
W3C WD-CSS2-971104

CSS2 Specification
W3C Working Draft 04-November-1997

Abstract
This specification defines Cascading Style Sheet, Level 2.

Status of this document
This is a W3C Working Draft for review by W3C members and other interested
parties. It is a draft document and may be updated, replaced or obsoleted by
other documents at any time. It is inappropriate to use W3C Working Drafts as
reference material or to cite them as other than "work in progress". This is work in
progress and does not imply endorsement by, or the consensus of, either W3C
or members of the CSS working group.

This document has been produced as part of the W3C Style Activity, and is
intended as a draft of a proposed recommendation for CSS2.

If you did not get this document directly from the W3C website you may want
to check whether you have the latest version of this document by looking at the
list of W3C technical reports at <http://www.w3.org/TR/>.

CSS2 builds on CSS1, specified in http://www.w3.org/TR/REC-CSS1-961217.
All valid CSS1 stylesheets are valid CSS2 stylesheets.

Editors
Bert Bos <bbos@w3.org>
Håkon Wium Lie <howcome@w3.org>
Chris Lilley <chris@w3.org>
Ian Jacobs <ij@w3.org>

Comments
Please send detailed comments on this document to the editors. We cannot
guarantee a personal response but we will try when it is appropriate. Public
discussion on CSS features takes place on www-style@w3.org and messages
are archived at http://lists.w3.org/Archives/Public/www-style/.

Table of Contents
1 About the CSS2 Specification p.9
1.1 How to read the specification p.9
1.2 How the specification is organized p.9
1.3 Acknowledgments p.10

1

http://www.w3.org/
http://www.w3.org/Style/Activity.html
http://www.w3.org/TR/
http://www.w3.org/TR/REC-CSS1-961217
http://www.w3.org/People/Bos/
http://www.w3.org/People/howcome/
http://www.w3.org/People/chris/
http://lists.w3.org/Archives/Public/www-style/

2 Introduction to CSS2 p.13
2.1 A brief CSS2 tutorial p.13
2.2 Design principles behind CSS2 p.14

3 Definitions and document conventions p.15
3.1 Definitions p.15
 3.1.1 Document language p.15
 3.1.2 Element p.15
 3.1.3 User agent (or UA) p.16
 3.1.4 Conforming user agent p.16
 3.1.5 Default style sheet p.17
3.2 Conventions p.17
 3.2.1 Document language elements and attributes p.17
 3.2.2 CSS property definitions p.17
 3.2.3 HTML conventions p.19

4 CSS2 syntax and basic data types p.21
4.1 Syntax p.21
 4.1.1 Tokenization p.21
 4.1.2 Characters and case p.23
 4.1.3 Statements p.24
 4.1.4 At-rules p.24
 4.1.5 Blocks p.25
 4.1.6 Rule sets, declaration blocks, and selectors p.25
 4.1.7 Declarations and properties p.26
 4.1.8 Comments p.26
 4.1.9 More examples p.26
4.2 Values p.27
 4.2.1 Integers and numbers p.27
 4.2.2 Lengths p.28
 4.2.3 Percentages p.29
 4.2.4 URLs p.29
 4.2.5 Colors p.30
 4.2.6 Angles p.31
 4.2.7 Time p.31
 4.2.8 Frequencies p.31
4.3 CSS embedded in HTML p.32
4.4 CSS as a stand-alone file p.32
4.5 Character escapes in CSS p.32

5 CSS2 processing model p.33
5.1 Introduction to the CSS2 processing model p.33
5.2 The document tree p.34
5.3 Inheritance p.34
5.4 Rendering objects p.36

6 Selectors p.37
6.1 Type selectors p.37
6.2 Grouping p.37
6.3 Attribute selectors p.38
 6.3.1 Matching attributes, single values, and multiple values p.39
 6.3.2 The class and id attribute in HTML p.39
 6.3.3 The class attribute in other document languages p.40 : @class
 6.3.4 The id attribute p.41

2

6.4 Contextual selectors p.42
6.5 Parent-child selectors p.43
6.6 Sequential selectors p.43
6.7 Pseudo-elements and pseudo-classes p.44
 6.7.1 The :first-line pseudo-element p.45
 6.7.2 The :first-letter pseudo-element p.46
 6.7.3 Overlapping pseudo-elements p.47
 6.7.4 Pseudo-elements with contextual selectors p.47
 6.7.5 Anchor pseudo-classes p.48 : :link, :active, and :visited
 6.7.6 Combining pseudo-elements with normal classes p.48
 6.7.7 Colliding attribute selectors and pseudo-classes p.49

7 Cascade p.51
7.1 Cascading order p.51
 7.1.1 ’Important’ rules p.52
 7.1.2 Cascading order in HTML p.52
 7.1.3 Precedence of non-CSS presentational hints p.53

8 Media types p.55
8.1 Introduction to media types p.55
8.2 Specifying media-dependent style sheets p.55
 8.2.1 The @media rule p.56
 8.2.2 The media-dependent @import rule p.56
8.3 Recognized media types p.56
 8.3.1 The canvas p.57
 Scrollable media p.57

9 The box model p.59
9.1 Introduction to the box model p.59
9.2 Box dimensions p.59
9.3 Margin properties p.60 : ’margin-top’ p.61 , ’margin-right’ p.61 ,
’margin-bottom’ p.61 , ’margin-left’ p.62 , and ’margin’ p.62
 Values for <margin-width> p.61
9.4 Padding properties p.63 : ’padding-top’ p.63 , ’padding-right’ p.63 ,
’padding-bottom’ p.64 , ’padding-left’ p.64 , and ’padding’ p.64
 9.4.1 Values for <padding-width> p.63
9.5 Border properties p.65
 9.5.1 Border width p.65 : ’border-top-width’ p.66 , ’border-right-width’ p.66 ,
’border-bottom-width’ p.66 , ’border-left-width’ p.67 , and ’border-width’ p.67
 Values for <border-width> p.65
 9.5.2 Border color p.68 : ’border-top-color’ p.68 , ’border-right-color’ p.68 ,
’border-bottom-color’ p.68 , ’border-left-color’ p.68 , and ’border-color’ p.73
 9.5.3 Border style p.69 : ’border-top-style’ p.69 , ’border-right-style’ p.70 ,
’border-bottom-style’ p.70 , ’border-left-style’ p.70 , and ’border-style’ p.71
 Values for <border-style> p.??
9.6 Example of margins, padding, and borders p.??

10 Visual rendering model p.79
10.1 Introduction to the visual rendering model p.79
10.2 Establishing box positions p.80
 10.2.1 Containing blocks p.81
 10.2.2 Direction of flow p.81
10.3 Normal flow p.82
 10.3.1 Block-level layout p.82

3

 List-item elements p.82
 10.3.2 Inline layout p.82
 Anonymous text boxes p.83
 10.3.3 Dual-mode elements p.84 : run-in and compact
 10.3.4 Relative positioning p.85
 10.3.5 Controlling layout behavior p.86 : the ’display’ p.86 property
10.4 Floats p.87 : ’float’ p.87 and ’clear’ p.89
 10.4.1 Controlling floats p.89
10.5 Absolute positioning p.90
 10.5.1 Properties to specify position p.91 : ’top’ p.91 , ’right’ p.91 , ’bottom’ p.91
, ’left’ p.91
 10.5.2 Fixed positioning p.92
10.6 Comparison of normal, relative, floating, absolute positioning p.92
 10.6.1 Normal flow p.93
 10.6.2 Relative positioning p.94
 10.6.3 Floating a box p.94
 10.6.4 Absolute positioning p.97
10.7 Z-order p.101 : Layered presentation
 10.7.1 Specifying the stack level p.101 : the ’z-index’ p.101 property
10.8 Multicolumn layout p.102

11 Visual rendering model details p.105
11.1 Box width calculations p.105 : the ’width’ p.105 property
 11.1.1 Relationship of width dimensions p.106
 11.1.2 Width of floats and replaced elements p.106
 11.1.3 Width of absolutely positioned elements p.106
 11.1.4 Minimum and maximum widths p.107 : ’min-width’ p.107 and
’max-width’ p.107
11.2 Box height calculations p.108 : the ’height’ p.108 property
 11.2.1 Height of replaced elements p.108
 11.2.2 Height of absolutely positioned elements p.108
 11.2.3 Minimum and maximum heights p.109 : ’min-height’ p.109 and
’max-height’ p.109
 11.2.4 Collapsing margins p.110
11.3 Line height calculations p.110 : the ’line-height’ p.111 and ’vertical-align’
p.111 properties
11.4 Floating constraints p.113
11.5 Overflow and clipping p.113
 11.5.1 Overflow p.113 : the ’overflow’ p.113 property
 11.5.2 Clipping p.116 : the ’clip’ p.116 property
11.6 Visibility p.117 : the ’visibility’ p.117 property
11.7 Dynamic positioning p.118
11.8 Filters p.118

12 Paged media p.119
12.1 Introduction to paged media p.119
12.2 Page breaks p.120
 12.2.1 Page break properties p.120 : ’page-break-before’ p.120 ,
’page-break-after’ p.120 , ’orphans’ p.121 , and ’widows’ p.121
 12.2.2 Allowed page breaks p.121
 12.2.3 Forced page breaks p.122
 12.2.4 "Best" page breaks p.122

4

12.3 Page boxes p.123 : the @page rule
 12.3.1 Page margins p.123
 12.3.2 Page size p.124 : the ’size’ p.124 property
 Rendering page boxes that do not fit a target sheet p.125
 12.3.3 Crop marks p.126 : the ’marks p.126 property
 12.3.4 Left and right pages p.126
 12.3.5 Running headers and footers p.127
 12.3.6 Marking elements for the running headers & footers p.128
 12.3.7 Content outside the page box p.129
12.4 Cascading in the page context p.130

13 Colors and Backgrounds p.131
13.1 Foreground color p.131 : the ’color’ p.131 property
13.2 Background properties p.131 : ’background-color’ p.132 ,
’background-image’ p.132 , ’background-repeat’ p.132 , ’background-attachment’
p.133 , ’background-position’ p.134 , and ’background’ p.135

14 Fonts p.137
14.1 Introduction p.138
14.2 Font specification p.139
 14.2.1 Font specification properties p.139
 14.2.2 Font family p.140 : the ’font-family’ p.140
 14.2.3 Font style p.141 : the ’font-style’ p.141 , ’font-variant’ p.142 , and
’font-weight’ p.142 properties
 14.2.4 Font size p.144 : the ’font-size’ p.144 property
 14.2.5 Shorthand font property p.145 : the ’font’ p.145 property
 14.2.6 Generic font families p.146
 serif p.147
 sans-serif p.147
 cursive p.148
 fantasy p.148
 monospace p.148
14.3 Font selection p.149
 14.3.1 Font Descriptions and @font-face p.150
 14.3.2 Descriptors for Selecting a Font p.151 : ’font-family’ p.151 , ’font-style’
p.152 , ’font-variant’ p.152 , ’font-weight’ p.152 , and ’font-size’ p.153
 14.3.3 Descriptors for Font Data Qualification p.153 : ’unicode-range’ p.153
 14.3.4 Descriptor for Numeric Values p.155 : ’units-per-em’ p.155
 14.3.5 Descriptor for Referencing p.155 : ’src’ p.155
 14.3.6 Descriptors for Matching p.156 : ’panose-1’ p.156 , ’stemv’ p.156 ,
’stemh’ p.157 , ’slope’ p.157 , ’cap-height’ p.157 , ’x-height’ p.157 , ’ascent’ p.158
, and ’descent’ p.158
 14.3.7 Descriptors for Synthesis p.158 : ’widths’ p.158 and ’definition-src’
p.159
 14.3.8 Descriptors for Alignment p.160 : ’baseline’ p.160 , ’centerline’ p.160 ,
’mathline’ p.160 , and ’topline’ p.160
14.4 Font Characteristics p.161
 14.4.1 Introducing Font Characteristics p.161
 14.4.2 Adorned font name p.161
 14.4.3 Central Baseline p.162
 14.4.4 Co-ordinate units on the em square p.162
 14.4.5 Font encoding tables p.163

5

 14.4.6 Font family name p.163
 14.4.7 Glyph Representation widths p.163
 14.4.8 Horizontal stem width p.163
 14.4.9 Height of capital glyph representations p.164
 14.4.10 Height of lowercase glyph representations p.164
 14.4.11 Lower Baseline p.164
 14.4.12 Mathematical Baseline p.164
 14.4.13 Maximal bounding box p.164
 14.4.14 Maximum unaccented height p.165
 14.4.15 Maximum unaccented depth p.165
 14.4.16 Panose-1 number p.165
 14.4.17 Range of Unicode characters p.165
 14.4.18 Top Baseline p.166
 14.4.19 Vertical stem width p.166
 14.4.20 Vertical stroke angle p.166
14.5 Font matching algorithm p.166
 14.5.1 Examples of font matching p.168

15 Text p.171
15.1 Indentation p.171 : the ’text-indent’ p.171 property
15.2 Alignment p.172 : the ’alignment’ p.172 property
15.3 Decoration p.172
 15.3.1 Underlining, over lining, striking, and blinking p.172 : the
’text-decoration’ p.172 property
 15.3.2 Text shadows p.173 : the ’text-shadow’ p.173 property
15.4 Letter and word spacing p.173 : the ’letter-spacing’ p.173 and
’word-spacing’ p.174 properties
15.5 Case p.175
 15.5.1 Capitalization p.175 : the ’text-transform’ p.175 property
 15.5.2 Special first letter/first line p.175
15.6 White space p.176 : the ’white-space’ p.176 property
15.7 Generated text p.176
15.8 Automatic numbering p.176
15.9 Text in HTML p.176
 15.9.1 Forcing a line break p.176

16 Lists p.177
16.1 Visual formatting of lists p.177
 16.1.1 List properties p.179 : ’list-style-type’ p.179 , ’list-style-image’ p.180 ,
’list-style-position’ p.181 , and ’list-style’ p.182

17 Tables p.185
17.1 Table layout p.185
 17.1.1 Row and column properties p.187 : ’column-span’ p.188 , and ’row-span’
p.187
17.2 Computing widths and heights p.188
17.3 Placement of the borders p.189
17.4 Conflict resolution for borders p.190
17.5 Properties for columns and rows p.191
17.6 Vertical alignment of cells in a row p.191
17.7 Horizontal alignment of cells in a column p.192
17.8 Table captions p.193 : the ’caption-side’ p.193 property
17.9 Generating speech p.193 : the ’speak-header-cell’ p.193 property

6

17.10 Table implementation notes p.195
18 User interface p.197

18.1 Cursors p.197 : the ’cursor’ p.197 property
18.2 User preferences for colors p.198
18.3 Other rendering issues that depend on user agents p.199
 18.3.1 Magnification p.200

19 Aural style sheets p.201
19.1 Aural cascading style sheet properties p.202
 19.1.1 Volume properties p.202 : ’volume’ p.202
 19.1.2 Speaking properties p.203 : ’speak’ p.203
 19.1.3 Pause properties p.204 : ’pause-before’ p.204 , ’pause-after’ p.204 , and
’pause’ p.204
 19.1.4 Cue properties p.205 : ’cue-before’ p.205 , ’cue-after’ p.205 , and ’cue’
p.206
 19.1.5 Mixing properties p.206 : ’play-during’ p.206
 19.1.6 Spatial properties p.207 : ’azimuth’ p.207 and ’elevation’ p.208
 19.1.7 Voice characteristic properties p.209 : ’speech-rate’ p.209 , ’voice-family’
p.210 , ’pitch’ p.210 , ’pitch-range’ p.210 , ’stress’ p.211 , ’richness’ p.211 ,
’speak-punctuation’ p.211 , ’speak-date’ p.212 , ’speak-numeral’ p.212 , and
’speak-time’ p.213

Appendix A p.215 : A sample style sheet for HTML 4.0
Appendix B p.219 : Changes from CSS1
Appendix C p.221 : Implementation and performance notes

Colors p.221
 Gamma Correction p.221
Fonts p.222
 Glossary of font terms p.222
 Font retrieval p.224

Appendix D p.225 : The grammar of CSS2
Appendix E p.229 : Aids to Web Fonts implementation

Meaning of the Panose Digits p.229
Deducing Unicode Ranges for TrueType p.232

References p.235
Normative references p.235
Informative references p.236

Index p.239

7

8

1 About the CSS2 Specification
Contents

1. How to read the specification p.9
2. How the specification is organized p.9
3. Acknowledgments p.10

This document has been written with two types of readers in mind: CSS
authors and CSS implementors. We hope the specification will provide authors
with the tools they need to write efficient, attractive, and accessible documents,
without overexposing them to CSS’s implementation details. Implementors,
however, should find all they need to build user agents that interpret CSS
correctly.

The specification has been written with two modes of presentation in mind:
electronic and printed. Although the two presentations will no doubt be similar,
readers will find some differences. For example, links will not work in the printed
version (obviously), and page numbers will not appear in the electronic version.
In case of a discrepancy, the electronic version is considered the authoritative
version of the document.

1.1 How to read the specification
The specification may be approached in several ways:

Read from beginning to end. The specification begins with a general
presentation of CSS and becomes more and more technical and specific
towards the end. This is reflected in the specification’s main table of
contents, which presents topical information, and the indexes, which present
lower level information in alphabetical order.
Quick access to information. In order to get information about syntax and
semantics as quickly as possible, the electronic version of the specification
includes the following features:

1. Every reference to an property or value is linked to its definition in the
specification.

2. Every page will include links to the table of contents and to the index, so
readers of the electronic version will never be more than two links away
from finding the definition of a property or value.

1.2 How the specification is organized
This specification includes the following sections:

Section 2: An introduction CSS2
The introduction begins with a brief tutorial in CSS2. The following section
discusses design principles behind CSS2. Finally, we provide a list of
suggested practice for style sheet authors.

Sections 3 - 19: CSS2 reference manual.
The bulk of the reference manual is the definition of CSS2, including all
properties and their values.

9

Appendixes:
The appendix contains information about a sample style sheet for HTML 4.0
p.215 , changes from CSS1 p.219 , implementation and performance , the
grammar of CSS2 p.225 , and a list of normative and informative references.

General index:
The general index contains links to key concepts, property and value
definitions, and other useful information.

1.3 Acknowledgments
This specification is the product of the W3C Working Group on Cascading Style
Sheets and Formatting Properties. In addition to the editors of this specification,
the members of the Working Group are: Brad Chase (Bitstream), Chris Wilson
(Microsoft), Daniel Glazman (Electricité de France), Dave Raggett (W3C/HP), Ed
Tecot (Microsoft), Jared Sorensen (Novell), Lauren Wood (SoftQuad), Laurie
Anna Kaplan (Microsoft), Mike Wexler (Adobe), Murray Maloney (Grif), Powell
Smith (IBM), Robert Stevahn (HP), Steve Byrne (JavaSoft), Steven Pemberton
(CWI), and Thom Phillabaum (Netscape). We thank them for their continued
efforts.

A number of invited experts to the Working Group have contributed: George
Kersher, Glenn Rippel (Bitstream), Jeff Veen (HotWired), Markku T. Hakkinen
(The Productivity Works), Martin Dürst (Universität Zürich), Roy Platon (RAL),
Todd Fahrner (Verso) and Vincent Quint (W3C).

The section on Web Fonts was strongly shaped by Brad Chase (Bitstream)
David Meltzer (Microsoft Typography) and Steve Zilles (Adobe). The following
people have also contributed in various ways to the section pertaining to fonts:
Alex Beamon (Apple), Ashok Saxena (Adobe), Ben Bauermeister (HP), Dave
Raggett (W3C/HP), David Opstad (Apple), David Goldsmith (Apple), Ed Tecot
(Microsoft), Erik van Blokland (LettError), François Yergeau (Alis), Gavin Nicol
(Inso), Herbert van Zijl (Elsevier), Liam Quin, Misha Wolf (Reuters), Paul
Haeberli (SGI), and the late Phil Karlton (Netscape).

The section on Paged Media was in large parts authored by Robert Stevahn
(HP) and Stephen Waters (Microsoft).

Robert Stevahn (HP), along with Scott Furman (Netscape) and Scott Isaacs
(Microsoft) were key contributors to CSS Positioning.

Mike Wexler (Adobe) was the editor of the interim Working Draft which
described many of the new features of CSS2.

T.V.Raman (Adobe) made pivotal contributions towards Aural Cascading Style
Sheets and the concepts of Aural presentation.

Todd Fahrner (Verso) researched contemporary and historical browsers to
develop the sample style sheet in the appendix.

Through electronic and physical encounters, the following people have
contributed to the development of CSS2: James Clark, Dan Connolly, Douglas
Rand, Sho Kuwamoto, Donna Converse, Scott Isaacs, Lou Montulli, Henrik
Frystyk Nielsen, Jacob Nielsen, Vincent Mallet, Philippe Le Hegaret, William
Perry, David Siegel, Al Gilman, Jason White, Daniel Dardailler.

The discussions on www-style@w3.org have been influential in many key
issues for CSS. Especially, we would like to thank Bjorn Backlund, Todd Fahrner,
MegaZone, Eric Meyer, David Perrell, Liam Quinn and Chris Wilson for their
participation.

10

Special thanks to Arnaud Le Hors, whose engineering contributions made this
document work.

Lastly, thanks to Tim Berners-Lee without whom none of this would have been
possible.

11

12

2 Introduction to CSS2
Contents

1. A brief CSS2 tutorial p.13
2. Design principles behind CSS2 p.14

2.1 A brief CSS2 tutorial
In this tutorial, we show how easy it can be to design simple style sheets. For this
tutorial, you will need to know a little [HTML40] p.236 and some basic desktop
publishing terminology.

We begin with the following little HTML document:

<HTML>
 <TITLE>Bach’s home page</TITLE>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

To set the text color of the H1 elements to blue, you can write the following
CSS rule:

 H1 { color: blue }

The [HTML40] p.236 specification defines how style sheet rules may be
included in or linked to an HTML document (in the element’s start tag, in the
head of the document, or linked externally). Please consult the [HTML40] p.236
specification for details and recommended usage.

In our example, we place the rule in the head of the document in a STYLE
element:

<HTML>
 <TITLE>Bach’s home page</TITLE>
 <STYLE TYPE="text/css">
 H1 { color: blue }
 </STYLE>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

Note that what appears within the STYLE element’s start and end tags has
CSS syntax, not HTML syntax.

This example illustrates a simple CSS rule. A rule consists of two main parts:
selector p.37 (’H1’) and declaration (’color: blue’). The declaration has two parts:
property (’color’) and value (’blue’). While the example above tries to influence
only one of the properties needed for rendering an HTML document, it qualifies
as a style sheet on its own. Combined with other style sheets (one fundamental
feature of CSS is that style sheets are combined) it will determine the final
presentation of the document.

13

The selector is the link between the HTML document and the style sheet, and
all HTML element types are possible selectors. HTML element types are defined
in the [HTML40] p.236 specification.

The ’color’ p.131 property is just one of around 100 properties defined in this
specification that determine the presentation of a document.

HTML authors only need to write style sheets if they want to suggest a specific
style for their documents. Each user agent (UA) will have a default style sheet
that presents documents in a reasonable, but arguably mundane, manner. This
specification includes a sample style sheet p.215 which describes how HTML
documents typically are rendered.

2.2 Design principles behind CSS2
backward compatibility
complementary to structured documents
cascading
platform & device independence
accessibility
maintainability
network performance

This section will be expanded

14

3 Definitions and document conventions
Contents

1. Definitions p.15
1. Document language p.15
2. Element p.15
3. User agent (or UA) p.16
4. Conforming user agent p.16
5. Default style sheet p.17

2. Conventions p.17
1. Document language elements and attributes p.17
2. CSS property definitions p.17
3. HTML conventions p.19

3.1 Definitions
In this section, we begin the formal specification of CSS2, starting with the
contract between authors, documents, users, and user agents.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in [RFC2119]. However, for
readability, these words do not appear in all upper case letters in this
specification.

At times, the authors of this specification recommend good practice for authors
and user agents. These recommendations are not normative and conformance
with this specification does not depend on their realization. These
recommendations contain the expression "We recommend ...", "This specification
recommends ...", or some similar wording.

3.1.1 Document language
Style sheets specify the presentation of a document written in another computer
language (such as HTML or XML) which, in this specification, is referred to as the
document language .

3.1.2 Element
The primary syntactic constructs of the document language are called elements ,
an SGML term (see [ISO8879]). Most CSS style sheet rules refer to these
elements and specify rendering information for them. Examples of elements in
HTML include "P" (for structuring paragraphs), "TABLE" (for creating tables),
"OL" (for creating ordered lists), etc.

Block-level elments are those elements of the document language that, by
default, are formatted visually as blocks (e.g., paragraphs). Inline elments are
those elements of the document language that do not cause paragraph breaks
(e.g., pieces of text, inline images, etc.)

15

3.1.3 User agent (or UA)
A user agent is a computer program which interprets a document written in the
document language and associated style sheets by applying the terms of this
specification. A user agent may display a document, read it aloud, cause it to be
printed, convert it, etc.

3.1.4 Conforming user agent
This section defines conformance with the CSS2 specification only. There may
be other levels of CSS in the future that may require a UA to implement a
different set of features in order to conform.

A user agent that elects to implement a topic (e.g., fonts, colors, aural style
sheets, etc.) covered by this specification must adhere to all pertinent sections of
the specification in order to be considered to conform to CSS2 for that topic. In
such cases, a user agent may claim to conform to part of the CSS2 specification.

A user agent that elects to implement all topics covered by this specification
and that does so in accordance with the specification may claim to conform to all
of CSS2. The inability of a user agent to implement a specific topic due to the
limitations of a particular device (e.g., a user agent cannot render colors on a
monochrome monitor or a black and white page) does not imply
non-conformance.

In addition to the previous conditions, a user agent that uses CSS2 to display
documents conforms to the CSS2 specification if:

it attempts to retrieve all referenced style sheets and parse them according
to this specification.
it sorts the declarations according to the cascade order p.51 .

A user agent that outputs CSS2 style sheets conforms to the CSS2
specification if it outputs valid CSS2 style sheets.

A user agent that uses CSS2 to display documents and outputs CSS2 style
sheets conforms to the CSS2 specification if it meets both sets of conformance
requirements.

This specification also recommends, but doesn’t require, that a UA observe the
following rules (which refer to functionality, not user interface):

allow the reader to specify personal style sheets
allow individual style sheets to be turned on and off
approximate style sheet values even if it can’t implement them exactly
according to the specification.

Different user interface paradigms may have their own constraints: a VR
browser may rescale the document based on its "distance" from the user.

UAs may offer readers additional choices on presentation. For example, the
UA may provide options for readers with visual impairments or may provide the
choice to disable blinking.

16

3.1.5 Default style sheet
Conforming user agents must apply a default style sheet (or behave as if they
did) prior to all other style sheets for a document. A user agent’s default style
sheet generally presents elements of the document language in ways that satisfy
the expectations that most people have (e.g., for visual browsers, the EM
element in HTML is presented using an italic font).

If a document has associated style sheets, the default style sheet is
considered along with author and user style sheets when determining how rules
cascade p.51 .

User agents that don’t actually use style sheets to specify default rules must
behave as if they did.

See "A sample style sheet for HTML 4.0" p.215 for a recommended default
style sheet for HTML 4.0 documents.

3.2 Conventions

3.2.1 Document language elements and attributes

CSS property, descriptor, and pseudo-class names are delimited by single
quotes.
CSS values are delimited by single quotes.
Document language element names are in upper case letters.
Document language attribute names are in lower case letters and delimited
by double quotes.

3.2.2 CSS property definitions
Each CSS property definition begins with a summary of key information that
resembles the following:

’Property-name’

Value: Possible constant values or value types

Initial: The initial value

Applies to: Elements this property applies to

Inherited: Whether the property is inherited

Percentage values: How percentage values should be interpreted

The five categories have the following meanings:

Value
This part of the property definition specifies the set of valid values for the
property. Value types may be designated in several ways:

1. constant values (e.g., ’auto’, ’disc’, etc.)
2. basic data types, which appear between "<" and ">" (e.g., <length>,

<percentage>, etc.). In the electronic version of the document, each
instance of a basic data type links to its definition.

17

3. non-terminals that have the same range of values as a property bearing
the same name (e.g., <border-width> <background-attachment>, etc.).
In this case, the non-terminal name is the property name (complete with
quotes) between "<" and ">" (e.g., <’border-width’>). In the electronic
version of the document, each instance of this type of non-terminal links
to the corresponding property definition.

4. non-terminals that do not share the same name as a property. In this
case, the non-terminal name appears between "<" and ">" (e.g.,
<border-width>) and its definition is located near its first appearance in
the specification. In the electronic version of the document, each
instance of this type of non-terminal links to the corresponding value
definition.

Other words are keywords that must appear literally, without quotes. The
slash (/) and the comma (,) must also appear literally.

Several things juxtaposed mean that all of them must occur, in the given
order. A bar (|) separates alternatives: one of them must occur. A double bar
(A || B) means that either A or B or both must occur, in any order. Brackets
([]) are for grouping. Juxtaposition is stronger than the double bar, and the
double bar is stronger than the bar. Thus "a b | c || d e" is equivalent to "[a b
] | [c || [d e]]".

Every type, keyword, or bracketed group may be followed by one of the
following modifiers:

An asterisk (*) indicates that the preceding type, word or group is
repeated zero or more times.
A plus (+) indicates that the preceding type, word or group is repeated
one or more times.
A question mark (?) indicates that the preceding type, word or group is
optional.
A pair of numbers in curly braces ({A,B}) indicates that the preceding
type, word or group is repeated at least A and at most B times.

The following examples illustrate different value types:

Value: N | NW | NE
Value: [<length> | thick | thin]{1,4}
Value: [<family-name> ,]* <family-name>
Value: <url>? <color> [/ <color>]?
Value: <url> || <color>

Initial
The property’s default value. If the property is inherited, this is the value that
is given to the root element of the document. Otherwise it is the value that
the property will have if there are no style rules for it in either the user’s or
the designer’s style sheet.

Applies to
Lists the elements to which the property applies. All elements are considered
to have all properties, but some properties have no rendering effect on some
types of elements. For example, ’font-style’ p.141 has no effect if the
element is an image.

18

Inherited
Indicates whether the value of the property is inherited from a parent
element.

Percentage values
Indicates how percentages should be interpreted, if they occur in the value
of the property. If "N/A" appears here, it means that the property does not
accept percentages as values.

3.2.3 HTML conventions
In this specification, most of the examples refer to HTML. For clarity, HTML
elements are written with upper case letters (e.g., HTML, BODY, EM, P) and
HTML attributes are written with lower case letters (e.g., src, class, id).

19

20

4 CSS2 syntax and basic data types
Contents

1. Syntax p.21
1. Tokenization p.21
2. Characters and case p.23
3. Statements p.24
4. At-rules p.24
5. Blocks p.25
6. Rule sets, declaration blocks, and selectors p.25
7. Declarations and properties p.26
8. Comments p.26
9. More examples p.26

2. Values p.27
1. Integers and numbers p.27
2. Lengths p.28
3. Percentages p.29
4. URLs p.29
5. Colors p.30
6. Angles p.31
7. Time p.31
8. Frequencies p.31

3. CSS embedded in HTML p.32
4. CSS as a stand-alone file p.32
5. Character escapes in CSS p.32

4.1 Syntax
This section describes a grammar common to any version of CSS (including
CSS2). Future versions of CSS will adhere to this core syntax, although they may
add additional syntactic constraints.

The following descriptions are normative. They are also complemented by the
normative grammar rules presented in Appendix B p.225 .

4.1.1 Tokenization
All levels of CSS, level 1, level 2, but also any future levels, use the same core
syntax. This allows UAs to parse (though not, of course, completely understand)
style sheets written in levels of CSS that didn’t exist at the time the UAs were
created. Designers can use this feature to create style sheets that work with
downlevel UA, while also exercising the possibilities of the latest levels of CSS.

CSS style sheets consist of a sequence of tokens. The list of tokens for CSS2
is as follows. The definitions use Lex-style regular expressions. Octal codes refer
to Unicode. Like in Lex, in case of multiple matches, the longest match
determines the token.

21

Token Definition

IDENT {ident}

AT-KEYWORD @{ident}

STRING {string}

HASH #{name}

NUMBER {num}

PERCENTAGE {num}%

DIMENSION {num}{ident}

URL
url\({w}{string}{w}\)|url\({w}([^ \n\’\")]|\\\

|\\\’|\\\"|\\\))+{w}\)

RGB rgb\({w}{num}%?{w}\,{w}{num}%?{w}\,{w}{num}%?{w}\)

UNICODE-RANGE U\+[0-9A-F?]{1,8}(-[0-9A-F]{1,8})?

CDO \<!--

CDC -->

DELIM [^][;{} \t\r\n()]

SEMICOLON ;

LBRACE \{

RBRACE \}

LPAR \(

RPAR \)

LBRACK \[

RBRACK \]

WHITESPACE [\t\r\n]+

COMMENT /*([^*]|*[^/])**/

The macros in curly braces ({}) above are defined as follows:

22

Macro Definition

ident {nmstart}{nmchar}*

nmstart [a-zA-Z]|{nonascii}|{escape}

nonascii [^\0-\177]

escape \\[0-9a-fA-F]{1,6}

nmchar {nmstart}|[-0-9]

num [0-9]+|[0-9]*\.[0-9]+

string \"({stringchar}|\’)*\"|\’({stringchar}|\")*\’

stringchar {escape}|{nonascii}|[\40-\176]

Below is the core syntax for CSS. The following sections describe how to use
it. Also see Appendix B p.225 , for a more restrictive grammar that is closer to the
CSS level 2 language.

stylesheet : (CDO | CDC | statement)*;
statement : ruleset | at-rule;
at-rule : AT-KEYWORD any* (block | ’;’);
block : ’{’ (at-rule | any | block)* ’}’;
ruleset : selector ’{’ declaration? (’;’ declaration)* ’}’;
selector : any+;
declaration : property ’:’ value;
property : IDENT;
value : (any | block | AT-KEYWORD)+;
any : IDENT | NUMBER | PERCENTAGE | DIMENSION | STRING
 | DELIM | URL | RGB | HASH | UNICODE-RANGE
 | ’(’ any* ’)’ | ’[’ any* ’]’;

WHITESPACE and COMMENT tokens do not occur in the grammar (to keep it
readable), but any number of these tokens may appear anywhere. The content of
these tokens (the matched text) doesn’t matter, but their presence or absence
may change the interpretation of some part of the style sheet. For example, in
CSS2 the WHITESPACE is significant in selectors.

4.1.2 Characters and case
The following rules always hold:

All CSS style sheets are case-insensitive , except for parts that are not
under the control of CSS. For example, the case-sensitivity of the HTML
attributes ’id’ and ’class’, of font names, and of URLs lies outside the scope
of this specification. Note in particular that element names are
case-insensitive in HTML, but case-sensitive in XML.
In CSS2, selectors p.37 (element names, classes and IDs) can contain only
the characters [A-Za-z0-9] and [UNICODE] p.236 characters 161 and
higher, plus the hyphen (-); they cannot start with a hyphen or a digit; they
can also contain escaped characters and any Unicode character as a
numeric code (see next item).

23

The backslash (\) followed by at most six hexadecimal digits (0..9A..F)
stands for the [UNICODE] p.236 character with that number.
Any character except a hexadecimal digit can be escaped to remove its
special meaning, by putting a backslash (\) in front, For example, "\"" is a
string consisting of one double quote.
The two preceding items define backslash-escapes . Backslash-escapes are
always considered to be part of an identifier or a strings (i.e., "\7B" is not
punctuation, even though "{" is, and "\32" is allowed at the start of a class
name, even though "2" is not).

4.1.3 Statements
A CSS style sheet, for any version of CSS, consists of a list of statements (see
the grammar above). There are two kinds of statements: at-rules and rule sets.
There may be whitespace (spaces, tabs, newlines) around the statements.

In this specification, the expressions "immediately before" or "immediate after"
mean "with no intervening white space."

4.1.4 At-rules
At-rules start with an at-keyword, which is an identifier with an ’@’ at the start (for
example, ’@import’, ’@page’, etc.). An identifier consists of letters, digits,
hyphens, non-ASCII, and escaped characters. p.??

An at-rule consists of everything up to and including the next semicolon (;) or
the next block (defined shortly), whichever comes first. A CSS UA that
encounters an unrecognized at-rule must ignore the whole of the @-rule and
continues parsing after it.

CSS2 User agents have some additional constraints, e.g., they must also
ignore any ’@import’ rule that occurs inside a block or that doesn’t preceded all
rule sets.

Here is an example. Assume a CSS2 parser encounters this style sheet:

 @import "subs.css";
 H1 { color: blue }
 @import "list.css";

The second ’@import’ is illegal according to CSS2. The CSS2 parser skips the
whole at-rule, effectively reducing the style sheet to:

 @import "subs.css";
 H1 { color: blue }

In the following example, the second ’@import’ rule is invalid, since it occurs
inside a ’@media’ block.

 @import "subs.css";
 @media print {
 @import "print-main.css";
 BODY { font-size: 10pt }
 }
 H1 {color: blue}

24

4.1.5 Blocks
A block starts with a left curly brace ({) and ends with the matching right curly
brace (}). In between there may be any characters, except that parentheses (()),
brackets ([]) and braces ({}) always occur in matching pairs and may be nested.
Single (’) and double quotes (") also occur in matching pairs, and characters
between them are parsed as a string . See Tokenization p.21 above for the
definition of a string.

Here is an example of a block. Note that the right brace between the quotes
does not match the opening brace of the block, and that the second single quote
is an escaped character p.?? , and thus doesn’t match the opening quote:

 { causta: "}" + ({7} * ’\’’) }

Note that the above rule is not legal CSS2, but it is still a block as defined
above.

4.1.6 Rule sets, declaration blocks, and selectors
A rule set consists of a selector followed by a declaration block.

A declaration-block (also called a {}-block in the following text) starts with a left
curly brace ({) and ends with the matching right curly brace (}). In between there
is a list of zero or more declarations, separated by semicolons (;).

The selector (see also the section on selectors p.37 consists of everything up
to (but not including) the first left curly brace ({). A selector always goes together
with a {}-block. When a UA can’t parse the selector (i.e., it is not valid CSS2), it
should skip (i.e., ignore) the {}-block as well.

Note that CSS2 gives a special meaning to the comma (,) in selectors.
However, since it is not known if the comma may acquire other meanings in
future versions of CSS, the whole statement should be ignored if there is an error
anywhere in the selector, even though the rest of the selector may look
reasonable in CSS2.

For example, since the "&" is not a legal token in a CSS2 selector, a CSS2 UA
must ignore the whole second line, and not set the color of H3 to red:

H1, H2 {color: green}
H3, H4 & H5 {color: red}
H6 {color: black}

Here is a more complex example. The first two pairs of curly braces are inside
a string, and do not mark the end of the selector. This is a legal CSS2 statement.

 P[example="public class foo
{
 private int x;

 foo(int x) {
 this.x = x;
 }

}"] {color: red}

25

4.1.7 Declarations and properties
A declaration consists of a property , a colon (:) and a value. Around each of
these there may be whitespace. A property is an identifier, as defined earlier. Any
character may occur in the value, but parentheses (()), brackets ([]), braces ({}),
single quotes (’) and double quotes (") must come in matching pairs.
Parentheses, brackets, and braces may be nested. Inside the quotes, characters
are parsed as a string.

To ensure that new properties and new values for existing properties can be
added in the future, a UA must skip a declaration with an invalid property name
or an invalid value. Every CSS2 property has its own syntactic and semantic
restrictions on the values it accepts.

For example, assume a CSS2 parser encounters this style sheet:

 H1 { color: red; font-style: 12pt } /* Invalid value: 12pt */
 P { color: blue; font-vendor: any; /* Invalid: font-vendor */
 font-variant: small-caps }
 EM EM { font-style: normal }

The second declaration on the first line has an invalid value ’12pt’. The second
declaration on the second line contains an undefined property ’font-vendor’. The
CSS2 parser will skip these declarations, effectively reducing the style sheet to:

 H1 { color: red; }
 P { color: blue; font-variant: small-caps }
 EM EM { font-style: normal }

4.1.8 Comments
Comments begin with the characters "/*" and end with the characters "*/". They
may occur anywhere where whitespace can occur and their contents have no
influence on the rendering. Comments may not be nested.

CSS also allows the SGML comment delimiters ("<!--" and "-->") in certain
places, but they do not delimit comments. They are included so that style rules
appearing in an HTML source document (in the STYLE element) may be hidden
from pre-HTML3.2 browsers. See HTML4[ref] for more information.

4.1.9 More examples
Here are a few more examples of error handling by a CSS (in particular CSS2)
UA.

Unknown properties. User agents must ignore a declaration with an
unknown property. For example, if the style sheet is:

 H1 { color: red; rotation: 70minutes }

the UA will treat this as if the style sheet had been

 H1 { color: red; }

Illegal values. User agents must treat illegal values, or values with illegal
parts, as if the entire declaration weren’t there at all:

26

 IMG { float: left } /* CSS2 */
 IMG { float: left here } /* "here" is not a value of ’float’ */
 IMG { background: "red" } /* keywords cannot be quoted in CSS2 */
 IMG { border-width: 3 } /* a unit must be specified for length values */

In the above example, a CSS2 parser would honor the first rule and ignore
the rest, as if the style sheet had been:

 IMG { float: left }
 IMG { }
 IMG { }
 IMG { }

A UA conforming to a future CSS specification may accept one or more of
the other rules as well.
User agents must ignore an invalid at-keyword together with everything
following it, up to and including the next semicolon (;) or brace pair ({...}),
whichever comes first. For example, assume the style sheet reads:

 @three-dee {
 @background-lighting {
 azimuth: 30deg;
 elevation: 190deg;
 }
 H1 { color: red }
 }
 H1 { color: blue }

The ’@three-dee’ is illegal according to CSS2. Therefore, the whole
at-rule (up to, and including, the third right curly brace) is ignored. The CSS2
UA skips it, effectively reducing the style sheet to:

 H1 { color: blue }

4.2 Values

4.2.1 Integers and numbers
Some value types may have integer values, denoted by <integer> in this
specification.

Some value types may have number values, denoted by <number> in this
specification. A number may have a decimal point.

In CSS2, numbers and integers are specified in decimal notation only. An
<integer> consists of one or more digits "0" to "9". A <number> can either be an
<integer>, or it can be zero of more digits followed by a dot followed by one or
more digits. Both integers and numbers may be preceded by a "-" or "+" to
indicate the sign.

Note that many properties that allow a number or integer as value actually
restrict the value to some range, often to a non-negative value.

27

4.2.2 Lengths
The format of a length value (denoted by <length> in this specification) is an
optional sign character (’+’ or ’-’, with ’+’ being the default) immediately followed
by a number (with or without a decimal point) immediately followed by a unit
identifier (an abbreviation between one and four letters). After a ’0’ number, the
unit identifier is optional.

Some properties allow negative length units, but this may complicate the
formatting model and there may be implementation-specific limits. If a negative
length value cannot be supported, it should be converted to the nearest value
that can be supported.

There are two types of length units: relative and absolute. Relative length units
specify a length relative to another length property. Style sheets that use relative
units will more easily scale from one medium to another (e.g., from a computer
display to a laser printer).

Percentage units p.29 (described below) and keyword values (e.g. ’x-large’)
offer similar advantages.

These relative units are supported: em, ex, and px.

 H1 { margin: 0.5em } /* ems, the height of the element’s font */
 H1 { margin: 1ex } /* x-height, the height of the letter ’x’ */
 P { font-size: 12px } /* pixels, relative to viewing device */

The ’em’ unit, as used in CSS, is equal to the font size used when rendering
an element’s text. It may be used for vertical or horizontal measurement. The ’ex’
unit is equal to the font’s x-height (the height of the letter ’x’) of the element’s
font. A font need not contain the letter "M" to have an ’em’ size or the letter "x" to
have an x-height; the font should still define the two units.

Both ’em’ and ’ex’ refer to the font size of an element except when used in the
’font-size’ p.144 property, where they are relative to the font size inherited from
the parent element.

The rule:

H1 { line-height: 1.2em }

means that the line height of the H1 elements will be 20% greater than the font
size of the H1 elements. On the other hand:

H1 { font-size: 1.2em }

means that the font-size of H1 elements will be 20% greater than the font size
inherited by H1 elements.

Please consult the section on line height calculations p.110 for more
information about line heights in the visual flow model p.79 .

Pixel units are relative to the resolution of the viewing device, i.e., most often a
computer display. If the pixel density of the output device is very different from
that of a typical computer display, the UA should rescale pixel values. The
suggested reference pixel is the visual angle of one pixel on a device with a pixel
density of 90dpi and a distance from the reader of an arm’s length. For a nominal
arm’s length of 28 inches, the visual angle is about 0.0227 degrees.

Child elements do not inherit the relative values specified for their parent; they
inherit the computed values. For example:

28

 BODY {
 font-size: 12pt;
 text-indent: 3em; /* i.e. 36pt */
 }
 H1 { font-size: 15pt }

In the example above, the ’text-indent’ value of H1 elements will be 36pt, not
45pt, if H1 is a child of the BODY element.

Absolute length units are only useful when the physical properties of the
output medium are known. These absolute units are supported: in (inches), cm
(centimeters), mm (millimeters), pt (points), and pc (picas).

