Document Object Model (DOM) Level 3 Events Specification

W3C

I~

DocumentObject Model (DOM) Level 3 Events
Specification

Version 1.0

W3C Working Draft 23 August 2001

This version:
[http://mvww.w3.0org/TR/2001/WD-DOM-Level-3-Events-20010823
(PostScripfile| ,[PDFfile|,[plaintext, [ZIP file] ,|single HTML file)

Latest version:

[http://wvww.w3.org/TR/DOM-Level-3-Events

Previous version:

[http://mvww.w3.0org/TR/2001/WD-DOM-Level-3-Events-20010410

Editor:
Tom Pixley,Netscape Communications Corporation

[Copyright©2001Ww3d® (MIT}[I[NRIA] [Keid), All Rights Reserved. W3lEability] frademarlfdocument
uséandsoftwarelicensingrulesapply.

Abstract

This specification defines the Document Object Model Events Level 3, a platform- and language-neutral
interface that allows programs and scripts to dynamically access and update the content, structure and
style of documents. The Document Object Model Events Level 3 builds on the Document Object Model
Events LevePD.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may
super sede this document. The latest status of this document seriesis maintained at the W3C.

This document is an early release of the Document Object Model Level 3 Bpeaification.

This is a Working Draft for review by W3C members and other intergstes.

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010410/
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010823/DOM3-Events.html
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010823/DOM3-Events.zip
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010823/DOM3-Events.txt
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010823/DOM3-Events.pdf
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010823/DOM3-Events.ps
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010823
http://www.w3.org/

Table of contents

It is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to use W3C Working Drafts as reference material or to cite them as other than "work in
progress”. This is work in progress and does not imply endorsement by, or the consensus of, either W3C
or members of the DOM Workin@roup.

Comments on this document are invited and are to be sent to the public maiinvgwistom@w3.org
An archive is available fttp:/lists.w3.org/Archives/Public/www-dom/

This document has been produced as part :MMBE DOM Activity] The authors of this document are
the DOM Working Groupmembers.

A list of[current W3C Recommendations and other techdicalimentsan be found at
http://www.w3.0rg/TR.

Table of contents

|[Expanded Table &€ontents3
|CopyrightNoticee 5
[1. Document Object Mod&lvents9
[Appendix A:Changels S A
[Appendix B: IDL Definitong 45
|Appendix C: Java Lanquadendind B
[Appendix D: ECMA Script Languagéndind 57

http://www.w3.org/TR/
http://www.w3.org/DOM/Activity.html
http://lists.w3.org/Archives/Public/www-dom/

Expanded Table of Contents

Expanded Table of Contents

|[Expanded Table dEontentp

|[CopyrightNoticq .
[W3C Document Copyrlqht Notlce amntensda
[W3C Software Copyright Notice argdcensé

|1. Document Object Mod@&vent$.)
[1.1. Overview of the DOM Level 3 Evehtodel
[1.1.1.Terminology
[1.2. Description of everitow| .
[1.2.1. Basic everitow|
[1.2.2. Eventapturg .
|1.2.3. Evenbubblind
[1.2.4. Eventancelatioh .
[1.3. Event listeneregistratioh . .
|1.3.1. Event registrationterfacep.
[1.3.2. EventListengGrouping
[1.3.3. Interaction with HTML 4.0 evehi;tenerh
|1.4. Eveninterface .
[1.5. DocumentEvenhterface .
[1.6. Event moduléefinitiong .
|1.6.1. User Interface evetypes
[1.6.2. Mouse everiypes .
[1.6.3. Textevents
|1.6.4. Mutation evernypes
[1.6.5. HTML eventypes .

1.7.1ssuep
[Appendix A:Changels

[A.1. Changes between DOM LeveI 2 Events and DOM Le\Eeléhtis

[A.1.1. Changes to DOM Level 2 Evemiserfacep
[A.1.2. Newlinterfacep

[Appendix B: IDL Definitionsg

[Appendix C: Java Languadgnding

IAppendix D: ECMA Script Languadginding

:

S :

[1. Normatlvereferencels .
Inde

o v oW

© © ©

10
10
10
11
11
12
12
15
18
18
21
22
22
24
28
34
38
40

43
43
43
43
45
51
57
65
67
67
69

Expanded Table of Contents

Copyright Notice

Copyright Notice

Copyright © 2001[World Wide Web Consortium] (Massachusetts Institute ofTechnology [Institut]
[National de Recherche en Informatique et eAutomatique] [Keio University). All Rights Reserved.

This document is published under fiM8C Document Copyright Notice alhttensg[p.5] . The bindings

within this document are published under[ii@C Software Copyright Notice amdcens¢[p.6] . The

software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no longer be
'w3c.org’; in the case of the Java language binding, the package names can no longer be in the 'org.w3c’
package.

W3C Document Copyright Notice andLicense

Note: This section is a copy of the W3C Document Notice and License and could be found at
|http://www.w3.org/Consortium/Legal/copyright-documents-1999p405

Copyright © 1994-2001World Wide Web Consortium] (Massachusetts Institute ofTechnology,
[Institut National de Recherche en Informatique et erAutomatique} [Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
[SoftwareNoticg By using and/or copying this document, or the W3C document from which this

statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms andonditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following éh.L copies of the document, or portions thereof, thatusmu

1. Alink or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn't exist, a notice of the form:

"Copyright © [$date-of-documern/orld Wide WebConsortium (Massachusetts Institute jof
[Technolog)/[institut National de Recherche en Informatique eAetomatiquéKeio University).

All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)
3. If it exists, the STATUS of the W3@ocument.

When space permits, inclusion of the full text of tRBTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any poetieaf.

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/

W3C Software Copyright Notice and License

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented ifGbpyrightFAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS 1S," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHERRIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTBHEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyridhlders.

W3C Software Copyright Notice andLicense

Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
[http:/iwvww.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2001World Wide Web Consortium] (Massachusetts Institute ofTechnology
[Institut National de Recherche en Informatique et erAutomatique} [Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terneemditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-softwar§Vorld Wide WebConsortiunh (Massachusetts Institute Jof
[Technologl/[institut National de Recherche en Informatique eAetomatiquéKeio University).

All Rights Reserved. http://www.w3.org/Consortium/Legal/."

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

W3C Software Copyright Notice and License

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We
recommend you provide URIs to the location from which the coderiged.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHERRIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyhghtters.

W3C Software Copyright Notice and License

1. Document Object Model Events

1. Document Object ModelEvents

Editor:
Tom Pixley, Netscape Communicatid@srporation

1.1.Overview of the DOM Level 3 EventModel

The DOM Level 3 Event Model is designed with two main goals. The first goal is the design of a generic
event system which allows registration of event handlers, describes event flow through a tree structure,
and provides basic contextual information for each event. Additionally, the specification will provide
standard modules of events for user interface control and document mutation notifications, including
defined contextual information for each of these eveodules.

The second goal of the event model is to provide a common subset of the current event systems used in
[DOM Level Q[p.65] browsers. This is intended to foster interoperability of existing scripts and content. It
is not expected that this goal will be met with full backwards compatibility. However, the specification
attempts to achieve this whpossible.

The following sections of the Event Model specification define both the specification for the DOM Event
Model and a number of conformant event modules designed for use within the model. The Event Model
consists of the two sections on event propagation and event listener registration and theteEfzee.

A DOM application may use theasFeat ur e(f eat ure, versi on) method of the

DOM npl enent at i on interface with parameter values "Events" and "3.0" (respectively) to determine
whether or not the event module is supported by the implementation. In order to fully support this module,
an implementation must also support the "Core" feature defined in the DOM Level 3 Core specification
[[DOM Level 3Cord. Please, refer to additional information about conformance in the DOM Level 3 Core
specification|[DOM Level 3Corq.

Each event module describes its own feature string in the event nhietinge

1.1.1.Terminology

Ul events
User interface events. These events are generated by user interaction through an external device
(mouse, keyboard, etc.)

Ul Logical events
Device independent user interface events such as focus change messages or element triggering
notifications.

Mutation events
Events caused by any action which modifies the structure of the document.

Capturing
The process by which an event can be handled by one of the event'’s [arcgtarg[p.65] before
being handled by the event'’s target.

1.2. Description of event flow

Bubbling
The process by which an event propagates upward throgyicéstord [p.65] after being handled by
the event’s target.

Cancelable
A designation for events which indicates that upon handling the event the client may choose to
prevent the DOM implementation from processing any default action associated veiterihe

1.2. Description of eventflow

Event flow is the process through which the an event originates from the DOM implementation and is
passed into the Document Object Model. The methods of event capture and event bubbling, along with
various event listener registration techniques, allow the event to then be handled in a number of ways. It
can be handled locally at tEent Tar get level or centrally from aEvent Tar get][p.12] higher in

the documerntree.

1.2.1.Basic evenfflow

Each event has gvent Tar get |[p.12] toward which the event is directed by the DOM

implementation. ThiEvent Tar get]is specified in thfgvent][p.18] 's t ar get attribute. When the

event reaches the target, any event listeners registered[BnaheTar get]are triggered. Although all

[Event Li st ener s|[p.14] on thgEvent Tar get |are guaranteed to be triggered by any event which is
received by thaEvent Tar get , no specification is made as to the order in which they will receive the
event with regards to the othievent Li st ener s|[p.14] on thgEvent Tar get | If neither event

capture or event bubbling are in use for that particular event, the event flow process will complete after all
listeners have been triggered. If event capture or event bubbling is in use, the event flow will be modified
as described in the sectiopslow.

Any exceptions thrown inside flEvent Li st ener][p.14] will not stop propagation of the event. It will
continue processing any additiofialent Li st ener]in the describethanner.

It is expected that actions taken[Byent Li st ener][p.14] s may cause additional events to fire.
Additional events should be handled in a synchronous manner and may cause reentrancy into the event
model.

1.2.2.Event capture

Event capture is the process by which an EventListener registere¢hocesor|[p.65] of the event’'s

target can intercept events of a given type before they are received by the event’s target. Capture operates
from the top of the tree, generally thecunent , downward, making it the symmetrical opposite of

bubbling which is described below. The chaijfeeent Tar get |[p.12] s from the top of the tree to the

event's target is determined before the initial dispatch of the event. If modifications occur to the tree

during event processing, event flow will proceed based on the initial statete#ehe

An|Event Li st ener|[p.14] being registered on @vent Tar get [[p.12] may choose to have that
[Event Li st ener|capture events by specifying theeCapt ur e parameter of the
addEvent Li st ener method to bé r ue. Thereafter, when an event of the given type is dispatched

10

1.2.3. Event bubbling

toward ddescendant] [p.65] of the capturing object, the event will trigger any capturing event listeners of
the appropriate type which exist in the direct line between the top of the document and the event’s target.
This downward propagation continues until the event's target is reached. A caiengLi st ener]

will not be triggered by events dispatched directly tgghent Tar get Jupon which it igegistered.

If the capturingEvent Li st ener|[p.14] wishes to prevent further processing of the event from
occurring it may call thet opPr ogagat i on method of thfEvent][p.18] interface. This will prevent
further dispatch of the event, although additiggagént Li St ener s|registered at the same hierarchy
level will still receive the event. Once an evessttopPr opagat i on method has been called, further
calls to that method have no additional effect. If no additional capturers exist ap&#r opagat i on
has not been called, the event triggers the approfivaiat Li st ener s|on the targeitself.

Although event capture is similar to the delegation based event model in which all interested parties
register their listeners directly on the target about which they wish to receive notifications, it is different in
two important respects. First, event capture only allows interception of events which are targeted at
[descendantd [p.65] of the capturinfEvent Tar get][p.12] . It does not allow interception of events

targeted to the capturefgcestord[p.65] , its[siblingd [p.65] , or its sibling’ddescendantd[p.65)] .

Secondly, event capture is not specified for a s{Rglent Tar get] it is specified for a specific type of

event. Once specified, event capture intercepts all events of the specified type targeted toward any of the

capturer'ydescendantd [p.65] .
1.2.3.Event bubbling

Events which are designated as bubbling will initially proceed with the same event flow as non-bubbling
events. The event is dispatched to its tfEyetnt Tar get][p.12] and any event listeners found there are
triggered. Bubbling events will then trigger any additional event listeners found by following the

[Event Tar get [s parent chain upward, checking for any event listeners registered on each successive
[Event Tar get | This upward propagation will continue up to and includingdbeunent .

[Event Li st ener|[p.14] s registered as capturers will not be triggered during this phase. The chain of
[Event Tar get s from the event target to the top of the tree is determined before the initial dispatch of the
event. If modifications occur to the tree during event processing, event flow will proceed based on the
initial state of theree.

Any event handler may choose to prevent further event propagation by callgtgahBr opagat i on
method of th{Event][p.18] interface. If anfEvent Li st ener][p.14] calls this method, all additional

[Event Li st ener s]on the currerfEvent Tar get][p.12] will be triggered but bubbling will cease at
that level. Only one call tet opPr opagat i on is required to prevent furthbubbling.

1.2.4.Event cancelation

Some events are specified as cancelable. For these events, the DOM implementation generally has a
default action associated with the event. An example of this is a hyperlink in a web browser. When the
user clicks on the hyperlink the default action is generally to active that hyperlink. Before processing these
events, the implementation must check for event listeners registered to receive the event and dispatch the
event to those listeners. These listeners then have the option of canceling the implementation’s default
action or allowing the default action to proceed. In the case of the hyperlink in the browser, canceling the
action would have the result of not activating higperlink.

11

1.3. Event listener registration

Cancelation is accomplished by calling[(aeent][p.18] s pr event Def aul t method. If one or more
[Event Li st ener s|[p.14] call pr event Def aul t during any phase of event flow the default action
will be canceled.

Different implementations will specify their own default actions, if any, associated with each event. The
DOM does not attempt to specify theszions.

