
Techniques for User Agent Accessibility
Guidelines 1.0

W3C Working Draft 10 March 2000
This version:

http://www.w3.org/TR/2000/WD-UAAG10-TECHS-20000310
(plain text, gzip PostScript, PDF, gzip tar file of HTML, zip archive of HTML)

Latest version:
http://www.w3.org/TR/UAAG10-TECHS

Previous version:
http://www.w3.org/TR/2000/WD-UAAG10-TECHS-20000128

Editors:
Jon Gunderson, University of Illinois at Urbana-Champaign
Ian Jacobs, W3C

Copyright ©1999 - 2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C
liability, trademark, document use and software licensing rules apply.

Abstract
This document provides techniques for satisfying the checkpoints defined in "User
Agent Accessibility Guidelines 1.0" [UAAG10] . These techniques cover the
accessibility of user interfaces, content rendering, application programming
interfaces (APIs), and languages such as the Hypertext Markup Language (HTML),
Cascading Style Sheets (CSS) and the Synchronized Multimedia Integration
Language (SMIL).

This document is part of a series of accessibility documents published by the Web
Accessibility Initiative (WAI) of the World Wide Web Consortium (W3C).

Status of this document
This section describes the status of this document at the time of its publication.
Other documents may supersede this document. The latest status of this document
series is maintained at the W3C.

 5 Jun 2000 14:181

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/WAI/
http://www.w3.org/WAI/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.uiuc.edu/
http://www.w3.org/TR/2000/WD-UAAG10-TECHS-20000128
http://www.w3.org/TR/UAAG10-TECHS
http://www.w3.org/TR/2000/WD-UAAG10-TECHS-20000310/uaag10-tech.zip
http://www.w3.org/TR/2000/WD-UAAG10-TECHS-20000310/uaag10-tech.tgz
http://www.w3.org/TR/2000/WD-UAAG10-TECHS-20000310/uaag10-tech.pdf
http://www.w3.org/TR/2000/WD-UAAG10-TECHS-20000310/uaag10-tech.ps.gz
http://www.w3.org/TR/2000/WD-UAAG10-TECHS-20000310/uaag10-tech.txt
http://www.w3.org/TR/2000/WD-UAAG10-TECHS-20000310
http://www.w3.org/

This is the 10 March 2000 Working Draft of Techniques for User Agent
Accessibility Guidelines 1.0, for review by W3C Members and other interested
parties. It is a draft document and may be updated, replaced or obsoleted by other
documents at any time. It is inappropriate to use W3C Working Drafts as reference
material or to cite them as other than "work in progress". This is work in progress
and does not imply endorsement by, or the consensus of, either W3C or participants
in the WAI User Agent (UA) Working Group.

While User Agent Accessibility Guidelines 1.0 strives to be a stable document (as
a W3C Recommendation), the current document is expected to evolve as
technologies change and content developers discover more effective techniques for
designing accessible Web sites and pages.

Please send comments about this document, including suggestions for additional
techniques, to the public mailing list w3c-wai-ua@w3.org (public archives).

This document has been produced as part of the Web Accessibility Initiative. The
goals of the User Agent Working Group are described in the charter. A list of the
Working Group participants is available.

A list of current W3C Recommendations and other technical documents can be
found at http://www.w3.org/TR.

2 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR
http://www.w3.org/WAI/UA/wai-ua-members.html
http://www.w3.org/WAI/UA/wai-ua-charter.html
http://www.w3.org/WAI/UA
http://www.w3.org/WAI
http://lists.w3.org/Archives/Public/w3c-wai-ua/

Table of contents
................. 1Abstract
.............. 1Status of this document
................ 51 Introduction
......... 51.1 How the techniques are organized
............. 51.2 Related resources
............ 51.3 Document conventions
............... 51.4 Priorities
........... 72 User agent accessibility guidelines
...... 71. Support input and output device-independence.
......... 102. Ensure user access to all content.

3. Allow the user to turn off rendering or stop behavior that may reduce
............... 16accessibility.
........... 194. Ensure user control of styles.
..... 245. Observe system conventions and standard interfaces.
......... 286. Implement accessible specifications.
.......... 307. Provide navigation mechanisms.
.............. 358. Orient the user.
...... 429. Notify the user of content and viewport changes.
........ 4510. Allow configuration and customization.
..... 4911. Provide accessible product documentation and help.
.............. 553 Accessibility topics
............. 563.1 Access to content
............. 593.2 User control of style
.............. 603.3 Link techniques
.............. 623.4 List techniques
............. 633.5 Table techniques
............ 673.6 Image map techniques
............. 683.7 Frame techniques
............. 733.8 Form techniques
.......... 763.9 Generated content techniques
.......... 773.10 Script and applet techniques
.......... 783.11 Input configuration techniques
......... 803.12 Synthesized speech techniques
.... 814 Appendix: Accessibility features of some operating systems

5 Appendix: Loading assistive technologies for access to the document object
.................. 84model
.............. 916 Appendix: Glossary
............... 997 Acknowledgments
................ 1008 References
................ 1029 Resources
...... 1029.1 Operating system and programming guidelines

 5 Jun 2000 14:183

Techniques for User Agent Accessibility Guidelines 1.0

........... 1049.2 User agents and other tools

............ 1059.3 Accessibility resources

............ 1059.4 Standards resources

4 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

1 Introduction
This document provides some suggestions for satisfying the requirements of the
"User Agent Accessibility Guidelines 1.0" [UAAG10] . The techniques listed in this
document are not required for conformance to the Guidelines. These techniques are
not necessarily the only way of satisfying the checkpoint, nor are they necessarily a
definitive set of requirements for satisfying a checkpoint.

1.1 How the techniques are organized
Section 2 of this document reproduces the guidelines and checkpoints of the User
Agent Accessibility Guidelines 1.0 [UAAG10] . Each checkpoint definition includes a
link to the checkpoint definition in [UAAG10] . Each checkpoint definition is followed
by a list of techniques, information about related resources, and references to the
accessibility topics in section 3. These accessibility topics may apply to more than
one checkpoint and so have been split off into stand-alone sections.

Note. Some of the techniques in this document are appropriate for assistive
technologies.

1.2 Related resources
"Techniques for User Agent Accessibility Guidelines 1.0" and the Guidelines
[UAAG10] are part of a series of accessibility guidelines published by the Web
Accessibility Initiative (WAI). The series also includes "Web Content Accessibility
Guidelines 1.0" [WCAG10] (and techniques [WCAG10-TECHS]) and "Authoring
Tool Accessibility Guidelines 1.0" [ATAG10] (and techniques [ATAG10-TECHS]).

1.3 Document conventions
The following editorial conventions are used throughout this document:

HTML element names are in uppercase letters (e.g., H1, BLOCKQUOTE,
TABLE, etc.)
HTML attribute names are quoted in lowercase letters (e.g., "alt", "title", "class",
etc.)

1.4 Priorities
Each checkpoint in this document is assigned a priority that indicates its importance
for users with disabilities.

[Priority 1]
This checkpoint must be satisfied by user agents, otherwise one or more
groups of users with disabilities will find it impossible to access the Web.
Satisfying this checkpoint is a basic requirement for enabling some people to
access the Web.

 5 Jun 2000 14:185

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/WAI/
http://www.w3.org/WAI/

[Priority 2]
This checkpoint should be satisfied by user agents, otherwise one or more
groups of users with disabilities will find it difficult to access the Web. Satisfying
this checkpoint will remove significant barriers to Web access for some people.

[Priority 3]
This checkpoint may be satisfied by user agents to make it easier for one or
more groups of users with disabilities to access information. Satisfying this
checkpoint will improve access to the Web for some people.

6 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

2 User agent accessibility guidelines
This section lists each checkpoint of User Agent Accessibility Guidelines 1.0
[UAAG10] along with some possible techniques for satisfying it. Each checkpoint
also links to more general accessibility topics where appropriate.

Guideline 1. Support input and output device-independence.
Checkpoints for user interface accessibility:

1.1 Ensure that every functionality available through the user interface is also
available through every input device API supported by the user agent. Excluded
from this requirement are functionalities that are part of the input device API itself
(e.g., text input for the keyboard API, pointer motion for the pointer API, etc.)
[Priority 1] (Checkpoint 1.1)

Note. The device-independence required by this checkpoint applies to
functionalities described by the other checkpoints in this document (e.g.,
installation, documentation, user agent user interface configuration, etc.). This
checkpoint does not require user agents to use all operating system input
device APIs , only to make the software accessible through those they do use.

Techniques:

Ensure that the user can do the following with all supported input devices:

Select content and operate on it. For example, if the user can select text
with the mouse and make that text the content of a new link by pushing a
button, they must also be able to do so through the keyboard and other
supported devices. Other operations include cut, copy, and paste.
Set the focus . Ensure that software may be installed, uninstalled, and
updated in a device-independent manner.
Navigate content.
Navigate links (refer to link techniques).
Use the graphical user interface menus.
Fill out forms.
Access documentation.
Configure the software.
Install, uninstall, and update the user agent software.

Ensure that people with disabilities are involved in the design and testing of
the software.

1.2 Use the standard input and output device APIs of the operating system.
[Priority 1] (Checkpoint 1.2)

Do not bypass the standard output APIs when rendering information (e.g., for
reasons of speed, efficiency, etc.). For example, do not bypass standard APIs
to manipulate the memory associated with rendered content , since assistive
technologies monitor rendering through the APIs .

