading() +height().
See also height() [p. 94] and leading() [p. 941].

Examples: action/application.cpp, application/application.cpp, mdi/application.cpp, qfd/fontdisplayer.cpp,

qwerty/qwerty.cpp and scrollview/scrollview.cpp.

int QFontMetrics::lineWidth () const

Returns the width of the underline and strikeout lines, adjusted for the point size of the font.

QFontMetrics Class Reference 95

See also underlinePos() [p. 96] and strikeOutPos() [p. 96].

int QFontMetrics::maxWidth () const

Returns the width of the widest character in the font.

Example: qfd/fontdisplayer.cpp.

int QFontMetrics::minLeftBearing () const

Returns the minimum left bearing of the font.

This is the smallest leftBearing(char) of all characters in the font.
Note that this function can be very slow if the font is large.

See also minRightBearing() [p. 95] and leftBearing() [p. 941.
Example: qfd/fontdisplayer.cpp.

int QFontMetrics::minRightBearing () const

Returns the minimum right bearing of the font.

This is the smallest rightBearing(char) of all characters in the font.
Note that this function can be very slow if the font is large.

See also minLeftBearing() [p. 951 and rightBearing() [p. 95].
Example: gqfd/fontdisplayer.cpp.

QFontMetrics & QFontMetrics::operator= (const QFontMetrics & fm)

Assigns the font metrics fm.

int QFontMetrics::rightBearing (QChar ch) const

Returns the right bearing of character ch in the font.

The right bearing is the left-ward distance of the right-most pixel of the character from the logical origin of a
subsequent character. This value is negative if the pixels of the character extend to the right of the width() of the
character.

See width() for a graphical description of this metric.
See also leftBearing() [p. 941, minRightBearing() [p. 95] and width() [p. 96].
Example: gqfd/fontdisplayer.cpp.

QSize QFontMetrics::size (int flgs, const QString & str, int len = -1, int tabstops = 0,
int * tabarray = 0, QTextParag ** intern = 0) const

Returns the size in pixels of the first len characters of str.

If len is negative (the default), the entire string is used.

The flgs argument is the bitwise OR of the following flags:

QFontMetrics Class Reference 96

e Singl eLi ne ignores newline characters.

e ExpandTabs expands tabs (see below)

e ShowPr ef i x interprets "&x" as "x" underlined.
e \Wr dBr eak breaks the text to fit the rectangle.

These flags are defined in qgnamespace.h.

If ExpandTabs is set in fIgs, then: if tabarray is non-null, it specifies a O-terminated sequence of pixel-positions for
tabs; otherwise if tabstops is non-zero, it is used as the tab spacing (in pixels).

Newline characters are processed as linebreaks.

Despite the different actual character heights, the heights of the bounding rectangles of "Yes" and "yes" are the
same.

The intern argument should not be used.

See also boundingRect() [p. 92].

int QFontMetrics::strikeOutPos () const

Returns the distance from the base line to where the strikeout line should be drawn.

See also underlinePos() [p. 96] and lineWidth() [p. 941].

int QFontMetrics::underlinePos () const

Returns the distance from the base line to where an underscore should be drawn.

See also strikeOutPos() [p. 96] and lineWidth() [p. 94].

int QFontMetrics::width (const QString & str, int len = -1) const

Returns the width in pixels of the first len characters of str. If len is negative (the default), the entire string is used.

Note that this value is not equal to boundingRect().width(); boundingRect() returns a rectangle describing the
pixels this string will cover whereas width() returns the distance to where the next string should be drawn.

See also boundingRect() [p. 92].

Examples: drawdemo/drawdemo.cpp, hello/hello.cpp, movies/main.cpp, qfd/fontdisplayer.cpp and
scrollview/scrollview.cpp.

int QFontMetrics::width (QChar ch) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

OIO lfO

Returns the logical width of character ch in pixels. This is a distance appropriate for drawing a subsequent character
after ch.

QFontMetrics Class Reference 97

Some of the metrics are described in the image to the right. The tall dark rectangle covers the logical width() of
a character. The shorter pale rectangles cover leftBearing() and rightBearing() of the characters. Notice that the
bearings of "f" in this particular font are both negative, while the bearings of "o" are both positive.

Warning: This function will produce incorrect results for Arabic characters or non spacing marks in the middle of
a string, as the glyph shaping and positioning of marks that happens when processing strings cannot be taken into
account. Use charWidth() instead if you aren’t looking for the width of isolated characters.

See also boundingRect() [p. 92] and charWidth() [p. 93].

int QFontMetrics::width (char c¢) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Provided to aid porting from Qt 1.x.

QGuardedPtr Class Reference

The QGuardedPtr class is a template class that provides guarded pointers to QObjects.

#i ncl ude <qguardedptr. h>

Public Members

» QGuardedPtr ()

» QGuardedPtr (T * p)

m QGuardedPtr (const QGuardedPtr<T> & p)

m ~QGuardedPtr ()

m QGuardedPtr<T> & operator= (const QGuardedPtr<T> & p)
m QGuardedPtr<T> & operator= (T * p)

m bool operator== (const QGuardedPtr<T> & p) const

m bool operator!= (const QGuardedPtr<T> & p) const

bool isNull () const

m T * operator-> () const

m T & operator* () const
e operator T * () const

Detailed Description

The QGuardedPtr class is a template class that provides guarded pointers to QObjects.

A guarded pointer, QGuardedPtr<X>, behaves like a normal C++ pointer X*, except that it is automatically set to
null when the referenced object is destroyed (unlike normal C++ pointers, which become "dangling pointers" in
such cases). X must be a subclass of QObject.

Guarded pointers are useful whenever you need to store a pointer to a QObject that is owned by someone else and
therefore might be destroyed while you still keep a reference to it. You can safely test the pointer for validity.

Example:

QGuardedPtr |abel = new Q.abel (0,"label");
| abel ->set Text ("I |ike guarded pointers");

del ete (Q.abel *) label; // enulate sonebody destroying the |abel
if (1label)
| abel - >show() ;

el se
qDebug(" The | abel has been destroyed");

98

QGuardedPtr Class Reference 99

The program will output
The | abel has been destroyed

rather than dereferencing an invalid address in | abel - >show() .

The functions and operators available with a QGuardedPtr are the same as those available with a normal unguarded
pointer, except the pointer arithmetic operators (++, --, -, and +), which are normally used only with arrays of
objects. Use them like normal pointers and you will not need to read this class documentation.

For creating guarded pointers, you can construct or assign to them from an X* or from another guarded pointer of
the same type. You can compare them with each other for equality (==) and inequality (=), or test for null with
isNull(). Finally, you can dereference them using either the *x or the x- >menber notation.

A guarded pointer will automatically cast to an X*, so you can freely mix guarded and unguarded pointers. This
means that if you have a QGuardedPtr, you can pass it to a function that requires a QWidget*. For this reason,
it is of little value to declare functions to take a QGuardedPtr as a parameter - just use normal pointers. Use a
QGuardedPtr when you are storing a pointer over time.

Note again that class X must inherit QObject, or a compilation or link error will result.

See also Object Model.

Member Function Documentation

QGuardedPtr::QGuardedPtr ()

Constructs a null guarded pointer.

See also isNull() [p. 99].

QGuardedPtr::QGuardedPtr (T * p)

Constructs a guarded pointer that points to same object as p points to.

QGuardedPtr::QGuardedPtr (const QGuardedPtr<T> & p)

Copy one guarded pointer from another. The constructed guarded pointer points to the same object that p points
to (which may be null).

QGuardedPtr::~QGuardedPtr ()

Destroys the guarded pointer. Just like a normal pointer, destroying a guarded pointer does not destroy the object
being pointed to.

bool QGuardedPtr::isNull () const

Returns TRUE if the referenced object has been destroyed or if there is no referenced object.

QGuardedPtr::operator T * () const

Cast operator; implements pointer semantics. Because of this function you can pass a QGuardedPtr to a function
where an X* is required.

QGuardedPtr Class Reference 100

bool QGuardedPtr::operator!= (const QGuardedPtr<T> & p) const

Inequality operator; implements pointer semantics, the negation of operator==. Returns TRUE if p and this
guarded pointer are not pointing to the same object; otherwise returns FALSE.

T & QGuardedPtr::operator* () const

Dereference operator; implements pointer semantics. Just use this operator as you would with a normal C++
pointer.

T * QGuardedPtr::operator-> () const

Overloaded arrow operator; implements pointer semantics. Just use this operator as you would with a normal
C++ pointer.

QGuardedPtr<T> & QGuardedPtr::operator= (const QGuardedPtr<T> & p)

Assignment operator. This guarded pointer then points to the same object as p points to.

QGuardedPtr<T> & QGuardedPtr::operator= (T * p)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Assignment operator. This guarded pointer then points to same object as p points to.

bool QGuardedPtr::operator== (const QGuardedPtr<T> & p) const

Equality operator; implements traditional pointer semantics. Returns TRUE if both p and this guarded pointer are
null, or if both p and this point to the same object; otherwise returns FALSE.

See also operator!=() [p. 100].

QHeader Class Reference

The QHeader class provides a header row or column, e.g. for tables and listviews.

#include <gheader. h>

Inherits QWidget [Widgets with Qt].

Public Members

QHeader (QWidget * parent = 0, const char * name = 0)
QHeader (int n, QWidget * parent = 0, const char * name = 0)
~QHeader ()

int addLabel (const QString & s, int size = -1)

int addLabel (const QIconSet & iconset, const QString & s, int size = -1)
void removeLabel (int section)

virtual void setLabel (int section, const QString & s, int size = -1)
virtual void setLabel (int section, const QIconSet & iconset, const QString & s, int size = -1)
QString label (int section) const

QlconSet * iconSet (int section) const

virtual void setOrientation (Orientation)

Orientation orientation () const

virtual void setTracking (bool enable)

bool tracking () const

virtual void setClickEnabled (bool enable, int section = -1)
virtual void setResizeEnabled (bool enable, int section = -1)
virtual void setMovingEnabled (bool)

virtual void setStretchEnabled (bool b, int section)

void setStretchEnabled (bool b)

bool isClickEnabled (int section = -1) const

bool isResizeEnabled (int section = -1) const

bool isMovingEnabled () const

bool isStretchEnabled () const

bool isStretchEnabled (int section) const

void resizeSection (int section, int s)

int sectionSize (int section) const

int sectionPos (int section) const

int sectionAt (int pos) const

int count () const

int headerWidth () const

QRect sectionRect (int section) const

virtual void setCellSize (int section, int s) (obsolete)

101

QHeader Class Reference

int cellSize (int i) const (obsolete)

int cellPos (int i) const (obsolete)

int cellAt (int pos) const (obsolete)

int offset () const

int mapToSection (int index) const

int mapTolndex (int section) const

int mapToLogical (int a) const (obsolete)

int mapToActual (int 1) const (obsolete)

void moveSection (int section, int tolndex)

virtual void moveCell (int fromlIdx, int toldx) (obsolete)
void setSortIndicator (int section, bool increasing = TRUE)
void adjustHeaderSize ()

Public Slots

virtual void setOffset (int pos)

Signals

void clicked (int section)

void pressed (int section)

void released (int section)

void sizeChange (int section, int oldSize, int newSize)
void indexChange (int section, int fromIndex, int toIndex)
void sectionClicked (int index) (obsolete)

void moved (int fromIndex, int toIndex) (obsolete)

Properties

m int count — the number of sections in the header (read only)
» bool moving — whether the header sections can be moved

» int offset — the header’s leftmost (or topmost) visible pixel

» Orientation orientation — the header’s physical orientation

m bool stretching — whether the header sections always take up the full width (or height) of the header
m bool tracking — whether the sizeChange() signal is emitted continuously

Protected Members

= QRect sRect (int index)

m virtual void paintSection (QPainter * p, int index, const QRect & fr)
m virtual void paintSectionLabel (QPainter * p, int index, const QRect & fr)

102

QHeader Class Reference 103

Detailed Description

The QHeader class provides a header row or column, e.g. for tables and listviews.

This class provides a header, e.g. a vertical header to display row labels, or a horizontal header to display column
labels. It is used by QTable and QListView for example.

A header is composed of one or more sections, each of which may display a text label and an iconset. A sort
indicator (an arrow) may also be displayed using setSortIndicator().

Sections are added with addLabel() and removed with removeLabel(). The label and iconset are set in addLabel()
and can be changed later with setLabel(). Use count() to retrieve the number of sections in the header.

The orientation of the header is set with setOrientation(). If setStretchEnabled() is TRUE, the sections will expand
to take up the full width (height for vertical headers) of the header. The user can resize the sections manually
if setResizeEnabled() is TRUE. Call adjustHeaderSize() to have the sections resize to occupy the full width (or
height).

A section can be moved with moveSection(). If setMovingEnabled() is TRUE the user may drag a section from one
position to another. If a section is moved, the index positions at which sections were added (with addLabel()), may
not be the same after the move. You don’t have to worry about this in practice because the QHeader API works in
terms of section numbers, so it doesn’t matter where a particular section has been moved to.

If you want the current index position of a section call mapToIndex() giving it the section number. (This is the
number returned by the addLabel() call which created the section.) If you want to get the section number of a
section at a particular index position call mapToSection() giving it the index number.

Here’s an example to clarify mapToSection() and mapTolndex():

Index positions
0 |1 | 2 | 3
Original section ordering
Sect 0 | Sect 1 | Sect 2 | Sect 3
Ordering after the user moves a section
Sect 0 | Sect 2 | Sect 3 | Sect 1
k mapToSection(k) mapToIndex(k)

0 0 0

1 2 3

2 3 1

3 1 2

In the example above, if we wanted to find out which section is at index position 3 we’d call mapToSection(3) and
get a section number of 1 since section 1 was moved. Similarly, if we wanted to know which index position section
2 occupied we’d call mapToIndex(2) and get an index of 1.

QHeader provides the clicked(), pressed() and released() signals. If the user changes the size of a section, the
sizeChange() signal is emitted. If you want to have a sizeChange() signal emitted continuously whilst the user
is resizing (rather than just after the resizing is finished), use setTracking(). If the user moves a section the
indexChange() signal is emitted.

Namel Addressl Birth datel Namel Addressl Birth datel

See also QListView [Widgets with Qt], QTable [Widgets with Qt] and Advanced Widgets.

QHeader Class Reference 104

Member Function Documentation

QHeader::QHeader (QWidget * parent = 0, const char * name = 0)

Constructs a horizontal header called name, with parent parent.

QHeader::QHeader (int n, QWidget * parent = 0, const char * name = 0)

Constructs a horizontal header called name, with n sections and parent parent.

QHeader::~QHeader ()

Destroys the header and all its sections.

int QHeader::addLabel (const QString & s, int size = -1)

Adds a new section with label text s. Returns the index position where the section was added (at the right for
horizontal headers, at the bottom for vertical headers). The section’s width is set to size. If size < 0, an appropriate
size for the text s is chosen.

int QHeader::addLabel (const QIconSet & iconset, const QString & s, int size = -1)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Adds a new section with iconset iconset and label text s. Returns the index position where the section was added
(at the right for horizontal headers, at the bottom for vertical headers). The section’s width is set to size, unless
size is negative in which case the size is calculated taking account of the size of the text.

void QHeader::adjustHeaderSize ()

Adjusts the size of the sections to fit the size of the header as completely as possible. Only sections for which
isStretchEnabled () is TRUE will be resized.

int QHeader::cellAt (int pos) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use sectionAt() instead.

Returns the index at which the section is displayed, which contains pos in widget coordinates, or -1 if pos is outside
the header sections.

int QHeader::cellPos (int i) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use sectionPos() instead.

QHeader Class Reference 105

Returns the position in pixels of the section that is displayed at the index i. The position is measured from the start
of the header.

int QHeader::cellSize (int i) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use sectionSize() instead.

Returns the size in pixels of the section that is displayed at the index i.

void QHeader::clicked (int section) [signal]

If isClickEnabled () is TRUE, this signal is emitted when the user clicks section section.
See also pressed() [p. 108] and released() [p. 108].

int QHeader::count () const

Returns the number of sections in the header. See the "count" [p. 111] property for details.

int QHeader::headerWidth () const

Returns the total width of all the header columns.

QlIconSet * QHeader::iconSet (int section) const

Returns the icon set for section section. If the section does not exist, 0 is returned.

void QHeader::indexChange (int section, int fromIndex, int toIndex) [signal]

This signal is emitted when the user moves section section from index position fromIndex, to index position toIndex.

bool QHeader::isClickEnabled (int section = -1) const

Returns TRUE if section section is clickable; otherwise returns FALSE.

If section is out of range (negative or larger than count() - 1), TRUE is returned if all sections are clickable; otherwise
returns FALSE.

See also setClickEnabled() [p. 109].

bool QHeader::isMovingEnabled () const

Returns TRUE if the header sections can be moved; otherwise returns FALSE. See the "moving" [p. 111] property
for details.

QHeader Class Reference 106

bool QHeader::isResizeEnabled (int section = -1) const

Returns TRUE if section section is resizeable; otherwise returns FALSE.

If section is -1 then this function applies to all sections, i.e. TRUE is returned if all sections are resizeable; otherwise
returns FALSE.

See also setResizeEnabled() [p. 110].

bool QHeader::isStretchEnabled () const

Returns TRUE if the header sections always take up the full width (or height) of the header; otherwise returns
FALSE. See the "stretching” [p. 111] property for details.

bool QHeader::isStretchEnabled (int section) const
Returns TRUE if section section will resize to take up the full width (or height) of the header; otherwise returns
FALSE. If at least one section has stretch enabled the sections will always take up the full width of the header.

See also setStretchEnabled() [p. 110].

QString QHeader::label (int section) const

Returns the text for section section. If the section does not exist, a null string is returned.

int QHeader::mapToActual (int 1) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use mapTolndex() instead.

Translates from logical index [to actual index (index at which the section [is displayed) . Returns -1 if [is outside
the legal range.

See also mapToLogical() [p. 106].

int QHeader::mapToIndex (int section) const

Returns the index at which the section section is currently displayed.

For more explanation see the mapTo example.

int QHeader::mapToLogical (int a) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use mapToSection() instead.

Translates from actual index a (index at which the section is displayed) to logical index of the section. Returns -1
if a is outside the legal range.

See also mapToActual() [p. 106].

QHeader Class Reference 107

int QHeader::mapToSection (int index) const

Returns the section that is displayed at index position index.

For more explanation see the mapTo example.

void QHeader::moveCell (int fromldx, int toldx) [virtual]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use moveSection() instead.

Moves the section that is currently displayed at index fromlIdx to index toldx.

void QHeader::moveSection (int section, int toIndex)

Moves section section to index position tolndex.

void QHeader::moved (int fromIndex, int toIndex) [signal]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use indexChange() instead.

This signal is emitted when the user has moved the section which is displayed at the index fromIndex to the index
tolndex.

int QHeader::offset () const

Returns the header’s leftmost (or topmost) visible pixel. See the "offset" [p. 111] property for details.

Orientation QHeader::orientation () const
Returns the header’s physical orientation. See the "orientation" [p. 111] property for details.
void QHeader::paintSection (QPainter * p, int index,

const QRect & fr) [virtual protected]

Paints the section at position index, inside rectangle fr (which uses widget coordinates) using painter p.

Calls paintSectionLabel().

void QHeader::paintSectionLabel (QPainter * p, int index,
const QRect & fr) [virtual protected]

Paints the label of the section at position index, inside rectangle fr (which uses widget coordinates) using painter p.

Called by paintSection()

QHeader Class Reference

void QHeader::pressed (int section) [signal]

This signal is emitted when the user presses section section down.
See also released() [p. 108].

void QHeader::released (int section) [signal]

This signal is emitted when section section is released.

See also pressed() [p. 108].

void QHeader::removeLabel (int section)

Removes section section. If the section does not exist, nothing happens.

void QHeader::resizeSection (int section, int s)

Resizes section section to s pixels wide (or high).

QRect QHeader::sRect (int index) [protected]

Returns the rectangle covered by the section at index index.

int QHeader::sectionAt (int pos) const

Returns the index which contains the position pos given in pixels.

See also offset [p. 111].

void QHeader::sectionClicked (int index) [signal]

108

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new

code.

Use clicked () instead.

This signal is emitted when a part of the header is clicked. index is the index at which the section is displayed.

In a list view this signal would typically be connected to a slot that sorts the specified column (or row).

int QHeader::sectionPos (int section) const
Returns the position (in pixels) at which the section starts.
See also offset [p. 111].

QRect QHeader::sectionRect (int section) const

Returns the rectangle covered by section section.

QHeader Class Reference 109

int QHeader::sectionSize (int section) const

Returns the width (or height) of the section in pixels.

void QHeader::setCellSize (int section, int s) [virtual]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.
Use resizeSection() instead.

Sets the size of the section section to s pixels.

Warning: does not repaint or send out signals

void QHeader::setClickEnabled (bool enable, int section = -1) [virtual]

If enable is TRUE, any clicks on section section will result in clicked() signals being emitted; otherwise the section
will ignore clicks.

If section is -1 (the default) then the enable value is set for all existing sections and will be applied to any new
sections that are added.

See also moving [p. 111] and setResizeEnabled() [p. 110].

void QHeader::setLabel (int section, const QString & s, int size = -1) [virtual]

Sets the text of section section to s. The section’s width is set to size if size >= 0; otherwise it is left unchanged.
Any icon set that has been set for this section remains unchanged.

If the section does not exist, nothing happens.

void QHeader::setLabel (int section, const QIconSet & iconset, const QString & s, int size
= -1) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the icon for section section to iconset and the text to s. The section’s width is set to size if size >= 0; otherwise
it is left unchanged.

If the section does not exist, nothing happens.

void QHeader::setMovingEnabled (bool) [virtual]

Sets whether the header sections can be moved. See the "moving" [p. 111] property for details.

void QHeader::setOffset (int pos) [virtual slot]

Sets the header’s leftmost (or topmost) visible pixel to pos. See the "offset" [p. 111] property for details.

void QHeader::setOrientation (Orientation) [virtual]

Sets the header’s physical orientation. See the "orientation" [p. 111] property for details.

QHeader Class Reference 110

void QHeader::setResizeEnabled (bool enable, int section = -1) [virtual]

If enable is TRUE the user may resize section section; otherwise the section may not be manually resized.

If section is negative (the default) then the enable value is set for all existing sections and will be applied to any
new sections that are added. Example:

/I Allowresizing of all current and future sections
header - >set Resi zeEnabl ed(TRUE) ;
/] Disable resizing of section 3, (the fourth section added)
header - >set Resi zeEnabl ed(FALSE, 3);
If the user resizes a section, a sizeChange() signal is emitted.

See also moving [p. 111], setClickEnabled() [p. 109] and tracking [p. 111].

void QHeader::setSortIndicator (int section, bool increasing = TRUE)

Because the QHeader is often used together with table or list widgets, QHeader can indicate a sort order. This is
achieved by displaying an arrow at the right edge of a section.

If increasing is TRUE (the default) the arrow will point downwards; otherwise it will point upwards.

Only one section can show a sort indicator at any one time. If you don’t want any section to show a sort indicator
pass a section number of -1.

void QHeader::setStretchEnabled (bool b, int section) [virtual]

If b is TRUE, section section will be resized when the header is resized, so that the sections take up the full width
(or height for vertical headers) of the header; otherwise section section will be set to be unstretchable and will not
resize when the header is resized.

If section is -1, and if b is TRUE, then all sections will be resized equally when the header is resized so that they
take up the full width (or height for vertical headers) of the header; otherwise all the sections will be set to be
unstretchable and will not resize when the header is resized.

See also adjustHeaderSize() [p. 104].

void QHeader::setStretchEnabled (bool b)

Sets whether the header sections always take up the full width (or height) of the header to b. See the "stretching"
[p. 111] property for details.

void QHeader::setTracking (bool enable) [virtual]

Sets whether the sizeChange() signal is emitted continuously to enable. See the "tracking" [p. 111] property for
details.

void QHeader::sizeChange (int section, int oldSize, int newSize) [signal]

This signal is emitted when the user has changed the size of a section from oldSize to newSize. This signal is typically
connected to a slot that repaints the table or list that contains the header.

QHeader Class Reference 111

bool QHeader::tracking () const

Returns TRUE if the sizeChange() signal is emitted continuously; otherwise returns FALSE. See the "tracking"
[p. 111] property for details.

Property Documentation

int count

This property holds the number of sections in the header.

Get this property’s value with count().

bool moving

This property holds whether the header sections can be moved.

If this property is TRUE the user may move sections. If the user moves a section the indexChange() signal is
emitted.

See also setClickEnabled() [p. 109] and setResizeEnabled() [p. 110].

Set this property’s value with setMovingEnabled() and get this property’s value with isMovingEnabled ().

int offset

This property holds the header’s leftmost (or topmost) visible pixel.

Setting this property will scroll the header so that offset becomes the leftmost (or topmost for vertical headers)
visible pixel.

Set this property’s value with setOffset() and get this property’s value with offset().

Orientation orientation

This property holds the header’s physical orientation.
The orientation is either QHeader::Vertical or QHeader::Horizontal (the default).
Call setOrientation() before adding labels if you don’t provide a size parameter otherwise the sizes will be incorrect.

Set this property’s value with setOrientation() and get this property’s value with orientation().

bool stretching

This property holds whether the header sections always take up the full width (or height) of the header.

Set this property’s value with setStretchEnabled() and get this property’s value with isStretchEnabled().

bool tracking

This property holds whether the sizeChange() signal is emitted continuously.

If tracking is on, the sizeChange() signal is emitted continuously while the mouse is moved (i.e. when the header
is resized), otherwise it is only emitted when the mouse button is released at the end of resizing.

QHeader Class Reference 112

Tracking defaults to FALSE.

Set this property’s value with setTracking() and get this property’s value with tracking().

QIntValidator Class Reference

The QIntValidator class provides a validator which ensures that a string contains a valid integer within a specified
range.

#include <qval idator. h>

Inherits QValidator [p. 208].

Public Members

» QIntValidator (QObject * parent, const char * name = 0)

» QIntValidator (int minimum, int maximum, QObject * parent, const char * name = 0)
» ~QIntValidator ()

m virtual QValidator::State validate (QString & input, int &) const

= void setBottom (int)

void setTop (int)

virtual void setRange (int minimum, int maximum)

int bottom () const

int top () const

Properties

m int bottom — the validator’s lowest acceptable value
» int top — the validator’s highest acceptable value

Detailed Description

The QIntValidator class provides a validator which ensures that a string contains a valid integer within a specified
range.

The validate() function returns Acceptable, Intermediate or Invalid. Acceptable means that the string is a valid
integer within the specified range. Intermediate means that the string is a valid integer but is not within the
specified range. Invalid means that the string is not a valid integer.

Example of use:

QntValidator v(0, 100, this);
QineEdit* edit = new QLineEdit(this);

/1 the edit lineedit will only accept integers between 0 and 100
edit->setValidator(&);

113

QIntValidator Class Reference 114

Below we present some examples of validators. In practice they would normally be associated with a widget as in
the example above.

@tring s;

QntValidator v(0, 100, this);

s = "10";

v.validate(s, 0); // returns Acceptable
s = "35";

v.validate(s, 0); // returns Acceptable
s = "105";

v.validate(s, 0); // returns Internediate
s = "-763";

v.validate(s, 0); // returns Invalid

s = "abc";

v.validate(s, 0); // returns Invalid

s = "12v";

v.validate(s, 0); // returns Invalid

The minimum and maximum values are set in one call with setRange() or individually with setBottom() and
setTop().

See also QDoubleValidator [p. 50], QRegExpValidator [p. 153] and Miscellaneous Classes.