1.3.Event listenerregistration

1.3.1.Event registration interfaces
Interface EventTarget (introduced irDOM Level 2)

TheEvent Tar get interface is implemented by dbdes in an implementation which supports

the DOM Event Model. Therefore, this interface can be obtained by using binding-specific casting
methods on an instance of tNede interface. The interface allows registration and removal of
[Event Li st ener s|[p.14] on anEvent Tar get and dispatch of events to thatent Tar get .

IDL Definition

/1 Introduced in DOM Level 2:
interface Event Target {
voi d addEvent Li stener (in DOVBtring type,
in EventlListener |istener,
i n bool ean useCapture);
voi d renmoveEvent Li stener (in DOVString type,
in EventlListener |istener,
i n bool ean useCapture);
bool ean di spat chEvent (i n Event evt)

rai ses(Event Excepti on);
/! Introduced in DOM Level 3:

readonly attribute EventListenerList eventlListeners;

}s

Attributes

event Li st ener s of typgEvent Li st ener Li st|[p.14] , readonly, introduced iBOM
Level 3

AlEvent Li st ener Li st|[p.14] that contains all event listeners on ttairget.
Methods
addEvent Li st ener
This method allows the registration of event listeners on the event target. If an
[Event Li st ener|[p.14] is added to akvent Tar get while it is processing an event,
the[Event Li st ener]will not be triggered by the current actions but may be triggered
during a later stage of event flow, such as the bubbliage.
If multiple identicalEvent Li st ener|[p.14] s are registered on the same
Event Tar get with the same parameters the duplicate instances are discarded. They do
not cause thEvent Li st ener]to be called twice and since they are discarded they do
not need to be removed with themoveEvent Li st ener method.
Parameters

12

1.3.1. Event registration interfaces

t ype of typeDOVSt ri ng
The event type for which the userégistering

| i stener of typeEvent Li st ener|[p.14]
Thel i st ener parameter takes an interface implemented by the user which contains
the methods to be called when the eeaaurs.

useCapt ur e of typebool ean
If true, useCapt ur e indicates that the user wishes to initiate capture. After initiating
capture, all events of the specified type will be dispatched to the registered
[Event Li st ener|before being dispatched to aByent Tar get s beneath them in
the tree. Events which are bubbling upward through the tree will not trigger an
[Event Li st ener|designated to usmpture.

No Return Value

No Exceptions

di spat chEvent

This method allows the dispatch of events into the implementations event model. Events

dispatched in this manner will have the same capturing and bubbling behavior as events

dispatched directly by the implementation. The target of the eventis @ Tar get

on whichdi spat chEvent is called.

Parameters

evt of typefEvent][p.1§]
Specifies the event type, behavior, and contextual information to be used in processing
theevent.

Return Value

bool ean The return value adi spat chEvent indicates whether any of the
listeners which handled the event calfedevent Def aul t . If
pr event Def aul t was called the value is false, else the valuris

Exceptions

[Event Exception] UNSPECIFIED_EVENT_TYPE_ERR: Raised if {Reent]
[p.20] [p.18] 's type was not specified by initializing the event before
di spat chEvent was called. Specification of t{i/ent [s
type asul | or an empty string will also trigger this
exception.

renoveEvent Li st ener
This method allows the removal of event listeners from the event target. If an
[Event Li st ener|[p.14] is removed from akvent Tar get while it is processing an
event, it will not be triggered by the current actigidsent Li st ener s can never be
invoked after beingemoved.
Callingr enoveEvent Li st ener with arguments which do not identify any currently

registere(Event Li st ener|[p.14] on theEvent Tar get has no effect.
Parameters

13

1.3.1. Event registration interfaces

t ype of typeDOVSt ri ng

Specifies the event type of figent Li st ener][p.14] beingremoved.

li stener of typeEvent L st ener][p.14]
The[Event Li st ener]parameter indicates tfi&ent Li st ener to beremoved.

useCapt ur e of typebool ean
Specifies whether thigvent Li st ener |being removed was registered as a capturing
listener or not. If a listener was registered twice, one with capture and one without,
each must be removed separately. Removal of a capturing listener does not affect a
non-capturing version of the same listener, and wéesa.

No Return Value

No Exceptions

Interface EventListener (introduced irDOM Level 2)

TheEvent Li st ener interface is the primary method for handling events. Users implement the
Event Li st ener interface and register their listener orfeent Tar get |[p.12] using the
AddEvent Li st ener method. The users should also remove tBe@nt Li st ener from its
[Event Tar get |after they have completed using tistener.

When aNode is copied using thel oneNode method thé&event Li st ener s attached to the
sourceNode are not attached to the copisdde. If the user wishes the sarBeent Li st ener s to
be added to the newly created copy the user must addhenmlly.

When aNode is adopted using theedopt Node method thdevent Li st ener s attached to the
sourceNode stay attached to the adoptsalde.

IDL Definition

/'l Introduced in DOM Level 2:
interface EventListener {
voi d handl eEvent (in Event evt);

}s

Methods
handl eEvent
This method is called whenever an event occurs of the type for which the
Event Li st ener interface was registered.
Parameters

evt of typeEvent][p.18]
The[Event] contains contextual information about the event. It also contains the
st opPr opagat i on andpr event Def aul t methods which are used in
determining the event’s flow and defaadtition.
No Return Value
No Exceptions
Interface EventListenerList (introduced inrDOM Level 3)

TheEvent Li st ener Li st interface provides the abstraction of an ordered collection of event

listeners, without defining or constraining how this collection is implemented.
Event Li st ener Li st objects in the DOM aifevd [p.65] .

14

1.3.2. EventListener Grouping

The items in th&vent Li st ener Li st are accessible via an integral index, starting féfom

IDL Definition

/1 Introduced in DOM Level 3:
i nterface EventListenerlList {

Event Li st ener iten(in unsigned | ong index);
readonly attribute unsigned | ong | engt h;
b
Attributes

| engt h of typeunsi gnhed | ong, readonly
The number of event listeners in the list. The range of valid event listener indices is 0 to
| engt h- 1 inclusive.

Methods

item
Returns thé ndexth item in the collection. lf ndex is greater than or equal to the
number of event listeners in the list, this return$| .
Parameters
i ndex of typeunsi gned | ong

Index into thecollection.

Return Value

[Event Li st ener| The event listener at thendexth position in the
[p.14] Event Li st ener Li st, ornul | if that is not a valid
index.

No Exceptions

1.3.2.EventListener Grouping

EventListener grouping is intended to allow grougBwént Li st ener][p.14] s to be registered which

will each have independent event flow within them which is not affected by changes to event flow in any
other group. This may be used to control events separately in multiple views on a document. It may also
be used to develop an application which uses events without the problem of possible interference by other
applications running within the sardecument.

The new interfaces added for EventListener grouping should not interfere with the interfaces established
in the Level 2 DOM Events module. For purposes of interoperability between the Level 2 DOM Event
Model and the new interfaces added in Level 3, the implementation can be assumed to define a default
[Event G oup][p.15] . This defaulEvent G ouplis implicitly used in the registration of all

[Event Li st ener][p.14] s registered via methods which do not specifffaant G oup]|

(addEvent Li st ener, renoveEvent Li st ener).

Interface EventGroup (introduced irDOM Level 3)

15

1.3.2. EventListener Grouping

The EventGroup interface functions primarily as a placeholder for separating the event flows when
there are multiple groups of listeners for a D@BE.

[Event Li st ener][p.14] s can be registered without Bment Gr oup using the existing

[Event Tar get |[p.12] interface, or with an associatBdent G- oup using the new

[Event Tar get G oup|[p.16] interface. When an event is dispatched, it is dispatched independently
to eachEvent G oup. In particular, thest opPr opagat i on method of thfEvent][p.18]

interface only stops propagation within[|anent Li st ener [s associate@Event G oup.

IDL Definition

/1 Introduced in DOM Level 3:
interface Event G oup {
bool ean i sSameEvent G oup(in Event G oup other);

b

Methods
i sSaneEvent Group
This method checks if the suppliedent Gr oup is the same as tli®/ent G- oup upon
which the method is called.
Parameters
ot her of typefEvent G oup][p.15]
TheEvent Gr oup with which to checlequality.
Return Value

bool ean Returns true if th&vent G oups are equal, else returfadse.

No Exceptions
Interface EventTargetGroup (introduced irDOM Level 3)

The EventTargetGroup interface is implemented by the same set of objects that implement the

[Event Tar get |[p.12] interface, namely giEvent Tar get s in in implementation which supports
the Event model and the EventGrayiension.

IDL Definition

/1 Introduced in DOM Level 3:
interface Event Target G oup {
voi d addEvent Li stener(in DOVString type,
in EventLi stener |istener,
in bool ean useCapture,
in Event Group evt G oup);
voi d renmoveEvent Li stener (in DOVString type,
in EventListener listener,
i n bool ean useCapture,
in Event Group evt G oup);

16

1.3.2. EventListener Grouping

Methods
addEvent Li st ener
This method is equivalent to teeldEvent Li st ener method of th§Event Tar get |
[p.12] interface, with the exception of the addadent Gr oup parameter. The listener is
registered with thifEvent G oup|[p.15] associated.
Parameters
t ype of typeDOVSt ri ng
| i stener of typeEvent Li st ener|[p.14]
useCapt ur e of typebool ean
evt G oup of typeEvent G oup][p.15]
The[Event G oup]to associate with thestener.

No Return Value
No Exceptions
renoveEvent Li st ener
This method is equivalent to thenoveEvent Li st ener method of the
[Event Tar get|[p.12] interface, with the exception of the addadent Gr oup
parameter. The listener registered with [p.15] associated is removed.
Parameters
t ype of typeDOVSt ri ng
| i stener of typeEvent Li st ener|[p.14]
useCapt ur e of typebool ean
evt G oup of typeEvent G oup][p.15]
The[Event G oup]to associate with thestener.

No Return Value
No Exceptions
Interface DocumentEventGroup (introduced irDOM Level 3)

TheDocunent Event Gr oup interface provides a mechanism by which the user can create an

[p.15] of a type supported by the implementation. It is expected that the
[Docunent Event|[p.2]] interface will be implemented on the same object which implements the

Docunent interface in an implementation which supportgEeent G oupgextension.

IDL Definition

/1 Introduced in DOM Level 3:
i nterface Docunent Event G oup {
Event G oup creat eEvent G oup();

b

Methods
creat eEvent G oup
This method creates a new EventGroup for use in the addEventListener and
removeEventListener methods of the EventTargetGroup interface.
Return Value

Event G oup|[p.15] The newly createffvent G oup

17

1.4. Event interface

No Parameters
No Exceptions

1.3.3.Interaction with HTML 4.0 event listeners

In HTML 4.0, event listeners were specified as attributes of an element. As such, registration of a second
event listener of the same type would replace the first listener. The DOM Event Model allows registration
of multiple event listeners on a sinffieent Tar get][p.12] . To achieve this, event listeners are no

longer stored as attributalues.

In order to achieve compatibility with HTML 4.0, implementors may view the setting of attributes which
represent event handlers as the creation and registratiorEgtan Li st ener on thgEvent Tar get |

[p.12] . The value ofiseCapt ur e defaults td al se. ThisEvent Li st ener|[p.14] behaves in the

same manner as any otfi@rent Li st ener s|which may be registered on {Reent Tar get] If the

attribute representing the event listener is changed, this may be viewed as the removal of the previously
registere(Event Li st ener|and the registration of a new one. No technique is provided to allow HTML
4.0 event listeners access to the context information defined foeeanh

1.4.Eventinterface
Interface Event (introduced irDOM Level 2)

TheEvent interface is used to provide contextual information about an event to the handler
processing the event. An object which implement&ihent interface is generally passed as the

first parameter to an event handler. More specific context information is passed to event handlers by
deriving additional interfaces froEvent which contain information directly relating to the type of
event they accompany. These derived interfaces are also implemented by the object passed to the
eventlistener.

IDL Definition

// Introduced in DOM Level 2:
interface Event {

/1 PhaseType

const unsigned short CAPTURI NG_PHASE = 1;
const unsigned short AT_TARGET = 2;
const unsigned short BUBBLI NG_PHASE = 3;
readonly attribute DOVString type;

readonly attribute Event Target target;

readonly attribute Event Target current Tar get;

readonly attribute unsigned short event Phase;

readonly attribute bool ean bubbl es;

readonly attribute bool ean cancel abl e;

readonly attribute DOMIi nmeStanp ti meSt anp;

voi d st opPropagation();

voi d prevent Def aul t () ;

18

1.4. Event interface

voi d initEvent(in DOVString event TypeArg,
i n bool ean canBubbl eArg,
i n bool ean cancel abl eArg);

b
Definition group PhaseType

An integer indicating which phase of event flow is bgingcessed.

Defined Constants
AT _TARGET

The event is currently being evaluated at the tggent Tar get |[p.12] .
BUBBLI NG_PHASE

The current event phase is the bubbling phase.
CAPTURI NG_PHASE

The current event phase is the captuphgse.