 5 Jun 2000 14:187

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-standard-device-api
http://www.w3.org/TR/UAAG10/#tech-device-independent-ui

Techniques:

Operating system and application frameworks provide standard
mechanisms for communication with input devices. In the case of Windows,
OS/2, the X Windows System, and Mac OS, the window manager provides
Graphical User Interface (GUI) applications with this information through
the messaging queue. In the case of non-GUI applications, the compiler
run-time libraries provide standard mechanisms for receiving keyboard
input in the case of desktop operating systems. Should you use an
application framework such as the Microsoft Foundation Classes, the
framework used must support the same standard input mechanisms.
Do not communicate directly with an input device; this may circumvent
system messaging. For instance, in Windows, do not open the keyboard
device driver directly. It is often the case that the windowing system needs
to change the form and method for processing standard input mechanisms
for proper application coexistence within the user interface framework.
Do not implement your own input device event queue mechanism; this may
circumvent system messaging. Some assistive technologies use standard
system facilities for simulating keyboard and mouse events. From the
application’s perspective, these events are no different than those
generated by the user’s actions. The Journal Playback Hooks (in both OS/2
and Windows) is one example of an application that feeds the standard
event queues.
Operating system and application frameworks provide standard
mechanisms for using standard output devices. In the case of common
desktop operating systems such as Windows, OS/2, and Mac OS, standard
API are provided for writing to the display and the multimedia subsystems.
Do not render text in the form of a bitmap before transferring to the screen,
since some screen readers rely on the user agent’s offscreen model .
Common operating system 2D graphics engines and drawing libraries
provide functions for drawing text to the screen. Examples of this are the
Graphics Device Interface (GDI) for Windows, Graphics Programming
Interface (GPI) for OS/2, and for the X Windows System or Motif it is the X
library (XLIB).
Do not communicate directly with an output device.
Do not draw directly to the video frame buffer.
Do not provide your own mechanism for generating pre-defined system
sounds.
When writing textual information in a GUI operating system, use standard
operating system APIs for drawing text.
Use operating system resources for rendering audio information. When
doing so, do not take exclusive control of system audio resources. This
could prevent an assistive technology such as a screen reader from
speaking if they use software text-to-speech conversion. Also, in operating
systems like Windows, a set of standard audio sound resources are
provided to support standard sounds such as alerts. These preset sounds

8 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

are used to activate SoundSentry graphical cue when a problem occurs;
this benefits users with hearing disabilities. These queues may be
manifested by flashing the desktop, active caption bar, or active window. It
is important to use the standard mechanisms to generate audio feedback
so that operating system or special assistive technologies can add
additional functionality for the hearing disabled.
Enhance the functionality of standard system controls to improve
accessibility where none is provided by responding to standard keyboard
input mechanisms. For example provide keyboard navigation to menus and
dialog box controls in the Apple Macintosh operating system. Another
example is the Java Foundation Classes, where internal frames do not
provide a keyboard mechanism to give them focus. In this case, you will
need to add keyboard activation through the standard keyboard activation
facility for Abstract Window Toolkit components.

1.3 Ensure that the user can interact with all active elements in a
device-independent manner. [Priority 1] (Checkpoint 1.3)

For example, users who are blind or have physical disabilities must be able to
activate text links, the links in a client-side image map, and form controls
without a pointing device. Note. This checkpoint is an important special case of
checkpoint 1.1.

Techniques:

Refer to checkpoint 1.1 and checkpoint 1.5.
Refer to image map techniques .
In the "Document Object Model (DOM) Level 2 Specification" [DOM2] , all
elements may have associated behaviors. Assistive technologies should be
able to activate these elements through the DOM. For example, a DOM
’focusin’ event may cause a JavaScript function to construct a pull-down
menu. Allowing programmatic activation of this function will allow users to
operate the menu through speech input (which benefits users of voice
browsers in addition to assistive technology users). Note that, for a given
element, the same event may trigger more than one event handler, and
assistive technologies must be able to activate each of them. Descriptive
information about handlers can allow assistive technologies to select the
most important functions for activation. This is possible in the Java
Accessibility API [JAVAAPI] , which provides an an AccessibleAction Java
interface. This interface provides a list of actions and descriptions that
enable selective activation. Refer also to checkpoint 5.3.

1.4 Ensure that every functionality available through the user interface is also
available through the standard keyboard API . [Priority 1] (Checkpoint 1.4)

Note. This checkpoint is an important special case of checkpoint 1.1. The
comment about low-level functionalities in checkpoint 1.1 applies to this
checkpoint as well. Refer also to checkpoint 10.8.

 5 Jun 2000 14:189

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-keyboard-access
http://www.w3.org/TR/UAAG10/#tech-device-independent-active

Techniques:

Apply the techniques for checkpoint 1.1 to the keyboard.
Account for author-supplied keyboard shortcuts, such as those specified by
"accesskey" attribute in HTML 4.01 ([HTML4] , section 17.11.2).
Allow the user to trigger event handlers (e.g., mouseover, mouseout, click,
etc.) from the keyboard.
Test that all user interface components may be operable by software or
devices that emulate a keyboard. Use SerialKeys and/or voice recognition
software to test keyboard event emulation.

1.5 Ensure every non-text message (e.g., prompt, alert, etc.) available through the
user interface also has a text equivalent in the user interface. [Priority 1]
(Checkpoint 1.5)

Note. For example, if the user interface provides access to a functionality
through a graphical button, ensure that the user interface also provides access
to the same functionality through a control that includes a text equivalent. If a
sound is used to notify the user of an event , announce the event in text on the
status bar as well. Refer also to checkpoint 5.7.

Techniques:

Display text messages on the status bar of the user interface.
For graphical user interface elements such as proportional scroll bars,
provide a text equivalent (e.g., a percentage of the document viewed).
Provide a text equivalent for beeps or flashes that are used to convey
information.
Provide a text equivalent for audio user agent tutorials. Tutorials that use
speech to guide a user through the operation of the user agent should also
be available at the same time as graphical representations.
All user interface components that convey important information using
sound should also provide alternate, parallel visual representation of the
information for individuals who are deaf, hard of hearing, or operating the
user agent in a noisy or silent environment where the use of sound is not
practical.
Text equivalents of messages are important for deaf-blind users who
cannot use audio or graphical cues and who rely on Braille.

Guideline 2. Ensure user access to all content.
Checkpoints for content accessibility:

2.1 Ensure that the user has access to all content , including equivalent alternatives
for content . [Priority 1] (Checkpoint 2.1)

Refer to guideline 5 for more information about programmatic access to content.

10 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-doc-content-access
http://www.w3.org/TR/UAAG10/#tech-ui-text-eq
http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html#h-17.11.2

Techniques:

Some users benefit from concurrent access to primary and alternative
content. For instance, users with low vision may want to view images (even
imperfectly) but require a text equivalent for the image; the text may be
rendered with a large font or as speech.
When content changes dynamically (e.g., due to scripts or content refresh),
users must have access to the content before and after the change.
Refer to the section on access to content .
Refer to the section on link techniques .
Refer to the section on table techniques .
Refer to the section on frame techniques .
Refer to the section on form techniques .
Sections 10.4 ("Client Error 4xx") and 10.5)"Server Error 5xx") of the HTTP
1.1 specification state that user agents should have the following behavior
in case of these error conditions:

Except when responding to a HEAD request, the server SHOULD
include an entity containing an explanation of the error situation, and
whether it is a temporary or permanent condition. These status codes
are applicable to any request method. User agents SHOULD display
any included entity to the user.

Make available information about abbreviation and acronym expansions.
For instance, in HTML, look for abbreviations specified by the ABBR and
ACRONYM elements. The expansion may be given with the "title" attribute.
To provide expansion information, user agents may:

Allow the user to configure that the expansions be used in place of the
abbreviations,
Provide a list of all abbreviations in the document, with their
expansions (a generated glossary of sorts)
Generate a link from an abbreviation to its expansion.
Allow the user to query the expansion of a selected or input
abbreviation.
If an acronym has no explicit expansion, user agents may look up in a
glossary of acronyms for that page for another occurrence. Less
reliably, the user agent may look for possible expansions (e.g., in
parentheses) in surrounding context.

2.2 For presentations that require user input within a specified time interval, allow the
user to configure the time interval (e.g., to extend it or to cause the user agent to
pause the presentation automatically and await user input before proceeding).
[Priority 1] (Checkpoint 2.2)

 5 Jun 2000 14:1811

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-time-independent

Techniques:

Render time-dependent links as a static list that occupies the same screen
real estate; authors may create such documents in SMIL 1.0 [SMIL] .
Include (temporal) context in the list of links. For example, provide the time
at which the link appeared along with a way to easily jump to that portion of
the presentation.
Provide easy-to-use controls (including both mouse and keyboard
commands) to allow users to pause a presentation and advance and rewind
by small or large time increments. Note. When a user must respond to a
link by pausing the program and activating the link, the time dependent
nature of the link does not change since the user must respond somehow in
the predetermined time. The pause feature is only effective in conjunction
with the ability to rewind to the link, or when the pause can be configured to
stop the presentation automatically and require the user to respond before
continuing, either by responding to the user input or by continuing with the
flow of the document.
Highlight the fact that there are active elements in a presentation and allow
users to navigate to and activate them. For example, indicate the presence
of active elements on the status bar and allow the user to navigate among
them with the keyboard or mouse.

2.3 When the author has not supplied a text equivalent for content as required by
the markup language, make available other author-supplied information about the
content (e.g., object type, file name, etc.). [Priority 2] (Checkpoint 2.3)

Techniques:

Refer to techniques for missing equivalent alternatives of content .

2.4 When a text equivalent for content is explicitly empty (i.e., an empty string),
render nothing. [Priority 3] (Checkpoint 2.4)

Techniques:

User agents should render nothing in this case because the author may
specify a null text equivalent for content that has no function in the page
other than as decoration. In this case, the user agent should not render
generic labels such as "[INLINE]" or "[GRAPHIC]".
Allow the user to toggle the rendering of null text equivalents: between
nothing and an indicator of a null equivalent (e.g., an icon with the text
equivalent "EMPTY TEXT EQUIVALENT").

Checkpoints for user interface accessibility:

12 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-null-alt
http://www.w3.org/TR/UAAG10/#tech-missing-alt

2.5 If more than one equivalent alternative is available for content , allow the user to
choose from among the alternatives. This includes the choice of viewing no
alternatives. [Priority 1] (Checkpoint 2.5)

For example, if a multimedia presentation has several captions (or subtitles)
available, allow the user to choose from among them. Captions might differ in
level of detail, address different reading levels, differ in natural language , etc.