For example:

 H1 { margin: 0.5in } /* inches, 1in = 2.54cm */
 H2 { line-height: 3cm } /* centimeters */
 H3 { word-spacing: 4mm } /* millimeters */
 H4 { font-size: 12pt } /* points, 1pt = 1/72 in */
 H4 { font-size: 1pc } /* picas, 1pc = 12pt */

In cases where the specified length cannot be supported, UAs should try to
approximate. For all CSS2 properties, further computations and inheritance
should be based on the approximated value.

4.2.3 Percentages
The format of a percentage value (denoted by <percentage> in this
specification) is an optional sign character (’+’ or ’-’, with ’+’ being the default)
immediately followed by a number immediately followed by ’%’.

Percentage values are always relative to another value, for example a length
unit. Each property that allows percentage units also defines what value the
percentage refers to.

Since child elements inherit the computed, not relative, values specified for
their parent, in the following example, the children of the P element will inherit a
value of 12pt for ’line-height’ p.111 (i.e., 12pt), the percentage value (120%):

 P { font-size: 10pt }
 P { line-height: 120% } /* relative to ’font-size’, i.e. 12pt */

4.2.4 URLs
A Uniform Resource Locator, or URL (denoted by <url> in this specification) is
identified with a functional notation.

For example:

 BODY { background: url(http://www.bg.com/pinkish.gif) }

The format of a URL value is ’url(’ followed by optional white space followed by
an optional single quote (’) or double quote (") character followed by the URL
itself (as defined in [RFC1738] p.236) followed by an optional single quote (’) or
double quote (") character followed by optional whitespace followed by ’)’. Quote
characters that are not part of the URL itself must be balanced.

Parentheses, commas, whitespace characters, single quotes (’) and double
quotes (") appearing in a URL must be escaped with a backslash: ’\(’, ’\)’, ’\,’.

29

In order to create modular style sheets that are not dependent on the absolute
location of a resource, authors may specify the location of background images
with partial URLs. Partial URLs (as defined in [RFC1808] p.236) are interpreted
relative to the base URL of the style sheet, not relative to the base URL of the
source document.

For example, suppose the following rule is located in a style sheet named
basic.css :

 BODY { background: url(yellow) }

The background of the source document’s BODY will be tiled with whatever
image is described by the resource named yellow in the same directory as
basic.css .

User agents may vary in how they handle URLs that designate unavailable or
inapplicable resources.

4.2.5 Colors
A <color> is a either a keyword or a numerical RGB specification.

The suggested list of keyword color names is: aqua, black, blue, fuchsia, gray,
green, lime, maroon, navy, olive, purple, red, silver, teal, white, and yellow.
These 16 colors are taken from the Windows VGA palette, and their RGB values
are not defined in this specification.

 BODY {color: black; background: white }
 H1 { color: maroon }
 H2 { color: olive }

The RGB color model is used in numerical color specifications. These
examples all specify the same color:

 EM { color: #f00 } /* #rgb */
 EM { color: #ff0000 } /* #rrggbb */
 EM { color: rgb(255,0,0) } /* integer range 0 - 255 */
 EM { color: rgb(100%, 0%, 0%) } /* float range 0.0% - 100.0% */

In addition to these color keywords, users may specify keywords that
correspond to the colors used by certain objects in the user’s environment.
Please consult the section on system colors p.?? for more information.

The format of an RGB value in hexadecimal notation is a ’#’ immediately
followed by either three or six hexadecimal characters. The three-digit RGB
notation (#rgb) is converted into six-digit form (#rrggbb) by replicating digits, not
by adding zeros. For example, #fb0 expands to #ffbb00. This makes sure that
white (#ffffff) can be specified with the short notation (#fff) and removes any
dependencies on the color depth of the display.

The format of an RGB value in the functional notation is ’rgb(’ followed by a
comma-separated list of three numerical values (either three integer values in the
range of 0-255, or three percentage values, typically in the range of 0.0% to
100.0%) followed by ’)’. Whitespace characters are allowed around the numerical
values.

Values outside the device gamut should be clipped. For a device whose gamut
is sRGB, the three rules below are equivalent:

30

 EM { color: rgb(255,0,0) } /* integer range 0 - 255 */
 EM { color: rgb(300,0,0) } /* clipped to 255 */
 EM { color: rgb(110%, 0%, 0%) } /* clipped to 100% */

All RGB colors are specified in the sRGB color space (see [SRGB] p.236).
UAs may vary in the fidelity with which they represent these colors, but using
sRGB provides an unambiguous and objectively measurable definition of what
the color should be, which can be related to international standards
[COLORIMETRY] p.235 .

Conforming UAs may limit their color-displaying efforts to performing a
gamma-correction on them. sRGB specifies a display gamma of 2.2 under
specified viewing conditions. UAs adjust the colors given in CSS such that, in
combination with an output device’s "natural" display gamma, an effective display
gamma of 2.2 is produced. See the section on gamma correction p.221 for
further details. Note that only colors specified in CSS are affected; e.g., images
are expected to carry their own color information.

4.2.6 Angles
Angle units (denoted by <angle> in the text) are used with aural cascading style
sheets p.201 .

These following are legal angle units:

deg: degrees
grad: gradient
rad: radians

Values in these units may be negative. They should be normalized to the
range 0-360deg by the UA. For example, -10deg and 350deg are equivalent. The
angle value must be followed immediately by the angle unit without an
intervening space.

The angle value must be immediately followed by the angle unit.

4.2.7 Time
Time units (denoted by <time> in the text) are used with aural cascading style
sheets p.201 .

These following are legal time units:

ms: milliseconds
s: seconds

Time values may not be negative. The time value must be followed
immediately by the time unit without an intervening space.

4.2.8 Frequencies
Frequency units (denoted by <frequency> in the text) are used with aural
cascading style sheets p.201 .

There are two legal frequency units:

31

Hz: Hertz
kHz: kilo Hertz

For example, 200Hz (or 200hz) is a bass sound, and 6kHz (or 6khz) is a treble
sound.

The frequency value must be followed immediately by the frequency unit
without an intervening space.

4.3 CSS embedded in HTML
CSS style sheets may be embedded in HTML documents, and to be able to hide
style sheets from older UAs, it is convenient put the style sheets inside HTML
comments. The HTML comment tokens "<!--" and "-->" may occur before, after,
and in between the statements. They may have whitespace around them.

When CSS is embedded in HTML, it shares the charset parameter used to
transmit the enclosing HTML document. As with HTML, the value of the charset
parameter is used to convert from the transfer encoding to the document
character set, which is Unicode.

4.4 CSS as a stand-alone file
CSS style sheets may exist in files by themselves, being linked from the
document. In that case the CSS files are served with the media type text/css .
As with all text media types, a charset parameter may be added which is used to
convert from the transfer encoding to Unicode.

4.5 Character escapes in CSS
CSS may need to use characters which are outside the encoding used to
transmit the document. For example, the "class" attribute of HTML allows more
characters in a class name than the set allowed for selectors above. In CSS2,
such characters can be escaped p.?? or written as Unicode numbers:"B&W?"
can be written as "B\&W\?" or "B\26W\3F". For example, a document transmitted
as ISO-8859-1 (Latin-1) cannot contain Greek letters directly: "κουρος" (Greek:
"kouros") has to be written as "\3BA\3BF\3C5\3C1\3BF\3C2". These escapes are
thus the CSS equivalent of numeric character references in HTML or XML
documents.

32

5 CSS2 processing model
Contents

1. Introduction to the CSS2 processing model p.33
2. The document tree p.34
3. Inheritance p.34
4. Rendering objects p.36

5.1 Introduction to the CSS2 processing model
This section of the specification presents a model of how user agents that
implement CSS2 behave. This is only a conceptual model; real implementations
may vary.

In this model, a user agent processes a source document written in the
document language by going through the following steps:

1. Create a document tree p.34 from the source document. The document tree
is a tree of elements from the document language.

2. Annotate every node of the document tree by assigning a single value for
every CSS2 property. The style sheets associated with the source document
generally specify values for some, but not all nodes of the document tree
(see the section on selectors) and values for some, but not all, CSS
properties. Since rules often overlap in CSS2, three mechanisms are applied
until each property has exactly one value at each node:

1. Style rules are applied according to the cascade p.51 .
2. Inheritance p.34 is invoked for properties which inherit.
3. The initial (default) value for the property is assigned.

3. From the annotated document tree, generate a tree of rendering objects
p.36 based on the target medium p.55 . Since during this phase, some
properties may have non-specific values (e.g., the ’auto’ value for many
properties), user agents must obey rendering algorithms defined in this
specification to complete the tree of rendering objects. For example, if the
destination medium is the screen, user agents must obey the visual flow
model p.79 . If the destination medium is the printed page, user agents must
obey the page model p.119 . If the destination medium is an aural rendering
device (e.g., speech synthesizer), user agents must obey the aural rendering
model p.201 .

4. Finally, user agents transfer the tree of rendering objects p.36 to the
destination medium p.55 (e.g., print the results, display them on the screen,
render text as speech, etc.).

Step 1 lies outside the scope of this specification (see, for example, [DOM]).
Steps 2 and 3 are addressed by the bulk of this specification.
The majority of transfer issues in step 4 lie outside the scope of this

specification. However, CSS2 addresses these issues:

What can user agents do when certain system resources are not available
(e.g., fonts p.137)?
How do style sheets interact with system resources (e.g., cursors and colors

33

p.197)?
How do style sheet properties assist certain devices (e.g., page orientation
for a printer)?

5.2 The document tree
User agents transform a document written in the document language into a
document tree where every element except one has exactly one parent element.
(See the SGML ([ISO8879] p.235) and XML ([XML] p.236) specifications for the
definition of parent.) The one exception is the root element, which has no parent.
An element A is called a child of an element B, if and only if B is the parent of A.

An element A is called an ancestor of an element B, if either (1) A is the
parent B, or (2) A is the parent of some element C that is an ancestor of B.

An element A is called a descendant of an element B, if and only if B is an
ancestor of A.

For example, the following HTML document:

<HTML>
 <TITLE>My home page</TITLE>
 <BODY>
 <H1>My home page</H1>
 <P>Welcome to my home page! Let me tell you about my favorite
 composers:

 Elvis Costello
 Johannes Brahms
 Georges Brassens

 </BODY>
</HTML>

results in the following tree:
HTML

HEAD

TITLE

BODY

STRONG

P UL

LI

H1

LILI

According to the definition of HTML, HEAD elements will be inferred during
parsing and become part of the document tree even if the HEAD tags are not in
the document source.

5.3 Inheritance
If a value is inherited , it means the value is the same as the value in the
rendering object for the parent element.

Suppose there is an H1 element with an emphasized element inside:

 <H1>The headline is important!</H1>

34

If no color has been assigned to the EM element, the emphasized "is" will
inherit the color of the parent element, so if H1 has the color blue, the EM
element will likewise be in blue.

To set a "default" style property for a document, one can set the property on
the root of the document tree. In HTML, the HTML or BODY elements can serve
this function. Note that this will work even if the author omits the BODY tag in the
HTML source since the HTML parser will infer the missing tag.

For example, the ’color’ p.131 property on the BODY element is inherited by
all descendents of the BODY element:

 BODY {
 color: black;
 background: url(texture.gif) white;
 }

In this example, all descendents of the BODY element inherit the ’color’ p.131
property.

Not all style properties are inherited. For example, the ’background’ p.135
property is not inherited. (However, due to the initial ’tranparent’ value on the
’background’ property, the parent’s background shines through.) All properties
have an initial value. If the property is not inherited, the value will be the initial
value.

Each property definition indicates whether the property is inherited by child
elements, and what the initial value of the property is.

The root element obviously can’t inherit values. If no value is set explicitly, the
initial value will be used.

For all inherited CSS2 properties, if the value is specified as a percentage,
child elements inherit the resultant value, not the percentage value.

For example, with the style sheet

BODY {font-size: 10pt}
H1 {font-size: 120%}

and the document fragment

<BODY>
<H1>A large heading</H1>
...

the H1 element will have ’font-size’ 12pt (120% times 10pt), but the EM will
also be 12pt, since it inherits the resultant value (12pt), not the percentage
(120%).

When a percentage value is set on a property of the root element, and the
percentage is defined as referring to the inherited value of some property X, the
resultant value is the percentage times the initial value of property X.

For example, with and HTML document and the style sheet

HTML {font-size: 120%}

The resultant value for ’font-size’ will be 120% of the initial value of the
’font-size’ property. (The initial value of ’font-size’ is defined to be ’medium’, so
the resultant value is 20% larger than ’medium’.)

35

5.4 Rendering objects
Once a user agent has assigned, for every node in the document tree, a value for
every property, it generates a tree of rendering objects. Each node in the
document tree generates zero or more rendering objects.

A rendering object is defined by a set of CSS properties. Since the type of
rendering object created depends on a specific target medium p.55 , a rendering
object may not carry information for every CSS2 property (e.g., a visual rendering
object may not carry aural properties).

This specification defines three types of rendering objects:

Box p.59 : The box rendering object is meant for the screen medium p.55 .
Boxes are rectangular objects with padding, borders, and margins.
Page box p.59 : The page box rendering object is meant for paged media
p.119 .
Aural p.59 : The aural rendering object is meant for aural media p.119 .

If an element A is an ancestor of an element D, all rendering objects generated
for A must be above the rendering objects rendered for D in the tree of rendering
objects. For box and page box rendering objects, this implies that, to find a
containing box for a node, a user agent need only search upward in the tree of
rendering objects (not left, right, or down).

36

6 Selectors
Contents

1. Type selectors p.37
2. Grouping p.37
3. Attribute selectors p.38

1. Matching attributes, single values, and multiple values p.39
2. The class and id attribute in HTML p.39
3. The class attribute in other document languages p.40 : @class
4. The id attribute p.41

4. Contextual selectors p.42
5. Parent-child selectors p.43
6. Sequential selectors p.43
7. Pseudo-elements and pseudo-classes p.44

1. The :first-line pseudo-element p.45
2. The :first-letter pseudo-element p.46
3. Overlapping pseudo-elements p.47
4. Pseudo-elements with contextual selectors p.47
5. Anchor pseudo-classes p.48 : :link, :active, and :visited
6. Combining pseudo-elements with normal classes p.48
7. Colliding attribute selectors and pseudo-classes p.49

In CSS, pattern matching rules determine which style rules apply to elements
in a document. These patterns, called selectors, may range from simple element
types to rich contextual patterns. If all conditions in the pattern are true for a
certain element, the selector matches the element.

6.1 Type selectors
The simplest selector is the name of an element from the document language,
called a type selector. Type selectors match all instances of the element type in
the document. The case-sensitivity of element names depends on the document
language. For example, in HTML, element names are case-insensitive, but in
XML they are case-sensitive.

An example of a selector is the following which matches all H1 element in a
document:

 H1 { font-family: Helvetica }

6.2 Grouping
When element selectors share the same declarations, they may be grouped into
comma-separated lists.

In this example, we condense three rules with identical declarations into one.
Thus,

 H1 { font-family: Helvetica }
 H2 { font-family: Helvetica }
 H3 { font-family: Helvetica }

37

is equivalent to:

 H1, H2, H3 { font-family: Helvetica }

Furthermore, multiple declarations for the same selector may be organized into
semicolon separated groups.

Thus, the following rules:

 H1 { font-weight: bold }
 H1 { font-size: 12pt }
 H1 { line-height: 14pt }
 H1 { font-family: Helvetica }
 H1 { font-variant: normal }
 H1 { font-style: normal }

are equivalent to:

 H1 {
 font-weight: bold;
 font-size: 12pt;
 line-height: 14pt;
 font-family: Helvetica;
 font-variant: normal;
 font-style: normal;
 }

In addition, some properties are shorthand rules that allow authors to specify
the values of several properties with a single property. For instance, the ’font’
p.145 property is a shorthand property for setting ’font-style’ p.141 , ’font-variant’
p.142 , ’font-weight’ p.142 , ’font-size’ p.144 , ’line-height’ p.111 , and ’font-family’
p.140 all at once.

The multiple style rules of the previous example:

 H1 {
 font-weight: bold;
 font-size: 12pt;
 line-height: 14pt;
 font-family: Helvetica;
 font-variant: normal;
 font-style: normal;
 }

may be rewritten with a single shorthand property:

 H1 { font: bold 12pt/14pt Helvetica }

Note that since ’font-variant’ p.142 and ’font-style’ p.141 take their default
values of ’normal’ in this example, these values have been omitted from the
shorthand form.

6.3 Attribute selectors
CSS2 allows authors to specify rules that match according to attributes defined in
the document language. A rule may match based on the simple presence of the
attribute, or on one or more values for the attribute.

38

6.3.1 Matching attributes, single values, and multiple
values
An attribute selector can select on the simple presence or absence of an
attribute, on the attribute and its value, or on the attribute and one word in its
value. The syntax is [att] , [att=val] , and [att~=val] respectively.

For example, the following rule matches all H1 elements that specify the "href"
attribute, whatever its value:

 H1[href] { color: blue; }

In the following example, the rule matches all SPAN elements whose "class"
attribute has the value "example":

 SPAN[class=example] { color: blue; }

The case-sensitivity of attribute values depends on the document language.
For example, in HTML, attribute values are case-insensitive, but in XML they are
case-sensitive.

Attribute values must be quoted or escaped if they are not identifiers.
Document languages may allow multi-valued attributes, typically

space-separated lists such as the following:

perch

To accommodate value lists such as this, CSS2 defines the following two types
of equality:

The "=" sign
For the rule to apply, the value following "=" must match the whole

attribute value.
The "~=" sign

For the rule to apply, the string following "~=" must match at least one
member of the space-separated list of attribute values. With the "~="
operator, attribute values cannot contain spaces.

The following rules illustrate the differences between "=" and "~=":

 A[rel~="copyright"] {...} /* matches, e.g., <A rel="copyright copyleft ..." */
 td[colspan="2"] {...} /* matches only <TD colspan="2"> ... */

The following rule hides all elements for which the value of the "lang" attribute
is "fr" (i.e., the language is French).

[LANG=fr] { display : none }

6.3.2 The class and id attribute in HTML
Although authors may refer to any attributes with the generic syntax
"[attribute=value]" and "[attribute~=value]", CSS2 defines a special syntax for two
[HTML40] p.236 attributes: "class" and "id".

The HTML "class" attribute allows authors to group elements together and
specify style information for the entire group. The CSS2 shortcut syntax for
"[class~=value]" is a "." followed by the class value, with no intervening white
space.

39

For example, we can assign style information to all elements with
class="pastoral" :

 .pastoral { color: green } /* all elements with class=pastoral */

or just to H1 elements with class="pastoral" :

 H1.pastoral { color: green } /* H1 elements with class=pastoral */

Given these rules, the first H1 instance below would not have green text, while
the second would:

 <H1>Not green</H1>
 <H1 class="pastoral">Very green</H1>

Note that "H1.pastoral" is equivalent to "H1[class~=pastoral]".
To match a subset of "class" values, each value must be preceded by a ".", in

any order.
For example, the following rule matches any P element whose "class" attribute

has been assigned a list of space-separated values that includes "pastoral" and
"marine":

 P.pastoral.marine { color: green }

This rule matches when class="pastoral blue aqua marine" but does
not match for class="pastoral blue" .

Similarly, the following aural style sheet rules allow a script to be read aloud in
different voices for each role:

 P.role.romeo { voice-family: romeo, male }
 P.role.juliet { voice-family: juliet, female }

Note. CSS gives so much power to the "class" attribute, that in many cases it
doesn’t matter what HTML element the class is set on -- you can make any
element emulate almost any other. Relying on this power is not recommended,
since it removes the level of structure that has a universal meaning (HTML
elements). A structure based on "class" is only useful within a restricted domain,
where the meaning of a class has been mutually agreed upon.

6.3.3 The class attribute in other document languages:
@class
The shorthand selector syntax associated with the class attribute in HTML can
also be used in other document languages. For these languages, authors must
specify which attribute will be acting as the "class" attribute. This is done with the
@class rule, which has the form "@class <attribute-name>;".

For instance, to specify that the "type" attribute of XML has the role of
assigning class information, authors should include the following declaration in
their style sheets:

 @class type;

40

Then, a rule for XML such as:

 PARA.romeo { ... }

would be equivalent to:

 PARA[type~=romeo] { ... }

@class declarations must obey the following rules:

An @class declaration must appear before the first selector in the current
style resource.
If it occurs more than once, only the last instance applies.
If it occurs, it only applies to the current style resource and not to any
imported style sheets.

A style resource is either

1. a style sheet corresponding to a URL (excluding any style sheets imported
recursively),

2. or the whole document if the style sheet is embedded in it.

6.3.4 The id attribute
The "id" attribute allows authors to assign a unique name to an element. CSS2
allows authors to specify style rules that apply to a single instance of an element,
based on its "id" value.

To match an element with a given "id" value, the selector must contain "#"
followed by the "id" value.

In the following example, the style rule contains no selector information and
therefore matches any element that has id="z98y" . The rule will thus match for
the P element:

 <HEAD>
 <STYLE>
 #z98y { letter-spacing: 0.3em }
 </STYLE>
 </HEAD>
 <BODY>
 <P id=z98y>Wide text</P>
 </BODY>

In the next example, however, the style rule will only match an H1 element that
has id="z98y" . The rule will not match the P element in this example:

 <HEAD>
 <STYLE>
 H1#z98y { letter-spacing: 0.5em }
 </STYLE>
 </HEAD>
 <BODY>
 <P id=z98y>Wide text</P>
 </BODY>

41

Note. While style sheets have been designed to augment document structure,
this feature will allow authors to create documents that may render well, but don’t
take advantage of the structural elements of HTML. This use of style sheets is
discouraged.

Note that in HTML 4.0, the ID attribute is called "ID", but in XML documents it
may be called something else. The name of the ID attribute is immaterial for
CSS. Also note that, even in HTML, the selector #p123 is not equivalent to
[ID=p123] , since the former has a higher specificity.

6.4 Contextual selectors
At times, authors may want selectors to match elements that appear in a certain
context, such as "only those EM elements that are contained by an H1 element".
In these cases, contextual selectors add specificity. Context is defined as an
ancestor/descendent/sibling relationship between elements in the document tree.
Sibling relationships (one element after another) are discussed in the section on
sequential selectors p.43 .

A contextual selector matches when an element is an arbitrary descendent of
some ancestor element (i.e., it may be any generation below the ancestor
element). A contextual selector is made up of two or more selectors separated by
white space.

For example, consider the following rules:

 H1 { color: red }
 EM { color: red }

Although the intention of these rules is to add emphasis to text by changing its
color, the effect will be lost in a case such as:

<H1>This headline is very important</H1>

We address this case by adding a contextual rule to the previous two that sets
the text color to blue whenever an EM occurs anywhere within an H1:

 H1 { color: red }
 EM { color: red }
 H1 EM { color: blue }

The third rule will also match the following fragment:

 <H1>This
 headline is very
 important</H1>

A contextual selector may also contain attribute selectors p.38 .
For example, the following matches any element with an "href" attribute inside

a P with class "myclass" inside any DIV. Note that the space after "myclass" is
essential: without it the selector would match a P with both a class and an "href":

DIV P.myclass [href]

Contextual selectors may be grouped according to the rules for grouping listed
above.

42

6.5 Parent-child selectors
A parent-child selector matches when an element is the direct descendent of
some parent element. A parent-child selector is made up of two or more
selectors separated by a tilde (~).

The following rule sets the style of P elements that are children of BODY:

 BODY ~ P { line-height: 1.3 }

A parent-child selector may also contain attribute selectors p.38 . Parent-child
selectors may be grouped according to the rules for grouping listed above.

Contextual selectors and parent-child selectors can be combined. For
instance, DIV OL~LI P groups as follows (DIV (OL ~ (LI P))), i.e., it matches a
P that is a descendant of an LI, that is in turn a child of an OL, which is a
descendant of a DIV.

6.6 Sequential selectors
Often, special formatting rules apply when two types of elements appear next to
each other in a document. For example, when block-level elements are laid out,
the vertical space between them collapses. In this case, the special formatting is
handled by the rules for collapsing margins p.110 , but in other cases of
sequential selectors, authors may want to specify their own special formatting
rules.

Sequential selectors have the following syntax: a forward slash ("/") precedes
the first selector and immediately the second selector. The sequential selector
matches if the element matched by the first selector precedes the element
matched by the second selector, and both have the same parent.

If, in addition, there is a tilde (~) between the selectors, then the sequential
selector matches if the element matched by the first selector immediately
precedes the element matched by the second selector, i.e., without any
intervening elements.

Thus, the following rule states that when a P element immediately follows a
MATH element, it should not be indented:

 /MATH ~ P/ { text-indent: 0 }

The next example brings an H2 that follows an H1 closer to it:

 /H1~H2/ { margin-top: -5mm }

Sequential selectors may be used along with other types of selectors.
Thus, for example, the following rule is similar to the one in the previous

example, except that the special formatting only occurs when H1 has
class="opener" (see the section on attribute selectors p.38):

 /H1.opener ~ H2/ { margin-top: -5mm }

Sequential selectors can also be used to match the first child of some element.
In this case the first selector is omitted, and the first slash is doubled, e.g., //P/ .

Some descriptions of SGML and XML refer to text data as a "PCDATA
element" or a "character-data pseudo-element". For CSS, text is never counted
as an element. E.g., the EM in <P>abc def is the first child of the P.

43

The following rule sets the font weight to "bold" for any EM element that is the
descendent of a paragraph that is the first child in some element. Note that in this
rule, the sequential selector "//P/" is the parent of "EM":

 //P/ EM { font-weight : bold }

Similarly, the following rule suppresses indentation for the first paragraph (P) of
a DIV:

 DIV ~ //P/ { text-indent: 0 }

This example would match the P inside the DIV of the following fragment:

 <P> The last P before the note.
 <DIV class="note">
 <P> The first P inside the note.
 </DIV>

but would not match the second P in the following fragment:

 <P> The last P before the note.
 <DIV class="note">
 <H2>Note</H2>
 <P> The first P inside the note.
 </DIV>

[Do we need the functionality of /H1 P/ , or only that of /H1~P/ and //P/ ?
Also, should /P// and //P// be added?]

Sequential selectors can be combined with other kinds of selectors: type
selectors and attribute selectors can occur inside the slashes, and sequential
selectors themselves can be part of contextual or parent-child selectors.

6.7 Pseudo-elements and pseudo-classes
In CSS2, style is normally attached to an element based on its position in the
document tree. This simple model is sufficient for many cases, but some
common publishing scenarios (such as changing the font size of the first letter of
a paragraph) may be independent of the document tree. For instance, in
[HTML40] p.236 , no element refers to the first line of a paragraph, and therefore
no simple CSS selector may refer to it.

CSS introduces the concepts of pseudo-elements and pseudo-classes to
extend the addressing model and permit formatting based on information that lies
outside the document tree.

Pseudo-elements refer to sub-parts of an element’s content (e.g., the first
letter or first line of a paragraph, etc.).
Pseudo-classes refer to elements that are grouped dynamically (e.g., all
links that have been visited, all left-hand pages, etc.)

Pseudo-classes are allowed anywhere in selectors while pseudo-elements
may only appear as the last segment of a selector.

Although pseudo-elements and pseudo-classes do not exist in the document
tree, their behavior is defined as if they did. Each pseudo-element and
pseudo-class may be modeled by a fictional tag sequence, a fragment of
document source that includes imaginary elements from the document language.

44

The fictional tag sequence is a tool to describe the rendering effects of
pseudo-elements and pseudo-classes and does not indicate how these should
be implemented.

Pseudo-elements and pseudo-class names are case-insensitive.
Note. In CSS2, only one pseudo-element can be specified per selector. This

may change in future versions of CSS.
Conforming UAs may ignore all rules with :first-line or :first-letter in the

selector, or, alternatively, may only support a subset of the properties on these
pseudo-elements. See the section on conformance for further information.

6.7.1 The :first-line pseudo-element
The :first-line pseudo-element is used to apply special styles to the first formatted
line. For instance:

 P:first-line { font-style: small-caps }

The above rule means "change the font style of the first line of every paragraph
to small-caps". However, the selector "P:first-line" does not match any real HTML
element. It does match a pseudo-element that conforming user agents will insert
at the beginning of every paragraph.

Note that the length of the first line depends on a number of factors, including
the width of the page, the font size, etc. Suppose for this example that the
paragraph is broken into the lines indicated in the example. Thus, an ordinary
HTML paragraph such as:

 <P>This is a somewhat long HTML paragraph that will
 be broken into several lines. The first line will be
 identified by a fictional tag sequence. The other lines will
 be treated as ordinary lines in the paragraph.</P>

will be "rewritten" by user agents to include the fictional tag sequence for
:first-line.

 <P>
 <P:first-line>This is a somewhat long HTML paragraph that will</P:first-line>
 be broken into several lines. The first line will be
 identified by a fictional tag sequence. The other lines will
 be treated as ordinary lines in the paragraph.</P>

If a pseudo-element breaks up a real element, the necessary extra tags must
be regenerated in the fictional tag sequence. Thus, if we mark up the previous
paragraph with a SPAN element:

 <P>This is a somewhat long HTML paragraph that will
 be broken into several lines. The first line will be
 identified by a fictional tag sequence. The other lines will
 be treated as ordinary lines in the paragraph.</P>

The user agent must generate the appropriate start and end tags for SPAN
when inserting the fictional tag sequence for :first-line.

 <P><P:first-line>This is a somewhat long HTML paragraph that will</P:first-line>
 be broken into several lines. The first line will be
 identified by a fictional tag sequence. The other lines will
 be treated as ordinary lines in the paragraph.</P>

45

The :first-line pseudo-element can only be attached to a block-level element.
The :first-line pseudo-element is similar to an inline element, but with certain

restrictions. Only the following properties apply to a :first-line element: font
properties p.?? , color properties p.?? , background properties p.131 ,
’word-spacing’ p.174 , ’letter-spacing’ p.173 , ’text-decoration’ p.172 ,
’vertical-align’ p.111 , ’text-transform’ p.175 , ’line-height’ p.111 , and ’clear’ p.89 ,

6.7.2 The :first-letter pseudo-element
[Define better alignment of drop caps? BB]

The :first-letter pseudo-element may be used for "initial caps" and "drop
caps" , which are common typographical effects. It is similar to an inline element if
its ’float’ p.87 property is ’none’, otherwise it is similar to a floating element.

These are the properties that apply to :first-letter pseudo-elements: font
properties p.?? , color properties p.?? , background properties p.131 ,
’text-decoration’ p.172 , ’vertical-align’ p.111 (only if ’float’ is ’none’),
’text-transform’ p.175 , ’line-height’ p.111 , margin properties p.60 , padding
properties p.63 , border properties p.65 , ’float’ p.87 , and ’clear’ p.89 .

The following CSS2 will make a dropcap initial letter span two lines:

<HTML>
 <HEAD>
 <TITLE>Title</TITLE>
 <STYLE type="text/css">
 P { font-size: 12pt; line-height: 12pt }
 P:first-letter { font-size: 200%; font-style: italic; font-weight: bold; float: left }
 SPAN { text-transform: uppercase }
 </STYLE>
 </HEAD>
 <BODY>
 <P>The first few words of an article in The Economist.</P>
 </BODY>
</HTML>

This example might be formatted as follows:

T HE FIRST few
words of an

article in the
Economist

The fictional tag sequence is:

 <P>

 <P:first-letter>
 T
 </P:first-letter>he first

 few words of an article in the Economist.
 </P>

Note that the :first-letter pseudo-element tags abut the content (i.e., the initial
character), while the :first-line pseudo-element start tag is inserted right after the
start tag of the element to which it is attached.

The UA defines what characters are inside the :first-letter element. Quotes that
precede the first letter should be included, as in:

46

"A bird in
the hand
is worth

two in the bush,"
says an old proverb.

When the paragraph starts with other punctuation (e.g., parenthesis and
ellipsis points) or other characters that are normally not considered letters (e.g.,
digits and mathematical symbols), :first-letter pseudo-elements are usually
ignored.

The :first-letter pseudo-element can only be attached to a block-level element.
Note. Some languages may have specific rules about how to treat certain

letter combinations. In Dutch, for example, if the letter combination "ij" appears at
the beginning of a word, they should both be considered within the :first-letter
pseudo-element.

6.7.3 Overlapping pseudo-elements
Several pseudo-element rules may have an impact on the same content.

In the following example, the first letter of each P element will be green with a
font size of 24pt. The rest of the first formatted line will be blue while the rest of
the paragraph will be red.

 P { color: red; font-size: 12pt }
 P:first-letter { color: green; font-size: 200% }
 P:first-line { color: blue }

 <P>Some text that ends up on two lines</P>

Assuming that a line break will occur before the word "ends", the fictional tag
sequence for this fragment is:

 <P>
 <P:first-line>
 <P:first-letter>
 S
 </P:first-letter>ome text that
 </P:first-line>
 ends up on two lines
 </P>

Note that the :first-letter element is inside the :first-line element. Properties set
on :first-line will be inherited by :first-letter, but are overridden if the same
property is set on :first-letter.

6.7.4 Pseudo-elements with contextual selectors
In a contextual selector, pseudo-elements are only allowed at the end of the
selector.

The following example illustrates this with the :first-letter pseudo-element.

 BODY P:first-letter { color: purple }

47

Pseudo-classes may also be used in contextual selectors.
The following example sets the border color to blue of all images that descend

from A elements that have not yet been visited:

 A:link IMG { border: solid blue }

6.7.5 Anchor pseudo-classes: :link , :active , and
:visited
User agents commonly display unvisited links differently from previously visited
ones. CSS2 allows authors to specify the rendering of a link in one of several
states:

The :link pseudo-class applies for links that have not yet been visited.
The :active pseudo-class applies while the link is being activated by the
user.
The :visited pseudo-class applies once the link has been visited by the user.
Note. After a certain amount of time, user agents may choose to return a
visited link to the (unvisited) ’link’ state.

The three states are mutually exclusive.

 A:link { color: red } /* unvisited links */
 A:active { color: lime } /* active links */
 A:visited { color: blue } /* visited links */

User agents are not required to reformat a currently displayed document due
to anchor pseudo-class transitions. For instance, a style sheet may legally
specify that the ’font-size’ p.144 of an :active link should be larger that a :visited
link, but the UA is not required to dynamically reformat the document when the
reader selects the :visited link.

In HTML, the following two CSS2 declarations are equivalent and select the
same elements:

 A:link { color: red }
 :link { color: red }

6.7.6 Combining pseudo-elements with normal classes
Pseudo-classes can be combined with normal classes. In this case, the class
name must precede the pseudo-class name in the selector.

If the following link:

 external link

has been visited, this rule:

 A.external:visited { color: blue }

will cause it to be blue.
Pseudo-elements can also be combined with attribute selectors.
Thus, the following rule:

48

 P.initial:first-letter { color: red }

would make the first letter of all P elements with "class=initial" such as the
following, the color red:

 <P class="initial">First paragraph

Pseudo-elements must be specified at the end of the selector.

6.7.7 Colliding attribute selectors and pseudo-classes
CSS syntax allows the following rules to co-exist:

 A:link { color: red } /* The :link pseudo-class */
 A.link { color: green } /* In HTML, class=link */
 A#link { color: blue } /* In HTML, id=link */

Since a link may have class="link", id="link", and belong to the pseudo-class
:link simultaneously (i.e., be unvisited), user agents must resolve the colliding
rules. User agents must do so according to the cascading order p.51 .

49

50

7 Cascade
Contents

1. Cascading order p.51
1. ’Important’ rules p.52
2. Cascading order in HTML p.52
3. Precedence of non-CSS presentational hints p.53

In CSS, more than one style sheet can simultaneously influence a the
presentation of a document and rules from these style sheets may overlap in
scope (e.g., two rules that apply to the same element specify a font size). CSS
resolves these conflicts by assigning a weight to each style rule and when
several rules apply, choosing the one with the greatest weight. This is known as
the cascade .

By default, rules in a user’s personal style sheets have less weight than rules
in the author’s documents. Thus, if there are conflicts between the style sheets of
an incoming document and the reader’s personal sheets, the author’s rules will
be used. Both reader and author rules override the UA’s default style sheet.

Imported style sheets also cascade and their weight depends on their import
order. Rules specified in a given style sheet override rules imported from other
style sheets. Imported style sheets can themselves import and override other
style sheets, recursively, and the same precedence rules apply.

7.1 Cascading order
Conflicting rules are intrinsic to the CSS mechanism. To find the value for an
element/property combination, user agents must apply the following algorithm:

1. Find all declarations that apply to the element/property in question.
Declarations apply if the associated selector matches the element in
question. If no declarations apply, terminate the algorithm.

2. Sort the declarations by explicit weight: declarations marked ’!important’
carry more weight than unmarked (normal) declarations. See the section on
’important’ rules for more information.

3. Sort by origin: the author’s style sheets override the reader’s style sheet
which override the UA’s default values. An imported style sheet has the
same origin as the style sheet from which it is imported.

4. Sort by specificity of selector: more specific selectors will override more
general ones. The definition and calculation of specificity is object-language
dependent. Pseudo-elements and pseudo-classes are counted as normal
elements and classes, respectively.

5. Sort by order specified: if two rules have the same weight, the latter
specified wins. Rules in imported style sheets are considered to be before
any rules in the style sheet itself.

The search for the property value must be terminated when any of the above
steps yields a rule that has a higher weight than the other rules that apply to the
same element/property combination.

51

If the cascade does not yield a value, the user agent must seek an inherited
value, and if no value inherits, the user agent must assign the initial value. (See
the CSS2 processing model for more general information.)

This strategy gives author’s style sheets considerably higher weight than those
of the reader. It is therefore important that the User agent gives the user the
ability to turn off the influence of a certain style sheet, e.g., through a pull-down
menu.

7.1.1 ’Important’ rules
Style sheet designers can increase the weights of their declarations by declaring
them ’important’ .

 H1 { color: black ! important; background: white ! important }
 P { font-size: 12pt ! important; font-variant: italic }

In the example above, the first three declarations have increased weight, while
the last declaration has normal weight.

A reader rule with an important declaration will override an author rule with a
normal declaration. An author rule with an important declaration will override a
reader rule with an important declaration.

Declaring a shorthand property (e.g., ’background’ p.135) to be important is
equivalent to declaring all of its sub-properties important.

7.1.2 Cascading order in HTML
In HTML, a selector’s specificity is calculated as follows:

(a) count the number of "id" attributes in the selector
(b) count the number of other attributes in the selector (including class
attributes)
(c) count the number of element names in the selector

Concatenating the three numbers (in a number system with a large base) gives
the specificity.

Some examples:

 LI {...} /* a=0 b=0 c=1 -> specificity = 1 */
 UL LI {...} /* a=0 b=0 c=2 -> specificity = 2 */
 UL OL~LI {...} /* a=0 b=0 c=3 -> specificity = 3 */
 /H1 [REL=up]/ {...} /* a=0 b=1 c=1 -> specificity = 11 */
 UL OL LI.red {...} /* a=0 b=1 c=3 -> specificity = 13 */
 LI.red.level {...} /* a=0 b=2 c=1 -> specificity = 21 */
 #x34y {...} /* a=1 b=0 c=0 -> specificity = 100 */

A declaration in the "style" attribute of an element has the same weight as a
declaration with an "id"-based selector that is specified at the end of the style
sheet:

<STYLE type="text/css">
 #x97z { color: blue }
</STYLE>

<P ID=x97z style="color: red">

52

In the above example, the color of the P element would be red. Although the
specificity is the same for both declarations, the declaration in the "style" attribute
will override the one in the STYLE element because of cascading rule number 5.

7.1.3 Precedence of non-CSS presentational hints
The UA may choose to honor presentational hints from other sources than style
sheets, for example the FONT element or the "align" attribute in HTML. If so, the
non-CSS presentational hints must be translated to the corresponding CSS rules
with specificity equal to 1. The rules are assumed to be at the start of the author
style sheet and may be overridden by subsequent style sheet rules.

Note. In a transition phase, this policy will make it easier for stylistic attributes
to coexist with style sheets.

53

54

8 Media types
Contents

1. Introduction to media types p.55
2. Specifying media-dependent style sheets p.55

1. The @media rule p.56
2. The media-dependent @import rule p.56

3. Recognized media types p.56
1. The canvas p.57

1. Scrollable media p.57

8.1 Introduction to media types
One of the most important features of style sheets is that they allow authors to
specify how a document is to be presented on different media: on the screen, on
paper, with a speech synthesizer, with a braille device, etc.

Certain CSS properties only make sense for certain media (e.g., the
’cue-before’ p.205 property for aural style sheets). On occasion, however, style
sheets for different media types may share a property, but require different
values for that property. For example, the ’font-size’ p.144 property is useful both
for screen and print media. However, the two media are different enough to
require different values for the common property; a document will typically need a
larger font on a computer screen than on paper. Experience also shows that
sans serif fonts are easier to read on screen, while fonts with serifs are easier to
read on paper. For these reasons, it is necessary to express that a style sheet --
or a section of a style sheet -- applies to certain media types.

The following sections describe how authors may specify different style sheets
for different media (all of which participate in the cascade).

8.2 Specifying media-dependent style sheets
There are currently two ways to specify media dependencies for style sheets:

Specify the target medium from a style sheet with the @media or @import
at-rules.

 @import url(loudvoice.css) speech;
 @media print {
 /* style sheet for print goes here */
 }

Specify the target medium within the document language. For example, in
[HTML40] p.236 , the "media" attribute on the LINK element specifies the
target medium of an external style sheet.

 <LINK rel="stylesheet" type="text/css"
 media="print" href="foo.css">

55

Please consult the [HTML40] p.236 specification for information about
specifying alternate style sheets according to different media types.

Since these two examples have the same media type p.56 , they are
semantically equivalent.

8.2.1 The @media rule
An @media rule lists the media types p.56 (separated by commas) affected by a
set of rules delimited by curly braces.

The @media construct allows style sheet rules for various media in the same
style sheet:

 @media print {
 BODY { font-size: 10pt }
 }
 @media screen {
 BODY { font-size: 12pt }
 }
 @media screen, print {
 BODY { line-height: 1.2 }
 }

8.2.2 The media-dependent @import rule
So that user agents can avoid retrieving resources for unsupported media types,
authors may specify media-dependent @import rules. These conditional imports
specify comma-separated media types after the URL.

The following rules have the same effect as if the imported style sheet were
wrapped in an @media rule for the same media, but it may save the UA a
fruitless download.

@import url(fineprint.css) print;
@import url(blueish.css) projection, tv;

In the absence of any media types, the import is unconditional. Specifying ’all’
for the medium has the same effect.

8.3 Recognized media types
Due to rapidly changing technologies, CSS2 does not specify a definitive list of
media types that may be values for @media . However, user agents that elect to
support the devices in the following list must recognize the associated media
type:

SCREEN: intended primarily for scrolled color computer screens. See the
section on scrollable media p.57 for more information.
PRINT: intended for paged, opaque material and for documents viewed on
screen in print preview mode. Please consult the section on paged media
p.119 for information about formatting issues that are specific to paged
media.
PROJECTION: intended for projected presentations, for example projectors
or print to transparencies. Please consult the section on paged media p.119
for information about formatting issues that are specific to paged media.

56

BRAILLE: intended for braille tactile feedback devices. [HWL: we should
also have a media type for Braille printers]
AURAL: intended for speech synthesizers. See the section on aural style
sheets p.201 for details.
TV: intended for television-type devices (low resolution, color, limited
scrollability).
HANDHELD: intended for handheld devices (small screen, monochrome,
limited bandwidth).
ALL: suitable for all devices.

Media types are case-insensitive.

8.3.1 The canvas
For all media, the term canvas means "the space where rendering objects are
rendered" (see the CSS2 process model). For a screen, the canvas is a
rectangular space generally of fixed width and "infinite" length. For paged media,
the canvas is a sequence of rectangular page boxes of fixed width and height.
For aural media, the canvas is a three dimensional audio space.

Scrollable media

User agents for scrolled media may implement the canvas as an "infinitely" long
(or however long the rendered document is) rectangle that has a fixed width.
Users see this canvas through a user agent’s viewport , a window or other
viewing area on the screen. The canvas may be larger or smaller than the
viewport. Typically, when the canvas is larger than the viewport, the user agent
will offer the user a scrolling mechanism to bring hidden parts into view.

The user agent generally determines the width of the canvas and may change
the dimensions of the canvas when the viewport is resized.

In general, when a document doesn’t cover the entire canvas, the User agent
should "borrow" the background of the root element. Since the BODY element is
often percieved as the root element in HTML, this special rules apply to HTML
documents: if the ’background’ p.135 value of the HTML element is different
from ’transparent’ then use it, else use the ’background’ p.135 value of the
BODY element. If the resulting value is ’transparent’, the rendering is undefined.

This rule allows the following:

 <HTML style="background: url(http://style.com/marble.png)">
 <BODY style="background: red">

In the example above, the canvas will be covered with "marble". The
background of the BODY element (which may or may not fully cover the canvas)
will be red.

Note that no structural element of a document corresponds to the canvas. In
HTML, until other means of addressing the canvas become available, we
recommend that authors set canvas properties on the BODY element.