Attributes

bubbl es of typebool ean, readonly
Used to indicate whether or not an event is a bubbling event. If the event can bubble the
value is true, else the valuefase.

cancel abl e of typebool ean, readonly
Used to indicate whether or not an event can have its default action prevented. If the
default action can be prevented the value is true, else the véhlseis

current Tar get of typeEvent Tar get|[p.12] , readonly
Used to indicate t{Event Tar get][p.12] whosdEvent Li st ener s|[p.14] are
currently being processed. This is particularly useful during capturingubiding.

event Phase of typeunsi gned short, readonly
Used to indicate which phase of event flow is currently beuajuated.

t ar get of typgEvent Tar get|[p.12] , readonly
Used to indicate tfEvent Tar get][p.12] to which the event was originaltlispatched.

ti meSt anp of typeDOMIi nmeSt anp, readonly
Used to specify the time (in milliseconds relative to the epoch) at which the event was
created. Due to the fact that some systems may not provide this information the value of
ti meSt anp may be not available for all events. When not available, a value of 0 will be

returned. Examples of epoch time are the time of the system start or 0:0:0 UTC 1st January
1970.

t ype of typeDOVSt ri ng, readonly

The name of the event (case-insensitive). The name musfXidlanamg [p.65] .
Methods

i ni t Event

Thei ni t Event method is used to initialize the value offarent created through the
[Docunent Event|[p.2]] interface. This method may only be called beforeBhent has
been dispatched via thik spat chEvent method, though it may be called multiple times
during that phase if necessary. If called multiple times the final invocation takes
precedence. If called from a subclas&wént interface only the values specified in the

i ni t Event method are modified, all other attributes are left unchanged.
Parameters

19

1.4. Event interface

event TypeAr g of typeDOVSt ri ng
Specifies the event type. This type may be any event type currently defined in this
specification or a new event type.. The string must &\ namg [p.65)] .
Any new event type must not begin with any upper, lower, or mixed case version of
the string "DOM". This prefix is reserved for future DOM event sets. It is also
strongly recommended that third parties adding their own events use their own prefix
to avoid confusion and lessen the probability of conflicts with otheravents.
canBubbl eAr g of typebool ean
Specifies whether or not the event caroble.
cancel abl eAr g of typebool ean
Specifies whether or not the event’s default action cgréneented.
No Return Value
No Exceptions
pr event Def aul t
If an event is cancelable, the event Def aul t method is used to signify that the event
is to be canceled, meaning any default action normally taken by the implementation as a
result of the event will not occur. If, during any stage of event flow, the
pr event Def aul t method is called the event is canceled. Any default action associated
with the event will not occur. Calling this method for a non-cancelable event has no effect.
Oncepr event Def aul t has been called it will remain in effect throughout the remainder
of the event’s propagation. This method may be used during any stage of event flow.
No Parameters
No Return Value
No Exceptions
st opPropagati on
Thest opPr opagat i on method is used prevent further propagation of an event during
event flow. If this method is called by gdiyent Li st ener][p.14] the event will cease
propagating through the tree. The event will complete dispatch to all listeners on the
currenfEvent Tar get |[p.12] before event flow stops. This method may be used during
any stage of event flow.
No Parameters
No Return Value
No Exceptions
Exception EventException introduced irDOM Level 2

Event operations may throw [Event Except i on|[p.20] as specified in their methatkscriptions.

IDL Definition

// Introduced in DOM Level 2:
exception Event Exception {
unsi gned short code;
b
/1 Event Excepti onCode
const unsigned short UNSPECI FI ED_EVENT_TYPE ERR = 0;

20

1.5. DocumentEvent interface

Definition group EventExceptionCode
An integer indicating the type of errgenerated.

Defined Constants
UNSPECI FI ED_EVENT_TYPE_ERR
If the[Event][p.18] s type was not specified by initializing the event before the
method was called. Specification of the Event's typewdd or an empty string will
also trigger thigxception.

1.5. DocumentEventinterface
Interface DocumentEvent (introduced irDOM Level 2)

TheDocunent Event interface provides a mechanism by which the user can create an Event of a
type supported by the implementation. It is expected thdddbenent Event interface will be
implemented on the same object which implement®dwunent interface in an implementation
which supports the Eventodel.

IDL Definition

/1 Introduced in DOM Level 2:
i nterface Docunent Event {
Event createEvent (in DOMString event Type)
rai ses(DOVExcepti on);
b

Methods
creat eEvent

Parameters

event Type of typeDOVSt ri ng
Theevent Type parameter specifies the typg@fent][p.18] interface to be
created. If thfEvent]interface specified is supported by the implementation this
method will return a nefigvent] of the interface type requested. If is to be
dispatched via thdi spat chEvent method the appropriate event init method must
be called after creation in order to initialize flBeent]s values. As an example, a
user wishing to synthesize some kinfUbEvent][p.22] would callcr eat eEvent
with the parameter "UIEvents". Thei t Ul Event method could then be called on
the newly createfll Event]to set the specific type of UIEvent to be dispatched and
set its contexinformation.
Thecr eat eEvent method is used in creatifilyent][p.18] s when it is either
inconvenient or unnecessary for the user to credi ant |themselves. In cases
where the implementation providslent]is insufficient, users may supply their own
Event |implementations for use with tlik spat chEvent method.

Return Value

[Event][p.18] The newly createivent]

21

1.6. Event module definitions

Exceptions

DOVExcepti on NOT_SUPPORTED_ERR: Raised if the implementation does not
support the type [p.18] interfacerequested

1.6. Event moduledefinitions

The DOM Level 2 Event Model allows a DOM implementation to support multiple modules of events.

The model has been designed to allow addition of new event modules as is required. The DOM will not
attempt to define all possible events. For purposes of interoperability, the DOM will define a module of
user interface events including lower level device dependent events, a module of Ul logical events, and a
module of document mutation events. Any new event types defined by third parties must not begin with
any upper, lower, or mixed case version of the string "DOM". This prefix is reserved for future DOM
event modules. It is also strongly recommended that third parties adding their own events use their own
prefix to avoid confusion and lessen the probability of conflicts with otherevewts.

1.6.1.User Interface eventypes

The User Interface event module is composed of events listed in HTML 4.0 and additional events which

are supported IDOM Level Q[p.65] browsers.

A DOM application may use theasFeat ur e(f eat ure, versi on) method of the

DOM npl enent at i on interface with parameter values "UlEvents" and "3.0" (respectively) to

determine whether or not the User Interface event module is supported by the implementation. In order to
fully support this module, an implementation must also support the "Events" feature defined in this
specification and the "Views" feature defined in the DOM Level 2 Views specifidiioM Level 2]

[Viewd. Please, refer to additional information about conformance in the DOM Level 3 Core specification
[DOM Level 3Cord.

Note: To create an instance of [p.22] interface, use the feature string "UIEvents" as the
value of the input parameter used with theeat eEvent method of thdocunent Event |[p.21]
interface.

Interface Ul Event (introduced irDOM Level 2)

TheUl Event interface provides specific contextual information associated with User Interface
events.

IDL Definition

22

1.6.1. User Interface event types

/1 Introduced in DOM Level 2:
interface U Event : Event {
readonly attribute views:: AbstractView view,
readonly attribute |ong detail;
voi d initU Event(in DOVString typeArg,
i n bool ean canBubbl eArg,
i n bool ean cancel abl eArg,
in views::AbstractView vi ewArg,
in long detail Arg);
3

Attributes
det ai | of typel ong, readonly
Specifies some detail information about[fhent|[p.18] , depending on the type efent.
vi ewof typevi ews: : Abstr act Vi ew, readonly
Thevi ew attribute identifies thébst r act Vi ew from which the event wagenerated.
Methods
i nitU Event
Thei ni t Ul Event method is used to initialize the value dilaEvent created through
thelDocunent Event [[p.2]] interface. This method may only be called before the
Ul Event has been dispatched via tiespat chEvent method, though it may be called
multiple times during that phase if necessary. If called multiple times, the final invocation
takes precedence.
Parameters
t ypeAr g of typeDOVSL ri ng
Specifies the evenype.
canBubbl eAr g of typebool ean
Specifies whether or not the event ¢aibble.
cancel abl eAr g of typebool ean
Specifies whether or not the event’s default action ceprddeented.
vi ewAr g of typevi ews: : Abstract Vi ew
Specifies thfEvent|[p.18] 's Abst r act Vi ew.
det ai | Ar g of typel ong
Specifies thfEvent|[p.18] ’s detail.
No Return Value
No Exceptions

The different types of such events that can oacer

DOMFocusin

The DOMFocuslin event occurs when@arent Tar get |[p.12] receives focus, for instance via a
pointing device being moved onto an element or by tabbing navigation to the element. Unlike the
HTML event focus, DOMFocuslIn can be applied to any focugiabént Tar get }, not just FORM
controls.

® Bubbles: Yes

e Cancelable: No

® Context Info:None

23

1.6.2. Mouse event types

DOMFocusOut
The DOMFocusOut event occurs whegBwent Tar get][p.12] loses focus, for instance via a
pointing device being moved out of an element or by tabbing navigation out of the element. Unlike

the HTML event blur, DOMFocusOut can be applied to any focufaldat Tar get|] not just
FORM controls.

® Bubbles: Yes

e Cancelable: No

e Context Info:None

DOMActivate

The activate event occurs when an element is activated, for instance, thru a mouse click or a
keypress. A numerical argument is provided to give an indication of the type of activation that
occurs: 1 for a simple activation (e.g. a simple click or Enter), 2 for hyperactivation (for instance a
double click or Shift Enter).

® Bubbles: Yes
® Cancelable: Yes
® Context Info: detail (the numericahlue)

1.6.2.Mouse eventypes

The Mouse event module is composed of events listed in HTML 4.0 and additional events which are

supported ifDOM Level Q[p.65] browsers. This event module is specifically designed for use with mouse
inputdevices.

A DOM application may use theasFeat ur e(f eat ure, versi on) method of the

DOM npl enent at i on interface with parameter values "MouseEvents" and "3.0" (respectively) to
determine whether or not the Mouse event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "UIEvents" feature defined in this
specification. Please, refer to additional information about conformance in the DOM Level 3 Core
specification|[DOM Level 3Corq.

Note: To create an instance of [p.24] interface, use the feature string "MouseEvents" as
the value of the input parameter used withdheat eEvent method of th{docunent Event |[p.2]]
interface.

Interface MouseEvent (introduced irDOM Level 2)
TheMouseEvent interface provides specific contextual information associated with Mauesds.

Thedet ai | attribute inherited froful Event][p.22] indicates the number of times a mouse button

has been pressed and released over the same screen location during a user action. The attribute value
is 1 when the user begins this action and increments by 1 for each full sequence of pressing and
releasing. If the user moves the mouse between the mousedown and mouseup the value will be set to
0, indicating that no click ieccurring.

In the case of nested elements mouse events are always targeted at the most deeply nested element.

Ancestors of the targeted element may use bubbling to obtain notification of mouse events which
occur within its descendeatements.

24

1.6.2. Mouse event types

IDL Definition

/1 Introduced in DOM Level 2:
interface MouseEvent : U Event {

readonly attribute |ong screenX;
readonly attribute |ong screeny;
readonly attribute |ong clientX;
readonly attribute |ong clienty;
readonly attribute bool ean ctrl Key;
readonly attribute bool ean shi f t Key;
readonly attribute bool ean al t Key;
readonly attribute bool ean net akey;
readonly attribute unsigned short button;
readonly attribute Event Target rel at edTar get ;
voi d i ni t MouseEvent (in DOVString typeArg,
i n bool ean canBubbl eArg,
i n bool ean cancel abl eArg,
in views::AbstractVi ew vi ewAr g,
in long detail Arg,
in long screenXArg,
in long screenYArg,
in long clientXArg,
in long clientYArg,
in bool ean ctrl KeyArg,
in bool ean al t KeyArg,
in bool ean shiftKeyArg,
i n bool ean net akeyArg,
in unsigned short buttonArg,
in Event Target rel atedTarget Arg);
i
Attributes

al t Key of typebool ean, readonly
Used to indicate whether the ’alt’ key was depressed during the firing of the event. On
some platforms this key may map to an alternativenieaye.

but t on of typeunsi gned short, readonly
During mouse events caused by the depression or release of a mouséhtittam is
used to indicate which mouse button changed state. The valumas foon range from
zero to indicate the left button of the mouse, one to indicate the middle button if present,
and two to indicate the right button. For mice configured for left handed use in which the
button actions are reversed the values are instead read from figfht to

cl i ent X of typel ong, readonly
The horizontal coordinate at which the event occurred relative to the DOM
implementation’s clienarea.

cli entY of typel ong, readonly
The vertical coordinate at which the event occurred relative to the DOM implementation’s
clientarea.

ctrl Key of typebool ean, readonly
Used to indicate whether the ’ctrl’ key was depressed during the firing ef/ém.

nmet aKey of typebool ean, readonly
Used to indicate whether the 'meta’ key was depressed during the firing of the event. On
some platforms this key may map to an alternativeneaye.

25

1.6.2. Mouse event types

rel at edTar get of typeEvent Tar get|[p.12] , readonly
Used to identify a seconddByent Tar get][p.12] related to a Ul event. Currently this

attribute is used with the mouseover event to indicafgtleat Tar get]which the
pointing device exited and with the mouseout event to indicafigvtbet Tar get]which
the pointing devicentered.
scr eenX of typel ong, readonly
The horizontal coordinate at which the event occurred relative to the origin of the screen
coordinatesystem.
screenY of typel ong, readonly
The vertical coordinate at which the event occurred relative to the origin of the screen
coordinatesystem.
shi f t Key of typebool ean, readonly
Used to indicate whether the 'shift’ key was depressed during the firing evéme.
Methods
i ni t MouseEvent
Thei ni t MouseEvent method is used to initialize the value ditauseEvent created
through thgDocunent Event |[p.2]] interface. This method may only be called before the
MouseEvent has been dispatched via tiespat chEvent method, though it may be
called multiple times during that phase if necessary. If called multiple times, the final
invocation takes precedence.
Parameters
t ypeAr g of typeDOVBt ri ng
Specifies the evertype.
canBubbl eAr g of typebool ean
Specifies whether or not the event caroble.
cancel abl eAr g of typebool ean
Specifies whether or not the event's default action cgrdeented.
Vi ewAr g of typevi ews: : Abstract Vi ew
Specifies thfEvent][p.18] 's Abst r act Vi ew.
det ai | Ar g of typel ong
Specifies thfEvent][p.18] 's mouse clickcount.
scr eenXAr g of typel ong
Specifies thfEvent][p.18] s screen xcoordinate
screenYAr g of typel ong
Specifies thfEvent][p.18] s screen yoordinate
cl i ent XAr g of typel ong
Specifies thfEvent][p.18] 's client xcoordinate
cl i ent YAr g of typel ong
Specifies thfEvent][p.18] 's client ycoordinate
ctrl KeyAr g of typebool ean
Specifies whether or not control key was depressed durifvenet | [p.18] .
al t KeyAr g of typebool ean
Specifies whether or not alt key was depressed durifgveat][p.18] .
shi f t KeyAr g of typebool ean
Specifies whether or not shift key was depressed durifgvtbat | [p.18] .

