
Document Object Model (DOM) Level 3 Events
Specification

Version 1.0

W3C Working Draft 10 April 2001
This version:

http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010410
(PostScript file , PDF file , plain text , ZIP file , single HTML file)

Latest version:
http://www.w3.org/TR/DOM-Level-3-Events

Previous version:
http://www.w3.org/TR/2000/WD-DOM-Level-3-Events-20000901/

Editors:
Tom Pixley, Netscape Communications Corporation

Copyright ©2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Events Level 3, a platform- and language-neutral
interface that allows programs and scripts to dynamically access and update the content, structure and
style of documents. The Document Object Model Events Level 3 builds on the Document Object Model
Events Level 2.

Status of this document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. The latest status of this document series is maintained at the W3C.

This is a W3C Working Draft for review by W3C members and other interested parties.

It is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to use W3C Working Drafts as reference material or to cite them as other than "work in
progress". This is work in progress and does not imply endorsement by, or the consensus of, either W3C
or members of the DOM working group.

1

Document Object Model (DOM) Level 3 Events Specification

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/TR/2000/WD-DOM-Level-3-Events-20000901/
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010410/DOM3-Events.html
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010410/DOM3-Events.zip
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010410/DOM3-Events.txt
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010410/DOM3-Events.pdf
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010410/DOM3-Events.ps
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010410
http://www.w3.org/

Comments on this document are invited and are to be sent to the public mailing list www-dom@w3.org.
An archive is available at http://lists.w3.org/Archives/Public/www-dom/.

This document has been produced as part of the W3C DOM Activity . The authors of this document are
the DOM WG members.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Table of contents
................ 3Expanded Table of Contents
................... 5Copyright Notice

............... 91. Document Object Model Events

................ 19Appendix A: IDL Definitions

.............. 23Appendix B: Java Language Binding

............ 27Appendix C: ECMA Script Language Binding

.................... 31References

..................... 33Index

2

Table of contents

http://www.w3.org/TR/
http://www.w3.org/DOM/Activity.html
http://lists.w3.org/Archives/Public/www-dom/

Expanded Table of Contents
................ 3Expanded Table of Contents
................... 5Copyright Notice
........... 5W3C Document Copyright Notice and License
........... 6W3C Software Copyright Notice and License

............... 91. Document Object Model Events

............... 91.1. Level 3 Events Overview

............... 91.2. Level 3 Events Interfaces

................ 91.2.1. Key events

.............. 151.2.2. EventListener Grouping

................... 181.3. Issues

................ 19Appendix A: IDL Definitions

.............. 23Appendix B: Java Language Binding

............ 27Appendix C: ECMA Script Language Binding

.................... 31References

................ 311. Normative references

..................... 33Index

3

Expanded Table of Contents

4

Expanded Table of Contents

Copyright Notice
Copyright © 2001 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.

This document is published under the W3C Document Copyright Notice and License [p.5] . The bindings
within this document are published under the W3C Software Copyright Notice and License [p.6] . The
software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no longer be
’w3c.org’; in the case of the Java language binding, the package names can no longer be in the ’org.w3c’
package.

W3C Document Copyright Notice and License
Note: This section is a copy of the W3C Document Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-documents-19990405.

Copyright © 1994-2001 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
Software Notice. By using and/or copying this document, or the W3C document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice of the form:

"Copyright © [$date-of-document] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

5

Copyright Notice

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C Software Copyright Notice and License
Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2001 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/."

6

W3C Software Copyright Notice and License

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

7

W3C Software Copyright Notice and License

8

W3C Software Copyright Notice and License

1. Document Object Model Events
Editors

Tom Pixley, Netscape Communications Corporation

1.1. Level 3 Events Overview
The goal of the DOM Level 3 Events specification is to expand upon the functionality specified in the
DOM Level 2 Event Specification. The specification does this by adding new interfaces which are
complimentary to the interfaces defined in the DOM Level 2 Event Specification as well as adding new
event modules to those already defined.

This specification requires the previously designed interfaces in order to be functional. It is not designed
to be standalone. These interfaces are not designed to supercede the interfaces already provided but
instead to add to the functionality contained within them.

1.2. Level 3 Events Interfaces

1.2.1. Key events

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "KeyEvents" and "3.0" (respectively) to
determine whether or not the Mouse event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "UIEvents" feature defined in this
specification. Please, refer to additional information about conformance in the DOM Level 3 Core
specification .

Note: To create an instance of the KeyEvent [p.9] interface, use the feature string "KeyEvents" as the
value of the input parameter used with the createEvent method of the DocumentEvent interface.

Interface KeyEvent (introduced in DOM Level 3)

The KeyEvent interface provides specific contextual information associated with Key Events.

The detail attribute inherited from UIEvent is used to indicated the number of keypresses which
have occurred during key repetition. If this information is not available this value should be 0.