57

58

9 The box model
Contents

1. Introduction to the box model p.59
2. Box dimensions p.59
3. Margin properties p.60 : ’margin-top’ p.61 , ’margin-right’ p.61 ,

’margin-bottom’ p.61 , ’margin-left’ p.62 , and ’margin’ p.62
1. Values for <margin-width> p.61

4. Padding properties p.63 : ’padding-top’ p.63 , ’padding-right’ p.63 ,
’padding-bottom’ p.64 , ’padding-left’ p.64 , and ’padding’ p.64

1. Values for <padding-width> p.63
5. Border properties p.65

1. Border width p.65 : ’border-top-width’ p.66 , ’border-right-width’ p.66 ,
’border-bottom-width’ p.66 , ’border-left-width’ p.67 , and ’border-width’
p.67

1. Values for <border-width> p.65
2. Border color p.68 : ’border-top-color’ p.68 , ’border-right-color’ p.68 ,

’border-bottom-color’ p.68 , ’border-left-color’ p.68 , and ’border-color’
p.73

3. Border style p.69 : ’border-top-style’ p.69 , ’border-right-style’ p.70 ,
’border-bottom-style’ p.70 , ’border-left-style’ p.70 , and ’border-style’
p.71

6. Example of margins, padding, and borders p.??

9.1 Introduction to the box model
The CSS box model describes the box rendering object. This object is
characterized in particular by three groups of properties: margin p.60 , padding
p.63 , and border p.65 , described below.

For information on the layout of boxes, please consult the section on the visual
flow model p.79 .

The page box p.119 is a special kind of box which is described in detail on the
section on paged media p.119 .

9.2 Box dimensions
Each box has a core content area (e.g., text, an image, etc.) and optional
surrounding padding, border and margin areas. The following diagram illustrates
how these areas relate and defines more precise terminology used to describe
pieces of margin, border, and padding:

59

Content

Border

Margin (Transparent)

Padding

Bottom

Top

Right

Inner bottom

Right padding

Right border

Right margin

Top margin

Top border

Top padding

Bottom padding

Bottom border

Bottom margin

Left padding

Left border

Left margin

Inner left

Inner top

Left

Inner right

The width (resp., height) of the box is given by the sum of the content width
(resp., height), the padding, the border, and the margin. The size of the margin,
border and padding are set with the margin p.60 , padding p.63 , and border p.65
 properties, respectively.

The width of the element is the width of the content, i.e., the distance between
left inner edge and right inner edge. The height of the element is the height of the
content, i.e., the distance from inner top to inner bottom.

The outer edge is the edge of an element including its padding, border, and
margin. The inner edge is the edge of the content only, inside any padding,
border or margin.

The top is the top of the object including any padding, border and margin; it is
only defined for inline p.82 and floating elements, not for non-floating block-level
elements. The inner top is the top of the content, inside any padding, border or
margin. The bottom is the bottom of the element, outside any padding border and
margin; it is only defined for inline and floating elements p.87 , not for
non-floating block-level elements. The inner bottom is the bottom of the element,
inside any padding, border and margin.

In the following sections, we define the properties that allow authors to set
margins, padding, and borders. There are no properties to set the color of
margins and padding; margins are always transparent and padding areas always
uses the background of the element itself.

9.3 Margin properties: ’margin-top’,
’margin-right’, ’margin-bottom’, ’margin-left’, and
’margin’
Margin properties set the margin of an element. The ’margin’ p.62 property sets
the border for all four sides while the other margin properties only set their
respective side.

60

Values for <margin-width>

The properties defined in this section refer to the <margin-width> p.61 value
type, whose possible values may be:

<length> | <percentage> | auto
Negative values for margin properties are allowed, but there may be

implementation-specific limits.
Percentage values for margin properties refer to the width of the containing

block.
’margin-top’

Property name: ’margin-top’

Value: <margin-width> p.61

Initial: 0

Applies to: all elements

Inherited: no

Percentage values: refer to parent block element’s width

This property sets the top margin of an element. It applies to replaced and
block-level elements.

 H1 { margin-top: 2em }

’margin-right’

Property name: ’margin-right’

Value: <margin-width> p.61

Initial: 0

Applies to: all elements

Inherited: no

Percentage values: refer to parent block element’s width

This property sets the right margin of an element:

 H1 { margin-right: 12.3% }

’margin-bottom’

61

Property name: ’margin-bottom’

Value: <margin-width> p.61

Initial: 0

Applies to: all elements

Inherited: no

Percentage values: refer to parent block element’s width

This property sets the bottom margin of an element. It applies to replaced and
block-level elements.

 H1 { margin-bottom: 3px }

’margin-left’

Property name: ’margin-left’

Value: <margin-width> p.61

Initial: 0

Applies to: all elements

Inherited: no

Percentage values: refer to parent block element’s width

This property sets the left margin of an element:

 H1 { margin-left: 2em }

’margin’

Property name: ’margin’

Value: <margin-width> p.61 {1,4}

Initial: not defined for shorthand properties

Applies to: all elements

Inherited: no

Percentage values: refer to parent block element’s width

The ’margin’ p.62 property is a shorthand property for setting ’margin-top’ p.61
, ’margin-right’ p.61 ’margin-bottom’ p.61 and ’margin-left’ p.62 at the same
place in the style sheet.

If four length values are specified they apply to top, right, bottom and left
respectively. If there is only one value, it applies to all sides, if there are two or
three, the missing values are taken from the opposite side.

62

 BODY { margin: 2em } /* all margins set to 2em */
 BODY { margin: 1em 2em } /* top & bottom = 1em, right & left = 2em */
 BODY { margin: 1em 2em 3em } /* top=1em, right=2em, bottom=3em, left=2em */

The last rule of the example above is equivalent to the example below:

 BODY {
 margin-top: 1em;
 margin-right: 2em;
 margin-bottom: 3em;
 margin-left: 2em; /* copied from opposite side (right) */
 }

9.4 Padding properties: ’padding-top’,
’padding-right’, ’padding-bottom’, ’padding-left’,
and ’padding’
The padding properties describe how much space to insert between the border
and the content (e.g., text or image). The ’padding’ p.64 property sets the
padding for all four sides while the other padding properties only set their
respective side.

9.4.1 Values for <padding-width>
The properties defined in this section refer to the <padding-width> p.63 value
type, whose possible values may be:

<length> | <percentage>
Unlike margin properties, values for padding values cannot be negative.
Like margin properties, percentage values for padding properties refer to the

width of the containing block.
’padding-top’

Property name: ’padding-top’

Value: <padding-width> p.63

Initial: 0

Applies to: all elements

Inherited: no

Percentage values: refer to parent block element’s width

This property sets the top padding of an element.

 BLOCKQUOTE { padding-top: 0.3em }

’padding-right’

63

Property name: ’padding-right’

Value: <padding-width> p.63

Initial: 0

Applies to: all elements

Inherited: no

Percentage values: refer to parent block element’s width

This property sets the right padding of an element.

 BLOCKQUOTE { padding-right: 10px }

’padding-bottom’

Property name: ’padding-bottom’

Value: <padding-width> p.63

Initial: 0

Applies to: all elements

Inherited: no

Percentage values: refer to parent block element’s width

This property sets the bottom padding of an element.

 BLOCKQUOTE { padding-bottom: 2em }

’padding-left’

Property name: ’padding-left’

Value: <padding-width> p.63

Initial: 0

Applies to: all elements

Inherited: no

Percentage values: refer to parent block element’s width

This property sets the left padding of an element.

 BLOCKQUOTE { padding-left: 20% }

’padding’

64

Property name: ’padding’

Value: <padding-width> p.63 {1,4}

Initial: not defined for shorthand properties

Applies to: all elements

Inherited: no

Percentage values: refer to parent element’s width

The ’padding’ p.64 property is a shorthand property for setting ’padding-top’
p.63 , ’padding-right’ p.63 , ’padding-bottom’ p.64 , and ’padding-left’ p.64 at the
same place in the style sheet.

If four values are specified they apply to top, right, bottom and left respectively.
If there is only one value, it applies to all sides, if there are two or three, the
missing values are taken from the opposite side.

The surface of the padding area is set with the ’background’ p.135 property:

 H1 {
 background: white;
 padding: 1em 2em;
 }

The example above sets a ’1em’ padding vertically (’padding-top’ p.63 and
’padding-bottom’ p.64) and a ’2em’ padding horizontally (’padding-right’ p.63
and ’padding-left’ p.64). The ’em’ unit is relative to the element’s font size: ’1em’
is equal to the size of the font in use.

9.5 Border properties
The border properties set the borders of an element. Each element has four
borders, one on each side, that are defined by their width, color and style.

9.5.1 Border width: ’border-top-width’,
’border-right-width’, ’border-bottom-width’,
’border-left-width’, and ’border-width’

Values for <border-width>

The properties defined in this section refer to the <border-width> p.65 value
type, whose possible values may be:

’thin’ | ’medium’ | ’thick’ | <length>

The interpretation of the first three values depends on the user agent. The
following must hold, however:

’thin’ <=’medium’ <= ’thick’.
Furthermore, these widths must be constant throughout a document.

65

Border widths cannot be negative.
’border-top-width’

Property name: ’border-top-width’

Value: <border-width> p.65

Initial: medium

Applies to: all elements

Inherited: no

Percentage values: N/A

This property sets the width of an element’s top border.

 H1 { border: solid thick red }
 P { border: solid thick blue }

In the example above, H1 and P elements will have the same border width
regardless of font size. To achieve relative widths, the ’em’ unit can be used:

 H1 { border: solid 0.5em }

’border-right-width’

Property name: ’border-right-width’

Value: <border-width> p.65

Initial: medium

Applies to: all elements

Inherited: no

Percentage values: N/A

This property sets the width of an element’s right border.
’border-bottom-width’

Property name: ’border-bottom-width’

Value: <border-width> p.65

Initial: medium

Applies to: all elements

Inherited: no

Percentage values: N/A

66

This property sets the width of an element’s bottom border.
’border-left-width’

Property name: ’border-left-width’

Value: <border-width> p.65

Initial: medium

Applies to: all elements

Inherited: no

Percentage values: N/A

This property sets the width of an element’s left border.
’border-width’

Property name: ’border-width’

Value: <border-width> p.65 {1,4}

Initial: see individual properties

Applies to: all elements

Inherited: no

Percentage values: N/A

This property is a shorthand property for setting ’border-top-width’ p.66 ,
’border-right-width’ p.66 , ’border-bottom-width’ p.66 , and ’border-left-width’ at
the same place in the style sheet.

There can be from one to four values, with the following interpretation:

one value: all four border widths are set to that value
two values: top and bottom border widths are set to the first value, right and
left are set to the second
three values: top is set to the first, right and left are set to the second, bottom
is set to the third
four values: top, right, bottom and left, respectively

In the examples below, the comments indicate the resulting widths of the top,
right, bottom and left borders:

 H1 { border-width: thin } /* thin thin thin thin */
 H1 { border-width: thin thick } /* thin thick thin thick */
 H1 { border-width: thin thick medium } /* thin thick medium thick */

67

9.5.2 Border color: ’border-top-color’,
’border-right-color’, ’border-bottom-color’,
’border-left-color’, and ’border-color’
’border-top-color’

Property name: ’border-top-color’

Value: <color>

Initial: the value of the ’color’ property

Applies to: all elements

Inherited: no

Percentage values: N/A

’border-right-color’

Property name: ’border-right-color’

Value: <color>

Initial: the value of the ’color’ property

Applies to: all elements

Inherited: no

Percentage values: N/A

’border-bottom-color’

Property name: ’border-bottom-color’

Value: <color>

Initial: the value of the ’color’ property

Applies to: all elements

Inherited: no

Percentage values: N/A

’border-left-color’

68

Property name: ’border-left-color’

Value: <color>

Initial: the value of the ’color’ property

Applies to: all elements

Inherited: no

Percentage values: N/A

’border-color’

Property name: ’border-color’

Value: <color>{1,4}

Initial: see individual properties

Applies to: all elements

Inherited: no

Percentage values: N/A

The ’border-color’ p.69 property sets the color of the four borders.
’border-color’ p.69 can have from one to four values, and the values are set on
the different sides as for ’border-width’ p.67 above.

If no color value is specified, the value of the ’color’ p.131 property of the
element itself will take its place:

 P {
 color: black;
 background: white;
 border: solid;
 }

In the above example, the border will be a solid black line.

9.5.3 Border style: ’border-top-style’,
’border-right-style’, ’border-bottom-style’,
’border-left-style’, and ’border-style’

Values for <border-style>

The border style properties refer to the <border-style> value type which is
defined as follows:

none | dotted | dashed | solid | double | groove | ridge | inset | outset

’border-top-style’

69

Property name: ’border-top-style’

Value: <border-style>

Initial: none

Applies to: all elements

Inherited: no

Percentage values: N/A

’border-right-style’

Property name: ’border-right-style’

Value: <border-style>

Initial: none

Applies to: all elements

Inherited: no

Percentage values: N/A

’border-bottom-style’

Property name: ’border-bottom-style’

Value: <border-style>

Initial: none

Applies to: all elements

Inherited: no

Percentage values: N/A

’border-left-style’

Property name: ’border-left-style’

Value: <border-style>

Initial: none

Applies to: all elements

Inherited: no

Percentage values: N/A

70

’border-style’

Property name: ’border-style’

Value: <border-style>{1,4}

Initial: see individual properties

Applies to: all elements

Inherited: no

Percentage values: N/A

The ’border-style’ p.71 property sets the style of the four borders. It can have
from one to four values, and the values are set on the different sides as for
’border-width’ p.67 above.

 #xy34 { border-style: solid dotted }

In the above example, the horizontal borders will be ’solid’ and the vertical
borders will be ’dotted’.

Since the initial value of the border styles is ’none’, no borders will be visible
unless the border style is set.

The border styles mean:

none
no border is drawn (regardless of the ’border-width’ p.67 property’s value)

dotted
the border is a dotted line drawn on top of the background of the element

dashed
the border is a dashed line drawn on top of the background of the element

solid
the border is a solid line

double
the border is a double line drawn on top of the background of the element.
The sum of the two single lines and the space between equals the value of
’border-width’ p.67 .

groove
a 3D groove is drawn in colors based on the value of the ’color’ p.131
property.

ridge
a 3D ridge is drawn in colors based on the value of the ’color’ p.131
property.

inset
a 3D inset is drawn in colors based on the value of the ’color’ p.131
property.

outset
a 3D outset is drawn in colors based on the value of the ’color’ p.131
property.

71

UAs may interpret all of ’dotted’, ’dashed’, ’double’, ’groove’, ’ridge’, ’inset’ and
’outset’ as ’solid’. See the section on conformance for details. ’border-top’ p.72 ,
’border-bottom’ p.72 , ’border-right’ p.72 , ’border-left’ p.73 , and ’border’ p.73

’border-top’

Property name: ’border-top’

Value: <’border-top-width’> p.66 || <’border-style’> p.71 ||
<color>

Initial: see individual properties

Applies to: all elements

Inherited: no

Percentage
values:

N/A

This is a shorthand property for setting the width, style and color of an
element’s top border.

 H1 { border-bottom: thick solid red }

The above rule will set the width, style and color of the border below the H1
element. Omitted values will be set to their initial values:

 H1 { border-bottom: thick solid }

Since the color value is omitted in the example above, the border color will be
the same as the ’color’ value of the element itself.

Note that while the ’border-style’ p.71 property accepts up to four values, this
property only accepts one style value.

’border-bottom’

Property name: ’border-bottom’

Value: <’border-bottom-width’> p.66 || <’border-style’> p.71 ||
<color>

Initial: see individual properties

Applies to: all elements

Inherited: no

Percentage
values:

N/A

This is a shorthand property for setting the width, style and color of an
element’s bottom border. It behaves just like ’border-top’ p.72 .

’border-right’

72

Property name: ’border-right’

Value: <’border-right-width’> p.66 || <’border-style’> p.71 ||
<color>

Initial: see individual properties

Applies to: all elements

Inherited: no

Percentage
values:

N/A

This is a shorthand property for setting the width, style and color of an
element’s right border. It behaves just like ’border-top’ p.72 .

’border-left’

Property name: ’border-left’

Value: <’border-left-width’> p.67 || <’border-style’> p.71 ||
<color>

Initial: see individual properties

Applies to: all elements

Inherited: no

Percentage
values:

N/A

This is a shorthand property for setting the width, style and color of an
element’s left border. It behaves just like ’border-top’ p.72 .

’border’

Property name: ’border’

Value: <’border-width’> p.67 || <’border-style’> p.71 ||
<color>

Initial: see individual properties

Applies to: all elements

Inherited: no

Percentage
values:

N/A

The ’border’ p.73 property is a shorthand property for setting the same width,
color and style on all four borders of an element.

73

Unlike the shorthand ’margin’ p.62 and ’padding’ p.64 properties, the ’border’
p.73 property cannot set different values on the four borders. To do so, one or
more of the other border properties must be used.

Note that while the ’border-width’ p.67 property accepts up to four length
values, this property only accepts one.

For example, the first rule below is equivalent to the set of four rules shown
after it:

 P { border: solid red }
 P {
 border-top: solid red;
 border-right: solid red;
 border-bottom: solid red;
 border-left: solid red
 }

Since to some extent the properties have overlapping functionality, the order in
which the rules are specified becomes important.

Consider this example:

 BLOCKQUOTE {
 border-color: red;
 border-left: double
 color: black;
 }

In the above example, the color of the left border will be black, while the other
borders are red. This is due to ’border-left’ p.73 setting the width, style and color.
Since the color value is not given by the ’border-left’ p.73 property, it will be
taken from the ’color’ p.131 property. The fact that the ’color’ p.131 property is
set after the ’border-left’ p.73 property is not relevant.

Example of margins, padding, and borders
This example illustrates how margins, padding, and borders interact. The
example HTML document:

 <STYLE type="text/css">
 UL {
 background: orange;
 margin: 12px 12px 12px 12px
 padding: 3px 3px 3px 3px
 /* No borders set */
 }
 LI {
 color: white; /* text color is white */
 background: blue; /* Content, padding will be blue */
 margin: 12px 12px 12px 12px
 padding: 12px 0px 12px 12px /* Note 0px padding right */
 list-style: none /* no glyphs before a list item */
 /* No borders set */
 }
 LI.withborder {
 border-style: dashed;
 border-width: medium; /* sets border width on all sides */
 border-color: green;
 }
 </STYLE>

74

 First element of list
 <LI class="withborder">Second element of list is longer
 to illustrate wrapping.

results in a document tree with (among other relationships) a UL element that
has two LI children. According to the visual rendering model p.80 , the LI
elements are laid out vertically (one after the other) and form the content of the
UL.

The first of the following diagrams illustrates what this example would produce.
The second illustrates the relationship between the margins, padding, and
borders of the UL elements and those of its children LI elements.

75

UL margins

Second element of list
is longer to illustrate
wrapping

LI padding

LI padding
First element of list

UL padding

LI margins

Box width of UL

Collapsed margin is
max(12px, 12px)=12px

Content width of UL

Second element of list
is longer to illustrate
wrapping

First element of list

Content width of LI

Note that:

The width of content for each LI element has not been specified by the
’width’ p.105 property. Therefore, according to the rules of the box height
calculations p.108 , the width allotted for the content of each LI element is
the width of the parent element’s (UL) content less the margins, padding,
and border of the LI elements. The width of the UL element is determined by
the width of its parent, not shown explicitly here.

76

The height of each LI element’s contents is determined by the height of the
content. The height of the UL element’s content is determined by the sum of
the heights of the LI elements’ content, plus LI margins, padding, and
borders (see the section on box height calculations p.108 for details). Note
that vertical margins between the LI boxes collapse. p.110
The initial border style is ’none’, and this value must be changed for a border
to be rendered. In the example above, only the second list-item element
changes the border style.
The right side padding of the LI elements has been set to zero width. The
effect is apparent in the second illustration.
The foreground color of the LI elements has been set to white for legibility
against a blue background.
The margins and padding of the LI elements are transparent (due to the
initial value), so the background color of the UL elements (orange) shines
through the transparent LI margins. However, the (blue) background color
(blue) of the LI elements changes the color of the LI padding and content.
Although padding and margin properties are not inherited, the LI elements
are still offset by the UL margin.

77

78

10 Visual rendering model
Contents

1. Introduction to the visual rendering model p.79
2. Establishing box positions p.80

1. Containing blocks p.81
2. Direction of flow p.81

3. Normal flow p.82
1. Block-level layout p.82

1. List-item elements p.82
2. Inline layout p.82

1. Anonymous text boxes p.83
3. Dual-mode elements p.84 : run-in and compact
4. Relative positioning p.85
5. Controlling layout behavior p.86 : the ’display’ p.86 property

4. Floats p.87 : ’float’ p.87 and ’clear’ p.89
1. Controlling floats p.89

5. Absolute positioning p.90
1. Properties to specify position p.91 : ’top’ p.91 , ’right’ p.91 , ’bottom’ p.91

, ’left’ p.91
2. Fixed positioning p.92

6. Comparison of normal, relative, floating, absolute positioning p.92
1. Normal flow p.93
2. Relative positioning p.94
3. Floating a box p.94
4. Absolute positioning p.97

7. Z-order p.101 : Layered presentation
1. Specifying the stack level p.101 : the ’z-index’ p.101 property

8. Multicolumn layout p.102

10.1 Introduction to the visual rendering model
The following sections describe how user agents construct a tree of box
rendering objects.

Most elements in the document tree generate a corresponding box in the tree
of rendering objects that participates in the formatting algorithms known as the
visual flow model. p.80 The dimensions of each rectangular box, the relationship
of the box to its parent and children in the tree of rendering objects, and other
factors all affect how the user agent will lay out these boxes on the canvas.

All elements that have text content (block or inline) generate "anonymous"
boxes in the tree of boxes. These anonymous boxes p.83 , which contain
"chunks" of text, inherit properties (colors, fonts, etc.) from their ancestor boxes.
By default, anonymous boxes are inline, i.e., text is laid out horizontally.
Decisions about the construction of anonymous boxes depend on many factors
(language, hyphenation, etc.) and lie outside the scope of this specification.

79

Elements with a value of ’none’ for the ’display’ p.86 property generate no box
in the tree of rendering objects. Thus, those elements have no impact on the
positioning of any boxes.

Finally, some elements in the document tree generate a box in the tree of
rendering objects but that box is invisible. It cannot be seen, but it does
participate in formatting algorithms. Please consult the section on visibility p.117
for details.

Normally, child boxes are positioned within the box of their parent. However, a
child box may extend horizontally beyond the bounding box of its parent in
certain situations. These are described in the section on overflow p.113 .

CSS2 does not specify all aspects of formatting (e.g., letter-spacing algorithm).
Conforming user agents may format differently for situations not covered in this
specification.

10.2 Establishing box positions
The visual rendering model describes how user agents generate a tree of box
rendering objects. The bulk of this model involves calculating the positions of
boxes based on their dimensions, their position in the rendering tree, and the
dimensions of the canvas.

The value of the ’position’ p.80 property determines which of the positioning
models will determine a box’s final position on the canvas.

’position’

Property name: ’position’

Value: absolute | relative | static

Initial: static

Applies to: all elements

Inherited: no

Percentage values: N/A

The values of this property have the following meanings:

’static’: Static boxes belong to the normal flow and are described in this
section.
’relative’: The box generated for this element will first be positioned
according to the normal flow, then offset. Relative positioning is described in
a separate section p.85 .
’absolute’: The box generated for this element will be given an absolute
position (and possibly size) with respect to a positioning block. Absolutely
positioned elements are described in a separate section p.90 .
’fixed; Fixed positioning is a variant of absolute positioning where elements
are fixed with respect to the canvas. These are described in the section on
fixed positioning p.92 .

80

Note. The ’static’ value causes some user agents to ignore the ’left’ p.91 and
’top’ p.91 properties. To ensure that values of ’left’ p.91 and ’top’ p.91 are taken
into account, authors should explicitly set the value of the ’position’ p.80 property
to ’relative’.

10.2.1 Containing blocks
In CSS2, all box positions are calculated with respect to a rectangular box called
a containing block

The containing block is defined as follows:

If a box has no parent, then it has no containing block
Otherwise, if the value of the ’display’ p.86 property for the parent box is
anything else besides ’inline’ then the containing block is that parent
Otherwise, the containing block is the containing block of the parent.

For example, for an inline element like EM, the containing block is typically the
enclosing paragaph (P). On the other hand, the containing block of a positioned
element is the element relative to which it is positioned.

10.2.2 Direction of flow
’direction’

Property name: ’direction’

Value: ltr | rtl | ltr-override | rtl-override

Initial: ltr

Applies to: all elements

Inherited: yes

Percentage values: N/A

This property determines the whether inline boxes are laid out left-to-right or
right-to-left and how children of block-level boxes flow. It may take the following
values:

ltr
Left to right flow. This is the default value.

rtl
Right to left flow.

ltr-override
[Ian: What does this mean?]

rtl-override
[Ian: What does this mean?]

[Ian: Examples here.]

81

This property also specifies the direction of table layout p.185 .

10.3 Normal flow

10.3.1 Block-level layout
Block-level boxes are laid out one after the other, vertically.

The vertical distance between the top of a box and its preceding sibling (or
parent if no preceding sibling exists) is determined by the ’margin’ properties.

Vertical margins between adjacent block-level boxes collapses, as described in
the section on collapsing margins p.110 .

For left-to-right flowing content, a block-level box flows inside the left side of its
parent, at a horizontal distance specified by the ’margin’ properties. For
right-to-left flowing content, boxes flow inside the right side of their parent.

For information about page breaks in paged media, please consult the section
on allowed page breaks p.121 .

List-item elements

Some block elements generate boxes that may be formatted as lists. In terms of
flow, lists are formatted as other block-level elements.

For information about lists and examples of list formatting, please consult the
section on lists p.177 .

10.3.2 Inline layout
Inline boxes are laid out one after the other, horizontally, within a horizontal
space defined by the containing block (see the section on box width calculations
p.105 for more information).

For left-to-right flow, the horizontal distance between the left side of a box and
its preceding sibling’s right side (or parent’s right side if no preceding sibling
exists) is determined by the ’margin’ properties. For right-to-left flow, the
horizontal distance is between the right side of a box and its preceding sibling’s
left side (or parent’s left side if no preceding sibling exists).

Horizontally adjacent inline boxes form a line box. To form a paragraph, line
boxes are stacked vertically. Note that in the same block, stacked line boxes
have the same width but may vary in height.

When an inline box is less wide than the width of the line box that contains it,
its horizontal alignment within the line box is determined by the ’alignment’ p.172
property.

When an inline box is wider than a line box, it it may be split into several inline
boxes and these boxes distributed across several lines.

Inline boxes in the same line may have different heights (e.g., an inline image
surrounded by text), so the final height of each line box is determined by the
rules given in the section on line height calculations p.110 . When an inline box’s
height is less than the line box height, the vertical alignment of the inline box
within the line box is determined by the ’vertical-align’ p.111 property.

82

Anonymous text boxes

When a block-level element contains text that is not the content of an inline
element, the element generates one or more "anonymous" inline boxes in the
tree of boxes, each of which contains a chunk of this text.

For example, the following paragraph (created by the HTML block-level
element P) contains chunks of text separated by the inline elements EM and
STRONG:

 <P>Several emphasized words appear
 in this sentence, dear.</P>

In terms of the document tree, P has five children elements that contain the
following pieces of text:

Anonymous: "Several"
EM: "emphasized words"
Anonymous: "appear"
STRONG: "in this"
Anonymous: "sentence, dear."

To format the paragraph, the user agent generates an inline box for each child
and lays all five of them out into successive line boxes. The width of the P
element determines the width of these line boxes. If the width of P is sufficient, all
the inline boxes will fit into a single line box:

 Several emphasized words appear in this sentence, dear.

If the inline boxes do not fit within a single line box, they will be split up and
distributed across several lines. The previous paragraph might be split as follows:

 Several emphasized words appear
 in this sentence, dear.

or like this:

 Several emphasized
 words appear
 in this
 sentence, dear.

In this last example, the EM inline box has been split into two EM boxes (call
them "split1" and "split2"). If a inline box split this way has margins, borders,
padding, or text decorations, these have no visible effect after split1 or before
split2 (e.g., the border is not drawn and the margin and padding are not included
after split1).

Consider the following example:

83

 <STYLE>
 EM { padding: 2px ;
 margin: 1em ;
 border-width: medium;
 border-style: dashed;
 line-height: 2.4em;
 }
 </STYLE>
 <BODY>
 <P>Several emphasized words appear here.</P>
 </BODY>

Depending on the width of the P, the boxes may be distributed as follows:

Several emphasized

words appear here.

Width of paragraph

Line height 2.4em

The margin is inserted before "emphasized" and after "words". Recall that
margins above and below inline elements have no effect.
The padding is inserted before, above, and below "emphasized" and after,
above, and below "words" (i.e., neither after "emphasized" nor before
"words"). A dashed border surrounds the padding.

Note that with a small line height, the padding and borders around text in
different lines may overlap.

10.3.3 Dual-mode elements: run-in and compact
There are two types of boxes that are inline or block depending on the context. A
compact box is one that is put in the margin of the following block if there is
enough room, otherwise, it will be rendered as a block. A run-in box is one that
is rendered inline in the following block, or as a block if there is no following
block. The ’display’ p.86 property determines whether a box is ’compact’ or
’run-in’.

The following example illustrates a compact box. This document:

<style>
DT {display: compact}
DD {margin-left: 4em}
</style>
<dl>
<dt>Short
<dd><p>Description goes here.
<dt>too long for the margin
<dd><p>Description goes here.
</dl>

may be rendered as:

84

short Description goes here

too long for the margin
 Description goes here

A ’run-in’ element, on the other hand, is useful for run-in headers, as in this
example:

<style>
 H3 {display: run-in}
 H3:after {content: ". "}
</style>
<h3>A run-in heading</h3>
<p>And a paragraph of text that
follows it.

which may be rendered as follows:

A run-in heading. And a
paragraph of text that
follows it.

A ’run-in’ element is rendered exactly like a ’block’ element if the following
sibling element is not of type ’block’ or is floating or positioned absolutely.
Otherwise the run-in element is rendered inline as if it were the first inline box of
the following block.

Properties apply to a run-in element depending on whether it is rendered inline
or as a block. For example, the ’white-space’ p.176 property only applies if the
element is rendered as a block.

For a ’compact’ element to be rendered as an inline box, it must be followed by
a ’block’ element that doesn’t float and is not positioned absolutely. That block
must have a ’margin-left’ (or ’margin-right’ if it’s ’direction’ p.81 is ’rtl’) that is wide
enough for the compact element. That means: the compact element, when
rendered as an inline box, must be a single box (no line breaks) with overall
width (including margins, border and padding) that is no larger than the margin of
the block.

The compact box is outside (to the left or right) of the first line box of the block,
but it takes part in the calculation of that line box’s height. The ’vertical-align’
p.111 property of the compact box determines its vertical position relative to that
line box.

The horizontal position is always in the margin of the block, as far to the
outside as possible. The compact box’s left margin (or right, if the block’s
’direction’ is ’rtl’) determines the position.

10.3.4 Relative positioning
Once a block-level or inline box has been assigned its position according to the
flow model, it may be shifted relative to this position. This is called relative
positioning and the offset is specified by the the ’top’ p.91 , ’bottom’ p.91 , ’left’
p.91 , and ’right’ p.91 properties. Offsetting a box in this way has no effect on
sibling boxes; they are not "reflowed" as a result of the offset. This implies that
relative positioning may cause boxes to overlap.

85

Relatively positioned elements establish a new reference box that child
elements can be positioned with respect to. See the section on absolutely
positioned elements p.90 for more on this.

Relatively positioned elements keep their natural shape, including line breaks
and the space originally reserved for them. Dynamic movement of relatively
positioned elements can provide animation effects in scripting environments (see
the section on dynamic positioning p.118 for details).

Elements are positioned relatively by setting the ’position’ p.80 property to
’relative’.

Relative positioning could also be used as a general form of superscripting and
subscripting except that line height is not automatically adjusted to take the
positioning into consideration. See the description of line height calculations
p.110 for more information.

Examples of relative positioning are provided in the section comparing normal,
relative, floating, and absolute positioning p.?? .

10.3.5 Controlling layout behavior: the ’display’
property
An element of the document language is not inherently inline or block-level
(except, perhaps in the minds of the language’s designers). CSS does not
assume any default layout behavior for elements. The layout behavior of every
element is determined by the value of its ’display’ p.86 property.

’display’

Property name: ’display’

Value: block | inline | list-item | run-in | compact | none

Initial: block

Applies to: all elements

Inherited: no

Percentage values: N/A

An element with a ’display’ p.86 value of ’block’ causes the generation of a
block-level p.82 box.

A value of ’list-item’ is similar to ’block’ except that a list-item marker is added.
For example, in HTML, LI will typically have this value.

An element with a ’display’ p.86 value of ’inline’ generates an inline box p.82 .
The box is dimensioned according to the formatted size of the content. If the
content is text, it may span several lines, and there will be a box on each line.
The margin p.?? , border p.?? , and padding p.?? properties apply to ’inline’
elements, but will not have any effect at the line breaks.

A value of ’none’ turns off the display of the element (including any border
around the element); ’none’ completely removes the element so that it does not
affect layout at all. Descendent elements will also be turned off and cannot
override this by setting the ’display’ p.86 property themselves.

86

 P { display: block }
 EM { display: inline }
 LI { display: list-item }
 IMG { display: none }

The last rule turns off the display of images.
[Add pointers to run-in and compact -IJ]
The initial value of ’display’ p.86 is ’block’, but a user agent will typically have

default values for all document language elements.
UAs may ignore ’display’ p.86 and use only the UA’s default values. See the

section on conformance for details.
For many document languages, and in particular for HTML, user agents may

provide a default style sheet that implements the layout behavior expected of the
language’s elements. Please consult the sample style sheet p.215 in the
appendix for information about the default layout behavior of HTML 4.0.

10.4 Floats: ’float’ and ’clear’
At times, authors may want to control the positioning of a box in a way that
cannot be done within the normal flow. There are three ways to place a box
outside the normal flow:

Create a floating box p.87 that floats to the left or right of where it would
normally appear in the flow. For instance, authors may float paragraph
boxes in order to place them side-by-side.
Use absolute positioning p.90 .
Set the value of the ’display’ p.86 property to ’none’ (in which case, the
element does not generate a box at all).

The primary difference between a floating box and one that is absolutely
positioned is that absolute positioning has no impact on the flow of later siblings;
later siblings are laid out as though their absolutely positioned sister did not exist
at all. Later siblings of floating objects flow with respect to the final position of the
floating element.

Floating and absolutely positioned boxes do affect the flow of children
elements: children elements always flow relative to the position of their parent
(the floater or absolutely positioned element) unless positioned absolutely
themselves.

A floated box is moved to the left or right until the margin, padding, or border of
another block-level element is reached.

User agents take the boundaries of floated boxes into account when flowing
subsequent boxes, i.e., boxes that follow flow around the floated box. The
margins, borders and padding of the floated box are honored, and the margins
never collapse with the margins of adjacent elements.

To float a box, set the ’float’ p.87 property for the element generating the box.
’float’

87

Property name: ’float’

Value: left | right | none

Initial: none

Applies to: all elements

Inherited: no

Percentage values: N/A

With the value ’none’, the generated box will be displayed where it appears in
the text. With a value of ’left’ (’right’) the element will be moved to the left (’right’)
and the text will wrap on the right (left) side of the element. With a value of ’left’
or ’right’, the element is treated as block-level p.82 (and thus the ’display’ p.86
property is ignored).

This property is most often used with inline images, but also applies to text
elements.

The following example will place all IMG elements with class="icon" along
the left side of the parent element:

 IMG.icon {
 float: left;
 margin-left: 0;
 }

The following HTML source:

 <STYLE type="text/css">
 IMG { float: left }
 BODY, P, IMG { margin: 2em }
 </STYLE>

 <BODY>
 <P>

 Some sample text that has no other...
 </BODY>

could be formatted as:

88

IMG

Some sample text
that has no other
purpose than to
show how floating
elements are moved
to the side of the
parent element
while honoring
margins, borders,
and padding. Note

how adjacent vertical margins are collapsed
between non−floating block−level elements.

IMG margins

P margins

max (BODY margin, P margin)B
O
D
Y

m
a
r
g
i
n

Note that the margin of the P element encloses the floating IMG element.

10.4.1 Controlling floats
The ’clear’ p.89 property specifies whether an element will allow floating
elements on its sides.

’clear’

Property name: ’clear’

Value: none | left | right | both

Initial: none

Applies to: all elements

Inherited: no

Percentage values: N/A

When set for an element E, this property indicates which sides of E may not be
adjacent to sides of a floating element. A value of ’left’ means that E may not be
positioned next to any floating elements to its left; when flowed, E will therefore
be moved to the next available line below. The value ’right’ means the same
thing, but on the right side of E.

A value of ’none’ means that E may be placed next to floating objects to the left
or right.

A value of ’both’ means that E may not be placed next to floating objects on
either side.

The following style rule means that no H1 element may have a floating element
to its left. All H1 elements will be positioned at the current left margin.

 H1 { clear: left }

89

Consult the section on floating constraints p.113 for more information about
controlling floats.

10.5 Absolute positioning
Elements that are positioned with respect to a reference box are said to be
absolutely positioned .

The default reference box is the box generated for the root element of the
document tree. However, an element for which the ’position’ p.80 property has
been set to a value other than ’static’ establishes a new reference box.
Absolutely positioned descendents of the element will be positioned with regard
to the inner edges of the reference box. Furthermore, an absolutely positioned
element establishes a new context in which normally flowing descendents are
aligned.

When the reference box is established by a block-level element, it has the
same width, height, and position as the content and padding area of the
block-level element. When the reference box is established by an inline element,
it has the same width, height, and position as the content and padding area of
the first box generated by the inline elements. In other words, if the inline element
is split into several boxes on different lines, the reference box is defined by the
first box.

The contents of an absolutely positioned element do not flow around any other
elements. They may or may not obscure the contents of another element,
depending on the z-order p.101 of the overlapping elements.

An absolutely positioned element lives inside of this reference block, as
illustrated below:

Inherited box coordinate system

’left’ ’right’

’top’

’bottom’

Absolutely positioned element

90

10.5.1 Properties to specify position: ’top’, ’right’,
’bottom’, ’left’
The position of an relatively p.85 , absolutely p.90 or fixed positioned p.92 (see
below) element is determined from four properties:

’top’

Property name: ’top’

Value: <length> | <percentage> | auto

Initial: auto

Applies to: all elements

Inherited: no

Percentage values: N/A

’right’

Property name: ’right’

Value: <length> | <percentage> | auto

Initial: auto

Applies to: all elements

Inherited: no

Percentage values: N/A

’bottom’

Property name: ’bottom’

Value: <length> | <percentage> | auto

Initial: auto

Applies to: all elements

Inherited: no

Percentage values: N/A

’left’

91

Property name: ’left’

Value: <length> | <percentage> | auto

Initial: auto

Applies to: all elements

Inherited: no

Percentage values: N/A

Each of these four properties specifies an offset between the reference box
and the element which is being positioned. More specifically, values indicate the
offset between the edge of the reference box and the corresponding
content+padding+border box of the element that is being positioned.

The values have the following meanings:

<length>
The offset is a fixed distance from the edge.

<percentage>
The offset is a percentage of the reference box’s width (for ’left’ p.91 or
’right’ p.91) or height (for ’top’ p.91 and ’bottom’ p.91).

auto
The offset depends on the width and height specified for the element.

For absolutely positioned elements, the values of the ’left’ p.91 , ’right’ p.91 ,
’top’ p.91 , and ’bottom’ p.91 properties take over the roles of the corresponding
margin properties p.?? (i.e., absolutely positioned element boxes do not have
margins but do have padding and borders).

For more information about the width and height of absolutely positioned
elements, please consult the sections on box width calculations p.105 and box
height calculations p.108 respectively.

10.5.2 Fixed positioning
Fixed positioning is a variant of absolute positioning. The only difference is that
absolutely positioned elements are positioned with respect to a reference box,
while fixed positioned elements are positioned with respect to the canvas. Fixed
positioned elements are, as the name indicates, fixed to the canvas.

For scrolled media, fixed boxes do not move when the document is scrolled. In
this respect, they are similar to fixed background images p.131 .

In a paged medium, fixed positioned elements are repeated on every page.
This is useful for placing, for instance, a signature at the bottom of each page.

10.6 Comparison of normal, relative, floating,
absolute positioning
To illustrate the relationship between normal flow, relative positioning, floats, and
absolute positioning, we provide a series of examples in the following sections
based on the following HTML fragment:

92

<BODY>
 <P>Beginning of body contents.
 Start of outer contents.
 Inner contents.
 End of outer contents.
 End of body contents.
 </P>
</BODY>

The final positioning of the outer and inner spans vary in each example. In
each illustration, the numbers to the left of the illustration indicate the normal
position of the double-spaced (for clarity in this example) lines.

10.6.1 Normal flow

Consider the following CSS declarations for outer and inner that don’t alter the
normal flow of elements:

 #outer {color: red;}
 #inner {color: blue;}

This results in something like the following:

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

contents.

Beginning of body contents. Start

Inner contents.

 End of body

of outer contents.

End of outer contents.

24 px

93

10.6.2 Relative positioning
To see the effect of relative positioning, consider the following CSS rules:

 BODY {line-height: 200%}
 #outer {position: relative; top: -12px; color: red;}
 #inner {position: relative; top: 12px; color: blue;}

First, the outer text is flowed into its "normal" position and dimensions at the
end of line 1. Then, the entire box (distributed over three lines) is shifted upwards
by 12px.

The contents of inner, as a child of outer, would normally flow immediately
after the words "of outer contents" (on line 1.5). However, the inner contents are
themselves offset relative to the outer contents by 12px downwards, back to their
original position on line 2.

Note that the content following outer is not affected by the relative positioning
of outer.

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

contents.

Beginning of body contents.
Start

Inner contents.

 End of body

of outer contents.

End of outer contents.

24 px

= −12px

= +12px

Note also that if the relative positioning of outer were -24px, the text of outer
and the body text would have overlapped.

10.6.3 Floating a box
Now consider the effect of floating the inner text to the right by means of the
following rules:

94

 #outer {color: red;}
 #inner {float: right; width: 130px; color: blue;}

First, the inner box (whose width has been set explicitly) is floated to the right
margin. The text that follows flows in the space left by the inner box, and
respects the new right margin imposed by the left border of inner.

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px

of outer contents.

of outer contents. End

End

of body contents.

Inner

contents.

width= 130 px

To show the effect of the ’clear’ p.89 property, we add a sibling element to the
example:

<BODY>
 <P>Beginning of body contents.
 Start of outer contents.
 Inner contents.
 Sibling contents.
 End of outer contents.
 End of body contents.
 </P>
</BODY>

The following rules:

 #inner {float: right; width: 130px; color: blue;}
 #sibling {color: red;}

cause the inner box to float to the right and the sibling box to flow in the
available space:

95

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px

Inner

contents.

width= 130 px

of outer contents.

Sibling comments. End

of outer contents. End

of body contents.

However, if the ’clear’ p.89 property on the sibling box is set to ’right’ (i.e., the
sibling box will not accept being positioned next to floating objects to its right), the
sibling box flows on the next available line below:

 #inner {float: right; width: 130px; color: blue;}
 #sibling {clear: right; color: red;}

96

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px

Inner

contents.

width= 130 px

of outer contents.

Sibling comments. End of outer

contents. End of body contents.

10.6.4 Absolute positioning
Finally, we consider the effect of absolute positioning on elements. Consider the
following CSS declarations for outer and inner:

 #outer {position: absolute; top: 200px; left: 200px; width: 200px; color: red;}
 #inner {color: blue;}

which causes the top of the outer box to be positioned with respect to the
reference box (which we suppose is set on the root of the document). The top
side of the outer box is 200px from the top of the reference box and the left side
is 200px from the left side. The child element of outer flows with respect to its
parent.

97

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

24 px

Beginning of body contents. End of

body contents.

(200, 200)

Start of outer

contents. Inner

contents. End of

outer contents.

Note that because outer has been absolutely positioned, it establishes a new
reference box for any absolutely positioned children (there aren’t any in this
example).

Recall that absolutely positioned elements are positioned with respect to a
reference box set on an ancestor element. The following example shows an
absolutely positioned element that is a child of a relatively positioned element.
Although the parent outer box is not actually offset, setting its ’position’ p.80
property to ’relative’ causes its box to serve as the reference box for any
descendents. Since the outer box is an inline box that is split across several
lines, only the first box (whose upper left-hand corner is designated by a "@" in
the illustration below) establishes the reference box for the descendents.

 #outer {position: relative; color: red;}
 #inner {position: absolute; top: 200px; left: -100px; height:
 130px; width: 130px; color: blue;}

This results in something like the following:

98

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px
of outer contents. End of outer

contents. End of body contents.

@

(@+200, @−100)

Inner

Contents.

= 130 px

Recall that statically positioning an element is equivalent to using the ’position’
p.80 property to put an element back in the normal flow. Statically positioned
elements do not establish a reference box for their children. Thus, the following
rules:

 #outer {position: static; color: red;}
 #inner {position: absolute; top: 200px; left: -100px; height:
 130px; width: 130px; color: blue;}

are equivalent to:

 #outer {color: red;}
 #inner {position: absolute; top: 200px; left: -100px; height:
 130px; width: 130px; color: blue;}

and cause the inner box to be positioned with respect to
the reference box (which we assume here is set on the root element
of the document tree).

99

1

2

3

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px
of outer contents. End of outer

contents. End of body contents.

nts.

Inner

Conte

(−130, 200)

Relative and absolute positioning may be used to implement change
bars, as shown in the following example. We use a value of ’auto’ for
the value of the ’top’ property,
which results in the element being placed at the "current"
location in the document window, just as if the element were being
flowed into that space. The following HTML text:

<P style="position: relative; margin-right: 10px; left: 10px;">
I used two red hyphens to serve as a change bar. They
will "float" to the left of the line containing THIS
--
word.</P>

might result in something like:

100

Document Window

I used two red hyphens to serve

as a change bar. They will "float"

to the left of the line containing

THIS word.−−

10.7 Z-order: Layered presentation
CSS allows authors to specify the position of an element in three dimensions. The stack level
of an element refers to its position above or below other elements. The stack level is
particularly relevant to elements that overlap visually.