26

1.6.2. Mouse event types

net aKeyAr g of typebool ean
Specifies whether or not meta key was depressed durifgy Bt | [p.18] .
but t onAr g of typeunsi gned short
Specifies thfEvent][p.18] 's mousebutton.
rel at edTar get Ar g of typeEvent Tar get |[p.12]
Specifies thfEvent][p.18] 's relatedEvent Tar get]
No Return Value
No Exceptions

The different types of Mouse events that can oacer

click
The click event occurs when the pointing device button is clicked over an element. A click is defined
as a mousedown and mouseup over the same screen location. The sequence of these events is:

nousedown
nouseup
click

If multiple clicks occur at the same screen location, the sequence repeats with éiié attribute
incrementing with each repetition. This event is valid for most elements.
® Bubbles: Yes
® Cancelable: Yes
® Context Info: screenX, screeny, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey, button,
detail,view
mousedown
The mousedown event occurs when the pointing device button is pressed over an element. This event
is valid for most elements.
® Bubbles: Yes
® Cancelable: Yes
e Context Info: screenX, screenY, clientX, clientY, altKey, ctriKey, shiftkey, metaKey, button,
detail,view
mouseup
The mouseup event occurs when the pointing device button is released over an element. This event is
valid for most elements.
® Bubbles: Yes
® Cancelable: Yes
® Context Info: screenX, screeny, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey, button,
detail,view
mouseover
The mouseover event occurs when the pointing device is moved onto an element. This event is valid

for most elements.
® Bubbles: Yes
® Cancelable: Yes
® Context Info: view, screenX, screenyY, clientX, clientY, altkey, ctriKey, shiftkey, metaKey,
relatedTarget indicates tfi@ent Tar get][p.12] the pointing device isxiting.

27

1.6.3. Text events

mousemove
The mousemove event occurs when the pointing device is moved while it is over an element. This
event is valid for most elements.
® Bubbles: Yes
® Cancelable: No
® Context Info: view, screenX, screeny, clientX, clientY, altKey, ctrlKey, shiftkegtaKey
mouseout
The mouseout event occurs when the pointing device is moved away from an element. This event is
valid for most elements..
® Bubbles: Yes
® Cancelable: Yes
® Context Info: view, screenX, screenyY, clientX, clientY, altkey, ctriKey, shiftkey, metaKey,
relatedTarget indicates tfient Tar get][p.12] the pointing device isntering.

1.6.3.Text events

A DOM application may use theasFeat ur e(f eat ure, versi on) method of the

DOM npl enent at i on interface with parameter values "TextEvents" and "3.0" (respectively) to
determine whether or not the Mouse event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "UIEvents" feature defined in this
specification. Please, refer to additional information about conformance in the DOM Level 3 Core
specification|[DOM Level 3Corqg.

Note: To create an instance of {liext Event |[p.28] interface, use the feature string "TextEvents" as the
value of the input parameter used with theeat eEvent method of th@ocunent Event |[p.21]
interface.

Interface TextEvent (introduced irDOM Level 3)
TheText Event interface provides specific contextual information associated withEhexits.

IDL Definition

/'l Introduced in DOM Level 3:
interface TextEvent : U Event ({

/1 Virtual KeyCode

const unsigned | ong DOM_VK_UNDEFI NED = 0xO0;

const unsigned | ong DOM VK_RI GHT_ALT = 0x01;
const unsigned | ong DOM VK_LEFT_ALT = 0x02;
const unsigned | ong DOM_VK_LEFT_CONTROL = 0x03;
const unsigned | ong DOM_VK_RI GHT_CONTROL = 0x04;
const unsigned | ong DOM VK_LEFT_SHI FT = 0xO05;
const unsigned | ong DOM VK_RI GHT_SHI FT = 0x06;
const unsigned | ong DOM VK_LEFT_META = 0x07;
const unsigned | ong DOM_VK_RI GHT_META = 0x08;
const unsigned | ong DOM_VK_CAPS_LOCK = 0x09;
const unsigned | ong DOM _VK_DELETE = OxO0A;
const unsigned | ong DOM_VK_END = 0xO0B;
const unsigned | ong DOM _VK_ENTER = 0x0C,

28

1.6.3. Text events

const unsigned | ong DOM_VK_ESCAPE = 0x0D;
const unsigned | ong DOM_VK_HOVE = OxOE;
const unsigned | ong DOM_VK_| NSERT = OxOF;
const unsigned | ong DOM_VK_NUM_LOCK = 0x10;
const unsigned | ong DOM_VK_PAUSE = 0x11;
const unsigned | ong DOM_VK_PRI NTSCREEN = 0x12;
const unsigned | ong DOM_VK_SCROLL_LOCK = 0x13;
const unsigned | ong DOM VK_LEFT = 0x14;
const unsigned | ong DOM_VK_RI GHT = 0x15;
const unsigned | ong DOM_VK_UP = 0x16;
const unsigned | ong DOM_VK_DOWN = 0x17;
const unsigned | ong DOM_VK_PAGE_DOWN = 0x18;
const unsigned | ong DOM_VK_PAGE_UP = 0x19;
const unsigned | ong DOM VK_F1 = Ox1A;
const unsigned | ong DOM VK_F2 = 0x1B;
const unsigned | ong DOM VK_F3 = 0x1C,
const unsigned | ong DOM _VK_F4 = 0x1D;
const unsigned | ong DOM _VK_F5 = Ox1E;
const unsigned | ong DOM _VK_F6 = Ox1F;
const unsigned | ong DOM VK_F7 = 0x20;
const unsigned | ong DOM VK_F8 = 0x21;
const unsigned | ong DOM _VK_F9 = 0x22;
const unsigned | ong DOM VK_F10 = 0x23;
const unsigned | ong DOM VK_F11 = 0x24;
const unsigned | ong DOM VK_F12 = 0x25;
const unsigned | ong DOM VK_F13 = 0x26;
const unsigned | ong DOM VK_F14 = 0x27;
const unsigned | ong DOM VK_F15 = 0x28;
const unsigned | ong DOM VK_F16 = 0x29;
const unsigned | ong DOM VK_F17 = Ox2A;
const unsigned | ong DOM VK_F18 = 0x2B;
const unsigned | ong DOM VK_F19 = 0x2C,
const unsigned | ong DOM_VK_F20 = 0x2D;
const unsigned | ong DOM VK_F21 = Ox2E;
const unsigned | ong DOM VK_F22 = Ox2F;
const unsigned | ong DOM VK_F23 = 0x30;
const unsigned | ong DOM VK_F24 = 0x31;

attribute DOVBtring out put String;

attribute unsigned | ong keyVal ;

attribute unsigned | ong vi rt KeyVval ;

attribute bool ean vi si bl eQut put Gener at ed;

attribute bool ean nunPad;
bool ean checkModi fier(in unsigned |ong nodifer);

voi d i nit Text Event (i
i

n
n DOVBtring typeArg,
n bool ean canBubbl eAr g,
n bool ean cancel abl eAr g,
n views:: Abstract Vi ew vi ewAr g,
n unsi gned short detail Arg,
n DOVString output StringArg,
n unsi gned | ong keyVal Arg,
n unsigned | ong virtKeyVal Arg,
n bool ean vi si bl eQut put Gener at edAr g,
n bool ean nunmPadArg);
voi d initMdifier(in unsigned | ong nodifier,
i n bool ean val ue);

29

1.6.3. Text events

Definition group VirtualKeyCode
An integer indicating which key wasessed.

Defined Constants

DOM _VK_CAPS_LOCK
DOM _VK_DELETE
DOM_VK_DOMWN
DOM_VK_END
DOM _VK_ENTER
DOM_VK_ESCAPE
DOM VK_F1

Constant for the F1 function key.
DOM _VK_F10

Constant for the F10 function key.
DOM VK_F11

Constant for the F11 function key.
DOM _VK_F12

Constant for the F12 function key.
DOM VK_F13

Constant for the F13 function key.
DOM VK_F14

Constant for the F14 function key.
DOM _VK_F15

Constant for the F15 function key.
DOM _VK_F16

Constant for the F16 function key.
DOM _VK_F17

Constant for the F17 function key.
DOM VK_F18

Constant for the F18 function key.
DOM _VK_F19

Constant for the F19 function key.
DOM _VK_F2

Constant for the F2 function key.
DOM _VK_F20

Constant for the F20 function key.
DOM VK_F21

Constant for the F21 function key.
DOM _VK_F22

Constant for the F22 function key.
DOM _VK_F23

Constant for the F23 function key.
DOM _VK_F24

Constant for the F24 function key.

30

1.6.3. Text events

DOM VK_F3

Constant for the F3 function key.
DOM VK_F4

Constant for the F4 function key.
DOM VK_F5

Constant for the F5 function key.
DOM VK_F6

Constant for the F6 function key.
DOM VK_F7

Constant for the F7 function key.
DOM VK_F8

Constant for the F8 function key.
DOM _VK_F9

Constant for the F9 function key.
DOM_VK_HOVE
DOM VK_| NSERT
DOM VK_LEFT
DOM VK_LEFT_ALT

This key is a modifier key
DOM VK_LEFT_CONTROL

This key is a modifier key
DOM VK_LEFT_META

This key is a modifier key
DOM VK_LEFT_SHI FT

This key is a modifier key
DOM VK_NUM_LOCK
DOM_VK_PAGE_DOWN
DOM VK_PAGE_UP
DOM VK_PAUSE
DOM VK_PRI NTSCREEN
DOM VK_RI GHT
DOM VK_RI GHT_ALT

This key is a modifier key
DOM VK_RI GHT_CONTROL

This key is a modifier key
DOM VK_RI GHT_META

This key is a modifier key
DOM VK_RI GHT_SHI FT

This key is a modifier key
DOM_VK_SCRCOLL_LOCK
DOM_VK_UNDEFI NED

Used for key events which do not have a virtual key code available.
DOM_VK_UP

Attributes
keyVal of typeunsi gned | ong

The value okeyVal holds the value of the Unicode character associated with the

31

1.6.3. Text events

depressed key. If the key has no Unicode representation or no Unicode character is
available the value 8..

nunPad of typebool ean
ThenunPad attribute indicates whether or not the key event was generated on the number

pad section of the keyboard. If the number pad was used to generate the key event the value

is true, otherwise the valuefalse.
out put Stri ng of typeDOVSt r i ng
out put St ri ng holds the value of the output generated by the key event. This may be a
single Unicode character or it may be a string. It may also be null in the case where no
output was generated by the layent.
vi rt KeyVal of typeunsi gned | ong
When the key associated with a key event is not representable via a Unicode character
vi rt KeyVal holds the virtual key code associated with the depressed key. If the key has
a Unicode representation or no virtual code is available the value is
DOM_VK_UNDEFI NED.
vi si bl eQut put Gener at ed of typebool ean
Thevi si bl eQut put Gener at ed attribute indicates whether the key event will
normally cause visible output. If the key event does not generate any visible output, such as
the use of a function key or the combination of certain modifier keys used in conjunction
with another key, then the value will be false. If visible output is normally generated by the
key event then the value will baie.
The value o¥vi si bl eQut put Gener at ed does not guarantee the creation of a
character. If a key event causing visible output is cancelable it may be prevented from
causing visible output. This attribute is intended primarily to differentiate between keys
events which may or may not produce visible output depending on the syatem
Methods
checkModi fi er
ThecheckModi fi er method is used to check the status of a single modifier key
associated with &ext Event . The identifier of the modifier in question is passed into the
checkModi fi er function. If the modifier is triggered it will return true. If not, it will
returnfalse.
The list of keys below represents the allowable modifier paramaters for this method.
® DOM_VK_ LEFT_ALT
DOM_VK_RIGHT_ALT
DOM_VK_LEFT_CONTROL
DOM_VK_RIGHT_CONTROL
DOM_VK_LEFT_SHIFT
DOM_VK_RIGHT_SHIFT
e DOM_VK_META
Parameters
nodi f er of typeunsi gned | ong
The modifier which the user wishesduoery.
Return Value

bool ean The status of the modifier represented bsalean.