Techniques:

Refer to the section on access to content .
Allow users to choose more than one equivalent at a given time. For
instance, multilingual audiences may wish to have captions in different
natural languages on the screen at the same time. Users may wish to use
both captions and auditory descriptions concurrently as well.
Make apparent through the user agent user interface which auditory tracks
are meant to be played mutually exclusively.
In the user interface, construct a list of all available tracks from short
descriptions provided by the author (e.g., through the "title" attribute).
Allow the user to configure different natural language preferences for
different types of equivalents (e.g., captions and auditory descriptions).
Users with disabilities may need to choose the language they are most
familiar with in order to understand a presentation for which equivalent
tracks are not all available in all desired languages. In addition, some users
may prefer to hear the program audio in its original language while reading
captions in another, fulfilling the function of subtitles or to improve foreign
language comprehension. In classrooms, teachers may wish to configure
the language of various multimedia elements to achieve specific
educational goals.
Consider system level natural language preferences as the user’s default
language preference. However, do not send HTTP Accept-Language
request headers ([RFC2616] , section 14.4) based on the operating system
preferences. First, there may be a privacy problem as indicated in RFC
2616, section 15.1.4 "Privacy Issues Connected to Accept Headers". Also,
the operating system defines one language, while the Accept-Language
request header may include many languages in different priorities.
Automatic setting of accept-language the operating system language may
result in the user receiving messages from servers that do not have a
match to this single language although they have acceptable other
languages to the users.

The following image shows how users select a natural language preference in
the Real Player. This setting, in conjunction with language markup in the
presentation, determine what content is rendered.

 5 Jun 2000 14:1813

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-choose-equivalent

2.6 Allow the user to specify that text transcripts , collated text transcripts , captions ,
and auditory descriptions be rendered at the same time as the associated auditory
and visual tracks. Respect author-supplied synchronization cues during rendering.
[Priority 1] (Checkpoint 2.6)

Techniques:

Captions and auditory descriptions may not make sense unless rendered
synchronously with the primary content. For instance, if someone with
hearing loss is watching a video presentation and reading associated
captions, the captions must be synchronized with the audio so that the
individual can use any residual hearing. For auditory descriptions, it is
crucial that the primary auditory track and the auditory description track be
synchronized to avoid having them both play at once, which would reduce
the clarity of the presentation.
User agents that implement SMIL 1.0 ([SMIL]) should implement the
"Accessibility Features of SMIL" [SMIL-ACCESS] . In particular, SMIL user
agents should allow users to configure whether they want to view captions,
and this user interface switch should be bound to the ’system-captions’ test

14 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-render-continuous-equiv

attribute. Users should be able to indicate a preference for receiving
available auditory descriptions, but SMIL 1.0 does not include a mechanism
equivalent to ’system-captions’ for auditory descriptions. The next version
of SMIL is expected to include a test attribute for auditory descriptions.

Another SMIL 1.0 test attribute, ’system-overdub-or-captions’, allows
users to select between subtitles and overdubs in multilingual
presentations. User agents should not interpret a value of ’caption’ for this
test attribute as meaning that the user prefers accessibility captions; that is
the purpose of the ’system-captions’ test attribute. When subtitles and
accessibility captions are both available, deaf users may prefer to view
captions, as they generally contain information not in subtitles: information
on music, sound effects, who is speaking, etc.
User agents that play QuickTime movies should allow the user to turn on
and off the different tracks embedded in the movie. Authors may use these
alternate tracks to provide equivalent alternatives. The Apple QuickTime
player currently provides this feature through the menu item "Enable
Tracks."
User agents that play Microsoft Windows Media Object presentations
should provide support for Synchronized Accessible Media Interchange
(SAMI, a protocol for creating and displaying captions) and should allow
users to configure how captions are viewed. In addition, user agents which
play Microsoft Windows Media Object presentations should enable people
to turn on and off other equivalent alternatives, including auditory
description and alternate visual tracks.
For other formats, at a minimum, users must be able to turn on and off
auditory descriptions and captions.

2.7 For author-identified but unsupported natural languages, allow the user to
request notification of language changes in content . [Priority 3] (Checkpoint 2.7)

Techniques:

A user agent should treat the natural language of content as part of context
information. When the language changes, the user agent should either
render the content in the supported natural language or notify the user of
the language change (if configured for notification). Rendering could involve
speaking in the designated natural language in the case of an audio
browser or screen reader. If the natural language is not supported, the
language change notification could be spoken in the default language by a
screen reader or audio browser.
Switching natural languages for blocks of content may be more helpful than
switching for short phrases. In some language combinations (e.g.,
Japanese being the primary and English being the secondary or quoted
language), short foreign language phrases are often well-integrated in the
primary language. Dynamic switching for these short phrases may make
the content sound unnatural and possibly harder to understand.

 5 Jun 2000 14:1815

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-notify-natural-language

Refer to techniques for generated content , which may be used to insert
text to indicate a language change.
Refer to techniques for synthesized speech.
Refer to checkpoint 2.7 and checkpoint 5.5.
For information on language codes, refer to [ISO639] .
If users do not want to see or hear blocks of content in another natural
language, allow the user to suggest hiding that content (e.g., with style
sheets).
Refer to "Character Model for the World Wide Web" [CHARMOD] . It
contains basic definitions and models, specifications to be used by other
specifications or directly by implementations, and explanatory material. In
particular, this document addresses early uniform normalization, string
identity matching, string indexing, and conventions for URIs.
Implement content negotiation so that users may specify language
preferences. Or allow the user to choose a resource when several are
available in different languages.
Use an appropriate glyph set when rendering visually and an appropriate
voice set when rendering as speech.
Render characters with the appropriate directionality. Refer to the "dir"
attribute and the BDO element in HTML 4.01 ([HTML4] , sections 8.2 and
8.2.4 respectively). Refer also to the Unicode standard [UNICODE] .
A user agent may not be able to render all characters in a document
meaningfully, for instance, because the user agent lacks a suitable font, a
character has a value that may not be expressed in the user agent’s
internal character encoding, etc. In this case, section 5.4 of HTML 4.01
[HTML4] recommends the following for undisplayable characters:

1. Adopt a clearly visible (or audible), but unobtrusive mechanism to alert
the user of missing resources.

2. If missing characters are presented using their numeric representation,
use the hexadecimal (not decimal) form since this is the form used in
character set standards.

Guideline 3. Allow the user to turn off rendering or stop
behavior that may reduce accessibility.
In addition to the techniques below, refer also to the section on user control of style .

Checkpoints for content accessibility:

3.1 Allow the user to turn on and off rendering of background images. [Priority 1]
(Checkpoint 3.1)

Techniques:

Allow the user to turn off embedded or background images through the user
agent user interface . Note that any equivalent alternatives for those
images must still be available.

16 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-configure-background-image
http://www.w3.org/TR/1999/REC-html401-19991224/charset.html#h-5.4
http://www.w3.org/TR/1999/REC-html401-19991224/struct/dirlang.html#h-8.2.4
http://www.w3.org/TR/1999/REC-html401-19991224/struct/dirlang.html#adef-dir
http://www.w3.org/TR/1999/REC-html401-19991224/struct/dirlang.html#adef-dir

In CSS, background images may be turned on/off with the ’background’ and
’background-image’ properties ([CSS2] , section 14.2.1).

3.2 Allow the user to turn on and off rendering of background audio. [Priority 1]
(Checkpoint 3.2)

Techniques:

Allow the user to turn off background audio through the user agent user
interface .
Authors sometimes specify background sounds with the "bgsound"
attribute. Note. This attribute is not part of HTML 4.01 [HTML4] .
In CSS 2, background sounds may be turned on/off with the ’play-during’
property ([CSS2] , section 19.6).

3.3 Allow the user to turn on and off rendering of video. [Priority 1] (Checkpoint 3.3)

Techniques:

Allow the user to turn off video through the user agent user interface .
Render a still image in its place.
Support the ’visibility’ property of CSS 2 ([CSS2] , section 11.2). A value of
’hidden’ will cause a blank place-holder box to be rendered in place of the
video on the screen while retaining the layout of the page. This differs from
a value of ’none’ for the ’display’ property ([CSS2] , section 9.2.5), which
suppresses rendering of the video completely and may cause the layout of
the page to be changed.
Allow the user to hide a video presentation from view, even though it
continues to play in the background.

3.4 Allow the user to turn on and off rendering of audio. [Priority 1] (Checkpoint 3.4)

Techniques:

Allow the user to turn off audio through the user agent user interface .
Support the ’display’, ’play-during’, and ’speak’ properties in CSS 2 ([CSS2]
, sections 9.2.5, 19.6, and 19.5, respectively).

3.5 Allow the user to turn on and off animated or blinking text. [Priority 1]
(Checkpoint 3.5)

Techniques:

Allow the user to turn off animated or blinking text through the user agent
user interface (e.g., by pressing the Escape key to stop animations).
Render static text in place of blinking text.
The BLINK element. Note. The BLINK element is not defined by a W3C
specification.

 5 Jun 2000 14:1817

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-on-off-blinking-text
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-speak
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-play-during
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-display
http://www.w3.org/TR/UAAG10/#tech-on-off-audio
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-display
http://www.w3.org/TR/1998/REC-CSS2-19980512/visufx.html#propdef-visibility
http://www.w3.org/TR/UAAG10/#tech-on-off-video
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-play-during
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-play-during
http://www.w3.org/TR/UAAG10/#tech-configure-background-audio
http://www.w3.org/TR/1998/REC-CSS2-19980512/colors.html#background-properties
http://www.w3.org/TR/1998/REC-CSS2-19980512/colors.html#background-properties

The MARQUEE element. Note. The MARQUEE element is not defined by a
W3C specification.
The ’blink’ value of the ’text-decoration’ property in CSS ([CSS2] , section
16.3.1).

3.6 Allow the user to turn on and off animations and blinking images. [Priority 1]
(Checkpoint 3.6)

Techniques:

Allow the user to turn off animated or blinking text through the user agent
user interface (e.g., by pressing the Escape key to stop animations).
Render a still image in its place.

3.7 Allow the user to turn on and off support for scripts and applets. [Priority 1]
(Checkpoint 3.7)

Note. This is particularly important for scripts that cause the screen to flicker,
since people with photosensitive epilepsy can have seizures triggered by
flickering or flashing, particularly in the 4 to 59 flashes per second (Hertz) range.