10.7.1 Specifying the stack level: the ’z-index’ property
In the following sections, the expression "in front of" means closer to the user as the user
faces the screen.

The stack level of an element may be determined in two ways:

By an element’s place in the document tree (i.e., with respect to parent and sibling
elements). Elements are stacked in the order they appear in the document tree. Thus, an
element is stacked in front of its parent and "older" siblings (i.e., those to the left
of the element in the document tree) and behind its children and later siblings.

Explicitly, via the ’z-index’ p.101 property.

’z-index’

Property name: ’z-index’

Value: auto | <integer>

Initial: auto

Applies to: elements that may be positioned

Inherited: no

Percentage values: N/A

The ’z-index’ p.101 property is used to specify the stacking order of elements that may be positioned (i.e., element’s whose
’position’ p.80 property has a value of ’absolute’ or ’relative’).

The default (’auto’) behavior is to stack elements back-to-front in the order they appear in the document tree.
An integer value for ’z-index’ p.101 specifies stacking order for an element relative to its sibling and parent elements:

101

Sibling elements are stacked bottom-to-top in order of increasing ’z-index’ p.101 value. Sibling elements with identical
’z-index’ p.101 values have unspecified relative stacking order.
Elements that have negative ’z-index’ p.101 values are stacked below their parent element and elements with positive
’z-index’ p.101 values are stacked in front of their parent element. In other words, each element that may be positioned
defines a positioning context for z-order in which their own ’z-index’ p.101 is 0.
A ’z-index’ p.101 value of 0 is equivalent to a value of ’auto’.

The relative z-order of two elements that are neither siblings nor parent/child can be determined by evaluation of the above
rules for both elements’ ancestors.

By default, a positioned element will be placed just above (in z-space) its parent in the document tree.
It is not possible to position an element behind a grandparent.
In the following example, the order of the elements, listed back-to-front is:

image
text2
text1

<STYLE type="text/css">
<!--
.pile { position: absolute; left: 2in; top: 2in; width: 3in; height: 3in; }
-->

<DIV class="pile" id="text1" style="z-index: 3">
 This text will overlay the butterfly image.
</DIV>

<DIV class="pile" id="text2" style="z-index: 2">
 This text will underlay text1, but overlay the butterfly image
</DIV>

The previous example demonstrates the notion of transparency. The default behavior of an element is to allow elements
below it to be visible through transparent areas in its content. In the example, each element transparently overlays the elements
below it. This behavior can be overridden by utilizing one of the existing background-related properties like ’background’ p.135 .

10.8 Multicolumn layout
Flowing content into several columns is a common way of presenting text, especially in print. When multiple columns are use,
line lengths are shorter and the font size and line height can be reduced while maintaining legibility. In CSS, columns are
vertical boxes formed in the content area of an column element. In HTML, the column element will typically be of type DIV and
its child elements will be flowed into the columns.

All columns in a column element have the same width. The UA should attempt to balance the content so that each column
is filled to the same extent. When breaking elements over several columns, the ’widows’ p.121 and ’orphans’ p.121 properties
should be consulted (in the section on page breaks p.120).

In a paged medium p.119 , page breaks may occur within the column element. This can be due to lack of space, or from a
page break property value for a child element. When this happens, the column element should be continued on the next page
with the same number of columns.

Authors may specify a column gap and a vertical column rule between columns.
’columns’

Property name: ’columns’

Value: <length> | <number> | <percentage>

Initial: 1

Applies to: block-level elements

Inherited: no

Percentage values: the width of the element itself

The ’columns’ p.102 property determines the number of columns into which the content of the element will be flowed.
By specifying a numeric value, a fixed number of columns is set. In the following example, DIV elements will have three

columns:

 DIV { columns: 3 }

102

By specifying a length value, the UA creates as many columns as possible within the available space. So, if the available
space increases (for example when the user enlarges the UA window), the number of columns may increase. The number of
columns (n) is a function of the width of the element (w), the desired column width (cw), the column gap (cg) and the width of
the column rule (cr):

 n’ = (w + cg + cr) / (cw + cg + cr)
 n = round(n’)

See a description of the column gap and column rule below.
Child elements that are flowed into the columns will be "adapted" by them. Consider this example:

<STYLE>
 DIV {
 columns: 3;
 column-gap: 1em;
 }
 IMG.logo {
 width: 100%;
 }
</STYLE>
<BODY>
 <DIV>

 <P>Some text.<P>
 <P>Some more text.<P>
 </DIV>
</BODY>

The percentage value on the ’width’ p.105 property refers to the width of the parent element, but since the IMG element
appears inside a column, the width of the column will take the place of the width of the parent element.

’column-gap’

Property name: ’column-gap’

Value: <length> | <percentage>

Initial: UA-specific

Applies to: block-level elements

Inherited: no

Percentage values: the width of the element itself

This property sets the gap between adjacent columns. The initial value is UA-specific, but should be greater than zero.
Negative values are not allowed.

’column-rule-width’

Property name: ’column-rule-width’

Value: <border-width>

Initial: medium

Applies to: block-level elements

Inherited: no

Percentage values: the width of the element itself

’column-rule-style’

103

Property name: ’column-rule-style’

Value: <border-style>

Initial: none

Applies to: block-level elements

Inherited: no

Percentage values: the width of the element itself

’column-rule-color’

Property name: ’column-rule-color’

Value: <color>

Initial: the value of the <color> property

Applies to: block-level elements

Inherited: no

Percentage values: N/A

’column-rule’

Property name: ’column-rule’

Value: <column-rule-width> || <column-rule-style> ||
<column-rule-color>

Initial: see individual properties

Applies to: block-level elements

Inherited: no

Percentage
values:

N/A

These properties set the vertical column rule between adjacent columns. The rule will appear in the middle of the column
gap. On each side of the rule there will be a gap equal to half the specified column gap.

Vertically, the column rule extend up to, but not including, the padding area. If there is a border, but no padding the column
rule will abut the border. In this case, the UA should attempt to gracefully join the column rule and the border.

104

11 Visual rendering model details
Contents

1. Box width calculations p.105 : the ’width’ p.105 property
1. Relationship of width dimensions p.106
2. Width of floats and replaced elements p.106
3. Width of absolutely positioned elements p.106
4. Minimum and maximum widths p.107 : ’min-width’ p.107 and

’max-width’ p.107
2. Box height calculations p.108 : the ’height’ p.108 property

1. Height of replaced elements p.108
2. Height of absolutely positioned elements p.108
3. Minimum and maximum heights p.109 : ’min-height’ p.109 and

’max-height’ p.109
4. Collapsing margins p.110

3. Line height calculations p.110 : the ’line-height’ p.111 and ’vertical-align’
p.111 properties

4. Floating constraints p.113
5. Overflow and clipping p.113

1. Overflow p.113 : the ’overflow’ p.113 property
2. Clipping p.116 : the ’clip’ p.116 property

6. Visibility p.117 : the ’visibility’ p.117 property
7. Dynamic positioning p.118
8. Filters p.118

11.1 Box width calculations: the ’width’ property
The width of a box generated by an element does not depend on the width of its
children nor on its content -- it is given by the ’width’ p.105 property.

’width’

Property name: ’width’

Value: <length> | <percentage> | auto

Initial: auto

Applies to: block-level and replaced elements

Inherited: no

Percentage values: refer to parent element’s width

This property can be applied to text elements, but it is most useful with
replaced elements such as images.

Negative values for ’width’ p.105 are not allowed.

105

For example:

 IMG.icon { width: 100px }

If the ’width’ p.105 and ’height’ p.108 of a replaced element are both ’auto’,
these properties will be set to the intrinsic dimensions of the element.

11.1.1 Relationship of width dimensions
See the section on the the box model for an illustration of box rendering objects.

The width of a block-level element’s box is determined by seven properties:
’margin-left’, ’border-left’, ’padding-left’, ’width’ p.105 , ’padding-right’,
’border-right’, and ’margin-right’.

For elements in the flow, the sum of these seven is equal to the content ’width’
p.105 of the parent element.

If ’auto’ is set as the value for one of the seven properties in an element that is
inline or floating, it will be treated as if it were set to zero.

Horizontal margins are not collapsed.

11.1.2 Width of floats and replaced elements
For floats and replaced elements (i.e., block-level or inline elements whose
markup is replaced by other content such as the IMG element in HTML), the
calculation of width is as follows:

Three of the seven properties given above can be set to ’auto’: ’margin-left’,
’width’ p.105 , and ’margin-right’. For replaced elements, a value of ’auto’ on
’width’ p.105 is replaced by the intrinsic width, so for them there can only be two
’auto’ values.

If exactly one of ’margin-left’, ’width’ p.105 , or ’margin-right’ is ’auto’, the UA
will assign that property a value that will make the sum of the seven equal to the
parent’s width.

If none of the properties have the value ’auto’, the value of ’margin-right’ will be
assigned ’auto’.

If more than one of the three is ’auto’, and one of them is ’width’ p.105 , then
the others (’margin-left’ and/or ’margin-right’) will be set to zero and ’width’ p.105
will get the value needed to make the sum of the seven equal to the parent’s
width.

Otherwise, if both ’margin-left’ and ’margin-right’ are ’auto’, they will be set to
equal values. This will center the element inside its parent.

11.1.3 Width of absolutely positioned elements
The width of an absolutely positioned element’s box is specified with the ’width’
p.105 property.

However, if the ’width’ p.105 has the value ’auto’, the width of the box is given
by the ’left’ and ’right’ properties. Note that these take the place of the
’left-margin’ and ’right-margin’ properties, which don’t apply to absolutely
positioned elements.

If all three properties have the value ’auto’, the box has exactly the width of the
inherited reference box.

106

11.1.4 Minimum and maximum widths: ’min-width’ and
’max-width’
It is sometimes useful to constrain the width of elements to a certain range. Two
properties offer this functionality:

’min-width’

Property name: ’min-width’

Value: <length> | <percentage>

Initial: 0

Applies to: all

Inherited: no

Percentage values: refer to parent’s width

’max-width’

Property name: ’max-width’

Value: <length> | <percentage>

Initial: 100%

Applies to: all

Inherited: no

Percentage values: refer to parent’s width

This algorithm describes how the two properties influence the width
calculations:

1. the normal width calculations (without ’min-width’ and ’max-width’) are
performed and the calculated width is found

2. if the value of ’min-width’ is greater than the value of ’max-width’, ’max-width’
should be set to the value of ’min-width’

3. if the calculated width is greater than ’max-width’, the value of ’width’ is set
to ’max-width’. Goto step 1.

4. if the calculated width is smaller than ’min-width’, the value of ’width’ is set to
’min-width’. Goto step 1.

5. terminate

When the algorithm terminates, use the calculated width as the width of the
element.

107

11.2 Box height calculations: the ’height’
property
The height of a box is the minimal height necessary to include the vertical
content of the element and that of all its flowed children (see also the section on
minimum and maximum heights p.109). This is the height necessary before any
relative offset of children.

However, the height of an element may be set explicitly with the ’height’ p.108
property.

’height’

Property name: ’height’

Value: <length> | auto

Initial: auto

Applies to: block-level and replaced elements

Inherited: no

Percentage values: refer to parent element’s width

This property can be applied to text, but it is most useful with replaced
elements such as images.

 IMG.icon { height: 100px }

If the ’width’ p.105 and ’height’ p.108 of a replaced element are both ’auto’,
these properties will be set to the intrinsic dimensions of the element.

If applied to a textual element, the height can be enforced by the user interface
(e.g., a scrollbar).

Negative values for ’height’ p.108 are not allowed.
User agents may ignore the ’height’ p.108 property (i.e., treat it as ’auto’) if the

element is not a replaced element.

11.2.1 Height of replaced elements
The height of a replaced element is calculated in a way analogous to the
calculation of the width of a replaced element p.106 .

11.2.2 Height of absolutely positioned elements
The height of an absolutely positioned element’s box is specified with the ’height’
p.108 property. A percentage value for the ’height’ p.108 property is computed
with respect to the height of the parent element. However, specifying a
percentage value for ’height’ p.108 when the parent element’s height is set to
’auto’ results in undefined behavior.

If the ’height’ p.105 has the value ’auto’, the height of the box is given by the
’top’ and ’bottom’ properties. Note that these take the place of the ’top-margin’
and ’bottom-margin’ properties, which don’t apply to absolutely positioned
elements.

108

If all three properties have the value ’auto’, the box has exactly the height of
the inherited reference box.

11.2.3 Minimum and maximum heights: ’min-height’
and ’max-height’
It is sometimes useful to constrain the height of elements to a certain range. Two
properties offer this functionality:

’min-height’

Property name: ’min-height’

Value: <length> | <percentage>

Initial: 0

Applies to: all

Inherited: no

Percentage values: refer to parent’s height

’max-height’

Property name: ’max-height’

Value: <length> | <percentage>

Initial: 100%

Applies to: all

Inherited: no

Percentage values: refer to parent’s height

This algorithm describes how the two properties influence the height
calculations:

1. the normal height calculations (without ’min-height’ and ’max-height’) are
performed and the calculated height is found

2. if the value of ’min-height’ is greater than the value of ’max-height’,
’max-height’ should be set to the value of ’min-height’

3. if the calculated height is greater than ’max-height’, the value of ’height’ is
set to ’max-height’. Goto step 1.

4. if the calculated height is smaller than ’min-height’, the value of ’height’ is set
to ’min-height’. Goto step 1.

5. terminate

When the algorithm terminates, use the calculated height as the height of the
element.

109

11.2.4 Collapsing margins
Two or more adjoining vertical margins (i.e., with no border, padding or content
between them) are collapsed to use the maximum of the margin values. In most
cases, after collapsing the vertical margins the result is visually more pleasing
and closer to what the designer expects. Please consult the examples of margin,
padding, and borders for an illustration of collapsed margins.

In the case of negative margins, the absolute maximum of the negative
adjoining margins is deducted from the maximum of the positive adjoining
margins. If there are no positive margins, the absolute maximum of the negative
adjoining margins is deducted from zero.

11.3 Line height calculations: the ’line-height’
and ’vertical-align’ properties
As described in the section on inline layout, user agents flow inline boxes
horizontally into a series of line boxes. Each line box is a rectangle whose width
is defined by the first enclosing block element (see the section on box width
calculations p.105)

The line box height is determined as follows. All elements have the ’line-height’
p.111 property, which has the following meaning:

If the property is set on a block-level element, it specifies the minimal line
height for all lines of text generated by the element.
If the property is set on an inline element, it specifies the exact line height for
the element’s inline box.

Since several inline elements may generate inline boxes on the same line, the
final height of a given line box is the maximum of the minimal line height
specified for the parent block-level element and the heights required by all inline
boxes on the current line. Replaced elements that create inline boxes (e.g., inline
images) also affect the line height, but via the ’height’ p.108 and ’vertical-align’
p.111 properties, not the ’line-height’ p.111 property. Replaced elements
increase the line box height if the top of the replaced element (i.e., including all of
its padding, border and margin) is above the tallest text section, or if the bottom
is below the lowest.

When text on a line is smaller than the line box height, space may be added
above and below the text. For example, if the text is 12pt high and the current
line height is ’14pt’, 2pts of extra space is added, namely 1pt above and 1pt
below the line. Empty elements influence these calculations just like elements
with content.

The difference between the font size and the line height is called the leading .
Half the leading is called the half-leading . If a line of text contains inline elements
with different ’line-height’ p.111 values, then each inline element has its own
half-leading above and below.

Note that the top and bottom of a line box do not necessarily correspond to the
tallest element, since elements can be positioned vertically with the
’vertical-align’ p.111 property.

110

Padding, borders, or margins above and below non-replaced inline elements
do not influence the height of the line. In other words: if the ’line-height’ p.111 is
too small for the chosen padding or border, it will overlap with text on other lines.

In the normal case, when there is only one value of ’line-height’ p.111
throughout a paragraph, and no tall images, the above definition will ensure that
baselines of successive lines are exactly ’line-height’ p.111 apart. This is
important when columns of text in different fonts have to be aligned, for example
in a table.

Note that this doesn’t prevent text on two adjacent lines from overlapping. The
’line-height’ p.111 may be smaller than the height of the text, in which case the
leading will be negative. This is useful if you know that the text will contain no
descenders (e.g., because it only contains uppercase), so the lines can be put
closer together.

’line-height’

Property name: ’line-height’

Value: normal | <number> | <length> | <percentage>

Initial: normal

Applies to: all elements

Inherited: yes

Percentage values: relative to the font size of the element itself

The property sets the distance between the baselines of two adjacent lines.
When a <number>, the line height is given by the font size of the current

element multiplied by the <number>. This differs from a <percentage> value in
the way it inherits: when a <number> value is specified, child elements will inherit
the factor itself, not the resultant value (as is the case with <percentage> and
other units).

Negative values are not allowed.
The three rules in the example below have the same resultant line height:

 DIV { line-height: 1.2; font-size: 10pt } /* number */
 DIV { line-height: 1.2em; font-size: 10pt } /* length */
 DIV { line-height: 120%; font-size: 10pt } /* percentage */

A value of ’normal’ sets the ’line-height’ p.111 to a reasonable value for the
element’s font. It is suggested that UAs set the ’normal’ value to be a number in
the range of 1.0 to 1.2.

’vertical-align’

111

Property name: ’vertical-align’

Value: baseline | sub | super | top | text-top | middle | bottom |
text-bottom | <percentage> | <length>

Initial: baseline

Applies to: inline elements

Inherited: no

Percentage
values:

refer to the ’line-height’ p.111 of the element itself

The property affects the vertical positioning of the element. Some of the
possible values refer to the parent element:

’baseline’
align the baseline of the element (or the bottom, if the element doesn’t have
a baseline) with the baseline of the parent

’middle’
align the vertical midpoint of the element (typically an image) with the
baseline plus half the x-height of the parent

’sub’
subscript the element. This value has no effect on the font size of the
element’s text.

’super’
superscript the element. This value has no effect on the font size of the
element’s text.

’text-top’
align the top of the element with the top of the parent element’s font

’text-bottom’
align the bottom of the element with the bottom of the parent element’s font

Other possible values refer to the formatted line that the element is a part of:

’top’
align the top of the element with the tallest element on the line

’bottom’
align the bottom of the element with the lowest element on the line

Using the ’top’ and ’bottom’ alignment, unsolvable situations can occur where
element dependencies form a loop.

Percentage values refer to the value of the ’line-height’ p.111 property of the
element itself. They raise the baseline of the element (or the bottom, if it has no
baseline) the specified amount above the baseline of the parent. Negative values
are possible, e.g., a value of ’-100%’ will lower the element so that the baseline
of the element ends up where the baseline of the next line should have been.
This allows precise control over the vertical position of elements (such as images
that are used in place of letters) that don’t have a baseline.

112

11.4 Floating constraints
A floating element is positioned subject to the following constraints (see the
section on box dimensions for an explanation of the terms):

1. The left outer edge of a left-floating element may not be to the left of the left
inner edge of its parent element. The analogous rules hold for right floating
elements.

2. The left outer edge of a left floating element must be to the right of the right
outer edge of every earlier (in the HTML source) left-floating element or the
top of the former must be lower than the bottom of the latter. The analogous
rules hold for right floating elements.

3. The right outer edge of a left-floating element may not be to the right of the
left outer edge of any right-floating element that is to the right of it. The
analogous rules hold for right floating elements.

4. A floating element’s top may not be higher than the inner top of its parent.
5. A floating element’s top may not be higher than the top of any earlier floating

or block-level element.
6. A floating element’s top may not be higher than the top of any line-box (see

the section on line height calculations p.110) with content that precedes the
floating element in the HTML source.

7. A floating element must be placed as high as possible.
8. A left-floating element must be put as far to the left as possible, a

right-floating element as far to the right as possible. A higher position is
preferred over one that is further to the left/right.

Elements that are after the floating element will overlap.

11.5 Overflow and clipping

11.5.1 Overflow: the ’overflow’ property
Normally, child boxes are positioned within the box of their parent. However, a
child box may extend horizontally beyond the bounding box of its parent in the
following situations:

It is floated p.?? and is too large for its parent.
It is positioned absolutely p.?? .
It has negative margins p.?? .

The ’overflow’ p.113 property is used to specify the user agent’s behavior
when the contents of an absolutely positioned element exceed its declared
bounds.

’overflow’

113

Property name: ’overflow’

Value: visible | hidden | scroll | auto

Initial: visible

Applies to: elements with the <position> property set to ’absolute’

Inherited: no

Percentage values: N/A

This property determines what happens when an element’s rendered contents
exceed its height or width.

visible: A value of ’visible’ indicates that the element’s bounding box should
be enlarged enough to contain all of its rendered contents. In other words, its
height or width can be made bigger than the declared value. Any padding or
border will remain outside the rendered content. Any additional width will be
added in the direction specified by the current value of the ’direction’
property. Additional height will be added to the bottom.
hidden: A value of ’hidden’ indicates that the element’s contents should be
clipped to its height and width, and that no scrolling mechanism should be
provided. Padding and border will be applied to the regular height and width
of the element, as if its contents did not exceed its bounds. Any contents that
exceed the element’s bounds will be unavailable to the user.
auto: The behavior of the ’auto’ value is UA-dependent, but should cause a
scrolling mechanism to be invoked when the element’s rendered contents
exceed its bounds.
scroll: Finally, the ’scroll’ value indicates that if the UA supports a visible
scrolling mechanism, that mechanism should be displayed whether or not
the element’s rendered contents exceed its bounds. This avoids any
problem with scrollbars appearing and disappearing in a dynamic
environment.

Even if ’overflow’ p.113 is set to ’visible’, contents may be clipped to a UA’s
document window by the native operating environment. In addition, the ’clip’
p.116 property can cause otherwise visible "overflowed" contents to be clipped.
The examples below utilize the following stylesheet, which describes a simple
100 pixel box with a thin solid red border:

#overlay {position: absolute; top: 50px; left: 50px; height: 100px;
 width: 100px; border: thin solid red;}

Applied to an empty <DIV>, this would look something like:

114

First, let’s consider the default value of ’overflow’ p.113 , which is ’visible’. This
value indicates that all contents of an element should be rendered, even if these
contents exceed the declared width or height of the element.

Consider a block of long, preformatted text:

<P id="overlay">
<PRE>Here is some long preformatted text.
</PRE>
<P>

With ’overflow’ p.113 set to ’visible’, all of the text will be visible even though it
exceeds the declared width of the element. The element will be made wider than
its declared width, and any padding or border will be rendered outside of this new
width. The example might be rendered something like:

Here is some long preformatted text.

Similarly, the height of the element will be extended should the rendered
contents exceed the declared height. Consider the following:

<DIV id="overlay">Here is a block of text that will
cause this element to exceed its declared height of 100 pixels.
</DIV>

This division should be rendered something like this:

Here is a
block of
text that
will cause
this
element to
exceed its
declared
height of
100 pixels.

The ’hidden’ value of the ’overflow’ p.113 property indicates that any content
which exceeds the declared bounds of the element should not be rendered at all.
The user will have no way to view this "overflowed" content. With ’overflow’ p.113
 set to ’hidden’, the two examples above should be rendered something like this:

Here is so

Here is a
block of
text that
will cause
this

115

Another value for ’overflow’ p.113 is ’auto’, which indicates that the user agent
should provide for a scrolling mechanism when the contents overflow the bounds
of the element. Finally, a value of ’scroll’ indicates that a scrolling mechanism
should always be present, whether or not the contents exceed the element’s
bounds.

11.5.2 Clipping: the ’clip’ property
Clipping alters a document’s display, though it does not affect how it is laid out.
The clipping region defines what portion of the element’s physical representation
is visible. It is computed by the intersection of the parent’s clipping region with
the value of the element’s ’clip’ p.116 property.

’clip’

Property name: ’clip’

Value: <shape> p.116 | auto

Initial: auto

Applies to: elements with the <position> property set to ’absolute’

Inherited: no

Percentage values: N/A

The <shape> value type may have the following values:

rect (<top> p.116 <right> p.116 <bottom> p.116 <left> p.116)

The value types <top> , <right> , <bottom> , and <left> may either have the
values <length> or ’auto’.

Lengths are specified with respect to the element’s top-left corner. Negative
lengths are permitted.

The values for <top> p.116 , <bottom> p.116 <right> p.116 , and <left> p.116
are distances from the respective extents of the parent element’s clipping region.

When converted to pixel coordinates, the bottom-right corner is excluded from
the clipping rectangle. This rule is necessary to permit the definition of zero-width
or zero-height rectangles.

Any length can be replaced by the value ’auto’, which causes the respective
extent of the clipping rectangle to match the element’s extent in the given
direction, including padding, borders and child elements. The default value for
the ’clip’ property causes the clip rectangle to encompass the entire element. In
effect, ’auto’ provides for an infinite clipping region.

Note. For now, all clipping regions are rectangular. We anticipate future
extensions to permit non-rectangular clipping.

If the clipping region exceeds the bounds of the UA’s document window,
contents may be clipped to that window by the native operating environment.

116

11.6 Visibility: the ’visibility’ property
Some elements of the document tree cause boxes to be generated that follow
the normal positioning rules, but are not rendered; their presence is "felt," but
they are invisible.

’visibility’

Property name: ’visibility’

Value: inherit | visible | hidden

Initial: inherit

Applies to: all elements

Inherited: if value is ’inherit’

Percentage values: N/A

The ’visibility’ p.117 property determines whether or not an element is initially
displayed. The visibility of an element does not affect its layout. Elements that
are hidden still take up the same physical space as they would were they visible,
they are just rendered transparently. This differs from the behavior of
’display:none’, in which the element is ignored, as if it were not present in the
document at all. Visibility can be used in a scripting environment to dynamically
display only one of several elements which overlap one another.

In the following example, pressing either form button invokes a user-defined
script function that causes the corresponding element to become visible and the
other element to be hidden. Since the containers occupy the same position, and
are the same size, the effect is that one replaces the other.

<HEAD>
<STYLE type="text/css">
<!--
 #container1 { position: absolute; top: 2in; left: 2in; width: 2in}
 #container2 { position: absolute; top: 2in; left: 2in; width: 2in;
 visibility: hidden; }
-->
</STYLE>
</HEAD>
<BODY>
<P>Choose a suspect:</P>
<DIV id="container1">

 <P>Name: Al Capone</P>
 <P>Residence: Chicago</P>
</DIV>

<DIV id="container2">

 <P>Name: Lucky Luciano</P>
 <P>Residence: New York</P>
</DIV>

<FORM NAME="myform">
 <INPUT type="button" value="Capone" onclick=’show("container1");hide("container2")’>
 <INPUT type="button" value="Luciano" onclick=’show("container2");hide("container1")’>
</FORM>

117

Note that the ’position’ property of each DIV element has the value ’relative’, so
the elements observe the standard flow model. A more visually appealing version
of the above might be designed using overlapping ’absolute’ positioned
elements:

11.7 Dynamic positioning
Certain dynamic aspects of managing positioned elements, such as hiding,
displaying and movement can only be performed using an external scripting
language.

This draft does not specify the behavior of dynamic elements in scripting
environments. For example, what happens when an element having ’width: auto’
is repositioned? Do the contents reflow, or do they maintain their original
formatting? The answer is outside the scope of this draft, and such behavior is
likely to differ in initial implementations of CSS2.

11.8 Filters
This is a placeholder.

118

12 Paged media
Contents

1. Introduction to paged media p.119
2. Page breaks p.120

1. Page break properties p.120 : ’page-break-before’ p.120 ,
’page-break-after’ p.120 , ’orphans’ p.121 , and ’widows’ p.121

2. Allowed page breaks p.121
3. Forced page breaks p.122
4. "Best" page breaks p.122

3. Page boxes p.123 : the @page rule
1. Page margins p.123
2. Page size p.124 : the ’size’ p.124 property

1. Rendering page boxes that do not fit a target sheet p.125
3. Crop marks p.126 : the ’marks p.126 property
4. Left and right pages p.126
5. Running headers and footers p.127
6. Marking elements for the running headers & footers p.128
7. Content outside the page box p.129

4. Cascading in the page context p.130

12.1 Introduction to paged media
Paged media -- paper, transparencies, computer screens that display pages, etc.
-- differ from scrolled media in that formatting algorithms for pages must account
for page breaks.

To handle page breaks, CSS2 extends two previous models:

1. The page box extends the box model to allow authors to specify the size of
a page, its margins, etc.

2. The page model extends the visual flow model to account for page breaks.
p.120 In the page model, the canvas is the page box.

The page model specifies how a document is formatted within a rectangular
area -- the page box -- that has a finite width and height. The page box p.123 is
an abstract rectangle that does not necessarily correspond to the sheet where
the document will ultimately be rendered (paper, transparency, screen, etc.).

The CSS page model specifies formatting in the page box, but it is the user
agent’s responsibility to transfer the page box to the sheet. Some transfer
possibilities include:

Transferring one page box to one sheet (e.g., single-sided printing).
Transferring two page boxes to both sides of the same sheet (e.g.,
double-sided printing).
Transferring N (small) page boxes to one sheet (called n-up printing).
Transferring one (large) page box to N x M sheets (called "tiling").
Printing signatures (a group of pages printed on a sheet, which, when folded
and trimmed like a book, appear in their proper sequence).

119

Printing one document to several output trays.
Transferring to a file.

This document does not specify how user agents transfer page boxes to
sheets. It does allow users to provide the user agent (often through a dialog box)
with information about the size of the sheet and the orientation of the transfer
(see the ’size’ p.124 property).

12.2 Page breaks
The following sections explain page formatting in CSS2. Four properties indicate
where the user agent may or should break pages, and on what page (left or right)
the subsequent content should resume. Each page break ends the current page
box and begins the next.

These properties have been designed to support the PRINT medium, but can
also be applied to other paged media, for example PROJECTOR medium.

12.2.1 Page break properties: ’page-break-before’,
’page-break-after’, ’orphans’, and ’widows’
’page-break-before’

Property name: ’page-break-before’

Value: auto | always | avoid | left | right

Initial: auto

Applies to: block-level and inline elements except those in tables

Inherited: no

Percentage values: N/A

’page-break-after’

Property name: ’page-break-after’

Value: auto | always | avoid | left | right

Initial: auto

Applies to: block-level and inline elements except those in tables

Inherited: no

Percentage values: N/A

Values for these properties have the following meanings:

auto
Neither force nor forbid a page break before (resp., after) the element

120

always
Always force a page break before (resp., after) the element

avoid
Avoid a page break before (resp., after) the element.

left
Force one or two page breaks before (resp., after) the element so that the
next page to be formatted is a left page.

right
Force one or two page breaks before (resp., after) the element so that the
next page to be formatted is a right page.

When both properties apply, ’always’, ’left’, and ’right’ take precedence over
’avoid’. See the section on allowed page breaks p.121 for the exact rules on how
these values force or suppress a page break.

’orphans’

Property name: ’orphans’

Value: <integer>

Initial: 2

Applies to: block-level elements

Inherited: yes

Percentage values: N/A

’widows’

Property name: ’widows’

Value: <integer>

Initial: 2

Applies to: block-level elements

Inherited: yes

Percentage values: N/A

These properties specify the minimum number of lines of a paragraph that
must be left at the bottom (’orphans’ p.121) and top (’widows’ p.121) of a page.

12.2.2 Allowed page breaks
In the normal flow, page breaks can occur at the following places:

1. In the vertical margin between block-level elements. When a page break
occurs here, the margin disappears (becomes zero).

2. Between lines inside a block-level element.

121

These breaks are subject to the following rules:

1. Breaking at (1) is only allowed if the ’break-after’ and ’break-before’
properties of all the elements that meet at this margin allow it, which is when
at least one of them has the value ’always’, ’left’, or ’right’, or when all of
them are ’auto’.

2. Breaking at (2) is only allowed if the number of lines between the break and
the start of the block is ’orphans’ p.121 or more, and the number of lines
between the break and the end of the block is ’widows’ p.121 or more.

There is an exception to both rules:

3. Breaking at (1) and (2) is also allowed if, between the last page break and
the next one that would be allowed under (A) and (B), there is so much
content that it can’t fit on a page.

Page breaks cannot occur inside positioned elements.

12.2.3 Forced page breaks
A page break must occur at (1) if, among the ’break-after’ and ’break-before’
properties of all the elements that meet at this margin, there is at least one with
the value ’always’, ’left’, or ’right’.

12.2.4 "Best" page breaks
CSS does not define which of the page breaks allowed by (A), (B), or (C) should
be used. In particular, CSS does not forbid a UA from breaking at every possible
break point, or not to break at all. But CSS does recommend that UAs observe
the following heuristics (while recognizing that they are sometimes contradictory):

Break as few times as possible.
Make all pages that don’t end with a forced break appear to have about the
same height.
Avoid breaking inside a block that has a border.
Avoid breaking inside a table.
Avoid breaking inside a floating element

Suppose, for example, that ’orphans’ p.121 =4, ’widows’ p.121 =2, and there
are 20 lines available at the bottom of the current page:

If a paragraph at the end of the current page contains 20 lines or fewer, it
should be placed on the current page.
If the paragraph contains 21 - 22 lines, the second part of the paragraph
must not violate the ’widows’ p.121 constraint, and so the second part must
contain exactly two lines
If the paragraph contains 23 lines or more, the first part should contain 20
lines and the second part the remaining lines.

122

Now suppose that ’orphans’ p.121 =10, ’widows’ p.121 =20, and there are 8
lines available at the bottom of the current page:

If a paragraph at the end of the current page contains 8 lines or less, it
should be placed on the current page.
If the paragraph contains 9 or more lines, it cannot be split (that would
violate the orphan constraint), so it should move as a block to the next page.

12.3 Page boxes: the @page rule
CSS2 allows authors to specify the dimensions of the page box, the margins, and
several other properties relative to each page. However, since some document
languages (e.g., HTML) do not define elements that represent "the page", these
properties are specified for an entire document via the @page rule.

For example, the following @page rule sets the margins of the page to 2cm.

 @page { margin: 2cm }

Declarations inside the curly braces of the @page rule apply to every page of a
document. These declarations are said to be in the page context , and they
describe the page box p.119 into which the elements of the document are flowed
according to the page model. p.119

The page context allows the ’size’ p.124 property to set the size of the page
box and the ’marks’ p.126 property to set crop and cross marks.

12.3.1 Page margins
In addition, the following page margin properties, defined for the box that
surrounds each element, apply within the page context:

’margin-top’
’margin-right’
’margin-bottom’
’margin-left’
’margin’

The diagram below shows the relationships between the sheet, page box, and
page margins:

123

Sheet

Page box

A

B

C

D

A: margin−top
B: margin−right
C: margin−bottom
D: margin−left

Page content

Note that the page margins are included in the page box.
Note. In the future, border properties and padding properties may also be

allowed in the page context.
The CSS2 rules for collapsing vertical margins apply to page margins as well.

For example, the margin of the first element box on a page will collapse with the
page margin.

The page context has no notion of fonts, so ’em’ and ’ex’ units are not allowed.
Percentage values on the margin properties are relative to the dimensions of the
page box. All other units associated with the respective CSS2 properties are
allowed.

Due to negative margin values (either on the page box or on elements) or
absolute positioning content may end up outside the page box, but this content
may be cut -- by the user agent, the printer, or ultimately the paper cutter.

12.3.2 Page size: the ’size’ property
’size’

Property name: ’size’

Value: <length>{1,2} | auto | portrait | landscape

Initial: auto

Applies to: page context

Inherited: N/A

Percentage values: N/A

124

This property specifies the size and orientation of a page box.
The size of a page box may either be "absolute" (fixed size) or "relative"

(scalable, i.e., fitting available sheet sizes). Relative page boxes allow user
agents to scale a document and make optimal use of the target size. Absolute
page boxes ensure precise formatting when that is the author’s prerogative.

Three values for the ’size’ p.124 property create a relative page box:

auto
The page box will be set to the size and orientation of the target sheet. This
is the initial value of the property.

 @page {
 size: auto;
 margin: 10%;
 }

In the above example, the outer edges of the page box will align with the
target. (Since ’auto’ is the initial value on ’size’ p.124 , it is normally not
necessary to set this value.) The percentage value on the ’margin’ property
is relative to the target size so if the target is 21.0cm x 29.7cm (i.e., A4), the
margins are 2.10cm and 2.97cm.

landscape
The page box will have the same size as the target, and the normal direction
of print occurs across the largest dimension of the target. Thus, the target
orientation will be ignored.

portrait
the page box will have the same size as the target, and the normal direction
of print occurs across the shortest dimension of the target. Thus, the target
orientation will be ignored.

Explicit length values for the ’size’ p.124 property create an absolute page
box. If only one length value is specified, it sets both the width and height of the
page box (i.e., the box is a square). Since the page box has no "parent",
percentage values are not allowed on the ’size’ p.124 property.

For example:

 @page {
 size: 8.5in 11in; /* width height */
 }

The above example set the width of the page box to be 8.5in and the height to
be 11in. The page box in this example requires a target size of 8.5"x11" or bigger
to be printed.

User agents may allow users to control the transfer of the page box to the
sheet (e.g., rotating an absolute page box that’s being printed).

Rendering page boxes that do not fit a target sheet

If page box does not fit the target sheet dimensions, the user agent may choose
to:

Rotate the page box 90° if this will make the page box fit.
Scale the page to fit the target.

125

The user agent should consult the user before performing these operations.
When the page box is smaller than the target size, the user agent is free to

place the page box anywhere on the sheet. However, it is recommended that the
page box be centered on the sheet since this will align double-sided pages and
avoid accidental loss of information that is printed near the edge of the sheet.

Note. Typically, 8.5"x11" sheet size will be available in North America, while
printers in other parts of the world are more likely to have the A4 sheet size
available.

12.3.3 Crop marks: the ’marks property
’marks’

Property name: ’marks’

Value: crop || cross | none

Initial: none

Applies to: page context

Inherited: N/A

Percentage values: N/A

In high-quality printing, various marks are often added outside the page box.
Crop marks indicate where the page should be cut and cross marks (also
known as register marks or registration marks) are used to align sheets. This
property describes what marks should be printed on the page outside the outer
edges of the page box.

Marks are only visible on absolute page boxes. In relative page boxes, the
page box will be aligned with the target and the marks will be outside the
printable area.

The size, style, and position of cross marks depends on the user agent.

12.3.4 Left and right pages
When printing double-sided documents, the page boxes on left and right pages
should be different. This can be expressed through two CSS pseudo-classes that
may be defined in the page context.

All pages are automatically classified by user agents into either the :left or
:right pseudo-class.

 @page :left {
 margin-left: 4cm;
 margin-right: 3cm;
 }

 @page :right {
 margin-left: 3cm;
 margin-right: 4cm;
 }

126

If different declarations have been given for left and right pages, the user agent
must honor these declarations even if the user agent does not transfer the page
boxes to left and right sheets (e.g., a printer that only prints single-sided).

Whether the first page of a document is :left or :right depends on the major
writing direction of the document and is outside the scope of this document.
However, to force a :left or :right first page, authors may insert a page break
before the element at the top of the document tree (e.g., the HTML element in
HTML).

Note. Adding declarations to the :left or :right pseudo-class does not influence
whether the document comes out of the printer double- or single-sided (which is
outside the scope of this specification).

Note. Future versions of CSS may include other page pseudo-classes (e.g.,
:first).

12.3.5 Running headers and footers
It is customary in printed documents to put navigation aids at the top and/or
bottom of the page. Often you’ll find a page number, the name of the book, and
the title of the current chapter there.

CSS defines two areas of the page for holding this kind of information. They
are referred to as the :header and :footer pseudo-elements, since their default
position is above (resp., below) the content of the page. Their content and other
properties are defined inside an @page rule:

@page :footer {... footer properties... }
@page :header {... header properties... }

Since left and right pages often have different headers and footers, the
following defines them individually:

@page :left :footer {...} /* footer of the left page */
@page :right :footer {...} /* footer of the right page */
@page :left :header {...} /* header of the left page */
@page :right :header {...} /* header of the right page */

The cascading rules determine what the values for properties are in case the
same property is set on various @page rules. The specificity of @page is 0,
every :left, :right, :footer, and :header adds 1 to the specificity.

The :footer and :header areas behave very similar to ’fixed’ elements. The
only difference is in their content: in headers and footers the content is limited to
one line, and it may vary from page to page, since it can include variables. The
page content is the reference box for the header and footer. See section "fixed
positioning" for a description of fixed elements.

The initial values for ’top’, ’bottom’ and ’height’ are different for :footer and
:header than for normal fixed elements:

’top’ in :header has a UA-dependent initial value. A suggested value is -3em.
’bottom’ in :footer has a UA-dependent initial value. A suggested value is
-3em.
’height’ in both :header and :footer has a UA-dependent initial value. A
suggested value is 1em.

127

The suggested values make the header and footer as wide as the page
content, and about two lines above (resp., below) it.

The content of the header and footer is specified with the ’content’ property.
The content is always rendered as a single line. (If the content is too long, the UA
should cut it off in some way.) The value is a comma-separated list of 1, 2, or 3
values. Depending on the ’direction’ property, the first of these is left- or
right-aligned, the second is centered, and the third is right- or left-aligned.

The content is a concatenation of fixed strings and variable parts. The
following variable parts are allowed:

[Are these the right names for the variables?]

lower-roman(pageno), upper-roman(pageno), decimal(pageno),
lower-alpha(pageno), upper-alpha(pageno)

This expands to the page number, in the specified notation.
lower-roman(pages), upper-roman(pages), decimal(pages), lower-alpha(pages),
upper-alpha(pages)

This expands to the total number of pages, in the specified notation.
first(X), last(X), previous(X)

X can be one of ’title’, ’chapter’, or ’section’. First(X) expands to the content
of the first element on the page that has a ’running-head:X’ p.129 property.
If there is none, ’first()’ is the same as ’previous()’. ’Last(X)’ expands to the
content of the last element on the page with a ’running-head:X property. If
there is none, ’last’ is the same as ’previous’. ’Previous(X)’ expands to the
contents of the last element with ’running-head:X’ on all pages before this
one. If there is none, the result is the empty string.

url
This expands to the URL of the document (not of the style sheet).

date
This expands to the current date, in the user’s locale and format.

The "contents" is the text content of the element and all its children, excluding
the content of elements that have ’display:none’.

This example creates two running headers, the one on the left page has a
page number on the left, and the content of the first element marked as ’chapter’
on the right. The right header has the content of the last element marked as
’section’ on the left and the page number on the right. Both headers are in 10pt
small-caps.

@page :left: header {
 content: "Page " decimal(pageno), , first(chapter);
 font-variant: small-caps
}
@page :right :header {
 content: last(section), , "Page " decimal(pageno);
 font-variant: small-caps
}

12.3.6 Marking elements for the running headers &
footers

128

To put a copy of the content of an element in the header or footer, the element
must be marked. The property ’running-head’ is used for that.

’running-head’

Property name: ’running-head’

Value: none | title | chapter | section

Initial: none

Applies to: all elements

Inherited: no

Percentage values: N/A

The value ’none’ means that the element is not marked. ’Title’, ’chapter’ and
’section’ say that the element is marked as a title, chapter or section, resp. and
that the content can be used in the running header or footer.

This style sheet marks H2 elements as ’chapter’ and DT elements as ’section’.
This can be used, e.g., in combination with the running headers of the previous
example.

H2 {running-head: chapter}
DT {running-head: section}

12.3.7 Content outside the page box
When formatting content in the page model, some content may end up outside
the page box. For example, an element with ’white-space: pre’ may be wider than
the page box. Also, when elements are positioned outside the flow model, they
may end up in inconvenient locations. For example, images may be placed on
the edge of the page box or 100,000 inches below the page box.

A specification for the exact formatting of such elements lies outside the scope
of this document. However, we recommend that authors and user agents
observe the following general principles concerning content outside the page
box:

Content should be formatted slightly beyond the page box to allow pages to
"bleed".
User agents should avoid printing large numbers of blank pages to honor
positioning of elements. Note, however, that printing small numbers of blank
pages may be necessary to honor the ’left’ and ’right’ values for
’page-break-before’ p.120 and ’page-break-after’ p.120 .
Authors should not position elements in inconvenient locations as a means
to avoid printing them. Authors should use the ’display’ or ’visibility’
properties for this purpose.
User agents may handle elements positioned outside the page box in
several ways, including discarding them or printing them at the end of the
document.

129

12.4 Cascading in the page context
Declarations in the page context cascade just like normal CSS2 declarations.

Consider the following example:

 @page {
 margin-left: 3cm;
 }

 @page :left {
 margin-left: 4cm;
 }

Due to the higher specificity of the pseudo-class selector (see the section on
cascading order for details), the left margin on left pages will be ’4cm’ and all
other pages (i.e., the right pages) will have a left margin of ’3cm’.

130

13 Colors and Backgrounds
Contents

1. Foreground color p.131 : the ’color’ p.131 property
2. Background properties p.131 : ’background-color’ p.132 ,

’background-image’ p.132 , ’background-repeat’ p.132 ,
’background-attachment’ p.133 , ’background-position’ p.134 , and
’background’ p.135

CSS properties allow authors to specify the foreground color and background
of an element. Backgrounds may be colors or images. Background properties
allow authors to position the image, repeated it, and declare whether it should be
fixed or scrolled.

See the section on color units for the syntax of legal color values.

13.1 Foreground color: the ’color’ property
The following property specifies the foreground color of an element’s content.
The ’color’ p.131 property inherits normally.