Member Function Documentation

QIntValidator::QIntValidator (QObject * parent, const char * name = 0)

Constructs a validator that accepts all integers and has parent parent and name name.

QIntValidator::QIntValidator (int minimum, int maximum, QObject * parent,
const char * name = 0)

Constructs a validator that accepts all integers from and including minimum up to and including maximum with
parent parent and name name.

QIntValidator::~QIntValidator ()

Destroys the validator, freeing any resources allocated.

int QIntValidator::bottom () const

Returns the validator’s lowest acceptable value. See the "bottom" [p. 115] property for details.

void QIntValidator::setBottom (int)

Sets the validator’s lowest acceptable value. See the "bottom" [p. 115] property for details.

QIntValidator Class Reference 115

void QIntValidator::setRange (int minimum, int maximum) [virtual]

Sets the range of the validator to accept only integers between minimum and maximum inclusive.

void QIntValidator::setTop (int)

Sets the validator’s highest acceptable value. See the "top" [p. 115] property for details.

int QIntValidator::top () const

Returns the validator’s highest acceptable value. See the "top" [p. 115] property for details.

QValidator::State QIntValidator::validate (QString & input, int &) const [virtual]

Returns Acceptable if the input is an integer within the valid range, Intermediate if the input is an integer outside
the valid range and Invalid if the input is not an integer.

w

= "35";
v.validate(s, 0); // returns Acceptable

(72]

= "105";
v.validate(s, 0); // returns Internediate

= "abc";
v.validate(s, 0); // returns Invalid

w

Reimplemented from QValidator [p. 209].

Property Documentation

int bottom

This property holds the validator’s lowest acceptable value.
Set this property’s value with setBottom() and get this property’s value with bottom().

See also setRange() [p. 115].

int top

This property holds the validator’s highest acceptable value.
Set this property’s value with setTop() and get this property’s value with top().

See also setRange() [p. 115].

QMetaObject Class Reference

The QMetaObject class contains meta information about Qt objects.

#i ncl ude <gnet aobj ect. h>

Public Members

m const char * className () const

m const char * superClassName () const

= QMetaObject * superClass () const

bool inherits (const char * clname) const

int numSlots (bool super = FALSE) const

int numSignals (bool super = FALSE) const
QStrList slotNames (bool super = FALSE) const
QStrList signalNames (bool super = FALSE) const
int numClassInfo (bool super = FALSE) const

m const QClassInfo * classInfo (int index, bool super = FALSE) const

m const char * classInfo (const char * name, bool super = FALSE) const
m const QMetaProperty * property (int index, bool super = FALSE) const
» int findProperty (const char * name, bool super = FALSE) const

m QStrList propertyNames (bool super = FALSE) const

e int numProperties (bool super = FALSE) const

Detailed Description

The QMetaObject class contains meta information about Qt objects.

The Meta Object System in Qt is responsible for the signal/slot mechanism for communication between objects,
runtime type information and the property system. All meta information in Qt is kept in a single instance of
QMetaObject per class.

In general, you will not have to use this class directly in any application program. However, if you write meta
applications such as scripting engines or GUI builders, you might find these functions useful:

className() to get the name of a class.

e superClassName() to get the name of the superclass.

e inherits(), the function called by QObject::inherits().

e superClass() to access the meta object of the superclass.

e numSlots(), numSignals(), slotNames(), and signalNames() to get information about a class’s signals and
slots.

116

QMetaObject Class Reference 117

e property() and propertyNames() to receive information about a class’s properties.

e classInfo() and numClassinfo() to access additional class information.

See also Object Model.

Member Function Documentation

const QClassInfo * QMetaObject::classInfo (int index, bool super = FALSE) const

Returns the class information with index index or 0 if no such information exists.

If super is TRUE, inherited class information is included.

const char * QMetaObject::classInfo (const char * name, bool super = FALSE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the class information with name name or 0 if no such information exists.

If super is TRUE, inherited class information is included.

const char * QMetaObject::className () const

Returns the class name.

See also QObject::className() [p. 127] and superClassName() [p. 119].

int QMetaObject::findProperty (const char * name, bool super = FALSE) const

Returns the index for the property with name name or -1 if no such property exists.
If super is TRUE, inherited properties are included.

See also property() [p. 118] and propertyNames() [p. 118].

bool QMetaObject::inherits (const char * clname) const

Returns TRUE if this class inherits clname within the meta object inheritance chain.
(A class is considered to inherit itself.)

int QMetaObject::numClassInfo (bool super = FALSE) const
Returns the number of class information available for this class.

If super is TRUE, inherited class information is included.

int QMetaObject::numProperties (bool super = FALSE) const

Returns the number of properties for this class.

If super is TRUE, inherited properties are included.

QMetaObject Class Reference 118
See also propertyNames() [p. 118].

int QMetaObject::numSignals (bool super = FALSE) const

Returns the number of signals for this class.
If super is TRUE, inherited signals are included.

See also signalNames() [p. 118].

int QMetaObject::numSlots (bool super = FALSE) const

Returns the number of slots for this class.
If super is TRUE, inherited slots are included.

See also slotNames() [p. 118].

const QMetaProperty * QMetaObject::property (int index, bool super = FALSE) const

Returns the property meta data for the property at index index or O if no such property exists.
If super is TRUE, inherited properties are included.

See also propertyNames() [p. 118].

QStrList QMetaObject::propertyNames (bool super = FALSE) const

Returns a list with the names of all properties for this class.
If super is TRUE, inherited properties are included.

See also property() [p. 118].

QStrList QMetaObject::signalNames (bool super = FALSE) const
Returns a list with the names of all signals for this class.

If super is TRUE, inherited signals are included.

QStrList QMetaObject::slotNames (bool super = FALSE) const
Returns a list with the names of all slots for this class.

If super is TRUE, inherited slots are included.

See also numSlots() [p. 118].

QMetaObject * QMetaObject::superClass () const

Returns the meta object of the super class or 0 if there is no such object.

QMetaObject Class Reference 119

const char * QMetaObject::superClassName () const

Returns the class name of the superclass or O if there is no superclass in the QObject hierachy.

See also className() [p. 117].

QMetaProperty Class Reference

The QMetaProperty class stores meta data about a property.

#i ncl ude <gnet aobj ect. h>

Public Members

m const char * type () const

m const char * name () const

= bool writable () const

bool isSetType () const

bool isEnumType () const

QStrList enumKeys () const

int keyToValue (const char * key) const
const char * valueToKey (int value) const
int keysToValue (const QStrList & keys) const
QStrList valueToKeys (int value) const

m bool designable (QObject * 0) const

m bool scriptable (QObject * o) const

m bool stored (QODbject * 0) const

e bool reset (QObject * 0) const

Detailed Description

The QMetaProperty class stores meta data about a property.
Property meta data includes type(), name(), and whether a property is writable(), designable() and stored().

The functions isSetType(), isEnumType() and enumKeys() provide further information about a property’s type. The
conversion functions keyToValue(), valueToKey(), keysToValue() and valueToKeys() allow conversion between the
integer representation of an enumeration or set value and its literal representation.

Actual property values are set and received through QObject’s set and get functions. See QObject::setProperty()
and QObject::property() for details.

You receive meta property data through an object’s meta object. See QMetaObject::property() and QMetaOb-
ject::propertyNames() for details.

See also Object Model.

120

QMetaProperty Class Reference 121

Member Function Documentation

bool QMetaProperty::designable (QObject * 0) const

Returns TRUE if the property is designable for object o; otherwise returns FALSE.

QStrList QMetaProperty::enumKeys () const

Returns the possible enumeration keys if this property is an enumeration type (or a set type).

See also isEnumType() [p- 121].

bool QMetaProperty::isEnumType () const

Returns whether the property’s type is an enumeration value.

See also isSetType() [p. 121] and enumKeys() [p. 121].

bool QMetaProperty::isSetType () const

Returns whether the property’s type is an enumeration value that is used as set, i.e. whether the enumeration
values can be OR’ed together. A set type is implicitly also an enum type.

See also isEnumType() [p. 121] and enumKeys() [p. 121].

int QMetaProperty::keyToValue (const char * key) const

Converts the enumeration key key to its integer value.
For set types, use keysToValue().
See also valueToKey() [p. 122], isSetType() [p. 121] and keysTovalue() [p. 121].

int QMetaProperty::keysToValue (const QStrList & keys) const
Converts the list of keys keys to their combined integer value.

See also isSetType() [p. 121] and valueToKey() [p. 122].

const char * QMetaProperty::name () const

Returns the name of the property.

bool QMetaProperty::reset (QObject * 0) const

Tries to reset the property for object o with a reset method. On success, returns TRUE; otherwise returns FALSE.

Reset methods are optional, usually only a few properties support them.

QMetaProperty Class Reference

bool QMetaProperty::scriptable (QObject * 0) const

Returns TRUE if the property is scriptable for object o; otherwise returns FALSE.

bool QMetaProperty::stored (QObject * 0) const

Returns TRUE if the property shall be stored for object o; otherwise returns FALSE.

const char * QMetaProperty::type () const

Returns the type of the property.

const char * QMetaProperty::valueToKey (int value) const

Converts the enumeration value value to its literal key.
For set types, use valueToKeys().
See also isSetType() [p. 121] and valueToKeys() [p. 122].

QStrList QMetaProperty::valueToKeys (int value) const
Converts the set value value to a list of keys.

See also isSetType() [p. 121] and valueToKey() [p. 122].

bool QMetaProperty::writable () const

Returns whether the property is writable or not.

122

QObject Class Reference

The QObject class is the base class of all Qt objects.
#i ncl ude <qobj ect. h>
Inherits Qt [p. 176].

Inherited by QAccel [Events, Actions, Layouts and Styles with Qt], QAccessibleObject [Accessibility and
Internationalization with Qt], QAction [Events, Actions, Layouts and Styles with Qt], QApplication [p. 4], QStyle
[Events, Actions, Layouts and Styles with Qt], QDataPump, QWidget [Widgets with Qt], QCanvas [Graphics with
Qt], QClipboard [Input/Output and Networking with Qt], QCopChannel [Embedded Applications with Qt], QDns
[Input/Output and Networking with Qt], QLayout [Events, Actions, Layouts and Styles with Qt], QDragObject
[Events, Actions, Layouts and Styles with Qt], QEditorFactory [p. 53], QFilelconProvider [Dialogs and Windows
with Qt], QNetworkProtocol [Input/Output and Networking with Qt], QServerSocket [Input/Output and
Networking with Qt], QWSKeyboardHandler [Embedded Applications with Qt], QNetworkOperation
[Input/Output and Networking with Qt], QNPInstance, QObjectCleanupHandler [Events, Actions, Layouts and
Styles with Qt], QProcess [Input/Output and Networking with Qt], QSessionManager [Input/Output and
Networking with Qt], QSignal [p. 168], QSignalMapper [p. 171], QSocket [Input/Output and Networking with
Qt], QSocketNotifier [Input/Output and Networking with Qt], QSound [p. 173], QSqlDatabase [Databases with
Qt], QSqlDriver [Databases with Qt], QSqlForm [Databases with Qt], QStyleSheet [Events, Actions, Layouts and
Styles with Qt], QTimer [p. 205], QToolTipGroup [Dialogs and Windows with Qt], QTranslator [Accessibility and
Internationalization with Qt], QUrlOperator [Input/Output and Networking with Qt], QValidator [p. 208] and
QWSMouseHandler [Embedded Applications with Qt].

Public Members

m QObject (QObject * parent = 0, const char * name = 0)

m virtual ~QObject ()

m const char * className () const

m QString tr (const char * sourceText, const char * comment) const
m QString trUtf8 (const char * sourceText, const char * comment) const
m QMetaObject * metaObject () const

virtual bool event (QEvent * e)

virtual bool eventFilter (QObject * watched, QEvent * e)

bool isA (const char * clname) const

bool inherits (const char * clname) const

m const char * name () const

m const char * name (const char * defaultName) const

m virtual void setName (const char * name)

m bool isWidgetType () const

» bool highPriority () const

m bool signalsBlocked () const

m void blockSignals (bool block)

123

QObject Class Reference 124

m int startTimer (int interval)

m void killTimer (int id)

m void killTimers ()

= QObject * child (const char * objName, const char * inheritsClass = 0, bool recursiveSearch = TRUE)

m const QObjectList * children () const

m QObjectList * queryList (const char * inheritsClass = 0, const char * objName = 0, bool regexpMatch =
TRUE, bool recursiveSearch = TRUE) const

m virtual void insertChild (QObject * obj)

» virtual void removeChild (QObject * obj)

» void installEventFilter (const QObject * obj)

» void removeEventFilter (const QObject * obj)

m bool connect (const QObject * sender, const char * signal, const char * member) const

m bool disconnect (const char * signal = 0, const QObject * receiver = 0, const char * member = 0)

m bool disconnect (const QObject * receiver, const char * member = 0)

» void dumpObjectTree ()

» void dumpObjectInfo ()

» virtual bool setProperty (const char * name, const QVariant & value)

e virtual QVariant property (const char * name) const

QObject * parent () const

Public Slots

m void deleteLater ()

Signals

m void destroyed ()

m void destroyed (QObject * obj)
Static Public Members

m const QObjectList * objectTrees ()

m bool connect (const QObject * sender, const char * signal, const QObject * receiver, const char * member)
m bool disconnect (const QObject * sender, const char * signal, const QObject * receiver,

const char * member)
Properties

m QCString name — the name of this object

Protected Members

m const QObject * sender ()

m virtual void timerEvent (QTimerEvent *)

m virtual void childEvent (QChildEvent *)

m virtual void customEvent (QCustomEvent *)

QObject Class Reference 125

m virtual void connectNotify (const char * signal)
m virtual void disconnectNotify (const char * signal)
m virtual bool checkConnectArgs (const char * signal, const QObject * receiver, const char * member)

Static Protected Members

m QCString normalizeSignalSlot (const char * signalSlot)

Related Functions

m void * qt_find obj_child (QObject * parent, const char * type, const char * name)

Detailed Description

The QObject class is the base class of all Qt objects.

QObject is the heart of the Qt object model. The central feature in this model is a very powerful mechanism for
seamless object communication called signals and slots. You can can connect a signal to a slot with connect()
and destroy the connection with disconnect(). To avoid never ending notification loops you can temporarily block
signals with blockSignals(). The protected functions connectNotify() and disconnectNotify() make it possible to
track connections.

QObjects organize themselves in object trees. When you create a QObject with another object as parent, the object
will automatically do an insertChild() on the parent and thus show up in the parent’s children() list. The parent
takes ownership of the object i.e. it will automatically delete its children in its destructor. You can look for an object
by name and optionally type using child() or queryList(), and get the list of tree roots using objectTrees().

Every object has an object name() and can report its className() and whether it inherits() another class in the
QObject inheritance hierarchy.

When an object is deleted, it emits a destroyed() signal. You can catch this signal to avoid dangling references to
QObjects. The QGuardedPtr class provides an elegant way to use this feature.

QObjects can receive events through event() and filter the events of other objects. See installEventFilter() and
eventFilter() for details. A convenience handler childEvent() can be reimplemented to catch child events.

Last but not least, QObject provides the basic timer support in Qt; see QTimer for high-level support for timers.

Notice that the Q OBJECT macro is mandatory for any object that implements signals, slots or properties. You also
need to run the moc program (Meta Object Compiler) on the source file. We strongly recommend the use of this
macro in all subclasses of QObject regardless of whether or not they actually use signals, slots and properties, since
failure to do so may lead certain functions to exhibit undefined behaviour.

All Qt widgets inherit QObject. The convenience function isWidgetType() returns whether an object is actually a
widget. It is much faster than inherits("QWidget").

Some QObject functions, e.g. children(), objectTrees() and queryList() return a QObjectList. A QObjectList is a QP-
trList of QObjects. QObjectLists support the same operations as QPtrLists and have an iterator class, QObjectListIt.

See also Object Model.

QObject Class Reference 126

Member Function Documentation

QObject::QO0bject (QObject * parent = 0, const char * name = 0)

Constructs an object with the parent object parent and a name.

The parent of an object may be viewed as the object’s owner. For instance, a dialog box is the parent of the "OK"
and "Cancel" buttons it contains.

The destructor of a parent object destroys all child objects.
Setting parent to 0 constructs an object with no parent. If the object is a widget, it will become a top-level window.

The object name is some text that can be used to identify a QObject. It’s particularly useful in conjunction with Qt
Designer. You can find an object by name (and type) using child(). To find several objects use queryList().

See also parent() [p. 134], name [p. 1371, childQ [p. 126] and queryList() [p. 134].

QObject::~QObject () [virtual]

Destroys the object, deleting all its child objects.
All signals to and from the object are automatically disconnected.

Warning: All child objects are deleted. If any of these objects are on the stack or global, sooner or later your
program will crash. We do not recommend holding pointers to child objects from outside the parent. If you still
do, the QObject::destroyed() signal gives you an opportunity to detect when an object is destroyed.

void QObject::blockSignals (bool block)

Blocks signals if block is TRUE, or unblocks signals if block is FALSE.
Emitted signals disappear into hyperspace if signals are blocked.

Example: rot13/rotl3.cpp.

bool QObject::checkConnectArgs (const char * signal, const QObject * receiver,
const char * member) [virtual protected]

Returns TRUE if the signal and the member arguments are compatible; otherwise returns FALSE. (The receiver
argument is currently ignored.)

Warning: We recommend that you use the default implementation and do not reimplement this function.

QObject * QObject::child (const char * objName, const char * inheritsClass = 0,
bool recursiveSearch = TRUE)

Searches the children and optionally grandchildren of this object, and returns a child that is called objName that
inherits inheritsClass. If inheritsClass is O (the default), any class matches.
If recursiveSearch is TRUE (the default), child() performs a depth-first search of the object’s children.

If there is no such object, this function returns 0. If there are more than one, the first one found is retured; if you
need all of them, use queryList().

QObject Class Reference 127

void QObject::childEvent (QChildEvent *) [virtual protected]

This event handler can be reimplemented in a subclass to receive child events.
Child events are sent to objects when children are inserted or removed.

Note that events with QEvent::type() QEvent::ChildInserted are posted (with QApplication::postEvent()) to make
sure that the child’s construction is completed before this function is called.

Note that if a child is removed immediately after it is inserted, the Chi | dl nsert ed event may be suppressed, but the
Chi | dRemoved event will always be sent. In this case there will be a Chi | dRemoved event without a corresponding
Chil di nserted event.

If you change state based on Chi | dl nsert ed events, call QWidget::constPolish(), or do
Appli cation:: sendPost edEvents(this, QEvent::Childlnserted);

in functions that depend on the state. One notable example is QWidget::sizeHint().
See also event() [p. 131] and QChildEvent [Events, Actions, Layouts and Styles with Qt].

Reimplemented in QMainWindow and QSplitter.

const QObjectList * QObject::children () const

Returns a list of child objects, or O if this object has no children.
The QObjectList class is defined in the qobjectlist.h header file.

The first child added is the first object in the list and the last child added is the last object in the list, i.e. new
children are appended at the end.

Note that the list order changes when QWidget children are raised or lowered. A widget that is raised becomes the
last object in the list, and a widget that is lowered becomes the first object in the list.

See also child() [p. 126], queryList() [p. 134], parent() [p. 134], insertChild() [p. 132] and removeChild()
[p. 135].

const char * QObject::className () const

Returns the class name of this object.

This function is generated by the Meta Object Compiler.

Warning: This function will return a wrong name if the class definition lacks the Q OBJECT macro.
See also name [p. 1371, inheritsQ [p. 1311, isA(Q) [p. 133] and isWidgetType() [p. 133].

Example: sql/overview/custom1/main.cpp.

bool QObject::connect (const QObject * sender, const char * signal,
const QObject * receiver, const char * member) [static]

Connects signal from the sender object to member in object receiver, and returns TRUE if the connection succeeds;
otherwise returns FALSE.

You must use the SIGNAL() and SLOT() macros when specifying the signal and the member, for example:

QLabel *| abel
QScrol I Bar *scroll

new Q.abel ;
new QScrol | Bar;

QObject Class Reference 128

QMbj ect:: connect (scroll, SIGNAL(val ueChanged(int)),
| abel, SLOT(setNun(int)));

This example ensures that the label always displays the current scroll bar value.

A signal can also be connected to another signal:

class MyWdget : public QW dget

{
Q OBJECT
publi c:
MW dget () ;
signal s:
voi d nyUseful Signal ();
private:
QPushButton *aButton;
b
M/W dget : : YW dget ()
{
aButton = new QPushButton(this);
connect (aButton, SIGNAL(clicked()), SIGNAL(nyUseful Signal()));
}

In this example, the MyWidget constructor relays a signal from a private member variable, and makes it available
under a name that relates to MyWidget.

A signal can be connected to many slots and signals. Many signals can be connected to one slot.
If a signal is connected to several slots, the slots are activated in an arbitrary order when the signal is emitted.

The function returns TRUE if it successfully connects the signal to the slot. It will return FALSE if it cannot create
the connection, for example, if QObject is unable to verify the existence of either signal or member, or if their
signatures aren’t compatible.

See also disconnect() [p. 129].

Examples: action/actiongroup/editor.cpp, action/main.cpp, addressbook/main.cpp, application/main.cpp,
iconview/main.cpp, mdi/main.cpp and t2/main.cpp.

bool QObject::connect (const QObject * sender, const char * signal,
const char * member) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Connects signal from the sender object to this object’s member.
Equivalent to: QObj ect: : connect (sender, signal, this, nenber).

See also disconnect() [p. 129].

void QObject::connectNotify (const char * signal) [virtual protected]

This virtual function is called when something has been connected to signal in this object.

Warning: This function violates the object-oriented principle of modularity. However, it might be useful when you
need to perform expensive initialization only if something is connected to a signal.

QObject Class Reference 129
See also connect() [p. 127] and disconnectNotify() [p. 130].

void QObject::customEvent (QCustomEvent *) [virtual protected]

This event handler can be reimplemented in a subclass to receive custom events. Custom events are user-defined
events with a type value at least as large as the "User" item of the QEvent::Type enum, and is typically a QCus-
tomEvent or QCustomEvent subclass.

See also event() [p. 131] and QCustomEvent [Events, Actions, Layouts and Styles with Qt].

void QObject::deleteLater () [slot]

Delete this object deferred.

Instead of an immediate deletion this function schedules a deferred delete event for processing when Qt returns to
the main event loop.
void QObject::destroyed () [signal]

This signal is emitted immediately before the object is destroyed.

All the objects’s children are destroyed immediately after this signal is emitted.

void QObject::destroyed (QObject * obj) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
This signal is emitted immediately before the object obj is destroyed.

All the objects’s children are destroyed immediately after this signal is emitted.

bool QObject::disconnect (const QObject * sender, const char * signal,
const QObject * receiver, const char * member) [static]

Disconnects signal in object sender from member in object receiver.
A signal-slot connection is removed when either of the objects involved are destroyed.

disconnect() is typically used in three ways, as the following examples demonstrate.

1. Disconnect everything connected to an object’s signals:
di sconnect (myQbject, 0, 0, 0);
equivalent to the non-static overloaded function
myQbj ect - >di sconnect () ;
2. Disconnect everything connected to a specific signal:
di sconnect (myQbj ect, SIGNAL(nySignal ()), 0, 0);
equivalent to the non-static overloaded function

myQbj ect - >di sconnect (SIGNAL(nySignal ()));

QObject Class Reference 130

3. Disconnect a specific receiver:
di sconnect (myQbj ect, 0, nyReceiver, 0);
equivalent to the non-static overloaded function

myQbj ect - >di sconnect (nyRecei ver);
0 may be used as a wildcard, meaning "any signal", "any receiving object", or "any slot in the receiving object",
respectively.
The sender may never be 0. (You cannot disconnect signals from more than one object.)
If signal is 0, it disconnects receiver and member from any signal. If not, only the specified signal is disconnected.

If receiver is 0, it disconnects anything connected to signal. If not, slots in objects other than receiver are not
disconnected.

If member is O, it disconnects anything that is connected to receiver. If not, only slots named member will be
disconnected, and all other slots are left alone. The member must be 0 if receiver is left out, so you cannot disconnect
a specifically-named slot on all objects.

See also connect() [p. 127].

bool QObject::disconnect (const char * signal = 0, const QObject * receiver = 0,

const char * member = 0)
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Disconnects signal from member of receiver.

A signal-slot connection is removed when either of the objects involved are destroyed.

bool QObject::disconnect (const QObject * receiver, const char * member = 0)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Disconnects all signals in this object from receiver’s member.

A signal-slot connection is removed when either of the objects involved are destroyed.

void QObject::disconnectNotify (const char * signal) [virtual protected]

This virtual function is called when something has been disconnected from signal in this object.

Warning: This function violates the object-oriented principle of modularity. However, it might be useful for opti-
mizing access to expensive resources.

See also disconnect() [p. 129] and connectNotify() [p. 128].

void QObject::dumpObjectinfo ()

Dumps information about signal connections, etc. for this object to the debug output.

This function is useful for debugging, but does nothing if the library has been compiled in release mode (i.e.
without debugging information).

QObject Class Reference 131

void QObject::dumpObjectTree ()

Dumps a tree of children to the debug output.

This function is useful for debugging, but does nothing if the library has been compiled in release mode (i.e.
without debugging information).

bool QObject::event (QEvent * e) [virtual]

This virtual function receives events to an object and should return TRUE if the event e was recognized and pro-
cessed.

The event() function can be reimplemented to customize the behavior of an object.

See also installEventFilter() [p. 132], timerEvent() [p. 1371, QApplication::sendEvent() [p. 22],
QApplication::postEvent() [p. 20] and QWidget::event() [Widgets with Qt].

Reimplemented in QWidget.

bool QObject::eventFilter (QObject * watched, QEvent * e) [virtual]

Filters events if this object has been installed as an event filter for the watched object.

In your reimplementation of this function, if you want to filter the event e, out, i.e. stop it being handled further,
return TRUE; otherwise return FALSE.

Warning: If you delete the receiver object in this function, be sure to return TRUE. Otherwise, Qt will forward the
event to the deleted object and the program might crash.

See also installEventFilter() [p. 132].
Reimplemented in QAccel, QScrollView and QSpinBox.

bool QObject::highPriority () const

Returns TRUE if the object is a high-priority object, or FALSE if it is a standard-priority object.

High-priority objects are placed first in QObject’s list of children on the assumption that they will be referenced
very often.

bool QObject::inherits (const char * clname) const

Returns TRUE if this object is an instance of a class that inherits clname, and clname inherits QObject; otherwise
returns FALSE.

A class is considered to inherit itself.

Example:
Qlimer *t = new Qi mer; [l Qlimer inherits Qbject
t->inherits("Qliner"); Il returns TRUE
t->inherits("Qbject"); Il returns TRUE
t->inherits("QButton"); Il returns FALSE

/] QScrollBar inherits QN dget and QRangeControl
Scrol I Bar *s = new QScrol | Bar(0);

s->inherits("QNdget"); Il returns TRUE
s->i nherits("QRangeControl"); // returns FALSE

QObject Class Reference 132

(QRangeControl is not a QObject.)
See also isA() [p. 133] and metaObject() [p. 133].

Examples: themes/metal.cpp and themes/wood.cpp.

void QObject::insertChild (QObject * obj) [virtual]

Inserts an object obj into the list of child objects.

Warning: This function cannot be used to make one widget the child widget of another widget. Child widgets can
only be created by setting the parent widget in the constructor or by calling QWidget::reparent().

See also removeChild() [p. 135] and QWidget::reparent() [Widgets with Qt].

void QObject::installEventFilter (const QObject * obj)

Installs an event filter obj on this object.