32

1.6.3. Text events

No Exceptions
i nitModifier
Thei ni t Modi fi er method is used to initialize the values of any modifiers associated
with aText Event created through thigocunent Event |[p.21] interface. This method
may only be called before tfi@xt Event has been dispatched via the dispatchEvent
method, though it may be called multiple times during that phase if necessary. If called
multiple times with the sameodi f i er property the final invocation takes precedence.
Unless explicitly give a value of true, all modifiers have a value of false. This method has
no effect if called after the event has beé&patched.
The list of keys below represents the allowable modifier paramaters for this method.
® DOM_VK_ LEFT_ALT
DOM_VK_RIGHT_ALT
DOM_VK_LEFT_CONTROL
DOM_VK_RIGHT_CONTROL
DOM_VK_LEFT_SHIFT
DOM_VK_RIGHT_SHIFT
e DOM_VK_META
Parameters
nodi fi er of typeunsi gned | ong
The modifier which the user wishesititialize
val ue of typebool ean
The new value of theodifier.
No Return Value
No Exceptions
i ni t Text Event
Thei ni t Text Event method is used to initialize the value ofext Event created
through thgDocunent Event |[p.2]] interface. This method may only be called before the
Text Event has been dispatched via the dispatchEvent method, though it may be called
multiple times during that phase if necessary. If called multiple times, the final invocation
takes precedence. This method has no effect if called after the event has been dispatched.
Parameters
t ypeAr g of typeDOVBt r i ng
Specifies the evertype.
canBubbl eAr g of typebool ean
Specifies whether or not the event caroble.
cancel abl eAr g of typebool ean
Specifies whether or not the event’s default action caréneent.
vi eWAr g of typevi ews: : Abstract Vi ew
Specifies th@ext Event 's Abst r act Vi ew.
det ai | Ar g of typeunsi gned short
Specifies the number of repeated keypressesgifable.
out put St ri ngAr g of typeDOVSt ri ng
Specifies th@ext Event 's out put St ri ng attribute
keyVal Ar g of typeunsi gned | ong
Specifies th@ext Event 's keyVal attribute

33

1.6.4. Mutation event types

vi rt KeyVal Ar g of typeunsi gned | ong
Specifies th@ext Event 's vi r t KeyVal attribute
vi si bl eQut put Gener at edAr g of typebool ean
Specifies th@ext Event 's vi si bl eQut put Gener at edattribute
nunPadAr g of typebool ean
Specifies th@ext Event 's nunPadattribute
No Return Value
No Exceptions

There are two major groups of key events. The first contairtsskeEvent event. The ext Event
event indicates that text information has been entered, either in the form of printable characters or
non-printable text information such as modifier keysxt Event events are not necessarily
accompanied by the events of the second major groups of key daentywn andkeyup.

textEvent
The textEvent event indicates that text information has been entered. The text information entered
can originate from a variety of sources. It could, for example, be a character resulting from a
keypress. It could also be a string resulting from an ingihod.
Thedet ai | attribute inherited frofl Event][p.22] is used to indicated the number of keypresses
which have occurred during key repetition. If this information is not available this value should be 0.
® Bubbles: Yes
® Cancelable: Yes
® Context Info: view, detail, visibleOutputGenerated, outputString, keyVal, virtKeyiahPad.

Thekeydown andkeyup events comprise the second group of key events. These events are fired to
indicate the physical motion of the keys on the character generation device. Depending on the input
system being usetlext Event events may or may not be generated for each p&ieyfiown and

keyup events.

keydown
The keydown event occurs when a key is pressed down.
® Bubbles: Yes
® Cancelable: Yes
e Context Info: view, keyVal, virtKeyVahumPad.
keyup
The keyup event occurs when a key is released.
® Bubbles: Yes
® Cancelable: Yes
e Context Info: view, keyVal, virtKeyValhumPad.

1.6.4.Mutation eventtypes

The mutation event module is designed to allow notification of any changes to the structure of a
document, including attr and text modifications. It may be noted that none of the mutation events listed
are designated as cancelable. This stems from the fact that it is very difficult to make use of existing DOM
interfaces which cause document modifications if any change to the document might or might not take

34

1.6.4. Mutation event types

place due to cancelation of the related event. Although this is still a desired capability, it was decided that
it would be better left until the addition of transactions intoQEM.

Many single modifications of the tree can cause multiple mutation events to be fired. Rather than attempt
to specify the ordering of mutation events due to every possible modification of the tree, the ordering of
these events is left to thmplementation.

A DOM application may use theasFeat ur e(f eat ure, versi on) method of the

DOM npl enent at i on interface with parameter values "MutationEvents” and "3.0" (respectively) to
determine whether or not the Mutation event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "Events" feature defined in this
specification. Please, refer to additional information about conformance in the DOM Level 3 Core
specification|[DOM Level 3Corq.

Note: To create an instance of {Nat at i onEvent][p.35 interface, use the feature string
"MutationEvents" as the value of the input parameter used wittrtbat eEvent method of the
[Docunent Event |[p.2]] interface.

Interface MutationEvent (introduced irDOM Level 2)

TheMut at i onEvent interface provides specific contextual information associated with Mutation
events.

IDL Definition

/'l Introduced in DOM Level 2:
interface MutationEvent : Event {

/1 attrChangeType

const unsigned short MODI FI CATI ON = 1;
const unsigned short ADDI TI ON = 2;
const unsigned short REMOVAL = 3;
readonly attribute Node r el at edNode;
readonly attribute DOVString prevVal ue;
readonly attribute DOVBtring newval ue;
readonly attribute DOVBtring attr Nane;
readonly attribute unsigned short attr Change;
voi d initMitati onEvent(in DOVString typeArg,
i n bool ean canBubbl eArg,
i n bool ean cancel abl eArg,
i n Node rel at edNodeAr g,
in DOVBtring prevVal ueArg,
in DOVBtring newval ueAr g,
in DOVBtring attrNameArg,
in unsigned short attrChangeArqg);

i
Definition group attrChangeType

35

1.6.4. Mutation event types

An integer indicating in which way th& t r waschanged.

Defined Constants
ADDI TlI ON
TheAt t r was just added.
MODI FI CATI ON
TheAt t r was modified in place.
REMOVAL
TheAtt r was justemoved.
Attributes
at t r Change of typeunsi gned short, readonly
at t r Change indicates the type of change which triggered the DOMALttrModified event.
The values can bdODI FI CATI ON, ADDI TI ON, or REMOVAL .
at t r Name of typeDOVSt r i ng, readonly
at t r Name indicates the name of the chandéd r node in a DOMAttrModifiecevent.
newVal ue of typeDOVSt r i ng, readonly
newVal ue indicates the new value of t¢t r node in DOMAttrModified events, and of
theChar act er Dat a node in DOMCharDataModifiedvents.
pr evVal ue of typeDOVSt ri ng, readonly
pr evVal ue indicates the previous value of thet r node in DOMAttrModified events,
and of theChar act er Dat a node in DOMCharDataModifiedvents.
r el at edNode of typeNode, readonly
r el at edNode is used to identify a secondary node related to a mutation event. For
example, if a mutation event is dispatched to a node indicating that its parent has changed,
ther el at edNode is the changed parent. If an event is instead dispatched to a subtree
indicating a node was changed within it, thed at edNode is the changed node. In the
case of the DOMAttrModified event it indicates #iet r node which was modified,
added, oremoved.
Methods
i ni t Mut ati onEvent
Thei ni t Mut at i onEvent method is used to initialize the value of a
Mut at i onEvent created through thiBocunent Event |[p.21] interface. This method
may only be called before tiMut at i onEvent has been dispatched via the
di spat chEvent method, though it may be called multiple times during that phase if
necessary. If called multiple times, the final invocation takes precedence.
Parameters
t ypeAr g of typeDOVSt ri ng
Specifies the evertype.
canBubbl eAr g of typebool ean
Specifies whether or not the event caioble.
cancel abl eAr g of typebool ean
Specifies whether or not the event’'s default action cgréeented.
r el at edNodeAr g of typeNode
Specifies thfEvent|[p.18] ’s relatedNode.
pr evVal ueAr g of typeDOVSt r i ng
Specifies thfEvent|[p.18] s pr evVal ue attribute. This value may eull.

36

1.6.4. Mutation event types

newVal ueAr g of typeDOVSt ri ng

Specifies thfEvent][p.18] 's newval ue attribute. This value may haull.
at t r NanmeAr g of typeDOVSt ri ng

Specifies thfEvent][p.18] s at t r Name attribute. This value may baull.
at t r ChangeAr g of typeunsi gned short

Specifies thfEvent][p.18] 's at t r Change attribute
No Return Value
No Exceptions

The different types of Mutation events that can oecar

DOMSubtreeModified
This is a general event for notification of all changes to the document. It can be used instead of the
more specific events listed below. It may be fired after a single modification to the document or, at
the implementation’s discretion, after multiple changes have occurred. The latter use should
generally be used to accomodate multiple changes which occur either simultaneously or in rapid
succession. The target of this event is the lowest common parent of the changes which have taken
place. This event is dispatched after any other events caused by the mutation have fired.
® Bubbles: Yes
e Cancelable: No
® Context Info:None
DOMNodelnserted
Fired when a node has been added[@dsld [p.65] of another node. This event is dispatched after the
insertion has taken place. The target of this event is the node being inserted.
® Bubbles: Yes
® Cancelable: No
e Context Info: relatedNode holds the pareatle
DOMNodeRemoved
Fired when a node is being removed from its parent node. This event is dispatched before the node is
removed from the tree. The target of this event is the node being removed.
® Bubbles: Yes
® Cancelable: No
e Context Info: relatedNode holds the pareatie
DOMNodeRemovedFromDocument
Fired when a node is being removed from a document, either through direct removal of the Node or
removal of a subtree in which it is contained. This event is dispatched before the removal takes place.
The target of this event is the Node being removed. If the Node is being directly removed the
DOMNodeRemoved event will fire before the DOMNodeRemovedFromDocument event.
® Bubbles: No
® Cancelable: No
® Context Info:None
DOMNodelnsertedintoDocument
Fired when a node is being inserted into a document, either through direct insertion of the Node or
insertion of a subtree in which it is contained. This event is dispatched after the insertion has taken
place. The target of this event is the node being inserted. If the Node is being directly inserted the
DOMNodelnserted event will fire before the DOMNodelnsertedintoDocument event.

37

1.6.5. HTML event types

® Bubbles: No

e Cancelable: No

e Context Info:None

DOMAttrModified

Fired after arAt t r has been modified on a node. The target of this event iotthe whoseAt t r
changed. The value of attrChange indicates whethektthe was modified, added, or removed. The
value of relatedNode indicates tAet r node whose value has been affected. It is expected that
string based replacement of Aint r value will be viewed as a modification of thet r since its
identity does not change. Subsequently replacement &t the node with a differenét t r node is
viewed as the removal of the filst t r node and the addition of the second.

® Bubbles: Yes

® Cancelable: No

® Context Info: attrName, attrChange, prevValue, newVaklatedNode

DOMCharacterDataModified

Fired after CharacterData within a node has been modified but the node itself has not been inserted or
deleted. This event is also triggered by modifications to Pl elements. The target of this event is the
CharacterData node.

® Bubbles: Yes

® Cancelable: No

e Context Info: prevValuenewValue

1.6.5.HTML event types

The HTML event module is composed of events listed in HTML 4.0 and additional events which are

supported ifDOM Level O [p.65] browsers.

A DOM application may use theasFeat ur e(f eat ure, versi on) method of the

DOM npl enent at i on interface with parameter values "HTMLEvents" and "3.0" (respectively) to
determine whether or not the HTML event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "Events" feature defined in this
specification. Please, refer to additional information about conformance in the DOM Level 3 Core
specification[DOM Level 3Cordg.

Note: To create an instance of {Reent][p.18] interface for the HTML event module, use the feature
string "HTMLEvents" as the value of the input parameter used witbrtkat eEvent method of the
[Docurnent Event |[p.2]] interface.

The HTML events use the base DOM Event interface to pass contetwaiation.
The different types of such events that can oacer

load
The load event occurs when the DOM implementation finishes loading all content within the BODY
element, all frames within a FRAMESET, or an OBJECT element.
® Bubbles: No
e Cancelable: No

38

1.6.5. HTML event types

® Context Info:None
unload
The unload event occurs when the DOM implementation removes a document from a window or
frame. This event is valid for BODY and FRAMESET elements.
® Bubbles: No
e Cancelable: No
® Context Info:None
abort
The abort event occurs when page loading is stopped before an image has been allowed to
completely load. This event applies to OBJECT elements.
® Bubbles: Yes
e Cancelable: No
® Context Info:None
error
The error event occurs when an image does not load properly or when an error occurs during script
execution. This event is valid for OBJECT elements, BODY elements, and FRAMESET element.
® Bubbles: Yes
® Cancelable: No
® Context Info:None
select
The select event occurs when a user selects some text in a text field. This event is valid for INPUT
and TEXTAREA elements.
® Bubbles: Yes
e Cancelable: No
® Context Info:None
change
The change event occurs when a control loses the input focus and its value has been modified since
gaining focus. This event is valid for INPUT, SELECT, and TEXTAREA. element.
® Bubbles: Yes
e Cancelable: No
® Context Info:None
submit
The submit event occurs when a form is submitted. This event only applies to the FORM element.
® Bubbles: Yes
® Cancelable: Yes
® Context Info:None
reset
The reset event occurs when a form is reset. This event only applies to the FORM element.
® Bubbles: Yes
e Cancelable: No
® Context Info:None
focus
The focus event occurs when an element receives focus either via a pointing device or by tabbing
navigation. This event is valid for the following elements: A, AREA, LABEL, INPUT, SELECT,
TEXTAREA, and BUTTON.

39

1.7. Issues

® Bubbles: No
® Cancelable: No
® Context Info:None
blur
The blur event occurs when an element loses focus either via the pointing device or by tabbing
navigation. This event is valid for the following elements: A, AREA, LABEL, INPUT, SELECT,
TEXTAREA, and BUTTON.
® Bubbles: No
e Cancelable: No
® Context Info:None
resize
The resize event occurs when a document view is resized.
® Bubbles: Yes
® Cancelable: No
® Context Info:None
scroll
The scroll event occurs when a document view is scrolled.
® Bubbles: Yes
e Cancelable: No
® Context Info:None

1.7.Issues

Issue getModifier:
Why is modifier state exposed through a method rather thattrdsute?
Resolution: The modifier keys are not currently representable as bit flags. Setting them individually
would therefore require an attribute for each. Rather than bloat the api, especially given the addition
of left and right modifier keys, the modifiers are exposed via a single method.

Issue ISO-IEC-9995:
Have you coordinated this set with that defined by ISO/IEC 9995 which addresses various Keyboard
symbolissues.
Resolution: Upon examination of the ISO spec we found it to be insufficient to our needs. It does not
represent the left/right differentiation between some keys. It also lacks function keys.