IDL Definition

// Introduced in DOM Level 3:
interface KeyEvent : UIEvent {

 // VirtualKeyCode
 const unsigned long DOM_VK_UNDEFINED = 0x0;
 const unsigned long DOM_VK_RIGHT_ALT = 0x01;
 const unsigned long DOM_VK_LEFT_ALT = 0x02;
 const unsigned long DOM_VK_LEFT_CONTROL = 0x03;
 const unsigned long DOM_VK_RIGHT_CONTROL = 0x04;

9

1. Document Object Model Events

 const unsigned long DOM_VK_LEFT_SHIFT = 0x05;
 const unsigned long DOM_VK_RIGHT_SHIFT = 0x06;
 const unsigned long DOM_VK_LEFT_META = 0x07;
 const unsigned long DOM_VK_RIGHT_META = 0x08;
 const unsigned long DOM_VK_CAPS_LOCK = 0x09;
 const unsigned long DOM_VK_DELETE = 0x0A;
 const unsigned long DOM_VK_END = 0x0B;
 const unsigned long DOM_VK_ENTER = 0x0C;
 const unsigned long DOM_VK_ESCAPE = 0x0D;
 const unsigned long DOM_VK_HOME = 0x0E;
 const unsigned long DOM_VK_INSERT = 0x0F;
 const unsigned long DOM_VK_NUM_LOCK = 0x10;
 const unsigned long DOM_VK_PAUSE = 0x11;
 const unsigned long DOM_VK_PRINTSCREEN = 0x12;
 const unsigned long DOM_VK_SCROLL_LOCK = 0x13;
 const unsigned long DOM_VK_LEFT = 0x14;
 const unsigned long DOM_VK_RIGHT = 0x15;
 const unsigned long DOM_VK_UP = 0x16;
 const unsigned long DOM_VK_DOWN = 0x17;
 const unsigned long DOM_VK_PAGE_DOWN = 0x18;
 const unsigned long DOM_VK_PAGE_UP = 0x19;
 const unsigned long DOM_VK_F1 = 0x1A;
 const unsigned long DOM_VK_F2 = 0x1B;
 const unsigned long DOM_VK_F3 = 0x1C;
 const unsigned long DOM_VK_F4 = 0x1D;
 const unsigned long DOM_VK_F5 = 0x1E;
 const unsigned long DOM_VK_F6 = 0x1F;
 const unsigned long DOM_VK_F7 = 0x20;
 const unsigned long DOM_VK_F8 = 0x21;
 const unsigned long DOM_VK_F9 = 0x22;
 const unsigned long DOM_VK_F10 = 0x23;
 const unsigned long DOM_VK_F11 = 0x24;
 const unsigned long DOM_VK_F12 = 0x25;
 const unsigned long DOM_VK_F13 = 0x26;
 const unsigned long DOM_VK_F14 = 0x27;
 const unsigned long DOM_VK_F15 = 0x28;
 const unsigned long DOM_VK_F16 = 0x29;
 const unsigned long DOM_VK_F17 = 0x2A;
 const unsigned long DOM_VK_F18 = 0x2B;
 const unsigned long DOM_VK_F19 = 0x2C;
 const unsigned long DOM_VK_F20 = 0x2D;
 const unsigned long DOM_VK_F21 = 0x2E;
 const unsigned long DOM_VK_F22 = 0x2F;
 const unsigned long DOM_VK_F23 = 0x30;
 const unsigned long DOM_VK_F24 = 0x31;

 attribute DOMString outputString;
 attribute unsigned long keyVal;
 attribute unsigned long virtKeyVal;
 attribute boolean inputGenerated;
 attribute boolean numPad;
 boolean checkModifier(in unsigned long modifer);
 void initKeyEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in unsigned short detailArg,

10

1.2.1. Key events

 in DOMString outputStringArg,
 in unsigned long keyValArg,
 in unsigned long virtKeyValArg,
 in boolean inputGeneratedArg,
 in boolean numPadArg);
 void initModifier(in unsigned long modifier,
 in boolean value);
};

Definition group VirtualKeyCode

An integer indicating which key was pressed.

Defined Constants
DOM_VK_CAPS_LOCK
DOM_VK_DELETE
DOM_VK_DOWN
DOM_VK_END
DOM_VK_ENTER
DOM_VK_ESCAPE
DOM_VK_F1

Constant for the F1 function key.
DOM_VK_F10

Constant for the F10 function key.
DOM_VK_F11

Constant for the F11 function key.
DOM_VK_F12

Constant for the F12 function key.
DOM_VK_F13

Constant for the F13 function key.
DOM_VK_F14

Constant for the F14 function key.
DOM_VK_F15

Constant for the F15 function key.
DOM_VK_F16

Constant for the F16 function key.
DOM_VK_F17

Constant for the F17 function key.
DOM_VK_F18

Constant for the F18 function key.
DOM_VK_F19

Constant for the F19 function key.
DOM_VK_F2

Constant for the F2 function key.
DOM_VK_F20

Constant for the F20 function key.
DOM_VK_F21

Constant for the F21 function key.

11

1.2.1. Key events

DOM_VK_F22
Constant for the F22 function key.

DOM_VK_F23
Constant for the F23 function key.

DOM_VK_F24
Constant for the F24 function key.

DOM_VK_F3
Constant for the F3 function key.

DOM_VK_F4
Constant for the F4 function key.

DOM_VK_F5
Constant for the F5 function key.

DOM_VK_F6
Constant for the F6 function key.

DOM_VK_F7
Constant for the F7 function key.

DOM_VK_F8
Constant for the F8 function key.

DOM_VK_F9
Constant for the F9 function key.