’color’

Property name: ’color’

Value: <color>

Initial: depends on user agent

Applies to: all elements

Inherited: yes

Percentage values: N/A

This property describes the foreground color of an element’s text content.
There are different ways to specify red:

 EM { color: red } /* natural language */
 EM { color: rgb(255,0,0) } /* RGB range 0-255 */

13.2 Background properties: ’background-color’,
’background-image’, ’background-repeat’,
’background-attachment’, ’background-position’,
and ’background’
Authors may specify the background of an element (i.e., its rendering surface) as
either a color or an image.

Background properties do not inherit, but the parent element’s background will
shine through by default because of the initial ’transparent’ value on
’background-color’ p.132 .

131

In terms of the box model, "background" refers to the background of the
content and the padding area. Border colors and styles are set with the border
properties. Margins are always transparent so the background of the parent
element always shines through.

’background-color’

Property name: ’background-color’

Value: <color> | transparent

Initial: transparent

Applies to: all elements

Inherited: no

Percentage values: N/A

This property sets the background color of an element.

 H1 { background-color: #F00 }

’background-image’

Property name: ’background-image’

Value: <url> | none

Initial: none

Applies to: all elements

Inherited: no

Percentage values: N/A

This property sets the background image of an element, whose location is
given by a <url>. When setting a background image, one should also set a
background color that will be used when the image is unavailable. When the
image is available, it is overlaid on top of the background color.

 BODY { background-image: url(marble.gif) }
 P { background-image: none }

’background-repeat’

132

Property name: ’background-repeat’

Value: repeat | repeat-x | repeat-y | no-repeat

Initial: repeat

Applies to: all elements

Inherited: no

Percentage values: N/A

If a background image is specified, the value of ’background-repeat’ p.132
determines how/if the image is repeated.

A value of ’repeat’ means that the image is repeated both horizontally and
vertically. The ’repeat-x’ (’repeat-y’) value makes the image repeat horizontally
(vertically), to create a single band of images from one side to the other. With a
value of ’no-repeat’, the image is not repeated.

 BODY {
 background: red url(pendant.gif);
 background-repeat: repeat-y;
 }

In the example above, the image will only be repeated vertically.
’background-attachment’

Property name: ’background-attachment’

Value: scroll | fixed

Initial: scroll

Applies to: all elements

Inherited: no

Percentage values: N/A

If a background image is specified, the value of ’background-attachment’ p.133
 determines if it is fixed with regard to the canvas or if it scrolls along with the
content.

 BODY {
 background: red url(pendant.gif);
 background-repeat: repeat-y;
 background-attachment: fixed;
 }

UAs may treat ’fixed’ as ’scroll’. However, it is recommended they interpret
’fixed’ correctly, at least on the HTML and BODY elements, since there is no way
for an author to provide an image only for those browsers that support ’fixed’.
See the section on conformance for details.

133

’background-position’

Property name: ’background-position’

Value: [<percentage> | <length>]{1,2} | [top | center | bottom] ||
[left | center | right]

Initial: 0% 0%

Applies to: block-level and replaced elements

Inherited: no

Percentage
values:

refer to the size of the element itself

If a background image has been specified, the value of ’background-position’
p.134 specifies its initial position.

With a value pair of ’0% 0%’, the upper left corner of the image is placed in the
upper left corner of the box that surrounds the content of the element (i.e., not
the box that surrounds the padding, border or margin). A value pair of ’100%
100%’ places the lower right corner of the image in the lower right corner of the
element. With a value pair of ’14% 84%’, the point 14% across and 84% down
the image is to be placed at the point 14% across and 84% down the element.

With a value pair of ’2cm 2cm’, the upper left corner of the image is placed
2cm to the right and 2cm below the upper left corner of the element.

If only one percentage or length value is given, it sets the horizontal position
only, the vertical position will be 50%. If two values are given, the horizontal
position comes first. Combinations of length and percentage values are allowed,
e.g. ’50% 2cm’. Negative positions are allowed.

One can also use keyword values to indicate the position of the background
image. Keywords cannot be combined with percentage values, or length values.
The possible combinations of keywords and their interpretations are as follows:

’top left’ and ’left top’ both mean the same as ’0% 0%’.
’top’, ’top center’ and ’center top’ mean the same as ’50% 0%’.
’right top’ and ’top right’ mean the same as ’100% 0%’.
’left’, ’left center’ and ’center left’ mean the same as ’0% 50%’.
’center’ and ’center center’ mean the same as ’50% 50%’.
’right’, ’right center’ and ’center right’ mean the same as ’100% 50%’.
’bottom left’ and ’left bottom’ mean the same as ’0% 100%’.
’bottom’, ’bottom center’ and ’center bottom’ mean the same as ’50% 100%’.
’bottom right’ and ’right bottom’ mean the same as ’100% 100%’.

Examples:

 BODY { background: url(banner.jpeg) right top } /* 100% 0% */
 BODY { background: url(banner.jpeg) top center } /* 50% 0% */
 BODY { background: url(banner.jpeg) center } /* 50% 50% */
 BODY { background: url(banner.jpeg) bottom } /* 50% 100% */

134

If the background image is fixed with regard to the canvas (see the
’background-attachment’ p.133 property above), the image is placed relative to
the canvas instead of the element. E.g.,

 BODY {
 background-image: url(logo.png);
 background-attachment: fixed;
 background-position: 100% 100%;
 }

In the example above, the image is placed in the lower right corner of the
canvas.

’background’

Property
name:

’background’

Value: <’background-color’> p.132 || <’background-image’> p.132
|| <’background-repeat’> p.132 ||
<’background-attachment’> p.133 ||
<’background-position’> p.134

Initial: not defined for shorthand properties

Applies to: all elements

Inherited: no

Percentage
values:

allowed on ’background-position’ p.134

The ’background’ p.135 property is a shorthand property for setting the
individual background properties (i.e., ’background-color’ p.132 ,
’background-image’ p.132 , ’background-repeat’ p.132 , ’background-attachment’
p.133 and ’background-position’ p.134) at the same place in the style sheet.

The ’background’ p.135 property always sets all the individual background
properties. The ’background’ p.135 property helps authors remember to specify
all aspects of a background which they might otherwise neglect by using the
individual background properties.

In the first rule of the following example, only a value for ’background-color’
p.132 has been given and the other individual properties are set to their initial
value. In the second rule, all individual properties have been specified.

 BODY { background: red }
 P { background: url(chess.png) gray 50% repeat fixed }

135

136

14 Fonts
Contents

1. Introduction p.138
2. Font specification p.139

1. Font specification properties p.139
2. Font family p.140 : the ’font-family’ p.140
3. Font style p.141 : the ’font-style’ p.141 , ’font-variant’ p.142 , and

’font-weight’ p.142 properties
4. Font size p.144 : the ’font-size’ p.144 property
5. Shorthand font property p.145 : the ’font’ p.145 property
6. Generic font families p.146

1. serif p.147
2. sans-serif p.147
3. cursive p.148
4. fantasy p.148
5. monospace p.148

3. Font selection p.149
1. Font Descriptions and @font-face p.150
2. Descriptors for Selecting a Font p.151 : ’font-family’ p.151 , ’font-style’

p.152 , ’font-variant’ p.152 , ’font-weight’ p.152 , and ’font-size’ p.153
3. Descriptors for Font Data Qualification p.153 : ’unicode-range’ p.153
4. Descriptor for Numeric Values p.155 : ’units-per-em’ p.155
5. Descriptor for Referencing p.155 : ’src’ p.155
6. Descriptors for Matching p.156 : ’panose-1’ p.156 , ’stemv’ p.156 ,

’stemh’ p.157 , ’slope’ p.157 , ’cap-height’ p.157 , ’x-height’ p.157 ,
’ascent’ p.158 , and ’descent’ p.158

7. Descriptors for Synthesis p.158 : ’widths’ p.158 and ’definition-src’
p.159

8. Descriptors for Alignment p.160 : ’baseline’ p.160 , ’centerline’ p.160 ,
’mathline’ p.160 , and ’topline’ p.160

4. Font Characteristics p.161
1. Introducing Font Characteristics p.161
2. Adorned font name p.161
3. Central Baseline p.162
4. Co-ordinate units on the em square p.162
5. Font encoding tables p.163
6. Font family name p.163
7. Glyph Representation widths p.163
8. Horizontal stem width p.163
9. Height of capital glyph representations p.164

10. Height of lowercase glyph representations p.164
11. Lower Baseline p.164
12. Mathematical Baseline p.164
13. Maximal bounding box p.164
14. Maximum unaccented height p.165

137

15. Maximum unaccented depth p.165
16. Panose-1 number p.165
17. Range of Unicode characters p.165
18. Top Baseline p.166
19. Vertical stem width p.166
20. Vertical stroke angle p.166

5. Font matching algorithm p.166
1. Examples of font matching p.168

14.1 Introduction
When a document’s text is to be displayed visually, each character (abstract
information element) must be mapped to some representation that may be drawn
on the screen, paper, etc. Each of these glyphs constitutes a graphical depiction
of a character. (as opposed to, for example, an aural, textual, or numerical
depiction of that character) One or more characters may be depicted by one or
more glyphs, in a possibly context-dependent fashion. A glyph representation is
the actual artistic representation of an abstract glyph, in some typographic style,
in the form of outlines or bitmaps. A font is a set of glyph representations, all
observing same basic motif according to design, size, appearance, and other
attributes associated with the entire set.

A visual user agent must address the following issues before actually
rendering a character:

Has the author specified a font for this character?
Does the client’s user agent have this font available?
If so, what glyph or glyphs does this character (or sequence of characters)
map to?
If not, what should be done? Should a different font be substituted? Can the
font be synthesized? Can it be retrieved from the Web?

In both CSS1 and CSS2, authors specify font characteristics via a series of
font properties.

What use the user agent makes of these properties differs greatly between
CSS1 and CSS2. In CSS1, all fonts were assumed to be present on the client
system and were identified solely by name. Alternate fonts could be specified
with the properties, but beyond that, user agents had no way to suggest any
other fonts (even stylistically similar fonts that the user agent had available) other
than generic default fonts.

CSS2 changes all that, and allows user agents much greater liberty in
selecting a font when an author’s requested font is not immediately available.
CSS2 improves client-side font matching, enables font synthesis and progressive
rendering, and enables fonts to be downloaded over the Web.

In the CSS font model, each user agent has a "font database" at its disposition.
CSS2 allows stylesheet authors to contribute towards that database. When
asked to display a character with a particular font, the user agent first identifies
the font in the database that "best fits" the specified font (according to the font
matching algorithm) p.166 Once it has identified a font, it retrieves the font data
locally or from the Web, and may display the character using those glyph
representations.

138

In light of this simple model, we have organized the specification into two
sections. The first concerns the font specification mechanism p.139 , whereby
authors specify which fonts they would like to have used. The second concerns
the font selection mechanism p.149 , whereby the client’s user agent identifies
and loads a font that best fits the author’s specification.

How the user agent constructs the font database lies outside the scope of this
specification since the database’s implementation depends on the operating
system, the windowing system, the client, etc. Similarly, this specification does
not mandate how the user agent should handle error conditions such as when
none of the desired fonts are available.

14.2 Font specification
The first phase of the CSS font mechanism concerns how authors specify which
fonts should be used by a client user agent. Unfortunately, there exists no
well-defined and universally accepted taxonomy for classifying fonts, and terms
that apply to one font family may not be appropriate for others. For example, the
term ’italic’ is commonly used to label slanted text, but slanted text may also be
labeled Oblique, Slanted, Incline, Cursive or Kursiv.

Since it is not possible to provide authors with a perfect font naming scheme,
CSS has authors refer to pertinent characteristics of a font through a series of
properties. The property values form the basis of the user agent’s font selection
p.149 .

14.2.1 Font specification properties
CSS2 specifies fonts by using the following properties:

Font family p.140
A font family is a group of fonts that resemble one another. One member of
the family may be italic, another other bold, another bold and italic, etc.
Examples of font family names include Helvetica, New Century Schoolbook,
Kyokasho ICA L. Font family names are not restricted to Latin characters.
Font families may be grouped into different categories: those with or without
serifs, those whose characters are or are not proportionally spaced, those
that resemble handwriting, those that are fantasy fonts, etc.

Font style p.141
The font style specifies whether the specified font is normal, italic, or oblique
(italic and oblique fonts are similar, but not the same, especially for fonts
with serifs).

Font variant p.??
The font variant indicates whether the font contains normal upper and lower
case characters or whether it contains small-caps characters.

Font weight p.??
The font weight refers to the boldness or lightness of a font’s glyphs.

Font size p.144
The font size refers to the size of the font.

139

On all properties except ’font-size’ p.144 , ’em’ and ’ex’ length values refer to
the font size of the current element. For ’font-size’ p.144 , these length units refer
to the font size of the parent element. Please consult the section on length units
for more information.

For information about the classification of fonts in general, please consult the
section on font descriptors p.161 .

14.2.2 Font family: the ’font-family’
’font-family’

Property
name:

’font-family’

Value: [[<family-name> p.140 | <generic-family> p.140],]*
[<family-name> p.140 | <generic-family> p.140]

Initial: depends on user agent

Applies to: all elements

Inherited: yes

Percentage
values:

N/A

This property specifies a prioritized list of font family names and/or generic
family names. To deal with the problem that a single font may not be enough to
display all the characters in a document, or even a single element, this property
allows authors to specify a list of fonts, all of the same style and size, that are
tried in sequence to see if they contain a glyph for a certain character. This list is
called a font set .

For example, text that contains English text mixed with mathematical symbols
may need a font set of two fonts, one containing letters and digits, the other
containing mathematical symbols. Here is an example of a font set suitable for a
text that is expected to contain text with Latin characters, Japanese characters,
and mathematical symbols:

 BODY { font-family: Baskerville, "Heisi Mincho W3", Symbol, serif }

The characters available in the Baskerville font (a font with only Latin
characters) will be taken from that font, Japanese will be taken from Heisi Mincho
W3, and the mathematical symbols will come from Symbol. Any other characters
will (hopefully) come from the generic font family ’serif’. The ’serif’ font family will
also be used if one or more of the other fonts is unavailable.

There are two types of list values:

<family-name>
The name of a font family of choice. In the last example, "gill" and
"Helvetica" are font families.

<generic-family>
In the example above, the last value is a generic family name p.146 . The
following generic families are defined: ’serif’,’sans-serif’, ’cursive’, ’fantasy’

140

and ’monospace’.
Authors are encouraged to offer a generic font family as a last alternative.

Font names containing whitespace should be quoted.
For example:

 BODY { font-family: "new century schoolbook", serif }

 <BODY style="font-family: ’My own font’, fantasy">

If quoting is omitted, any whitespace characters before and after the font name
are ignored and any sequence of whitespace characters inside the font name is
converted to a single space.

The generic font family values are considered keywords and therefore must
not be quoted.

14.2.3 Font style: the ’font-style’, ’font-variant’, and
’font-weight’ properties
’font-style’

Property name: ’font-style’

Value: normal | italic | oblique

Initial: normal

Applies to: all elements

Inherited: yes

Percentage values: N/A

The ’font-style’ p.141 property selects between normal (sometimes referred to
as "roman" or "upright"), italic and oblique faces within a font family.

A value of ’normal’ selects a font that is classified as ’normal’ in the UA’s font
database, while ’oblique’ selects a font that is labeled ’oblique’. A value of ’italic’
selects a font that is labeled ’italic’, or, if that is not available, one labeled
’oblique’.

The font that is labeled ’oblique’ in the UA’s font database may actually have
been generated by electronically slanting a normal font.

Fonts with Oblique, Slanted or Incline in their names will typically be labeled
’oblique’ in the font database. Fonts with Italic, Cursive or Kursiv in their names
will typically be labeled ’italic’.

 H1, H2, H3 { font-style: italic }
 H1 EM { font-style: normal }

In the example above, normal text in an H1, H2, or H3 element will be
displayed with an italic font. However, emphasized text within H1 will appear in a
normal face.

141

’font-variant’

Property name: ’font-variant’

Value: normal | small-caps

Initial: normal

Applies to: all elements

Inherited: yes

Percentage values: N/A

In a small-caps font, the lower case letters look similar to the uppercase ones,
but in a smaller size and with slightly different proportions. The ’font-variant’
p.142 property selects that font. This property has no visible effect for scripts
which are unicameral (having only one case).

A value of ’normal’ selects a font that is not labelled as a small-caps font,
’small-caps’ selects a small-caps font. If a genuine small-caps font is not
available, it is acceptable (but not required) in CSS2 if the small-caps font is a
created by taking a normal font and replacing the lower case letters by scaled
uppercase characters. As a last resort, unscaled uppercase letters will be used
as replacement for a small-caps font so that the text appears in all capitals.

The following example results in an H3 element in small-caps, with
emphasized words in oblique small-caps:

 H3 { font-variant: small-caps }
 EM { font-style: oblique }

There may be other variants in the font family as well, such as fonts with
old-style numerals, small-caps numerals, condensed or expanded letters, etc.
CSS2 has no properties that select those.

Insofar as this property causes text to be transformed to uppercase, the same
considerations as for ’text-transform’ p.175 apply.

’font-weight’

Property name: ’font-weight’

Value: normal | bold | bolder | lighter | 100 | 200 | 300 | 400 |
500 | 600 | 700 | 800 | 900

Initial: normal

Applies to: all elements

Inherited: yes

Percentage
values:

N/A

142

The ’font-weight’ p.142 property selects the weight of the font. The values
’100’ to ’900’ form an ordered sequence, where each number indicates a weight
that is at least as dark as its predecessor. The keyword ’normal’ is synonymous
with ’400’, and ’bold’ is synonymous with ’700’. Keywords other than ’normal’ and
’bold’ have been shown to be often confused with font names and a numerical
scale was therefore chosen for the 9-value list.

 P { font-weight: normal } /* 400 */
 H1 { font-weight: 700 } /* bold */

The ’bolder’ and ’lighter’ values select font weights that are relative to the
weight inherited from the parent:

 STRONG { font-weight: bolder }

Child elements inherit the resultant weight, not the keyword value.
Fonts (the font data) typically have one or more properties whose values are

names that are descriptive of the "weight" of a font. There is no accepted,
universal meaning to these weight names. Their primary role is to distinguish
faces of differing darkness within a single font family. Usage across font families
is quite variant; for example a font that you might think of as being bold might be
described as being Regular, Roman, Book, Medium, Semi- or DemiBold, Bold, or
Black, depending on how black the "normal" face of the font is within the design.
Because there is no standard usage of names, the weight property values in
CSS2 are given on a numerical scale in which the value ’400’ (or ’normal’)
corresponds to the "normal" text face for that family. The weight name associated
with that face will typically be Book, Regular, Roman, Normal or sometimes
Medium.

The association of other weights within a family to the numerical weight values
is intended only to preserve the ordering of darkness within that family. However,
the following heuristics tell how the assignment is done in typical cases:

If the font family already uses a numerical scale with nine values (as e.g.
OpenType does), the font weights should be mapped directly.
If there is both a face labeled Medium and one labeled Book, Regular,
Roman or Normal, then the Medium is normally assigned to the ’500’.
The font labeled "Bold" will often correspond to the weight value ’700’.
If there are fewer then 9 weights in the family, the default algorithm for filling
the "holes" is as follows. If ’500’ is unassigned, it will be assigned the same
font as ’400’. If any of the values ’600’, ’700’, ’800’ or ’900’ remains
unassigned, they are assigned to the same face as the next darker assigned
keyword, if any, or the next lighter one otherwise. If any of ’300’, ’200’ or
’100’ remains unassigned, it is assigned to the next lighter assigned
keyword, if any, or the next darker otherwise.

The following two examples illustrate the process. Assume four weights in the
"Example1" family, from lightest to darkest: Regular, Medium, Bold, Heavy. And
assume six weights in the "Example2" family: Book, Medium, Bold, Heavy, Black,
ExtraBlack. Note how in the second example it has been decided not to assign
"Example2 ExtraBlack" to anything.

143

 Available faces | Assignments | Filling the holes
 ----------------------+---------------+-------------------
 "Example1 Regular" | 400 | 100, 200, 300
 "Example1 Medium" | 500 |
 "Example1 Bold" | 700 | 600
 "Example1 Heavy" | 800 | 900

 Available faces | Assignments | Filling the holes
 ----------------------+---------------+-------------------
 "Example2 Book" | 400 | 100, 200, 300
 "Example2 Medium" | 500 |
 "Example2 Bold" | 700 | 600
 "Example2 Heavy" | 800 |
 "Example2 Black" | 900 |
 "Example2 ExtraBlack" | (none) |

Since the intent of the relative keywords ’bolder’ and ’lighter’ is to darken or
lighten the face within the family and because a family may not have faces
aligned with all the symbolic weight values, the matching of ’bolder’ is to the next
darker face available on the client within the family and the matching of ’lighter’ is
to the next lighter face within the family. To be precise, the meaning of the
relative keywords ’bolder’ and ’lighter’ is as follows:

’bolder’ selects the next weight that is assigned to a font that is darker than
the inherited one. If there is no such weight, it simply results in the next
darker numerical value (and the font remains unchanged), unless the
inherited value was ’900’ in which case the resulting weight is also ’900’.
’lighter’ is similar, but works in the opposite direction: it selects the next
lighter keyword with a different font from the inherited one, unless there is no
such font, in which case it selects the next lighter numerical value (and
keeps the font unchanged).

There is no guarantee that there will be a darker face for each of the
’font-weight’ p.142 values; for example, some fonts may have only a normal and
a bold face, others may have eight different face weights. There is no guarantee
on how a UA will map font faces within a family to weight values. The only
guarantee is that a face of a given value will be no less dark than the faces of
lighter values.

14.2.4 Font size: the ’font-size’ property
’font-size’

144

Property name: ’font-size’

Value: <absolute-size> p.145 | <relative-size> p.145 |
<length> | <percentage>

Initial: medium

Applies to: all elements

Inherited: yes

Percentage
values:

relative to parent element’s font size

<absolute-size>
An <absolute-size> keyword is an index to a table of font sizes computed
and kept by the UA. Possible values are:

[xx-small | x-small | small | medium | large | x-large | xx-large]
On a computer screen a scaling factor of 1.5 is suggested between

adjacent indexes; if the ’medium’ font is 10pt, the ’large’ font could be 15pt.
Different media may need different scaling factors. Also, the UA should take
the quality and availability of fonts into account when computing the table.
The table may be different from one font family to another.

<relative-size>
A <relative-size> keyword is interpreted relative to the table of font sizes and
the font size of the parent element. Possible values are:

[larger | smaller]
For example, if the parent element has a font size of ’medium’, a value of

’larger’ will make the font size of the current element be ’large’. If the parent
element’s size is not close to a table entry, the UA is free to interpolate
between table entries or round off to the closest one. The UA may have to
extrapolate table values if the numerical value goes beyond the keywords.

Length and percentage values should not take the font size table into account
when calculating the font size of the element.

Negative values are not allowed.
An application may reinterpret an explicit size, depending on the context, for

example, inside a VR scene a font may get a different size because of
perspective distortion.

Examples:

 P { font-size: 12pt; }
 BLOCKQUOTE { font-size: larger }
 EM { font-size: 150% }
 EM { font-size: 1.5em }

14.2.5 Shorthand font property: the ’font’ property
’font’

145

Property
name:

’font’

Value: [[<’font-style’> p.141 || <’font-variant’> p.142 ||
<’font-weight’> p.142]? <’font-size’> p.144 [/
<’line-height’>]? <’font-family’> p.140]

Initial: see individual properties

Applies to: all elements

Inherited: yes

Percentage
values:

allowed on ’font-size’ p.144 and ’line-height’

The ’font’ p.145 property is a shorthand property for setting ’font-style’ p.141 ,
’font-variant’ p.142 , ’font-weight’ p.142 , ’font-size’ p.144 , ’line-height’, and
’font-family’ p.140 , at the same place in the style sheet. The syntax of this
property is based on a traditional typographical shorthand notation to set multiple
properties related to fonts.

For a definition of allowed and initial values, see the previously defined
properties. Properties for which no values are given are set to their initial value.

Examples:

 P { font: 12pt/14pt sans-serif }
 P { font: 80% sans-serif }
 P { font: x-large/110% "new century schoolbook", serif }
 P { font: bold italic large Palatino, serif }
 P { font: normal small-caps 120%/120% fantasy }

In the second rule, the font size percentage value (’80%’) refers to the font size
of the parent element. In the third rule, the line height percentage refers to the
font size of the element itself.

In the first three rules above, the ’font-variant’ p.142 and ’font-weight’ p.142
are not explicitly mentioned, which means they are all three set to their initial
value (’normal’). The fourth rule sets the ’font-weight’ p.142 to ’bold’, the
’font-style’ p.141 to ’italic’ and implicitly sets ’font-variant’ p.142 to ’normal’.

The fifth rule sets the ’font-variant’ p.142 (’small-caps’), the ’font-size’ p.144
(120% of the parent’s font), the ’line-height’ (120% times the font size) and the
’font-family’ p.140 (’fantasy’). It follows that the keyword ’normal’ applies to the
two remaining properties: ’font-style’ p.141 and ’font-weight’ p.142 .

14.2.6 Generic font families
Generic font families are a fallback mechanism, a means of preserving some of
the style sheet writer’s intent in the worst case when none of the specified fonts
can be selected. For optimum typographic control, particular named fonts should
be used in stylesheets.

All five generic font families may be assumed to exist in all CSS
implementations (they need not necessarily map to five distict actual fonts, in all
cases). UAs should provide reasonable default choices for the generic font
families, which express the characteristics of each family as well as possible

146

within the limits of the underlying technology allows.
UAs are encouraged to allow users to select alternative choices for the generic

fonts.

serif

Serif fonts, as the term is used in CSS, have the characteristic that the ends of
the strokes have finishing strokes, flared or tapering ends, or have actual serifed
endings (including slab serifs). Serif fonts are typically proportionately spaced.
They often display a greater variation between thick and thin strokes than fonts
from the ’sans-serif’ generic font family. CSS uses the term ’serif’ to apply to a
font for any script, although other names may be more familiar for particular
scripts, such as Gothic (Japanese), Kai (Chinese), Pathang (Korean) and any
font which is so described may be used to represent the generic ’serif’ family.

Examples of fonts which fit this description include:

Latin fonts
Times New Roman, Garamond, Minion Web, ITC Stone Serif, MS Georgia,
Bitstream Cyberbit

Greek fonts
Bitstream Cyberbit

Cyrillic fonts
Adobe Minion Cyrillic, Excelcior Cyrillic Upright, Monotype Albion 70,
Bitstream Cyberbit, ER Bukinst

Hebrew fonts
New Peninim, Raanana, Bitstream Cyberbit

Japanese fonts
Ryumin Light-KL, Kyokasho ICA, Futo Min A101

Arabic fonts
Bitstream Cyberbit

Cherokee fonts
Lo Cicero Cherokee

sans-serif

Sans-serif fonts, as the term is used in CSS, have the characteristic that the ends
of their strokes have abrupt or butted ends. Sans-serif fonts are typically
proportionately spaced. They often have little variation between thick and thin
strokes, compared to fonts from the ’serif’ family. CSS uses the term ’sans-serif’
to apply to a font for any script, although other names may be more familiar for
particular scripts, such as Mincho (Japanese), Sung or Song (Chinese), Totum or
Kodig (Korean) and any font which is so described may be used to represent the
generic ’sans-serif’ family.

Examples of fonts which fit this description include:

Latin fonts
MS Trebuchet, ITC Avant Garde Gothic, MS Verdana, Univers, Futura, ITC
Stone Sans, Gill Sans, Akzidenz Grotesk, Helvetica

Greek fonts
Attika, Typiko New Era, MS Tahoma, Monotype Gill Sans 571, Helvetica
Greek

147

Cyrillic fonts
Helvetica Cyrillic, ER Univers, Bastion

Hebrew fonts
Arial Hebrew, MS Tahoma

Japanese fonts
Shin Go, Heisei Kaku Gothic W5

Arabic fonts
MS Tahoma

cursive

Cursive fonts, as the term is used in CSS, have the characteristic that the glyphs
are partially or completely connected, and that the result looks more like
handwritten pen or brush writing than printed letterwork. Fonts for some scripts,
such as Arabic, are almost always cursive. CSS uses the term ’cursive’ to apply
to a font for any script, although other names such as Chancery, Brush, Swing
and Script are also used in font names.

Examples of fonts which fit this description include:

Latin fonts
Caflisch Script, Adobe Poetica, Sanvito, Ex Ponto, Snell Roundhand,
Zapf-Chancery

Cyrillic fonts
ER Architekt

Hebrew fonts
Corsiva

Arabic fonts
DecoType Naskh, Monotype Urdu 507

fantasy

Fantasy fonts, as used in CSS, are primarily decorative whilst still containing
representations of characters (as opposed to Pi or Picture fonts, which do not
represent characters).

Latin fonts
Alpha Geometrique, Critter, Cottonwood, FB Reactor, Studz

monospace

The sole criterion of a monospace font is that all glyph representations have the
same fixed width. This can make some scripts, such as Arabic, look most
peculiar. The effect is similar to a manual typewriter, and is often used to
simulate computer code.

Examples of fonts which fit this description include:

Latin fonts
Courier, MS Courier New, Prestige, American Typewriter, Everson Mono

Greek Fonts
MS Courier New, Everson Mono

148

Cyrillic fonts
ER Kurier, Everson Mono

Japanese fonts
Osaka Monospaced

Cherokee fonts
Everson Mono

14.3 Font selection
The second phase of the CSS2 font mechanism concerns the user agent’s
selection of a font based on author-specified font properties, available fonts, etc.
The details of the font matching algorithm p.166 are provided below.

There are four possible font selection actions: matching, intelligent matching,
synthesis, and download.

font name matching
In this case, the user agent uses an existing, accessible font that has the
same family name as the requested font (note that the appearance and the
metrics might not necessarily match, if the font that the document author
used and the font on the client system are from different foundries). The
matching information is restricted to the CSS font properties, including the
family name.
intelligent font name matching
In this case, the user agent uses an existing, accessible font that is the
closest match in appearance to the requested font. (Note that the metrics
might not match exactly). The matching information includes information
about the kind of font (text or symbol), nature of serifs, weight, cap height, x
height, ascent, descent, slant, etc.
font synthesis
In this case, the user agent creates a font that is not only a close match in
appearance, but also matches the metrics of the requested font. The
synthesizing information includes the matching information and typically
requires more accurate values for the parameters than are used for some
matching schemes. In particular, synthesis requires accurate width metrics
and character to glyph substitution and position information if all the layout
characteristics of the specified font are to be preserved.
Download
Finally, the user agent may retrieve a font over the Web. This is similar to
the process of fetching images, sounds or applets over the Web for display
in the current document, and likewise can cause some delay before the
page can be displayed.

progressive rendering is a combination of download and one of the other
methods; it provides a temporary substitute font (using name matching, intelligent
matching, or synthesis) to allow content to be read while the requested font
downloads. Once the real font has been successfully downloaded, it replaces the
temporary font, hopefully without the need to reflow.

In CSS2, authors may specify which, if any, of these mechanisms should be
invoked by the user agent if a particular font is not immediately available. Authors
add font descriptions to style sheets for this purpose. A font description is a set

149

of font descriptors , individual pieces of information about a font, possibly
including a URL describing the font’s location on the Web.

Note. Progressive rendering requires metric information about the font in order
to avoid re-layout of the content when the actual font has been loaded and
rendered. This metric information is sufficiently verbose that it should only be
specified at most once per font in a document.

14.3.1 Font Descriptions and @font-face
The font description provides the bridge between an author’s font specification
and the font data , which is the data needed to format text and to render the
glyph representations to which the characters map - the actual scalable outlines
or bitmaps needed to to render the glyph representations to which the characters
map. Fonts are referenced by style sheet properties.

The font description is used to select the relevant font data. The font
description contains descriptors that provide the location of the font data on the
Web, and/or characterize that font data. The font descriptors are also needed to
match the style sheet font properties to particular font data. The level of detail of
a font description can vary from just the name of the font up to a list of glyph
representation widths. This data is a subset of the glyph representation metrics
contained in the font.

Font descriptors may be classified into three types:

1. those that provide the link between the CSS usage of the font and the font
description (these have the same names as the corresponding CSS font
properties),

2. the URL for the location of the font data,
3. those that further characterize the font, to provide a link between the font

description and the font data.

All font descriptions are specified via a @font-face at-rule. The general form of
this rule is:

@font-face {<font-description> p.150 }
where the <font-description> has the form:

descriptor: value;
descriptor: value;
[...]
descriptor: value;

Each @font-face rule specifies a value for every font descriptor, either
implicitly or explicitly. Those not given explicit values in the rule take the initial
value listed with each descriptor in this specification. These descriptors apply
solely within the context of the @font-face rule in which they are defined, and do
not apply to document language elements. Thus, there is no notion of which
elements the descriptors apply to, or whether the values are inherited by child
elements.

The available font descriptors are described in later sections of this
specification.

For example, here the font ’Robson Celtic’ is defined and referenced in a style
sheet contained in an HTML document.

150

<HTML>
 <HEAD>
 <TITLE>Font test</TITLE>
 <STYLE TYPE="text/css" MEDIA="screen, print">
 @font-face {
 font-family: "Robson Celtic";
 src: url(http://site/fonts/rob-celt)
 }
 H1 {font-family: "Robson Celtic", serif}
 </STYLE>
 </HEAD>

 <BODY>
 <H1> This heading is displayed using Robson Celtic</H1>
 </BODY>
</HTML>

The style sheet (in the STYLE element) contains a CSS rule that sets all H1
elements to use the ’Robson Celtic’ font family.

A CSS1 implementation will search the client for a font whose family name and
other properties match "Robson Celtic" and, if it fails to find it, will use the
UA-specific fallback serif font (which is defined to exist p.140).

A user agent implementing CSS2 will first examine @font-face rules in search
of a font description defining Robson Celtic. This example contains a rule which
matches. Although this rule doesn’t contain much font data, it does have a URL
where the font can be retrieved for rendering this document. Downloaded fonts
should not be made available to other applications. If no matching @font-face is
found, the user agent will attempt the same match as a user agent implementing
CSS1.

Note that if the font Robson Celtic had been installed on the client system, this
would cause the UA to construct an @font-face rule for the installed copy as
described in the section on the font matching algorithm p.166 . The installed copy
would have been matched before the downloadable font in the example above.

CSS1 implementations, which do not understand the @font-face rule will
encounter the opening curly brackets and will skip forward until the matching
closing curly brackets. This at-rule conforms with the forward-compatible parsing
requirement of CSS. Parsers may skip these rules without error.

Also, any descriptors which are not recognized or useful to the user agent
should be ignored in their entirety. This allows adding in the future optional
descriptors for the purpose of better font substitution, matching, or synthesis.

14.3.2 Descriptors for Selecting a Font: ’font-family’,
’font-style’, ’font-variant’, ’font-weight’, and ’font-size’
The following descriptors have the same names as the corresponding CSS2 font
properties, and take a single value or comma-separated list of values.

The values within that list are exactly the same as those specified for CSS2. If
there is a single value, that is the value that must be matched. If there is a list,
any of the list items constitutes a match. If the descriptor is omitted from the
@font-face, the initial value is used.

’font-family’ (Descriptor)

151

Descriptor
name:

’font-family’

Value: [<family-name> p.140 | <generic-family> p.140] [,
[<family-name> p.140 | <generic-family> p.140]]*

Initial: depends on user agent

This is the descriptor for the family name p.?? of a font and takes the same
values as the ’font-family’ p.140 property.

’font-style’ (Descriptor)

Descriptor name: ’font-style’

Value: [normal | italic | oblique] [, [normal | italic | oblique]]*

Initial: normal

This is the descriptor for the style of a font and takes the same values as the
’font-style’ p.141 property except that a comma separated list is permitted. The
value ’normal’ indicates that this is the normal face of a font; it is either the only
face in a a font, or it is the face which is intended to be used alongside other
companion faces. The value ’oblique’ indicates that this face is a more slanted
companion face than than the normal face. The value ’italic’ indicates that this is
a more cursive companion face to the normal face. This avoids having to label
slightly slanted normal faces as oblique, or Greek faces as italic.

’font-variant’ (Descriptor)

Descriptor name: ’font-variant’

Value: [normal | small-caps] [,[normal | small-caps]]*

Initial: normal

This is the CSS indication whether this face is a small-caps variant of a font. It
takes the same values as the ’font-variant’ p.142 property except that a comma
separated list is permitted. Cyrillic pryamoĭ faces may be labeled with a
’font-variant’ p.152 of small-caps, which will give better consistency with Latin
faces (and the companion kursiv face labeled with ’font-style’ p.152 italic for the
same reason).

’font-weight’ (Descriptor)

Descriptor
name:

’font-weight’

Value: all | [normal | bold | 100 | 200 | 300 | 400 | 500 | 600 | 700 |
800] [, [normal | bold | 100 | 200 | 300 | 400 | 500 | 600 | 700
| 800]]*

Initial: normal

152

This is the descriptor for the weight of a face relative to others in the same font
family. It takes the same values as the ’font-weight’ p.142 property with three
exceptions:

1. relative keywords (bolder, lighter) are not permitted
2. a comma separated list of values is permitted
3. an additional keyword, ’all’ is permitted

’font-size’ (Descriptor)

Descriptor name: ’font-size’

Value: all | [<length> [,[<length>]]*]

Initial: all

This is the descriptor for the sizes provided by this font. Only absolute length
units are permitted, in contrast to the ’font-size’ p.144 property, which allows
both relative and absolute lengths and sizes. A comma separated list of absolute
lengths is permitted.

The initial value of ’all’ is suitable for scalable fonts, so this descriptor will only
be useful in an @font-face for bitmap fonts, or for scalable fonts which have
hand-tuned bitmaps at specific point sizes.

14.3.3 Descriptors for Font Data Qualification:
’unicode-range’
The following descriptor is optional within a font definition, but is used to avoid
checking or downloading a font that does not have sufficient glyphs to render a
particular character.

’unicode-range’ (Descriptor)

Descriptor name: ’unicode-range’

Value: <urange> p.153 +

Initial: U+0-7FFFFFFF

This is the descriptor for the range of [UNICODE] p.236 characters covered by
the font. Since this is sparse (most fonts do not cover the whole of Unicode) this
descriptor lists blocks or ranges which do have some coverage (no promise is
made of complete coverage). This method is extensible to future allocation of
characters in Unicode, without change of syntax and without invalidating existing
content.

The values of <urange> are expressed using hexadecimal numbers prefixed
by "U+", corresponding to character code positions in [UNICODE] p.236 , which
is code-for-code identical to [ISO10646] p.235 (the document character set of
[HTML40] p.236). For example, U+05D1 is the Unicode character ’Hebrew letter
bet’. For values outside the Basic Multilingual Plane (BMP), additional leading
digits corresponding to the plane number are added, also in hexadecimal, like
this: U+A1234 which is the character on Plane 10 at hexadecimal code position

153

1234. At the time of writing no characters had been assigned outside the BMP.
Leading zeros (for example, 0000004D) are legal, but not required.

The initial value (i.e., the value used when no value is given in the style sheet)
covers not only the entire Basic Multilingual Plane (BMP), which would be
expressed as U+0-FFFF, but also the whole repertoire of ISO 10646. Thus, the
initial value says that the font may have glyph representations for characters
anywhere in [ISO10646] p.235 . Specifying a value for ’unicode-range’ p.153
provides information to make searching efficient, by declaring a constrained
range in which the font may have glyph representations for characters. The font
need not be searched for characters outside this range.

Values may be written with any number of digits. For single numbers, the
character ’?’ is assumed to mean ’any value’ which creates a range of character
positions. Thus, using a single number:

unicode-range: U+20A7
no wild cards - it indicates a single character position (the Spanish peseta
currency symbol)

unicode-range: U+215?
one wild card, covers the range 2150 to 215F (the fractions)

unicode-range: U+00??
two wild cards, covers the range 0000 to 00FF (Latin-1)

unicode-range: U+E??
two wild cards, covers 0E00 to 0EFF (the Lao script)

A pair of numbers in this format can be combined with the dash character to
indicate larger ranges. For example

unicode-range: U+AC00-D7FF
the range is AC00 to D7FF (the Hangul Syllables area)

Multiple, discontinuous ranges can be specified, separated by a comma. As
with other comma-separated lists in CSS, any whitespace before or after the
comma is ignored.

For example:

unicode-range: U+370-3FF, U+1F??
This covers the range 0370 to 03FF (Modern Greek) plus 1F00 to 1FFF
(Ancient polytonic Greek).

unicode-range: U+3000-303F, U+3100-312F, U+32??, U+33??, U+4E00-9FFF,
U+F9000-FAFF, U+FE30-FE4F

Something of a worst case in terms of verbosity, this very precisely indicates
that this (extremely large) font contains only Chinese characters from
[UNICODE] p.236 , without including any characters that are uniquely
Japanese or Korean. The range is 3000 to 303F (CJK symbols and
punctuation) plus 3100 to 312F (Bopomofo) plus 3200 to 32FF (enclosed
CJK letters and months) plus 3300 to 33FF (CJK compatibility zone) plus
4E00 to 9FFF (CJK unified Ideographs) plus F900 to FAFF (CJK
compatibility ideographs) plus FE30 to FE4F (CJK compatibility forms).

A more likely representation for a typical Chinese font would be:

154

unicode-range: U+3000-33FF, U+4E00-9FFF
unicode-range: U+11E00-121FF

This font covers a proposed registration for Aztec pictograms, covering the
range 1E00 to 21FF in plane 1.

unicode-range: U+1A00-1A1F
This font covers a proposed registration for Irish Ogham covering the range
1A00 to 1A1F

14.3.4 Descriptor for Numeric Values: ’units-per-em’
The following descriptor is optional within a font definition, but is required if there
are any numeric values in the ’em’ space in which glyphs are defined.

’units-per-em’ (Descriptor)

Descriptor name: ’units-per-em’

Value: <number>

Initial: undefined

This is the descriptor for the number of the co-ordinate units on the em square
p.162 , the size of the design grid on which glyph representations are laid out.

14.3.5 Descriptor for Referencing: ’src’
This descriptor is required for referencing actual font data, whether downloadable
or locally installed.

’src’ (Descriptor)

Descriptor
name:

’src’

Value: [<url> [format [,format]*]? | <font-face-name> p.155] [,
<url> [format [,format]*]?] | <font-face-name> p.155]*

Initial: undefined

This is a prioritized list of URLs and/or locally installed font face names. The
URL points to the font data itself. This is required if the WebFont is to be
retrieved. The font resource may be a subset of the source font. The URL may
be partial, in which case it is resolved relative to the location of the style sheet
containing the @font-face .

The URL may have optional hints regarding the format of font resource to be
found at that URL, and this information should be used by clients in format
negotiation with the server. As with any hypertext reference, there may be other
formats available, or the resource may have been moved; but the client has a
better idea of what is likely to be there, in a more robust way than trying to parse
filename extensions in URLs.

The <font-face-name> is the adorned font name of a locally installed font. The
adorned font name is the name of the font as reported by the operating system
and is the name most likely to be used in reader stylesheets, or author

155

stylesheets on an intranet. Adornments such as bold, italic, underline are usually
used to select the appropriate font within a font family. For more information
about adorned font names p.161 please consult the notes about fonts.

Examples:

src: url(http://foo/bar)
a full URL and no information about the font format(s) available there

src: local(BT Century 751 No. 2 Semi Bold Italic)
references a particular face of a locally installed font

src: url(../fonts/bar) format(truedoc)
a partial URL which has a font available in TrueDoc format

src: url(http://cgi-bin/bar?stuff) format(opentype,
intellifont)

a full URL, in this case to a script, which can generate two different formats -
OpenType and Intellifont

src: local(T-26 Typeka Mix), url(http://site/magda-extra)
format(type1)

two alternatives are given, firstly a locally installed font and secondly a
downloadable font available in Type 1 format.

Access to locally installed fonts is via the <font-face-name> p.155 . The font
face name is not truly unique, nor is it truly platform or font format independent,
but at the moment it is the best way to identify font data. The use of the font face
name can be made more accurate by providing an indication of the glyph
complement required. This may be done by indicating the range of Unicode
character positions for which the font provides some glyph representations (see
’unicode-range’ p.153).

14.3.6 Descriptors for Matching: ’panose-1’, ’stemv’,
’stemh’, ’slope’, ’cap-height’, ’x-height’, ’ascent’, and
’descent’
These descriptors are optional for a CSS2 definition, but may be used if
intelligent font matching is desired by the author.

’panose-1’ (Descriptor)

Descriptor name: ’panose-1’

Value: [<number>]{10}

Initial: 0 0 0 0 0 0 0 0 0 0

This is the descriptor for the Panose-1 number p.165 and consists of ten
decimal numbers, separated by whitespace. A comma separated list is not
permitted for this descriptor, because the Panose-1 system can indicate that a
range of values are matched. The initial value is zero for each PANOSE digit,
which means "any"; all fonts will match the Panose number if this value is used.

’stemv’ (Descriptor)

156

Descriptor name: ’stemv’

Value: <number>

Initial: undefined

This is the descriptor for the vertical stem width p.166 of the font. If the value
is undefined, the descriptor is not used for matching. If this descriptor is used, the
’units-per-em’ p.155 descriptor must also be used.

’stemh’ (Descriptor)

Descriptor name: ’stemh’

Value: <number>

Initial: undefined

This is the descriptor for the horizontal stem width p.163 of the font. If the
value is undefined, the descriptor is not used for matching. If this descriptor is
used, the ’units-per-em’ p.155 descriptor must also be used.