Issue ISO-IEC-14755:
Review ISO/IEC 14755 "Input methods to enter characters from the repertoire of ISO/IEC 10646
with a keyboard or other input device" to insure that the treatment of input state is consistent with
that expected by current practice when it comes to platforms which support input methods.

Issue offsets:
(This issue is related with mouse events ¥ieivs?)
it would be useful if MouseEvent class had a property that would enable listners to learn about
coordinates of the event within the element’s own coordinate system.

Issue unicodeidents:
Some of the unicode chars are pretty esoteric (i.e. home, end, scroll lock). Do we want to adopt these
or will this be harder on users than defining them in the DOM Event Spec. About a dozen keys fit
this pattern.

40

1.7. Issues

Issue texteventwithoutchargeneration:
The results of the discussions on switching the keypress event out for the textEvent were
inconclusive on the question of whether to fire textEvents for non character generating keys input.
This includes modifier keys, function keysc.

41

1.7. Issues

42

Appendix A: Changes

Appendix A: Changes

Editor:
Philippe Le Hégarev3C

A.1l: Changes between DOM Level 2 Events and DOM Level 3
Events
A.1.1: Changes to DOM Level 2 Eventmterfaces

Interface|[Event Tar get |[p.12]
ThelEvent][p.18] interface has one new attribueazent Li st ener Li st .

A.1.2: NewlInterfaces

The interfacefEvent Li st ener Li st][p.14] ,[Event G oup|[p.15] ,[Event Tar get G oup][p.16] ,
[Docunent Event G oup|[p.17] , andText Event][p.28] were added to the Eventsodule.

43

A.1.2: New Interfaces

44

Appendix B: IDL Definitions

Appendix B: IDL Definitions

This appendix contains the complete OMG I[@MGIDL] for the Level 3 Document Object Model
Eventsdefinitions.

The IDL files are also available as:
http://www.w3.0rg/TR/2001/WD-DOM-Level-3-Events-20010823/idl.zip

events.idl

/!l File: events.idl

#i fndef _EVENTS |DL_
#define _EVENTS | DL_

#i ncl ude "domidl"
#i nclude "views.idl"

#pragma prefix "dom w3c. org"
nodul e events

{

typedef dom :DOMString DOVBtring;
typedef dom : DOMTi neSt anp DOMIi neSt anp;
typedef dom : Node Node;

interface EventListenerlList;
interface EventLi stener;
interface Event;

/1 1ntroduced in DOM Level 2:
exception Event Exception {
unsi gned short code;
}s
/1 Event Excepti onCode
const unsi gned short UNSPECI FI ED_EVENT_TYPE_ERR = 0;

/1 1ntroduced in DOM Level 2:
i nterface Event Target {
voi d addEvent Li stener(in DOVString type,
in EventlListener |istener,
i n bool ean useCapture);
voi d renmoveEvent Li stener (in DOVBtring type,
in EventListener |istener,
i n bool ean useCapture);
bool ean di spatchEvent (i n Event evt)
rai ses(Event Excepti on);
/1 1ntroduced in DOM Level 3:
readonly attribute EventListenerList eventlListeners;

I

/1 1ntroduced in DOM Level 2:
interface EventlListener {

45

events.idl:

voi d handl eEvent (i n Event evt);

h

/1 Introduced in DOM Level 3:

interface EventListenerlList {
Event Li st ener item(in unsigned |ong index);
readonly attribute unsigned | ong | engt h;

h

/1 Introduced in DOM Level 3:
interface Event Group {
bool ean i sSameEvent Group(in Event Group other);

I

/1 Introduced in DOM Level 3:
interface Event Target Group {
voi d addEvent Li stener(in DOVString type,
in EventlListener |istener,
in bool ean useCapture,
in Event G oup evt G oup);
voi d removeEvent Li stener (in DOVBtring type,
in EventListener |istener,
i n bool ean useCapture,
in Event Goup evt Group);

I

/1 Introduced in DOM Level 3:
i nterface Document Event G oup {
Event Gr oup creat eEvent Group();

h

/! Introduced in DOM Level 2:
interface Event {

/'l PhaseType

const unsigned short CAPTURI NG_PHASE
const unsigned short AT_TARCET

const unsigned short BUBBLI NG_PHASE

Inomnn
N =

readonly attribute DOVString type;
readonly attribute Event Target target;
readonly attribute Event Target current Target;
readonly attribute unsigned short event Phase;
readonly attribute bool ean bubbl es;
readonly attribute bool ean cancel abl e;
readonly attribute DOMIi neStanp ti meSt anp;
voi d st opPropagati on();
voi d prevent Def aul t () ;
voi d initEvent(in DOVString event TypeArg,
i n bool ean canBubbl eArg,
i n bool ean cancel abl eArg);

I

/1 Introduced in DOM Level 2:
i nterface Docunent Event {
Event createEvent (in DOVMStri ng event Type)
rai ses(dom : DOVExcepti on);

46

events.idl:

I

/1 Introduced in DOM Level 2:
interface U Event : Event {
readonly attribute views:: AbstractView view,
readonly attribute |ong detail;
voi d initU Event(in DOVString typeArg,
i n bool ean canBubbl eArg,
i n bool ean cancel abl eArg,
in views::AbstractVi ew vi ewAr g,
in long detail Arg);

I

/1 Introduced in DOM Level 2:
interface MouseEvent : Ul Event ({

readonly attribute |ong screenX;
readonly attribute |ong screeny;
readonly attribute |ong clientX;
readonly attribute |ong clienty;
readonly attribute bool ean ctrl Key;
readonly attribute bool ean shi f t Key;
readonly attribute bool ean al t Key;
readonly attribute bool ean met aKey;
readonly attribute unsigned short but t on;
readonly attribute Event Target rel at edTar get ;
voi d i ni t MouseEvent (in DOVBtring typeArg,
i n bool ean canBubbl eArg,
i n bool ean cancel abl eArg,
in views::AbstractView vi ewAr g,
in |long detail Arg,
in long screenXArg,
in long screenYArg,
in long clientXArg,
in long clientVYArg,
in bool ean ctrl KeyArg,
in bool ean al t KeyArg,
i n bool ean shiftKeyArg,
i n bool ean net aKeyArg,
i n unsigned short buttonArg,
in Event Target rel atedTarget Arg);

I

/1 Introduced in DOM Level 3:
interface Text Event : U Event {

/1 Virtual KeyCode

const unsigned | ong DOM_VK_UNDEFI NED = 0xO0;

const unsigned | ong DOM VK_RI GHT_ALT = 0x01,;
const unsigned | ong DOM VK_LEFT_ALT = 0x02;
const unsigned | ong DOM_VK_LEFT_CONTRCL = 0x03;
const unsigned | ong DOM_VK_RI GHT_CONTROL = 0x04;
const unsigned | ong DOM_VK_LEFT_SHI FT = 0x05;
const unsigned | ong DOM VK_RI GHT_SHI FT = 0x06;
const unsigned | ong DOM VK_LEFT_META = 0x07;
const unsigned | ong DOM_VK_RI GHT_META = 0x08;
const unsigned | ong DOM_VK_CAPS_LOCK = 0x09;
const unsigned | ong DOM VK_DELETE = OxO0A;

47

events.idl:

const unsigned | ong DOM_VK_END = 0xO0B;
const unsigned | ong DOM_VK_ENTER = 0x0C,
const unsigned | ong DOM_VK_ESCAPE = 0xO0D;
const unsigned | ong DOM_VK_HOVE = OxOE;
const unsigned | ong DOM_VK_| NSERT = OxOF;
const unsigned | ong DOM_VK_NUM_LOCK = 0x10;
const unsigned | ong DOM_VK_PAUSE = 0x11;
const unsigned | ong DOM_VK_PRI NTSCREEN = 0x12;
const unsigned | ong DOM VK_SCROLL_LOCK = 0x13;
const unsigned | ong DOM_VK_LEFT = 0x14;
const unsigned | ong DOM_VK_RI GHT = 0x15;
const unsigned | ong DOM_VK_UP = 0x16;
const unsigned | ong DOM_VK_DOWN = 0x17;
const unsigned | ong DOM_VK_PAGE_DOMN = 0x18;
const unsigned | ong DOM_VK_PACE_UP = 0x19;
const unsigned | ong DOM VK_F1 = Ox1A;
const unsigned | ong DOM _VK_F2 = 0x1B;
const unsigned | ong DOM VK_F3 = 0x1C,
const unsigned | ong DOM_VK_F4 = 0x1D;
const unsigned | ong DOM_VK_F5 = Ox1E;
const unsigned | ong DOM_VK_F6 = Ox1F;
const unsigned | ong DOM_VK_F7 = 0x20;
const unsigned | ong DOM VK_F8 = 0x21;
const unsigned | ong DOM_VK_F9 = 0x22;
const unsigned | ong DOM_VK_F10 = 0x23;
const unsigned | ong DOM VK _F11 = 0x24;
const unsigned | ong DOM VK _F12 = 0x25;
const unsigned | ong DOM VK _F13 = 0x26;
const unsigned | ong DOM VK _F14 = 0x27;
const unsigned | ong DOM VK_F15 = 0x28;
const unsigned | ong DOM VK _F16 = 0x29;
const unsigned | ong DOM VK_F17 = Ox2A;
const unsigned | ong DOM VK _F18 = 0x2B;
const unsigned | ong DOM VK _F19 = 0x2C,
const unsigned | ong DOM_VK_F20 = 0x2D;
const unsigned | ong DOM VK_F21 = Ox2E;
const unsigned | ong DOM VK_F22 = Ox2F;
const unsigned | ong DOM VK_F23 = 0x30;
const unsigned | ong DOM_VK_F24 = 0x31;
attribute DOVBtring out put String;
attribute unsigned | ong keyVal ;
attribute unsigned | ong vi rt KeyVval ;
attribute bool ean vi si bl eQut put Gener at ed,;
attribute bool ean nunPad;
bool ean checkModi fier(in unsigned | ong nodifer);
voi d initText Event(in DOMString typeArg,
i n bool ean canBubbl eArg,
i n bool ean cancel abl eArg,
in views::AbstractVi ew vi ewAr g,
i n unsigned short detail Arg,
in DOVString outputStringArg,
in unsigned | ong keyVal Arg,
in unsigned | ong virtKeyVal Arg,
i n bool ean vi si bl eQut put Gener at edAr g,
i n bool ean nunPadArg);
voi d initMdifier(in unsigned |ong nodifier,

48

events.idl:

i n bool ean val ue);

I

/1 Introduced in DOM Level 2:
interface Mutati onEvent : Event {

/1 attrChangeType

const unsi gned short MODI FI CATI ON = 1;
const unsi gned short ADDI TI ON = 2;
const unsi gned short REMOVAL = 3;
readonly attribute Node rel at edNode;

readonly attribute DOVString prevVal ue;

readonly attribute DOMString newval ue;

readonly attribute DOVString at t r Name;

readonly attribute unsigned short att r Change;

voi d initMitati onEvent(in DOVString typeArg,

I
I

#endif // _EVENTS |DL_

bool ean canBubbl eAr g,

bool ean cancel abl eAr g,

Node rel at edNodeAr g,

DOVSt ri ng prevVval ueArg,
DOVSt ri ng newval ueAr g,

DOVBt ri ng attrNaneArg,

unsi gned short attrChangeArg);

5 3 3 3 3 35

49

events.idl:

50

Appendix C: Java Language Binding

Appendix C: Java LanguageBinding
This appendix contains the complete Jfavd bindings for the Level 3 Document Object Mo&slents.

The Java files are also available as
http://www.w3.0rg/TR/2001/WD-DOM-Level-3-Events-20010823/java-binding.zip

org/w3c/dom/events/EventException.java:

package org.w3c.dom events;

public class Event Exception extends Runti neException {
publi ¢ Event Excepti on(short code, String nessage) {
super (message) ;
this.code = code;

public short code;
/1 Event Excepti onCode
public static final short UNSPECI FI ED_EVENT_TYPE _ERR = O;

}

org/w3c/dom/events/EventTarget.java:

package org.w3c.dom events;
public interface Event Target {
public void addEventLi stener(String type,
Event Li stener |istener,
bool ean useCapture);
public void renmoveEventLi stener(String type,
Event Li stener |i stener,
bool ean useCapture);

publ i ¢ bool ean di spat chEvent (Event evt)
t hrows Event Excepti on;

publ i c EventLi stenerList getEventListeners();

}

org/w3c/dom/events/EventListener.java:

package org.w3c.dom events;

public interface EventListener {
public void handl eEvent (Event evt);

51

org/w3c/dom/events/EventListenerList.java:

org/w3c/dom/events/EventListenerList.java:

package org.w3c.dom events;

public interface EventListenerlList {
public EventlListener iten{int index);

public int getlLength();

}

org/w3c/dom/events/EventGroup.java:

package org.w3c.dom events;

public interface Event Goup {
publ i c bool ean i sSanmeEvent Group(Event Group ot her);

}

org/w3c/dom/events/EventTargetGroup.java.:

package org.w3c.dom events;

public interface Event Target G oup {
public void addEventLi stener(String type,
Event Li stener |istener,
bool ean useCapt ure,
Event G oup evt G oup);

public void renoveEventLi stener(String type,
Event Li stener |i stener,
bool ean useCapt ure,
Event Group evt Group);

}

org/w3c/dom/events/DocumentEventGroup.java:

package org.w3c.dom events;

public interface Docunent Event G oup {
public Event Group createEvent Group();

}

org/w3c/dom/events/Event.java:

package org.w3c.dom events;

public interface Event {
/'l PhaseType
public static final short CAPTURI NG _PHASE
public static final short AT_TARGET