DOM_VK_HOME
DOM_VK_INSERT
DOM_VK_LEFT
DOM_VK_LEFT_ALT

This key is a modifier key
DOM_VK_LEFT_CONTROL

This key is a modifier key
DOM_VK_LEFT_META

This key is a modifier key
DOM_VK_LEFT_SHIFT

This key is a modifier key
DOM_VK_NUM_LOCK
DOM_VK_PAGE_DOWN
DOM_VK_PAGE_UP
DOM_VK_PAUSE
DOM_VK_PRINTSCREEN
DOM_VK_RIGHT
DOM_VK_RIGHT_ALT

This key is a modifier key
DOM_VK_RIGHT_CONTROL

This key is a modifier key
DOM_VK_RIGHT_META

This key is a modifier key
DOM_VK_RIGHT_SHIFT

This key is a modifier key

12

1.2.1. Key events

DOM_VK_SCROLL_LOCK
DOM_VK_UNDEFINED

Used for key events which do not have a virtual key code available.
DOM_VK_UP

Attributes
inputGenerated of type boolean

The inputGenerated attribute indicates whether the key event will normally cause
visible output. If the key event does not generate any visible output, such as the use of a
function key or the combination of certain modifier keys used in conjunction with another
key, then the value will be false. If visible output is normally generated by the key event
then the value will be true.
The value of inputGenerated does not guarantee the creation of a character. If a key
event causing visible output is cancelable it may be prevented from causing output. This
attribute is intended primarily to differentiate between keys events which may or may not
produce visible output depending on the system state.

keyVal of type unsigned long
The value of keyVal holds the value of the Unicode character associated with the
depressed key. If the key has no Unicode representation or no Unicode character is
available the value is 0..

numPad of type boolean
The numPad attribute indicates whether or not the key event was generated on the number
pad section of the keyboard. If the number pad was used to generate the key event the value
is true, otherwise the value is false.

outputString of type DOMString
outputString holds the value of the output generated by the key event. This may be a
single Unicode character or it may be a string. It may also be null in the case where no
output was generated by the key event.

virtKeyVal of type unsigned long
When the key associated with a key event is not representable via a Unicode character
virtKeyVale holds the virtual key code associated with the depressed key. If the key
has a Unicode representation or no virtual code is available the value is
DOM_VK_UNDEFINED.

Methods
checkModifier

The CheckModifier method is used to check the status of a single modifier key
associated with a KeyEvent. The identifier of the modifier in question is passed into the
CheckModifier function. If the modifier is triggered it will return true. If not, it will
return false.
The list of keys below represents the allowable modifier paramaters for this method.

DOM_VK_LEFT_ALT
DOM_VK_RIGHT_ALT
DOM_VK_LEFT_CONTROL
DOM_VK_RIGHT_CONTROL
DOM_VK_LEFT_SHIFT
DOM_VK_RIGHT_SHIFT
DOM_VK_META

13

1.2.1. Key events

Parameters
modifer of type unsigned long

The modifier which the user wishes to query.
Return Value

boolean The status of the modifier represented as a boolean.

No Exceptions
initKeyEvent

The initKeyEvent method is used to initialize the value of a MouseEvent created
through the DocumentEvent interface. This method may only be called before the
KeyEvent has been dispatched via the dispatchEvent method, though it may be called
multiple times during that phase if necessary. If called multiple times, the final invocation
takes precedence. This method has no effect if called after the event has been dispatched.
Parameters
typeArg of type DOMString

Specifies the event type.
canBubbleArg of type boolean

Specifies whether or not the event can bubble.
cancelableArg of type boolean

Specifies whether or not the event’s default action can be prevent.
viewArg of type views::AbstractView

Specifies the KeyEvent’s AbstractView.
detailArg of type unsigned short

Specifies the number of repeated keypresses, if available.
outputStringArg of type DOMString

Specifies the KeyEvent’s outputString attribute
keyValArg of type unsigned long

Specifies the KeyEvent’s keyValattribute
virtKeyValArg of type unsigned long

Specifies the KeyEvent’s virtKeyValattribute
inputGeneratedArg of type boolean

Specifies the KeyEvent’s inputGeneratedattribute
numPadArg of type boolean

Specifies the KeyEvent’s numPadattribute
No Return Value
No Exceptions

initModifier
The initModifier method is used to initialize the values of any modifiers associated
with a KeyEvent created through the DocumentEvent interface. This method may
only be called before the KeyEvent has been dispatched via the dispatchEvent method,
though it may be called multiple times during that phase if necessary. If called multiple
times with the same modifier property the final invocation takes precedence. Unless
explicitly give a value of true, all modifiers have a value of false. This method has no effect
if called after the event has been dispatched.
The list of keys below represents the allowable modifier paramaters for this method.

14

1.2.1. Key events

DOM_VK_LEFT_ALT
DOM_VK_RIGHT_ALT
DOM_VK_LEFT_CONTROL
DOM_VK_RIGHT_CONTROL
DOM_VK_LEFT_SHIFT
DOM_VK_RIGHT_SHIFT
DOM_VK_META

Parameters
modifier of type unsigned long

The modifier which the user wishes to initialize
value of type boolean

The new value of the modifier.
No Return Value
No Exceptions

There are two major groups of key events. The first contains the textEvent event. The textEvent
event indicates that text information has been entered, either in the form of printable characters or
non-printable text information such as modifier keys. textEvent events are not necessarily
accompanied by the events of the second major groups of key events, keydown and keyup.

textEvent
The textEvent event indicates that text information has been entered. The text information entered
can originate from a variety of sources. It could, for example, be a character resulting from a
keypress. It could also be a string resulting from an input method.