An event filter is an object that receives all events that are sent to this object. The filter can either stop the event
or forward it to this object. The event filter obj receives events via its eventFilter() function. The eventFilter()
function must return TRUE if the event should be filtered, (i.e. stopped); otherwise it must return FALSE.

If multiple event filters are installed on a single object, the filter that was installed last is activated first.
Example:
#include <qgwi dget. h>
class MyWdget : public QN dget
Q OBJECT
public:
M/W dget (QN dget *parent = 0, const char *nane = 0);

prot ect ed:
bool eventFilter(QCbject *, QEvent *);

}s

MW dget : : \yW dget (QW dget *parent, const char *nane)
QN dget (parent, name)

{
Il install a filter on the parent (if any)
if (parent)
parent->instal | EventF lter(this);
}
bool MyWdget::eventFilter(QObject *o, QEvent *e)
{

if (e->type() == QEvent::KeyPress) {
Il special processing for key press
KeyEvent *k = (QKeyEvent *)e;
qDebug("Ate key press %", k->key());
return TRUE // eat event

} else {
/'l standard event processing
return QN dget::eventFilter(o, e);

QObject Class Reference 133

The QAccel class, for example, uses this technique to intercept accelerator key presses.

Warning: If you delete the receiver object in your eventFilter() function, be sure to return TRUE. If you return
FALSE, Qt sends the event to the deleted object and the program will crash.

See also removeEventFilter() [p. 135], eventFilter() [p. 131] and event() [p. 131].

bool QObject::isA (const char * clname) const

Returns TRUE if this object is an instance of the class clname; otherwise returns FALSE.

Example:

Qlimer *t = new Qlimer; // Qlinmer inherits QObject
t->isA("Qliner"); /'l returns TRUE
t->i sA("Qbject”); /'l returns FALSE

See also inherits() [p. 131] and metaObject() [p. 133].

bool QObject::isWidgetType () const

Returns TRUE if the object is a widget; otherwise returns FALSE.

Calling this function is equivalent to calling inherits("QWidget"), except that it is much faster.

void QObject::killTimer (int id)

Kills the timer with timer identifier, id.
The timer identifier is returned by startTimer() when a timer event is started.

See also timerEvent() [p. 137], startTimer() [p. 136] and killTimers() [p. 133].

void QObject::killTimers ()

Kills all timers that this object has started.

Note that using this function can cause hard-to-find bugs: it kills timers started by sub- and superclasses as well as
those started by you, which is often not what you want. We recommend using a QTimer or perhaps killTimer().

See also timerEvent() [p. 1371, startTimer() [p. 136] and killTimer() [p. 133].

QMetaObject * QObject::metaObject () const

Returns a pointer to the meta object of this object.

A meta object contains information about a class that inherits QObject, e.g. class name, superclass name, properties,
signals and slots. Every class that contains the Q_OBJECT macro will also have a meta object.

The meta object information is required by the signal/slot connection mechanism and the property system. The
functions isA() and inherits() also make use of the meta object.

const char * QObject::name () const

Returns the name of this object. See the "name" [p. 137] property for details.

QObject Class Reference 134

const char * QObject::name (const char * defaultName) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the name of this object, or defaultName if the object does not have a name.

QCString QObject::normalizeSignalSlot (const char * signalSlot) [static protected]

Normlizes the signal or slot definition signalSlot by removing unnecessary whitespace.

const QObjectList * QObject::objectTrees () [static]

Returns a pointer to the list of all object trees (their root objects), or 0 if there are no objects.

The QObjectList class is defined in the qobjectlist.h header file.

The latest root object created is the first object in the list and the first root object added is the last object in the list.
See also children() [p. 127], parent() [p. 1341, insertChild() [p. 132] and removeChild() [p. 135].

QObject * QObject::parent () const

Returns a pointer to the parent object.

See also children() [p. 127].

QVariant QObject::property (const char * name) const [virtual]

Returns the value of the object’s name property.
If no such property exists, the returned variant is invalid.
Information about all available properties are provided through the metaObject().

See also setProperty() [p. 136], QVariant::isValid() [Datastructures and String Handling with Qt], metaObject()
[p. 133], QMetaObject::propertyNames() [p. 118] and QMetaObject::property() [p. 118].

QObjectList * QObject::queryList (const char * inheritsClass = 0, const char * objName =
0, bool regexpMatch = TRUE, bool recursiveSearch = TRUE) const

Searches the children and optionally grandchildren of this object, and returns a list of those objects that are named
or that match objName and inherit inheritsClass. If inheritsClass is O (the default), all classes match. If objName is
0 (the default), all object names match.

If regexpMatch is TRUE (the default), objName is a regular expression that the objects’s names must match. The
syntax is that of a QRegExp. If regexpMatch is FALSE, objName is a string and object names must match it exactly.

Note that inheritsClass uses single inheritance from QObject, the way inherits() does. According to inherits(),
QMenuBar inherits QWidget but not QMenuData. This does not quite match reality, but is the best that can be
done on the wide variety of compilers Qt supports.

Finally, if recursiveSearch is TRUE (the default), queryList() searches nth-generation as well as first-generation
children.

If all this seems a bit complex for your needs, the simpler child() function may be what you want.

This somewhat contrived example disables all the buttons in this window:

QObject Class Reference 135

Qbj ectList *I = topLevel Wdget ()->queryList("QButton");
QbjectListlt it(*I); // iterate over the buttons
Qbj ect *obj;

while ((obj =it.current()) '=0) {
Il for each found object...
+HHit;
((QButton*)obj)->set Enabl ed(FALSE);

delete |; // delete the list, not the objects
Warning: Delete the list as soon you have finished using it. The list contains pointers that may become invalid at
almost any time without notice (as soon as the user closes a window you may have dangling pointers, for example).

See also child() [p. 126], children() [p. 1271, parent() [p. 134], inherits() [p. 131], name [p. 137] and QRegExp
[p. 139].

void QObject::removeChild (QObject * obj) [virtual]

Removes the child object obj from the list of children.

Warning: This function will not remove a child widget from the screen. It will only remove it from the parent
widget’s list of children.

See also insertChild() [p. 132] and QWidget::reparent() [Widgets with Qt].

void QObject::removeEventFilter (const QObject * obj)

Removes an event filter object obj from this object. The request is ignored if such an event filter has not been
installed.

All event filters for this object are automatically removed when this object is destroyed.

It is always safe to remove an event filter, even during event filter activation (i.e. from the eventFilter() function).

See also installEventFilter() [p. 132], eventFilter() [p. 131] and event() [p. 131].

const QObject * QObject::sender () [protected]
Returns a pointer to the object that sent the signal, if called in a slot before any function call or signal emission.
Returns an undefined value in all other cases.

Warning: This function will return something apparently correct in other cases as well. However, its value may
change during any function call, depending on what signal-slot connections are activated during that call. In Qt
3.0 the value will change more often than in 2.x.

Warning: This function violates the object-oriented principle of modularity. However, getting access to the sender
might be practical when many signals are connected to a single slot. The sender is undefined if the slot is called as
a normal C+ + function.

void QObject::setName (const char * name) [virtual]

Sets the object’s name to name.

QObject Class Reference 136

bool QObject::setProperty (const char * name, const QVariant & value) [virtual]

Sets the object’s property name to value.
Returns TRUE if the operation was successful; otherwise returns FALSE.
Information about all available properties is provided through the metaObject().

See also property() [p. 134], metaObject() [p. 133], QMetaObject::propertyNames() [p. 118] and
QMetaObject::property() [p. 118].

bool QObject::signalsBlocked () const

Returns TRUE if signals are blocked; otherwise returns FALSE.
Signals are not blocked by default.
See also blockSignals() [p. 126].

int QObject::startTimer (int interval)

Starts a timer and returns a timer identifier, or returns zero if it could not start a timer.

A timer event will occur every interval milliseconds until killTimer() or killTimers() is called. If interval is 0, then
the timer event occurs once every time there are no more window system events to process.

The virtual timerEvent() function is called with the QTimerEvent event parameter class when a timer event occurs.
Reimplement this function to get timer events.

If multiple timers are running, the QTimerEvent::timerId() can be used to find out which timer was activated.

Example:

class MyQbject : public Qbject

{
Q OBJECT
public:
MyQbj ect (QObj ect *parent = 0, const char *name = 0);
prot ect ed:
void tinerEvent(QrinmerEvent *);
b

My Chj ect : : MyCbj ect (Qlbj ect *parent, const char *nane)
: Qbject(parent, nane)

{
startTimer(50); /1 50-m|lisecond tiner
startTimer(1000); // 1-second tiner
startTimer(60000); // 1-minute tiner
}
void MyCbject::tinerEvent(QrinerEvent *e)
{
qDebug("timer event, id %", e->tinerld());
}

There is practically no upper limit for the interval value (more than one year is possible). Note that QTimer’s
accuracy depends on the underlying operating system and hardware. Most platforms support an accuracy of 20ms;
some provide more. If Qt is unable to deliver the requested number of timer clicks, it will silently discard some.

QObject Class Reference 137

The QTimer class provides a high-level programming interface with one-shot timers and timer signals instead of
events.

See also timerEvent() [p. 1371, killTimer() [p. 133] and killTimers() [p. 133].

void QObject::timerEvent (QTimerEvent *) [virtual protected]

This event handler can be reimplemented in a subclass to receive timer events for the object.
QTimer provides a higher-level interface to the timer functionality, and also more general information about timers.
See also startTimer() [p. 136], killTimer() [p. 133], killTimers() [p. 133] and event() [p. 131].

Examples: biff/biff.cpp, dclock/dclock.cpp, forever/forever.cpp, grapher/grapher.cpp, qmag/qmag.cpp and
xform/xform.cpp.

QString QObject::tr (const char * sourceText, const char * comment) const

Returns a translated version of sourceText, or sourceText itself if there is no appropriate translated version. The
translation context is QObject with comment (null by default). All QObject subclasses using the Q_OBJECT macro
automatically have a reimplementation of this function with the subclass name as context.

See also trUtf8() [p. 1371, QApplication::translate() [p. 30] and Internationalization with Qt [Accessibility and
Internationalization with Qt].

Example: network/networkprotocol/view.cpp.

QString QObject::trUtf8 (const char * sourceText, const char * comment) const
Returns a translated version of sourceText, or QString::fromUtf8 (sourceText) if there is no appropriate version. It is
otherwise identical to tr(sourceText, comment).

See also tr() [p. 137] and QApplication::translate() [p. 30].

Property Documentation

QCString name

This property holds the name of this object.
You can find an object by name (and type) using child(). You can find a set of objects with queryList().

The object name is set by the constructor or by the setName() function. The object name is not very useful in the
current version of Qt, but will become increasingly important in the future.

If the object does not have a name, the name() function returns "unnamed", so printf() (used in gDebug()) will
not be asked to output a null pointer. If you want a null pointer to be returned for unnamed objects, you can call
name(0).

qDebug("MyC ass::setPrecision(): (%) invalid precision %",
nane(), newPrecision);

See also className() [p. 1271, child() [p. 126] and queryList() [p. 134].

Set this property’s value with setName() and get this property’s value with name().

QObject Class Reference 138

Related Functions

void * qt_find_obj_child (QObject * parent, const char * type, const char * name)

Returns a pointer to the object named name that inherits type and with a given parent.

Returns O if there is no such child.

QuistBox *c = (QListBox *) qt_find_obj_child(myWdget, "QListBox",
"y list box");
if (c)
c->insertltem "another string");

QRegExp Class Reference

The QRegExp class provides pattern matching using regular expressions.

#i ncl ude <qregexp. h>

Public Members

= QRegExp ()

» QRegExp (const QString & pattern, bool caseSensitive = TRUE, bool wildcard = FALSE)
m QRegExp (const QRegExp & rx)

= ~QRegExp ()

QRegExp & operator= (const QRegExp & rx)

bool operator== (const QRegExp & rx) const

bool operator!= (const QRegExp & rx) const

bool isEmpty () const

bool isValid () const

m QString pattern () const

» void setPattern (const QString & pattern)

= bool caseSensitive () const

= void setCaseSensitive (bool sensitive)

bool wildcard () const

void setWildcard (bool wildcard)

bool minimal () const

void setMinimal (bool minimal)

» bool exactMatch (const QString & str) const

m int match (const QString & str, int index = 0, int * len = 0, bool indexIsStart = TRUE) const (obsolete)
m int search (const QString & str, int start = 0) const

» int searchRev (const QString & str, int start = -1) const
m int matchedLength () const

m QStringList capturedTexts ()

e QString cap (int nth = 0)

e int pos (int nth = 0)

Detailed Description
The QRegExp class provides pattern matching using regular expressions.

Regular expressions, or "regexps", provide a way to find patterns within text. This is useful in many contexts, for
example:

139

QRegExp Class Reference 140

1. Validation. A regexp can be used to check whether a piece of text meets some criteria, e.g. is an integer or
contains no whitespace.

2. Searching. Regexps provide a much more powerful means of searching text than simple string matching does.
For example we can create a regexp which says "find one of the words 'mail’, ’letter’ or ’correspondence’ but
not any of the words ’email’, 'mailman’ ‘'mailer’, ’letterbox’ etc."

3. Search and Replace. A regexp can be used to replace a pattern with a piece of text, for example replace all
occurrences of '&’ with '&’ except where the '&’ is already followed by ’amp;’.

4. String Splitting. A regexp can be used to identify where a string should be split into its component fields, e.g.
splitting tab-delimited strings.

We present a very brief introduction to regexps, a description of Qt’s regexp language, some code examples, and
finally the function documentation. QRegExp is modeled on Perl’s regexp language, and also fully supports Unicode.
QRegExp may also be used in the weaker 'wildcard’ (globbing) mode which works in a similar way to command
shells. A good text on regexps is Mastering Regular Expressions: Powerful Techniques for Perl and Other Tools by
Jeffrey E. Friedl, ISBN 1565922573.

Experienced regexp users may prefer to skip the introduction and go directly to the relevant information.

Introduction

Regexps are built up from expressions, quantifiers and assertions. The simplest form of expression is simply a
character, e.g. x or 5. An expression can also be a set of characters. For example, [ABCD], will match an Aor a B
or a C or a D. As a shorthand we could write this as [A-D]. If we want to match any of the captital letters in the
English alphabet we can write [A-Z]. A quantifier tells the regexp engine how many occurrences of the expression
we want, e.g. x{1,1} means match an x which occurs at least once and at most once. We'll look at assertions and
more complex expressions later.

Note that in general regexps cannot be used to check for balanced brackets or tags. For example if you want to
match an opening html and its closing </ b> you can only use a regexp if you know that these tags are not
nested; the html fragment, bol d bol der </ b></ b> will not match as expected. If you know the maximum
level of nesting it is possible to create a regexp that will match correctly, but for an unknown level of nesting
regexps will fail.

We'll start by writing a regexp to match integers in the range 0 to 99. We will require at least one digit so we will
start with [0-91{1,1} which means match a digit exactly once. This regexp alone will match integers in the range
0 to 9. To match one or two digits we can increase the maximum number of occurrences so the regexp becomes
[0-91{1,2} meaning match a digit at least once and at most twice. However, this regexp as it stands will not match
correctly. This regexp will match one or two digits within a string. To ensure that we match against the whole
string we must use the anchor assertions. We need ~ (caret) which when it is the first character in the regexp
means that the regexp must match from the beginning of the string. And we also need $ (dollar) which when it is
the last character in the regexp means that the regexp must match until the end of the string. So now our regexp
is ~[0-91{1,2}$. Note that assertions, such as ~ and $, do not match any characters.

If you’ve seen regexps elsewhere they may have looked different from the ones above. This is because some sets
of characters and some quantifiers are so common that they have special symbols to represent them. [0-9] can
be replaced with the symbol \d. The quantifier to match exactly one occurrence, {1,1}, can be replaced with
the expression itself. This means that x{1,1} is exactly the same as x alone. So our 0 to 99 matcher could be
written ~\d{1,2}$. Another way of writing it would be ~\d\d{0,1}$, i.e. from the start of the string match a
digit followed by zero or one digits. In practice most people would write it ~\d\d?$. The ? is a shorthand for
the quantifier {0,1}, i.e. a minimum of no occurrences a maximum of one occurrence. This is used to make an
expression optional. The regexp ~\d\d?$ means "from the beginning of the string match one digit followed by
zero or one digits and then the end of the string".

Our second example is matching the words 'mail’, "letter’ or ’correspondence’ but without matching ’email’, 'mail-
man’, ‘'mailer’, ’letterbox’ etc. We'll start by just matching 'mail’. In full the regexp is, m{1,1}a{1,1}i{1,1}1{1,1},
but since each expression itself is automatically quantified by {1,1} we can simply write this as mail; an 'm’ fol-
lowed by an ’a’ followed by an ’i’ followed by an ’I. The symbol ’|’ (bar) is used for alternation, so our regexp now
becomes mail | letter | correspondence which means match 'mail’ or "letter’ or ’correspondence’. Whilst this regexp

QRegExp Class Reference 141

will find the words we want it will also find words we don’t want such as ’email’. We will start by putting our reg-
exp in parentheses, (mail|letter|correspondence). Parentheses have two effects, firstly they group expressions
together and secondly they identify parts of the regexp that we wish to capture. Our regexp still matches any of the
three words but now they are grouped together as a unit. This is useful for building up more complex regexps. It is
also useful because it allows us to examine which of the words actually matched. We need to use another assertion,
this time \b "word boundary": \b(mail|letter|correspondence)\b. This regexp means "match a word boundary
followed by the expression in parentheses followed by another word boundary". The \b assertion matches at a
position in the regexp not a character in the regexp. A word boundary is any non-word character such as a space a
newline or the beginning or end of the string.

For our third example we want to replace ampersands with the HTML entity '&’. The regexp to match is
simple: &, i.e. match one ampersand. Unfortunately this will mess up our text if some of the ampersands have
already been turned into HTML entities. So what we really want to say is replace an ampersand providing it is not
followed by ’amp;’. For this we need the negative lookahead assertion and our regexp becomes: &(?!'amp;). The
negative lookahead assertion is introduced with ’(?!" and finishes at the *)’. It means that the text it contains, amp;’
in our example, must not follow the expression that preceeds it.

Regexps provide a rich language that can be used in a variety of ways. For example suppose we want to count
all the occurrences of ’Eric’ and ’Eirik’ in a string. Two valid regexps to match these are \b(Eric|Eirik)\b and
\bEi?ri[ck]\b. We need the word boundary "\b’ so we don’t get ’Ericsson’ etc. The second regexp actually matches
more than we want, ’Eric’, ’Erik’, ’Eiric’ and ’Eirik’.

We will implement some the examples above in the code examples section.

Characters and Abbreviations for Sets of Characters

e c Any character represents itself unless it has a special regexp meaning. Thus ¢ matches the character c.

e \c A character that follows a backslash matches the character itself except where mentioned below. For
example if you wished to match a literal caret at the beginning of a string you would write \ ™.

e \a This matches the ASCII bell character (BEL, 0x07).

e \f This matches the ASCII form feed character (FE, 0x0C).

e \n This matches the ASCII line feed character (LE, 0x0A, Unix newline).
e \r This matches the ASCII carriage return character (CR, 0xOD).

e \t This matches the ASCII horizontal tab character (HT, 0x09).

e \v This matches the ASCII vertical tab character (VT, 0x0B).

e \xhhhh This matches the Unicode character corresponding to the hexadecimal number hhhh (between
0x0000 and OxFFFF). \Oooo (i.e., \zero ooo) matches the ASCII/Latin-1 character corresponding to the octal
number ooo (between 0 and 0377).

e . (dot) This matches any character (including newline).

e \d This matches a digit (see QChar::isDigit()).

e \D This matches a non-digit.

e \s This matches a whitespace (see QChar::isSpace()).

e \S This matches a non-whitespace.

e \w This matches a word character (see QChar::isLetterOrNumber()).
e \W This matches a non-word character.

e \n The n-th backreference, e.g. \1, \2, etc.

Note that the C++ compiler transforms backslashes in strings so to include a \ in a regexp you will need to enter it
twice, i.e. \\.

QRegExp Class Reference 142

Sets of Characters

Square brackets are used to match any character in the set of characters contained within the square brackets. All
the character set abbreviations described above can be used within square brackets. Apart from the character set
abbreviations and the following two exceptions no characters have special meanings in square brackets.

e ~ The caret negates the character set if it occurs as the first character, i.e. immediately after the opening
square bracket. For example, [abc] matches 'a’ or ’b’ or °c’, but [~ abc] matches anything except ’a’, ’b’ and

1.7

c
e - The dash is used to indicate a range of characters, for example [W-Z] matches "W’ or X’ or 'Y’ or 'Z".

Using the predefined character set abbreviations is more portable than using character ranges across platforms and
languages. For example, [0-9] matches a digit in Western alphabets but \d matches a digit in any alphabet.

Note that in most regexp literature sets of characters are called "character classes".

Quantifiers

By default an expression is automatically quantified by {1,1}, i.e. it should occur exactly once. In the following
list E stands for any expression. An expression is a character or an abbreviation for a set of characters or a set of
characters in square brackets or any parenthesised expression.

e E Matches zero or one occurrence of E. This quantifier means "the previous expression is optional" since it
will match whether or not the expression occurs in the string. It is the same as E{0,1}. For example dents?
will match ’dent’ and ’dents’.

e E+ Matches one or more occurrences of E. This is the same as E{1,MAXINT}. For example, 0+ will match
’0%, 007, 000, etc.

e E* Matches zero or more occurrences of E. This is the same as E{0,MAXINT}. The * quantifier is often used
by a mistake. Since it matches zero or more occurrences it will match no occurrences at all. For example if we
want to match strings that end in whitespace and use the regexp \s*$ we would get a match on every string.
This is because we have said find zero or more whitespace followed by the end of string, so even strings that
don’t end in whitespace will match. The regexp we want in this case is \s+$ to match strings that have at
least one whitespace at the end.

e E{n} Matches exactly n occurrences of the expression. This is the same as repeating the expression n times.
For example, x{5} is the same as xxxxx. It is also the same as E{n,n}, e.g. x{5,5}.

e E{n,} Matches at least n occurrences of the expression. This is the same as E{n,MAXINT}.
e E{,m} Matches at most m occurrences of the expression. This is the same as E{0,m}.

e E{n,m} Matches at least n occurrences of the expression and at most m occurrences of the expression.

(MAXINT is implementation dependent but will not be smaller than 1024.)

If we wish to apply a quantifier to more than just the preceding character we can use parentheses to group char-
acters together in an expression. For example, tag+ matches a 't’ followed by an ’a’ followed by at least one ’g’,
whereas (tag) + matches at least one occurrence of ’tag’.

Note that quantifiers are "greedy". They will match as much text as they can. For example, 0+ will match as many
zeros as it can from the first zero it finds, e.g. ’2.0005’. Quantifiers can be made non-greedy, see setMinimal().

Capturing Text

Parentheses allow us to group elements together so that we can quantify and capture them. For example if we have
the expression mail|letter|correspondence that matches a string we know that one of the words matched but
not which one. Using parentheses allows us to "capture" whatever is matched within their bounds, so if we used

QRegExp Class Reference 143

(mail | letter | correspondence) and matched this regexp against the string "I sent you some email" we can use the
cap() or capturedTexts() functions to extract the matched characters, in this case 'mail’.

We can use captured text within the regexp itself. To refer to the captured text we use backreferences which
are indexed from 1, the same as for cap(). For example we could search for duplicate words in a string using
\b(Aw+)\W+\1\b which means match a word boundary followed by one or more word characters followed by
one or more non-word characters followed by the same text as the first parenthesised expression followed by a
word boundary.

If we want to use parentheses purely for grouping and not for capturing we can use the non-capturing syntax, e.g.
(?:green|blue). Non-capturing parentheses begin ’(?:” and end ’)’. In this example we match either ’green’ or ’blue’
but we do not capture the match so we only know whether or not we matched but not which color we actually
found. Using non-capturing parentheses is more efficient than using capturing parentheses since the regexp engine
has to do less book-keeping.

Both capturing and non-capturing parentheses may be nested.

Assertions

Assertions make some statement about the text at the point where they occur in the regexp but they do not match
any characters. In the following list E stands for any expression.

e ~ The caret signifies the beginning of the string. If you wish to match a literal » you must escape it by writing
\ . For example, ~ #include will only match strings which begin with the characters ’#include’. (When the
caret is the first character of a character set it has a special meaning, see Sets of Characters.)

e $ The dollar signifies the end of the string. For example \d\s*$ will match strings which end with a digit
optionally followed by whitespace. If you wish to match a literal $ you must escape it by writing \ $.

e \b A word boundary. For example the regexp \bOK\b means match immediately after a word boundary (e.g.
start of string or whitespace) the letter 'O’ then the letter 'K’ immediately before another word boundary (e.g.
end of string or whitespace). But note that the assertion does not actually match any whitespace so if we
write (\bOK\b) and we have a match it will only contain ’OK’ even if the string is "Its OK now".

¢ \B A non-word boundary. This assertion is true wherever \b is false. For example if we searched for \Bon\B
in "Left on" the match would fail (space and end of string aren’t non-word boundaries), but it would match
in "tonne".

e (?=E) Positive lookahead. This assertion is true if the expression matches at this point in the regexp. This
assertion does not match any characters. For example, ~ #define\s+(\w+)(?=MAX) will match strings
which begin with '#define’ followed by at least one whitespace followed by at least one word character
followed by '"MAX'. The first set of parentheses will capture the word character(s) matched. This regexp will
not match '#define DEBUG’ but will match '#define INTMAX 32767'.

e (?!E) Negative lookahead. This assertion is true if the expression does not match at this point in the regexp.
This assertion does not match any characters. For example, ™ #define\s+(\w+)\s*$ will match strings
which begin with ’#define’ followed by at least one whitespace followed by at least one word character
optionally followed by whitespace. This regexp will match define’s that exist but have no value, i.e. it will
not match '#define INTMAX 32767’ but it will match '#define DEBUG’.

Wildcard Matching (globbing)

Most command shells such as bash or cmd support "file globbing", the ability to identify a group of files by using
wildcards. The setWildcard() function is used to switch between regexp and wildcard mode. Wildcard matching is
much simpler than full regexps and has only four features:

e c Any character represents itself apart from those mentioned below. Thus ¢ matches the character c.
e ? This matches any single character. It is the same as . in full regexps.

e * This matches zero or more of any characters. It is the same as .* in full regexps.

QRegExp Class Reference 144

e [...] Sets of characters can be represented in square brackets, similar to full regexps. Within the character
class, like outside, backslash has no special meaning.

For example if we are in wildcard mode and have strings which contain filenames we could identify HTML files
with *.html. This will match zero or more characters followed by a dot followed by ’h’, ’t’, 'm’ and I".

Notes for Perl Users
Most of the character class abbreviations supported by Perl are supported by QRegExp, see characters and abbrevi-
ations for sets of characters.

In QRegExp, apart from within character classes, * always signifies the start of the string, so carets must always
be escaped unless used for that purpose. In Perl the meaning of caret varies automagically depending on where it
occurs so escaping it is rarely necessary. The same applies to $ which in QRegExp always signifies the end of the
string.

QRegExp’s quantifiers are the same as Perl’s greedy quantifiers. Non-greedy matching cannot be applied to indi-
vidual quantifiers, but can be applied to all the quantifiers in the pattern. For example, to match the Perl regexp
ro+?m requires:

QRegExp rx("rotnt);

rx.setMniml (TRUE);
The equivalent of Perl’s/i option is setCaseSensitive(FALSE).
Perl’s / g option can be emulated using a loop.