52

org/w3c/dom/events/DocumentEvent.java:

public static final short BUBBLI NG PHASE =
public String getType();

public Event Target get Target();

public Event Target getCurrent Target();
public short getEventPhase();

publ i ¢ bool ean get Bubbl es();

publ i ¢ bool ean get Cancel abl e();

public | ong getTi nmeStanp();

public void stopPropagation();

public void preventDefault();

public void initEvent(String event TypeArg,

bool ean canBubbl eAr g,
bool ean cancel abl eArg);

org/w3c/dom/events/DocumentEvent.java:

package org.w3c.dom events;
i mport org.w3c. dom DOVExcepti on;
public interface Document Event {

public Event createEvent(String event Type)
t hrows DOVExcepti on;

org/w3c/dom/events/UIEvent.java:
package org.w3c.dom events;
i mport org.w3c.dom vi ews. Abstract Vi ew;

public interface U Event extends Event {
public AbstractView getView);

public int getDetail ();

public void initU Event(String typeArg,
bool ean canBubbl eAr g,
bool ean cancel abl eAr g,
Abstract Vi ew vi ewAr g,
int detail Arg);

53

org/w3c/dom/events/MouseEvent.java:

org/w3c/dom/events/MouseEvent.java:

package org.w3c.dom events;
i mport org.w3c.dom vi ews. Abst ract Vi ew,

public interface MyuseEvent extends U Event {
public int getScreenX();

public int getScreenY();

public int getdientX();

public int getdientY();

publ i c bool ean getCtrl Key();

publ i c bool ean get ShiftKey();

publ i c bool ean get Al t Key();

publ i c bool ean get Met aKey();

public short getButton();

public Event Target get Rel atedTarget();

public void initMuseEvent(String typeArg,

bool ean canBubbl eAr g,
bool ean cancel abl eAr g,
Abstract Vi ew vi ewAr g,

int detail Arg,

i nt screenXArg,
i nt screenYArg,
int clientXArg,
int clientYArg,

bool ean ctrl KeyArg,
bool ean al t KeyArg,
bool ean shi ftKeyArg,
bool ean met aKeyAr g,
short buttonArg,

Event Target rel atedTarget Arg);

org/w3c/dom/events/TextEvent.java:
package org.w3c.dom events;
i mport org.w3c.dom vi ews. Abstract Vi ew;
public interface Text Event extends U Event ({
/1 Virtual KeyCode
public static final int DOM VK_UNDEFI NED

public static final int DOM VK Rl GHT_ALT
public static final int DOM VK LEFT_ALT

54

0x0;
0x01;
0x02;

publi
publi
publi
publi
publi
publi
publi
publi
publi
publ i
publ i
publi
publi
publi
publ i
publ i
publi
publi
publi
publi
publi
publi
publ i
publ i
publ i
publ i
publi
publi
publi
publi
publi
publi
publi
publi
publ i
publi
publ i
publi
publi
publi
publ i
publ i
publi
publi
publi
publi
publi

publi
publi

publi
publi

publi
publi

OO0 0000000000000 000000000000000000000000000000O0O0

org/w3c/dom/events/TextEvent.java:

static final int DOM VK _LEFT_CONTROL
static final int DOM VK_RI GHT_CONTROL
static final int DOM VK LEFT_SH FT
static final int DOM VK_RI GHT_SHI FT
static final int DOM VK _LEFT_META
static final int DOM VK_RI GHT_META
static final int DOM VK_CAPS_LOCK
static final int DOM VK _DELETE
static final int DOM _VK_END

static final int DOM VK_ENTER
static final int DOM VK_ESCAPE
static final int DOM VK_HOMVE

static final int DOM VK_| NSERT
static final int DOM VK_NUM LOCK
static final int DOM VK_PAUSE
static final int DOM VK _PRI NTSCREEN
static final int DOM VK_SCROLL_LOCK
static final int DOM VK _LEFT

static final int DOM VK_RI GHT
static final int DOM VK _UP

static final int DOM VK_DOMN

static final int DOM VK_PAGE_DOM
static final int DOM VK_PAGE_UP
static final int DOM VK _F1

static final int DOM VK _F2

static final int DOM VK _F3

static final int DOM VK F4

static final int DOM VK _F5

static final int DOM VK _F6

static final int DOM VK _F7

static final int DOM VK _F8

static final int DOM VK _F9

static final int DOM VK _F10

static final int DOM VK F11

static final int DOM VK F12

static final int DOM VK F13

static final int DOM VK F14

static final int DOM VK F15

static final int DOM VK F16

static final int DOM VK _F17

static final int DOM VK F18

static final int DOM VK _F19

static final int DOM VK _F20

static final int DOM VK _F21

static final int DOM VK _F22

static final int DOM VK _F23

static final int DOM VK F24

String getQutputString();
void setQutputString(String outputString);

i nt getKeyVal ();
voi d setKeyVal (int keyVal);

int getVirtKeyVval ();
void setVirtKeyVal (int virtKeyVal);

55

0x03;
0x04;
0x05;
0x06;
0x07;
0x08;
0x09;
OxO0A;
0xO0B;
0x0G;
0x0D;
0OxOE;
OxO0F;
0x10;
0Ox11;
0x12;
0x13;
0x14;
0x15;
0x16;
0x17;
0x18;
0x19;
Ox1A;
0x1B;
0x1GC;
0x1D;
Ox1E;
Ox1F;
0x20;
0x21;
0x22;
0x23;
0x24;
0x25;
0x26;
0x27;
0x28;
0x29;
Ox2A;
0x2B;
0x2C;
0x2D;
0x2E;
Ox2F;
0x30;
0x31;

publ i
publ i

publ i
publ i

publ i

publ i

c
c

c
c

c

c

org/w3c/dom/events/MutationEvent.java:

bool ean get Vi si bl eQut put Gener at ed() ;
voi d set Vi si bl eQut put Gener at ed(bool ean vi si bl eCut put Gener at ed) ;

bool ean get NunPad() ;
voi d set NunPad(bool ean nunPad) ;

bool ean checkModi fier(int nodifer);

void initTextEvent(String typeArg,
bool ean canBubbl eAr g,
bool ean cancel abl eAr g,
Abstract Vi ew vi ewAr g,
short detail Arg,
String outputStringArg,
int keyVal Arg,
int virtKeyVal Arg,
bool ean vi si bl eQut put Gener at edAr g,
bool ean nunPadArg) ;

public void inithMdifier(int nodifier,

bool ean val ue);

org/w3c/dom/events/MutationEvent.java:

package org.w3c.dom events;

i mport org.w3c. dom Node;

public interface Mitati onEvent extends Event {
/1 attrChangeType

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

publ i

C
C
C

static final short MODI FI CATI ON = 1;
static final short ADDI TI ON = 2;
static final short REMOVAL = 3;

Node get Rel at edNode() ;
String getPrevVal ue();
String get Newval ue();
String get AttrName();
short get AttrChange();

void initMitati onEvent(String typeArg,
bool ean canBubbl eAr g,
bool ean cancel abl eAr g,
Node rel at edNodeAr g,
String prevVal ueAr g,
String newval ueAr g,
String attrNaneArg,
short attrChangeArg);

56

Appendix D: ECMA Script Language Binding

Appendix D: ECMA Script Language Binding

This appendix contains the complete ECMA SdgEMAScrip{ binding for the Level 3 Document
Object Model Eventdefinitions.

ObjectEventTarget
TheEventTarget object has the following properties:
eventListeners
This read-only property isBventListenerList object.
TheEventTarget object has the following methods:
addEventListener(type, listener,useCapture)
This method has no retuvalue.
Thetype parameter is of typ8tring.
Thelistener parameter is BventListener object.
TheuseCaptureparameter is of typBoolean
removeEventListener(type, listeneruseCapture)
This method has no retuvalue.
Thetype parameter is of typBtring.
Thelistener parameter is BventListener object.
TheuseCaptureparameter is of typBoolean
dispatchEvent(evt)
This method returnsBoolean
Theevt parameter is Bvent object.
This method can raiseEventExceptionobject.
ObjectEventListener
This is an ECMAScript function reference. This method has no return value. The parameter is a
Event object.
ObjectEventListenerList
TheEventListenerList object has the following properties:
length
This read-only property is of typéumber.
TheEventListenerList object has the following methods:
item(index)
This method returns BventListener object.
Theindex parameter is of typumber.
Note: This object can also be dereferenced using square bracket notation (e.g. obj[1]).

Dereferencing with an integardex is equivalent to invoking thikem method with that
index.

ObjectEventGroup
The EventGroup object has the following methods:
isSameEventGroup(other)
This method returnsBoolean
Theother parameter is BventGroup object.
ObjectEventTargetGroup

57

Appendix D: ECMA Script Language Binding

TheEventTargetGroup object has the following methods:
addEventListener(type, listener, useCaptureevtGroup)
This method has no retuvalue.
Thetype parameter is of typ8tring.
Thelistener parameter is BventListener object.
TheuseCaptureparameter is of typBoolean
TheevtGroup parameter is BventGroup object.
removeEventListener(type, listener, useCapturegvtGroup)
This method has no retuvalue.
Thetype parameter is of typ8tring.
Thelistener parameter is BventListener object.
TheuseCaptureparameter is of typBoolean
TheevtGroup parameter is BventGroup object.
ObjectDocumentEventGroup
The DocumentEventGroup object has the following methods:
createEventGroup()
This method returns BventGroup object.
Prototype ObjecEvent
TheEvent class has the following constants:
Event. CAPTURING_PHASE
This constant is of typdumber and its value i4.
Event. AT_TARGET
This constant is of typdumber and its value i&.
Event.BUBBLING_PHASE
This constant is of typdumber and its value i8.
ObjectEvent
TheEvent object has the following properties:
type
This read-only property is of tytring.
target
This read-only property isBventTarget object.
currentTarget
This read-only property isBventTarget object.
eventPhase
This read-only property is of typéumber.
bubbles
This read-only property is of tyg&oolean
cancelable
This read-only property is of tyg&oolean
timeStamp
This read-only property is@ate object.
The Event object has the following methods:
stopPropagation()
This method has no return value.
preventDefault()
This method has no return value.

58

Appendix D: ECMA Script Language Binding

initEvent(eventTypeArg, canBubbleArg, cancelableArg)
This method has no retuvalue.
TheeventTypeArg parameter is of typ8tring.
ThecanBubbleArg parameter is of typBoolean
ThecancelableArgparameter is of typBoolean
Prototype ObjecEventException
The EventExceptionclass has the following constants:
EventException.UNSPECIFIED_EVENT_TYPE_ERR
This constant is of typdumber and its value i§.
ObjectEventException
The EventExceptionobject has the following properties:
code
This property is of typ&lumber.
ObjectDocumentEvent
The DocumentEventobject has the following methods:
createEvent(eventType)
This method returns Bvent object.
TheeventTypeparameter is of typString.
This method can raiseZXOMEXxception object.
ObjectUIEvent
UIEvent has the all the properties and methods oEwWent object as well as the properties and
methods defined below.
TheUIEvent object has the following properties:
view
This read-only property isAbstractView object.
detail
This read-only property is of typéumber.
TheUlEvent object has the following methods:
initUIEvent(typeArg, canBubbleArg, cancelableArg, viewArg, detailArg)
This method has no retuvalue.
ThetypeArg parameter is of typ8tring.
ThecanBubbleArg parameter is of typBoolean
ThecancelableArgparameter is of typBoolean
TheviewArg parameter is AbstractView object.
ThedetailArg parameter is of typdumber.
ObjectMouseEvent
MouseEventhas the all the properties and methods ofttevent object as well as the properties
and methods defined below.
The MouseEventobject has the following properties:
screenX
This read-only property is of typéumber.
screenY
This read-only property is of typéumber.
clientX
This read-only property is of typéumber.

59

Appendix D: ECMA Script Language Binding

clienty
This read-only property is of typéumber.
ctrikey
This read-only property is of tyg&oolean
shiftKey
This read-only property is of tyg&oolean
altkey
This read-only property is of tyg&oolean
metaKey
This read-only property is of tyg&oolean
button
This read-only property is of typéumber.
relatedTarget
This read-only property isBventTarget object.
The MouseEventobject has the following methods:
initMouseEvent(typeArg, canBubbleArg, cancelableArg, viewArg, detailArg, screenXArg,
screenYArg, clientXArg, clientYArg, ctrlIKeyArg, altkeyArg, shiftKeyArg, metaKeyArg,
buttonArg, relatedTargetArg)
This method has no retuvalue.
ThetypeArg parameter is of typ8tring.
ThecanBubbleArg parameter is of typBoolean
ThecancelableArgparameter is of typBoolean
TheviewArg parameter is AbstractView object.
ThedetailArg parameter is of typdumber.
ThescreenXArg parameter is of typdumber.
ThescreenYArg parameter is of typdumber.
TheclientXArg parameter is of typRumber.
TheclientYArg parameter is of typRumber.
ThectrlIKeyArg parameter is of typBoolean
ThealtKeyArg parameter is of typBoolean
TheshiftkeyArg parameter is of typBoolean
The metaKeyArg parameter is of typBoolean
ThebuttonArg parameter is of typHumber.
TherelatedTargetArg parameter is BventTarget object.
Prototype ObjecTextEvent
TheTextEvent class has the following constants:
TextEvent. DOM_VK_UNDEFINED
This constant is of typdumber and its value i§x0.
TextEvent.DOM_VK_RIGHT_ALT
This constant is of typdumber and its value i§x01
TextEvent.DOM_VK_LEFT_ALT
This constant is of typdumber and its value i§x02
TextEvent.DOM_VK_LEFT_CONTROL
This constant is of typdumber and its value i§x03
TextEvent.DOM_VK_RIGHT_CONTROL
This constant is of typdumber and its value i9x04.