Techniques:

Peak sensitivity to flickering or flashing occurs at 20 Hertz.
Refer to the section on script techniques

3.8 For automatic content changes specified by the author (e.g., redirection and
content refresh), allow the user to slow the rate of change. [Priority 2] (Checkpoint
3.8)

Techniques:

Alert the users to pages that refresh automatically and allow them to specify
a refresh rate.
Allow the user to slow content refresh to once per 10 minutes.
Allow the user to stop automatic refresh, but indicate that content needs
refreshing and allow the user to refresh the content by activating a button or
link. Or, prompt the user and ask whether to continue with forwards.
Refer to the HTTP 1.1 specification [RFC2616] for information about
redirection mechanisms.
Some HTML authors create a refresh effect by using a META element with
http-equiv="refresh" and the refresh rate specified in seconds by the
"content" attribute.

3.9 Allow the user to turn on and off rendering of images. [Priority 3] (Checkpoint
3.9)

18 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-on-off-images
http://www.w3.org/TR/UAAG10/#tech-on-off-images
http://www.w3.org/TR/UAAG10/#tech-configure-content-change-rate
http://www.w3.org/TR/UAAG10/#tech-configure-content-change-rate
http://www.w3.org/TR/UAAG10/#tech-on-off-scripts
http://www.w3.org/TR/UAAG10/#tech-on-off-blinking-images
http://www.w3.org/TR/1998/REC-CSS2-19980512/text.html#propdef-text-decoration

Techniques:

Provide a simple command that allows users to turn on/off the rendering of
images on a page. When images are turned off, render any associated
equivalents.
Refer to techniques for checkpoint 3.1.

Guideline 4. Ensure user control of styles.
In addition to the techniques below, refer also to the section on user control of style .

Checkpoints for fonts and colors:

4.1 Allow the user to configure the size of text. [Priority 1] (Checkpoint 4.1)
For example, allow the user to specify a font family and style directly through the
user agent user interface or in a user style sheet . Or, allow the user to zoom or
magnify content.

Techniques:

Inherit text size information from user preferences specified for the
operating system.
Use operating system magnification features.
Support the ’font-size’ property in CSS ([CSS2] , section 15.2.4).
Allow the user to override author-specified font sizes.
When scaling text, maintain size relationships among text of different sizes.

4.2 Allow the user to configure font family. [Priority 1] (Checkpoint 4.2)

Techniques:

Inherit font family information from user preferences specified for the
operating system.
Support the ’font-family’ property in CSS ([CSS2] , section 15.2.2).
Allow the user to override author-specified font families.

4.3 Allow the user to configure foreground color. [Priority 1] (Checkpoint 4.3)

Techniques:

Inherit foreground color information from user preferences specified for the
operating system.
Support the ’color’ and ’border-color’ properties in CSS 2 ([CSS2] , sections
14.1 and 8.5.2, respectively).
Allow the user to specify minimal contrast between foreground and
background colors, adjusting colors dynamically to meet those
requirements.
Allow the user to override author-specified foreground colors.

 5 Jun 2000 14:1819

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-color
http://www.w3.org/TR/1998/REC-CSS2-19980512/colors.html#propdef-color
http://www.w3.org/TR/UAAG10/#tech-configure-foreground-color
http://www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#propdef-font-family
http://www.w3.org/TR/UAAG10/#tech-configure-font-family
http://www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#propdef-font-size
http://www.w3.org/TR/UAAG10/#tech-configure-text-size

4.4 Allow the user to configure background color. [Priority 1] (Checkpoint 4.4)

Techniques:

Inherit background color information from user preferences specified for the
operating system.
Support the ’background-color’ property (and other background properties)
in CSS 2 ([CSS2] , section 14.2.1).
Allow the user to override author-specified background colors.

Checkpoints for multimedia and audio presentations:

4.5 Allow the user to slow the presentation rate of audio, video, and animations.
[Priority 1] (Checkpoint 4.5)

Techniques:

Allowing the user to slow the presentation of video, animations, and audio
will benefit individuals with specific learning disabilities, cognitive deficits, or
those with normal cognition but newly acquired sensory limitations (such as
the person who is newly blind, learning to use a screen reader). The same
difficulty is common among individuals who have beginning familiarity with
a natural language .
When changing the rate of audio, avoid pitch distortion.
Some formats do not allow changes in playback rate.

4.6 Allow the user to start, stop, pause, advance, and rewind audio, video, and
animations. [Priority 1] (Checkpoint 4.6)

Techniques:

Allow the user to advance or rewind the presentation in increments. This is
particularly valuable to users with physical disabilities who may not have
fine control over advance and rewind functionalities. Allow users to
configure the size of the increments.
If buttons are used to control advance and rewind, make the
advance/rewind distances proportional to the time the user activates the
button. After a certain delay, accelerate the advance/rewind.
There are well-known techniques for changing audio speed without
introducing distortion.
Home Page Reader [HPR] lets users insert bookmarks in presentations.

4.7 Allow the user to configure the position of text transcripts , collated text
transcripts , and captions on graphical displays. [Priority 1] (Checkpoint 4.7)

Techniques:

20 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-configure-captions
http://www.w3.org/TR/UAAG10/#tech-control-multimedia
http://www.w3.org/TR/UAAG10/#tech-slow-multimedia
http://www.w3.org/TR/1998/REC-CSS2-19980512/colors.html#propdef-background-color
http://www.w3.org/TR/UAAG10/#tech-configure-background-color

Support the CSS 2 ’position’ property ([CSS2] , section 9.3.1).
Allow the user to choose whether captions appear at the bottom or top of
the video area or in other positions. Currently authors may place captions
overlying the video or in a separate box. Captions may block the user’s
view of other information in the video or on other parts of the screen,
making it necessary to move the captions in order to view all content at
once. In addition, some users may find captions easier to read if they can
place them in a location best suited to their reading style.
Allow users to configure a general preference for caption position and to be
able to fine tune specific cases. For example, the user may want the
captions to be in front of and below the rest of the presentation.
Allow the user to drag and drop the captions to a place on the screen like
any other viewport. To ensure device-independence, allow the user to enter
the screen coordinates of one corner of the caption viewport.
It may be easiest to allow the user to position all parts of a presentation
rather than trying to identify captions specifically.
Do not require users to edit the source code of the presentation to achieve
the desired effect.

4.8 Allow the user to configure the audio volume. [Priority 2] (Checkpoint 4.8)

Techniques:

Support the CSS 2 ’volume’ property ([CSS2] , section 19.2).
Allow the user to configure a volume level at the operating system level.

Checkpoints for synthesized speech:

Refer also to techniques for synthesized speech .

4.9 Allow the user to configure synthesized speech playback rate. [Priority 1]
(Checkpoint 4.9)

Techniques:

Support the CSS 2 ’speech-rate’ property ([CSS2] , section 19.8).

4.10 Allow the user to configure synthesized speech volume. [Priority 1] (Checkpoint
4.10)

Techniques:

Support the CSS 2 ’volume’ property ([CSS2] , section 19.2).

4.11 Allow the user to configure synthesized speech pitch, gender, and other
articulation characteristics. [Priority 2] (Checkpoint 4.11)

 5 Jun 2000 14:1821

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-configure-speech-style
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-volume
http://www.w3.org/TR/UAAG10/#tech-configure-speech-volume
http://www.w3.org/TR/UAAG10/#tech-configure-speech-volume
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-speech-rate
http://www.w3.org/TR/UAAG10/#tech-configure-speech-rate
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-volume
http://www.w3.org/TR/UAAG10/#tech-configure-audio-volume
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-position

Techniques:

Implement the voice characteristic properties and speech properties of CSS
2: ’voice-family’, ’pitch’, ’pitch-range’, ’stress’, ’richness’,
’speak-punctuation’, and ’speak-numeral’ ([CSS2] , sections 19.8 and 19.9).

Checkpoints for user interface accessibility:

4.12 Allow the user to select from available author and user style sheets or to
ignore them. [Priority 1] (Checkpoint 4.12)

Note. By definition, the browser’s default style sheet is always present, but may
be overridden by author or user styles.

Techniques:

For HTML [HTML4] , make available "class" and "id" information so that
users can override styles.
Implement user style sheets .
Implement the "!important" semantics of CSS 2 ([CSS2] , section 6.4.2).

4.13 Allow the user to configure how the selection is highlighted (e.g., foreground
and background color). [Priority 1] (Checkpoint 4.13)

Techniques:

Netscape Navigator [NAVIGATOR] for X Windows uses resources to
control the selection colors (*selectForeground and
*selectBackground).
Support the CSS 2 "HighLightText and "Highlight" predefined color values
([CSS2] , section 18.2).
Inherit selection information from user’s settings for the operating system.

4.14 Allow the user to configure how the content focus is highlighted (e.g.,
foreground and background color). [Priority 1] (Checkpoint 4.14)

Techniques:

Support the CSS 2 ’:focus’ pseudo-class and dynamic outlines and focus of
CSS 2 ([CSS2] , sections 5.11.3 and 18.4.1, respectively).

For example, the following rule will cause links with focus to appear with
a blue background and yellow text.

 A:focus { background: blue; color: yellow }

The following rule will cause TEXTAREA elements with focus to appear
with a particular focus outline:

22 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1998/REC-CSS2-19980512/ui.html#q5
http://www.w3.org/TR/1998/REC-CSS2-19980512/selector.html#dynamic-pseudo-classes
http://www.w3.org/TR/UAAG10/#tech-configure-focus-highlight
http://www.w3.org/TR/1998/REC-CSS2-19980512/ui.html#system-colors
http://www.w3.org/TR/UAAG10/#tech-configure-selection-highlight
http://www.w3.org/TR/1998/REC-CSS2-19980512/cascade.html#important-rules
http://www.w3.org/TR/UAAG10/#tech-select-style-sheets
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#speech-props
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#voice-char-props

 TEXTAREA:focus { outline: thick black solid }

Inherit focus information from user’s settings for the operating system.
Test the user agent to ensure that individuals who have low vision and use
screen magnification software are able to follow highlighted item(s).

4.15 Allow the user to configure how the focus changes. [Priority 2] (Checkpoint
4.15)

For instance, allow the user to require that user interface focus not move
automatically to a newly opened viewport .

Techniques:

Allow the user to configure how current focus changes when a new
viewport opens. For instance, the user might choose between these two
options:

1. Do not change the focus when a window opens, but notify the user
(e.g., with a beep, flash, and text message on the status bar). Allow the
user to navigate directly to the new window when they choose to.