In QRegExp . matches any character, therefore all QRegExp regexps have the equivalent of Perl’s / s option. QReg-
Exp does not have an equivalent to Perl’s / m option, but this can be emulated in various ways for example by
splitting the input into lines or by looping with a regexp that searches for newlines.

Because QRegExp is string oriented there are no \A, \Z or \z assertions. The \G assertion is not supported but can
be emulated in a loop.

Perl’s $& is cap(0) or capturedTexts()[0]. There are no QRegExp equivalents for $‘, $ or $+. Perl’s capturing
variables, $1, $2, ... correspond to cap(1) or capturedTexts()[1], cap(2) or capturedTexts()[2], etc.

To substitute a pattern use QString::replace().
Perl’s extended / x syntax is not supported, nor are regexp comments (?#comment) or directives, e.g. (?i).

Both zero-width positive and zero-width negative lookahead assertions (? =pattern) and (?!pattern) are supported
with the same syntax as Perl. Perl’s lookbehind assertions, "independent" subexpressions and conditional expres-
sions are not supported.

Non-capturing parentheses are also supported, with the same (?:pattern) syntax.
See QStringList::split() and QStringList::join() for equivalents to Perl’s split and join functions.

Note: because C++ transforms \’s they must be written twice in code, e.g. \b must be written \\b.

Code Examples

QRegExp rx("M\d\\d?$"); // match integers 0 to 99

rx.search("123"); Il returns -1 (no match)
rx.search("-6"); Il returns -1 (no match)
rx.search("6"); Il returns O (matched as position 0)

The third string matches ’6’. This is a simple validation regexp for integers in the range O to 99.

QRegExp Class Reference 145

QRegExXp rx("M\S+$"); /1 match strings without whitespace
rx.search("Hello world"); // returns -1 (no match)
rx.search("This_is-OK"); [/ returns O (matched at position 0)

The second string matches "This_is-OK’. We've used the character set abbreviation \S’ (non-whitespace) and the
anchors to match strings which contain no whitespace.

In the following example we match strings containing 'mail’ or ’letter’ or ’correspondence’ but only match whole
words i.e. not ’email’

QRegExp rx("\\b(mail|letter]|correspondence)\\b");
rx.search("I sent you an email"); Il returns -1 (no match)
rx.search("Please wite the letter"); // returns 17

The second string matches "Please write the letter". The word ’letter’ is also captured (because of the parentheses).
We can see what text we’ve captured like this:

QString captured =rx.cap(1); // captured contains "letter"

This will capture the text from the first set of capturing parentheses (counting capturing left parentheses from left
to right). The parentheses are counted from 1 since cap(0) is the whole matched regexp (equivalent to &’ in most
regexp engines).

QRegExp rx("&?'anp;)"); /1 match anpersands but not &anp;
@String linel = "This & that";

linel.replace(rx, "&np;");

/I linel == "This &anp; that"

String line2 = "H s &np; hers & theirs";

line2.replace(rx, "&np;");

[l line2 == "H's &anp; hers &anp; theirs"

Here we’ve passed the QRegExp to QString’s replace() function to replace the matched text with new text.

String str = "One Eric another Eirik, and an Ericsson."
" How many Eiriks, Eric?";
QRegExp rx("\\b(Eric|Erik)\\b"); // match Eric or Eirik
int pos = 0; Il where we are in the string
int count = 0; // how many Eric and Eirik’s we've counted
while (pos >=0) {
pos = rx.search(str, pos);
if (pos >=0) {
poS++; Il move along in str
count ++; Il count our Eric or Eirik

We've used the search() function to repeatedly match the regexp in the string. Note that instead of moving forward
by one character at a time pos++ we could have written pos += rx. mat chedLengt h() to skip over the already
matched string. The count will equal 3, matching ’One Eric another Eirik, and an Ericsson. How many Eiriks,
Eric?’; it doesn’t match "Ericsson’ or Eiriks’ because they are not bounded by non-word boundaries.

One common use of regexps is to split lines of delimited data into their component fields.

str = "Trolltech AS\tww. trolltech.comtNorway";
@String conmpany, web, country;

QRegExp Class Reference 146

rx.setPattern("A([Mt]H)\Vt([MNt]HVL([MNE]HS");
if (rx.search(str) !=-1) {

conpany = rx.cap(1);

web = rx.cap(2);

country = rx.cap(3);

In this example our input lines have the format company name, web address and country. Unfortunately the regexp
is rather long and not very versatile — the code will break if we add any more fields. A simpler and better solution
is to look for the separator, "\t in this case, and take the surrounding text. The QStringList split() function can take
a separator string or regexp as an argument and split a string accordingly.

QStringList field = QStringList::split("\t", str);

Here field[0] is the company, field[1] the web address and so on.

To imitate the matching of a shell we can use wildcard mode.

QRegExp rx("*.htm"); Il invalid regexp: * doesn't quantify anything
rx.setWldcard(TRUE); Il nowit's a valid wildcard regexp

rx.search("index.htm"); [/ returns O (matched at position Q)
rx.search("default.htm'); // returns -1 (no match)

rx.search("readme.txt"); [/ returns -1 (no match)

Wildcard matching can be convenient because of its simplicity, but any wildcard regexp can be defined using full
regexps, e.g. .*\.html$. Notice that we can’t match both . ht i and . ht mfiles with a wildcard unless we use *.htm*
which will also match ’test.html.bak’. A full regexp gives us the precision we need, .*\.html?$.

QRegExp can match case insensitively using setCaseSensitive(), and can use non-greedy matching, see setMini-
mal(). By default QRegExp uses full regexps but this can be changed with setWildcard(). Searching can be forward
with search() or backward with searchRev(). Captured text can be accessed using capturedTexts() which returns a
string list of all captured strings, or using cap() which returns the captured string for the given index. The pos()
function takes a match index and returns the position in the string where the match was made (or -1 if there was
no match).

See also QRegExpValidator [p. 153], QString [Datastructures and String Handling with Qt], QStringList
[Datastructures and String Handling with Qt], Miscellaneous Classes, Implicitly and Explicitly Shared Classes and
Non-GUI Classes.

Member Function Documentation

QRegExp::QRegExp ()

Constructs an empty regexp.

See also isValid() [p. 149].

QRegExp::QRegExp (const QString & pattern, bool caseSensitive = TRUE, bool wildcard
= FALSE)

Constructs a regular expression object for the given pattern string. The pattern must be given using wildcard
notation if wildcard is TRUE (default is FALSE). The pattern is case sensitive, unless caseSensitive is FALSE. Matching
is greedy (maximal), but can be changed by calling setMinimal().

See also setPattern() [p. 151], setCaseSensitive() [p. 151], setWildcard() [p. 151] and setMinimal() [p. 151].

QRegExp Class Reference 147

QRegExp::QRegExp (const QRegExp & rx)

Constructs a regular expression as a copy of rx.

See also operator=() [p. 150].

QRegExp::~QRegExp ()

Destroys the regular expression and cleans up its internal data.

QString QRegExp::cap (int nth = 0)

Returns the text captured by the nth subexpression. The entire match has index 0 and the parenthesized subex-
pressions have indices starting from 1 (excluding non-capturing parentheses).

QRegExp rxlen("(\\d+)(?:\\s*)(cminch)");
int pos = rxlen.search("Length: 189cm');
if (pos>-1) {
QString value = rxlen.cap(1); // "189"
QString unit =rxlen.cap(2); [/ "cnt
...

The order of elements matched by cap() is as follows. The first element, cap(0), is the entire matching string. Each
subsequent element corresponds to the next capturing open left parentheses. Thus cap(1) is the text of the first
capturing parentheses, cap(2) is the text of the second, and so on.

Some patterns may lead to a number of matches which cannot be determined in advance, for example:

QRegExp rx("(\\d+)");
str = "Offsets: 12 14 99 231 7";
@StringList Iist;
pos = 0;
while (pos >=0) {
pos = rx.search(str, pos);
if (pos>-1) {
list +=rx.cap(1);
pos += rx. matchedLength();
}
}
/] list contains "12", "14", "99", "231", "7"

See also capturedTexts() [p. 147], pos() [p. 150], exactMatch() [p. 148], search() [p. 150] and searchRev()
[p. 151].

QStringList QRegExp::capturedTexts ()

Returns a list of the captured text strings.

The first string in the list is the entire matched string. Each subsequent list element contains a string that matched
a (capturing) subexpression of the regexp.

For example:

QRegExp Class Reference 148

QRegExp rx("(\\d+)(\\s*)(cminch(es)?)");

int pos = rx.search("Length: 36 inches");
QStringList list = rx.capturedTexts();

/I list is now("36 inches", "36", " ", "inches",

n

esn)

The above example also captures elements that may be present but which we have no interest in. This problem can
be solved by using non-capturing parentheses:

QRegExp rx("(\\d+)(?2:\\s*)(cminch(?:es)?)");
int pos = rx.search("Length: 36 inches");
StringList list = rx.capturedTexts();

[/ list is now ("36 inches", "36", "inches")

Some regexps can match an indeterminate number of times. For example if the input string is "Offsets: 12 14 99
231 7" and the regexp, rx, is (\d+)+, we would hope to get a list of all the numbers matched. However, after
calling rx. search(str), capturedTexts() will return the list ("12", "12"), i.e. the entire match was "12" and the
first subexpression matched was "12". The correct approach is to use cap() in a loop.

The order of elements in the string list is as follows. The first element is the entire matching string. Each subsequent
element corresponds to the next capturing open left parentheses. Thus capturedTexts()[1] is the text of the first
capturing parentheses, capturedTexts()[2] is the text of the second and so on (corresponding to $1, $2, etc., in
some other regexp languages).

See also cap() [p. 1471, pos() [p. 1501, exactMatch() [p. 148], search() [p. 150] and searchRev() [p. 151].

bool QRegExp::caseSensitive () const

Returns TRUE if case sensitivity is enabled, otherwise FALSE. The default is TRUE.

See also setCaseSensitive() [p. 151].

bool QRegExp::exactMatch (const QString & str) const
Returns TRUE if str is matched exactly by this regular expression otherwise it returns FALSE. You can determine
how much of the string was matched by calling matchedLength().

For a given regexp string, R, exactMatch("R") is the equivalent of search(" ™ R$") since exactMatch() effectively
encloses the regexp in the start of string and end of string anchors, except that it sets matchedLength() differently.

For example, if the regular expression is blue, then exactMatch() returns TRUE only for input bl ue. For inputs
bl uebel I, bl ut ak and | i ght bl ue, exactMatch() returns FALSE and matchedLength() will return 4, 3 and O respec-
tively.

Although const, this function sets matchedLength(), capturedTexts() and pos().

See also search() [p. 150], searchRev() [p. 151] and QRegExpValidator [p. 153].

bool QRegExp::isEmpty () const

Returns TRUE if the pattern string is empty, otherwise FALSE.

If you call exactMatch() with an empty pattern on an empty string it will return TRUE; otherwise it returns FALSE
since it operates over the whole string. If you call search() with an empty pattern on any string it will return
the start position (0 by default) since it will match at the start position, because the empty pattern matches the
’emptiness’ at the start of the string, and the length of the match returned by matchedLength() will be 0.

See QString::isEmpty().

QRegExp Class Reference 149

bool QRegExp::isValid () const

Returns TRUE if the regular expression is valid, or FALSE if it’s invalid. An invalid regular expression never matches.
The pattern [a-z is an example of an invalid pattern, since it lacks a closing square bracket.

Note that the validity of a regexp may also depend on the setting of the wildcard flag, for example *.html is a valid
wildcard regexp but an invalid full regexp.

int QRegExp::match (const QString & str, int index = 0, int * len = 0, bool indexIsStart =
TRUE) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Attempts to match in str, starting from position index. Returns the position of the match, or -1 if there was no
match,

The length of the match is stored in *len, unless len is a null pointer.

If indexIsStart is TRUE (the default), the position index in the string will match the start of string anchor, ~, in the
regexp, if present. Otherwise, position 0 in str will match.

Use search() and matchedLength() instead of this function.
If you really need the indexIsStart functionality, try this:
QRegExp rx("some pattern");
int pos = rx.search(str.nid(index));
if (pos >=10)

pos += index;
int len = rx. mtchedLength();

Where performance is important, you can replace str.m d(i ndex) by QConst String(str.unicode() + index,
str.length() - index).string(), which avoids copying the character data.

See also QString::mid() [Datastructures and String Handling with Qt] and QConstString [Datastructures and
String Handling with Qt].

Example: gqmag/qmag.cpp.
int QRegExp::matchedLength () const

Returns the length of the last matched string, or -1 if there was no match.

See also exactMatch() [p. 148], search() [p. 150] and searchRev() [p. 151].

bool QRegExp::minimal () const

Returns TRUE if minimal (non-greedy) matching is enabled, otherwise returns FALSE.
See also setMinimal() [p. 151].

bool QRegExp::operator!= (const QRegExp & rx) const

Returns TRUE if this regular expression is not equal to rx, otherwise FALSE.

See also operator==() [p. 150].

QRegExp Class Reference 150

QRegExp & QRegExp::operator= (const QRegExp & rx)

Copies the regular expression rx and returns a reference to the copy. The case sensitivity, wildcard and minimal
matching options are copied as well.

bool QRegExp::operator== (const QRegExp & rx) const

Returns TRUE if this regular expression is equal to rx, otherwise returns FALSE.

Two QRegExp objects are equal if they have the same pattern strings and the same settings for case sensitivity,
wildcard and minimal matching.
QString QRegExp::pattern () const

Returns the pattern string of the regular expression. The pattern has either regular expression syntax or wildcard
syntax, depending on wildcard().

See also setPattern() [p. 151].

int QRegExp::pos (int nth = 0)

Returns the position of the nth captured text in the searched string. If nth is O (the default), pos() returns the
position of the whole match.

Example:

QRegExp rx("/ ([a-z]+)/([a-z]+)");

rx.search("Qutput /dev/null"); [l returns 7 (position of /dev/null)
rx.pos(0); /] returns 7 (position of /dev/null)
rx.pos(1); /] returns 8 (position of dev)
rx.pos(2); /] returns 12 (position of null)

For zero-length matches, pos() always returns -1. (For example, if cap(4) would return an empty string, pos(4)
returns -1.) This is due to an implementation tradeoff.

See also capturedTexts() [p. 1471, exactMatch() [p. 148], search() [p. 150] and searchRev() [p. 151].

int QRegExp::search (const QString & str, int start = 0) const

Attempts to find a match in str from position start (0 by default). If start is -1, the search starts at the last character;
if -2, at the next to last character; etc.

Returns the position of the first match, or -1 if there was no match.

You might prefer to use QString::find(), QString::contains() or even QStringList::grep(). To replace matches use
QString::replace().

Example:

String str = "offsets: 1.23 .50 71.00 6.00";
QRegExp rx("\\d*\\.\\d+"); Il primtive floating point matching
int count = 0;
int pos = 0;
while (pos >=0) {
pos = rx.search(str, pos);
count ++;

QRegExp Class Reference 151

}
[l pos will be 9, 14, 18 and finally 24; count will end up as 4
Although const, this function sets matchedLength(), capturedTexts() and pos().

See also searchRev() [p. 151] and exactMatch() [p. 148].

int QRegExp::searchRev (const QString & str, int start = -1) const

Attempts to find a match backwards in str from position start. If start is -1 (the default), the search starts at the last
character; if -2, at the next to last character; etc.

Returns the position of the first match, or -1 if there was no match.

Although const, this function sets matchedLength(), capturedTexts() and pos().

Warning: Searching backwards is much slower than searching forwards.

See also search() [p. 150] and exactMatch() [p. 148].

void QRegExp::setCaseSensitive (bool sensitive)

Sets case sensitive matching to sensitive.
If sensitive is TRUE, \.txt$ matches r eadne. t xt but not READVE. TXT.

See also caseSensitive() [p. 148].

void QRegExp::setMinimal (bool minimal)

Enables or disables minimal matching. If minimal is FALSE, matching is greedy (maximal) which is the default.

For example, suppose we have the input string "We must be bold, very bold!" and
the pattern .*. With the default greedy (maximal) matching, the match is "We must be
bold, very bold!". But with minimal (non-greedy) matching the first match is: "We
must be bold, very bold!" and the second match is "We must be bold, very
bold!". In practice we might use the pattern [" <]+ , although this will still fail for nested
tags.

See also minimal() [p. 149].

void QRegExp::setPattern (const QString & pattern)
Sets the pattern string to pattern and returns a reference to this regular expression. The case sensitivity, wildcard
and minimal matching options are not changed.

See also pattern() [p. 150].

void QRegExp::setWildcard (bool wildcard)

Sets the wildcard mode for the regular expression. The default is FALSE.
Setting wildcard to TRUE enables simple shell-like wildcard matching. (See wildcard matching (globbing).)
For example, r*.txt matches the string r eadme. t xt in wildcard mode, but does not match r eadne.

See also wildcard() [p. 152].

QRegExp Class Reference 152

bool QRegExp::wildcard () const

Returns TRUE if wildcard mode is enabled, otherwise FALSE. The default is FALSE.
See also setWildcard() [p. 151].

QRegExpValidator Class Reference

The QRegExpValidator class is used to check a string against a regular expression.
#include <qvalidator.h>

Inherits QValidator [p. 208].

Public Members

» QRegExpValidator (QObject * parent, const char * name = 0)

QRegExpValidator (const QRegExp & rx, QObject * parent, const char * name = 0)
~QRegExpValidator ()

virtual QValidator::State validate (QString & input, int & pos) const

void setRegExp (const QRegExp & rx)

const QRegExp & regExp () const

Detailed Description

The QRegExpValidator class is used to check a string against a regular expression.

QRegExpValidator contains a regular expression, "regexp", used to determine whether an input string is Acceptable,
Intermediate or Invalid.

The regexp is treated as if it begins with the start of string assertion, *, and ends with the end of string assertion
$ so the match is against the entire input string, or from the given position if a start position greater than zero is
given.

For a brief introduction to Qt’s regexp engine see QRegExp.
Example of use:
/] regexp: optional '-' followed by between 1 and 3 digits

QRegExp rx("-A\d{1,3}");
QRegExpVal i dator validator(rx, 0);

QineEdit *edit = new QLineEdit(split);
edi t->setValidator(&alidator);

Below we present some examples of validators. In practice they would normally be associated with a widget as in
the example above.

/] integers 1 to 9999

QRegExp rx("[1-9]\\d{0,3}");
/1 the validator treats the regexp as "*[1-9]\\d{0, 3}$"

153

QRegExpValidator Class Reference 154

QRegExpVal idator v(rx, 0);

@tring s;
s ="0"; v.validate(s, 0); /] returns Invalid
= "12345"; v.validate(s, 0); /I returns Invalid
="1"; v.validate(s, 0); /1 returns Acceptable
rx.setPattern("\\S+"); /1 one or nore non-whitespace characters

v.set RegExp(rx);
s ="nyfile.txt"; v.validate(
s ="ny file.txt"; v.validate(

)
)

[/ A Bor Cfollowed by exactly five digits followed by W X, Y or Z
rx.setPattern("[A-C\\d{5}[WZ]");

v. set RegExp(rx);

"al23457"; v.validate(s, O
"A123457"; v.validate(s, O
"B12"; v.validate(s, 0

Il Returns Acceptable

s, 0);
s, 0); // Returns Invalid

); I/ Returns Invalid
); /] Returns Acceptable
); Il Returns Internediate

S
S
S 1
[/ match nost ’'readme’ files
rx.setPattern("read\\S?me(\.(txt]asc|1st))?");

rx.set CaseSensitive(FALSE);
v.set RegExp(rx);

s = "readme"; v.validate(s, 0); // Returns Acceptable
s = "README. 1ST"; v.validate(s, 0); // Returns Acceptable
s ="read ne.txt"; v.validate(s, 0); // Returns Invalid

s = "readnt; v.validate(s, 0); // Returns Internediate

See also QRegExp [p. 1391, QIntValidator [p. 113], QDoubleValidator [p. 50] and Miscellaneous Classes.

Member Function Documentation

QRegExpValidator::QRegExpValidator (QObject * parent, const char * name = 0)

Constructs a validator that accepts any string (including an empty one) as valid. The object’s parent is parent and
its name is name.

QRegExpValidator::QRegExpValidator (const QRegExp & rx, QObject * parent,
const char * name = 0)

Constructs a validator which accepts all strings that match the regular expression rx. The object’s parent is parent
and its name is name.

The match is made against the entire string, e.g. if the regexp is [A-Fa-f0-9] + it will be treated as ™ [A-Fa-f0-9]+$.

QRegExpValidator::~QRegExpValidator ()

Destroys the validator, freeing any resources allocated.

const QRegExp & QRegExpValidator::regExp () const

Returns the regular expression used for validation.

QRegExpValidator Class Reference 155
See also setRegExp() [p. 155].

void QRegExpValidator::setRegExp (const QRegExp & rx)

Sets the regular expression used for validation to rx.

See also regExp() [p. 154].

QValidator::State QRegExpValidator::validate (QString & input, int & pos) const [virtual]
Returns Acceptable if input is matched by the regular expression for this validator, Intermediate if it has matched
partially (i.e. could be a valid match if additional valid characters are added), and Invalid if input is not matched.

The start position is the beginning of the string unless pos is given and is > 0 in which case the regexp is matched
from pos until the end of the string.

For example, if the regular expression is \w\d\d (that is, word-character, digit, digit) then "A57" is Acceptable,
"E5" is Intermediate and "+9" is Invalid.

See also QRegExp::match() [p. 149].
Reimplemented from QValidator [p. 209].

QSimpleRichText Class Reference

The QSimpleRichText class provides a small displayable piece of rich text.

#incl ude <qgsinplerichtext.h>

Public Members

» QSimpleRichText (const QString & text, const QFont & fnt, const QString & context = QString::null,
const QStyleSheet * sheet = 0)

» QSimpleRichText (const QString & text, const QFont & fnt, const QString & context,
const QStyleSheet * sheet, const QMimeSourceFactory * factory, int pageBreak = -1,
const QColor & linkColor = Qt::blue, bool linkUnderline = TRUE)

m ~QSimpleRichText ()

m void setWidth (int w)

m void setWidth (QPainter * p, int w)

m void setDefaultFont (const QFont & f)

m int width () const

m int widthUsed () const

m int height () const

m void adjustSize ()

m void draw (QPainter * p, int x, int y, const QRect & clipRect, const QColorGroup & cg, const QBrush * paper
= 0) const

m void draw (QPainter * p, int x, int y, const QRegion & clipRegion, const QColorGroup & cg,
const QBrush * paper = 0) const (obsolete)

m QString context () const

m QString anchorAt (const QPoint & pos) const

e bool inText (const QPoint & pos) const

Detailed Description

The QSimpleRichText class provides a small displayable piece of rich text.

This class encapsulates simple rich text usage in which a string is interpreted as rich text and can be drawn. This
is particularly useful if you want to display some rich text in a custom widget. A QStyleSheet is needed actually
to understand and format rich text. Qt provides a default HTML-like style sheet, but you may define custom style
sheets.

Once created, the rich text object can be queried for its width(), height(), and the actual width used (see
widthUsed()). Most importantly, it can be drawn on any given QPainter with draw(). QSimpleRichText can also
be used to implement hypertext or active text facilities by using anchorAt(). A hit test through inText() makes it
possible to use simple rich text for text objects in editable drawing canvases.

156

QSimpleRichText Class Reference 157

Once constructed from a string the contents cannot be changed, only resized. If the contents change, just throw
the rich text object away and make a new one with the new contents.

For large documents use QTextEdit or QTextBrowser. For very small items of rich text you can use a QLabel.

See also Text Related Classes.

Member Function Documentation

QSimpleRichText::QSimpleRichText (const QString & text, const QFont & fnt,
const QString & context = QString::null, const QStyleSheet * sheet = 0)

Constructs a QSimpleRichText from the rich text string text and the font fnt.
The font is used as a basis for the text rendering. When using rich text rendering on a widget w, you would
normally specify the widget’s font, for example:

QSi npl eRi chText nyrichtext(contents, nyw dget->font());

context is the optional context of the document. This becomes important if text contains relative references, for
example within image tags. QSimpleRichText always uses the default mime source factory (see QMimeSourceFac-
tory::defaultFactory()) to resolve those references. The context will then be used to calculate the absolute path.
See QMimeSourceFactory::makeAbsolute() for details.

The sheet is an optional style sheet. If it is 0, the default style sheet will be used (see QStyleSheet::defaultSheet()).

QSimpleRichText::QSimpleRichText (const QString & text, const QFont & fnt,
const QString & context, const QStyleSheet * sheet,
const QMimeSourceFactory * factory, int pageBreak = -1, const QColor & linkColor =
Qt::blue, bool linkUnderline = TRUE)

Constructs a QSimpleRichText from the rich text string text and the font fnt.

This is a slightly more complex constructor for QSimpleRichText that takes an additional mime source factory
factory, a page break parameter pageBreak and a bool linkUnderline. linkColor is only provided for compatibility,
but has no effect, as QColorGroup’s QColorGroup::1ink() color is used now.

context is the optional context of the document. This becomes important if text contains relative references, for
example within image tags. QSimpleRichText always uses the default mime source factory (see QMimeSourceFac-
tory::defaultFactory()) to resolve those references. The context will then be used to calculate the absolute path.
See QMimeSourceFactory::makeAbsolute() for details.

The sheet is an optional style sheet. If it is 0, the default style sheet will be used (see QStyleSheet::defaultSheet()).

This constructor is useful for creating a QSimpleRichText object suitable for printing. Set pageBreak to be the height
of the contents area of the pages.

QSimpleRichText:: ~QSimpleRichText ()

Destroys the document, freeing memory.

void QSimpleRichText::adjustSize ()

Adjusts the richt text document to a reasonable size.

See also setWidth() [p. 158].

QSimpleRichText Class Reference 158

QString QSimpleRichText::anchorAt (const QPoint & pos) const

Returns the anchor at the requested position, pos. An empty string is returned if no anchor is specified for this
position.

QString QSimpleRichText::context () const

Returns the context of the rich text document. If no context has been specified in the constructor, a null string is
returned. The context is the path to use to look up relative links, such as image tags and anchor references.

void QSimpleRichText::draw (QPainter * p, int x, int y, const QRect & clipRect,
const QColorGroup & cg, const QBrush * paper = 0) const

Draws the formatted text with painter p, at position (x, ¥), clipped to clipRect. The clipping rectangle is given in
the document’s coordinates translated by (x, y). Colors from the color group cg are used as needed, and if not 0,
*paper is used as the background brush.

Note that the display code is highly optimized to reduce flicker, so passing a brush for paper is preferable to simply
clearing the area to be painted and then calling this without a brush.

Example: helpviewer/helpwindow.cpp.
void QSimpleRichText::draw (QPainter * p, int X, int y, const QRegion & clipRegion,
const QColorGroup & cg, const QBrush * paper = 0) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use the version with clipRect instead. The region version has problems with larger documents on some platforms
(on X11 regions internally are represented with 16bit coordinates).

int QSimpleRichText::height () const

Returns the height of the document in pixels.
See also setWidth() [p. 158].

Example: helpviewer/helpwindow.cpp.

bool QSimpleRichText::inText (const QPoint & pos) const

Returns TRUE if pos is within a text line of the document; otherwise returns FALSE.

void QSimpleRichText::setDefaultFont (const QFont & f)

Sets the default font for the document to f

void QSimpleRichText::setWidth (QPainter * p, int w)

Sets the width of the document to w pixels, recalculating the layout as if it were to be drawn with painter p.

Passing a painter is useful when you intend to draw on devices other than the screen, for example a QPrinter.

QSimpleRichText Class Reference 159

See also height() [p. 158] and adjustSize() [p. 157].