’slope’ (Descriptor)

Descriptor name: ’slope’

Value: <number>

Initial: 0

This is the descriptor for the vertical stroke angle p.?? of the font.
’cap-height’ (Descriptor)

Descriptor name: ’cap-height’

Value: <number>

Initial: undefined

This is the descriptor for the number of the height of capital glyph
representations p.164 of the font. If the value is undefined, the descriptor is not
used for matching. If this descriptor is used, the ’units-per-em’ p.155 descriptor
must also be used.

’x-height’ (Descriptor)

Descriptor name: ’x-height’

Value: <number>

Initial: undefined

157

This is the descriptor for the height of lowercase glyph representations p.164
of the font. If the value is undefined, the descriptor is not used for matching. If
this descriptor is used, the ’units-per-em’ p.155 descriptor must also be used.

’ascent’ (Descriptor)

Descriptor name: ’ascent’

Value: <number>

Initial: undefined

This is the descriptor for the maximum unaccented height p.165 of the font. If
the value is undefined, the descriptor is not used for matching. If this descriptor is
used, the ’units-per-em’ p.155 descriptor must also be used.

’descent’ (Descriptor)

Descriptor name: ’descent’

Value: <number>

Initial: undefined

This is the descriptor for the Maximum unaccented depth p.165 of the font. If
the value is undefined, the descriptor is not used for matching. If this descriptor is
used, the ’units-per-em’ p.155 descriptor must also be used.

14.3.7 Descriptors for Synthesis: ’widths’ and
’definition-src’
Synthesizing a font means, at minimum, matching the width metrics of the
specified font. Therefore, for synthesis, this metric information must be available.
Similarly, progressive rendering requires width metrics in order to avoid reflow of
the content when the actual font has been loaded. Although the following
descriptors are optional for a CSS2 definition, some are required if synthesizing
(and progressive rendering) is desired by the author. Should the actual font
become available, the substitution should be replaced by the actual font. Any of
these descriptors which are present will be used to provide a better or faster
approximation of the intended font.

Of these descriptors, the most important are the ’widths’ p.158 descriptor and
bbox which are used to prevent text reflow should the actual font become
available. In addition, the descriptors in the set of descriptors required for
matching p.156 can be used to provide a better synthesis of the actual font
appearance.

’widths’ (Descriptor)

158

Descriptor
name:

’widths’

Value: [<urange> p.153]? [<number>]+ [,[<urange> p.153]?
<number>]+]

Initial: undefined

This is the descriptor for the number of the glyph representation widths p.163 .
The value is a (comma separated list of) <urange> p.153 values followed by one
or more glyph representation widths. If this descriptor is used, the ’units-per-em’
p.155 descriptor must also be used.

For example:

 widths: U+4E00-4E1F 1736 1874 1692

In this instance a range of 32 characters is given, from 4E00 to 4E1F. The
glyph corresponding to the first character (4E00) has a width of 1736, the second
has a width of 1874 and the third, 1692. Because not enough widths have been
provided, the last width replicates to cover the rest of the specified range. If too
many widths are provided, the excess are ignored.

If the <urange> p.153 is omitted, a range of U+0-7FFFFFFF is assumed which
covers all characters and their glyph representations

This descriptor cannot describe multiple glyphs corresponding to a single
character, or ligatures of multiple characters. Thus, this descriptor can only be
used for scripts which do not have contextual forms or mandatory ligatures. It is
nevertheless useful in those situations. Scripts which require a one-to-many or
many-to-many mapping of characters to glyphs cannot at present use this
descriptor to enable font synthesis although they can still use font downloading or
intelligent matching.

’definition-src’ (Descriptor)

Descriptor name: ’definition-src’

Value: <url>

Initial: undefined

The font descriptors may either be within the font definition in the stylesheet, or
may be provided within a separate font definition resource identified by a URL.
The latter approach can reduce network traffic when multiple stylesheets
reference the same fonts.

Having the font descriptors separate from the font data has a benefit beyond
being able to do font selection and/or substitution. The data protection and
replication restrictions on the font descriptors may be much weaker than on the
full font data. Thus, it may be possible to locally install the font definition, or at
least to have it in a local cache. This allows the abbreviated form of font definition
within documents, but would not require accessing the full font definition over the
Web more than once per named font.

159

14.3.8 Descriptors for Alignment: ’baseline’,
’centerline’, ’mathline’, and ’topline’
These optional descriptors are used to align runs of different scripts with one
another.

’baseline’ (Descriptor)

Descriptor name: ’baseline’

Value: <number>

Initial: 0

This is the descriptor for the lower baseline p.164 of a font. If this descriptor is
given a non-default (non-zero) value, the ’units-per-em’ p.155 descriptor must
also be used.

’centerline’ (Descriptor)

Descriptor name: ’centerline’

Value: <number>

Initial: undefined

This is the descriptor for the central baseline p.162 of a font. If the value is
undefined, the UA may employ various heuristics such as the midpoint of the
ascent and descent values. If this descriptor is used, the ’units-per-em’ p.155
descriptor must also be used.

’mathline’ (Descriptor)

Descriptor name: ’mathline’

Value: <number>

Initial: undefined

This is the descriptor for the mathematical baseline p.164 of a font. If
undefined, the UA may use the center baseline. If this descriptor is used, the
’units-per-em’ p.155 descriptor must also be used.

’topline’ (Descriptor)

Descriptor name: ’topline’

Value: <number>

Initial: undefined

This is the descriptor for the top baseline p.166 of a font. If undefined, the UA
may use an approximate value such as the ascent. If this descriptor is used, the
’units-per-em’ p.155 descriptor must also be used.

160

14.4 Font Characteristics

14.4.1 Introducing Font Characteristics
In this section are listed the font characteristics that have been found useful for
client-side font matching, synthesis, and download for heterogeneous platforms
accessing the Web. The data may be useful for any medium which needs to use
fonts on the Web by some other means than physical embedding of the font data
inside the medium.

These characteristics are used to characterize fonts. They are not specific to
CSS or to style sheets. In CSS, each characteristic is described by a font
descriptor. These definitions could also be mapped onto VRML nodes, or CGM
Application Structures, or a Java API, or alternative stylesheet languages. Fonts
retrieved by one medium and stored in a proxy cache could be re-used by
another medium, saving download time and network bandwidth.

A non-exhaustive list examples of such media includes:

2-D vector formats
Computer Graphics Metafile
Simple Vector Format

3-D graphics formats
VRML
3DMF

Object embedding technologies
Java
Active-X
Obliq

14.4.2 Adorned font name
This is the full name of a particular face of a font family. It typically includes a
variety of non-standardized textual qualifiers or adornments appended to the font
family name. It may also include a foundry name or abbreviation, often
prepended to the font family name. It is only used in the ’src’ descriptor, to refer
to locally installed fonts, because the format of the adorned name can vary from
platform to platform.

The name of the font definition is important because it is the link to any locally
installed fonts. It is important that the name be robust, both with respect to
platform and application independence. For this reason, the name should be one
which is not application or language specific.

The ideal solution would be to have a name which uniquely identifies each
collection of font data. This name does not exist in current practice for font data.
Fonts with the same face name can vary over of number of descriptors. Some of
these descriptors, such as different complements of glyphs in the font may be
insignificant if the needed glyphs are in the font. Other descriptors, such as
different width metrics, make fonts with the same name incompatible. It does not
seem possible to define a rule that will always identify incompatibilities, but will
not prevent the use of a perfectly suitable local copy of the font data with a given
name. Therefore, only the range of Unicode characters will be used to qualify
matches for the font face name.

161

Since a prime goal of the font face name in the font definition is allow a user
agent to determine when there is a local copy of the specified font data, the font
face name must be a name which will be in all legitimate copies of the font data.
Otherwise, unnecessary Web traffic may be generated due to missed matches
for the local copy.

For TrueType and OpenType fonts, this value may be obtained from the full
font name from the name table.

For Type 1 fonts, this value may be obtained from the PostScript language
name; the name which, in a PostScript language program, is used as an operand
of the findfont operator. It is the name associated with the font by a definefont
operation. This is usually the value of the FontName entry in the font dictionary.
For more information, see Section 5.2 of the PostScript Language Reference
Manual, Second Edition [Ref 10] p.?? .

Multiple Master Type 1 fonts allow specifying various design dimensions (e.g.,
weight, such as light to extra-bold, and width, such as condensed to expanded)
[Ref 12] p.?? . Coordinates along these design dimensions are specified by
numbers, and are appended as a suffix to the base font name. To specify the
appearance of the font, numeric values must be supplied for each design
dimension of the multiple master font. A completely specified multiple master font
is referred to as an instance of the multiple master font.

The PostScript language name used for a Multiple Master Type 1 is the name
of the instance. If the name contains spaces (such as "MinionMM 366 465 11"),
these spaces are replaced with underscores. For example, the base font name
here is TektonMM and the 2 dimensions specified have values of 200 and 300:

 TektonMM_200_300

The full font name of the TrueType font and the PostScript Language name
may differ by spacing and punctuation. For example, spaces are not allow in a
PostScript Language name, but are common in full font names. The TrueType
name table can also contain the PostScript name, which has no spaces.

14.4.3 Central Baseline
This gives the position in the em square of the central baseline. The central
baseline is used by ideographic scripts for alignment, just as the bottom baseline
is used for Latin, Greek and Cyrillic scripts.

For TrueType GX fonts, this value may be obtained from the [TRUETYPEGX]
p.237 bsln table. Within this table, the ideographic centered baseline
may be used for stretches of predominantly ideographic characters and the
ideographic low baseline is more suitable for ideographic characters in a
run of predominantly Latin, Greek or Cyrillic characters.

14.4.4 Co-ordinate units on the em square
Certain values, such as width metrics, are expressed in units that are relative to
an abstract square whose height is the intended distance between lines of type in
the same type size. This square is called the EM square. The value of this
descriptor specifies how many units the EM square is divided into. The valid
range is 16 to 16384 units per EM square. Common values are 250 (Intellifont),
1000 (Type 1) and 2048 (TrueType).

162

If this value is not specified, it becomes impossible to know what any font
metrics mean. For example, one font has lowercase glyph representations of
height 450; another has smaller ones of height 890! The numbers are actually
fractions; the first font has 450/1000 and the second has 890/2048 which is
indeed smaller.

For Type 1 fonts, this value may be obtained from the FontMatrix entry in
the font dictionary. For TrueType fonts, this value may be obtained from the
unitsPerEm entry in the head table. For Intellifont fonts, this value is contained
in the font attribute file.

14.4.5 Font encoding tables
Either explicitly or implicitly, each font has a table associated with it, the font
encoding table , that tells for each glyph what character it is a representation for.
In "Type 1 fonts", the table is referred to as an encoding vector .

In fact, many fonts contain several glyphs for the same character. Which of
those glyphs should be used depends either on the rules of the language, or on
the preference of the designer.

In Arabic, for example, all letters have four (or two) different shapes,
depending on whether the letter is used at the start of a word, in the middle, at
the end, or in isolation. It is the same character in all cases, and thus there is
only one character in the HTML document, but when printed, it looks differently
each time.

There are also fonts that leave it to the graphic designer to choose from among
various alternative shapes provided. Unfortunately, CSS2 doesn’t yet provide the
means to select those alternatives. Currently, it is always the default shape that
is chosen from such fonts.

14.4.6 Font family name
Specifies the family name portion of the font face name. For example, the family
name for Helvetica-Bold is Helvetica and the family name of ITC Stone Serif
Semibold Italic is ITC Stone Serif. Some systems treat adornments relating to
condensed or expanded faces as if they were part of the family name.

For Type 1 fonts, this value may be obtained from the FamilyName entry in
the FontInfo dictionary. For TrueType and OpenTypefonts, it may be obtiained
from the name table.

14.4.7 Glyph Representation widths
For Type 1 fonts, this value may be obtained from the @@???. For TrueType
fonts, the values are in the hmtx table.

14.4.8 Horizontal stem width
For Type 1 fonts, this value may be obtained from the StdHW entry, in the Private
dictionary or the AFM file.

163

14.4.9 Height of capital glyph representations
The y-coordinate of the top of flat capital letters in Latin, Greek and Cyrillic
scripts, measured from the baseline. This descriptor is not useful for fonts that do
not contain any glyph representations from these scripts.

For Type 1 fonts, this value may be obtained from the CapHeight entry in the
AFM file or from the Bluevalues entry in the Private dictionary

14.4.10 Height of lowercase glyph representations
The y-coordinate of the top of unaccented, non-ascending lowercase letters in
Latin, Greek and Cyrillic scripts, measured from the baseline. Flat-topped letters
are used, ignoring any optical correction zone. Usually used as a ratio of
lowercase to uppercase heights, as a means of comparison between font
families. The terms large-eye, small-eye are also used to indicate the height of
lowercase glyph representations relative to the height of uppercase.
Illustration of x-height

This descriptor is not useful for fonts that do not contain any glyph
representations from these scripts. Since the heights of lowercase and
uppercase letters are often formed into a ratio for comparing different fonts, it
may be useful to set both the lowercase and uppercase heights to the same
value for unicameral scripts such as Hebrew, where for mixed Latin and Hebrew
text the Hebrew characters are typically set at a height midway between the
capital and lowercase heights of the Latin font.
Height of Hebrew characters

For Type 1 fonts, this value may be obtained from the Bluevalues entry in
the Private dictionary.

14.4.11 Lower Baseline
This gives the position in the em square of the lower baseline. The lower
baseline is used by Latin, Greek and Cyrillic scripts for alignment, just as the
upper baseline is used for Sanscrit-derived scripts.

14.4.12 Mathematical Baseline
This gives the position in the em square of the mathematical baseline. The
mathematical baseline is used by ideographic scripts for alignment, just as the
lower baseline is used for Latin, Greek and Cyrillic scripts.

For TrueType GX fonts, this value may be obtained from the [TRUETYPEGX]
p.237 bsln table.

14.4.13 Maximal bounding box
For Type 1 fonts, this value may be obtained from the FontBBox entry in the font
dictionary. For TrueType fonts, the four values are in the ’xMin’ , ’xMax’ ,
’yMin’ and ’yMax’ entries of the ’head’ table.

164

14.4.14 Maximum unaccented height
For Type 1 fonts, this value may be obtained from the ’Ascender’ value in the
AFM file. For TrueType and OpenType fonts, this value may be obtained from
the ’Ascender’ entry in the [OPENTYPE] p.237 ’hhea’ table or (preferably)
from the ’sTypoAscender’ value in the [OPENTYPE] p.237 ’OS/2’ table.

For TrueType GX fonts, the ’horizontalBefore’ entry in the
[TRUETYPEGX] p.237 ’fmtx’ table is used, overriding Ascender values in the
’hhea’ table.

14.4.15 Maximum unaccented depth
For Type 1 fonts, this value may be obtained from ’descender’ value in the
AFM file.

14.4.16 Panose-1 number
Panose-1 is an industry standard TrueType font classification and matching
technology. The PANOSE system consists of a set of ten numbers that
categorize the key attributes of a Latin typeface, a classification procedure for
creating those numbers, and Mapper software that determines the closest
possible font match given a set of typefaces. The system could, with
modification, also be used for Greek and Cyrillic, but is not suitable for
unicameral and ideographic scripts (Hebrew, Armenian, Arabic,
Chinese/Japanese/Korean). Panose-1 technology was originally developed by
Elseware Corporation and is now owned by Hewlett Packard.

Illustration of Panose-1
The Family, Serif Style and Proportion numbers are used by Windows95 for

font selection and matching.
The meaning of the ten numbers and the allowable values (given in

parentheses) are given in Appendix E p.229 for the most common case, where
the "family" digit is 2, Text and Display . (If the first digit has a different
value, the remaining nine digits have different meanings).

Panose-2 (see [PANOSE2] p.237) is a specification for a more comprehensive
font classification and matching technology which is not limited to Latin
typefaces. For example, the serif characteristics of a Latin face may be
compared with the stroke terminations of a Kanji face.

Illustration of Panose-2
The Panose-2 value is not stored inside any known font formats, but may be

measured.

14.4.17 Range of Unicode characters
This indicated the glyph repertoire of the font, relative to the Basic Multilingual
Plane of Unicode, and is used to eliminate unsuitable fonts (ones that will not
have the required glyphs). It does not indicate that the font definitely has the
required glyphs, only that it is worth downloading and looking at the font. See
[ISO10646] p.235 for information about useful documents.

Font formats that do not include this information, explicitly or indirectly, may
still use this descriptor, but the value must be supplied by the document or
stylesheet author, perhaps being obtained by inspection.

165

For Type 1 fonts, this value may be obtained from the CMap file).
For TrueType and Opentype fonts with an OS/2 table, see Appendix E p.232 .
There are other classifications into scripts, such as the [MONOTYPE] p.237

system and a proposed ISO script system.
Because of this, classification of glyph repertoires by the range of Unicode

characters that may be represented with a particular font is suggested in this
specification.

14.4.18 Top Baseline
This gives the position in the em square of the top baseline. The top baseline is
used by Sanscrit-derived scripts for alignment, just as the bottom baseline is
used for Latin, Greek and Cyrillic scripts.

For TrueType GX fonts, this value may be obtained from the [TRUETYPEGX]
p.237 bsln table.

14.4.19 Vertical stem width
The width of vertical (or near-vertical) stems of glyph representations. This
information is often tied to hinting, and may not be directly accessible in some
font formats. For Type 1 fonts, this may be obtained from the /StdVW entry in the
Private dictionary or the AFM file. For TrueType fonts, this may be obtained from
the cvt table.

14.4.20 Vertical stroke angle
Angle, in degrees counterclockwise from the vertical, of the dominant vertical
strokes of the font. The value is negative for fonts that slope to the right, as
almost all italic fonts do. This descriptor may also be specified for oblique fonts,
slanted fonts, script fonts, and in general for any font whose vertical strokes are
not precisely vertical. A non-zero value does not of itself indicate an italic font.

14.5 Font matching algorithm
This specification extends the algorithm given in the CSS1 specification. This
algorithm reduces down to the algorithm in the CSS1 specification when the
author and reader stylesheets do not contain any @font-face rules.

Matching of descriptors to font faces must be done carefully. The descriptors
are matched in a well-defined order to insure that the results of this matching
process are as consistent as possible across UAs (assuming that the same
library of font faces and font descriptions is presented to each of them). This
algorithm may be optimized, provided that an implementation behaves as if the
algorithm had been followed exactly.

1. The user agent makes (or accesses) a database of relevant font-face
descriptors of all the fonts of which the UA is aware. If there are two fonts
with exactly the same descriptors, one of them is ignored. The UA may be
aware of a font because:

it has been installed locally
it is declared using an @font-face rule in one of the style sheets linked
to or contained in the current document

166

it is used in the UA default style sheet, which conceptually exists in all
UAs and is considered to have full @font-face rules for all fonts which
the UA will use for default presentation, plus @font-face rules for the
five special generic font families p.140 defined in CSS2

2. At a given element and for each character in that element, the UA
assembles the font-properties applicable to that element. Using the complete
set of properties, the UA uses the ’font-family’ p.151 descriptor to choose a
tentative font family. Thus, matching on a family name will succeed before
matching on some other descriptor. The remaining properties are tested
against the family according to the matching criteria described with each
descriptor. If there are matches for all the remaining properties, then that is
the matching font face for the given element.

3. If there is no matching font face within the ’font-family’ p.151 being
processed by step 2, UAs which implement intelligent matching may
proceed to examine other descriptors such as x-height, glyph representation
widths, and panose-1 to identify a different tentative font family. If there are
matches for all the remaining descriptors, then that is the matching font face
for the given element. The font-family descriptor which is reflected into the
CSS2 properties is the font family that was requested, not whatever name
the intelligently matched font may have. UAs which do not implement
intelligent matching are considered to fail at this step.

4. If there is no matching font face within the ’font-family’ p.151 being
processed by step 3, UAs which implement font downloading may proceed
to examine the src descriptor of the tentative font face identified in step 3 or
4 to identify a network resource which is available, and of the correct format.
If there are matches for all the remaining descriptors, then that is the
matching font face for the given element and the UA may attempt to
download this font resource. The UA may choose to block on this download
or may choose to proceed to the next step while the font downloads. UAs
which do not implement font download, or are not connected to a network, or
where the user preferences have disabled font download, or where the
requested resource is unavailable for whatever reason, or where the
downloaded font cannot be used for whatever reason, are considered to fail
at this step.

5. If there is no matching font face within the ’font-family’ p.151 being
processed by step 3, UAs which implement font synthesis may proceed to
examine other descriptors such as x-height, glyph representation widths,
and panose-1 to identify a different tentative font family for synthesis. If there
are matches for all the remaining descriptors, then that is the matching font
face for the given element and synthesis of the faux font may begin. UAs
which do not implement font synthesis are considered to fail at this step.

6. If all of steps 3, 4 and 5 fail, and if there is a next alternative ’font-family’
p.151 in the font set, then repeat from step 2 with the next alternative
’font-family’ p.151 .

7. If there is a matching font face, but it doesn’t contain a glyph representation
for the current character, and if there is a next alternative ’font-family’ p.151
in the font sets, then repeat from step 2 with the next alternative ’font-family’
p.151 . The ’unicode-range’ p.153 descriptor may be used to rapidly
eliminate from consideration those font faces which do not have the correct
glyph representations. If the ’unicode-range’ p.153 descriptor indicates that

167

a font contains some glyph representations in the correct range, it may be
examined by the UA to see if it has that particular one.

8. If there is no font within the family selected in 2, then use a UA-dependent
default ’font-family’ p.151 and repeat from step 2, using the best match that
can be obtained within the default font. If a particular character cannot be
displayed using the default font, the UA should indicate that a character is
not being displayed (for example, using the ’missing character’ glyph).

9. UAs which implement progressive rendering and have pending font
downloads may, once download is successful, use the downloaded font as a
font family. If the downloaded font is missing some glyph representations
that the temporary progressive font did contain, the downloaded font is not
used for that character and the temporary font continues to be used.

Note. The above algorithm can be optimized to avoid having to revisit the
CSS2 properties for each character.

The per-descriptor matching rules from (2) above are as follows:

1. ’font-style’ p.152 is tried first. ’italic’ will be satisfied if there is either a face in
the UA’s font database labeled with the CSS keyword ’italic’ (preferred) or
’oblique’. Otherwise the values must be matched exactly or font-style will fail.

2. ’font-variant’ p.152 is tried next. ’normal’ matches a font not labeled as
’small-caps’; ’small-caps’ matches (1) a font labeled as ’small-caps’, (2) a
font in which the small caps are synthesized, or (3) a font where all
lowercase letters are replaced by upper case letters. A small-caps font may
be synthesized by electronically scaling uppercase letters from a normal
font.

3. ’font-weight’ p.152 is matched next, it will never fail. (See ’font-weight’ p.152
 below.)

4. ’font-size’ p.153 must be matched within a UA-dependent margin of
tolerance. (Typically, sizes for scalable fonts are rounded to the nearest
whole pixel, while the tolerance for bitmapped fonts could be as large as
20%.) Further computations, e.g. by ’em’ values in other properties, are
based on the ’font-size’ p.153 value that is used, not the one that is
specified.

14.5.1 Examples of font matching
The following example defines a specific font face, Alabama Italic. A panose font
description and source URL for retrieving a truetype server font are also
provided. Font-weight, and font-style descriptors are provided to describe the
font. The declaration says that the weight will also match any request in the
range 300 to 500). The font family is Alabama and the adorned font name is
Alabama Italic.

168

<STYLE>
 @font-face {
 src: local(Alabama Italic),
 url(http://www.fonts.org/A/alabama-italic) format(truetype);
 panose-1: 2 4 5 2 5 4 5 9 3 3;
 font-family: Alabama, serif;
 font-weight: 300, 400, 500;
 font-style: italic, oblique;
 }
</STYLE>

The next example defines a family of fonts. A single URL is provided for
retrieving the font data. This data file will contain multiple styles and weights of
the named font. Once one of these @font-face definitions has been
dereferenced, the data will be in the UA cache for other faces that use the same
URL.

<STYLE>
 @font-face {
 src: local(Helvetica Medium),
 url(http://www.fonts.org/sans/Helvetica_family) format(truedoc);
 font-family: "Helvetica";
 font-style: normal
 }
 @font-face {
 src: local(Helvetica Oblique),
 url(http://www.fonts.org/sans/Helvetica_family) format(truedoc);
 font-family: "Helvetica";
 font-style: oblique;
 slope: -18
 }
</STYLE>

The following example groups three physical fonts into one virtual font with
extended coverage. In each case, the adorned font name is given in the src
descriptor to allow locally installed versions to be preferentially used if available.
A fourth rule points to a font with the same coverage, but contained in a single
resource.

<STYLE>
 @font-face {
 font-family: Excelsior;
 src: local(Excelsior Roman), url(http://site/er) format(intellifont);
 unicode-range: U+?? /* Latin-1 */
 }
 @font-face {
 font-family: Excelsior;
 src: local(Excelsior EastA Roman), url(http://site/ear) format(intellifont);
 unicode-range: U+100-220 /* Latin Extended A and B */
 }
 @font-face {
 font-family: Excelsior;
 src: local(Excelsior Cyrillic Upright), url(http://site/ecr) format(intellifont);
 unicode-range: U+4?? /* Cyrillic */
 }
 @font-face {
 font-family: Excelsior;
 src: url(http://site/excels) format(truedoc);
 unicode-range: U+??,U+100-220,U+4??;

</STYLE>

169

This next example might be found in a UA’s default style sheet. It implements
the CSS2 generic font family, serif by mapping it to a wide variety of serif fonts
that might exist on various platforms. No metrics are given since these vary
between the possible alternatives.

<STYLE>
 @font-face {
 src: local(Palatino),
 local(Times New Roman),
 local(New York),
 local(Utopia),
 url(http://somewhere/free/font);
 font-family: serif;
 font-weight: 100, 200, 300, 400, 500;
 font-style: normal;
 font-variant: normal;
 font-size: all
 }
</STYLE>

170

15 Text
Contents

1. Indentation p.171 : the ’text-indent’ p.171 property
2. Alignment p.172 : the ’alignment’ p.172 property
3. Decoration p.172

1. Underlining, over lining, striking, and blinking p.172 : the
’text-decoration’ p.172 property

2. Text shadows p.173 : the ’text-shadow’ p.173 property
4. Letter and word spacing p.173 : the ’letter-spacing’ p.173 and

’word-spacing’ p.174 properties
5. Case p.175

1. Capitalization p.175 : the ’text-transform’ p.175 property
2. Special first letter/first line p.175

6. White space p.176 : the ’white-space’ p.176 property
7. Generated text p.176
8. Automatic numbering p.176
9. Text in HTML p.176

1. Forcing a line break p.176

The properties defined in the following sections affect the visual presentation of
characters, spaces, words, and paragraphs.

15.1 Indentation: the ’text-indent’ property
’text-indent’

Property name: ’text-indent’

Value: <length> | <percentage>

Initial: 0

Applies to: block-level elements

Inherited: yes

Percentage values: refer to parent element’s width

The property specifies the indentation of the first line of text relative to the
horizontal edge of the element’s content. The indentation forms a blank space
between the edge of the content and the first character of the first line. The
property does not apply directly to text in a child element, however it will apply
through inheritance if the property is not explicitly declared for the child.

The value of ’text-indent’ p.171 may be negative, but there may be
implementation-specific limits. An indentation is not inserted when a line of text is
broken by a child element (such as the BR element in HTML).

171

The following example causes a 3em text indent.

 P { text-indent: 3em }

15.2 Alignment: the ’alignment’ property
’alignment’

Property name: ’alignment’

Value: left | right | center | justify

Initial: depends on user agent

Applies to: block-level elements

Inherited: yes

Percentage values: N/A

This property describes how text is aligned within the element. The actual
justification algorithm used is UA and human-language dependent.

In this example, note that since ’alignment’ p.172 inherits, all block-level
elements inside the DIV element with ’class=center’ will be centered. Note that
alignments are relative to the width of the element, not the canvas. If ’justify’ is
not supported, the UA will supply a replacement. Typically, this will be ’left’ for
western languages.

 DIV.center { alignment: center }

UAs may treat ’justify’ as ’left’ or ’right’, depending on whether the element’s
default writing direction is left-to-right or right-to-left, respectively.

15.3 Decoration

15.3.1 Underlining, over lining, striking, and blinking:
the ’text-decoration’ property
’text-decoration’

Property name: ’text-decoration’

Value: none | [underline || overline || line-through || blink]

Initial: none

Applies to: all elements

Inherited: no (see clarification below)

Percentage values: N/A

172

This property describes decorations that are added to the text of an element. If
the element has no text (e.g., the IMG element in HTML) or is an empty element
(e.g., EM in HTML), this property has no effect. A value of ’blink’ causes the text
to blink.

The color(s) required for the text decoration should be derived from the ’color’
property value.

This property is not inherited, but elements should match their parent. E.g., if
an element is underlined, the line should span the child elements. The color of
the underlining will remain the same even if descendant elements have different
’color’ values.

In the following example, all links are underlined (i.e., all ’A’ elements with a
’HREF’ attribute).

 A:link, A:visited, A:active { text-decoration: underline }

The value ’blink’ causes the text to blink on output devices that can support
blinking.

15.3.2 Text shadows: the ’text-shadow’ property
’text-shadow’

Property name: ’text-shadow’

Value: none | <color> [, <color>]*

Initial: none

Applies to: all

Inherited: No, but see clarification below

Percentage values: Indicate transparency

CSS2 allows authors to create text shadow effects with this property.
So, for example, the following rule:

 P { text-shadow: black }

creates a black text shadow down and to the right of the text.
Text shadows increase the size of an element’s box.
[Editor’s note: The remaining sections of the text shadow proposal were not

clear enough to be translated. More explanation is required.]

15.4 Letter and word spacing: the ’letter-spacing’
and ’word-spacing’ properties
’letter-spacing’

173

Property name: ’letter-spacing’

Value: normal | <length> | auto

Initial: normal

Applies to: all elements

Inherited: yes

Percentage values: N/A

The length unit indicates an addition to the default space between characters.
Values can be negative, but there may be implementation-specific limits. The UA
is free to select the exact spacing algorithm. The letter spacing may also be
influenced by justification (which is a value of the ’align’ property).

In this example, the letter-spacing between each character in BLOCKQUOTE
elements is increased by ’0.1em’.

 BLOCKQUOTE { letter-spacing: 0.1em }

With a value of ’normal’, the UAs may change the space between letters to
justify text. This will not happen if ’letter-spacing’ p.173 is explicitly set to a
<length> value, as in:

 BLOCKQUOTE { letter-spacing: 0 }
 BLOCKQUOTE { letter-spacing: 0cm }

When the resultant space between two letters is not the same as the default
space, UAs should not use ligatures.

A value of ’auto’ tells the user agent to adjust the spacing between letters so
that the entire text of an element fits on one line. This value should only be used
with special elements (e.g., headlines). See also the ’font-size’ property for
related ’auto’ behavior.

UAs may interpret any value of ’letter-spacing’ p.173 as ’normal’. See the
section on conformance for more information.

’word-spacing’

Property name: ’word-spacing’

Value: normal | <length>

Initial: normal

Applies to: all elements

Inherited: yes

Percentage values: N/A

The length unit indicates an addition to the default space between words.
Values can be negative, but there may be implementation-specific limits. The UA
is free to select the exact spacing algorithm. The word spacing may also be
influenced by justification (which is a value of the ’align’ property).

174

In this example, the word-spacing between each word in H1 elements is
increased by ’1em’.

 H1 { word-spacing: 1em }

UAs may interpret any value of ’word-spacing’ p.174 as ’normal’. See the
section on conformance for more information.

15.5 Case

15.5.1 Capitalization: the ’text-transform’ property
’text-transform’

Property name: ’text-transform’

Value: capitalize | uppercase | lowercase | none

Initial: none

Applies to: all elements

Inherited: yes

Percentage values: N/A

The values of this property have the following meanings:

’capitalize’
uppercases the first character of each word

’uppercase’
uppercases all letters of the element

’lowercase’
lowercases all letters of the element

’none’
neutralizes inherited value.

The actual transformation in each case is human language dependent. See
[RFC2070] p.236 for ways to find the language of an element.

UAs may ignore ’text-transform’ p.175 (i.e., treat it as ’none’) for characters
that are not from the Latin-1 repertoire and for elements in languages for which
the transformation is different from that specified by the case-conversion tables
of [UNICODE] p.236 .

In this example, all text in an H1 element is transformed to uppercase text.

 H1 { text-transform: uppercase }

15.5.2 Special first letter/first line
Please consult the sections on first line and first letter for information on specially
formatting the first letter or line of a paragraph.

175

15.6 White space: the ’white-space’ property
’white-space’

Property name: ’white-space’

Value: normal | pre | nowrap

Initial: normal

Applies to: block-level elements

Inherited: yes

Percentage values: N/A

This property declares how whitespace inside the element is handled: the
’normal’ way (where whitespace is collapsed), as ’pre’ (which behaves like the
PRE element in HTML) or as ’nowrap’ (where wrapping is done only through
elements that force line breaks such as the BR element in HTML):

The following examples show what whitespace behavior is expected from the
PRE and P elements in HTML.

 PRE { white-space: pre }
 P { white-space: normal }

The initial value of ’white-space’ is ’normal’, but a UA will typically have default
values for each element.

UAs may ignore the ’white-space’ property in author’s and reader’s style
sheets, and use the UA’s default values instead. See the section on conformance
for more information.

15.7 Generated text
This is a placeholder.

15.8 Automatic numbering
This is a placeholder.

15.9 Text in HTML

15.9.1 Forcing a line break
The current CSS2 properties and values cannot describe the behavior of the BR
element; the BR element specifies a line break between words. In effect, the
element is replaced by a line break. Future versions of CSS may handle added
and replaced content, but CSS2-based formatters must treat BR specially.

176

16 Lists
Contents

1. Visual formatting of lists p.177
1. List properties p.179 : ’list-style-type’ p.179 , ’list-style-image’ p.180 ,

’list-style-position’ p.181 , and ’list-style’ p.182

16.1 Visual formatting of lists
CSS allows authors to control the visual presentation of lists in a number of
ways:

Authors may specify a marker that appears before each list item.
Markers may be placed outside or inside the list item’s content.
Markers may be represented by predefined shapes (bullets, circles,
squares), numerals (arabic, roman, letters, etc.), or images.
With CSS contextual selectors, it’s possible to specify different marker types
depending on the depth of embedded lists.

Elements with a ’display’ property value of ’list-item’ are formatted visually like
other block-level elements, only each list item is preceded by a marker. The type
of marker and its placement is determined by the list properties described below.

The following rule applies to list item (LI) elements in HTML. The ’display’
property declares the presentation of the LI element to be a "list-item", and the
’list-style’ p.182 property means that no marker will appear next to list items:

LI { display: list-item; list-style: none }

 This is the first list item, formatted as a block.
 This is the second list item.
 This is the third.

The list might be formatted as follows:

177

This is the first list
item, formatted as
a block.

This is the second
list item.

This is the third
D

C

Left
Margin

A − UL margin
B − UL padding
C − LI margin
D − LI padding

A

B

This is the first list
item, formatted as
a block.

This is the second
list item.

This is the third

The illustration shows the relationship between the current left margin and the
margins and padding of the list element (UL) and the list items (LI). (The lines
delimiting the margins and padding are not rendered).

If we change the ’list-style’ p.182 to "square":

LI { display: list-item; list-style: square }

each list item will be preceded by a small square. However, the placement of
the square does not affect the block formatting of the list item content:

178

This is the first list
item, formatted as
a block.

This is the second
list item.

This is the third
D

Left
Margin

A − UL margin
B − UL padding
C − LI margin
D − LI padding

A

B

This is the first list
item, formatted as
a block.

This is the second
list item.

This is the third

C

Note.

CSS2 does not include a property to adjust the separation between a list
marker and the content of its list item.
There is no "list" presentation for other types of list structures (e.g.,
"definition lists" declared by DL, DT, and DD in HTML). Each part of a
definition list is simply a block element.

16.1.1 List properties: ’list-style-type’, ’list-style-image’,
’list-style-position’, and ’list-style’
’list-style-type’

Property name: ’list-style-type’

Value: disc | circle | square | decimal | lower-roman |
upper-roman | lower-alpha | upper-alpha | none

Initial: disc

Applies to: elements with the ’display’ property set to ’list-item’

Inherited: yes

Percentage
values:

N/A

179

This property is used to determine the appearance of the list item marker if
’list-style-image’ p.180 is ’none’ or if the image pointed to by the URL cannot be
displayed.

The possible values have the following meanings:

disc
A disc (exact presentation is UA-dependent)

circle
A circle (exact presentation is UA-dependent)

square
A square (exact presentation is UA-dependent)

decimal
Decimal numbers, beginning with 0.

lower-roman
Lower case roman numerals (i, ii, iii, iv, v, etc.)

upper-roman
Upper case roman numerals (I, II, III, IV, V, etc.)

lower-alpha
Lower case ascii letters (a, b, c, ... z)

upper-alpha
Upper case ascii letters (A, B, C, ... Z)

none
No marker

For example, the following HTML document:

<STYLE>
 OL { list-style-type: lower-roman }
</STYLE>
<BODY>

 This is the first item.
 This is the second item.
 This is the third item.

</BODY>

might produce something like this:

 i This is the first item.
 ii This is the second item.
iii This is the third item.

’list-style-image’

180

Property name: ’list-style-image’

Value: <url> | none

Initial: none

Applies to: elements with the ’display’ property set to ’list-item’

Inherited: yes

Percentage values: N/A

This property sets the image that will be used as the list item marker. When the
image is available it will replace the marker set with the ’list-style-type’ p.179
marker.

The following example sets the marker at the beginning of each list item to be
the image "ellipse.png".

 UL { list-style-image: url(http://png.com/ellipse.png) }

’list-style-position’

Property name: ’list-style-position’

Value: inside | outside

Initial: outside

Applies to: elements with the ’display’ property set to ’list-item’

Inherited: yes

Percentage values: N/A

The value of ’list-style-position’ p.181 determines how the list item marker is
drawn with regard to the content.

outside
The list item marker is outside the box that is generated for the list item.

inside
The list item marker is the first part of the box that is generated for the list
item. The list item’s contents flow after the marker.

In either case, the placement of the marker does not affect the relationship
between the list item’s box and the pertinent margin (depending on script
direction).

For example:

 <STYLE type="text/css">
 UL { list-style: outside }
 UL.compact { list-style: inside }
 </STYLE>

 first list item comes first
 second list item comes second

181

 <UL class=compact>
 first list item comes first
 second list item comes second

The above example may be formatted as:
first list item
comes first

second list item
comes second

 first list
item comes first

 second list
item comes second

The left sides of the
list item boxes are not
affected by marker placement

In right-to-left text, the markers would have been on the right side of the box.
’list-style’

Property name: ’list-style’

Value: <’list-style-type’> p.179 || <’list-style-position’> p.181 ||
<’list-style-image’> p.180

Initial: not defined for shorthand properties

Applies to: elements with the ’display’ property set to ’list-item’

Inherited: yes

Percentage
values:

N/A

The ’list-style’ p.182 property is a shorthand notation for setting the three
properties ’list-style-type’ p.179 , ’list-style-image’ p.180 , and ’list-style-position’
p.181 at the same place in the style sheet.

 UL { list-style: upper-roman inside } /* Any UL*/
 UL ~ UL { list-style: circle outside } /* Any UL child of a UL*/

Although authors may specify ’list-style’ p.182 information directly on list item
elements (e.g., LI in HTML), they should do so with care. The following rules look
similar, but the first declares a contextual selector and the second a (more
specific) parent-child selector.

182

OL.alpha LI { list-style: lower-alpha } /* Any LI descendent of an OL */
OL.alpha ~ LI { list-style: lower-alpha } /* Any LI child of an OL */

Authors who only use the contextual selector may not achieve the results they
expect. Consider the following rules:

 <STYLE type="text/css">
 OL.alpha LI { list-style: lower-alpha }
 UL LI { list-style: disc }
 </STYLE>
 <BODY>
 <OL class=alpha>
 level 1

 level 2

 </BODY>

The desired rendering would have level 1 list items with ’lower-alpha’ labels
and level 2 items with ’disc’ labels. However, the cascading order will cause the
first style rule (which includes specific class information) to mask the second. The
following rules solve the problem by employing a parent-child selector instead:

 <STYLE type="text/css">
 OL.alpha ~ LI { list-style: lower-alpha }
 UL LI { list-style: disc }
 </STYLE>

Another solution would be to specify ’list-style’ p.182 information only on the
list type elements:

 <STYLE type="text/css">
 OL.alpha { list-style: lower-alpha }
 UL { list-style: disc }
 </STYLE>

Inheritance will transfer the ’list-style’ p.182 values from OL and UL elements
to LI elements. This is the recommended way to specify list style information.

A URL value can be combined with any other value, as in:

 UL { list-style: url(http://png.com/ellipse.png) disc }

In the example above, the ’disc’ will be used when the image is unavailable.

183

184

17 Tables
Contents

1. Table layout p.185
1. Row and column properties p.187 : ’column-span’ p.188 , and

’row-span’ p.187
2. Computing widths and heights p.188
3. Placement of the borders p.189
4. Conflict resolution for borders p.190
5. Properties for columns and rows p.191
6. Vertical alignment of cells in a row p.191
7. Horizontal alignment of cells in a column p.192
8. Table captions p.193 : the ’caption-side’ p.193 property
9. Generating speech p.193 : the ’speak-header-cell’ p.193 property

10. Table implementation notes p.195

Tables are used to show the relations between pieces of data, by arranging
them into labeled rows and columns. CSS2 assumes that the data is already
structured as a table, since its facilities for rearranging elements are very limited.

Most of the CSS properties apply to table elements in the same manner they
apply to block-level elements. However, due to different constraints on the size
and position of cells, some properties behave differently for tables. A few
properties apply only to tables.

17.1 Table layout
A table is made up of one table element, several columns possibly grouped into
column groups, and several rowgroups, containing rows, which in turn contain
cells. (For speech style sheets, the cells are further subdivided into header and
data cells.) The spatial layout is governed by a grid. All boxes that make up the
table have to align with the grid.

One can think of a table as built from six layers. Each layer hides the lower
layers from view, unless it is transparent (or has transparent parts). See Figure 1.

185

cells

rows

row groups

columns

table

column groups

1. The lowest layer is a single plane, representing the table box itself. (Note
that like all boxes, it may be transparent).

2. The next layer contains the column groups. The columns groups are as tall
as the table, but they need not cover the whole table horizontally.

3. On top of the column groups are the areas representing the column boxes.
Like column groups, columns are as tall as the table, but need not cover the
whole table horizontally.

4. Next is the layer containing the row groups. Each row group is as wide as
the table. Together, the row groups completely cover the table from top to
bottom.

5. The last but one layer contains the rows. The rows also cover the whole
table.

6. The topmost layer contains the cells themselves, and the borders in between
them. As the figure shows, the cells don’t have to cover the whole table, but
may leave "holes."

To position the table elements, we assume a hypothetical grid, consisting of an
infinite number of columns and rows of "grid cells." All table elements (table box,
row boxes, cell boxes, etc.) are rectangular and are aligned with the grid: they
occupy a whole number of grid cells, determined according to the following rules.

Columns are placed next to each other in the order they occur. Each one
occupies the number of grid columns given by its ’column-span’ p.188 property.
A column group occupies the same columns as the columns contained in it. The
first column may be either on the left or on the right, depending on the value of
the ’direction’ property of the table.

186

Each row box occupies one row of grid cells. Together, the row boxes fill the
table from top to bottom in the order they occur in the source document, or,
stated differently: the table occupies exactly as many grid rows as there are row
elements.

A row group occupies the same grid cells as the rows inside the row group
together.

Each cell occupies a rectangle of ’column-span’ p.188 grid cells wide and
’row-span’ p.187 grid cells high. The top row of this rectangle of grid cells must
be in the row occupied by the cell’s parent. The rectangle must be as far to the
left as possible, but may not overlap with any other cell, and must be to the right
of all cells in the same row that are earlier in the source document. (If the
’direction’ of the table is ’right-to-left’, interchange "left" and "right" in the previous
sentence.)

Cells are ’row-span’ p.187 high only if there are enough rows: a cell cannot
extend below the last row box; it is made shorter until it fits.

Note that there may be "holes" left between the cells. These holes are
transparent, and the lower layers of the table are visible through them. Example:

<STYLE>
 TABLE {background: #ff0}
 TD {background: red; border: double black}
</STYLE>
...
<TABLE>
 <TR>
 <TD> 1
 <TD rowspan="2"> 2
 <TD> 3
 <TD> 4
 </TR>
 <TR>
 <TD>
 <TD colspan=2> 5
 </TR>
</TABLE>

1 2 3 4

5

17.1.1 Row and column properties: ’column-span’, and
’row-span’
’row-span’

187

Property name: ’row-span’

Value: <integer>

Initial: 1

Applies to: cell elements

Inherited: no

Percentage values: N/A

How many rows a cell spans. See "Table layout" p.185 above for a discussion
of how it is used to lay out cells in a table.

’column-span’

Property name: ’column-span’

Value: <integer>

Initial: 1

Applies to: cell, column, and column-group elements

Inherited: no

Percentage values: N/A

How many columns a cell spans. A cell box occupies a rectangle of
’column-span’ p.188 by ’row-span’ p.187 grid cells in a table. An example of its
use is:

[COLSPAN] {column-span: attr(COLSPAN)}

This rule is in the recommended default (UA) style sheet p.215 for HTML 4.0.