Bubbles: Yes
Cancelable: Yes

The keydown and keyup events comprise the second group of key events. These events are fired to
indicate the physical motion of the keys on the character generation device. Depending on the input
system being used, textEvent events may or may not be generated for each pair of keydown and
keyup events.

keydown
The keydown event occurs when a key is pressed down.

Bubbles: Yes
Cancelable: Yes

keyup
The keyup event occurs when a key is released.

Bubbles: Yes
Cancelable: Yes

15

1.2.1. Key events

1.2.2. EventListener Grouping

EventListener grouping is intended to allow groups of EventListeners to be registered which will
each have independent event flow within them which is not affected by changes to event flow in any other
group. This may be used to control events separately in multiple views on a document. It may also be used
to develop an application which uses events without the problem of possible interference by other
applications running within the same document.

The new interfaces added for EventListener grouping should not interfere with the interfaces established
in the Level 2 DOM. For purposes of interoperability between the Level 2 DOM Event Model and the
new interfaces added in Level 3 the implementation can be assumed to define a default EventGroup
[p.16] . This EventGroup is implicitly used in the registration of all EventListeners registered via
the Level 2 DOM Event Model methods which do not specify an EventGroup.

Interface EventGroup

The EventGroup interface functions primarily as a placeholder for separating the event flows when
there are multiple groups of listeners for a DOM tree.

EventListeners can be registered without an EventGroup using the existing EventTarget
interface, or with an associated EventGroup using the new EventTargetGroup [p.16]
interface. When an event is dispatched, it is dispatched independently to each EventGroup. In
particular, the stopPropagation method of the Event interface only stops propagation within
an EventListener’s associated EventGroup.

IDL Definition

interface EventGroup {
 boolean isSameEventGroup(in EventGroup eventGroup);
};

Methods
isSameEventGroup

This method checks if the supplied EventGroup is the same as the EventGroup upon
which the method is called.
Parameters
eventGroup of type EventGroup [p.16]

The EventGroup with which to check equality.
Return Value

boolean Returns true if the EventGroups are equal, else returns false.

No Exceptions
Interface EventTargetGroup

16

1.2.2. EventListener Grouping

The EventTargetGroup interface is implemented by the same set of objects that implement the
EventTarget interface, namely all EventTargets in in implementation which supports the
Event model and the EventGroup extension.

IDL Definition

interface EventTargetGroup {
 void addEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture,
 in EventGroup eventGroup);
 void removeEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture,
 in EventGroup eventGroup);
};

Methods
addEventListener

This method is equivalent to the addEventListener method of the EventTarget
interface, with the exception of the added eventGroup parameter. The listener is
registered with this EventGroup [p.16] associated.
Parameters
type of type DOMString
listener of type EventListener
useCapture of type boolean
eventGroup of type EventGroup [p.16]

The EventGroup to associate with the listener.
No Return Value
No Exceptions

removeEventListener
This method is equivalent to the removeEventListener method of the
EventTarget interface, with the exception of the added eventGroup parameter. The
listener registered with this EventGroup [p.16] associated is removed.
Parameters
type of type DOMString
listener of type EventListener
useCapture of type boolean
eventGroup of type EventGroup [p.16]

The EventGroup to associate with the listener.
No Return Value
No Exceptions

Interface DocumentEventGroup

The DocumentEventGroup interface provides a mechanism by which the user can create an
EventGroup [p.16] of a type supported by the implementation. It is expected that the
DocumentEvent interface will be implemented on the same object which implements the
Documentinterface in an implementation which supports the EventGroupextension.

17

1.2.2. EventListener Grouping

IDL Definition

interface DocumentEventGroup {
 EventGroup createEventGroup();
};

Methods
createEventGroup

This method creates a new EventGroup for use in the addEventListener and
removeEventListener methods of the EventTargetGroup interface.
Return Value

EventGroup [p.16] The newly created EventGroup.

No Parameters
No Exceptions

1.3. Issues
Issue getModifier:

Why is modifier state exposed through a method rather than an attribute?
Resolution: The modifier keys are not currently representable as bit flags. Setting them individually
would therefore require an attribute for each. Rather than bloat the api, especially given the addition
of left and right modifier keys, the modifiers are exposed via a single method.

Issue ISO-IEC-9995:
Have you coordinated this set with that defined by ISO/IEC 9995 which addresses various Keyboard
symbol issues.
Resolution: Upon examination of the ISO spec we found it to be insufficient to our needs. It does not
represent the left/right differentiation between some keys. It also lacks function keys.

Issue ISO-IEC-14755:
Review ISO/IEC 14755 "Input methods to enter characters from the repertoire of ISO/IEC 10646
with a keyboard or other input device" to insure that the treatment of input state is consistent with
that expected by current practice when it comes to platforms which support input methods.

Issue offsets:
(This issue is related with mouse events and Views?)
it would be useful if MouseEvent class had a property that would enable listners to learn about
coordinates of the event within the element’s own coordinate system.