Example: helpviewer/helpwindow.cpp.

void QSimpleRichText::setWidth (int w)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the width of the document to w pixels.

See also height() [p. 158] and adjustSize() [p. 157].

int QSimpleRichText::width () const

Returns the set width of the document in pixels.

See also widthUsed() [p. 159].

int QSimpleRichText::widthUsed () const

Returns the width in pixels that is actually used by the document. This can be smaller or wider than the set width.

It may be wider, for example, if the text contains images or non-breakable words that are already wider than the
available space. It’s smaller when the document only consists of lines that do not fill the width completely.

See also width() [p. 159].

QSettings Class Reference

The QSettings class provides persistent platform-independent application settings.

#incl ude <gsettings. h>

Public Members

m QSettings ()

m ~QSettings ()

m enum System { Unix = 0, Windows, Mac }

m bool writeEntry (const QString & key, bool value)

m bool writeEntry (const QString & key, double value)

m bool writeEntry (const QString & key, int value)

m bool writeEntry (const QString & key, const QString & value)

m bool writeEntry (const QString & key, const QStringList & value)

m bool writeEntry (const QString & key, const QStringList & value, const QChar & separator)
m QStringList entryList (const QString & key) const

m QStringList subkeyList (const QString & key) const

m QStringList readListEntry (const QString & key, bool * ok = 0)

m QStringList readListEntry (const QString & key, const QChar & separator, bool * ok = 0)

m QString readEntry (const QString & key, const QString & def = QString::null, bool * ok = 0)
m int readNumEntry (const QString & key, int def = 0, bool * ok = 0)

m double readDoubleEntry (const QString & key, double def = 0, bool * ok = 0)

m bool readBoolEntry (const QString & key, bool def = 0, bool * ok = 0)

m bool removeEntry (const QString & key)

m void insertSearchPath (System s, const QString & path)

e void removeSearchPath (System s, const QString & path)

Detailed Description

The QSettings class provides persistent platform-independent application settings.

On Unix systems, QSettings uses text files to store settings. On Windows systems, QSettings uses the system registry.
On Mac OS X, QSettings will behave as on Unix, and store to text files.

Each setting comprises an identifying key and the data associated with the key. A key is a unicode string which
consists of two or more subkeys. A subkey is a slash, ’/’, followed by one or more unicode characters (excluding
slashes, newlines, carriage returns and equals, '=’, signs). The associated data, called the entry or value, may be a
boolean, an integer, a double, a string or a list of strings. Entry strings may contain any unicode characters.

If you want to save and restore the entire desktop’s settings, i.e. which applications are running, use QSettings to
save the settings for each individual application and QSessionManager to save the desktop’s session.

160

QSettings Class Reference 161

Example settings:

/ MyConpany/ MyAppl i cat i on/ background col or
/ MyConpany/ MyAppl i cati on/ f oreground col or
| MyConpany/ MyAppl i cati on/ geomet ry/ x

| MyConpany/ MyAppl i cati on/ georetryly

/ MyConpany/ MyAppl i cati on/ georret ry/ wi dt h

/ MyConpany/ MyAppl i cat i on/ georret ry/ hei ght
/ MyConpany/ MyAppl i cation/recent files/1

/ MyConpany/ MyAppl i cation/recent files/2

/ MyConpany/ MyAppl i cation/recent files/3

Each line above is a complete key, made up of subkeys.

A typical usage pattern for application startup:

@Settings settings;

settings.insertSearchPath(QSettings::Wndows, "/M~Conmpany");

/1 No search path needed for Unix; see notes further on.

/] Use default values if the keys don’t exist

@String bgCol or = settings.readEntry("/MApplication/background color", "white");
int width = settings.readNunEntry("/ MApplication/geonetry/width", 640);

...

A typical usage pattern for application exit or save preferences’:

et tings settings;

settings.insertSearchPath(QSettings::Wndows, "/M~Conmpany");

/1 No search path needed for Unix; see notes further on.
settings.witeEntry("/MApplication/background color", hgColor);
settings.witeEntry("/MApplication/geonetry/width", width);
...

You can get a list of entry-holding keys by calling entryList(), and a list of key-holding keys using subkeyList().

@Stringlist keys = entryList("/MApplication");
/'l keys contains 'background color’ and 'foreground color’.

QStringList keys = entryList("/MApplication/recent files");
/'l keys contains "1, 2" and '3'.

@StringList subkeys = subkeyList("/MApplication");
/1 subkeys contains 'geonetry’ and 'recent files’

@St ringList subkeys = subkeyList("/MApplication/recent files");
/'l subkeys is enpty.

If you wish to use a different search path call insertSearchPath() as often as necessary to add your preferred paths.
Call removeSearchPath() to remove any unwanted paths.

Since settings for Windows are stored in the registry there are size limits as follows:

o A subkey may not exceed 255 characters.
e An entry’s value may not exceed 16,300 characters.
o All the values of a key (for example, all the ’recent files’ subkeys values), may not exceed 65,535 characters.

These limitations are not enforced on Unix.

QSettings Class Reference 162

Notes for Unix Applications

There is no universally accepted place for storing application settings under Unix. In the examples the settings file
will be searched for in the following directories:

1. $QTDIR/etc

2. /opt/MyCompany/share/etc

3. /opt/MyCompany/share/MyApplication/etc
4. $HOME/.qt

When reading settings the files are searched in the order shown above, with later settings overriding earlier settings.
Files for which the user doesn’t have read permission are ignored. When saving settings QSettings works forwards
in the order shown above writing to the first settings file for which the user has write permission. ($QTDIR is the
directory where Qt was installed.)

If you want to put the settings in a particular place in the filesystem you could do this:
settings.insertSearchPath(QSettings::Unix, "/opt/MConpany/share");

But in practice you may prefer not to use a search path for Unix. For example the following code:
settings.witeEntry("/MApplication/geonetry/width", width);

will end up writing the "geometry/width" setting to the file $HOVE/ . gt / nyappl i cationr ¢ (assuming that the appli-
cation is being run by an ordinary user, i.e. not by root).

For cross-platform applications you should ensure that the Windows size limitations are not exceeded.

See also Input/Output and Networking and Miscellaneous Classes.

Member Type Documentation

QSettings::System

e (Settings:: Mac - Macintosh execution environments
e (Bettings:: Unix - Mac OS X, Unix, Linux and Unix-like execution environments

e (Bettings:: Wndows - Windows execution environments

Member Function Documentation
QSettings::QSettings ()

Creates a settings object.

QSettings::~QSettings ()

Destroys the settings object. All modifications made to the settings will automatically be saved.

QSettings Class Reference 163

QStringList QSettings::entryList (const QString & key) const

Returns a list of the keys which contain entries under key. Does not return any keys that contain keys.

Example settings:

| MyConpany/ MyAppl i cati on/ background col or
/ MyConpany/ MyAppl i cati on/ f oreground col or
/ MyConpany/ MyAppl i cati on/ geomet ry/ x

/ MyConpany/ MyAppl i cati on/ georretry/y

| MyConpany/ MyAppl i cati on/ georet ry/ wi dt h

/ MyConpany/ MyAppl i cati on/ georret ry/ hei ght

QStringList keys = entryList("/MApplication");

keys contains ’background color’ and ’foreground color’. It does not contain ’geometry’ because this key contains
keys not entries.

To access the geometry values could either use subkeyList() to read the keys and then read each entry, or simply
read each entry directly by specifying its full key, e.g. "/MyCompany/MyApplication/geometry/y".

See also subkeyList() [p. 165].

void QSettings::insertSearchPath (System s, const QString & path)

Inserts path into the settings search path. The semantics of path depends on the system s.

When s is Windows and the execution environment is not Windows the function does nothing. Similarly when s is
Unix and the execution environment is not Unix the function does nothing.

When s is Windows, and the execution environment is Windows, the search path list will be used as the first
subfolder of the "Software" folder in the registry.

When reading settings the folders are searched forwards from the first folder (listed below) to the last, with later
settings overriding settings found earlier, and ignoring any folders for which the user doesn’t have read permission.

1. HKEY CURRENT USER/Software/MyCompany/MyApplication
2. HKEY CURRENT USER/Software/MyApplication

3. HKEY LOCAL MACHINE/Software/MyCompany/MyApplication
4. HKEY LOCAL MACHINE/Software/MyApplication

QSettings settings;
settings.insertSearchPath(QSettings::Wndows, "/M/Conpany");
settings.witeEntry("/MApplication/Tip of the day", TRUE);

The code above will write the subkey "Tip of the day" into the first of the registry folders listed below that is found
and for which the user has write permission.

HKEY LOCAL MACHINE/Software/MyApplication

HKEY LOCAL MACHINE/Software/MyCompany/MyApplication
HKEY CURRENT USER/Software/MyApplication

HKEY CURRENT USER/Software/MyCompany/MyApplication

H L=

When s is Unix, and the execution environment is Unix, the search path list will be used when trying to determine
a suitable filename for reading and writing settings files. By default, there are two entries in the search path:

QSettings Class Reference 164

1. $QTDIR/etc - where $QTDIR is the directory where Qt was installed.
2. $HOME/.qt/ - where $HOME is the user’s home directory.

All insertions into the search path will go before $HOME/.qt/. For example:

QSettings settings;

settings.insertSearchPath(QSettings::Unix, "/opt/MConmpany/share/etc");
settings.insertSearchPath(QSettings::Unix, "/opt/MConpany/share/ MyApplication/etc");
...

Will result in a search path of:

1. $QTDIR/etc

2. /opt/MyCompany/share/etc

3. /opt/MyCompany/share/MyApplication/etc
4. $HOME/.qt

When reading settings the files are searched in the order shown above, with later settings overriding earlier settings.
Files for which the user doesn’t have read permission are ignored. When saving settings QSettings works forwards
in the order shown above writing to the first settings file for which the user has write permission. ($QTDIR is the
directory where Qt was installed.)

Settings under Unix are stored in files whose names are based on the first subkey of the key (not including the
search path). The algorithm for creating names is essentially: lowercase the first subkey, replace spaces with
underscores and add ’rc’, e.g. / MyConpany/ MyAppl i cati on/ background col or will be stored in nyappl i cationrc
(assuming that / MyConpany is part of the search path).

See also removeSearchPath() [p. 165].

bool QSettings::readBoolEntry (const QString & key, bool def = 0, bool * ok = 0)

Reads the entry specified by key, and returns a bool, or the default value, def, if the entry couldn’t be read. If ok is
non-null, *ok is set to TRUE if the key was read, FALSE otherwise.

See also readEntry() [p. 164], readNumEntry() [p. 165], readDoubleEntry() [p. 164], writeEntry() [p. 166] and
removeEntry() [p. 165].

double QSettings::readDoubleEntry (const QString & key, double def = 0, bool * ok = 0)

Reads the entry specified by key, and returns a double, or the default value, def, if the entry couldn’t be read. If ok
is non-null, *ok is set to TRUE if the key was read, FALSE otherwise.

See also readEntry() [p. 164], readNumEntry() [p. 165], readBoolEntry() [p. 164], writeEntry() [p. 166] and
removeEntry() [p. 165].

QString QSettings::readEntry (const QString & key, const QString & def = QString::null,
bool * ok = 0)

Reads the entry specified by key, and returns a QString, or the default value, def, if the entry couldn’t be read. If ok
is non-null, *ok is set to TRUE if the key was read, FALSE otherwise.

See also readListEntry() [p. 165], readNumEntry() [p. 165], readDoubleEntry() [p. 164], readBoolEntry()
[p. 164], writeEntry() [p. 166] and removeEntry() [p. 165].

QSettings Class Reference 165

QStringList QSettings::readListEntry (const QString & key, bool * ok = 0)
Reads the entry specified by key as a string. If ok is non-null, *ok is set to TRUE if the key was read, FALSE
otherwise.

See also readEntry() [p. 164], readDoubleEntry() [p. 1641, readBoolEntry() [p. 1641, writeEntry() [p. 166],
removeEntry() [p. 165] and QStringList::split() [Datastructures and String Handling with Qt].

QStringList QSettings::readListEntry (const QString & key, const QChar & separator,
bool * ok = 0)
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads the entry specified by key as a string. The separator is used to create a QStringlist by calling
QStringList::split(separator, entry). If ok is non-null, *ok is set to TRUE if the key was read, FALSE otherwise.

See also readEntry() [p. 164], readDoubleEntry() [p. 1641, readBoolEntry() [p. 1641, writeEntry() [p. 166],
removeEntry() [p. 165] and QStringList::split() [Datastructures and String Handling with Qt].

int QSettings::readNumEntry (const QString & key, int def = 0, bool * ok = 0)
Reads the entry specified by key, and returns an integer, or the default value, def, if the entry couldn’t be read. If
ok is non-null, *ok is set to TRUE if the key was read, FALSE otherwise.

See also readEntry() [p. 164], readDoubleEntry() [p. 1641, readBoolEntry() [p. 164], writeEntry() [p. 166] and
removeEntry() [p. 165].

bool QSettings::removeEntry (const QString & key)

Removes the entry specified by key.
Returns TRUE if the entry existed and was removed; otherwise returns FALSE.

See also readEntry() [p. 164] and writeEntry() [p. 166].

void QSettings::removeSearchPath (System s, const QString & path)

Removes all occurrences of path (using exact matching) from the settings search path for system s. Note that the
default search paths cannot be removed.

See also insertSearchPath() [p. 163].

QStringList QSettings::subkeyList (const QString & key) const

Returns a list of the keys which contain keys under key. Does not return any keys that contain entries.

Example settings:

| MyConpany/ MyAppl i cati on/ background col or
/ MyConpany/ MyAppl i cati on/ f oreground col or
/ MyConpany/ MyAppl i cati on/ geomet ry/ x

| MyConpany/ MyAppl i cati on/ georetryly

| MyConpany/ MyAppl i cati on/ georet ry/ wi dt h

/ MyConpany/ MyAppl i cati on/ georret ry/ hei ght
/ MyConpany/ MyAppl i cation/recent files/1

QSettings Class Reference 166

/ MyConpany/ MyAppl i cation/recent files/2
/ MyConpany/ MyAppl i cation/recent files/3

QStringList keys = subkeyList("/MApplication");

keys contains 'geometry’ and ’recent files’. It does not contain ’background color’ or foreground color’ because they
are keys which contain entries not keys. To get a list of keys that have values rather than subkeys use entryList().

See also entryList() [p. 163].

bool QSettings::writeEntry (const QString & key, bool value)

Writes the boolean entry value into key key. The key is created if it doesn’t exist. Any previous value is overwritten
by value.

If an error occurs the settings are left unchanged and FALSE is returned; otherwise TRUE is returned.

See also readListEntry() [p. 165], readNumEntry() [p. 165], readDoubleEntry() [p. 164], readBoolEntry()
[p. 164] and removeEntry() [p. 165].

bool QSettings::writeEntry (const QString & key, double value)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes the double entry value into key key. The key is created if it doesn’t exist. Any previous value is overwritten
by value.

If an error occurs the settings are left unchanged and FALSE is returned; otherwise TRUE is returned.

See also readListEntry() [p. 165], readNumEntry() [p. 165], readDoubleEntry() [p. 164], readBoolEntry()
[p. 164] and removeEntry() [p. 165].

bool QSettings::writeEntry (const QString & key, int value)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes the integer entry value into key key. The key is created if it doesn’t exist. Any previous value is overwritten
by value.

If an error occurs the settings are left unchanged and FALSE is returned; otherwise TRUE is returned.

See also readListEntry() [p. 165], readNumEntry() [p. 165], readDoubleEntry() [p. 164], readBoolEntry()
[p. 164] and removeEntry() [p. 165].

bool QSettings::writeEntry (const QString & key, const QString & value)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes the string entry value into key key. The key is created if it doesn’t exist. Any previous value is overwritten
by value. If value is an empty string or a null string the key’s value will be an empty string.

If an error occurs the settings are left unchanged and FALSE is returned; otherwise TRUE is returned.

See also readListEntry() [p. 165], readNumEntry() [p. 165], readDoubleEntry() [p. 164], readBoolEntry()
[p. 164] and removeEntry() [p. 165].

QSettings Class Reference 167

bool QSettings::writeEntry (const QString & key, const QStringList & value)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes the string list entry value into key key. The key is created if it doesn’t exist. Any previous value is overwritten
by value.

If an error occurs the settings are left unchanged and FALSE is returned; otherwise TRUE is returned.

See also readListEntry() [p. 165], readNumEntry() [p. 165], readDoubleEntry() [p. 164], readBoolEntry()
[p. 164] and removeEntry() [p. 165].

bool QSettings::writeEntry (const QString & key, const QStringList & value,
const QChar & separator)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes the string list entry value into key key. The key is created if it doesn’t exist. Any previous value is overwritten
by value. The list is stored as a sequence of strings separated by separator, so none of the strings in the list should
contain the separator. If the list is empty or null the key’s value will be an empty string.

If an error occurs the settings are left unchanged and FALSE is returned; otherwise TRUE is returned.

See also readListEntry() [p. 165], readNumEntry() [p. 165], readDoubleEntry() [p. 164], readBoolEntry()
[p. 164] and removeEntry() [p. 165].

QSignal Class Reference

The QSignal class can be used to send signals for classes that don’t inherit QObject.
#i ncl ude <gsignal . h>

Inherits QObject [p. 123].

Public Members

m QSignal (QObject * parent = 0, const char * name = 0)

m ~QSignal ()

m bool connect (const QObject * receiver, const char * member)

m bool disconnect (const QObject * receiver, const char * member = 0)
m void activate ()

bool isBlocked () const (obsolete)

void block (bool b) (obsolete)

void setParameter (int value) (obsolete)

int parameter () const (obsolete)

void setValue (const QVariant & value)

QVariant value () const

Detailed Description

The QSignal class can be used to send signals for classes that don’t inherit QObject.

If you want to send signals from a class that does not inherit QObject, you can create an internal QSignal object to
emit the signal. You must also provide a function that connects the signal to an outside object slot. This is how we
have implemented signals in the QMenuData class, which is not a QObject.

In general, we recommend inheriting QObject instead. QObject provides much more functionality.
You can set a single QVariant parameter for the signal with setValue().

Note that QObject is a private base class of QSignal, i.e. you cannot call any QObject member functions from a
QSignal object.

Example:

#incl ude <gsignal . h>

class Myd ass

{
public:

MW ass();

168

QSignal Class Reference 169

~Myd ass();
voi d doSonet hing();

voi d connect (QCbject *receiver, const char *menber);

private:
@i gnal *sig;
b
M/ d ass:: Md ass()
{
sig = new Signal;
}
M d ass:: ~MWd ass()
{
delete sig;
}
voi d Myd ass: : doSomet hi ng()
Il ... does sonething
sig->activate(); // enmits the signal
}
void Myd ass::connect(QObject *receiver, const char *nmenber)
{
si g->connect (receiver, nmenber);
}

See also Input/Output and Networking and Miscellaneous Classes.

Member Function Documentation

QSignal::QSignal (QObject * parent = 0, const char * name = 0)

Constructs a signal object with the parent object parent and a name. These arguments are passed directly to
QObject.

QSignal::~QSignal ()

Destroys the signal. All connections are removed, as is the case with all QObjects.

void QSignal::activate ()

Emits the signal. If the platform supports QVariant and a parameter has been set with setValue(), this value is
passed in the signal.

QSignal Class Reference 170

void QSignal::block (bool b)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Blocks the signal if b is TRUE, or unblocks the signal if b is FALSE.
An activated signal disappears into hyperspace if it is blocked.

See also isBlocked() [p. 1701, activate() [p. 169] and QObject::blockSignals() [p. 126].

bool QSignal::connect (const QObject * receiver, const char * member)

Connects the signal to member in object receiver.

See also disconnect() [p. 170] and QObject::connect() [p. 127].

bool QSignal::disconnect (const QObject * receiver, const char * member = 0)

Disonnects the signal from member in object receiver.

See also connect() [p. 170] and QObject::disconnect() [p. 129].

bool QSignal::isBlocked () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Returns TRUE if the signal is blocked, or FALSE if it is not blocked.
The signal is not blocked by default.
See also block() [p. 170] and QObject::signalsBlocked() [p. 136].

int QSignal::parameter () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

void QSignal::setParameter (int value)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

void QSignal::setValue (const QVariant & value)

Sets the signal’s parameter to value

QVariant QSignal::value () const

Returns the signal’s parameter

QSignalMapper Class Reference

The QSignalMapper class bundles signals from identifiable senders.
#i ncl ude <gsi gnal mapper. h>

Inherits QObject [p. 123].

Public Members

QSignalMapper (QObject * parent, const char * name = 0)
~QSignalMapper ()

virtual void setMapping (const QObject * sender, int identifier)

virtual void setMapping (const QObject * sender, const QString & identifier)
void removeMappings (const QObject * sender)

Public Slots

m void map ()

Signals
m void mapped (int)

» void mapped (const QString &)

Detailed Description

The QSignalMapper class bundles signals from identifiable senders.

This class collects a set of parameterless signals, and re-emits them with integer or string parameters corresponding
to the object that sent the signal.

See also Input/Output and Networking.

Member Function Documentation

QSignalMapper::QSignalMapper (QObject * parent, const char * name = 0)

Constructs a QSignalMapper with parent parent and name name. Like all QObjects, it will be deleted when the
parent is deleted.

171

QSignalMapper Class Reference 172

QSignalMapper::~QSignalMapper ()

Destroys the QSignalMapper.

void QSignalMapper::map () [slot]

This slot emits signals based on which object sends signals to it.

Example: i18n/main.cpp.

void QSignalMapper::mapped (int) [signal]

This signal is emitted when map() is signaled from an object that has an integer mapping set.
See also setMapping() [p. 172].

Example: i18n/main.cpp.

void QSignalMapper::mapped (const QString &) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
This signal is emitted when map() is signaled from an object that has a string mapping set.

See also setMapping() [p. 172].

void QSignalMapper::removeMappings (const QObject * sender)

Removes all mappings for sender. This is done automatically when mapped objects are destroyed.

void QSignalMapper::setMapping (const QObject * sender, int identifier) [virtual]

Adds a mapping so that when map() is signaled from the given sender, the signal mapped (identifier) is emitted.
There may be at most one integer identifier for each object.

Example: i18n/main.cpp.

void QSignalMapper::setMapping (const QObject * sender,

const QString & identifier) [virtual]
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Adds a mapping so that when map() is signaled from the given sender, the signal mapper (identifier) is emitted.

There may be at most one string identifier for each object, and it may not be null.

QSound Class Reference

The QSound class provides access to the platform audio facilities.
#include <gsound. h>

Inherits QObject [p. 123].

Public Members

QSound (const QString & filename, QObject * parent = 0, const char * name = 0)
= ~QSound ()

m int loops () const

» int loopsRemaining () const

m void setLoops (int 1)

QString fileName () const

m bool isFinished () const

Public Slots

» void play ()
m void stop ()

Static Public Members
= bool isAvailable ()

» void play (const QString & filename)
= bool available ()

Detailed Description

The QSound class provides access to the platform audio facilities.

Qt provides the most commonly required audio operation in GUI applications: playing a sound file asynchronously
to the user. This is most simply accomplished with a single call:

QSound: : pl ay(" mysounds/ bel | s. wav");

A second API is provided in which a QSound object is created from a sound file and is later played:

173

QSound Class Reference 174

@Sound bel I s("mysounds/ bel | s. wav");

bel I's. play();
Sounds played by the second model may use more memory but play more immediately than sounds played using
the first model, depending on the underlying platform audio facilities.
On Microsoft Windows the underlying multimedia system is used; only WAVE format sound files are supported.

On X11 the Network Audio System is used if available, otherwise all operations work silently. NAS supports WAVE
and AU files.

On Macintosh, in an ironic turn of events we use QT (QuickTime) for sound, this means all QuickTime formats are
supported by Qt/Mac.

On Qt/Embedded, a built-in mixing sound server is used, which accesses / dev/ dsp directly. Only the WAVE format
is supported.

The availability of sound can be tested with QSound::isAvailable().

See also Multimedia Classes.

Member Function Documentation

QSound::QSound (const QString & filename, QObject * parent = 0, const char * name =
0)

Constructs a QSound that can quickly play the sound in a file named filename.
This can use more memory than the static pl ay function.

The parent and name arguments (default 0) are passed on to the QObject constructor.

QSound::~QSound ()

Destroys the sound object.

bool QSound::available () [static]

Returns TRUE if sound support is available; otherwise returns FALSE.

QString QSound::fileName () const

Returns the filename associated with the sound.

bool QSound::isAvailable () [static]

Returns TRUE if sound facilities exist on the platform; otherwise returns FALSE. An application may choose either
to notify the user if sound is crucial to the application or to operate silently without bothering the user.

If no sound is available, all QSound operations work silently and quickly.

QSound Class Reference 175

bool QSound::isFinished () const

Returns TRUE if the sound has finished playing; otherwise returns FALSE.

int QSound::loops () const

Returns the number of times the sound will play.

int QSound::loopsRemaining () const

Returns the number of times the sound will loop. This value decreases each time the sound loops.

void QSound::play (const QString & filename) [static]

Plays the sound in a file called filename.

void QSound::play () [slot]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Starts the sound playing. The function returns immediately. Depending on the platform audio facilities, other
sounds may stop or may be mixed with the new sound.

The sound can be played again at any time, possibly mixing or replacing previous plays of the sound.
void QSound::setLoops (int 1)
Sets the sound to repeat [times when it is played. Passing the value -1 will cause the sound to loop indefinitely.

See also loops() [p. 175].

void QSound::stop () [slot]

Stops the sound playing.
See also play() [p. 175].

Qt Class Reference

The Qt class is a namespace for miscellaneous identifiers that need to be global-like.
#i ncl ude <gnamespace. h>

Inherited by QObject [p. 123], QPixmap [Graphics with Qt], QBrush [Graphics with Qt], QCanvasltem [Graphics
with Qt], QCursor [Graphics with Qt], QEvent [Events, Actions, Layouts and Styles with Qt], QIconViewItem
[Widgets with Qt], QKeySequence [Events, Actions, Layouts and Styles with Qt], QListViewItem [Widgets with
Qt], QCustomMenultem [Dialogs and Windows with Qt], QPainter [Graphics with Qt], QPen [Graphics with Qt],
QStyleSheetItem [Events, Actions, Layouts and Styles with Qt], QTab [Widgets with Qt], QTableltem [Widgets
with Qt], QThread [Threading with Qt], QToolTip [Dialogs and Windows with Qt] and QWhatsThis [Widgets with

Qt].