17.2 Computing widths and heights
The principle for determining the width of each column is as follows:

1. The width is determined by the ’width’ property of the column box.
2. However, if there is no column box, the width is given by the width

requirements of the cells in the column.
3. If the value of ’width’ for the first cell in the column is ’auto’, the UA finds the

"optimal" width of the column, based on some heuristics.

More details are given below.
The width of the table is given by its ’width’ property. If that is ’auto’, the width

is the sum of the column widths. More precisely: the sum of the columns and the
borders between them. See "Placement of the borders" p.189 below.

Finding the optimal width is complicated. In many cases, what is optimal is a
matter of taste. CSS therefore doesn’t define what the optimal width of each
column is; a UA is free to use whatever heuristics is has, and is also free to
prefer speed over precision. There are a few implementation hints in chapter

188

[???].
The width computation is complicated by cells that span columns and by

widths that are specified as percentages. The problem of finding the widths can
be regarded as a constraint resolution system, that may be over- or
under-constrained.

A percentage is relative to the table width. If the table’s width is ’auto’, a
percentage represents a constraint on the column’s width, which a UA should try
to satisfy. (Obviously, this is not always possible: if the column’s width is ’110%’,
the constraint cannot be satisfied inside a table whose ’width’ is ’auto’.)

A cell that spans columns, provides a constraint on the sum of the widths of
the columns it spans.

If a cell’s content doesn’t "fit" the width of the column, the ’overflow’ property
determines what happens to it. Similarly, if the ’width’ of the table is not ’auto’,
and the sum of the columns is not equal to the table’s width, the ’overflow’
property of the table determines what happens.

17.3 Placement of the borders
For block-level and inline elements, the position of the border relative to the
content of the element is determined by the margin and the padding. But in a
table, the positions of the borders are constrained by the fact that they have to
line up from one row to the next and from one column to the next.

The borders are centered on the grid lines between the cells. A renderer has to
find a consistent rule for rounding off in the case of an odd number of discrete
units (screen pixels, printer dots).

The diagram below shows how the width of the table, the widths of the
borders, the padding and the cell width interact. Their relation is given by the
following equation, which holds for every row of the table:

table-width = border-width0 + padding-left1 + width1 + padding-right1 +
border-width1 + padding-left2 +...+ padding-rightn + border-widthn

Here n is the number of cells in the row, and border-widthi refers to the border
between cells i and i + 1.

189

width width widthbo
rd

er
−

w
id

th

bo
rd

er
−

w
id

th

bo
rd

er
−

w
id

th

bo
rd

er
−

w
id

th
pa

dd
in

g

pa
dd

in
g

pa
dd

in
g

pa
dd

in
g

pa
dd

in
g

pa
dd

in
g

table width

Note that for a table element, the width includes the border, and that a table
doesn’t have a padding. It does have a margin, however.

17.4 Conflict resolution for borders
The style of the borders between the cells is found by comparing the border
properties of all the boxes (cells, columns, the table itself, etc.) that meet at that
border. Columns and rows can also have borders, but they are only drawn when
they coincide with a cell border.

To find the border style at each side of a grid cell, the following properties have
to be compared:

1. Those of the one or two cells that have an edge here. Less than two can
occur at the edge of the table, but also at the edges of "holes" (unoccupied
grid cells).

2. Those of the columns that have an edge here.
3. Those of the column groups that have an edge here.
4. Those of the rows that have an edge here.
5. Those of the row groups that have an edge here.
6. Those of the table, if this is the edge of the table.

This will give between 0 and 8 ’border’ values. Each value is made up of a
’border-width’, ’border-color’ and ’border-style’. The border with the largest width
will be drawn. If there are two or more with the same width, but different style,
then the one with a style near the start of the following list will be drawn:

’blank’, ’double’, ’solid’, ’dashed’, ’dotted’, ’ridge’, ’groove’, ’none’

190

If the style is ’outset’, it will be drawn as ’ridge’ instead, and ’inset’ will be
drawn as ’groove’.

If the borders only differ in color, a color different from the ’color’ property of
the two cells on either side will be preferred over a color that only differs from one
of the cells, which in turn will be chosen over a border that doesn’t differ in color
from the cells.

If none of these rules determine the color of the border, the UA is free to
choose one of the colors.

Here is an example:

TD.blue {border: medium solid blue} TD.thick {border: thick solid red}
TD.double {border: thick double black} TR {border: medium dotted
green}

with this document:

<table>
<tr><td>1<td class="blue">2<td>2
<tr><td>4<td class="thick">5<td>6
<tr><td>7<td class="double">8<td>9
</table>

This will be the result:
Table with different border styles

17.5 Properties for columns and rows
Only four properties apply to a column box or column-group box: ’border’,
’background’, ’width’, and ’column-span’ p.188 . The first two are actually
shorthand properties, so all the border properties and all the background
properties apply.

Only ’border’ and ’background’ apply to a row or row-group. But note that you
can set inherited properties on rows and row-groups, and they will be inherited by
the cells.

17.6 Vertical alignment of cells in a row
The cells in a row are aligned somewhat like letters on a line. Each cell, or rather
each cell’s content, has a baseline, a top, a middle and a bottom, and so does
the row itself. The value of the ’vertical-align’ property of the cells determines on
which of these lines they are aligned:

baseline
the baseline of the cell is put at the same height as the baseline of the row

(see below for the definition of baselines of cells and rows)
top

the top of the cell is aligned with the top of the row
bottom

the bottom of the cell is aligned with the bottom of the row
middle

191

the center of the cell is aligned with the center of the row
sub, super, text-top, text-bottom

these values do not apply to cells; the cell is aligned at the baseline
instead

The baseline of a cell is the baseline of the first line of text in the cell. If there is
no text, the baseline is the baseline of whatever object is displayed in the cell, or,
if it has none, the bottom of the cell. The maximum distance between the top of
the cell and the baseline over all cells that have ’vertical-align:baseline’ is used to
set the baseline of the row. Here is an example:

Example of vertically aligning the cells
Cells 1 and 2 are aligned at their baselines. Cell 2 has the largest height above

the baseline, so that determines the baseline of the row. Note that if there is no
cell aligned at its baseline, the row will not have (not need) a baseline.

To avoid ambiguous situations, the alignment of cells proceeds in a certain
order. First the cells that are aligned on their baseline are positioned. This will
establish the baseline of the row. Next the cells with alignment ’top’ are
positioned.

The row now has a top, possibly a baseline, and a provisional height, which is
the distance from the top to the lowest bottom of the cells positioned so far. (See
conditions on the cell padding below.)

If any of the remaining cells, those aligned at the bottom or the middle, have a
height that is larger than the current height of the row, the height of the row will
be increased to the maximum of those cells, by lowering the bottom.

Finally the remaining cells are positioned.
The area between the cell content and the border is part of the cell’s padding.

The padding at the top and bottom of each cell after positioning must be at least
as large as the ’padding’ property specifies. The height of the row must be as
small as possible without violating this rule.

17.7 Horizontal alignment of cells in a column
A cell is similar to a block in the way its contents are rendered, that means, in
particular, that ’alignment’ applies to it. However, tables also allow a way of
aligning text that does not apply to other blocks, and that is aligning the contents
of several cells so that they all align on, e.g., a decimal point (".")

More precisely, if the value of ’alignment’ for a certain cell is a string, that cell
has an alignment point, which is the start of that string. The alignment point must
be straight above or below the alignment points of all other cells in the same
column that have an alignment point. (Note that the other cells do not need to
have the same value for ’alignment’; as long as they are aligned on a string, they
have an alignment point.)

Aligning text in this way is only useful if the text is short enough not to be
broken over several lines. The result is undefined if the text is broken.

If the string occurs more than once in the cell’s content, the alignment point is
the start of the first occurrence.

If the string doesn’t occur, the alignment point is the end of the content.

192

17.8 Table captions: the ’caption-side’ property
’caption-side’

Property name: ’caption-side’

Value: top | bottom

Initial: top

Applies to: caption elements

Inherited: yes

Percentage values: N/A

[Values top-left, bottom-left, top-right and bottom-right also proposed. They would
make the caption into something similar to a float.] [’top’ means caption is a block
above the table, ’bottom’ means it is a block after the table]

17.9 Generating speech: the ’speak-header-cell’
property
’speak-header-cell’

Property name: ’speak-header-cell’

Value: once | always

Initial: once

Applies to: header cells

Inherited: yes

Percentage values: N/A

[Does ’speak-header’ apply to TH or to TD?]
When a table is spoken by a speech generator, the relation between the data

cells and the header cells must be expressed in a different way than by
horizontal and vertical alignment. Some speech browsers may allow a user to
move around in the 2-dimensional space, thus giving them the opportunity to
map out the spatially represented relations. When that is not possible, the style
sheet must specify at which points the headers are spoken.

CSS supports two possibilities: the headers are spoken before every cell, or
only before a cell when that cell is associated with a different header than the
previous cell.

[Add speak:header-cell|data-cell, and some way to mirror the axis/axes
attributes? BB]

193

It is assumed that a speech UA analyzes the table as specified in the HTML
4.0 specification, to find for each data cell the header cells with which it is
associated. In summary, the algorithm is to go up in the column and find all
header cells, and to go towards the start of the row to find all header cells there.
If a data cell is found above a header cell, then the search for header cells in the
column stops there. Similarly, if a data cell is found in front of a header cell, the
search in that row stops.

Since sometimes header cells are not put in the column or row to which they
apply (see e.g., the cells "San Jose" and "Seattle" in the example below), an
explicit association using the AXIS and AXES attributes must be made. The
example below shows the required mark-up

image of a table created in Word
This presents the money spent on meals, hotels and transport in two locations

(San Jose and Seattle) for successive days. Conceptually, you can think of the
table in terms of a n-dimensional space. The axes of this space are: location,
day, category and subtotal. Some cells define marks along an axis while others
give money spent at points within this space. The HTML markup for this table is:

<TABLE>
<CAPTION>
 Travel Expense Report
</CAPTION>
<TR>
 <TH></TH>
 <TH>Meals</TH>
 <TH>Hotels</TH>
 <TH>Transport</TH>
 <TH>subtotal</TH>
</TR>
<TR>
 <TH axis="san-jose">San Jose</TH>
</TR>
<TR>
 <TH axes="san-jose">25-Aug-97</TH>
 <TD>37.74</TD>
 <TD>112.00</TD>
 <TD>45.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH axes="san-jose">26-Aug-97</TH>
 <TD>27.28</TD>
 <TD>112.00</TD>
 <TD>45.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH axes="san-jose">subtotal</TH>
 <TD>65.02</TD>
 <TD>224.00</TD>
 <TD>90.00</TD>
 <TD>379.02</TD>
</TR>
<TR>
 <TH axis="seattle">Seattle</TH>
</TR>
<TR>
 <TH axes="seattle">27-Aug-97</TH>

194

 <TD>96.25</TD>
 <TD>109.00</TD>
 <TD>36.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH axes="seattle">28-Aug-97</TH>
 <TD>35.00</TD>
 <TD>109.00</TD>
 <TD>36.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH axes="seattle">subtotal</TH>
 <TD>131.25</TD>
 <TD>218.00</TD>
 <TD>72.00</TD>
 <TD>421.25</TD>
</TR>
<TR>
 <TH>Totals</TH>
 <TD>196.27</TD>
 <TD>442.00</TD>
 <TD>162.00</TD>
 <TD>800.27</TD>
</TR>
</TABLE>

By providing the data model in this way, authors make it possible for speech
enabled-browsers to explore the table in rich ways, e.g. each cell could be
spoken as a list, repeating the applicable headers before each data cell:

 San Jose, 25-Aug-97, Meals: 37.74
 San Jose, 25-Aug-97, Hotels: 112.00
 San Jose, 25-Aug-97, Transport: 45.00
 ...

The browser could also speak the headers only when they change:

San Jose, 25-Aug-97, Meals: 37.74
 Hotels: 112.00
 Transport: 45.00
 26-Aug-97, Meals: 27.28
 Hotels: 112.00
...

The ’speak-header-cell’ property of a header cell determines when it is spoken:
before every data cell, or only when the previous cell spoken wasn’t associated
with this header.

17.10 Table implementation notes
[Move to appendix]

[Minimum/maximum]

195

196

18 User interface
Contents

1. Cursors p.197 : the ’cursor’ p.197 property
2. User preferences for colors p.198
3. Other rendering issues that depend on user agents p.199

1. Magnification p.200

18.1 Cursors: the ’cursor’ property
’cursor’

Property
name:

’cursor’

Value: auto | crosshair | default | pointer | move | e-resize |
ne-resize | nw-resize | n-resize | se-resize | sw-resize |
s-resize | w-resize| text | wait | help | <url>

Initial: auto

Applies to: all elements

Inherited: yes

Percentage
values:

N/A

This property specifies the type of cursor to be displayed for the mouse
pointer. The values have the following meanings:

auto
The UA determines the cursor to display based on the current context.

crosshair
A simple crosshair

default
The platform-dependent default cursor (usually an arrow).

pointer
The cursor is a pointer that indicates a link.

move
Indicates something is to be moved

*-resize
Indicates that the edge is to be moved.

text
Indicates text that may be edited. Usually an I-bar.

wait
A cursor to indicate that the program is busy and the user should wait.
Usually a watch or hourglass.

197

help
Help is available for the object under the cursor. Usually a question mark or
a balloon.

<url>
The user agent should retrieve the cursor from the resource designated by
the URL. It is considered an error if the resource is not a proper cursor. User
agents may handle this error condition in different ways.

CSS2 does not allow users to specify animated cursors.

18.2 User preferences for colors
In addition to being able to assign pre-defined color values to text, backgrounds,
etc. CSS2 allows authors to specify colors in a manner that integrates them into
the user’s graphic environment. For instance, color blind users may have their
environment configured to avoid specific colors. Style rules that take into account
user preferences thus offer the following advantages:

1. They produce pages that fit the user’s defined look and feel.
2. They produce pages that may be more accessible as the current user

settings may be related to a disability.

The set of values defined for system colors is intended to be exhaustive. For
systems that do not expose a corresponding value, it should be mapped to the
nearest system attribute, or to a default color.

The following lists additional values for color related CSS attributes and their
general meaning. Any color property (e.g., ’color’ or ’background-color’) can take
one of the following names:

activeborder
Active window border.

activecaption
Active window caption.

appworkspace
Background color of multiple document interface.

background
Desktop background.

buttonface
Face color for three-dimensional display elements.

buttonhighlight
Dark shadow for three-dimensional display elements (for edges facing away
from the light source).
Shadow color for three-dimensional display elements.

buttontext
Text on push buttons.

captiontext
Text in caption, size box, and scroll bar arrow box.

graytext
Grayed (disabled) text. This color is set to #000 if the current display driver
does not support a solid gray color.

198

highlight
Item(s) selected in a control.

highlighttext
Text of item(s) selected in a control.

inactiveborder
Inactive window border.

inactivecaption
Inactive window caption.

inactivecaptiontext
Color of text in an inactive caption.

infobackground
Background color for tooltip controls.

infotext
Text color for tooltip controls.

menu
Menu background.

menutext
Text in menus.

scrollbar
Scroll bar gray area.

threeddarkshadow
Dark shadow for three-dimensional display elements.

threedface
Face color for three-dimensional display elements.

threedhighlight
Highlight color for three-dimensional display elements.

threedlightshadow
Light color for three-dimensional display elements (for edges facing the light
source).

threedshadow
Dark shadow for three-dimensional display elements.

window
Window background.

windowframe
Window frame.

windowtext
Text in windows.

For example, to set the foreground and background colors of a paragraph to
the same foreground and background colors of the user’s window, write the
following:

P { color: windowtext; background-color: window }

18.3 Other rendering issues that depend on user
agents

199

18.3.1 Magnification
The CSS working group considers that the magnification of a document or
portions of a document should not be specified through style sheets. User agents
may support such magnification in different ways (e.g., larger images, louder
sounds, etc.)

When magnifying a page, UAs should preserve the relationships between
positioned elements. For example, a comic strip may be composed of images
with overlaid text elements. When magnifying this page, a user agent should
keep the text within the comic strip balloon.

200

19 Aural style sheets
Contents

1. Aural cascading style sheet properties p.202
1. Volume properties p.202 : ’volume’ p.202
2. Speaking properties p.203 : ’speak’ p.203
3. Pause properties p.204 : ’pause-before’ p.204 , ’pause-after’ p.204 , and

’pause’ p.204
4. Cue properties p.205 : ’cue-before’ p.205 , ’cue-after’ p.205 , and ’cue’

p.206
5. Mixing properties p.206 : ’play-during’ p.206
6. Spatial properties p.207 : ’azimuth’ p.207 and ’elevation’ p.208
7. Voice characteristic properties p.209 : ’speech-rate’ p.209 ,

’voice-family’ p.210 , ’pitch’ p.210 , ’pitch-range’ p.210 , ’stress’ p.211 ,
’richness’ p.211 , ’speak-punctuation’ p.211 , ’speak-date’ p.212 ,
’speak-numeral’ p.212 , and ’speak-time’ p.213

Those of us who are sighted are accustomed to visual presentation of
documents, frequently on a bitmapped display. This is not the only possible
presentation method, however. Aural presentation, using a combination of
speech synthesis and ’audio icons’, provides an alternative presentation. This
form of presentation is already in current use by the blind and print-impaired
communities.

Often such aural presentation occurs by converting the document to plain text
and feeding this to a ’screen reader’ -- software or hardware that simply reads all
the characters on the screen. This results in less effective presentation than
would be the case if the document structure were retained. A benefit of
separating the content (e.g., the HTML) and the visual presentation (the
stylesheet) is that other types of presentation can also be offered as options
(other stylesheets). Stylesheet properties for aural presentation can be used
together with visual properties (mixed media) or as an aural alternative to visual
presentation.

Besides the obvious accessibility issues for the blind, there are other large
markets for aural presentation:

in-car use
keep your eyes on the road ahead, Jack, and search the web for
recommended hotels in the next town up ahead

industrial and medical documentation systems (intranets)
my hands and eyes are otherwise occupied with your triple bypass but I
would still like your medication records

home entertainment
images, headlines, movies are fine on the wide-screen TV but I don’t want to
read body text off the screen from the couch; speak it to me (perhaps
through the 5 speaker home theater set-up)

the illiterate
I understand everything you say, but I don’t read very well

201

Hence, aural or mixed aural/visual presentation is likely to increase in
importance over the next few years. Realizing that the aural rendering is
essentially independent of the visual rendering:

Allows orthogonal aural and visual views.
Allows browsers to optionally implement both aural and visual views to
produce truly multi-modal documents.

19.1 Aural cascading style sheet properties

19.1.1 Volume properties: ’volume’
’volume’

Property name: ’volume’

Value: <number> | silent | x-soft | soft | medium | loud |
x-loud

Initial: medium

Applies to: all elements

Inherited: yes

Percentage values: relative to inherited value

The legal range of numerical values is 0 to 100. Note that ’0’ does not mean
the same as "silent" . 0 represents the minimum audible volume level and 100
corresponds to the maximum comfortable level.

Percentage values are calculated relative to the inherited value, and are then
clipped to the range 0 to 100.

There is a fixed mapping between keyword values and volumes:

’silent’ = no sound at all, the element is spoken silently
’x-soft’ = ’0’
’soft’ = ’25’
’medium’ = ’50’
’loud’ = ’75’
’x-loud’ = ’100’

Volume refers to the median volume of the waveform. In other words, a highly
inflected voice at a volume of 50 might peak well above that. The overall values
are likely to be human adjustable for comfort, for example with a physical volume
control (which would increase both the 0 and 100 values proportionately); what
this property does is adjust the dynamic range.

The UA should allow the values corresponding to 0 and 100 to be set by the
listener. No one setting is universally applicable; suitable values depend on the
equipment in use (speakers, headphones), the environment (in car, home
theater, library) and personal preferences. Some examples:

202

A browser for in-car use has a setting for when there is lots of background
noise. 0 would map to a fairly high level and 100 to a quite high level. The
speech is easily audible over the road noise but the overall dynamic range is
compressed. Plusher cars with better insulation allow a wider dynamic
range.
Another speech browser is being used in the home, late at night, (don’t
annoy the neighbors) or in a shared study room. 0 is set to a very quiet level
and 100 to a fairly quiet level, too. As with the first example, there is a low
slope; the dynamic range is reduced. The actual volumes are low here,
whereas they were high in the first example.
In a quiet and isolated house, an expensive hi-fi home theater setup. 0 is set
fairly low and 100 to quite high; there is wide dynamic range.

The same authors stylesheet could be used in all cases, simply by mapping
the 0 and 100 points suitably at the client side.

19.1.2 Speaking properties: ’speak’
’speak’

Property name: ’speak’

Value: normal | none | spell-out

Initial: normal

Applies to: all elements

Inherited: yes

Percentage values: N/A

This property specifies whether text will be rendered aurally and if so, in what
manner (somewhat analogous to the ’display’ property). The possibles values
are:

none
Suppresses aural rendering so that, unless overridden recursively, the
element and its children require no time to render.

normal
Uses regular language-dependent pronunciation rules for rendering an
element and its children.

spell-out
Spells the text one letter at a time (useful for acronyms and abbreviations).

Note the difference between an element whose ’volume’ p.202 property has a
value of ’silent’ and an element whose ’speak’ p.203 property has the value
’none’:

The former takes up the same time as if it had been spoken, including any
pause before and after the element, but no sound is generated. This may be
used in language teaching applications, for example. A pause is generated for
the pupil to speak the element themselves. Note that since the value of this

203

property is inherited, child elements will also be silent. Child elements may
however set the volume to a non-silent value and will then be spoken.

Elements whose ’speak’ p.203 property has the value ’none’ are not spoken
and take no time. Child elements may however override this value and may be
spoken normally.

19.1.3 Pause properties: ’pause-before’, ’pause-after’,
and ’pause’
’pause-before’

Property name: ’pause-before’

Value: <time> | <percentage>

Initial: depends on user-agent

Applies to: all elements

Inherited: no

Percentage values: see description below

The ’pause-before’ p.204 property specifies the pause before an element is
spoken. It may be given in an absolute units (seconds, milliseconds) or as a
relative value, in which case it is relative to the reciprocal of the ’speech-rate’
p.209 property. If speech-rate is 120 words per minute (i.e., a word takes half a
second, 500 milliseconds) then a ’pause-before’ p.204 of 100% means a pause
of 500 ms and a ’pause-before’ p.204 of 20% means 100ms.

Using relative units gives more robust stylesheets in the face of large changes
in speech-rate and is recommended practice.

’pause-after’

Property name: ’pause-after’

Value: <time> | <percentage>

Initial: depends on user-agent

Applies to: all elements

Inherited: no

Percentage values: see description below

This property specifies the pause after an element is spoken. Values are
specified the same way as ’pause-before’ p.204 .

’pause’

204

Property name: ’pause’

Value: [<time> | <percentage>]{1,2}

Initial: depends on user-agent

Applies to: all elements

Inherited: no

Percentage
values:

see descriptions of ’pause-before’ p.204 and
’pause-after’ p.204

The ’pause’ p.204 property is a shorthand for setting ’pause-before’ p.204
and ’pause-after’ p.204 . If two values are given, the first value is ’pause-before’
p.204 and the second is ’pause-after’ p.204 . If only one value is given, it applies
to both properties.

Examples:

 H1 { pause: 20ms } /* pause-before: 20ms; pause-after: 20ms */
 H2 { pause: 30ms 40ms } /* pause-before: 30ms; pause-after: 40ms */
 H3 { pause-after: 10ms } /* pause-before: ?; pause-after: 10ms */

19.1.4 Cue properties: ’cue-before’, ’cue-after’, and
’cue’
’cue-before’

Property name: ’cue-before’

Value: <url> | none

Initial: none

Applies to: all elements

Inherited: no

Percentage values: N/A

’cue-after’

Property name: ’cue-after’

Value: <url> | none

Initial: none

Applies to: all elements

Inherited: no

Percentage values: N/A

205

Auditory icons are another way to distinguish semantic elements. Sounds may
be played before, and/or after the element to delimit it.

For example:

 A {cue-before: url(bell.aiff); cue-after: url(dong.wav) }
 H1 {cue-before: url(pop.au); cue-after: url(pop.au) }

’cue’

Property name: ’cue’

Value: <’cue-before’> p.205 || <’cue-after’> p.205

Initial: not defined for shorthand properties

Applies to: all elements

Inherited: no

Percentage values: N/A

The same sound can be used both before and after, using the shorthand ’cue’
p.206 property.

The following two rules are equivalent:

 H1 {cue-before: url(pop.au); cue-after: url(pop.au) }
 H1 {cue: url(pop.au) }

19.1.5 Mixing properties: ’play-during’
’play-during’

Property name: ’play-during’

Value: <url> | mix? repeat? | auto | none

Initial: auto

Applies to: all elements

Inherited: no

Percentage values: N/A

Similar to the ’cue-before’ p.205 and ’cue-after’ p.205 properties, this
indicates sound to be played during an element as a background (i.e., the sound
is mixed in with the speech).

The optional ’mix’ keyword means the sound inherited from the parent
element’s play-during property continues to play and the current element sound
(pointed to by the URL) is mixed with it. If ’mix’ is not specified, the sound
replaces the sound of the parent element.

The optional ’repeat’ keyword means the sound will repeat if it is too short to fill
the entire duration of the element. Without this keyword, the sound plays once
and then stops. This is similar to the background repeat properties in CSS2. If
the sound is too long for the element, it is clipped once the element is spoken.

206

’Auto’ means that the sound of the parent element continues to play (it is not
restarted, which would have been the case if this property inherited)and none
means that there is silence - the sound of the parent element (if any) is silent for
the current element and continues after the current element.

Examples:

 BLOCKQUOTE.sad {play-during: url(violins.aiff) }
 BLOCKQUOTE Q {play-during: url(harp.wav) mix}
 SPAN.quiet {play-during: none }

If a stereo icon is dereferenced the central point of the stereo pair should be
placed at the azimuth for that element and the left and right channels should be
placed to either side of this position.

19.1.6 Spatial properties: ’azimuth’ and ’elevation’
Spatial audio is an important stylistic property for aural presentation. It provides a
natural way to tell several voices apart, the same way we use in real life (people
rarely all stand in the same spot in a room). Stereo speakers produce a lateral
sound stage. Binaural headphones or the increasingly popular 5-speaker home
theater setups can generate full surround sound, and multi-speaker setups can
create a true three-dimensional sound stage. VRML 2.0 also includes spatial
audio (and uses the same azimuth and elevation terms, which originate in
astronomy), which implies that in time consumer-priced spatial audio hardware
will become more widely available.

’azimuth’

Property
name:

’azimuth’

Value: <angle> | [[left-side | far-left | left | center-left | center |
center-right | right | far-right | right-side] || behind] |
leftwards | rightwards

Initial: center

Applies to: all elements

Inherited: yes

Percentage
values:

N/A

The value is given in the range -360deg <= x < 360deg where 0deg is
interpreted as directly ahead in the center of the sound stage. 90deg is to the
right, 180deg behind and 270deg (or, equivalently and more conveniently,
-90deg) to the left. It may also be specified using absolute keywords:

207

keyword value value with ’behind’

left-side 270deg 270deg

far-left 300deg 240deg

left 320deg 220deg

center-left 340deg 200deg

center 0deg 180deg

center-right 20deg 160deg

right 40deg 140deg

far-right 60deg 120deg

right-side 90deg 90deg

or relative keywords. The value leftwards moves the sound more to the left
(subtracts 20 degrees) while the value rightwards moves the sound more to
the right (adds 20 degrees). Arithmetic is carried out modulo 360 degrees.

This property is most likely to be implemented by mixing the same signal into
different channels at differing volumes. It might also use phase shifting, digital
delay, and other such techniques to provide the illusion of a sound stage. The
precise means used to achieve this effect and the number of speakers used to
do so are browser dependent - this property merely identifies the desired end
result.

Examples:

 H1 { azimuth: 30deg }
 TD.a { azimuth: far-right } /* 60deg */
 #12 { azimuth: behind far-right } /* 120deg */
 P.comment { azimuth: behind } /* 180deg */

UAs should attempt to honor this request if they have resources to do so. If
spatial-azimuth is specified and the output device cannot produce sounds behind
the listening position, values in the rearwards hemisphere should be converted
into forwards hemisphere values. One method is as follows:

if 90deg < x <= 180deg then x := 180deg - x
if 180deg < x <= 270deg then x := 540deg - x

’elevation’

208

Property name: ’elevation’

Value: <angle> | below | level | above | higher | lower

Initial: level

Applies to: all elements

Inherited: yes

Percentage values: N/A

The value is given in degrees in the range -90deg to 90deg. 0deg is interpreted
as on the forward horizon, which loosely means level with the listener. 90deg is
directly overhead and -90 is directly underneath. The precise means used to
achieve this effect and the number of speakers used to do so are undefined. This
property merely identifies the desired end result. UAs should attempt to honor
this request if they have resources to do so.

The relative keywords higher and lower add and subtract 10 degrees from
the elevation, respectively.

Examples:

 H1 { elevation: above }
 TR.a { elevation: 60deg }
 TR.b { elevation: 30deg }
 TR.c { elevation: level }

19.1.7 Voice characteristic properties: ’speech-rate’,
’voice-family’, ’pitch’, ’pitch-range’, ’stress’, ’richness’,
’speak-punctuation’, ’speak-date’, ’speak-numeral’, and
’speak-time’
’speech-rate’

Property name: ’speech-rate’

Value: <number> | x-slow | slow | medium | fast | x-fast | faster
| slower

Initial: medium

Applies to: all elements

Inherited: yes

Percentage
values:

N/A

Specifies the speaking rate. Note that both absolute and relative keyword
values are allowed (compare with ’font-weight’). If a numerical value is given, it
refers to words per minute, a quantity which varies somewhat by language but is
nevertheless widely supported by speech synthesizers. The value ’medium’

209

refers to the reader’s preferred speech-rate setting. Relative values may be
cascaded more readily.

’voice-family’

Property name: ’voice-family’

Value: [[<specific-voice> p.210 | <generic-voice>],]*
[<specific-voice> p.210 | <generic-voice>]

Initial: depends on user agent

Applies to: all elements

Inherited: yes

Percentage
values:

N/A

The value is a prioritized list of voice family names (compare with ’font-family’).
Suggested generic families: male, female, child.

Examples of <specific-voice> families are: comedian, trinoids, carlos, lisa
Examples:

 H1 { voice-family: announcer, male }
 P.part.romeo { voice-family: romeo, male }
 P.part.juliet { voice-family: juliet, female }

’pitch’

Property name: ’pitch’

Value: <frequency> | x-low | low | medium | high | x-high

Initial: medium

Applies to: all elements

Inherited: yes

Percentage values: N/A

Specifies the average pitch of the speaking voice in hertz (Hz).
’pitch-range’

Property name: ’pitch-range’

Value: <number>

Initial: 50

Applies to: all elements

Inherited: yes

Percentage values: N/A

210

Specifies variation in average pitch. A pitch range of 0 produces a flat,
monotonic voice. A pitch range of 50 produces normal inflection. Pitch ranges
greater than 50 produce animated voices.

’stress’

Property name: ’stress’

Value: <number>

Initial: 50

Applies to: all elements

Inherited: yes

Percentage values: N/A

Specifies the level of stress (assertiveness or emphasis) of the speaking voice.
English is a stressed language, and different parts of a sentence are assigned
primary, secondary or tertiary stress. The value of ’stress’ p.211 controls the
amount of inflection that results from these stress markers.

Increasing the value of this property results in the speech being more strongly
inflected. It is in a sense dual to the ’pitch-range’ p.210 property and is provided
to allow developers to exploit higher-end auditory displays.

’richness’

Property name: ’richness’

Value: <number>

Initial: 50

Applies to: all elements

Inherited: yes

Percentage values: N/A

Specifies the richness (brightness) of the speaking voice. The effect of
increasing richness is to produce a voice that carries --reducing richness
produces a soft, mellifluous voice.

The following four properties are very preliminary; discussion is invited:
’speak-punctuation’

211

Property name: ’speak-punctuation’

Value: code | none

Initial: none

Applies to: all elements

Inherited: yes

Percentage values: N/A

A value of ’code’ indicates that punctuation such as semicolons, braces, and
so on are to be spoken literally. The default value of ’none’ means that
punctuation is not spoken but instead is rendered naturally as various pauses.

’speak-date’

Property name: ’speak-date’

Value: myd | dmy | ymd

Initial: depends on user agent

Applies to: all elements

Inherited: yes

Percentage values: N/A

This property controls how dates should be spoken. month-day-year is
common in the USA, while day-month-year is common in Europe and
year-month-day is also used.

This would be useful, for example, when combined with an XML element used
to identify dates, such as:

 <para>The campaign started on <date value="1874-10-21"/>
 and finished <date value="1874-10-28/"></para%gt;

’speak-numeral’

Property name: ’speak-numeral’

Value: digits | continuous | none

Initial: none

Applies to: all elements

Inherited: yes

Percentage values: N/A

This property controls whether multi-digit numerals (such as 237) are spoken
as a single number (two hundred and thirty seven) or individual digits (two three
seven).

212

’speak-time’

Property name: ’speak-time’

Value: 24 | 12 | none

Initial: none

Applies to: all elements

Inherited: yes

Percentage values: N/A

This property controls whether times are spoken in the 24-hour time system or
the 12-hour, am/pm system. When used in combination with the ’speak-date’
property, this allows elements with an attribute containing an ISO 8601 format
date/time attribute to be presented in a flexible manner.

An additional aural property, speak-header-cell, is described in the capter on
tables

213

214

Appendix A: A sample style sheet for HTML
4.0

Contents
This appendix is informative, not normative.
The Base Stylesheet describes the typical rendering of all HTML 4.0 [HTML40]

p.236) elements visual UAs. The style sheet is based on extensive research on
how current UAs render HTML, and developers are encouraged to use it as a
default style sheet in their implementations.

/* rendered CSS1-addressable elements and all applicable non-inherited
properties set to initial values and default display types */

A, ABBR, ADDRESS, BDO, BLOCKQUOTE, BODY, BUTTON, CITE, CODE, DD, DEL, DFN,
DIV, DL, DT, EM, FIELDSET, FORM, H1, H2, H3, H4, H5, H6, IFRAME, IMG, INS, KBD,
LABEL, LI, OBJECT, OL, P, Q, SAMP, SMALL, SPAN, STRONG, SUB, SUP, UL, VAR,
APPLET, B, BIG, CENTER, DIR, FONT, HR, I, MENU, PRE, S, STRIKE, TT, U {
 background: transparent;
 width: auto;
 height: auto;
 text-decoration: none;
 margin: 0;
 padding: 0;
 border: 0;
 float: none;
 clear: none;
 vertical-align: baseline;
 list-style-image: none;
 list-style-type: disc;
 list-style-position: outside;
 }

ADDRESS, BLOCKQUOTE, BODY, DD, DIV, DL, DT, FIELDSET, FORM, H1, H2, H3, H4, H5,
H6, IFRAME, OBJECT, OL, P, UL, APPLET, CENTER, DIR, HR, MENU, PRE {
 display: block;
 }

A, ABBR, BDO, BUTTON, CITE, CODE, DEL, DFN, EM, IMG, INS, KBD, LABEL, Q,
SAMP, SMALL, SPAN, STRONG, SUB, SUP, VAR, B, BIG, FONT, I, S, STRIKE, TT, U {
 display: inline;
 }

LI {
 display: list-item;
 }

/* Begin tree of inherited properties and cascades. */

BODY {
 font-size: 1em;
 line-height: 1.33em;
 margin: 8px;
 background-position: -8px -8px; /* flush with canvas edge */
 word-spacing: normal;
 letter-spacing: normal;
 text-transform: none;
 alignment: left;
 text-indent: 0;
 white-space: normal;
 }

H1 {
 font-size: 2em;
 margin: .67em 0;
 }

H2 {
 font-size: 1.5em;
 margin: .83em 0;

215

 }

H3 {
 font-size: 1.17em;
 line-height: 1.17em;
 margin: 1em 0;
 }

H4, P, BLOCKQUOTE, UL, OL, DL, DIR, MENU {
 margin: 1.33em 0;
 }

H5 {
 font-size: .83em;
 line-height: 1.17em;
 margin: 1.67em 0;
 }

H6 {
 font-size: .67em;
 margin: 2.33em 0;
 }

H1, H2, H3, H4, H5, H6, B, STRONG {
 font-weight: bolder;
 }

BLOCKQUOTE {
 margin-left: 40px;
 margin-right: 40px;
 }

I, CITE, EM, VAR, ADDRESS {
 font-style: italic;
 }

PRE, TT, CODE, KBD, SAMP {
 font-family: monospace;
 }

PRE {
 white-space: pre;
 }

BIG {
 font-size: 1.17em;
 }

SMALL, SUB, SUP {
 font-size: .83em;
 }

SUB {
 vertical-align: sub;
 }

SUP {
 vertical-align: super;
 }

S, STRIKE, DEL {
 text-decoration: line-through;
 }

HR {
 border: 1px inset;
 }

OL, UL, DIR, MENU, DD {
 margin-left: 40px;
 }

OL LI {
 list-style-type: decimal;
 }

OL UL {

216

 margin-top: 0;
 margin-bottom: 0;
 }

UL OL {
 margin-top: 0;
 margin-bottom: 0;
 }

UL UL {
 margin-top: 0;
 margin-bottom: 0;
 }

OL OL {
 margin-top: 0;
 margin-bottom: 0; /* how far to carry such contextual declarations? Exhaustive list
 could be very long. */
 }

U, INS {
 text-decoration: underline;
 }

CENTER {
 alignment: center;
 }

/* Table element rendering behavior cannot be described completely in CSS1,
yet the following declarations appear to apply. This section is likely to become
obsolete upon the deployment of a more comprehensive stylesheet specification
for tables. */

CAPTION, COL, COLGROUP, LEGEND, TABLE, TBODY, TD, TFOOT, TH, THEAD, TR {
 background: transparent;
 text-decoration: none;
 margin: 1px;
 padding: 1px;
 border: none;
 float: none;
 clear: none;
 }

TABLE, TBODY, TFOOT, THEAD, TR {
 display: block;
 background-position: top left;
 width: auto;
 height: auto;
 }

CAPTION, LEGEND, TD, TH {
 display: inline;
 vertical-align: baseline;
 font-size: 1em;
 line-height: 1.33em;
 color: black;
 word-spacing: normal;
 letter-spacing: normal;
 text-transform: none;
 alignment: left;
 text-indent: 0;
 white-space: normal;
 }

TH {
 font-weight: bolder;
 alignment: center;
 }

CAPTION {
 alignment: center;
 }

/* proposed default for HTML 4.0’s new ABBR element */

217

ABBR {
 font-variant: small-caps;
 letter-spacing: 0.1em; /* This is almost facetious. Should ABBR not have
 any default rendering? Uppercase transform? Not all languages distinguish
 between simple abbreviations and acronyms, and not all abbrev. should be
 capped. */
 }

/* not part of the legacy browser default sheet, but an obvious enhancement */

OL OL LI {
 list-style-type: lower-alpha;
 }

OL OL OL LI {
 list-style-type: lower-roman
 }

218

Appendix B: Changes from CSS1
Contents
To be written...

219

220

Appendix C: Implementation and
performance notes

Contents

1. Colors p.221
1. Gamma Correction p.221

2. Fonts p.222
1. Glossary of font terms p.222
2. Font retrieval p.224

C.1 Colors

C.1.1 Gamma Correction
The following information is informative, not normative. See the Gamma Tutorial
in the PNG specification [PNG10] p.235 if you aren’t familiar with gamma issues.

In the computation, UAs displaying on a CRT may assume an ideal CRT and
ignore any effects on apparent gamma caused by dithering. That means the
minimal handling they need to do on current platforms is:

PC using MS-Windows
none

Unix using X11
none

Mac using QuickDraw
apply gamma 1.39 [ICC32] p.235 (ColorSync-savvy applications may simply
pass the sRGB ICC profile to ColorSync to perform correct color correction)

SGI using X
apply the gamma value from /etc/config/system.glGammaVal (the
default value being 1.70; applications running on Irix 6.2 or above may
simply pass the sRGB ICC profile to the color management system)

NeXT using NeXTStep
apply gamma 2.22

"Applying gamma" means that each of the three R, G and B must be converted
to R’=Rgamma, G’=Ggamma, B’=Bgamma, before handing to the OS.

This may rapidly be done by building a 256-element lookup table once per
browser invocation thus:

 for i := 0 to 255 do
 raw := i / 255;
 corr := pow (raw, gamma);
 table[i] := trunc (0.5 + corr * 255.0)
 end

which then avoids any need to do transcendental math per color attribute, far
less per pixel.

221

C.2 Fonts

C.2.1 Glossary of font terms

DocLock™
Bitstream’s DocLock™ technology ensures that TrueDoc PFRs can only be
used with the site they are published for. A TrueDoc PFR moved to a
different site or referenced from another site will not work.

Digital Signature
Part of a trust management technology, used to provide signed assertions
about a resource.

Font Caching
Font caching allows for a temporary copy of fonts on the client system. They
are usually stored on disk with other cached items such as graphics
specifically for the UA.

Font Face
A "handle" that refers to a specific face of a font, excluding the font size (?
size may be needed for non-scalable fonts)

Font Matching
Font matching is a process of selecting a similar font based on using one or
more attributes of the primary font. Common attribute include serif, sans
serif, weight, cap height, x height, spacing, language, and posture. Font
matching is dependent on the algorithm and the variety of candidate fonts.

Glyph Representation Sub-setting
Glyph Representation sub-setting is the process by which unwanted glyph
representations, (together with their side bearings and kerning information)
are removed from a primary font to produce a smaller subset font that covers
a particular document or set of documents. This is a particular win for
documents that use ideographic scripts, where the glyph complement of the
base font can be very large. Glyph representation sub-setting for documents
using scripts that require ligatures, such as Arabic, is difficult without
knowing the ligature formation rules of the final display system.

Intellifont
Intellifont technology was developed by Agfa and is the native format for
Hewlett-Packard and other printers that use the PCL5 language. It is also
the native font format on the Amiga computers.

Infinifont
A font synthesis technique which, given a Panose-1 number (and, optionally,
additional font description data) can generate a faux font without
extrapolating from a single master outline or interpolating between two or
more outlines. See [INFINIFONT] p.236 .

Italic
A class of letter forms for Latin scripts, that are more cursive than roman
letter forms but less so than script forms. Often, a pair of fonts are designed
to be used together; one is a serifed roman and one is italic. Other terms to
describe this class of letter forms include cursive and, for Cyrillic scripts,
kursiv. For sans-serif faces, the companion face is often a slanted or oblique
variant rather than a different class of letter form.
Italic forms

222

Kerning
Altering the spacing between selected glyph representations, which would
otherwise appear to be too close or too far apart, to obtain a more even
typographical color.

Illustration of kerning
Multiple Master Font

A Multiple Master Font contain two primary fonts that are used with special
rendering software to provide an interpolated result. Adobe Systems
provides a mechanism that allows for parameters to be used to control the
output or the interpolated output font. These parameters usually describe the
characteristics of an original font and the multiple master result is referred to
as a synthesized font.

Open Type
Open Type is an extension to the TrueType font format which contains
additional information that extends the capabilities of the fonts to support
high-quality international typography. Open Type can associate a single
character with multiple glyph representations, and combinations of
characters with a single glyph representation (ligature formation). Open Type
includes two-dimensional information to support features for complex
positioning and glyph attachment. TrueType Open contains explicit script
and language information, so a text-processing application can adjust its
behavior accordingly. See [OPENTYPE] p.237 .

Server Font
A Server Font is a font resource located on the web server that is referenced
by the WebFont definition. The user agent may use this resource for
rendering the page.

Speedo
Speedo font technology was developed by Bitstream and is the native font
format on the Atari ST and Falcon computers,. It is also used by computers
running X.

TrueDoc
TrueDoc technology was developed by Bitstream for the creation, transport,
and imaging of platform independent scalable font objects on the web.
Creation of font objects is done by the TrueDoc character shape recorder
(CSR) and the rendering of the font objects is done by TrueDoc’s character
shape player (CSP). The technology is intended to be used on the web for
viewing and printing.

TrueDoc Portable Font Resource
A TrueDoc Portable for resource (or PFR) is a platform independent scalable
font object which is produce by a character shape player. Input may be
either TrueType or Type 1 of any flavor on either Windows, Mac, or Unix.
TrueDoc Portable Font Resources provide good compression ratios, are
platform independent, and because they are not in an native font format
(TrueType or Type 1) they can not be easily installed.

TrueType
TrueType is a font format developed by Apple and licensed to Microsoft.
TrueType is the native operating system font format for Windows and
Macintosh. TrueType contains a hierarchical set of tables and glyph
representations. Characters can be hinted on a per character and point size
basis yielding excellent quality at screen resolutions. TrueType fonts for

223

Windows and Mac have few differences, though they can be different
enough to prevent cross platform usage. Font foundries provide TrueType
fonts for each platform and usually include a license preventing electronic
manipulation to achieve cross platform transparency.

TrueType Collection
A TrueType Collection (or TTC) is an extension to the TrueType format that
includes tables that allow for multiple TrueType fonts to be contained within
a single TrueType font file. TrueType collection files are relatively rare at this
time.

TrueType GX Fonts
TrueType GX Fonts contain extensions to the standard TrueType format that
allow for mutable fonts, similar to Multiple Master fonts. There may be
several mutation axis such as weight, height, and slant. The axis can be
defined to obtain almost any effect. TrueType GX can also supports
alternate glyph representation substitution for ligatures, contextual forms,
fractions, etc. To date, TrueType GX is available only on the Mac. See
[TRUETYPEGX] p.237 .