Issue unicodeidents:
Some of the unicode chars are pretty esoteric (i.e. home, end, scroll lock). Do we want to adopt these
or will this be harder on users than defining them in the DOM Event Spec. About a dozen keys fit
this pattern.

Issue texteventwithoutchargeneration:
The results of the discussions on switching the keypress event out for the textEvent were
inconclusive on the question of whether to fire textEvents for non character generating keys input.
This includes modifier keys, function keys, etc.

18

1.3. Issues

Appendix A: IDL Definitions
This appendix contains the complete OMG IDL [OMGIDL] for the Level 3 Document Object Model
Events definitions.

The IDL files are also available as:
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010410/idl.zip

events.idl:
// File: events.idl

#ifndef _EVENTS_IDL_
#define _EVENTS_IDL_

#include "dom.idl"
#include "views.idl"

#pragma prefix "dom.w3c.org"
module events
{

 typedef dom::DOMString DOMString;
 typedef dom::EventListener EventListener;
 typedef dom::UIEvent UIEvent;

 interface EventGroup {
 boolean isSameEventGroup(in EventGroup eventGroup);
 };

 interface EventTargetGroup {
 void addEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture,
 in EventGroup eventGroup);
 void removeEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture,
 in EventGroup eventGroup);
 };

 interface DocumentEventGroup {
 EventGroup createEventGroup();
 };

 // Introduced in DOM Level 3:
 interface KeyEvent : UIEvent {

 // VirtualKeyCode
 const unsigned long DOM_VK_UNDEFINED = 0x0;
 const unsigned long DOM_VK_RIGHT_ALT = 0x01;
 const unsigned long DOM_VK_LEFT_ALT = 0x02;
 const unsigned long DOM_VK_LEFT_CONTROL = 0x03;
 const unsigned long DOM_VK_RIGHT_CONTROL = 0x04;

19

Appendix A: IDL Definitions

 const unsigned long DOM_VK_LEFT_SHIFT = 0x05;
 const unsigned long DOM_VK_RIGHT_SHIFT = 0x06;
 const unsigned long DOM_VK_LEFT_META = 0x07;
 const unsigned long DOM_VK_RIGHT_META = 0x08;
 const unsigned long DOM_VK_CAPS_LOCK = 0x09;
 const unsigned long DOM_VK_DELETE = 0x0A;
 const unsigned long DOM_VK_END = 0x0B;
 const unsigned long DOM_VK_ENTER = 0x0C;
 const unsigned long DOM_VK_ESCAPE = 0x0D;
 const unsigned long DOM_VK_HOME = 0x0E;
 const unsigned long DOM_VK_INSERT = 0x0F;
 const unsigned long DOM_VK_NUM_LOCK = 0x10;
 const unsigned long DOM_VK_PAUSE = 0x11;
 const unsigned long DOM_VK_PRINTSCREEN = 0x12;
 const unsigned long DOM_VK_SCROLL_LOCK = 0x13;
 const unsigned long DOM_VK_LEFT = 0x14;
 const unsigned long DOM_VK_RIGHT = 0x15;
 const unsigned long DOM_VK_UP = 0x16;
 const unsigned long DOM_VK_DOWN = 0x17;
 const unsigned long DOM_VK_PAGE_DOWN = 0x18;
 const unsigned long DOM_VK_PAGE_UP = 0x19;
 const unsigned long DOM_VK_F1 = 0x1A;
 const unsigned long DOM_VK_F2 = 0x1B;
 const unsigned long DOM_VK_F3 = 0x1C;
 const unsigned long DOM_VK_F4 = 0x1D;
 const unsigned long DOM_VK_F5 = 0x1E;
 const unsigned long DOM_VK_F6 = 0x1F;
 const unsigned long DOM_VK_F7 = 0x20;
 const unsigned long DOM_VK_F8 = 0x21;
 const unsigned long DOM_VK_F9 = 0x22;
 const unsigned long DOM_VK_F10 = 0x23;
 const unsigned long DOM_VK_F11 = 0x24;
 const unsigned long DOM_VK_F12 = 0x25;
 const unsigned long DOM_VK_F13 = 0x26;
 const unsigned long DOM_VK_F14 = 0x27;
 const unsigned long DOM_VK_F15 = 0x28;
 const unsigned long DOM_VK_F16 = 0x29;
 const unsigned long DOM_VK_F17 = 0x2A;
 const unsigned long DOM_VK_F18 = 0x2B;
 const unsigned long DOM_VK_F19 = 0x2C;
 const unsigned long DOM_VK_F20 = 0x2D;
 const unsigned long DOM_VK_F21 = 0x2E;
 const unsigned long DOM_VK_F22 = 0x2F;
 const unsigned long DOM_VK_F23 = 0x30;
 const unsigned long DOM_VK_F24 = 0x31;

 attribute DOMString outputString;
 attribute unsigned long keyVal;
 attribute unsigned long virtKeyVal;
 attribute boolean inputGenerated;
 attribute boolean numPad;
 boolean checkModifier(in unsigned long modifer);
 void initKeyEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in unsigned short detailArg,

20

events.idl:

 in DOMString outputStringArg,
 in unsigned long keyValArg,
 in unsigned long virtKeyValArg,
 in boolean inputGeneratedArg,
 in boolean numPadArg);
 void initModifier(in unsigned long modifier,
 in boolean value);
 };
};

#endif // _EVENTS_IDL_

21

events.idl:

22

events.idl:

Appendix B: Java Language Binding
This appendix contains the complete Java [Java] bindings for the Level 3 Document Object Model Events.