Public Members

m enum ButtonState { NoButton = 0x0000, LeftButton = 0x0001, RightButton = 0x0002, MidButton =
0x0004, MouseButtonMask = 0x00ff, ShiftButton = 0x0100, ControlButton = 0x0200, AltButton =
0x0400, MetaButton = 0x0800, KeyButtonMask = 0xOfff, Keypad = 0x4000 }

= enum Orientation { Horizontal = 0, Vertical }

m enum AlignmentFlags { AlignAuto = 0x0000, AlignLeft = 0x0001, AlignRight = 0x0002, AlignHCenter =
0x0004, AlignJustify = 0x0008, AlignHorizontal Mask = AlignlLeft | AlignRight | AlignHCenter |
AlignJustify, AlignTop = 0x0010, AlignBottom = 0x0020, AlignVCenter = 0x0040, AlignVertical Mask =
AlignTop | AlignBottom | AlignVCenter, AlignCenter = AlignVCenter | AlignHCenter }

» enum TextFlags { SingleLine = 0x0080, DontClip = 0x0100, ExpandTabs = 0x0200, ShowPrefix = 0x0400,
WordBreak = 0x0800, BreakAnywhere = 0x1000, DontPrint = 0x2000, NoAccel = 0x4000 }

m enum WidgetState { WState Created = 0x00000001, WState Disabled = 0x00000002, WState Visible =
0x00000004, WState ForceHide = 0x00000008, WState OwnCursor = 0x00000010,

WState MouseTracking = 0x00000020, WState CompressKeys = 0x00000040, WState BlockUpdates =
0x00000080, WState InPaintEvent = 0x00000100, WState Reparented = 0x00000200,

WState ConfigPending = 0x00000400, WState Resized = 0x00000800, WState AutoMask = 0x00001000,
WState Polished = 0x00002000, WState DND = 0x00004000, WState Reserved0 = 0x00008000,

WState Reservedl = 0x00010000, WState Reserved2 = 0x00020000, WState Reserved3 = 0x00040000,
WState Maximized = 0x00080000, WState Minimized = 0x00100000, WState ForceDisabled =
0x00200000, WState_Exposed = 0x00400000, WState_HasMouse = 0x00800000 }

» enum WidgetFlags { WType_TopLevel = 0x00000001, WType Dialog = 0x00000002, WType Popup =
0x00000004, WType_Desktop = 0x00000008, WType Mask = 0x0000000f, WStyle Customize =
0x00000010, WStyle NormalBorder = 0x00000020, WStyle DialogBorder = 0x00000040,

WStyle NoBorder = 0x00002000, WStyle Title = 0x00000080, WStyle SysMenu = 0x00000100,

WStyle Minimize = 0x00000200, WStyle Maximize = 0x00000400, WStyle MinMax = WStyle Minimize

| WStyle Maximize, WStyle Tool = 0x00000800, WStyle StaysOnTop = 0x00001000, WStyle ContextHelp
= 0x00004000, WStyle_Reserved = 0x00008000, WStyle Mask = 0x0000f£ff0, WDestructiveClose =
0x00010000, WPaintDesktop = 0x00020000, WPaintUnclipped = 0x00040000, WPaintClever =
0x00080000, WResizeNoErase = 0x00100000, WMouseNoMask = 0x00200000, WStaticContents =
0x00400000, WRepaintNoErase = 0x00800000, WX11BypassWM = 0x01000000, WWinOwnDC =
0x00000000, WGroupLeader = 0x02000000, WShowModal = 0x04000000, WNoMousePropagation =

176

Qt Class Reference 177

0x08000000, WSubWindow = 0x10000000, WNorthWestGravity = WStaticContents, WIype Modal =
WType Dialog | WShowModal, WStyle Dialog = WType_ Dialog, WStyle NoBorderEx = WStyle NoBorder
¥

= enum ImageConversionFlags { ColorMode Mask = 0x00000003, AutoColor = 0x00000000, ColorOnly =
0x00000003, MonoOnly = 0x00000002, AlphaDither Mask = 0x0000000c, ThresholdAlphaDither =
0x00000000, OrderedAlphaDither = 0x00000004, DiffuseAlphaDither = 0x00000008, NoAlpha =
0x0000000c, Dither Mask = 0x00000030, DiffuseDither = 0x00000000, OrderedDither = 0x00000010,
ThresholdDither = 0x00000020, DitherMode Mask = 0x000000c0, AutoDither = 0x00000000,
PreferDither = 0x00000040, AvoidDither = 0x00000080 }

m enum BGMode { TransparentMode, OpaqueMode }
m enum PaintUnit { PixelUnit, LoMetricUnit, HiMetricUnit, LoEnglishUnit, HiEnglishUnit, TwipsUnit }
» enum GUIStyle { MacStyle, WindowsStyle, Win3Style, PMStyle, MotifStyle } (obsolete)

» enum Modifier { SHIFT = 0x00200000, CTRL = 0x00400000, ALT = 0x00800000, MODIFIER MASK =
0x00e00000, UNICODE ACCEL = 0x10000000, ASCII ACCEL = UNICODE ACCEL }

m enum Key { Key Escape = 0x1000, Key Tab = 0x1001, Key Backtab = 0x1002, Key BackTab =
Key Backtab, Key Backspace = 0x1003, Key BackSpace = Key Backspace, Key Return = 0x1004,
Key_Enter = 0x1005, Key_Insert = 0x1006, Key_Delete = 0x1007, Key_Pause = 0x1008, Key_Print =
0x1009, Key SysReq = 0x100a, Key Home = 0x1010, Key End = 0x1011, Key Left = 0x1012, Key Up =
0x1013, Key Right = 0x1014, Key Down = 0x1015, Key Prior = 0x1016, Key PageUp = Key Prior,
Key Next = 0x1017, Key PageDown = Key Next, Key Shift = 0x1020, Key Control = 0x1021, Key Meta =
0x1022, Key Alt = 0x1023, Key CapsLock = 0x1024, Key NumLock = 0x1025, Key ScrollLock = 0x1026,
Key F1 = 0x1030, Key F2 = 0x1031, Key F3 = 0x1032, Key F4 = 0x1033, Key F5 = 0x1034, Key F6 =
0x1035, Key F7 = 0x1036, Key F8 = 0x1037, Key F9 = 0x1038, Key F10 = 0x1039, Key F11 = 0x103a,
Key F12 = 0x103b, Key F13 = 0x103c, Key F14 = 0x103d, Key F15 = 0x103e, Key F16 = 0x103f,
Key F17 = 0x1040, Key_F18 = 0x1041, Key_F19 = 0x1042, Key_F20 = 0x1043, Key_F21 = 0x1044,
Key F22 = 0x1045, Key_F23 = 0x1046, Key_F24 = 0x1047, Key_F25 = 0x1048, Key_F26 = 0x1049,
Key F27 = 0x104a, Key_F28 = 0x104b, Key_F29 = 0x104c, Key F30 = 0x104d, Key_F31 = 0x104e,
Key F32 = 0x104f, Key F33 = 0x1050, Key F34 = 0x1051, Key F35 = 0x1052, Key Super L = 0x1053,
Key Super R = 0x1054, Key Menu = 0x1055, Key Hyper L = 0x1056, Key Hyper R = 0x1057, Key Help
= 0x1058, Key Direction L = 0x1059, Key Direction R = 0x1060, Key Space = 0x20, Key Any =
Key Space, Key Exclam = 0x21, Key QuoteDbl = 0x22, Key NumberSign = 0x23, Key Dollar = 0x24,
Key Percent = 0x25, Key Ampersand = 0x26, Key Apostrophe = 0x27, Key ParenlLeft = 0x28,
Key ParenRight = 0x29, Key Asterisk = 0x2a, Key_Plus = 0x2b, Key Comma = 0x2c, Key Minus = 0x2d,
Key Period = 0x2e, Key_Slash = 0x2f, Key_0 = 0x30, Key_1 = 0x31, Key_2 = 0x32, Key_3 = 0x33, Key_4
= 0x34, Key 5 = 0x35, Key 6 = 0x36, Key 7 = 0x37, Key 8 = 0x38, Key_9 = 0x39, Key Colon = 0x3a,
Key Semicolon = 0x3b, Key Less = 0x3c, Key Equal = 0x3d, Key Greater = 0x3e, Key Question = 0x3f,
Key At = 0x40, Key A = 0x41, Key B = 0x42, Key C = 0x43, Key D = 0x44, Key E = 0x45, Key F =
0x46, Key_G = 0x47, Key_H = 0x48, Key_I = 0x49, Key_J = 0x4a, Key_K = 0x4b, Key_L = 0x4c, Key M =
0x4d, Key N = 0x4e, Key O = 0x4f, Key P = 0x50, Key_Q = 0x51, Key R = 0x52, Key S = 0x53, Key T =
0x54, Key U = 0x55, Key V = 0x56, Key W = 0x57, Key X = 0x58, Key Y = 0x59, Key Z = 0x5a,
Key BracketLeft = 0x5b, Key Backslash = 0x5c, Key BracketRight = 0x5d, Key AsciiCircum = 0x5e,
Key Underscore = 0x5f, Key_QuoteLeft = 0x60, Key BraceLeft = 0x7b, Key Bar = 0x7c, Key BraceRight =
0x7d, Key_AsciiTilde = 0x7e, Key nobreakspace = 0x0a0, Key exclamdown = 0x0al, Key cent = 0x0a2,
Key sterling = 0x0a3, Key currency = 0x0a4, Key yen = 0x0a5, Key brokenbar = 0x0a6, Key section =
0x0a7, Key_diaeresis = 0x0a8, Key_ copyright = 0x0a9, Key ordfeminine = 0x0Oaa, Key guillemotleft =
0x0ab, Key notsign = 0x0ac, Key hyphen = 0x0ad, Key registered = 0x0ae, Key macron = 0x0af,
Key degree = 0x0b0, Key plusminus = 0x0b1, Key twosuperior = 0x0b2, Key threesuperior = 0x0b3,
Key acute = 0x0b4, Key_mu = 0x0b5, Key paragraph = 0x0b6, Key periodcentered = 0x0b7, Key cedilla
= 0x0b8, Key onesuperior = 0x0b9, Key masculine = 0x0Oba, Key guillemotright = 0xObb, Key onequarter
= 0x0bc, Key_onehalf = 0x0bd, Key_threequarters = 0x0be, Key questiondown = 0xO0bf, Key Agrave =
0x0c0, Key Aacute = 0x0cl, Key Acircumflex = 0x0c2, Key Atilde = 0x0c3, Key Adiaeresis = 0x0c4,
Key Aring = 0x0c5, Key AE = 0x0c6, Key Ccedilla = 0x0c7, Key Egrave = 0x0c8, Key Eacute = 0x0c9,
Key Ecircumflex = 0x0Oca, Key Ediaeresis = 0xOcb, Key Igrave = 0xOcc, Key Iacute = 0x0Ocd,
Key Icircumflex = 0xOce, Key Idiaeresis = 0xOcf, Key ETH = 0x0d0, Key Ntilde = 0x0d1, Key Ograve =
0x0d2, Key Oacute = 0x0d3, Key Ocircumflex = 0x0d4, Key Otilde = 0x0d5, Key Odiaeresis = 0x0d6,
Key multiply = 0x0d7, Key _Ooblique = 0x0d8, Key Ugrave = 0x0d9, Key Uacute = 0x0da,
Key Ucircumflex = 0x0db, Key Udiaeresis = 0x0dc, Key Yacute = 0x0dd, Key THORN = 0x0de,

Qt Class Reference 178

Key ssharp = 0x0df, Key agrave = 0x0e0, Key aacute = 0x0el, Key acircumflex = 0x0e2, Key atilde =
0x0e3, Key adiaeresis = 0x0e4, Key aring = 0x0e5, Key ae = 0x0e6, Key ccedilla = 0x0e7, Key egrave =
0x0e8, Key eacute = 0x0e9, Key ecircumflex = 0xOea, Key ediaeresis = 0x0eb, Key igrave = 0xOec,

Key iacute = 0x0ed, Key icircumflex = 0x0Oee, Key idiaeresis = 0xOef, Key eth = 0x0f0, Key ntilde =
0x0f1, Key ograve = 0x0f2, Key oacute = 0x0f3, Key ocircumflex = 0x0f4, Key otilde = 0x0f5,

Key odiaeresis = 0x0f6, Key division = 0x0f7, Key oslash = 0x0f8, Key ugrave = 0x0f9, Key uacute =
0x0fa, Key ucircumflex = 0x0fb, Key udiaeresis = 0x0fc, Key yacute = 0x0fd, Key thorn = 0xO0fe,

Key ydiaeresis = 0x0ff, Key unknown = Oxffff }

» enum ArrowType { UpArrow, DownArrow, LeftArrow, RightArrow }

» enum RasterOp { CopyROB OrROB XorROB NotAndROB EraseROP = NotAndROEB NotCopyROB NotOrROB
NotXorROB AndROB NotFraseROP = AndROBE NotROB ClearROB SetROB NopROB AndNotROB OrNotROB
NandROPB NorROP LastROP = NorROP }

» enum PenStyle { NoPen, SolidLine, DashLine, DotLine, DashDotLine, DashDotDotLine, MPenStyle = 0xOf }

m enum PenCapStyle { FlatCap = 0x00, SquareCap = 0x10, RoundCap = 0x20, MPenCapStyle = 0x30 }

m enum PenJoinStyle { MiterJoin = 0x00, BevelJoin = 0x40, RoundJoin = 0x80, MPenJoinStyle = 0xc0 }

m enum BrushStyle { NoBrush, SolidPattern, DenselPattern, Dense2Pattern, Dense3Pattern, Dense4Pattern,
Dense5Pattern, Dense6Pattern, Dense7Pattern, HorPattern, VerPattern, CrossPattern, BDiagPattern,
FDiagPattern, DiagCrossPattern, CustomPattern = 24 }

» enum WindowsVersion { WV_32s = 0x0001, WV_95 = 0x0002, WV_98 = 0x0003, WV_Me = 0x0004,
WV _DOS _based = 0x000f, WV_NT = 0x0010, WV_2000 = 0x0020, WV_XP = 0x0030, WV_NT based =
0x00f0 }

» enum UlEffect { Ul General, Ul AnimateMenu, Ul FadeMenu, Ul AnimateCombo, Ul AnimateTooltip,

Ul FadeTooltip }

m enum CursorShape { ArrowCursor, UpArrowCursor, CrossCursor, WaitCursor, IbeamCursor, SizeVerCursor,
SizeHorCursor, SizeBDiagCursor, SizeFDiagCursor, SizeAllCursor, BlankCursor, SplitVCursor, SplitHCursor,
PointingHandCursor, ForbiddenCursor, WhatsThisCursor, LastCursor = WhatsThisCursor, BitmapCursor =
24}

m enum TextFormat { PlainText, RichText, AutoText }

m enum Dock { DockUnmanaged, DockTornOff, DockTop, DockBottom, DockRight, DockLeft, DockMinimized,
Unmanaged = DockUnmanaged, TornOff = DockTornOff, Top = DockTop, Bottom = DockBottom, Right =
DockRight, Left = DockLeft, Minimized = DockMinimized }

m enum DateFormat { TextDate, ISODate, LocalDate }

= enum BackgroundMode { FixedColor, FixedPixmap, NoBackground, PaletteForeground, PaletteButton,
PaletteLight, PaletteMidlight, PaletteDark, PaletteMid, PaletteText, PaletteBrightText, PaletteBase,
PaletteBackground, PaletteShadow, PaletteHighlight, PaletteHighlightedText, PaletteButtonText, PaletteLink,
PaletteLinkVisited, X11ParentRelative }

e enum StringComparisonMode { CaseSensitive = 0x00001, BeginsWith = 0x00002, EndsWith = 0x00004,
Contains = 0x00008, ExactMatch = 0x00010 }

Detailed Description

The Qt class is a namespace for miscellaneous identifiers that need to be global-like.

Normally, you can ignore this class. QObject and a few other classes inherit it, so all the identifiers in the Qt
namespace are usable without qualification.

However, you may occasionally need to say @ : : bl ack instead of just bl ack, particularly in static utility functions
(such as many class factories).

See also Miscellaneous Classes.

Qt Class Reference 179

Member Type Documentation

Qt::AlignmentFlags
This enum type is used to describe alignment. It contains horizontal and vertical flags. The horizontal flags are:

e QX::AlignAuto - Aligns according to the language. Left for most, right for Hebrew and Arabic.
e QX::AlignLeft - Aligns with the left edge.

e QX::AlignRight - Aligns with the right edge.

e QX ::AlignHCenter - Centers horizontally in the available space.

e X::Aligndustify - Justifies the text in the available space. Does not work for everything and may be
interpreted as AlignAuto in some cases.

The vertical flags are:

e QX::AlignTop - Aligns with the top.
e (X::AlignBottom- Aligns with the bottom.
e QX::AlignVCenter - Centers vertically in the available space.

You can use only one of the horizontal flags at a time. There is one two-dimensional flag:
e QX::AlignCenter - Centers in both dimensions.

You can use at most one horizontal and one vertical flag at a time. AlignCenter counts as both horizontal and
vertical.

Masks:

e (X::AlignHorizontal Msk
e QX::AlignVertical _Msk

Conflicting combinations of flags have undefined meanings.

Qt::ArrowType

e (X::UpArrow

e (X ::DownArrow
e Qt::LeftArrow
e QX::RightArrow

Qt::BGMode
Background mode

e (X::Transparent Mde
e (X:: OpaquehMbde

Qt Class Reference 180

Qt::BackgroundMode

This enum describes how the background of a widget changes, as the widget’s palette changes.

The background is what the widget contains when paintEvent() is called. To minimize flicker, this should be
the most common color or pixmap in the widget. For PaletteBackground, use colorGroup().brush(QColor-
Group::Background), and so on. There are also three special values, listed at the end:

e (X::PaletteForeground
e (X::PaletteBackground
e X::PaletteButton

e (X::Palettelight

e (X::PaletteMdlight
e X::PaletteDark

e (X::PaletteMd

e (X::PaletteText

e (X::PaletteBright Text
e (X::PaletteButtonText
e (X::PaletteBase

e (X::Pal etteShadow

e (X::PaletteH ghlight
e (X::PaletteH ghlightedText

e (X::NoBackground - the widget is not cleared before paintEvent(). If the widget’s paint event always draws
on all the pixels, using this mode can be both fast and flicker-free.

e X ::FixedCol or - the widget is cleared to a fixed color, normally different from all the ones in the palette().
Set using setPaletteBackgroundColor().

e Q::FixedPi xmap - the widget is cleared to a fixed pixmap, normally different from all the ones in the
palette(). Set using setBackgroundPixmap().

e (::Palettelink
e (t:: - PaletteLinkVisited
e QX::Xl1lParentRel ative - (internal use only)

Although FixedColor and FixedPixmap are sometimes just right, if you use them, make sure that your application
looks right when the desktop color scheme has been changed. (On X11, a quick way to test this is e.g. "./myapp
-bg paleblue". On Windows, you have to use the control panel.)

See also QWidget::backgroundMode [Widgets with Qt], QWidget::backgroundMode [Widgets with Qt],
QWidget::setBackgroundPixmap() [Widgets with Qt] and QWidget::paletteBackgroundColor [Widgets with Qt].

Qt::BrushStyle

e (X::NoBrush

e QX::SolidPattern
e (X::DenselPattern
e (X::Dense2Pattern
e (X::Dense3Pattern
e (X::DensedPattern
e (X::Dense5Pattern

Qt Class Reference 181

e (X::Dense6Pattern

e (X::Dense7Pattern

e (X::HorPattern

e (X::VerPattern

e (::CrossPattern

e (X::BDiagPattern

e QX::FDiagPattern

e (::DiagCrossPattern
e (X::CustonPattern

Qt::ButtonState

This enum type describes the state of the mouse buttons and the modifier buttons. The currently defined values

are:
e (X::NoButton - used when the button state does not refer to any button (see QMouseEvent::button()).
e QX::LeftButton - set if the left button is pressed, or this event refers to the left button. Note that the left
button may be the right button on left-handed mice.
e QX::RightButton - the right button.
e (X::MdButton - the middle button.
e (X::ShiftButton - a Shift key on the keyboard is also pressed.
e QX::Control Button - a Ctrl key on the keyboard is also pressed.
e QX::AltButton - an Alt (or Meta) key on the keyboard is also pressed.
e (X::MetaButton -aMetakey on the keyboard is also pressed.
e (X::Keypad - a keypad button is pressed.
e (X::KeyButtonMsk - is a mask for ShiftButton, ControlButton and AltButton.
e (X:: MuseButtonMask - is a mask for LeftButton, RightButton and MidButton.
Qt::CursorShape

This enum type defines the various cursors that can be used.

o X::
e X::
o X::
e X::
o ::

ArrowCur sor - standard arrow cursor
UpAr r owCur sor - upwards arrow
CrossCursor - crosshair

Wi t Cur sor - hourglass/watch

| beanCur sor - ibeam/text entry

. Si zeVer Qursor - vertical resize

.. Si zeHor Cur sor - horizontal resize

.. Si zeBDi agCur sor - diagonal resize (/)
. Si zeFDi agCur sor - diagonal resize (\)
.. SizeAl | Cursor - all directions resize
;. Bl ankCur sor - blank/invisible cursor
.2 SplitVCursor - vertical splitting

:: SplitHCursor - horziontal splitting

Qt Class Reference 182

e (X::PointingHandCursor - a pointing hand

e (t::ForbiddenCursor - a slashed circle

e QX ::WhatsThisCursor - an arrow with a question mark
e (X::BitmpCursor

ArrowCursor is the default for widgets in a normal state.

Qt::DateFormat

e (t::TextDate - (default) Qt format
e (X::1SCDate - ISO 8601 format
e (X::Local Date - locale dependent format

Qt::Dock
Each dock window can be in one of the following positions:

e QX ::DockTop - above the central widget, below the menu bar.

e (X::DockBottom- below the central widget, above the status bar.
e (X ::DockLeft - to the left of the central widget.

e X ::DockRight - to the right of the central widget.

e QX ::DockM nim zed - the dock window is not shown (this is effectively a ’hidden’ dock area); the handles of
all minimized dock windows are drawn in one row below the menu bar.

e QX::DockTornOf f - the dock window floats as its own top level window which always stays on top of the main
window.

e (X::DockUnmanaged - not managed by a QMainWindow.

Qt::GUIStyle
This type is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

e (::WndowsStyle
e (X::MtifStyle

e (X::McStyle
e QX::Wn3Style
e QX::PMstyle

Qt::ImageConversionFlags

The conversion flag is a bitwise-OR of the following values. The options marked "(default)" are the set if no other
values from the list are included (since the defaults are zero):

Color/Mono preference (ignored for QBitmap)

e QX::AutoCol or - (default) - If the image has depth 1 and contains only black and white pixels, the pixmap
becomes monochrome.

e QX::Col orOnly - The pixmap is dithered/converted to the native display depth.

Qt Class Reference 183

e QX::MnoOnly - The pixmap becomes monochrome. If necessary, it is dithered using the chosen dithering
algorithm.

Dithering mode preference for RGB channels

e X::DiffuseDither - (default) - A high-quality dither.
e t::OderedDither - A faster, more ordered dither.
e Q::Threshol dDit her - No dithering; closest color is used.

Dithering mode preference for alpha channel

e QX :: Threshol dAl phaDit her - (default) - No dithering.

e QX ::OrderedAl phaDither - A faster, more ordered dither.
e (X::DiffuseA phabDither - A high-quality dither.

e QX ::NoAl pha - Not supported.

Color matching versus dithering preference

e QX::PreferDither - (default when converting to a pixmap) - Always dither 32-bit images when the image is
converted to 8 bits.

o X::AvoidDither - (default when converting for the purpose of saving to file) - Dither 32-bit images only if
the image has more than 256 colors and it is being converted to 8 bits.

e (X::AutoDither - Not supported.
The following are not values that are used directly, but masks for the above classes:

e (X :: Col or Mbde_Mask - Mask for the color mode.

e QX ::Dither_Msk - Mask for the dithering mode for RGB channels.

e Q:: Al phaDither_Msk - Mask for the dithering mode for the alpha channel.

e X::DitherMde_Mask - Mask for the mode that determines the preference of color matching versus dithering.

Using 0 as the conversion flag sets all the default options.

Qt::Key
The key names used by Qt.

e (X::Key_Escape
e (X::Key_Tab

e (X::Key_Backtab
e (X::Key_ Backspace
e (X::Key Return
e (X::Key_Enter

e (X::Key_lnsert
e X::Key Delete
e (X::Key_Pause

e (::Key Print

e (X::Key_SysReq

Qt Class Reference 184

e (X::Key_ Hone
e X::Key End

e X::Key_Left
o (X::Key_Up

e X::Key_Right
o (X::Key_Down
e (X::Key Prior
o (X::Key_ Next
e (X::Key Shift
e (X::Key Control
e (X::Key Meta
e QX::Key At

e QX::Key_CapsLock
e X::Key_Nuniock
e (X::Key_ScrollLock
e X::Key F1

e X::Key F2

o (X::Key F3

o (X::Key F4

e (X::Key F5

e (X::Key F6

o (X::Key F7

e (X::Key_F8

e (::Key F9

e (X::Key_F10
e (X::Key F11
e (X::Key F12
e (X::Key F13
e (X::Key F14
e (X::Key F15
e (X::Key F16
e (X::Key F17
e (X::Key_F18
e (X::Key_F19
e (X::Key_F20
o (X::Key_F21
e (X::Key F22
e (X::Key F23
e (X::Key F24
e (X::Key F25
e (X::Key F26
e (X::Key F27
e (X::Key F28
e (X::Key_F29

Qt Class Reference

e X::
o X::
o X::
o ::
o X::
o ::
e X::
o X::
e X::
e X::
e X::
o ::
o X::
o X::
o ::
e X::
e X::
e X::
o X::
e X::
e X::

Key_F30
Key_F31
Key_F32

Key F33

Key F34

Key F35
Key_Super_L
Key_Super _R
Key_Menu

Key Hyper L
Key_ Hyper R
Key_Hel p
Key_Space
Key_Any
Key_Excl am
Key Quot eDb
Key_Number Si gn
Key_Dol | ar
Key_Per cent
Key_Anper sand
Key_Apost r ophe

. Key_ParenLeft
.. Key_Par enRi ght
. Key_Asterisk
. Key_Plus

. Key_Comma

.. Key_M nus

. Key_Peri od

. Key_Sl ash
t:Key O
tiKey_ 1

i1 Key_ 2

i Key_ 3

i Key_4

1 Key_5

. Key_6
tiKey_7

i1 Key_8

s Key_9

. Key_Col on

. Key_Seni col on
::Key_Less

. Key_Equal

. Key_Geater

185

Qt Class Reference 186

e (X::Key_Question

o (X::Key At
o (X::Key_A
o (X::Key_B
o (X::Key_C
e (X::Key_D
e (X::Key E
e X::Key F
e X::Key G
e (X::Key H
e (X::Key_|

o (X::Key_J

e X::Key K
o (X::Key_ L
o (X::Key_M
e X::Key N
e X::Key O
e (X::Key P
o X::Key Q
e (X::Key R
e (X::Key_ S
e X::Key T
o (X::Key_U
e X::Key V
o (X::Key W
e (X::Key X
e X::Key Y
e X::Key Z

e (X::Key BracketLeft
e (X::Key_Backsl ash

e (X::Key BracketRi ght
e (X::Key AsciiCircum
e X::Key_Underscore
e QX::Key_Quoteleft

e (X::Key_Braceleft

e (X::Key_Bar

e QX::Key_BraceRi ght

e (X::Key AsciiTilde
e (X::Key_nobreakspace
e (X::Key_excl andown
e (X::Key_cent

e (::Key_ sterling

e (X::Key_currency

e (X::Key_yen

Qt Class Reference

e X::
o X::
o X::
o ::
o X::
o ::
e X::
o X::
e X::
e X::
e X::
o ::
o X::
o X::
o ::
e X::
e X::
e X::
o X::
e X::
e X::

Key_br okenbar

Key section
Key_di aeresis
Key_copyri ght
Key_or df emi ni ne
Key_gui | | enot | eft
Key_not si gn
Key_hyphen

Key registered
Key_macron
Key_degree

Key pl usm nus
Key twosuperi or
Key_t hreesuperior
Key_acute

Key_mu
Key_par agr aph
Key_periodcent ered
Key cedilla
Key_onesuperi or
Key_mascul i ne

:Key_guill enotri ght
.. Key_onequart er

.. Key_onehal f

.. Key_threequarters
: Key_questi ondown
. Key_Agrave

:: Key_Aacute

. Key_Aci rcunf | ex
© Key_Atilde

. Key_Adi aeresis

: Key_Aring

. Key_AE

.. Key_Ccedilla

. Key_Egrave

. Key_Eacute

. Key_Eci rcunfl ex
. Key_Edi aeresis
i Key_lgrave

i Key_lacute
:Key_lcircunflex
:Key_ldiaeresis

. Key_ETH

: Key_Ntilde

187

Qt Class Reference

e X::
o X::
o X::
o ::
o X::
o ::
e X::
o X::
e X::
e X::
e X::
o ::
o X::
o X::
o ::
e X::
e X::
e X::
o X::
e X::
e X::

Key_Qgrave
Key_Cacute

Key Ccircunflex
Key_Qtil de
Key_Odi aeresi s
Key_nul tiply
Key_Qobl i que
Key_Ugrave
Key_Uacut e
Key_Uci rcunfl ex
Key_Udi aeresis
Key_Yacute
Key_THORN

Key ssharp
Key_agrave
Key_aacute
Key_aci rcunfl ex
Key atilde
Key_adi aeresis
Key_aring
Key_ae

: Key_ccedilla

.. Key_egrave

.. Key_eacute

. Key_eci rcunfl ex
. Key_edi aeresis
. Key_igrave
:Key_iacute

. Key_i circunflex
:Key_idiaeresis
:Key_eth
:Key_ntilde

.. Key_ograve

.. Key_oacut e

. Key_oci rcunf | ex
.. Key_otilde

. Key_odi aeresis
:Key_division

. Key_osl ash

. Key_ugrave

. Key_uacute

. Key_uci rcunf | ex
. Key_udi aeresi s
.. Key_yacute

188

Qt Class Reference 189

e (X::Key_thorn

e (X::Key_ ydiaeresis

e X::Key_unknown

e (X::Key Direction_L -internal use only
e (X::Key_Direction_R-internal use only

Qt::Modifier
This enum type describes the keyboard modifier keys supported by Qt. The currently defined values are:

e QX ::SH FT - the Shift keys provided on all standard keyboards.

e X::CTRL - the Ctrl keys.

e QX ::ALT - the normal Alt keys, but not e.g. AltGr.

e (X::MODIFI ER MASK - is a mask of Shift, Ctrl and Alt.

e (X::UNI CODE_ACCEL - the accelerator is specified as a Unicode code point, not as a Qt Key.