2. Change the focus when a window opens and use a subtle alert (e.g., a
beep, flash, and text message on the status bar) to indicate that the
focus has changed.

If a new viewport or prompt appears but focus does not move to it, notify
assistive so that they may (discreetly) inform the user, allow querying, etc.
If the user has suppressed automatic opening of viewports (refer to
techniques for checkpoint 4.16), there may be no automatic focus changes.

4.16 For those viewports , prompts, and windows that open without an explicit
request from the user, allow the user to configure how they open. [Priority 2]
(Checkpoint 4.16)

Techniques:

Viewports that open without an explicit request from the user may be
disorienting, notably if the focus suddenly changes to the new viewport
(refer to checkpoint 4.15). Therefore, the user agent should allow
configuration of how these viewports open. For example:

1. Allow users to turn off support for user agent initiated viewports
entirely.

2. Prompt users before opening a viewport. For instance, for user agents
that support CSS 2 [CSS2] , the following rule will generate a message
to the user at the beginning of link text for links that are meant to open
new windows when followed:

 A[target=_blank]:before{content:"Open new window"}

3. Allow the user to request that viewports open automatically, without a
change in focus, and with discreet notification.

 5 Jun 2000 14:1823

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-configure-spawned
http://www.w3.org/TR/UAAG10/#tech-configure-focus-change
http://www.w3.org/TR/UAAG10/#tech-configure-focus-change

4. Allow the user to request that viewports open automatically and that
focus change to the new viewport.

Provide programmatic notification of opened viewports per checkpoint 5.7.
For HTML [HTML4] , allow the user to control the process of opening a
document in a new "target" frame or a viewport created by author-supplied
scripts. For example, for target="_blank" , open the window according
to the user’s preference.
For SMIL [SMIL] , allow the user to control viewports created with the "new"
value of the "show" attribute.
Allow users to configure the size or position of the viewport and to be able
to close the viewport (e.g., with the "back" functionality).

Guideline 5. Observe system conventions and standard
interfaces.
Checkpoints for content accessibility:

5.1 Provide programmatic read access to HTML and XML content by conforming to
the W3C Document Object Model (DOM) Level 2 Core and HTML modules and
exporting the interfaces they define. [Priority 1] (Checkpoint 5.1)

Note. These modules are defined in DOM Level 2 [DOM2] , chapters 1 and 2.
Please refer to that specification for information about which versions of HTML
and XML are supported and for the definition of a "read-only" DOM. This
checkpoint is an important special case of checkpoint 2.1. For content other
than HTML and XML, refer to checkpoint 5.3.

Techniques:

Information of particular importance to accessibility that must be available
through the document object model includes:

Content, including equivalent alternatives .
The document structure (for navigation, creation of alternative views).
Style sheet information (for user control of styles).
Script and event handlers (for device-independent control of behavior).

Some W3C specifications are expected to define specialized DOM
modules. Those specifications may require implementation of the
specialized interfaces as part of conformance.
Assistive technologies also require information about browser selection
and focus mechanisms, which may not be available through the W3C
DOM.
The W3C DOM is designed to be used on a server as well as a client, and
so does not address some user interface-specific information (e.g., screen
coordinates).
Refer to the appendix on loading assistive technologies for DOM access .
For information about rapid access to Internet Explorer’s [IE] DOM through
COM, refer to [BHO] .

24 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-dom-read-access

Refer to the Java Weblets implementation of the DOM [JAVAWEBLET] .

5.2 If the user can modify HTML and XML content through the user interface ,
provide the same functionality programmatically by conforming to the W3C
Document Object Model (DOM) Level 2 Core and HTML modules and exporting the
interfaces they define. [Priority 1] (Checkpoint 5.2)

For example, if the user interface allows users to complete HTML forms, this
must also be possible through the DOM APIs . Note. These modules are
defined in DOM Level 2 [DOM2] , chapters 1 and 2. Please refer to DOM Level
2 [DOM2] for information about which versions of HTML and XML are
supported. This checkpoint is an important special case of checkpoint 2.1. For
content other than HTML and XML, refer to checkpoint 5.3.

Techniques:

Refer to techniques for checkpoint 5.1.

5.3 For markup languages other than HTML and XML, provide programmatic access
to content using standard APIs (e.g., platform-independent APIs and standard APIs
for the operating system). [Priority 1] (Checkpoint 5.3)

Note. This checkpoint addresses content not covered by checkpoints
checkpoint 5.1 and checkpoint 5.2. This checkpoint is an important special case
of checkpoint 2.1.

Techniques:

Refer to techniques for checkpoint 5.5.

5.4 Provide programmatic access to Cascading Style Sheets (CSS) by conforming to
the W3C Document Object Model (DOM) Level 2 CSS module and exporting the
interfaces it defines. [Priority 3] (Checkpoint 5.4)

Note. This module is defined in DOM Level 2 [DOM2] , chapter 5. Please refer
to that specification for information about which versions of CSS are supported.
This checkpoint is an important special case of checkpoint 2.1.

Techniques:

Refer to techniques for checkpoint 5.1.

Checkpoints for user interface accessibility:

5.5 Provide programmatic read and write access to user agent user interface
controls using standard APIs (e.g., platform-independent APIs such as the W3C
DOM, standard APIs for the operating system, and conventions for programming
languages, plug-ins, virtual machine environments, etc.) [Priority 1] (Checkpoint 5.5)

For example, ensure that assistive technologies have access to information
about the user agent’s current input configuration so that they can trigger

 5 Jun 2000 14:1825

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-ui-access-api
http://www.w3.org/TR/UAAG10/#tech-dom-css-access
http://www.w3.org/TR/UAAG10/#tech-content-access-api
http://www.w3.org/TR/UAAG10/#tech-dom-write-access

functionalities through keyboard events, mouse events, etc.

Techniques:

Some operating system and programming language APIs support
accessibility by providing a bridge between the standard user interface
supported by the operating system and alternative user interfaces
developed by assistive technologies . User agents that implement these
APIs are generally more compatible with assistive technologies and provide
accessibility at no extra cost. Some public APIs that promote accessibility
include:

Microsoft Active Accessibility ([MSAA]) in Windows 95/98/NT versions.
Sun Microsystems Java Accessibility API ([JAVAAPI]) in Java Code. If
the user agent supports Java applets and provides a Java Virtual
Machine to run them, the user agent should support the proper loading
and operation of a Java native assistive technology. This assistive
technology can provide access to the applet as defined by Java
accessibility standards.

Use standard user interface controls. Third-party assistive technology
developers are more likely able to access standard controls than custom
controls . If you must use custom controls, review them for accessibility and
compatibility with third-party assistive technology. Ensure that they provide
accessibility information through an API as is done for the standard
controls.
Makes use of operating system level features. See the appendix of
accessibility features for some common operating systems.
Inherit operating system settings related to accessibility (e.g., for fonts,
colors, natural language preferences, input configurations, etc.).
Write output to and take input from standard system APIs rather than
directly from hardware controls. This will enable the I/O to be redirected
from or to assistive technology devices - for example, screen readers and
Braille displays often redirect output (or copy it) to a serial port, while many
devices provide character input, or mimic mouse functionality. The use of
generic APIs makes this feasible in a way that allows for interoperability of
the assistive technology with a range of applications.
For information about rapid access to Internet Explorer’s [IE] DOM through
COM, refer to [BHO] .

5.6 Implement selection , content focus , and user interface focus mechanisms.
[Priority 1] (Checkpoint 5.6)

Refer also to checkpoint 7.1 and checkpoint 5.5. Note. This checkpoint is an
important special case of checkpoint 5.5.

Techniques:

Refer to Selection and Partial Selection of DOM Level 2 ([DOM2] , section
8.2.2).
For information about focus in the Motif environment (under X Windows),

26 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/DOM-Level-2/range.html#Level-2-Range-Containment
http://www.w3.org/TR/UAAG10/#tech-provide-selection-focus

refer to the OSF/Motif Style Guide [MOTIF] .

5.7 Provide programmatic notification of changes to content and user interface
controls (including selection , content focus , and user interface focus). [Priority 1]
(Checkpoint 5.7)

Techniques:

Refer to "mutation events" in DOM Level 2 [DOM2] . This module of DOM 2
allows assistive technologies to be informed of changes to the document
tree.
Allow assistive technologies to register for some, but not all, events.
Refer also to information about monitoring HTML events through the
document object model Internet Explorer [IE] .

Refer also to checkpoint 5.5.
5.8 Ensure that programmatic exchanges proceed in a timely manner. [Priority 2]
(Checkpoint 5.8)

For example, the programmatic exchange of information required by other
checkpoints in this document must be efficient enough to prevent information
loss, a risk when changes to content or user interface occur more quickly than
the communication of those changes. The techniques for this checkpoint explain
how developers can reduce communication delays, e.g., to ensure that assistive
technologies have timely access to the document object model and other
information needed for accessibility.

Techniques:

Please refer to the appendix that explains how to load assistive
technologies for DOM access .

5.9 Follow operating system conventions and accessibility settings. In particular,
follow conventions for user interface design, default keyboard configuration, product
installation, and documentation . [Priority 2] (Checkpoint 5.9)

Refer also to checkpoint 10.2.

Techniques:

Refer to techniques for checkpoint 1.2.
Refer to techniques for checkpoint 5.5.
Refer to techniques for checkpoint 10.2.
Follow operating system and application environment (e.g., Java)
conventions for loading assistive technologies. Refer to the appendix on
loading assistive technologies for DOM access for information about how
an assistive technology developer can load its software into a Java Virtual
Machine.
Evaluate the standard interface controls on the target platform against any
built-in operating system accessibility functions and be sure the user agent

 5 Jun 2000 14:1827

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-os-conventions
http://www.w3.org/TR/UAAG10/#tech-exchange-timely
http://www.w3.org/TR/UAAG10/#tech-api-notify

operates properly with all these functions. For example, be attentive to the
following features:

Microsoft Windows supports an accessibility function called "High
Contrast". Standard window classes and controls automatically support
this setting. However, applications created with custom classes or
controls must understand how to work with the "GetSysColor" API to
ensure compatibility with High Contrast.
Apple Macintosh supports an accessibility function called "Sticky
Keys". Sticky Keys operate with keys the operating system recognizes
as modifier keys, and therefore a custom control should not attempt to
define a new modifier key.