The Java files are also available as
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010410/java-binding.zip

org/w3c/dom/events/KeyEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.views.AbstractView;
import org.w3c.dom.UIEvent;

public interface KeyEvent extends UIEvent {
 // VirtualKeyCode
 public static final int DOM_VK_UNDEFINED = 0x0;
 public static final int DOM_VK_RIGHT_ALT = 0x01;
 public static final int DOM_VK_LEFT_ALT = 0x02;
 public static final int DOM_VK_LEFT_CONTROL = 0x03;
 public static final int DOM_VK_RIGHT_CONTROL = 0x04;
 public static final int DOM_VK_LEFT_SHIFT = 0x05;
 public static final int DOM_VK_RIGHT_SHIFT = 0x06;
 public static final int DOM_VK_LEFT_META = 0x07;
 public static final int DOM_VK_RIGHT_META = 0x08;
 public static final int DOM_VK_CAPS_LOCK = 0x09;
 public static final int DOM_VK_DELETE = 0x0A;
 public static final int DOM_VK_END = 0x0B;
 public static final int DOM_VK_ENTER = 0x0C;
 public static final int DOM_VK_ESCAPE = 0x0D;
 public static final int DOM_VK_HOME = 0x0E;
 public static final int DOM_VK_INSERT = 0x0F;
 public static final int DOM_VK_NUM_LOCK = 0x10;
 public static final int DOM_VK_PAUSE = 0x11;
 public static final int DOM_VK_PRINTSCREEN = 0x12;
 public static final int DOM_VK_SCROLL_LOCK = 0x13;
 public static final int DOM_VK_LEFT = 0x14;
 public static final int DOM_VK_RIGHT = 0x15;
 public static final int DOM_VK_UP = 0x16;
 public static final int DOM_VK_DOWN = 0x17;
 public static final int DOM_VK_PAGE_DOWN = 0x18;
 public static final int DOM_VK_PAGE_UP = 0x19;
 public static final int DOM_VK_F1 = 0x1A;
 public static final int DOM_VK_F2 = 0x1B;
 public static final int DOM_VK_F3 = 0x1C;
 public static final int DOM_VK_F4 = 0x1D;
 public static final int DOM_VK_F5 = 0x1E;
 public static final int DOM_VK_F6 = 0x1F;
 public static final int DOM_VK_F7 = 0x20;
 public static final int DOM_VK_F8 = 0x21;
 public static final int DOM_VK_F9 = 0x22;
 public static final int DOM_VK_F10 = 0x23;
 public static final int DOM_VK_F11 = 0x24;
 public static final int DOM_VK_F12 = 0x25;

23

Appendix B: Java Language Binding

 public static final int DOM_VK_F13 = 0x26;
 public static final int DOM_VK_F14 = 0x27;
 public static final int DOM_VK_F15 = 0x28;
 public static final int DOM_VK_F16 = 0x29;
 public static final int DOM_VK_F17 = 0x2A;
 public static final int DOM_VK_F18 = 0x2B;
 public static final int DOM_VK_F19 = 0x2C;
 public static final int DOM_VK_F20 = 0x2D;
 public static final int DOM_VK_F21 = 0x2E;
 public static final int DOM_VK_F22 = 0x2F;
 public static final int DOM_VK_F23 = 0x30;
 public static final int DOM_VK_F24 = 0x31;

 public String getOutputString();
 public void setOutputString(String outputString);

 public int getKeyVal();
 public void setKeyVal(int keyVal);

 public int getVirtKeyVal();
 public void setVirtKeyVal(int virtKeyVal);

 public boolean getInputGenerated();
 public void setInputGenerated(boolean inputGenerated);

 public boolean getNumPad();
 public void setNumPad(boolean numPad);

 public boolean checkModifier(int modifer);

 public void initKeyEvent(String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 AbstractView viewArg,
 short detailArg,
 String outputStringArg,
 int keyValArg,
 int virtKeyValArg,
 boolean inputGeneratedArg,
 boolean numPadArg);

 public void initModifier(int modifier,
 boolean value);

}

org/w3c/dom/events/EventGroup.java:
package org.w3c.dom.events;

public interface EventGroup {
 public boolean isSameEventGroup(EventGroup eventGroup);

}

24

org/w3c/dom/events/EventGroup.java:

org/w3c/dom/events/EventTargetGroup.java:
package org.w3c.dom.events;

import org.w3c.dom.EventListener;

public interface EventTargetGroup {
 public void addEventListener(String type,
 EventListener listener,
 boolean useCapture,
 EventGroup eventGroup);

 public void removeEventListener(String type,
 EventListener listener,
 boolean useCapture,
 EventGroup eventGroup);

}

org/w3c/dom/events/DocumentEventGroup.java:
package org.w3c.dom.events;

public interface DocumentEventGroup {
 public EventGroup createEventGroup();

}

25

org/w3c/dom/events/EventTargetGroup.java:

26

org/w3c/dom/events/DocumentEventGroup.java:

Appendix C: ECMA Script Language Binding
This appendix contains the complete ECMA Script [ECMAScript] binding for the Level 3 Document
Object Model Events definitions.