Qt::Orientation
This type is used to signify an object’s orientation.

e X::Horizontal
e (::Vertical

Orientation is used with QScrollBar for example.

Qt::PaintUnit

e (X::PixelUnit

e (t::LoMetricUnit - obsolete
e Qt::H MetricUnit -obsolete
e QX::LoEnglishUnit -obsolete
e (X::Hi EnglishUnit -obsolete
e QX::TwipsUnit - obsolete

Qt::PenCapStyle

This enum type defines the pen cap styles supported by Qt, i.e. the line end caps that can be drawn using QPainter.
The available styles are:

e QX ::FlatCap - asquare line end that does not cover the end point of the line.

e (X::SquareCap - a square line end that covers the end point and extends beyond it with half the line width.
e X ::RoundCap - a rounded line end.

e QX::MenCapStyl e - mask of the pen cap styles.

Qt Class Reference 190

Qt::PenJoinStyle

This enum type defines the pen join styles supported by Qt, i.e. which joins between two connected lines can be
drawn using QPainter. The available styles are:

e QX::MterJoin - The outer edges of the lines are extended to meet at an angle, and this area is filled.
e QX ::Bevel Joi n - The triangular notch between the two lines is filled.
e (::RoundJoin - A circular arc between the two lines is filled.
e QX ::MenJoinStyl e - mask of the pen join styles.
Qt::PenStyle

This enum type defines the pen styles that can be drawn using QPainter. The styles are

e QX :: NoPen - no line at all. For example, QPainter::drawRect() fills but does not draw any boundary line.
e (X::SolidLine -asimple line.
e (X ::DashLi ne - dashes separated by a few pixels.
e (X ::DotLine - dots separated by a few pixels.
e (X ::DashDot Li ne - alternate dots and dashes.
e (X ::DashDot Dot Li ne - one dash, two dots, one dash, two dots.
e QX::MenStyl e - mask of the pen styles.
Qt::RasterOp

This enum type is used to describe the way things are written to the paint device. Each bit of the src (what you
write) interacts with the corresponding bit of the dst pixel. The currently defined values are:

e X::
e X::
e X::
e X::
o X::
o X::
o X::
o X::
o X::
e X::
e X::
e X::
e X::
o X::
e X::
e X::
e X::
e X::

By far the

CopyROP - dst = src

O ROP - dst = src OR dst

Xor ROP - dst = src XOR dst

Not AndROP - dst = (NOT src) AND dst
Er aseRCP - an alias for NotAndROP
Not CopyROP - dst = NOT src

Not Or ROP - dst = (NOT src) OR dst
Not Xor ROP - dst = (NOT src) XOR dst
AndROP - dst = src AND dst

Not Er aseRCP - an alias for AndROP
Not ROP - dst = NOT dst
CearROP-dst=0

SetROP-dst =1

NopROP - dst = dst

AndNot RCP - dst = src AND (NOT dst)
O Not ROP - dst = src OR (NOT dst)
NandRCP - dst = NOT (src AND dst)
Nor RCP - dst = NOT (src OR dst)

most useful ones are CopyROP and XorROP

Qt Class Reference 191

Qt::StringComparisonMode

This enum type is used to set the string comparison mode when searching for an item. This is implemented in
QListBox, QListView and QIconView, for example. We'll refer to the string being searched as the 'target’ string.

e X::CaseSensitive - The strings must match case sensitively.

e (X::Exact Match - The target and search strings must match exactly.
e (X::BeginsWth - The target string begins with the search string.

e X::EndsWth - The target string ends with the search string.

e (X::Contains - The target string contains the search string.

If you OR these flags together (excluding CaseSensitive), the search criteria be applied in the following order:
ExactMatch, BeginsWith, EndsWith, Contains.

Matching is case-insensitive unless CaseSensitive is set. CaseSensitive may be OR-ed with any combination of the
other flags.

Qt::TextFlags
This enum type is used to define some modifier flags. Some of these flags only make sense in the context of printing:

e (X ::SingleLine - Treats all whitespace as spaces and prints just one line.
e QX::DontCip - If it’s impossible to stay within the given bounds, it prints outside.
e (X::ExpandTabs - Makes the U+0009 (ASCII tab) character move to the next tab stop.

e (QX::ShowPrefix - Displays the string "&P" as an underlined P (see QButton for an example). For an amper-
sand, use "&&".

e (X::WrdBreak - Breaks lines at appropriate points, e.g. at word boundaries.
e (X::BreakAnywhere - Breaks lines anywhere, even within words.

e X::NoAccel - Synonym for ShowPrefix.

e (t::DontPrint - (internal)

You can use as many modifier flags as you want, except that SingleLine and WordBreak cannot be combined.

Flags that are inappropriate for a given use (e.g. ShowPrefix to QGridLayout::addWidget()) are generally ignored.

Qt::TextFormat

This enum is used in widgets that can display both plain text and rich text, e.g. QLabel. It is used for deciding
whether a text string should be interpreted as one or the other. This is normally done by passing one of the enum
values to a setTextFormat() function.

e QX::PlainText - The text string is interpreted as a plain text string.

e X::RichText - The text string is interpreted as a rich text string wusing the current
QStyleSheet::defaultSheet().

e (X::AutoText - The text string is interpreted as for RichText if QStyleSheet::mightBeRichText() returns TRUE,
otherwise as for PlainText.

Qt Class Reference 192

Qt::UlEffect

e QX::U _GCeneral

e Q::U _AninateMenu

e (::U _FadeMenu

e QX:: U _AninmateConbo

e Q::U _AnimateTool tip
e (X::U _FadeTooltip

Qt::WidgetFlags

This enum type is used to specify various window-system properties of the widget. They are fairly unusual but
necessary in a few cases. Some of these flags depend on whether the underlying window manager supports them.

The main types are

e (X::Wype_TopLevel - indicates that this widget is a top-level widget, usually with a window-system frame
and so on.

e QX::Wype_Dial og - indicates that this widget is a secondary top-level widget. When combined with WShow-
Modal, the dialog becomes a modal dialog i.e. prevents any other top-level window in the application from
getting any input. WType_Dialog implies WType_TopLevel.

e QX::Wype_Popup - indicates that this widget is a popup top-level window, i.e. that it is modal, but has a
window system frame appropriate for popup menus. WType Popup implies WType TopLevel.

e QX::Wype_Desktop - indicates that this widget is the desktop. See also WPaintDesktop [p. 192] below.
WType Desktop [p. 192] implies WType TopLevel [p. 192].

There are also a number of flags which you can use to customize the appearance of top-level windows. These have
no effect on other windows:

e QX::Wstyle_Custom ze - indicates that the Wst yl e_* flags should be used to build the window instead of the
default flags.

e X::Wstyle Normal Border - gives the window a normal border. Cannot be combined with
WStyle DialogBorder or WStyle NoBorder.

e ::Wstyle_ DialogBorder - gives the window a thin dialog border. = Cannot be combined with
WStyle NormalBorder or WStyle NoBorder.

e QX::WStyle_NoBorder - produces a borderless window. Note that the user cannot move or resize a borderless
window via the window system. Cannot be combined with WStyle NormalBorder or WStyle DialogBorder.
On Windows, the flag works fine. On X11, the result of the flag is dependent on the window manager and its
ability to understand MOTIF and/or NETWM hints: most existing modern window managers can handle this.
With WX11BypassWM, you can bypass the window manager completely. This results in a borderless window
that is not managed at all (i.e. no keyboard input unless you call setActiveWindow() manually).

e QX::WStyl e _NoBorderEx - this value is obsolete. It has the same effect as using WStyle NoBorder.
e (X::Wstyle Title - gives the window a title bar.
e QX::Wtyle SysMenu - adds a window system menu.

e Q::Wstyle_Mnimze - adds a minimize button. Note that on Windows this has to be combined with
WStyle SysMenu for it to work.

e QX::Wstyle Maximze - adds a maximize button. Note that on Windows this has to be combined with
WStyle SysMenu for it to work.

e Q::Wstyle_MnMax - is equal to Wstyl e_M ni mi ze| Wt yl e_Maxi m ze. Note that on Windows this has to be
combined with WStyle SysMenu to work.

e QX::Wstyl e ContextHel p - adds a context help button to dialogs.

Qt Class Reference 193

e X::Wstyle_Tool - makes the window a tool window. A tool window is often a small window with a smaller
than usual title bar and decoration, typically used for collections of tool buttons. It there is a parent, the tool
window will always be kept on top of it. If there isn’t a parent, you may consider passing WStyle StaysOnTop
as well. If the window system supports it, a tool window can be decorated with a somewhat lighter frame. It
can also be combined with WStyle NoBorder.

e Q::Wotyle_StaysOnTop - informs the window system that the window should stay on top of all other win-
dows.

e Q::Wtyle Dialog - indicates that the window is a logical subwindow of its parent (in other words, a
dialog). The window will not get its own taskbar entry and will be kept on top of its parent by the window
system. Usually it will also be minimized when the parent is minimized. If not customized, the window is
decorated with a slightly simpler title bar. This is the flag QDialog uses.

Modifier flags:

e QX::WDestructived ose - makes Qt delete this object when the object has accepted closeEvent(), or when
the widget tried to ignore closeEvent() but could not.

e (X ::Wai nt Deskt op - gives this widget paint events for the desktop.

e Qx::Wraint Uncli pped - makes all painters operating on this widget unclipped. Children of this widget or
other widgets in front of it do not clip the area the painter can paint on.

e QX::Wpaintd ever - indicates that Qt should not try to optimize repainting for the widget, but instead pass
on window system repaint events directly. (This tends to produce more events and smaller repaint regions.)

e (X::WResi zeNoEr ase - indicates that resizing the widget should not erase it. This allows smart-repainting to
avoid flicker.

e (X::WbuseNoMask - indicates that even if the widget has a mask, it wants mouse events for its entire rectan-
gle.

e (X::WstaticContents - indicates that the widget contents are north-west aligned and static. On resize, such
a widget will receive paint events only for the newly visible part of itself.

e (X ::WRepai nt NoEr ase - indicates that the widget paints all its pixels. Updating, scrolling and focus changes
should therefore not erase the widget. This allows smart-repainting to avoid flicker.

e QX :: W& oupLeader - makes this widget or window a group leader. Modality of secondary windows only affects
windows within the same group.

Miscellaneous flags
e (X::Whowhbdal - see WType Dialog
Internal flags.

e (X::WNoMbusePropagation
e (X::WstaticContents

e (X::W5tyle Reserved

e X ::WsubW ndow

e QX::Wype_Mdal

e QX::WNnOMDC

e (X::WK11BypassWM

e (::Wstyle Mask

e QX::Wype_Mask

Qt Class Reference

Qt::WidgetState

Internal flags.

o X::
e X::
o ::
o X::
e X::
e X::
e X::
o X::
e X::
o ::
e X::
e X::
e X::
e X::
o X::
e X::
e X::
e X::
e X::
e X::
e X::
o X::
e X::
e X::

Wt at e_Creat ed

Wet at e_Di sabl ed
Wstate Visible

Wet at e_For ceHi de

W6t at e_OwnCur sor

WGt at e_MouseTr acki ng
WSt at e_Conpr essKeys
Wt at e Bl ockUpdat es
WGt at e_| nPai nt Event
W5t at e_Repar ent ed
W6t at e_Conf i gPendi ng
Wet at e_Resi zed

Wbt at e Aut oMask

Wet at e_Pol i shed

WSt at e DND

WEt at e_Reserved0

Wet at e_Reservedl

W5t at e_Reserved?2

Wet at e_Reserved3

Wt at e_Maxi m zed

Wet at e_M ni ni zed

W6t at e_For ceDi sabl ed
WGt at e_Exposed

W6t at e_HasMbuse

Qt::WindowsVersion

o X::
e X::
e X::
o X::
e X::
e X::
o ::
e X::
e X::

W/_32s

W/_95

W/_98

W/_Me

W/_DOS _based
W/_NT
W/_2000
W/_XP
W/_NT_based

194

QTableSelection Class Reference

The QTableSelection class provides access to a selected area in a QTable.
This class is part of the table module.

#include <qtable. h>

Public Members

m QTableSelection ()
m void init (int row, int col)
m void expandTo (int row, int col)

bool operator== (const QTableSelection & s) const
int topRow () const

int bottomRow () const

int leftCol () const

int rightCol () const

int anchorRow () const

= int anchorCol () const

bool isActive () const

Detailed Description

The QTableSelection class provides access to a selected area in a QTable.

The selection is a rectangular set of cells. One of the rectangle’s cells is called the anchor cell; this is the cell that
was selected first. The init() function sets the anchor and the selection rectangle to exactly this cell; the expandTo()
function expands the selection rectangle to include additional cells.

There are various access functions to find out about the area: anchorRow() and anchorCol() return the anchor’s
position; leftCol(), rightCol(), topRow() and bottomRow() return the rectangle’s four edges. All four are part of
the selection.

A newly created QTableSelection is inactive — isActive() returns FALSE. You must use init() and expandTo() to
activate it.

See also QTable [Widgets with Qt], QTable::addSelection() [Widgets with Qt], QTable::selection() [Widgets with
Qt] and Advanced Widgets.

195

QTableSelection Class Reference 196

Member Function Documentation

QTableSelection::QTableSelection ()

Creates an inactive selection. Use init() and expandTo() to activate it.

int QTableSelection::anchorCol () const

Returns the anchor column of the selection.

See also anchorRow() [p. 196] and expandTo() [p. 196].

int QTableSelection::anchorRow () const

Returns the anchor row of the selection.

See also anchorCol() [p. 196] and expandTo() [p. 196].

int QTableSelection::bottomRow () const

Returns the bottom row of the selection.

See also topRow() [p. 1971, leftCol() [p. 196] and rightCol() [p. 1971.

void QTableSelection::expandTo (int row, int col)

Expands the selection to include cell row, col. The new selection rectangle is the bounding rectangle of row, col
and the previous selection rectangle. After calling this function the selection is active.

If you haven’t called init(), this function does nothing.

See also init() [p. 196] and isActive() [p. 196].

void QTableSelection::init (int row, int col)

Sets the selection anchor to cell row, col and the selection to contain only this cell.
To extend the selection to include additional cells, call expandTo().

See also isActive() [p. 196].

bool QTableSelection::isActive () const

Returns whether the selection is active or not. A selection is active after init() and expandTo() have been called.

int QTableSelection::leftCol () const

Returns the left column of the selection.

See also topRow() [p. 197], bottomRow() [p. 196] and rightCol() [p. 197].

QTableSelection Class Reference 197

bool QTableSelection::operator== (const QTableSelection & s) const

Returns TRUE if s includes the same cells as the selection; otherwise returns FALSE.

int QTableSelection::rightCol () const

Returns the right column of the selection.

See also topRow() [p. 197], bottomRow() [p. 196] and leftCol() [p. 196].

int QTableSelection::topRow () const

Returns the top row of the selection.

See also bottomRow() [p. 1961, leftCol() [p. 196] and rightCol() [p. 1971.

QTime Class Reference

The QTime class provides clock time functions.

#incl ude <qdatetime. h>

Public Members

m QTime ()

m QTime (int h, int m, ints = 0, int ms = Q)

m bool isNull () const

m bool isValid () const

m int hour () const

m int minute () const

m int second () const

m int msec () const

m QString toString (Qt::DateFormat f = Qt::TextDate) const
QString toString (const QString & format) const
bool setHMS (int h, int m, int s, int ms = 0)
QTime addSecs (int nsecs) const

int secsTo (const QTime & t) const

QTime addMSecs (int ms) const

int msecsTo (const QTime & t) const

bool operator== (const QTime & t) const
m bool operator!= (const QTime & t) const
m bool operator< (const QTime & t) const
bool operator<= (const QTime & t) const
bool operator> (const QTime & t) const
bool operator>= (const QTime & t) const
void start ()

int restart ()

int elapsed () const

Static Public Members

m QTime currentTime ()
» QTime fromString (const QString & s, Qt::DateFormat f = Qt::TextDate)
m bool isValid (int h, int m, int s, int ms = 0)

198

QTime Class Reference 199

Related Functions

m QDataStream & operator< < (QDataStream & s, const QTime & t)
m QDataStream & operator>> (QDataStream & s, QTime & t)

Detailed Description

The QTime class provides clock time functions.

A QTime object contains a clock time, i.e. the number of hours, minutes, seconds, and milliseconds since midnight.
It can read the current time from the system clock and measure a span of elapsed time. It provides functions for
comparing times and for manipulating a time by adding a number of (milli)seconds.

QTime operates with 24-hour clock format; it has no concept of AM/PM. It operates in local time; it knows nothing
about time zones or daylight savings time.

A QTime object is typically created either by giving the number of hours, minutes, seconds, and milliseconds
explicitly, or by using the static function currentTime(), which makes a QTime object that contains the system’s
clock time. Note that the accuracy depends on the accuracy of the underlying operating system; not all systems
provide 1-millisecond accuracy.

The hour(), minute(), second(), and msec() functions provide access to the number of hours, minutes, seconds,
and milliseconds of the time. The same information is provided in textual format by the toString() function.

QTime provides a full set of operators to compare two QTime objects. One time is considered smaller than another
if it is earlier than the other.

The time a given number of seconds or milliseconds later than a given time can be found using the addSecs() or
addMSecs() functions. Correspondingly, the number of (milli)seconds between two times can be found using the
secsTo() or msecsTo() functions.

QTime can be used to measure a span of elapsed time using the start(), restart(), and elapsed() functions.

See also QDate [p. 36], QDateTime [p. 44] and Time and Date.

Member Function Documentation

QTime::QTime ()

Constructs the time 0 hours, minutes, seconds and milliseconds, i.e. 00:00:00.000 (midnight). This is a valid time.

See also isValid() [p. 201].

QTime::QTime (int h, int m, ints = 0, int ms = 0)

Constructs a time with hour h, minute m, seconds s and milliseconds ms.
h must be in the range 0..23, m and s must be in the range 0..59, and ms must be in the range 0..999.

See also isValid() [p. 201].

QTime QTime::addMSecs (int ms) const

Returns a QTime object containing a time ms milliseconds later than the time of this object (or earlier if ms is
negative).

QTime Class Reference 200

Note that the time will wrap if it passes midnight. See addSecs() for an example.

See also addSecs() [p. 200] and msecsTo() [p. 201].

QTime QTime::addSecs (int nsecs) const

Returns a QTime object containing a time nsecs seconds later than the time of this object (or earlier if nsecs is
negative).

Note that the time will wrap if it passes midnight.

Example:
Qlime n(14, 0, 0); /1 n == 14:00:00
Qlime t;
t = n.addSecs(70); /1t ==14:01:10
t = n.addSecs(-70); /1 t == 13:58:50
t = n.addSecs(10*60*60 + 5); /1 t == 00:00:05
t = n.addSecs(-15*60*60); /1 t == 23:00:00

See also addMSecs() [p. 1991, secsTo() [p. 202] and QDateTime::addSecs() [p. 46].

QTime QTime::currentTime () [static]

Returns the current time as reported by the system clock.

Note that the accuracy depends on the accuracy of the underlying operating system; not all systems provide 1-
millisecond accuracy.

Examples: aclock/aclock.cpp, dclock/dclock.cpp, t12/cannon.cpp and tictac/tictac.cpp.

int QTime::elapsed () const

Returns the number of milliseconds that have elapsed since the last time start() or restart() was called.
Note that the counter wraps to zero 24 hours after the last call to start() or restart.

Note that the accuracy depends on the accuracy of the underlying operating system; not all systems provide 1-
millisecond accuracy.

Warning: If the system’s clock setting has been changed since the last time start() or restart() was called, the result
is undefined. This can happen when daylight savings time is turned on or off.

See also start() [p. 203] and restart() [p. 202].

QTime QTime::fromString (const QString & s, Qt::DateFormat f = Qt::TextDate) [static]
Returns the representation s as a QTime using the format f, or an invalid time if this is not possible.

Note that Qt::LocalDate cannot be used here.

int QTime::hour () const

Returns the hour part (0..23) of the time.

Example: tictac/tictac.cpp.

QTime Class Reference 201

bool QTime::isNull () const

Returns TRUE if the time is equal to 00:00:00.000; otherwise returns FALSE. A null time is valid.
See also isValid() [p. 201].

bool QTime::isValid () const

Returns TRUE if the time is valid; otherwise returns FALSE. The time 23:30:55.746 is valid, whereas 24:12:30 is
invalid.

See also isNull() [p. 201].

bool QTime::isValid (int h, int m, int s, int ms = 0) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns TRUE if the specified time is valid; otherwise returns FALSE.
The time is valid if h is in the range 0..23, m and s are in the range 0..59, and ms is in the range 0..999.

Example:

Qrime::isvValid(21, 10, 30); // returns TRUE
Qlime::isvValid(22, 5, 62); // returns FALSE

int QTime::minute () const

Returns the minute part (0..59) of the time.
Examples: aclock/aclock.cpp and tictac/tictac.cpp.
int QTime::msec () const

Returns the millisecond part (0..999) of the time.

int QTime::msecsTo (const QTime & t) const

Returns the number of milliseconds from this time to t (which is negative if t is earlier than this time).

Because QTime measures time within a day and there are 86400 seconds in a day, the result is between -86400
and 86400s.

See also secsTo() [p. 202].

bool QTime::operator!= (const QTime & t) const

Returns TRUE if this time is different from t; otherwise returns FALSE.

bool QTime::operator< (const QTime & t) const

Returns TRUE if this time is earlier than t; otherwise returns FALSE.

QTime Class Reference 202

bool QTime::operator<= (const QTime & t) const

Returns TRUE if this time is earlier than or equal to t; otherwise returns FALSE.

bool QTime::operator== (const QTime & t) const

Returns TRUE if this time is equal to t; otherwise returns FALSE.

bool QTime::operator> (const QTime & t) const

Returns TRUE if this time is later than t; otherwise returns FALSE.

bool QTime::operator>= (const QTime & t) const

Returns TRUE if this time is later than or equal to t; otherwise returns FALSE.

int QTime::restart ()
Sets this time to the current time and returns the number of milliseconds that have elapsed since the last time
start() or restart() was called.

This function is guaranteed to be atomic and is thus very handy for repeated measurements. Call start() to start
the first measurement and then restart() for each later measurement.

Note that the counter wraps to zero 24 hours after the last call to start() or restart().

Warning: If the system’s clock setting has been changed since the last time start() or restart() was called, the result
is undefined. This can happen when daylight savings time is turned on or off.

See also start() [p. 203], elapsed() [p. 200] and currentTime() [p. 200].

int QTime::second () const

Returns the second part (0..59) of the time.

Example: tictac/tictac.cpp.

int QTime::secsTo (const QTime & t) const

Returns the number of seconds from this time to t (which is negative if t is earlier than this time).

Because QTime measures time within a day and there are 86400 seconds in a day, the result is between -86400
and 86400.

See also addSecs() [p. 200] and QDateTime::secsTo() [p. 471.

Example: t12/cannon.cpp.

bool QTime::setHMS (int h, int m, int s, int ms = 0)

Sets the time to hour h, minute m, seconds s and milliseconds ms.

h must be in the range 0..23, m and s must be in the range 0..59, and ms must be in the range 0..999. Returns
TRUE if the set time is valid; otherwise returns FALSE.

QTime Class Reference 203

See also isValid() [p. 201].

void QTime::start ()

Sets this time to the current time. This is practical for timing:

Qlime t;
t.start(); /I start clock
. Il sone lengthy task
qDebug("%\ n", t.elapsed()); // prints the nunber of nsecs el apsed

See also restart() [p. 202], elapsed() [p. 200] and currentTime() [p. 200].

QString QTime::toString (const QString & format) const

Returns the time as a string. The format parameter determines the format of the result string.

These expressions may be used:

e h - the hour without a leading zero (0..23 or 1..12 if AM/PM display)
e hh - the hour with a leading zero (00..23 or 01..12 if AM/PM display)
e m - the minute without a leading zero (0..59)
e mm - the minute with a leading zero (00..59)
e s - the second whithout a leading zero (0..59)

e ss - the second whith a leading zero (00..59)

2 - the milliseconds without leading zeroes (0..999)

22z - the milliseconds with leading zeroes (000..999)
AP - switch to AM/PM display. AP will be replaced by either "AM" or "PM".

ap - switch to am/pm display. ap will be replaced by either "am" or "pm".

All other input characters will be ignored.

Example format Strings (assuming that the QTime is 14:13:09.042)

o "hh:mm:ss.zzz" will result in "14:13:09.042"

e "h:m:s ap" will result in "2:13:9 pm"

See also QDate::toString() [p. 42] and QTime::toString() [p. 203].

QString QTime::toString (Qt::DateFormat f = Qt::TextDate) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the time as a string. Milliseconds are not included. The f parameter determines the format of the string.
If f is Qt::TextDate, the string format is HH:MM:SS; e.g. 1 second before midnight would be "23:59:59".

If f is Qt::ISODate, the string format corresponds to the ISO 8601 specification for representations of dates, which
is also HH:MM:SS.

If f is Qt::LocalDate, the string format depends on the locale settings of the system.

QTime Class Reference 204

Related Functions

QDataStream & operator<< (QDataStream & s, const QTime & t)
Writes time t to the stream s.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].
QDataStream & operator>> (QDataStream & s, QTime & t)

Reads a time from the stream s into t.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QTimer Class Reference

The QTimer class provides timer signals and single-shot timers.
#include <qtiner.h>

Inherits QObject [p. 123].