Follow accessibility guidelines for specific platforms:
"Macintosh Human Interface Guidelines" [APPLE-HI]
"IBM Guidelines for Writing Accessible Applications Using 100% Pure
Java" [JAVA-ACCESS] .
"An ICE Rendezvous Mechanism for X Window System Clients"
[ICE-RAP] .
"Information for Developers About Microsoft Active Accessibility"
[MSAA] .
"The Inter-Client communication conventions manual" [ICCCM] .
"Lotus Notes accessibility guidelines" [NOTES-ACCESS] .
"Java accessibility guidelines and checklist" [JAVA-CHECKLIST] .
"The Java Tutorial. Trail: Creating a GUI with JFC/Swing" [JAVA-TUT] .
"The Microsoft Windows Guidelines for Accessible Software Design"
[MS-SOFTWARE] .

Follow general guidelines for producing accessible software:
"Accessibility for applications designers" [MS-ENABLE] .
"Application Software Design Guidelines" [TRACE-REF] .
"Designing for Accessibility" [SUN-DESIGN] .
"EITAAC Desktop Software standards" [EITAAC] .
"Requirements for Accessible Software Design" [ED-DEPT] .
"Software Accessibility" [IBM-ACCESS] .
Towards Accessible Human-Computer Interaction" [SUN-HCI] .
"What is Accessible Software" [WHAT-IS] .
Accessibility guidelines for Unix and X Window applications
[XGUIDELINES] .

Guideline 6. Implement accessible specifications.
Checkpoints for content accessibility:

6.1 Implement the accessibility features of supported specifications (markup
languages, style sheet languages, metadata languages, graphics formats, etc.).
[Priority 1] (Checkpoint 6.1)

28 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-support-access-features

Techniques:

Features that are known to promote accessibility should be made obvious
to users and easy to find in the user interface and in documentation.
The accessibility features of Cascading Style Sheets ([CSS1] , [CSS2]) are
described in "Accessibility Features of CSS" [CSS-ACCESS] . Note that
CSS 2 includes properties for configuring synthesized speech styles.
The accessibility features of SMIL 1.0 [SMIL] are described in "Accessibility
Features of SMIL" [SMIL-ACCESS] .
The following is a list of accessibility features of HTML 4.01 [HTML4] in
addition to those described in techniques for checkpoint 2.1:

The CAPTION element (section 11.2.2) for rich table captions.
Table elements THEAD, TBODY, and TFOOT (section 11.2.3),
COLGROUP and COL (section 11.2.4) that group table rows and
columns into meaningful sections.
Attributes "scope", "headers", and "axis" (section 11.2.6) that
non-visual browsers may use to render a table in a linear fashion,
based on the semantically significant labels.
The "tabindex" attribute (section 17.11.1) for assigning the order of
keyboard navigation within a document.
The "accesskey" attribute (section 17.11.2) for assigning keyboard
commands to active components such as links and form controls.

6.2 Use and conform to W3C Recommendations when they are available and
appropriate for a task. [Priority 2] (Checkpoint 6.2)

For instance, for markup, implement HTML 4.01 [HTML4] , XHTML 1.0
[XHTML10] , or XML 1.0 [XML] . For style sheets, implement CSS ([CSS1] ,
[CSS2]). For mathematics, implement MathML [MATHML] . For synchronized
multimedia, implement SMIL 1.0 [SMIL] . For information about programmatic
access to HTML and XML content, refer to guideline 5.
Note. For reasons of backward compatibility, user agents should continue to
support deprecated features of specifications. The current guidelines refer to
some deprecated language features that do not necessarily promote
accessibility but are widely deployed. Information about deprecated language
features is generally part of the language’s specification.

Techniques:

W3C specifications undergo a formal review process defined by the W3C
Process Document [W3CPROCESS] . For information about how
specifications become W3C Recommendations, refer to The W3C
Recommendation track ([W3CPROCESS] , section 6.2). W3C
Recommendations (and other technical reports) are published at the W3C
Web site. The list of technical reports is available at http://www.w3.org/TR.
W3C encourages the public to review and comment on specifications at all
times during their development, from Working Draft to Candidate
Recommendation (for implementation experience) to Proposed

 5 Jun 2000 14:1829

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR
http://www.w3.org/Consortium/Process/Process-19991111/tr.html#Recs
http://www.w3.org/Consortium/Process/Process-19991111/tr.html#Recs
http://www.w3.org/TR/UAAG10/#tech-support-w3c-recs
http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html#h-17.11.2
http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#adef-axis
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#adef-headers
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#adef-scope
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#edef-COL
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.4.1
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.3
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#edef-CAPTION

Recommendation. However, readers should remain aware that a W3C
specification do not represent consensus in the Working Group, Web
Community, and W3C Membership until it becomes a Recommendation.
The requirement of this checkpoint is to implement at least one W3C
Recommendation that is available and appropriate for a particular task. For
example, user agents would satisfy this checkpoint by implementing the
Portable Network Graphics 1.0 specification [PNG] for raster images. In
addition, user agents may implement other image formats such as JPEG,
GIF, etc.
If more than one version or level of a W3C Recommendation is appropriate
for a particular task, user agents are encouraged to implement the latest
version.
Specifications that become W3C Recommendations after a user agent’s
development cycles permit input are not considered "available" in time for
that version of the user agent.
Each specification defines what conformance means for that specification.
Use the W3C validation services:

HTML and XML Validator service [VALIDATOR] .
CSS Validator service [CSSVALIDATOR] .

Guideline 7. Provide navigation mechanisms.
Checkpoints for user interface accessibility:

7.1 Allow the user to navigate viewports (including frames). [Priority 1] (Checkpoint
7.1)

Note. For example, when all frames of a frameset are displayed side-by-side,
allow the user to navigate among them with the keyboard. Or, when frames are
accessed or viewed one at a time (e.g., by a text browser or speech
synthesizer), provide a list of links to other frames. Navigating into a viewport
makes it the current viewport .

Techniques:

Refer to the frame techniques . Some operating systems provide a means
to navigate among all open windows using multiple input devices (e.g.,
keyboard and mouse). This technique would suffice for switching among
user agent viewports that are separate windows. However, user agents
may also provide a mechanism to shift the user interface focus among user
agent windows, independent of the standard operating system mechanism.

7.2 For user agents that offer a browsing history mechanism, when the user returns
to a previous viewport, restore the point of regard in the viewport . [Priority 1]
(Checkpoint 7.2)

For example, when users navigate "back" and "forth" among viewports, they
should find the viewport position where they last left it.

30 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-tracking-previous-por
http://www.w3.org/TR/UAAG10/#tech-nav-viewports
http://www.w3.org/TR/UAAG10/#tech-nav-viewports

Techniques:

If the user agent allows the user to browse multimedia or audio
presentations , when the user leaves one presentation for another, pause
the presentation. When the user returns to a previous presentation, allow
the user to restart the presentation where it was paused (i.e., return the
point of regard to the same place in space and time). Note. This may be
done for a presentation that is available "completely" but not for a "live"
stream or any part of a presentation that continues to run in the
background.
When the user returns to a page after following a link, restore content focus
to that link.
Refer to the HTTP 1.1 specification for information about history
mechanisms ([RFC2616] , section 13.13).

7.3 Allow the user to navigate all active elements . [Priority 1] (Checkpoint 7.3)
Navigation may include non-active elements in addition to active elements.
Note. This checkpoint is an important special case of checkpoint 7.6.

Techniques:

Sequential navigation techniques

Allow the user to sequentially navigate all active elements using a single
key stroke. Many user agents today allow users to navigate sequentially by
repeating a key combination -- for example, using the Tab key for forward
navigation and Shift-Tab for reverse navigation. Because the Tab key is
typically on one side of the keyboard while arrow keys are located on the
other, users should be allowed to configure the user agent so that
sequential navigation is possible with keys that are physically closer to the
arrow keys. Refer also to checkpoint 10.4.
Provide other sequential navigation mechanisms for particular element
types or semantic units. For example "Find the next table" or "Find the
previous form". For more information about sequential navigation of form
controls and form submission, refer to techniques for [#info-form-submit].
Maintain a logical element navigation order. For instance, users may use
the keyboard to navigate among elements or element groups using the
arrow keys within a group of elements. One example of a group of elements
is a set of radio buttons. Users should be able to navigate to the group of
buttons, then be able to select each button in the group. Similarly, allow
users to navigate from table to table, but also among the cells within a
given table (up, down, left, right, etc.)
The default sequential navigation order should respect the conventions of
the natural language of the document. Thus, for most left-to-right
languages, the usual navigation order is top-to-bottom and left-to-right.
Thus, for right-to-left languages, the order would be top-to-bottom and
right-to-left.

 5 Jun 2000 14:1831

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-nav-active

Respect author-supplied information about navigation order (e.g., the
"tabindex" attribute in HTML 4 [HTML4] , section 17.11.1). Allow users to
override the author-supplied navigation order (e.g., by offering an
alphabetized view of links or other orderings).
Give the users the option of navigating to and activating a link, or just
moving the content focus to the link. First-time users of a page may want
access to link text before deciding whether to follow the link (activate). More
experienced users of a page might prefer to follow the link directly, without
the intervening content focus step.
In Java, a component is part of the sequential navigation order when added
to a panel and its isFocusTraversable() method returns true. A component
can be removed from the navigation order by extending the component,
overloading this method, and returning false.

The following view from Jaws for Windows [JFW] allows users to navigate to
links in a document and activate them independently. Users may also configure
the user agent to navigate visited links, unvisited links, or both. Users may also
change the sequential navigation order, sorting links alphabetically or leaving
them in the logical tabbing order.

Direct navigation techniques

Excessive use of sequential navigation can reduce the usability of software
for both disabled and non-disabled users.
Some useful types of direct navigation include: navigation based on
position (e.g., all links are numbered by the user agent), navigation based
on element content (e.g., the first letter of text content), direct navigation to
a table cell by its row/column position, and searching (e.g., based on form
control text, associated labels, or form control names).
Document available direct navigation mechanisms.