Prototype Object KeyEvent
The KeyEvent class has the following constants:

KeyEvent.DOM_VK_UNDEFINED
This constant is of type Number and its value is 0x0.

KeyEvent.DOM_VK_RIGHT_ALT
This constant is of type Number and its value is 0x01.

KeyEvent.DOM_VK_LEFT_ALT
This constant is of type Number and its value is 0x02.

KeyEvent.DOM_VK_LEFT_CONTROL
This constant is of type Number and its value is 0x03.

KeyEvent.DOM_VK_RIGHT_CONTROL
This constant is of type Number and its value is 0x04.

KeyEvent.DOM_VK_LEFT_SHIFT
This constant is of type Number and its value is 0x05.

KeyEvent.DOM_VK_RIGHT_SHIFT
This constant is of type Number and its value is 0x06.

KeyEvent.DOM_VK_LEFT_META
This constant is of type Number and its value is 0x07.

KeyEvent.DOM_VK_RIGHT_META
This constant is of type Number and its value is 0x08.

KeyEvent.DOM_VK_CAPS_LOCK
This constant is of type Number and its value is 0x09.

KeyEvent.DOM_VK_DELETE
This constant is of type Number and its value is 0x0A.

KeyEvent.DOM_VK_END
This constant is of type Number and its value is 0x0B.

KeyEvent.DOM_VK_ENTER
This constant is of type Number and its value is 0x0C.

KeyEvent.DOM_VK_ESCAPE
This constant is of type Number and its value is 0x0D.

KeyEvent.DOM_VK_HOME
This constant is of type Number and its value is 0x0E.

KeyEvent.DOM_VK_INSERT
This constant is of type Number and its value is 0x0F.

KeyEvent.DOM_VK_NUM_LOCK
This constant is of type Number and its value is 0x10.

KeyEvent.DOM_VK_PAUSE
This constant is of type Number and its value is 0x11.

KeyEvent.DOM_VK_PRINTSCREEN
This constant is of type Number and its value is 0x12.

27

Appendix C: ECMA Script Language Binding

KeyEvent.DOM_VK_SCROLL_LOCK
This constant is of type Number and its value is 0x13.

KeyEvent.DOM_VK_LEFT
This constant is of type Number and its value is 0x14.

KeyEvent.DOM_VK_RIGHT
This constant is of type Number and its value is 0x15.

KeyEvent.DOM_VK_UP
This constant is of type Number and its value is 0x16.

KeyEvent.DOM_VK_DOWN
This constant is of type Number and its value is 0x17.

KeyEvent.DOM_VK_PAGE_DOWN
This constant is of type Number and its value is 0x18.

KeyEvent.DOM_VK_PAGE_UP
This constant is of type Number and its value is 0x19.

KeyEvent.DOM_VK_F1
This constant is of type Number and its value is 0x1A.

KeyEvent.DOM_VK_F2
This constant is of type Number and its value is 0x1B.

KeyEvent.DOM_VK_F3
This constant is of type Number and its value is 0x1C.

KeyEvent.DOM_VK_F4
This constant is of type Number and its value is 0x1D.

KeyEvent.DOM_VK_F5
This constant is of type Number and its value is 0x1E.

KeyEvent.DOM_VK_F6
This constant is of type Number and its value is 0x1F.

KeyEvent.DOM_VK_F7
This constant is of type Number and its value is 0x20.

KeyEvent.DOM_VK_F8
This constant is of type Number and its value is 0x21.

KeyEvent.DOM_VK_F9
This constant is of type Number and its value is 0x22.

KeyEvent.DOM_VK_F10
This constant is of type Number and its value is 0x23.

KeyEvent.DOM_VK_F11
This constant is of type Number and its value is 0x24.

KeyEvent.DOM_VK_F12
This constant is of type Number and its value is 0x25.

KeyEvent.DOM_VK_F13
This constant is of type Number and its value is 0x26.

KeyEvent.DOM_VK_F14
This constant is of type Number and its value is 0x27.

KeyEvent.DOM_VK_F15
This constant is of type Number and its value is 0x28.

KeyEvent.DOM_VK_F16
This constant is of type Number and its value is 0x29.

28

Appendix C: ECMA Script Language Binding

KeyEvent.DOM_VK_F17
This constant is of type Number and its value is 0x2A.

KeyEvent.DOM_VK_F18
This constant is of type Number and its value is 0x2B.

KeyEvent.DOM_VK_F19
This constant is of type Number and its value is 0x2C.

KeyEvent.DOM_VK_F20
This constant is of type Number and its value is 0x2D.

KeyEvent.DOM_VK_F21
This constant is of type Number and its value is 0x2E.

KeyEvent.DOM_VK_F22
This constant is of type Number and its value is 0x2F.

KeyEvent.DOM_VK_F23
This constant is of type Number and its value is 0x30.

KeyEvent.DOM_VK_F24
This constant is of type Number and its value is 0x31.