Public Members

m QTimer (QObject * parent = 0, const char * name = 0)
~QTimer ()

bool isActive () const

int start (int msec, bool sshot = FALSE)

void changelInterval (int msec)

void stop ()

Signals

m void timeout ()

Static Public Members

» void singleShot (int msec, QObject * receiver, const char * member)

Detailed Description

The QTimer class provides timer signals and single-shot timers.

It uses timer events internally to provide a more versatile timer. QTimer is very easy to use: create a QTimer, call
start() to start it and connect its timeout() to the appropriate slots. When the time is up it will emit the timeout()
signal.

Note that a QTimer object is destroyed automatically when its parent object is destroyed.
Example:
Qlimer *timer = new Qliner(nyQoject);

connect (timer, SIGNAL(tineout()), nyQbject, SLOT(tinerDone()));
tinmer->start(2000, TRUE); // 2 seconds single-shot tinmer

205

QTimer Class Reference 206

You can also use the static singleShot() function to create a single shot timer.

As a special case, a QTimer with timeout O times out as soon as all the events in the window system’s event queue
have been processed.

This can be used to do heavy work while providing a snappy user interface:
Qlimer *t = new QTimer(myChject);

connect (t, SIGNAL(timeout()), SLOT(processOneThing()));
t->start(0, FALSE);

myObject->processOneThing() will be called repeatedly and should return quickly (typically after processing one
data item) so that Qt can deliver events to widgets and stop the timer as soon as it has done all its work. This is
the traditional way of implementing heavy work in GUI applications; multi-threading is now becoming available
on more and more platforms, and we expect that null events will eventually be replaced by threading.

Note that QTimer’s accuracy depends on the underlying operating system and hardware. Most platforms support
an accuracy of 20ms; some provide more. If Qt is unable to deliver the requested number of timer clicks, it will
silently discard some.

An alternative to using QTimer is to call QObject::startTimer() for your object and reimplement the QOb-
ject::timerEvent() event handler in your class (which must, of course, inherit QObject). The disadvantage is that
timerEvent() does not support such high-level features as single-shot timers or signals.

Some operating systems limit the number of timers that may be used; Qt tries to work around these limitations.

See also Event Classes and Time and Date.

Member Function Documentation

QTimer::QTimer (QObject * parent = 0, const char * name = 0)

Constructs a timer with a parent and a name.

Note that the destructor of the parent object will destroy this timer object.

QTimer::~QTimer ()

Destroys the timer.

void QTimer::changelnterval (int msec)

Changes the timeout interval to msec milliseconds.
If the timer signal is pending, it will be stopped and restarted; otherwise it will be started.

See also start() [p. 207] and isActive() [p. 206].

bool QTimer::isActive () const

Returns TRUE if the timer is running (pending) or FALSE if the timer is idle.

Example: t11/cannon.cpp.

QTimer Class Reference 207

void QTimer::singleShot (int msec, QObject * receiver, const char * member) [static]

This static function calls a slot after a given time interval.

It is very convenient to use this function because you do not need to bother with a timerEvent or to create a local
QTimer object.

Example:

#i ncl ude <qgapplication. h>
#include <qtimer.h>

int min(int argc, char **argv)

{
QApplication a(argc, argv);
Qi ner: : singl eShot (10*60*1000, &a, SLOT(quit()));
. Il create and show your widgets
return a.exec();
}

This sample program automatically terminates after 10 minutes (i.e. 600000 milliseconds).

The receiver is the receiving object and the member is the slot. The time interval is msec.

int QTimer::start (int msec, bool sshot = FALSE)

Starts the timer with an msec milliseconds timeout.

If sshot is TRUE, the timer will be activated only once; otherwise it will continue until it is stopped.
Any pending timer will be stopped.

See also singleShot() [p. 2071, stop() [p. 2071, changelnterval() [p. 206] and isActive() [p. 206].

Examples: aclock/aclock.cpp, dirview/dirview.cpp, forever/forever.cpp, hello/hello.cpp, t11/cannon.cpp and
t13/cannon.cpp.

void QTimer::stop ()

Stops the timer.
See also start() [p. 207].

Examples: dirview/dirview.cpp, t11/cannon.cpp, t12/cannon.cpp and t13/cannon.cpp.

void QTimer::timeout () [signal]

This signal is emitted when the timer is activated.

Examples: aclock/aclock.cpp, dirview/dirview.cpp, forever/forever.cpp, hello/hello.cpp and t11/cannon.cpp.

QValidator Class Reference

The QValidator class provides validation of input text.

#include <qval idator. h>

Inherits QObject [p. 123].

Inherited by QIntValidator [p. 113], QDoubleValidator [p. 50] and QRegExpValidator [p. 153].

Public Members

QValidator (QObject * parent, const char * name = 0)

~QValidator ()

enum State { Invalid, Intermediate, Valid = Intermediate, Acceptable }
virtual State validate (QString & input, int & pos) const

m virtual void fixup (QString & input) const

Detailed Description

The QValidator class provides validation of input text.

The class itself is abstract. Two subclasses, QIntValidator and QDoubleValidator, provide basic numeric-range
checking, and QRegExpValidator provides general checking using a custom regular expression.

If the built-in validators aren’t sufficient, you can subclass QValidator. The class has two virtual functions: validate()
and fixup().

validate() must be implemented by every subclass. It returns Invalid, Intermediate or Acceptable depending on
whether its argument is valid (for the subclass’s definition of valid).

These three states require some explanation. An Invalid string is clearly invalid. Intermediate is less obvious - the
concept of validity is slippery when the string is incomplete (still being edited). QValidator defines Intermediate as
the property of a string that is neither clearly invalid nor acceptable as a final result. Acceptable means that the
string is acceptable as a final result. One might say that any string that is a plausible intermediate state during
entry of an Acceptable string is Intermediate.

Here are some examples:

e For a line edit that accepts integers from 0 to 999 inclusive, 42 and 666 are Acceptable, the empty string and
1114 are Intermediate and asdf is Invalid.

e For an editable combobox that accepts URLs, any well-formed URL 1is Acceptable,
"http://www.trolltech.com/," is Intermediate (it might be a cut-and-paste that accidentally took in a
comma at the end), the empty string is valid (the user might select and delete all of the text in preparation
of entering a new URL) and "http:///./" is Invalid.

208

QValidator Class Reference 209

e For a spin box that accepts lengths, "11cm" and "1in" are Acceptable, "11" and the empty string are Interme-
diate and "http://www.trolltech.com" and "hour" are Invalid.

fixup() is provided for validators that can repair some user errors. The default implementation does nothing.
QLineEdit, for example, will call fixup() if the user presses Enter and the content is not currently valid, in case
fixup() can do magic. This allows some Invalid strings to be made Acceptable, too.

QValidator is typically used with QLineEdit, QSpinBox and QComboBox.

See also Miscellaneous Classes.

Member Type Documentation

QValidator::State
This enum type defines the states in which a validated string can exist. There are currently three states:

e Validator::lnvalid - the string is clearly invalid.
e QValidator::Internedi ate - the string is a plausible intermediate value during editing.
e QValidator::Acceptabl e - the string is acceptable as a final result, i.e. it is valid.

Member Function Documentation

QValidator::QValidator (QObject * parent, const char * name = 0)

Sets up the internal data structures used by the validator. At the moment there aren’t any. The parent and name
parameters are passed to the QObject constructor.

QValidator::~QValidator ()

Destroys the validator, freeing any storage and other resources used.

void QValidator::fixup (QString & input) const [virtual]
This function attempts to change input to be valid according to this validator’s rules. It need not result in a valid
string - callers of this function must re-test afterwards; the default does nothing.

Reimplementations of this function can change input even if they do not produce a valid string. For example, an
ISBN validator might want to delete every character except digits and "-", even if the result is not a valid ISBN;
a surname validator might want to remove whitespace from the start and end of the string, even if the resulting
string is not in the list of accepted surnames.

State QValidator::validate (QString & input, int & pos) const [virtual]

This pure virtual function returns Invalid if input is invalid according to this validator’s rules, Intermediate if it is
likely that a little more editing will make the input acceptable (e.g. the user types 4’ into a widget which accepts
integers between 10 and 99) and Acceptable if the input is valid.

The function can change input and pos (the cursor position) if it wants to.

Reimplemented in QIntValidator, QDoubleValidator and QRegExpValidator.

Index

aboutToQuit()

QApplication, 11
activate()

QSignal, 169
activeModalwidget()

QApplication, 11
activePopupWidget()

QApplication, 11
activeWindow()

QApplication, 12
addDays()

QDate, 38

QDateTime, 45
addLabel()

QHeader, 104
addLibraryPath()

QApplication, 12
addMonths()

QDate, 38

QDateTime, 46
addMSecs()

QTime, 199
addSecs()

QDateTime, 46

QTime, 200
addYears()

QDate, 38

QDateTime, 46
adjustHeaderSize()

QHeader, 104
adjustSize()

QSimpleRichText, 157
AlignmentFlags

Qt, 179
allwidgets()

QApplication, 12
anchorAt()

QSimpleRichText, 158
anchorCol()

QTableSelection, 196
anchorRow()

QTableSelection, 196
applicationId ()

QApplication, 12
argc()

QApplication, 12
argv()

QApplication, 13
ArrowType

Qt, 179

ascent()
QFontMetrics, 92
available()
QSound, 174

BackgroundMode
Qt, 180
beep()
QApplication, 13
BGMode
Qt, 179
block()
QSignal, 170
blockSignals()
QObject, 126
bold()
QFont, 66
QFontDatabase, 77
QFontInfo, 86
bottom
QDoubleValidator, 52
QIntValidator, 115
bottom()
QDoubleValidator, 51
QIntValidator, 114
bottomRow ()
QTableSelection, 196
boundingRect()
QFontMetrics, 92
BrushStyle
Qt, 180
ButtonState
Qt, 181

cap()

QRegExp, 147
capturedTexts()

QRegExp, 147
caseSensitive()

QRegExp, 148
cellAt()

QHeader, 104
cellPos()

QHeader, 104
cellSize()

QHeader, 105
changelnterval()

QTimer, 206
charWidth()

QFontMetrics, 93
checkConnectArgs()

210

QObject, 126
child(

QObject, 126
childEvent()

QObject, 127
children()

QObject, 127
classInfo()

QMetaObject, 117
className()

QMetaObject, 117

QObject, 127
cleanup()

QFontManager, 89
clicked()

QHeader, 105
clipboard()

QApplication, 13
closeAllWindows()

QApplication, 13
closingDown()

QApplication, 14
ColorSpec

QApplication, 8
colorSpec()

QApplication, 14
commitData()

QApplication, 14
connect()

QObject, 127, 128

QSignal, 170
connectNotify()

QObject, 128
context()

QSimpleRichText, 158
count

QHeader, 111
count()

QFocusData, 57

QHeader, 105
createEditor()

QEditorFactory, 54
currentDate()

QDate, 38
currentDateTime()

QDateTime, 46
currentTime()

QTime, 200
cursorFlashTime()

QApplication, 14

Index

CursorShape
Qt, 181
customEvent()
QObject, 129

date()

QDateTime, 46
DateFormat

Qt, 182
day(

QDate, 38
dayName()

QDate, 38
dayOfweek ()

QDate, 38
dayOfYear()

QDate, 39
daysInMonth()

QDate, 39
daysInYear()

QDate, 39
daysTo()

QDate, 39

QDateTime, 46
decimals

QDoubleValidator, 52
decimals()

QDoubleValidator, 51
deciPointSize()

QFont, 66
defaultCodec()

QApplication, 14
defaultFactory()

QEditorFactory, 54
defaultFamily()

QFont, 66
defaultFont()

QFont, 67
deleteLater()

QObject, 129
descent()

QFontMetrics, 93
designable()

QMetaProperty, 121
desktop()

QApplication, 15
desktopSettingsAware()

QApplication, 15
destroyed()

QObject, 129
dirty()

QFont, 67
disconnect()

QObject, 129, 130

QSignal, 170
disconnectNotify()

QObject, 130
Dock

Qt, 182
doubleClickInterval()

QApplication, 15
draw()

QSimpleRichText, 158

dumpObjectinfo()
QObject, 130
dumpObjectTree()
QObject, 130

elapsed()

QTime, 200
Encoding

QApplication, 8
enter loop()

QApplication, 15
entryList()

QSettings, 163
enumKeys()

QMetaProperty, 121
event()

QObject, 131
eventFilter()

QFontDialog, 82

QObject, 131
exactMatch()

QFont, 67

QFontInfo, 86

QRegExp, 148
exec()

QApplication, 15
exit()

QApplication, 16
exit_loop()

QApplication, 16
expandTo()

QTableSelection, 196

families()

QFontDatabase, 77
family()

QFont, 67

QFontInfo, 86
familyListBox ()

QFontDialog, 82
fileName()

QSound, 174
findProperty()

QMetaObject, 117
fixedPitch()

QFont, 67

QFontInfo, 86
fixup()

QValidator, 209
flush()

QApplication, 16
flushX()

QApplication, 16
focusWidget()

QApplication, 16

QFocusData, 58
font()

QApplication, 16

QFontDatabase, 77
fontHighlighted ()

QFontDialog, 82
fontMetrics()

QApplication, 17

211

fontSelected ()
QFontDialog, 82
fromString()
QDate, 39
QDateTime, 46
QFont, 67
QTime, 200

getO

QFontManager, 89
getFont()

QFontDialog, 83
globalStrut()

QApplication, 17
GUIStyle

Qt, 182
guiThreadAwake()

QApplication, 17

handle()

QFont, 67
hasGlobalMouseTracking()
QApplication, 17

hasPendingEvents()
QApplication, 17
headerWidth()
QHeader, 105
height()
QFontMetrics, 94
QSimpleRichText, 158
highPriority()
QObject, 131
home()
QFocusData, 58
horizontalAlignment()
QApplication, 17
hour()
QTime, 200

iconSet()
QHeader, 105
ImageConversionFlags
Qt, 182
indexChange()
QHeader, 105
inFont()
QFontMetrics, 94
inherits()
QMetaObject, 117
QObject, 131
init()
QTableSelection, 196
initialize ()
QFontManager, 89
insertChild()
QObject, 132
insertSearchPath()
QSettings, 163
insertSubstitution()
QFont, 67
insertSubstitutions()
QFont, 68
installDefaultFactory()
QEditorFactory, 54

Index

installEventFilter()
QObject, 132
installTranslator()
QApplication, 17
inText()
QSimpleRichText, 158
isAQ
QObject, 133
isActive()
QTableSelection, 196
QTimer, 206
isAvailable()
QSound, 174
isBitmapScalable()
QFontDatabase, 77, 78
isBlocked()
QSignal, 170
isClickEnabled ()
QHeader, 105
isCopyOf()
QFont, 68
isEffectEnabled ()
QApplication, 18
isEmpty()
QRegExp, 148
isEnumType()
QMetaProperty, 121
isFinished ()
QSound, 175
isFixedPitch()
QFontDatabase, 78
isMovingEnabled ()
QHeader, 105
isNull()
QDate, 39
QDateTime, 47
QGuardedPtr, 99
QTime, 201
isResizeEnabled()
QHeader, 106
isScalable()
QFontDatabase, 78
isSessionRestored ()
QApplication, 18
isSetType()
QMetaProperty, 121
isSmoothlyScalable()
QFontDatabase, 78
isStretchEnabled ()
QHeader, 106
isvValid()
QDate, 39, 40
QDateTime, 47
QRegExp, 149
QTime, 201
isWidgetType()
QObject, 133
italic()
QFont, 68
QFontDatabase, 78, 79
QFontInfo, 87

Key

Qt, 183
key()

QFont, 68
keysToValue()

QMetaProperty, 121
keyToValue()

QMetaProperty, 121
killTimer()

QObject, 133
killTimers()

QObject, 133

label()
QHeader, 106
lastResortFamily()
QFont, 68
lastResortFont()
QFont, 68
lastWindowClosed ()
QApplication, 18
leading()
QFontMetrics, 94
leapYear()
QDate, 40
leftBearing()
QFontMetrics, 94
leftCol()
QTableSelection, 196
libraryPaths()
QApplication, 18
lineSpacing()
QFontMetrics, 94
lineWidth()
QFontMetrics, 94
lock()
QApplication, 18
locked()
QApplication, 18
longDayName ()
QDate, 40
longMonthName()
QDate, 40
loopLevel()
QApplication, 18
loops()
QSound, 175
loopsRemaining()
QSound, 175

mainWidget()

QApplication, 19
map()

QSignalMapper, 172
mapped()

QSignalMapper, 172
mapToActual()

QHeader, 106
mapTolndex()

QHeader, 106
mapToLogical()

QHeader, 106
mapToSection()

QHeader, 107

212

match()

QRegExp, 149
matchedLength()

QRegExp, 149
maxWidth()

QFontMetrics, 95
message()

QErrorMessage, 56
metaObject()

QObject, 133
minimal()

QRegExp, 149
minLeftBearing()

QFontMetrics, 95
minRightBearing()

QFontMetrics, 95
minute()

QTime, 201
Modifier

Qt, 189
month()

QDate, 40
monthName()

QDate, 40
moveCell()

QHeader, 107
moved()

QHeader, 107
moveSection()

QHeader, 107
moving

QHeader, 111
msec()

QTime, 201
msecsTo()

QTime, 201

name
QObject, 137
name()
QMetaProperty, 121
QObject, 133, 134
next()
QFocusData, 58
normalizeSignalSlot()
QObject, 134
notify()
QApplication, 19
numClassInfo()
QMetaObject, 117
numProperties()
QMetaObject, 117
numSignals()
QMetaObject, 118
numsSlots()
QMetaObject, 118

objectTrees()

QObject, 134
offset

QHeader, 111
offset()

QHeader, 107

Index

operator
=0
QDate, 41
QDateTime, 47
QFont, 68
QGuardedPtr, 100
QRegExp, 149
QTime, 201
operator T *()
QGuardedPtr, 99
operator*()
QGuardedPtr, 100
operator->()
QGuardedPtr, 100
operator=()
QFont, 69
QFontInfo, 87
QFontMetrics, 95
QGuardedPtr, 100
QRegExp, 150
operator==()
QDate, 41
QDateTime, 47
QFont, 69
QGuardedPtr, 100
QRegExp, 150

QTableSelection, 197

QTime, 202
operator<()
QDate, 41
QDateTime, 47
QTime, 201
operator<=()
QDate, 41
QDateTime, 47
QTime, 202
operator>()
QDate, 41
QDateTime, 47
QTime, 202
operator>=()
QDate, 41
QDateTime, 47
QTime, 202
Orientation
Qt, 189
orientation
QHeader, 111
orientation()
QHeader, 107
overrideCursor()
QApplication, 19

paintSection()
QHeader, 107
paintSectionLabel ()
QHeader, 107
PaintUnit
Qt, 189
palette()
QApplication, 19
parameter()
QSignal, 170

parent()

QObject, 134
pattern()

QRegExp, 150
PenCapStyle

Qt, 189
PenJoinStyle

Qt, 190
PenStyle

Qt, 190
pixelSize()

QFont, 69

QFontInfo, 87
playQ

QSound, 175
pointSize()

QFont, 69

QFontInfo, 87
pointSizeFloat()

QFont, 69
pointSizes()

QFontDatabase, 79
polish()

QApplication, 20
posQ)

QRegExp, 150
postEvent()

QApplication, 20
pressed()

QHeader, 108
prev()

QFocusData, 58
processEvents()

QApplication, 20
processOneEvent()

QApplication, 20
property()

QMetaObject, 118

QObject, 134
propertyNames()

QMetaObject, 118

gtHandler()

QErrorMessage, 56
queryList()

QObject, 134
quit()

QApplication, 21

raster op, 190
raster operation, 190
RasterOp

Qt, 190
rawMode()

QFont, 69

QFontInfo, 87
rawName()

QFont, 69
readBoolEntry()

QSettings, 164
readDoubleEntry()

QSettings, 164
readEntry()

QSettings, 164
readListEntry()

QSettings, 165
readNumEntry()

QSettings, 165
regExp()

QRegExpValidator, 154

regular expression, 139
released()
QHeader, 108
remoteControlEnabled ()
QApplication, 21
removeChild()
QObject, 135
removeEntry()
QSettings, 165
removeEventFilter()
QObject, 135
removeLabel()
QHeader, 108
removeLibraryPath()
QApplication, 21
removeMappings()
QSignalMapper, 172
removePostedEvents()
QApplication, 21
removeSearchPath()
QSettings, 165
removeSubstitution ()
QFont, 70
removeTranslator()
QApplication, 21
reset()
QMetaProperty, 121
resizeSection()
QHeader, 108
restart()
QTime, 202
restoreOverrideCursor()
QApplication, 21
reverseLayout()
QApplication, 22
rightBearing()
QFontMetrics, 95
rightCol()
QTableSelection, 197

saveState()

QApplication, 22
Script

QFont, 62
scriptable()

QMetaProperty, 122
scriptCombo()

QFontDialog, 83
scriptName()

QFontDatabase, 79
scriptSample()

QFontDatabase, 79
search()

QRegExp, 150
searchRev()

QRegExp, 151

Index

second()

QTime, 202
secsTo()

QDateTime, 47

QTime, 202
sectionAt()

QHeader, 108
sectionClicked ()

QHeader, 108
sectionPos()

QHeader, 108
sectionRect()

QHeader, 108
sectionSize()

QHeader, 109
sender()

QObject, 135
sendEvent()

QApplication, 22
sendPostedEvents()

QApplication, 22
sessionld()

QApplication, 23
setBold()

QFont, 70
setBottom()

QDoubleValidator, 51

QIntValidator, 114
setCaseSensitive ()

QRegExp, 151
setCellSize()

QHeader, 109
setClickEnabled ()

QHeader, 109
setColorSpec()

QApplication, 23
setCursorFlashTime()

QApplication, 24
setDate()

QDateTime, 48
setDecimals()

QDoubleValidator, 51
setDefaultCodec()

QApplication, 24
setDefaultFont()

QFont, 70

QSimpleRichText, 158
setDesktopSettingsAware()

QApplication, 24
setDoubleClickInterval()

QApplication, 25
setEffectEnabled ()

QApplication, 25
setEnableRemoteControl()

QApplication, 25
setFamily()

QFont, 70
setFixedPitch()

QFont, 70
setFont()

QApplication, 25
setGlobalMouseTracking()

QApplication, 25

setGlobalStrut()
QApplication, 26
setHMS()
QTime, 202
setltalic()
QFont, 70
setLabel()
QHeader, 109
setLibraryPaths()
QApplication, 26
setLoops()
QSound, 175
setMainWidget()
QApplication, 26
setMapping()
QSignalMapper, 172
setMinimal()
QRegExp, 151
setMovingEnabled()
QHeader, 109
setName()
QObject, 135
setOffset()
QHeader, 109
setOrientation()
QHeader, 109
setOverrideCursor()
QApplication, 26
setPalette()
QApplication, 27
setParameter()
QSignal, 170
setPattern()
QRegExp, 151
setPixelSize()
QFont, 70
setPixelSizeFloat()
QFont, 71
setPointSize()
QFont, 71
setPointSizeFloat()
QFont, 71
setProperty()
QObject, 135
setRange()
QDoubleValidator, 51
QIntValidator, 115
setRawMode()
QFont, 71
setRawName()
QFont, 71
setRegExp()
QRegExpValidator, 155
setResizeEnabled()
QHeader, 110
setReverseLayout()
QApplication, 27
setSortIndicator()
QHeader, 110
setStartDragDistance()
QApplication, 27
setStartDragTime()
QApplication, 27

setStretchEnabled()

QHeader, 110
setStrikeOut()

QFont, 72
setStyle()

QApplication, 28
setStyleHint()

QFont, 72
setStyleStrategy()

QFont, 72
setTime()

QDateTime, 48
setTime_t()

QDateTime, 48
setTop()

QDoubleValidator, 51

QIntValidator, 115
setTracking()

QHeader, 110
setUnderline()

QFont, 72
setValue()

QSignal, 170
setWeight()

QFont, 72
setWheelScrollLines()

QApplication, 28
setWidth()

QSimpleRichText, 158, 159

setWildcard()

QRegExp, 151
setWinStyleHighlightColor ()

QApplication, 28
setYMD()

QDate, 41
shortDayName ()

QDate, 41
shortMonthName()

QDate, 41
signalNames()

QMetaObject, 118
signalsBlocked()

QObject, 136
singleShot()

QTimer, 207
size()

QFontMetrics, 95
sizeChange()

QHeader, 110
sizeChanged()

QFontDialog, 84
sizeListBox()

QFontDialog, 84
slotNames()

QMetaObject, 118
smoothSizes()

QFontDatabase, 79
sRect()

QHeader, 108
standardSizes()

QFontDatabase, 79
start()

QTime, 203

Index

QTimer, 207
startDragDistance()

QApplication, 28
startDragTime()

QApplication, 29
startingUp()

QApplication, 29
startTimer()

QObject, 136
State

QValidator, 209
stop()

QSound, 175

QTimer, 207
stored()

QMetaProperty, 122
stretching

QHeader, 111
strikeOut()

QFont, 72
strikeOutPos()

QFontMetrics, 96
StringComparisonMode

Qt, 191
style()

QApplication, 29
StyleHint

QFont, 65
styleHint()

QFont, 72

QFontInfo, 87
styleListBox()

QFontDialog, 84
styles()

QFontDatabase, 80
StyleStrategy

QFont, 65
styleStrategy()

QFont, 72
styleString ()

QFontDatabase, 80
subkeyList()

QSettings, 165
substitute()

QFont, 73
substitutes()

QFont, 73
substitutions()

QFont, 73
superClass()

QMetaObject, 118
superClassName()

QMetaObject, 119
syncX()

QApplication, 29
System

QSettings, 162

TextFlags

Qt, 191
TextFormat

Qt, 191
time()

QDateTime, 48
timeout()

QTimer, 207
timerEvent()

QObject, 137
top

QDoubleValidator, 52

QIntValidator, 115
top()

QDoubleValidator, 51

QIntValidator, 115
topLevelWidgets()

QApplication, 29
topRow ()

QTableSelection, 197
toString()

QDate, 42

QDateTime, 48, 49

QFont, 73

QTime, 203
tr()

QObject, 137
tracking

QHeader, 111
tracking()

QHeader, 111
translate()

QApplication, 30
trUtf8 ()

QObject, 137
tryLock()

QApplication, 30
Type

QApplication, 9
type()

QApplication, 30

QMetaProperty, 122

UlEffect
Qt, 192
underline()
QFont, 73
underlinePos()
QFontMetrics, 96
unlock()
QApplication, 30
updateFamilies()
QFontDialog, 84
updateScripts()
QFontDialog, 84
updateSizes()
QFontDialog, 84

updateStyles()
QFontDialog, 84

validate()
QDoubleValidator, 52
QIntValidator, 115
QRegExpValidator, 155
QValidator, 209
value()
QSignal, 170
valueToKey()
QMetaProperty, 122
valueToKeys()
QMetaProperty, 122

wakeUpGuiThread ()

QApplication, 30
Weight

QFont, 65
weight()

QFont, 73

QFontDatabase, 80

QFontInfo, 87
wheelScrollLines()

QApplication, 31
widget flags, 192
widgetAt()

QApplication, 31
WidgetFlags

Qt, 192
WidgetState

Qt, 194
width()

QFontMetrics, 96, 97

QSimpleRichText, 159
widthUsed ()

QSimpleRichText, 159
wildcard ()

QRegExp, 152
WindowsVersion

Qt, 194
winEventFilter()

QApplication, 31
winFocus()

QApplication, 31
winStyleHighlightColor ()

QApplication, 31
winVersion()

QApplication, 31
writable()

QMetaProperty, 122
writeEntry()

QSettings, 166, 167

year()
QDate, 42

215