32 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html#adef-tabindex

7.4 Allow the user to choose to navigate only active elements . [Priority 2]
(Checkpoint 7.4)

Techniques:

Apply the techniques of checkpoint 7.3 to active elements only.

7.5 Allow the user to search for rendered text content , including rendered text
equivalents . [Priority 2] (Checkpoint 7.5)

Note. Use operating system conventions for marking the result of a search (e.g.,
selection or content focus).

Techniques:

Allow users to search for (human-readable) element content and attribute
values.
Allow users to search forward and backward from the point of regard, the
beginning of document, or the end of the document.
Allow users to search the document source view.
For forms, allow users to find controls that must be changed by the user
before submitting the form. Allow users to search on labels as well as
content of some controls.
Allow the user to search among just text equivalents of other content.
For multimedia presentations:

Allow users to search and examine time-dependent media elements
and links in a time-independent manner. For example, present a static
list of time-dependent links.
Allow users to find all media elements active at a particular time in the
presentation.
Allow users to view a list of all media elements or links of the
presentations sorted by start or end time or alphabetically.
For frames, allow users to search for content in all frames, without
having to be in a particular frame.
It may be confusing to allow users to search for text content that is not
rendered (and thus that they have not viewed); it will be difficult to
move the selection if text is found. If the user agent allows this type of
search, notify the user of this particular search mode.

7.6 Allow the user to navigate according to structure. [Priority 2] (Checkpoint 7.6)
For example, allow the user to navigate familiar elements of a document:
paragraphs, tables and table cells, headers, lists, etc. Note. Use operating
system conventions to indicate navigation progress (e.g., selection or content
focus).

Techniques:

 5 Jun 2000 14:1833

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-nav-structure
http://www.w3.org/TR/UAAG10/#tech-search-text
http://www.w3.org/TR/UAAG10/#tech-nav-just-active

Use the DOM [DOM2] as the basis of structured navigation. However, for
well-known markup languages such as HTML, structured navigation should
take advantage of the structure of the source tree and what is rendered.
Allow navigation based on commonly understood document models, even if
they do not adhere strictly to a Document Type Definition (DTD).
navigation. For instance, in HTML, although headers (H1-H6) are not
containers, they may be treated as such for the purpose of navigation. Note
that they should be properly nested.
Allow the user to limit navigation to the cells of a table (notably left and right
within a row and up and down within a column). Navigation techniques
include keyboard navigation from cell to cell (e.g., using the arrow keys)
and page up/down scrolling. Refer to the section on table navigation .
Allow depth-first as well as breadth-first navigation.
Provide context-sensitive navigation. For instance, when the user navigates
to a list or table, provide locally useful navigation mechanisms (e.g., within
a table, cell-by-cell navigation) using similar input commands.
From a given element, allow navigation to the next or previous sibling, up to
the parent, and to the end of an element.
Allow users to navigate synchronized multimedia presentations in time.
Refer also to checkpoint 4.6.
Allow the user to navigate characters, words, sentences, paragraphs,
screenfuls, and other pieces of text content that depend on natural
language . This benefits users of speech-based user agents and has been
implemented by several screen readers, including Winvision [WINVISION] ,
Window-Eyes [WINDOWEYES] , and Jaws for Windows [JFW] .
Allow users to skip author-supplied navigation mechanisms such as
navigation bars. For instance, navigation bars at the top of each page at a
Web site may force users with screen readers or some physical disabilities
to wade through many links before reaching the important information on
the page. User agents may facilitate browsing for these users by allowing
them to skip recognized navigation bars (e.g., through a configuration
option). Some techniques for this include:

1. Providing a functionality to jump to the first non-link content.
2. In HTML, the MAP element may be used to mark up a navigation bar

(even when there is no associated image). Thus, users might ask that
MAP elements not be rendered in order to hide links inside the MAP
element. Note. Starting in HTML 4.01, the MAP element allows block
content, not just AREA elements.

The following is a summary of ideas provided by the National Information
Standards Organization [NISO] :

A talking book’s "Navigation Control Center" (NCC) resembles a
traditional table of contents, but it is more. It contains links to all
headings at all levels in the book, links to all pages, and links to any
items that the reader has chosen not to have read. For example, the
reader may have turned off the automatic reading of footnotes. To

34 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

allow the user to retrieve that information quickly, the reference to the
footnote is placed in the NCC and the reader can go to the reference,
understand the context for the footnote, and then read the footnote.

Once the reader is at a desired location and wishes to begin reading,
the navigation process changes. Of course, the reader may elect to
read sequentially, but often some navigation is required (e.g.,
frequently people navigate forward or backward one word or character
at a time). Moving from one sentence or paragraph at a time is also
needed. This type of local navigation is different from the global
navigation used to get to the location of what you want to read. It is
frequently desirable to move from one block element to the next. For
example, moving from a paragraph to the next block element which
may be a list, blockquote, or sidebar is the normally expected
mechanism for local navigation.

7.7 Allow the user to configure structured navigation. [Priority 3] (Checkpoint 7.7)
For example, allow the user to navigate only paragraphs, or only headers and
paragraphs, etc.

Techniques:

Allow the user to navigate by element type.
Allow the user to navigate HTML elements that share the same "class"
attribute.
Allow the user to expand or shrink portions of the structured view (configure
detail level) for faster access to important parts of content.

Guideline 8. Orient the user.
Checkpoints for content accessibility:

8.1 Make available to the user the author-specified purpose of each table and the
relationships among the table cells and headers. [Priority 1] (Checkpoint 8.1)

For example, provide information about table headers, how headers relate to
cells, table summary information, cell position information, table dimensions,
etc. Refer also to checkpoint 5.3. Note. This checkpoint is an important special
case of checkpoint 2.1.

Techniques:

Refer to the section on table techniques
Allow the user to navigate to a table cell and query the cell for metadata
(e.g., by activating a menu or key stroke).

The following image shows how Internet Explorer [IE] provides cell header
information through the context ("right-click") menu:

 5 Jun 2000 14:1835

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-table-summary
http://www.w3.org/TR/UAAG10/#tech-configure-navigation

8.2 Indicate to the user whether a link has been visited. [Priority 2] (Checkpoint 8.2)
Note. Do not use color as the only distinguishing factor between visited and
unvisited links as some users may not perceive colors and some devices may
not render them. This checkpoint is an important special case of checkpoint 8.4.

Techniques:

Do not rely on color alone. Refer to the visited links example in the section
on generated content techniques .
Refer to techniques for checkpoint 7.3.
Refer to the section on link techniques .

8.3 Indicate to the user whether a link has been marked up to indicate that following
it will involve a fee. [Priority 2] (Checkpoint 8.3)

Note. This checkpoint is an important special case of checkpoint 8.4. The W3C
specification "Common Markup for micropayment per-fee-links"
[MICROPAYMENT] describes how authors may mark up micropayment
information in an interoperable manner.

Techniques:

36 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-info-link-fee
http://www.w3.org/TR/UAAG10/#tech-info-link-visited

Use standard, accessible interface controls to present information about
fees and to prompt the user to confirm payment.
For a link that has content focus , allow the user to query the link for fee
information (e.g., by activating a menu or key stroke).
Refer to the section on link techniques .

8.4 To help the user decide whether to follow a link, make available link information
supplied by the author and computed by the user agent. [Priority 3] (Checkpoint 8.4)

Information supplied by the author includes link content, link title, whether the
link is internal, whether it involves a fee, and hints on the content type, size, or
natural language of the linked resource. Information computed by the user agent
includes whether the user has already visited the link. Note. User agents are not
required to retrieve the resource designated by a link as part of computing
information about the link.

Techniques:

For a link that has content focus , allow the user to query the link for
information (e.g., by activating a menu or key stroke).
Refer to the section on link techniques .

The following image shows how Opera [OPERA] allows the user to configure
link rendering, including the identification of visited links.

 5 Jun 2000 14:1837

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-info-link

Checkpoints for user interface accessibility:

8.5 Provide a mechanism for highlighting and identifying (through a standard
interface where available) the current viewport , selection , and content focus .
[Priority 1] (Checkpoint 8.5)

Note. This includes highlighting and identifying frames. Note. This checkpoint is
an important special case of checkpoint 1.1. Refer also to checkpoint 8.4.

Techniques:

If colors are used to highlight the current viewport, selection, or content
focus, allow the user to configure these colors.
Provide a setting that causes a window that is the current viewport to pop to
the foreground.
Provide a setting that causes a window that is the current viewport to be
maximized automatically. For example, maximize the parent window of the
browser when launched, and maximize each child window automatically
when it receives focus . Maximizing does not necessarily mean occupying
the whole screen or parent window; it means expanding the current window
so that users have to scroll horizontally or vertically as little as possible.
If the current viewport is a frame or the user does not want windows to pop
to the foreground, use colors, reverse videos, or other graphical clues to
indicate the current viewport.
For speech or Braille output, use the frame or window title to identify the

38 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-highlight-view-selection-focus

current viewport. Announce changes in the current viewport.
Use operating system conventions, for specifying selection and content
focus (e.g., schemes in Windows).
Support the ’:hover’, ’:active’, and ’:focus’ pseudo-classes of CSS 2 ([CSS2]
, section 5.11.3). This allows users to modify content focus presentation
with user style sheets .
Refer to the section on frame techniques .

The following image shows how Opera [OPERA] uses a solid line border to
indicate content focus:

The following image shows how the Accessible Web Browser [[AWB] uses
the system highlight colors to indicate content focus:

 5 Jun 2000 14:1839

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1998/REC-CSS2-19980512/selector.html#dynamic-pseudo-classes

8.6 Make available to the user an "outline" view of content , built from structural
elements (e.g., frames, headers, lists, forms, tables, etc.). [Priority 2] (Checkpoint
8.6)

For example, for each frame in a frameset, provide a table of contents
composed of headers where each entry in the table of contents links to the
header in the document. Note. The outline view does not have to be navigable,
but if it is, it may satisfy checkpoint 7.6.

Techniques:

For documents that do not use structure properly, user agents may try to
create an outline from presentation elements used (insufficiently) to convey
structure.
Allow the user to expand or shrink portions of the outline view (configure
detail level) for faster access to important parts of content.
Implement a structured view by hiding portions of the document tree by
using the CSS ’display’ and ’visibility’ properties ([CSS2] , sections 9.2.5
and 11.2, respectively).
Provide a structured view of form controls (e.g., those grouped by
LEGEND or OPTGROUP in HTML) along with their labels.
Refer to structured navigation techniques for checkpoint 7.6.