Object KeyEvent
KeyEvent has the all the properties and methods of the UIEvent object as well as the properties and
methods defined below.
The KeyEvent object has the following properties:

outputString
This property is of type String.

keyVal
This property is of type Number.

virtKeyVal
This property is of type Number.

inputGenerated
This property is of type Boolean.

numPad
This property is of type Boolean.

The KeyEvent object has the following methods:
checkModifier(modifer)

This method returns a Boolean.
The modifer parameter is of type Number.

initKeyEvent(typeArg, canBubbleArg, cancelableArg, viewArg, detailArg,
outputStringArg, keyValArg, virtKeyValArg, inputGeneratedArg, numPadArg)

This method has no return value.
The typeArg parameter is of type String.
The canBubbleArg parameter is of type Boolean.
The cancelableArg parameter is of type Boolean.
The viewArg parameter is a AbstractView object.
The detailArg parameter is of type Number.
The outputStringArg parameter is of type String.
The keyValArg parameter is of type Number.
The virtKeyValArg parameter is of type Number.
The inputGeneratedArg parameter is of type Boolean.

29

Appendix C: ECMA Script Language Binding

The numPadArg parameter is of type Boolean.
initModifier(modifier, value)

This method has no return value.
The modifier parameter is of type Number.
The value parameter is of type Boolean.

Object EventGroup
The EventGroup object has the following methods:

isSameEventGroup(eventGroup)
This method returns a Boolean.
The eventGroup parameter is a EventGroup object.

Object EventTargetGroup
The EventTargetGroup object has the following methods:

addEventListener(type, listener, useCapture, eventGroup)
This method has no return value.
The type parameter is of type String.
The listener parameter is a EventListener object.
The useCapture parameter is of type Boolean.
The eventGroup parameter is a EventGroup object.

removeEventListener(type, listener, useCapture, eventGroup)
This method has no return value.
The type parameter is of type String.
The listener parameter is a EventListener object.
The useCapture parameter is of type Boolean.
The eventGroup parameter is a EventGroup object.

Object DocumentEventGroup
The DocumentEventGroup object has the following methods:

createEventGroup()
This method returns a EventGroup object.

30

Appendix C: ECMA Script Language Binding

References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

D.1: Normative references
ECMAScript

ECMA (European Computer Manufacturers Association) ECMAScript Language Specification.
Available at http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

Java
Sun Microsystems Inc. The Java Language Specification, James Gosling, Bill Joy, and Guy Steele,
September 1996. Available at http://java.sun.com/docs/books/jls

OMGIDL
OMG (Object Management Group) IDL (Interface Definition Language) defined in The Common
Object Request Broker: Architecture and Specification, version 2.3.1, October 1999. Available from
http://www.omg.org

31

References

http://www.omg.org/
http://java.sun.com/docs/books/jls
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR

32

D.1: Normative references

Index
addEventListener

checkModifier createEventGroup

DocumentEventGroup DOM_VK_CAPS_LOCK DOM_VK_DELETE

DOM_VK_DOWN DOM_VK_END DOM_VK_ENTER

DOM_VK_ESCAPE DOM_VK_F1 DOM_VK_F10

DOM_VK_F11 DOM_VK_F12 DOM_VK_F13

DOM_VK_F14 DOM_VK_F15 DOM_VK_F16

DOM_VK_F17 DOM_VK_F18 DOM_VK_F19

DOM_VK_F2 DOM_VK_F20 DOM_VK_F21

DOM_VK_F22 DOM_VK_F23 DOM_VK_F24

DOM_VK_F3 DOM_VK_F4 DOM_VK_F5

DOM_VK_F6 DOM_VK_F7 DOM_VK_F8

DOM_VK_F9 DOM_VK_HOME DOM_VK_INSERT

DOM_VK_LEFT DOM_VK_LEFT_ALT DOM_VK_LEFT_CONTROL

DOM_VK_LEFT_META DOM_VK_LEFT_SHIFT DOM_VK_NUM_LOCK

DOM_VK_PAGE_DOWN DOM_VK_PAGE_UP DOM_VK_PAUSE

DOM_VK_PRINTSCREEN DOM_VK_RIGHT DOM_VK_RIGHT_ALT

DOM_VK_RIGHT_CONTROL DOM_VK_RIGHT_META DOM_VK_RIGHT_SHIFT

DOM_VK_SCROLL_LOCK DOM_VK_UNDEFINED DOM_VK_UP

ECMAScript EventGroup EventTargetGroup

initKeyEvent initModifier inputGenerated

isSameEventGroup

33

Index

Java

KeyEvent keyVal

numPad

OMGIDL outputString

removeEventListener

virtKeyVal

34

Index

	Document Object Model †DOM‡ Level 3 Events Specification
	Version 1.0
	W3C Working Draft 10 April 2001
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	1. Document Object Model Events
	1.1. Level 3 Events Overview
	1.2. Level 3 Events Interfaces
	1.2.1. Key events
	1.2.2. EventListener Grouping

	1.3. Issues

	Appendix A: IDL Definitions
	
	events.idl:

	Appendix B: Java Language Binding
	
	org/w3c/dom/events/KeyEvent.java:
	org/w3c/dom/events/EventGroup.java:
	org/w3c/dom/events/EventTargetGroup.java:
	org/w3c/dom/events/DocumentEventGroup.java:

	Appendix C: ECMA Script Language Binding
	References
	D.1: Normative references

	Index