60

Appendix D: ECMA Script Language Binding

TextEvent.DOM_VK_LEFT_SHIFT

This constant is of typdumber and its value i§x05.
TextEvent.DOM_VK_RIGHT_SHIFT

This constant is of typdumber and its value i§x06.
TextEvent.DOM_VK_LEFT_META

This constant is of typdumber and its value ix07.
TextEvent.DOM_VK_RIGHT_META

This constant is of typdumber and its value i§x08
TextEvent.DOM_VK_CAPS_LOCK

This constant is of typdumber and its value i§x09.
TextEvent.DOM_VK_DELETE

This constant is of typdumber and its value i®x0A.
TextEvent.DOM_VK_END

This constant is of typdumber and its value i§x0B.
TextEvent. DOM_VK_ENTER

This constant is of typdumber and its value i®x0C.
TextEvent. DOM_VK_ESCAPE

This constant is of typdumber and its value i§x0D.
TextEvent.DOM_VK_HOME

This constant is of typdumber and its value i®x0E.
TextEvent. DOM_VK_INSERT

This constant is of typdumber and its value i®x0F.
TextEvent.DOM_VK_NUM_LOCK

This constant is of typdumber and its value i9x10.
TextEvent. DOM_VK_PAUSE

This constant is of typdumber and its value i§x11
TextEvent. DOM_VK_PRINTSCREEN

This constant is of typdumber and its value i§x12
TextEvent.DOM_VK_SCROLL_LOCK

This constant is of typdumber and its value i§x13
TextEvent.DOM_VK_LEFT

This constant is of typdumber and its value i9x14.
TextEvent.DOM_VK_RIGHT

This constant is of typdumber and its value i§x15.
TextEvent. DOM_VK_UP

This constant is of typdumber and its value i§x16.
TextEvent. DOM_VK_DOWN

This constant is of typdumber and its value i9x17.
TextEvent. DOM_VK_PAGE_DOWN

This constant is of typdumber and its value i§x18
TextEvent. DOM_VK_PAGE_UP

This constant is of typdumber and its value i§x19.
TextEvent. DOM_VK_F1

This constant is of typdumber and its value i®x1A.
TextEvent. DOM_VK_F2

This constant is of typdumber and its value i§x1B.

61

Appendix D: ECMA Script Language Binding

TextEvent.DOM_VK_F3

This constant is of typdumber and its value i9x1C.
TextEvent. DOM_VK_F4

This constant is of typdumber and its value i§x1D.
TextEvent.DOM_VK_F5

This constant is of typdumber and its value iOx1E.
TextEvent. DOM_VK_F6

This constant is of typdumber and its value i®x1F.
TextEvent. DOM_VK_F7

This constant is of typdumber and its value i§x20.
TextEvent. DOM_VK_F8

This constant is of typdumber and its value i§x21
TextEvent. DOM_VK_F9

This constant is of typdumber and its value i§x22
TextEvent.DOM_VK_F10

This constant is of typdumber and its value i9x23
TextEvent.DOM_VK_F11

This constant is of typdumber and its value i9x24.
TextEvent.DOM_VK_F12

This constant is of typdumber and its value i9x25.
TextEvent.DOM_VK_F13

This constant is of typdumber and its value i9x26.
TextEvent.DOM_VK_F14

This constant is of typdumber and its value i9x27.
TextEvent.DOM_VK_F15

This constant is of typdumber and its value i§x28
TextEvent.DOM_VK_F16

This constant is of typdumber and its value i9x29.
TextEvent.DOM_VK_F17

This constant is of typdumber and its value i®x2A.
TextEvent.DOM_VK_F18

This constant is of typdumber and its value i9x2B.
TextEvent.DOM_VK_F19

This constant is of typdumber and its value i9x2C.
TextEvent.DOM_VK_F20

This constant is of typdumber and its value i9x2D.
TextEvent.DOM_VK_F21

This constant is of typdumber and its value i9x2E.
TextEvent.DOM_VK_F22

This constant is of typdumber and its value i®x2F.
TextEvent.DOM_VK_F23

This constant is of typdumber and its value i§x30.
TextEvent.DOM_VK_F24

This constant is of typdumber and its value i§x31

ObjectTextEvent

62

Appendix D: ECMA Script Language Binding

TextEvent has the all the properties and methods ofttiesent object as well as the properties and
methods defined below.
TheTextEvent object has the following properties:
outputString
This property is of typ&tring.
keyVal
This property is of typ&lumber.
virtKeyVal
This property is of typ&lumber.
visibleOutputGenerated
This property is of typ8oolean
numPad
This property is of typ8oolean
The TextEvent object has the following methods:
checkModifier(modifer)
This method returnsBoolean
Themodifer parameter is of typdumber.
initTextEvent(typeArg, canBubbleArg, cancelableArg, viewArg, detailArg,
outputStringArg, keyValArg, virtKeyValArg, visibleOutputGeneratedArg, numPadArg)
This method has no retuvalue.
ThetypeArg parameter is of typ8tring.
ThecanBubbleArg parameter is of typBoolean
ThecancelableArgparameter is of typBoolean
TheviewArg parameter is AbstractView object.
ThedetailArg parameter is of typdumber.
TheoutputStringArg parameter is of typ8tring.
ThekeyValArg parameter is of typumber.
ThevirtKeyValArg parameter is of typRumber.
ThevisibleOutputGeneratedArg parameter is of typBoolean
ThenumPadArg parameter is of typBoolean
initModifier(modifier, value)
This method has no retuvalue.
Themodifier parameter is of typdumber.
Thevalue parameter is of typBoolean
Prototype ObjecMutationEvent
TheMutationEvent class has the following constants:
MutationEvent. MODIFICATION
This constant is of typdumber and its value i4.
MutationEvent. ADDITION
This constant is of typdumber and its value i&.
MutationEvent. REMOVAL
This constant is of typdumber and its value i8.
ObjectMutationEvent
MutationEvent has the all the properties and methods ofent object as well as the properties
and methods defined below.

63

Appendix D: ECMA Script Language Binding

TheMutationEvent object has the following properties:

relatedNode

This read-only property isMMode object.
prevValue

This read-only property is of tyftring.
newValue

This read-only property is of tyftring.
attrName

This read-only property is of tytring.
attrChange

This read-only property is of typéumber.

TheMutationEvent object has the following methods:

initMutationEvent(typeArg, canBubbleArg, cancelableArg, relatedNodeArg,
prevValueArg, newValueArg, attrNameArg, attrChangeArg)

This method has no retuvalue.

ThetypeArg parameter is of typ8tring.

ThecanBubbleArg parameter is of typBoolean

ThecancelableArgparameter is of typBoolean

TherelatedNodeArg parameter is Blode object.

TheprevValueArg parameter is of typ8tring.

ThenewValueArg parameter is of typ8tring.

TheattrNameArg parameter is of typ8tring.

TheattrChangeArg parameter is of typeumber.

64

Glossary

Glossary

Editors:
Arnaud Le Hors, W3C
Robert S. Sutor, IBM Research (for DOM Legl

Several of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions forinfionmation.

ancestor
An ancestor node of any node A is any node above A in a tree model of a document, where "above"
means "toward the root."

child
A child is an immediate descendant node of a node.

descendant
A descendant node of any node A is any node below A in a tree model of a document, where "below
means "away from the root."

DOM Level 0
The term "DOM Level 0" refers to a mix (not formally specified) of HTML document functionalities
offered by Netscape Navigator version 3.0 and Microsoft Internet Explorer version 3.0. In some
cases, attributes or methods have been included for reasons of backward compatibility with "DOM
Level 0"

live
An object islive if any change to the underlying document structure is reflected in the object.

sibling
Two nodes araiblings if they have the same parent node.

tokenized
The description given to various information items (for example, attribute values of various types,
but not including the StringType CDATA) after having been processed by the XML processor. The
process includes stripping leading and trailing white space, and replacing multiple space characters
by one. See the definition of tokenized type.

well-formed document
A document isvell-formed if it is tag valid and entities are limited to single elements (i.e., single
sub-trees).

XML name

SedXML namgin the XML specificatior([XML]).

65

http://www.w3.org/TR/2000/REC-xml-20001006#NT-Name

Glossary

66

References

References

For the latest version of any W3C specification please consult the[l8GfTechnicaReportkavailable
athttp://www.w3.0rg/TR.

F.1: Normative references

DOM Level 3Core
W3C (World Wide Web Consortiurfiocument Object Model Level 3 CoSpecificatioh August
2001. Available at http://www.w3.0rg/TR/2001/WD-DOM-Level-3-Core-20010605

ECMAScript
ISO (International Organization for Standardization). ISO/IEC 16262:FXOBIAScript Languagg
Available from ECMA (European Computer Manufacturers Association) at
http://www.ecma.ch/ecmal/STAND/ECMA-262.HTM

Java
Sun Microsystems Infthe Java Languagdgpecificatioh James Gosling, Bill Joy, and Guy Steele,
September 1996. Available at http://java.sun.com/docs/books/jls

OMGIDL
OMG (Object Managemertroup) IDL (Interface Definition Language) defined in The Common
Object Request Broker: Architecture and Specification, version 2.3.1, October 1999. Available from
http://www.omg.org

DOM Level 2Views
W3C (World Wide Web Consortiurfiocument Object Model Level 2 Viev@pecificatioh August
2001. Available at http://www.w3.0rg/TR/2000/REC-DOM-Level-2-Views-20001113

XML
W3C (World Wide Web Consortiurfgxtensible Markup Language (XMI)J October 2000.
Available athttp://www.w3.0rg/TR/2000/REC-xmI-20001006

67

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113
http://www.omg.org/
http://java.sun.com/docs/books/jls
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR/2001/WD-DOM-Level-3-Core-20010605/
http://www.w3.org/TR

F.1: Normative references

68

Index

l[addEventListengt?2, 17
lancestds, 10, 65

attrNamé

1L

ubbles

i

cancelable

34,65

createEvent

currentTarget

[descendatito, 65

|[DocumentEvennt

Index

ADDITION
AT TARGE

BUBBLING PHAS

CAPTURING PHAS

lientX]

[«]

[createEventGroyip

38, 67
[DOM_VK DELETH [DOM_VK_DOWN
[DOM_VK_ENTER [DOM_VK_ESCAPE
DOM VK _Fi(
DOM _VK_Fi4
DOM VK _F§
DOM VK F§
[DOM_VK_INSERT [DOM_VK_LEFT|
[DOM VK _LEFT CONTROl [DOM VK LEFT _META

69

tKey

ttrChangg

ii

utto

heckModifie

ient

[@]

trikKey

ispatchEvent

DOM Level(Q9, 22, 24, 38,
65

i

[DOM VK CAPS LOCK

OM VK F

OM VK F

T

DOM VK LEFT SHIF

o O O 1w o e o o O o
Q] |0 QO 1O |0 O |0 |10 O
< < < I L <
<l < <l < < I I 1< <
~ R ~ IA IR/ A OIA AN ~
— T T M T T | T m
m 1O =N R A E R Z
1 B

>

|

Index

[DOM_VK_NUM_LOCK] [DOM_VK_PAGE_DOWN [DOM_VK_PAGE_UPR

[DOM_VK_PAUSH [DOM_VK_PRINTSCREEN [DOM_VK_RIGHT]
[DOM_VK_RIGHT_ALT] [DOM_VK_RIGHT_CONTROIL [DOM_VK_RIGHT _META
[DOM_VK_RIGHT_SHIFT [DOM_VK_SCROLL_LOCK [DOM_VK_UNDEFINED
Even
[EventListendr [EventListenerLigt
[eventListenets [eventPhage [EventTarget
[EventTargetGrodp

handleEvent

intMouseEvert
[initMutationEventt initTextEven initUIEven
[[sSameEventGrolip ite

Java

14, 65

[MODIFICATION] [MouseEvert
MutationEvent

newValug numPap

OMGIDL outputString

70

Index

preventDefau)t

eTatedNode FelatedTarget REMOVAL

[removeEventListengk3, 17

E

siblind 10, 65 |stopPropagation

ftypd

[ONSPECIFIED EVENT TYPE ERR

irtKeyVval [visibleOutputGeneratéd

XML|65, 67 XML namel9, 19, 65

71

	Document Object Model †DOM‡ Level 3 Events Specification
	Version 1.0
	W3C Working Draft 23 August 2001
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	1. Document Object Model Events
	1.1. Overview of the DOM Level 3 Event Model
	1.1.1. Terminology

	1.2. Description of event flow
	1.2.1. Basic event flow
	1.2.2. Event capture
	1.2.3. Event bubbling
	1.2.4. Event cancelation

	1.3. Event listener registration
	1.3.1. Event registration interfaces
	1.3.2. EventListener Grouping
	1.3.3. Interaction with HTML 4.0 event listeners

	1.4. Event interface
	1.5. DocumentEvent interface
	1.6. Event module definitions
	1.6.1. User Interface event types
	1.6.2. Mouse event types
	1.6.3. Text events
	1.6.4. Mutation event types
	1.6.5. HTML event types

	1.7. Issues

	Appendix A: Changes
	A.1: Changes between DOM Level 2 Events and DOM Level 3 Events
	A.1.1: Changes to DOM Level 2 Events interfaces
	A.1.2: New Interfaces

	Appendix B: IDL Definitions
	
	events.idl:

	Appendix C: Java Language Binding
	
	org/w3c/dom/events/EventException.java:
	org/w3c/dom/events/EventTarget.java:
	org/w3c/dom/events/EventListener.java:
	org/w3c/dom/events/EventListenerList.java:
	org/w3c/dom/events/EventGroup.java:
	org/w3c/dom/events/EventTargetGroup.java:
	org/w3c/dom/events/DocumentEventGroup.java:
	org/w3c/dom/events/Event.java:
	org/w3c/dom/events/DocumentEvent.java:
	org/w3c/dom/events/UIEvent.java:
	org/w3c/dom/events/MouseEvent.java:
	org/w3c/dom/events/TextEvent.java:
	org/w3c/dom/events/MutationEvent.java:

	Appendix D: ECMA Script Language Binding
	Glossary
	References
	F.1: Normative references

	Index