Type 1 font
Type 1 fonts, developed by Adobe Systems, were one of first scalable
formats available. Type 1 fonts are usually contain 228 characters with the
glyph representations described using third degree bezier curves. Mac,
Windows, and X have similar but separate formats; Adobe provides Adobe
Type Manager for all three platforms. Type1c is a more recent
losslessly-compressed storage form for Type 1 glyph representations.

URL Binding
A process of locking a particular font resource to a given Web site by
embedding an encrypted URL or a digitally signed usage assertion into the
font resource.

C.2.2 Font retrieval
There are many different font formats in use by many different platforms. To
select a preferred font format, transparent content negotiation is used (see
[NEGOT] p.237). It is always possible to tell when a font is being dereferenced,
because the URL is inside a font description. Thus, only the relevant Accept
headers need be sent (not headers related to images, HTML, etc).

224

Appendix D: The grammar of CSS2
Contents

This appendix is normative.
The grammar below defines the syntax of CSS2. It is in some sense, however,

a superset of CSS2 as this specification imposes additional semantic constraints
not expressed in this grammar. A conforming UA must also adhere to the
forward-compatible parsing rules, the property and value notation, and the unit
notation . In addition, the document language may impose restrictions, e.g.
HTML imposes restrictions on the possible values of the "class" attribute.

The grammar below is LL(1) (but note that most UA’s should not use it directly,
since it doesn’t express the parsing conventions, only the CSS2 syntax). The
format of the productions is optimized for human consumption and some
shorthand notation beyond [YACC] p.236 is used:

 * : 0 or more + : 1 or more ? :
0 or 1 | : separates alternatives [] : grouping

The productions are:

stylesheet
 : [CDO|CDC]* [import [CDO|CDC]*]* [[ruleset | media] [CDO|CDC]*]*
 ;
import
 : IMPORT_SYM [STRING|URL] medium* ’;’ /* E.g., @import url(fun.css); */
 ;
media
 : MEDIA_SYM medium+ ’{’ ruleset* ’}’
 ;
medium /* e.g., SPEECH */
 : IDENT
 ;
unary_operator
 : ’-’ | ’+’
 ;
operator
 : ’/’ | ’,’ | /* empty */
 ;
property
 : IDENT
 ;
ruleset
 : selector [’,’ selector]*
 ’{’ declaration [’;’ declaration]* ’}’
 ;
selector
 : sequential_selector [’~’? sequential_selector]*
 [pseudo_element | solitary_pseudo_element]?
 | solitary_pseudo_element
 ;
sequential_selector
 : simple_selector
 | ’/’ simple_selector ’~’? simple_selector ’/’
 | ’//’ simple_selector ’/’
 ;
 /* An "id" is an ID that is attached to an element type
 ** on its left, as in: P#p007
 ** A "solitary_id" is an ID that is not so attached,
 ** as in: #p007
 ** Analogously for classes and pseudo-classes.
 */
simple_selector
 : element_name [id | class | attrib | pseudo_class]*
 | solitary_id [class | attrib | pseudo_class]* /* eg: #xyz33 */
 | solitary_class [id | class | attrib | pseudo_class]* /* eg: .author */
 | solitary_pseudo_class [id | class | attrib | pseudo_class]* /* eg: :link */
 | solitary_attrib [id | class | attrib | pseudo_class]* /* eg: [ALIGN] */
 ;
element_name

225

 : IDENT
 ;
attrib /* as in: [lang=fr] */
 : LBRACK_AFTER_IDENT IDENT [[EQ | INCLUDES] [IDENT | STRING]]? ’]’
 ;
solitary_attrib
 : ’[’ IDENT [[EQ | INCLUDES] [IDENT | STRING]]? ’]’
 ;
pseudo_class /* as in: A:link */
 : LINK_PSCLASS_AFTER_IDENT
 | VISITED_PSCLASS_AFTER_IDENT
 | ACTIVE_PSCLASS_AFTER_IDENT
 ;
solitary_pseudo_class /* as in: :link */
 : LINK_PSCLASS
 | VISITED_PSCLASS
 | ACTIVE_PSCLASS
 ;
class /* as in: P.note */
 : CLASS_AFTER_IDENT
 ;
solitary_class /* as in: .note */
 : CLASS
 ;
pseudo_element /* as in: P:first-line */
 : FIRST_LETTER_AFTER_IDENT
 | FIRST_LINE_AFTER_IDENT
 ;
solitary_pseudo_element /* as in: :first-line */
 : FIRST_LETTER
 | FIRST_LINE
 ;
 /* There is a constraint on the id and solitary_id that the
 ** part after the "#" must be a valid HTML ID value;
 ** e.g., "#x77" is OK, but "#77" is not.
 */
id
 : HASH_AFTER_IDENT
 ;
solitary_id
 : HASH
 ;
declaration
 : property ’:’ expr prio?
 | /* empty */ /* Prevents syntax errors... */
 ;
prio
 : IMPORTANT_SYM /* !important */
 ;
expr
 : term [operator term]*
 ;
term
 : unary_operator?
 [NUMBER | STRING | PERCENTAGE | LENGTH | EMS | EXS
 | IDENT | hexcolor | URL | RGB | UNICODERANGE
 | ANGLE | TIME | FREQ]
 ;
 /* There is a constraint on the color that it must
 ** have either 3 or 6 hex-digits (i.e., [0-9a-fA-F])
 ** after the "#"; e.g., "#000" is OK, but "#abcd" is not.
 */
hexcolor
 : HASH | HASH_AFTER_IDENT
 ;

The following is the tokenizer, written in flex [FLEX] p.235 notation. Note that
this assumes an 8-bit implementation of flex. The tokenizer is case-insensitive
(flex command line option -i).

unicode \\[0-9a-f]{1,4}
latin1 [¡-ÿ]
escape {unicode}|\\[-~¡-ÿ]
stringchar {escape}|{latin1}|[!#$%&(-~]
nmstrt [a-z]|{latin1}|{escape}
nmchar [-a-z0-9]|{latin1}|{escape}

226

ident {nmstrt}{nmchar}*
name {nmchar}+
d [0-9]
notnm [^-a-z0-9\\]|{latin1}
w [\t\n]*
num {d}+|{d}*\.{d}+
string \"({stringchar}|\’)*\"|\’({stringchar}|\")*\’

%x COMMENT
%s AFTER_IDENT

%%
"/*" {BEGIN(COMMENT);}
<COMMENT>"*/" {BEGIN(0);}
<COMMENT>\n {/* ignore */}
<COMMENT>. {/* ignore */}
@import {BEGIN(0); return IMPORT_SYM;}
@media {BEGIN(0); return MEDIA_SYM;}
"!"{w}important {BEGIN(0); return IMPORTANT_SYM;}
{ident} {BEGIN(AFTER_IDENT); return IDENT;}
{string} {BEGIN(0); return STRING;}

{num} {BEGIN(0); return NUMBER;}
{num}"%" {BEGIN(0); return PERCENTAGE;}
{num}pt/{notnm} {BEGIN(0); return LENGTH;}
{num}mm/{notnm} {BEGIN(0); return LENGTH;}
{num}cm/{notnm} {BEGIN(0); return LENGTH;}
{num}pc/{notnm} {BEGIN(0); return LENGTH;}
{num}in/{notnm} {BEGIN(0); return LENGTH;}
{num}px/{notnm} {BEGIN(0); return LENGTH;}
{num}em/{notnm} {BEGIN(0); return EMS;}
{num}ex/{notnm} {BEGIN(0); return EXS;}
{num}deg/{notnm} {BEGIN(0); return ANGLE;}
{num}grad/{notnm} {BEGIN(0); return ANGLE;}
{num}rad/{notnm} {BEGIN(0); return ANGLE;}
{num}ms/{notnm} {BEGIN(0); return TIME;}
{num}s/{notnm} {BEGIN(0); return TIME;}
{num}Hz/{notnm} {BEGIN(0); return FREQ;}
{num}kHz/{notnm} {BEGIN(0); return FREQ;}

<AFTER_IDENT>":"link {return LINK_PSCLASS_AFTER_IDENT;}
<AFTER_IDENT>":"visited {return VISITED_PSCLASS_AFTER_IDENT;}
<AFTER_IDENT>":"active {return ACTIVE_PSCLASS_AFTER_IDENT;}
<AFTER_IDENT>":"first-line {return FIRST_LINE_AFTER_IDENT;}
<AFTER_IDENT>":"first-letter {return FIRST_LETTER_AFTER_IDENT;}
<AFTER_IDENT>"#"{name} {return HASH_AFTER_IDENT;}
<AFTER_IDENT>"."{name} {return CLASS_AFTER_IDENT;}

":"link {BEGIN(AFTER_IDENT); return LINK_PSCLASS;}
":"visited {BEGIN(AFTER_IDENT); return VISITED_PSCLASS;}
":"active {BEGIN(AFTER_IDENT); return ACTIVE_PSCLASS;}
":"first-line {BEGIN(AFTER_IDENT); return FIRST_LINE;}
":"first-letter {BEGIN(AFTER_IDENT); return FIRST_LETTER;}
"#"{name} {BEGIN(AFTER_IDENT); return HASH;}
"."{name} {BEGIN(AFTER_IDENT); return CLASS;}

<AFTER_IDENT>’[’ {BEGIN(0); return LBRACK_AFTER_IDENT;}
’[’ {return LBRACK_AFTER_IDENT;}
’]’ {BEGIN(AFTER_IDENT); return ’]’;}
’=’ {return EQ;}
’~=’ {return INCLUDES;}

url\({w}{string}{w}\) |
url\({w}([^ \n\’\")]|\\\ |\\\’|\\\"|\\\))+{w}\) {BEGIN(0); return URL;}
rgb\({w}{num}%?{w}\,{w}{num}%?{w}\,{w}{num}%?{w}\) {BEGIN(0); return RGB;}

U\+[0-9a-f?]{1,6}(-{h}{1,6})? {BEGIN(0); return UNICODERANGE;}

227

[-/+{};,#:] {BEGIN(0); return *yytext;}
[\t]+ {BEGIN(0); /* ignore whitespace */}
\n {BEGIN(0); /* ignore whitespace */}
\<\!\-\- {BEGIN(0); return CDO;}
\-\-\> {BEGIN(0); return CDC;}
. {fprintf(stderr, "%d: Illegal character (%d)\n",
 lineno, *yytext);}

228

E Appendix E: Aids to Web Fonts
implementation

Contents

1. Meaning of the Panose Digits p.229
2. Deducing Unicode Ranges for TrueType p.232

This appendix is informative.

E.1 Meaning of the Panose Digits
For further details on Panose-1, see [PANOSE] p.237 .

Family
Any (0)
No Fit (1)
Latin Text and Display p.237 (2)
Latin Script p.237 (3)
Latin Decorative p.237 (4)
Latin Pictorial p.237 (5)

Serif Style
Any (0)
No Fit (1)
Cove (2)
Obtuse Cove (3)
Square Cove (4)
Obtuse Square Cove (5)
Square (6)
Thin (7)
Bone (8)
Exaggerated (9)
Triangle (10)
Normal Sans (11)
Obtuse Sans (12)
Perp Sans (13)
Flared (14)
Rounded (15)

Weight
Any (0)
No Fit (1)
Very Light (2)[100]
Light (3) [200]
Thin (4) [300]
Book (5) [400] same as CSS1 ’normal’
Medium (6) [500]
Demi (7) [600]

229

Bold (8) [700] same as CSS1 ’bold’
Heavy (9) [800]
Black (10) [900]
Extra Black / Nord (11) [900] force mapping to CSS1 100-900 scale

Proportion
Any (0)
No Fit (1)
Old Style (2)
Modern (3)
Even Width (4)
Expanded (5)
Condensed (6)
Very Expanded (7)
Very Condensed (8)
Monospaced (9)

Contrast
Any (0)
No Fit (1)
None (2)
Very Low (3)
Low (4)
Medium Low (5)
Medium (6)
Medium High (7)
High (8)
Very High (9)

Stroke Variation
Any (0)
No Fit (1)
No Variation (2)
Gradual/Diagonal (3)
Gradual/Transitional (4)
Gradual/Vertical (5)
Gradual/Horizontal (6)
Rapid/Vertical (7)
Rapid/Horizontal (8)
Instant/Horizontal (9)
Instant/Vertical (10)

Arm Style
Any (0)
No Fit (1)
Straight Arms/Horizontal (2)
Straight Arms/Wedge (3)
Straight Arms/Vertical (4)
Straight Arms/Single Serif (5)
Straight Arms/Double Serif (6)
Non-Straight Arms/Horizontal (7)

230

Non-Straight Arms/Wedge (8)
Non-Straight Arms/Vertical 90)
Non-Straight Arms/Single Serif (10)
Non-Straight Arms/Double Serif (11)

Letterform
Any (0)
No Fit (1)
Normal/Contact (2)
Normal/Weighted (3)
Normal/Boxed (4)
Normal/Flattened (5)
Normal/Rounded (6)
Normal/Off Center (7)
Normal/Square (8)
Oblique/Contact (9)
Oblique/Weighted (10)
Oblique/Boxed (11)
Oblique/Flattened (12)
Oblique/Rounded (13)
Oblique/Off Center (14)
Oblique/Square (15)

Midline
Any (0)
No Fit (1)
Standard/Trimmed (2)
Standard/Pointed (3)
Standard/Serifed (4)
High/Trimmed (5)
High/Pointed (6)
High/Serifed (7)
Constant/Trimmed (8)
Constant/Pointed (9)
Constant/Serifed (10)
Low/Trimmed (11)
Low/Pointed (12)
Low/Serifed (13)

XHeight
Any (0)
No Fit (1)
Constant/Small (2)
Constant/Standard (3)
Constant/Large (4)
Ducking/Small (5)
Ducking/Standard (6)
Ducking/Large (7)

231

E.2 Deducing Unicode Ranges for TrueType
This information is available in the font by looking at the ’ulUnicodeRange’ bits in
the ’OS/2’ table (if it has one), which holds a bitfield representation of the set.
This table is defined in revision 1.66 of the TrueType specification, from
Microsoft. Considering this information as a set, each element corresponds to a
Unicode 1.1 character block, and the presence of that element in the set
indicates that the font has one or more glyph representations to represent at
least one character in that block. The set has 128 elements as described below.
The order generally follows that in the Unicode 1.1 standard. This table may be
used to convert the information in a TrueType font into a CSS ’unicode-range’
descriptor.

Block Add Block name Unicode range

0 1 Basic Latin U+0-7F

1 2 Latin-1 Supplement U+80-FF

2 4 Latin-1 Extended-A U+100-17F

3 8 Latin Extended-B U+180-24F

4 1 IPA Extensions U+250-2AF

5 2 Spacing Modifier Letters U+2B0-2FF

6 4 Combining Diacritical Marks U+300-36F

7 8 Greek U+370-3CF

8 1 Greek Symbols and Coptic U+3D0-3EF

9 2 Cyrillic U+400-4FF

10 4 Armenian U+530-58F

11 8 Hebrew U+590-5FF

12 1
Hebrew Extended-A
Hebrew Extended-B

?? what ranges ??

13 2 Arabic U+600-69F

14 4 Arabic Extended U+670-6FF

15 8 Devanagari U+900-97F

16 1 Bengali U+980-9FF

17 2 Gurmukhi U+A00-A7F

232

18 4 Gujarati U+A80-AFF

19 8 Oriya U+B00-B7F

20 1 Tamil U+B80-BFF

21 2 Telugu U+C00-C7F

22 4 Kannada U+C80-CFF

23 8 Malayalam U+D00-D7F

24 1 Thai U+E00-E7F

25 2 Lao U+E80-EFF

26 4 Georgian U+10A0-10EF

27 8 Georgian Extended U+10F0-10FF ??

28 1 Hangul Jamo U+1100-11FF

29 2 Latin Extended Additional -

30 4 Greek Extended U+1F00-1FFF

31 8 General Punctuation U+2000-206F

32 1 Superscripts and Subscripts -

33 2 Currency Symbols U+20A0-20CF

34 4 Combining Marks for Symbols U+20D0-20FF

35 8 Letterlike Symbols U+2100-214F

36 1 Number Forms U+2150-218F

37 2 Arrows U+2190-21FF

38 4 Mathematical Operators U+2200-22FF

39 8 Miscellaneous Technical U+2300-23FF

40 1 Control Pictures U+2400-243F

41 2 Optical Character Recognition U+2440-245F

42 4 Enclosed Alphanumerics U+2460-24FF

43 8 Box Drawing U+2500-257F

44 1 Block Elements U+2580-259F

45 2 Geometric Shapes U+25A0-25FF

233

46 4 Miscellaneous Symbols U+2600-26FF

47 8 Dingbats U+2700-27BF

48 1 CJK Symbols and Punctuation U+3000-303F

49 2 Hiragana U+3040-309F

50 4 Katakana U+30A0-30FF

51 8 Bopomofo U+3100-312F

52 1 Hangul Compatibility Jamo U+3130-318F

53 2 CJK Miscellaneous ??

54 4 Enclosed CJK Letters and Months U+3200-32FF

55 8 CJK compatibility U+3300-33FF

56 1 Hangul U+AC00-D7FF

59 8 CJK Unified Ideographs U+4E00-9FFF

60 1 Private Use Area U+E000-F8FF

61 2 CJK Compatibility Ideographs U+F900-FAFF

62 4 Alphabetic Presentation Forms U+FB00-FB4F

63 8 Arabic Presentation Forms-A U+FB50-FDFF

64 1 Combining Half Marks U+FE20-FE2F

65 2 CJK compatibility Forms U+FE30-FE4F

66 4 Small Form Variants U+FE50-FE6F

67 8 Arabic Presentation Forms-B U+FE70-FEFF

68 1 Halfwidth and Fullwidth Forms U+FF00-FFEF

69 2 Specials U+FFF0-FFFD

The TrueType bitfield system has the problem that it is tied to Unicode 1.1 and
is unable to cope with Unicode expansion - it is unable to represent Tibetan for
example.

234

References
Contents

1. Normative references p.235
2. Informative references p.236

1.1 Normative references
[COLORIMETRY]

"Colorimetry, Second Edition", CIE Publication 15.2-1986, ISBN
3-900-734-00-3.
Available at
http://www.hike.te.chiba-u.ac.jp/ikeda/CIE/publ/abst/15-2-86.html.

[CSS1]
"Cascading Style Sheets, level 1", H. W. Lie and B. Bos, 17 December 1996.
Available at http://www.w3.org/TR/REC-CSS1-961217.html

[FLEX]
"Flex: The Lexical Scanner Generator", Version 2.3.7, ISBN 1882114213.

[GAMMA]
"Gamma correction on the Macintosh Platform", C. A. Poynton.
Available at
ftp://ftp.inforamp.net/pub/users/poynton/doc/Mac/Mac_gamma.pdf.

[HTML32]
"HTML 3.2 Reference Specification", Dave Raggett, 14 January 1997.
Available at http://www.w3.org/TR/REC-html32.html

[ICC32]
"ICC Profile Format Specification, version 3.2", 1995.
Available at ftp://sgigate.sgi.com/pub/icc/ICC32.pdf.

[ISO8879]
ISO 8879:1986 "Information Processing -- Text and Office Systems --
Standard Generalized Markup Language (SGML)", ISO 8879:1986.
For the list of SGML entities, consult ftp://ftp.ifi.uio.no/pub/SGML/ENTITIES/.

[ISO9899]
ISO/IEC 9899:1990 Programming languages -- C.

[ISO10179]
ISO/IEC 10179:1996 "Information technology -- Processing languages --
Document Style Semantics and Specification Language (DSSSL)"
Available at http://occam.sjf.novell.com:8080/dsssl/dsssl96

[ISO10646]
"Information Technology - Universal Multiple- Octet Coded Character Set
(UCS) - Part 1: Architecture and Basic Multilingual Plane", ISO/IEC
10646-1:1993. The current specification also takes into consideration the
first five amendments to ISO/IEC 10646-1:1993. Useful roadmap of the BMP
and roadmap of plane 1 documents show which scripts sit at which numeric
ranges.

[PNG10]
"PNG (Portable Network Graphics) Specification, Version 1.0 specification",
T. Boutell ed., 1 October 1996.
Available at http://www.w3.org/pub/WWW/TR/REC-png-multi.html.

235

http://www.hike.te.chiba-u.ac.jp/ikeda/CIE/publ/abst/15-2-86.html
http://www.w3.org/TR/REC-CSS1-961217.html
ftp://ftp.inforamp.net/pub/users/poynton/doc/Mac/Mac_gamma.pdf
http://www.w3.org/TR/REC-html32.html
ftp://sgigate.sgi.com/pub/icc/ICC32.pdf
http://www.iso.ch/cate/d16387.html
ftp://ftp.ifi.uio.no/pub/SGML/ENTITIES/
http://www.iso.ch/cate/d17782.html
http://www.iso.ch/cate/d18196.html
http://occam.sjf.novell.com:8080/dsssl/dsssl96
http://www.indigo.ie/egt/standards/iso10646/bmp-roadmap-table.html
http://www.indigo.ie/egt/standards/iso10646/plane-1-roadmap-table.html
http://www.w3.org/pub/WWW/TR/REC-png-multi.html

[RFC1738]
"Uniform Resource Locators", T. Berners-Lee, L. Masinter, and M. McCahill,
December 1994.
Available at ftp://ds.internic.net/rfc/rfc1738.txt.

[RFC1808]
"Relative Uniform Resource Locators", R. Fielding, June 1995.
Available at ftp://ds.internic.net/rfc/rfc1808.txt.

[RFC1866]
"HyperText Markup Language 2.0", T. Berners-Lee and D. Connolly,
November 1995.
Available at ftp://ds.internic.net/rfc/rfc1866.txt.

[RFC1942]
"HTML Tables", Dave Raggett, May 1996.
Available at ftp://ds.internic.net/rfc/rfc1942.txt.

[RFC2070]
"Internationalization of the HyperText Markup Language", F. Yergeau, G.
Nicol, G. Adams, and M. Dürst, January 1997.
Available at ftp://ds.internic.net/rfc/rfc2070.txt.

[RFC2119]
"Key words for use in RFCs to Indicate Requirement Levels", S. Bradner,
March 1997.
Available at ftp://ds.internic.net/rfc/rfc2119.txt.

[SRGB]
"Proposal for a Standard Color Space for the Internet - sRGB", M Anderson,
R Motta, S Chandrasekar, M Stokes.
Available at http://www.w3.org/Graphics/Color/sRGB.html.

[UNICODE]
The latest version of Unicode. For more information, consult the Unicode
Consortium’s home page at http://www.unicode.org/

[XML]
Please consult http://www.w3.org/XML/ for information about the XML
specification.

[YACC]
"YACC - Yet another compiler compiler", S. C. Johnson, Technical Report,
Murray Hill, 1975.

1.2 Informative references
[DOM]

"Document Object Model Specification", L. Wood, A. Le Hors, 9 October
1997.
Available at http://www.w3.org/TR/WD-DOM/

[HTML40]
"HTML 4.0 Specification (Working Draft)", D. Raggett, A. Le Hors, I. Jacobs,
8 July 1997.
Available at http://www.w3.org/TR/WD-html40-970708/

[INFINIFONT]
See http://www.fonts.com/hp/infinifont/moredet.html.

236

ftp://ds.internic.net/rfc/rfc1738.txt
ftp://ds.internic.net/rfc/rfc1808.txt
ftp://ds.internic.net/rfc/rfc1866.txt
ftp://ds.internic.net/rfc/rfc1942.txt
ftp://ds.internic.net/rfc/rfc2070.txt
ftp://ds.internic.net/rfc/rfc2119.txt
http://www.w3.org/Graphics/Color/sRGB.html
http://www.unicode.org/
http://www.w3.org/XML/
http://www.w3.org/TR/WD-DOM/
http://www.w3.org/TR/WD-html40-970708/
http://www.fonts.com/hp/infinifont/moredet.html

[MONOTYPE]
See http://www.monotype.com/html/oem/uni_scrmod.html

[NEGOT]
"Transparent Content Negotiation in HTTP", K. Holtman, A. Mutz, 9 March,
1997.
Available at
http://gewis.win.tue.nl/~koen/conneg/draft-ietf-http-negotiation-01.html

[OPENTYPE]
See http://www.microsoft.com/OpenType/OTSpec/tablist.htm.

[PANOSE]
For information about PANOSE classification metrics, consult
http://www.fonts.com/hp/panose/greybook and the following chapters: Latin
Text, Latin Script, Latin Decorative, and Latin Pictorial.

Panose numbers for some fonts are available online and may be queried.
[PANOSE2]

See /Fonts/Panose/pan2.html Panose-2 is not limited to Latin typefaces.
[TRUETYPEGX]

See http://fonts.apple.com/TTRefMan/index.html for details about TrueType
GX from Apple Computer, including descriptions of the added tables and
font quality specifications

[W3CSTYLE]
W3C resource page on web style sheets.
Examine at http://www.w3.org/pub/WWW/Style

237

http://www.monotype.com/html/oem/uni_scrmod.html
http://gewis.win.tue.nl/~koen/conneg/draft-ietf-http-negotiation-01.html
http://www.microsoft.com/OpenType/OTSpec/tablist.htm
http://www.fonts.com/hp/panose/greybook
http://www.fonts.com/hp/panose/greybook/pan2.htm
http://www.fonts.com/hp/panose/greybook/pan2.htm
http://www.fonts.com/hp/panose/greybook/pan3.htm
http://www.fonts.com/hp/panose/greybook/pan4.htm
http://www.fonts.com/hp/panose/greybook/pan5.htm
http://www.fonts.com/hp/panose/dbsearch/index.htm
http://fonts.apple.com/TTRefMan/index.html
http://support.info.apple.com/gx/GXFF/chap0.html
http://support.info.apple.com/gx/FQS/FQSTOC.html
http://www.w3.org/pub/WWW/Style

238

Index

: @ A B C D E F G H I L M N O P R S T U V W X Z

:
:active , 1

:first-letter , 1 , 2

:first-line , 1

:footer , 1

:header , 1

:hover , 1

:left , 1

:link , 1

:right , 1

:visited , 1

@
@-rules , 1

@class , 1

@font-face , 1 , 2 , 3 , 4 , 5 , 6

@import , 1 , 2

@media , 1 , 2 , 3

@page , 1

A
absolute length , 1

absolute positioning , 1

<absolute-size>
definition of , 1

239

adorned font name , 1

’alignment’ , 1

ancestor , 1

<angle>
definition of , 1

’ascent’ (descriptor) , 1

at-rules , 1

’azimuth’ , 1

B
’background’ , 1

’background-attachment’ , 1

’background-color’ , 1

’background-image’ , 1

’background-position’ , 1

’background-repeat’ , 1

backslash escapes , 1

’baseline’ (descriptor) , 1

block , 1

block-level elment , 1

Block-level layout , 1

’border’ , 1

’border-bottom’ , 1

’border-bottom-color’ , 1

’border-bottom-style’ , 1

’border-bottom-width’ , 1

’border-color’ , 1

240

’border-left’ , 1

’border-left-color’ , 1

’border-left-style’ , 1

’border-left-width’ , 1

’border-right’ , 1

’border-right-color’ , 1

’border-right-style’ , 1

’border-right-width’ , 1

’border-style’ , 1

’border-top’ , 1

’border-top-color’ , 1

’border-top-style’ , 1

’border-top-width’ , 1

<border-width>
definition of , 1

’border-width’ , 1

<bottom>
definition of , 1

’bottom’ , 1

C
canvas , 1

’cap-height’ (descriptor) , 1

’caption-side’ , 1

cascade
definition of , 1

case sensitivity , 1

’centerline’ (descriptor) , 1

241

child , 1

’clear’ , 1

’clip’ , 1

<color>
definition of , 1

’color’ , 1

’column-gap’ , 1

’column-rule’ , 1

’column-rule-color’ , 1

’column-rule-style’ , 1

’column-rule-width’ , 1

’column-span’ , 1

’columns’ , 1

comments , 1

compact box , 1

conditional import , 1

conformance , 1

containing block , 1

contextual selectors , 1

crop marks , 1

cross marks , 1

’cue’ , 1

’cue-after’ , 1

’cue-before’ , 1

’cursor’ , 1

242

D
declaration-block , 1

default style sheet , 1

’definition-src’ (descriptor) , 1

descendant , 1

’descent’ (descriptor) , 1

’direction’ , 1

’display’ , 1

document language , 1

drop caps , 1

E
element , 1

’elevation’ , 1

encoding vector , 1

F
<family-name>

definition of , 1

fictional tag sequence , 1 , 2 , 3

fixed , 1

’float’ , 1

font , 1

font data , 1

font definition resource , 1

font description , 1

font descriptions , 1

font descriptors , 1

243

font encoding table , 1

font family , 1

font set , 1

font size , 1

font synthesis , 1

’font’ , 1

<font-description>
definition of , 1

<font-face-name>
definition of , 1

’font-family’ , 1

’font-family’ (descriptor) , 1

’font-size’ , 1

’font-size’ (descriptor) , 1

’font-style’ , 1

’font-style’ (descriptor) , 1

’font-variant’ , 1

’font-variant’ (descriptor) , 1

’font-weight’ , 1

’font-weight’ (descriptor) , 1

<frequency>
definition of , 1

G
<generic-family>

definition of , 1

glyph , 1

glyph representation , 1

244

H
half-leading , 1

’height’ , 1

I
’important’ , 1 , 2

inheritance of property values , 1

initial caps , 1

inline elment , 1

Inline layout , 1

<integer>
definition of , 1

intelligent matching , 1

L
leading , 1

<left>
definition of , 1

’left’ , 1

<length>
definition of , 1

’letter-spacing’ , 1

line box , 1

line-box , 1

’line-height’ , 1

’list-style’ , 1

’list-style-image’ , 1

’list-style-position’ , 1

’list-style-type’ , 1

245

M
’margin’ , 1

’margin-bottom’ , 1

’margin-left’ , 1

’margin-right’ , 1

’margin-top’ , 1

<margin-width>
definition of , 1

’marks’ , 1

’mathline’ (descriptor) , 1

’max-height’ , 1

’max-width’ , 1

media-dependent import , 1

medium
print , 1
projector , 1

’min-height’ , 1

’min-width’ , 1

N
n-up , 1

name matching , 1

<number>
definition of , 1

O
’orphans’ , 1

’overflow’ , 1

246

P
’padding’ , 1

’padding-bottom’ , 1

’padding-left’ , 1

’padding-right’ , 1

’padding-top’ , 1

<padding-width>
definition of , 1

page box , 1

page model , 1

’page-break-after’ , 1

’page-break-before’ , 1

page-context , 1

Panose-1 , 1

panose-1 , 1

’panose-1’ (descriptor) , 1

parent , 1

parent-child selector , 1

’pause’ , 1

’pause-after’ , 1

’pause-before’ , 1

<percentage>
definition of , 1

’pitch’ , 1

’pitch-range’ , 1

pixel units , 1

’play-during’ , 1

247

’position’ , 1

print medium , 1

progressive rendering , 1

projector medium , 1

property , 1

pseudo-class
:left , 1
:right , 1

pseudo-classes , 1
:active , 1
:hover , 1
:link , 1
:visited , 1

pseudo-elements , 1 , 2
:first-letter , 1
:first-line , 1 , 2

R
reference box , 1

reference pixel , 1

relative positioning , 1

relative units , 1

<relative-size>
definition of , 1

rendering object , 1

’richness’ , 1

<right>
definition of , 1

’right’ , 1

root , 1

’row-span’ , 1

rule sets , 1

248

run-in box , 1

’running-head’ , 1

S
selector , 1

selectors , 1

<shape>
definition of , 1

sheet , 1

shorthand , 1

’size’ , 1

’slope’ (descriptor) , 1

’speak’ , 1

’speak-date’ , 1

’speak-header-cell’ , 1

’speak-numeral’ , 1

’speak-punctuation’ , 1

’speak-time’ , 1

<specific-voice>
definition of , 1

’speech-rate’ , 1

’src’ (descriptor) , 1

stack level , 1

statements , 1

’stemh’ (descriptor) , 1

’stemv’ (descriptor) , 1

’stress’ , 1

string , 1

249

T
’text-decoration’ , 1

’text-indent’ , 1

’text-shadow’ , 1

’text-transform’ , 1

<time>
definition of , 1

<top>
definition of , 1

’top’ , 1

’topline’ (descriptor) , 1

type selector , 1

U
UA , 1

’unicode-range’ (descriptor) , 1

’units-per-em’ (descriptor) , 1

<urange>
definition of , 1

URL , 1

<url>
definition of , 1

user agent , 1

V
’vertical-align’ , 1

viewport , 1

’visibility’ , 1

visual rendering model , 1

250

’voice-family’ , 1

volume , 1

’volume’ , 1

W
’white-space’ , 1

’widows’ , 1

’width’ , 1

’widths’ (descriptor) , 1

’word-spacing’ , 1

X
’x-height’ (descriptor) , 1

Z
’z-index’ , 1

251

	CSS2 Specification
	Abstract
	Status of this document
	Editors
	Comments
	Table of Contents

	1 About the CSS2 Specification
	1.1 How to read the specification
	1.2 How the specification is organized
	1.3 Acknowledgments

	2 Introduction to CSS2
	2.1 A brief CSS2 tutorial
	2.2 Design principles behind CSS2

	3 Definitions and document conventions
	3.1 Definitions
	3.1.1 Document language
	3.1.2 Element
	3.1.3 User agent †or UA‡
	3.1.4 Conforming user agent
	3.1.5 Default style sheet

	3.2 Conventions
	3.2.1 Document language elements and attributes
	3.2.2 CSS property definitions
	3.2.3 HTML conventions

	4 CSS2 syntax and basic data types
	4.1 Syntax
	4.1.1 Tokenization
	4.1.2 Characters and case
	4.1.3 Statements
	4.1.4 At-rules
	4.1.5 Blocks
	4.1.6 Rule sets, declaration blocks, and selectors
	4.1.7 Declarations and properties
	4.1.8 Comments
	4.1.9 More examples

	4.2 Values
	4.2.1 Integers and numbers
	4.2.2 Lengths
	4.2.3 Percentages
	4.2.4 URLs
	4.2.5 Colors
	4.2.6 Angles
	4.2.7 Time
	4.2.8 Frequencies

	4.3 CSS embedded in HTML
	4.4 CSS as a stand-alone file
	4.5 Character escapes in CSS

	5 CSS2 processing model
	5.1 Introduction to the CSS2 processing model
	5.2 The document tree
	5.3 Inheritance
	5.4 Rendering objects

	6 Selectors
	6.1 Type selectors
	6.2 Grouping
	6.3 Attribute selectors
	6.3.1 Matching attributes, single values, and multiple values
	6.3.2 The class and id attribute in HTML
	6.3.3 The class attribute in other document languages: @class
	6.3.4 The id attribute

	6.4 Contextual selectors
	6.5 Parent-child selectors
	6.6 Sequential selectors
	6.7 Pseudo-elements and pseudo-classes
	6.7.1 The :first-line€ pseudo-element
	6.7.2 The :first-letter€ pseudo-element
	6.7.3 Overlapping pseudo-elements
	6.7.4 Pseudo-elements with contextual selectors
	6.7.5 Anchor pseudo-classes: :link€, :active€, and :visited€
	6.7.6 Combining pseudo-elements with normal classes
	6.7.7 Colliding attribute selectors and pseudo-classes

	7 Cascade
	7.1 Cascading order
	7.1.1 'Important' rules
	7.1.2 Cascading order in HTML
	7.1.3 Precedence of non-CSS presentational hints

	8 Media types
	8.1 Introduction to media types
	8.2 Specifying media-dependent style sheets
	8.2.1 The @media rule
	8.2.2 The media-dependent @import rule

	8.3 Recognized media types
	8.3.1 The canvas
	Scrollable media€

	9 The box model
	9.1 Introduction to the box model
	9.2 Box dimensions
	9.3 Margin properties: 'margin-top', 'margin-right', 'margin-bottom', 'margin-left', and 'margin'
	
	Values for <margin-width>€€

	9.4 Padding properties: 'padding-top', 'padding-right', 'padding-bottom', 'padding-left', and 'padding'
	9.4.1 Values for <padding-width>€

	9.5 Border properties
	9.5.1 Border width: 'border-top-width', 'border-right-width', 'border-bottom-width', 'border-left-width', and 'border-width'
	Values for <border-width>€€

	9.5.2 Border color: 'border-top-color', 'border-right-color', 'border-bottom-color', 'border-left-color', and 'border-color'
	9.5.3 Border style: 'border-top-style', 'border-right-style', 'border-bottom-style', 'border-left-style', and 'border-style'
	Values for <border-style>

	Example of margins, padding, and borders

	10 Visual rendering model
	10.1 Introduction to the visual rendering model
	10.2 Establishing box positions
	10.2.1 Containing blocks
	10.2.2 Direction of flow

	10.3 Normal flow
	10.3.1 Block-level layout
	List-item elements€

	10.3.2 Inline layout
	Anonymous text boxes€

	10.3.3 Dual-mode elements: run-in and compact
	10.3.4 Relative positioning
	10.3.5 Controlling layout behavior: the 'display' property

	10.4 Floats: 'float' and 'clear'
	10.4.1 Controlling floats

	10.5 Absolute positioning
	10.5.1 Properties to specify position: 'top', 'right', 'bottom', 'left'
	10.5.2 Fixed positioning

	10.6 Comparison of normal, relative, floating, absolute positioning
	10.6.1 Normal flow
	10.6.2 Relative positioning
	10.6.3 Floating a box
	10.6.4 Absolute positioning

	10.7 Z-order: Layered presentation
	10.7.1 Specifying the stack level: the 'z-index' property

	10.8 Multicolumn layout

	11 Visual rendering model details
	11.1 Box width calculations: the 'width' property
	11.1.1 Relationship of width dimensions
	11.1.2 Width of floats and replaced elements
	11.1.3 Width of absolutely positioned elements
	11.1.4 Minimum and maximum widths: 'min-width' and 'max-width'

	11.2 Box height calculations: the 'height' property
	11.2.1 Height of replaced elements
	11.2.2 Height of absolutely positioned elements
	11.2.3 Minimum and maximum heights: 'min-height' and 'max-height'
	11.2.4 Collapsing margins

	11.3 Line height calculations: the 'line-height' and 'vertical-align' properties
	11.4 Floating constraints
	11.5 Overflow and clipping
	11.5.1 Overflow: the 'overflow' property
	11.5.2 Clipping: the 'clip' property

	11.6 Visibility: the 'visibility' property
	11.7 Dynamic positioning
	11.8 Filters

	12 Paged media
	12.1 Introduction to paged media
	12.2 Page breaks
	12.2.1 Page break properties: 'page-break-before', 'page-break-after', 'orphans', and 'widows'
	12.2.2 Allowed page breaks
	12.2.3 Forced page breaks
	12.2.4 "Best" page breaks

	12.3 Page boxes: the @page rule
	12.3.1 Page margins
	12.3.2 Page size: the 'size' property
	Rendering page boxes that do not fit a target sheet€

	12.3.3 Crop marks: the 'marks property
	12.3.4 Left and right pages
	12.3.5 Running headers and footers
	12.3.6 Marking elements for the running headers & footers
	12.3.7 Content outside the page box

	12.4 Cascading in the page context

	13 Colors and Backgrounds
	13.1 Foreground color: the 'color' property
	13.2 Background properties: 'background-color', 'background-image', 'background-repeat', 'background-attachment', 'background-position', and 'background'�14 Fonts�14.1 Introduction�14.2 Font specification$14.2.1 Font specification properties%14.2.2 Font family: the 'font-family'Q14.2.3 Font style: the 'font-style', 'font-variant', and 'font-weight' properties*14.2.4 Font size: the 'font-size' property314.2.5 Shorthand font property: the 'font' property˝14.2.6 Generic font families�serif€�sans-serif€�cursive€�fantasy€
monospace€�14.3 Font selection'14.3.1 Font Descriptions and @font-face

	14 Fonts
	14.1 Introduction
	14.2 Font specification
	14.2.1 Font specification properties
	14.2.2 Font family: the 'font-family'
	14.2.3 Font style: the 'font-style', 'font-variant', and 'font-weight' properties
	14.2.4 Font size: the 'font-size' property
	14.2.5 Shorthand font property: the 'font' property
	14.2.6 Generic font families
	serif€
	sans-serif€
	cursive€
	fantasy€
	monospace€

	14.3 Font selection
	14.3.1 Font Descriptions and @font-face
	14.3.2 Descriptors for Selecting a Font: 'font-family', 'font-style', 'font-variant', 'font-weight', and 'font-size'
	14.3.3 Descriptors for Font Data Qualification: 'unicode-range'
	14.3.4 Descriptor for Numeric Values: 'units-per-em'
	14.3.5 Descriptor for Referencing: 'src'
	14.3.6 Descriptors for Matching: 'panose-1', 'stemv', 'stemh', 'slope', 'cap-height', 'x-height', 'ascent', and 'descent'
	14.3.7 Descriptors for Synthesis: 'widths' and 'definition-src'
	14.3.8 Descriptors for Alignment: 'baseline', 'centerline', 'mathline', and 'topline'

	14.4 Font Characteristics
	14.4.1 Introducing Font Characteristics
	14.4.2 Adorned font name
	14.4.3 Central Baseline
	14.4.4 Co-ordinate units on the em square
	14.4.5 Font encoding tables
	14.4.6 Font family name
	14.4.7 Glyph Representation widths
	14.4.8 Horizontal stem width
	14.4.9 Height of capital glyph representations
	14.4.10 Height of lowercase glyph representations
	14.4.11 Lower Baseline
	14.4.12 Mathematical Baseline
	14.4.13 Maximal bounding box
	14.4.14 Maximum unaccented height
	14.4.15 Maximum unaccented depth
	14.4.16 Panose-1 number
	14.4.17 Range of Unicode characters
	14.4.18 Top Baseline
	14.4.19 Vertical stem width
	14.4.20 Vertical stroke angle

	14.5 Font matching algorithm
	14.5.1 Examples of font matching

	15 Text
	15.1 Indentation: the 'text-indent' property
	15.2 Alignment: the 'alignment' property
	15.3 Decoration
	15.3.1 Underlining, over lining, striking, and blinking: the 'text-decoration' property
	15.3.2 Text shadows: the 'text-shadow' property

	15.4 Letter and word spacing: the 'letter-spacing' and 'word-spacing' properties
	15.5 Case
	15.5.1 Capitalization: the 'text-transform' property
	15.5.2 Special first letter/first line

	15.6 White space: the 'white-space' property
	15.7 Generated text
	15.8 Automatic numbering
	15.9 Text in HTML
	15.9.1 Forcing a line break

	16 Lists
	16.1 Visual formatting of lists
	16.1.1 List properties: 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style'

	17 Tables
	17.1 Table layout
	17.1.1 Row and column properties: 'column-span', and 'row-span'

	17.2 Computing widths and heights
	17.3 Placement of the borders
	17.4 Conflict resolution for borders
	17.5 Properties for columns and rows
	17.6 Vertical alignment of cells in a row
	17.7 Horizontal alignment of cells in a column
	17.8 Table captions: the 'caption-side' property
	17.9 Generating speech: the 'speak-header-cell' property
	17.10 Table implementation notes

	18 User interface
	18.1 Cursors: the 'cursor' property
	18.2 User preferences for colors
	18.3 Other rendering issues that depend on user agents
	18.3.1 Magnification

	19 Aural style sheets
	19.1 Aural cascading style sheet properties
	19.1.1 Volume properties: 'volume'
	19.1.2 Speaking properties: 'speak'
	19.1.3 Pause properties: 'pause-before', 'pause-after', and 'pause'
	19.1.4 Cue properties: 'cue-before', 'cue-after', and 'cue'
	19.1.5 Mixing properties: 'play-during'
	19.1.6 Spatial properties: 'azimuth' and 'elevation'
	19.1.7 Voice characteristic properties: 'speech-rate', 'voice-family', 'pitch', 'pitch-range', 'stress', 'richness', 'speak-punctuation', 'speak-date', 'speak-numeral', and 'speak-time'-Appendix A: A sample style sheet for HTML 4.0˛Appendix B: Changes from CSS10Appendix C: Implementation and performance notes
C.1 Colors�C.1.1 Gamma Correction	C.2 Fonts˝C.2.1 Glossary of font terms�C.2.2 Font retrieval˜Appendix D: The grammar of CSS2.E Appendix E: Aids to Web Fonts implementation E.1 Meaning of the Panose Digits(E.2 Deducing Unicode Ranges for TrueType
References˘1.1 Normative referencesˆ1.2 Informative references�Index/: @ A B C D E F G H I L M N O P R S T U V W X Z�:�@�A�B�C�D�E�F�G�H�I�L�M�N�O�P�R�S�T�U�V�W�X�Z

	Appendix A: A sample style sheet for HTML 4.0
	Appendix B: Changes from CSS1
	Appendix C: Implementation and performance notes
	C.1 Colors
	C.1.1 Gamma Correction

	C.2 Fonts
	C.2.1 Glossary of font terms
	C.2.2 Font retrieval

	Appendix D: The grammar of CSS2
	E Appendix E: Aids to Web Fonts implementation
	E.1 Meaning of the Panose Digits
	E.2 Deducing Unicode Ranges for TrueType

	References
	1.1 Normative references
	1.2 Informative references

	Index
	: @ A B C D E F G H I L M N O P R S T U V W X Z
	:
	@
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