40 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1998/REC-CSS2-19980512/visufx.html#propdef-visibility
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-display
http://www.w3.org/TR/UAAG10/#tech-provide-outline-view
http://www.w3.org/TR/UAAG10/#tech-provide-outline-view

Refer to the section on list techniques .

The following image shows the table of contents view provided by Amaya
[AMAYA] . This view is synchronized with the "primary" view so that users may
navigate in one view and the focus follows in the other. An entry in the table of
contents with a target icon means that the header in the document has an
associated anchor.

8.7 Provide a mechanism for highlighting and identifying active elements (through a
standard interface where available). [Priority 2] (Checkpoint 8.7)

Note. User agents may satisfy this checkpoint by implementing the appropriate
style sheet mechanisms, such as link highlighting.

Techniques:

Allow users to configure highlighting preferences.
Do not rely on color alone to identify active elements.
Support the ’:hover’, ’:active’, and ’:focus’ pseudo-classes of CSS 2 ([CSS2]
, section 5.11.3).
Support CSS attribute selectors to match elements with associated scripts
([CSS2] , section 5.8).

 5 Jun 2000 14:1841

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1998/REC-CSS2-19980512/selector.html#attribute-selectors
http://www.w3.org/TR/1998/REC-CSS2-19980512/selector.html#dynamic-pseudo-classes
http://www.w3.org/TR/UAAG10/#tech-highlight-active

8.8 Allow the user to configure the outline view. [Priority 3] (Checkpoint 8.8)
For example, allow the user to configure the level of detail of the outline. Refer
also to checkpoint 8.6 and checkpoint 5.5.

Techniques:

The CSS ’display’ and ’visibility’ properties ([CSS2] , sections 9.2.5 and
11.2, respectively), allow the user to override the default settings in user
style sheets .

Example.

The following CSS 2 style sheet will turn the display off of all HTML
elements inside the BODY element except header elements:

<STYLE type="text/css">
 BODY * { display: none }
 H1, H2, H3, H4, H5, H6 { display: block }
</STYLE>

Another approach would be to use class selectors to identify those
elements to hide or display.

End example.

8.9 Allow the user to configure what information about links to present. [Priority 3]
(Checkpoint 8.9)

Note. Refer also to checkpoint 8.4.

Techniques:

Allow configuration through style sheets. Refer to the section on generated
content techniques .

Guideline 9. Notify the user of content and viewport changes.
Checkpoints for user interface accessibility:

9.1 Ensure that when the selection or content focus changes, it is in a viewport
after the change. [Priority 2] (Checkpoint 9.1)

For example, users navigating links may navigate to a portion of the document
outside the viewport, so the viewport should scroll to include the new location of
the focus.

Techniques:

There are times when the content focus changes (e.g., link navigation) and
the viewport must be moved to track it. There are other times when the
viewport changes position (e.g., scrolling) and the content focus is moved
to follow it. In both cases, the focus (or selection) is in the viewport after the
change.
If a search causes the selection or focus to change, ensure that the found

42 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-track-selection-focus
http://www.w3.org/TR/UAAG10/#tech-configure-info-link
http://www.w3.org/TR/1998/REC-CSS2-19980512/visufx.html#propdef-visibility
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-display
http://www.w3.org/TR/UAAG10/#tech-configure-outline-view

content is not hidden by the search prompt.
When the content focus changes, register the newly focused element in the
navigation sequence; sequential navigation should start from there.
Unless viewports have been synchronized explicitly, changes to selection
or focus in one viewport should not affect the selection or focus in another
viewport.

9.2 Prompt the user to confirm any form submission triggered indirectly, that is by
any means other than the user activating an explicit form submit control. [Priority 2]
(Checkpoint 9.2)

For example, do not submit a form automatically when a menu option is
selected, when all fields of a form have been filled out, or when a mouseover
event occurs.

Techniques:

Allow the user to configure script-based submission (e.g., triggered by an
"onChange" event). For instance, allow these settings:

1. Do not allow script-based submission.
2. Allow script-based submission after confirmation from the user.
3. Allow script-based submission without confirmation from the user.

Users who navigate a document serially may think that the submit button in
a form is the "last" control they need to complete before submitting the
form. Therefore, for forms in which additional controls follow a submit
button, if those controls have not been completed, inform the user and ask
for confirmation (or completion) before submission.

9.3 Allow the user to configure notification preferences for common types of content
and viewport changes. [Priority 3] (Checkpoint 9.3)

For example, allow the user to choose to be notified (or not) that a script has
been executed, that a new viewport has been opened, that a pulldown menu
has been opened, that a new frame has received focus , etc.

Techniques:

Refer to the section on frame techniques
Allow the user to specify an element type for which notification should be
disabled (e.g., TABLE, BODY, and IMG in HTML).
Allow the user to disable notification of changes to CSS properties.
Allow the user to disable notification of images that are changed (e.g.,
animations composed of a sequence of images).

9.4 When loading content (e.g., document, image, audio, video, etc.) indicate what
proportion of the content has loaded and whether loading has stalled. [Priority 3]
(Checkpoint 9.4)

 5 Jun 2000 14:1843

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-info-content-load
http://www.w3.org/TR/UAAG10/#tech-configure-change-notification
http://www.w3.org/TR/UAAG10/#tech-info-form-submit

Techniques:

Indicate when loading has finished, for example with a percentage
indication or a special message.
Provide status information in a device-independent manner. Use text and
non-text status indicators.
Provide this information automatically and allow users to query the viewport
for it (e.g., through a menu or keyboard shortcut).
Allow users to configure when to render status information so that assistive
technologies may announce changes in status at appropriate times. For
instance, allow the user to hide the status bar in order to hide a text
rendering.
Allow users to configure what status information they want rendered. Useful
status information includes:

Document proportions (numbers of lines, pages, width, etc.)
Number of elements of a particular type (e.g., tables)
The viewport is at the beginning or end of the document.
Size of document in bytes.

9.5 Indicate the relative position of the viewport in rendered content (e.g., the
percentage of an audio or video clip that has been played, the percentage of a Web
page that has been viewed, etc.). [Priority 3] (Checkpoint 9.5)

Note. The user agent may calculate the percentage according to content focus
position, selection position, or viewport position, depending on how the user has
been browsing.

Techniques:

Provide a scrollbar for the viewport. Some specifications address scrolling
requirements or suggestions explicitly, such as for the THEAD and TBODY
elements of HTML 4.01 ([HTML4] , section 11.2.3) and the ’overflow’
property of CSS 2 ([CSS2] , section 11.1.1).
Indicate the size of the document, so that users may decide whether to
download for offline viewing. For example, the playing time of an audio file
could be stated in terms of hours, minutes, and seconds. The size of a
primarily text-based Web page might be stated in both kilobytes and
screens, where a screen of information is calculated based on the current
dimensions of the viewport.
Indicate the number of screens of information, based on the current
dimensions of the viewport (e.g., "screen 4 of 10").
Use a variable pitch audio signals to indicate the viewport’s different
positions.
Provide standard markers for specific percentages through the document.
Provide markers for positions relative to some position - a user selected
point, the bottom, the H1, etc.
Put a marker on the scrollbar, or a highlight at the bottom of the page while

44 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1998/REC-CSS2-19980512/visufx.html#propdef-overflow
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.3
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.3
http://www.w3.org/TR/UAAG10/#tech-info-content-nav

scrolling (so you can see what was the bottom before you started scrolling.

Guideline 10. Allow configuration and customization.
Checkpoints for user interface accessibility:

10.1 Provide information to the user about current user preferences for input
configurations (e.g., keyboard or voice bindings). [Priority 1] (Checkpoint 10.1)

Techniques:

Refer to input configuration techniques .

10.2 Avoid default input configurations that interfere with operating system
accessibility conventions. [Priority 1] (Checkpoint 10.2)

In particular, default configurations should not interfere with the mobility access
keyboard modifiers reserved for the operating system. For information about
system conventions and accessibility settings, refer to checkpoint 5.9.

Techniques:

The default configuration should not include "Alt-F4",
"Control-Alt-Delete", or other combinations that have reserved
meanings on a given operating system.
Clearly document any default configurations that depart from system
conventions.
Some reserved keyboard shortcuts are listed in the appendix on
accessibility features of some operating systems .

10.3 Provide information to the user about current author-specified input
configurations (e.g., keyboard bindings specified in content HTML with the
"accesskey" attribute). [Priority 2] (Checkpoint 10.3)

Techniques:

Refer to input configuration techniques .
Provide information about which keys activate form controls.

10.4 Allow the user to change the input configuration . [Priority 2] (Checkpoint 10.4)
For voice-activated browsers, allow the user to modify which voice commands
activate functionalities. Similarly, allow the user to modify the graphical user
agent user interface for quick access to commonly used functionalities (e.g.,
through buttons). Refer also to checkpoint 10.5 and checkpoint 10.9.

Techniques:

 5 Jun 2000 14:1845

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-configure-input
http://www.w3.org/TR/UAAG10/#tech-info-current-author-config
http://www.w3.org/TR/UAAG10/#tech-default-input-sensible
http://www.w3.org/TR/UAAG10/#tech-info-current-ua-config

Allow users to restore easily the default input configuration.
When using a physical keyboard, some users require single-key access
(refer to checkpoint 10.5), others require that keys activated in combination
be physically close together, while others require that they be spaced
physically far apart.
Allow users to select from among pre-packaged configurations, to override
some of the chosen configuration, and to save it as a profile . Not only will
the user save time configuring the user agent, but this will reduce questions
to technical support personnel.
Do not allow the user to override important user agent or operating system
configurations (e.g., to quit the user agent, or reconfigure it). Refer to input
configuration techniques .
Allow users to create macros and bind them to key strokes or other input
methods.

10.5 Allow the user to configure the user agent so that the user’s preferred one-step
operations may be activated with a single input command (e.g., key stroke, voice
command, etc.). [Priority 2] (Checkpoint 10.5)

Note. User agents are not required to provide single command activation of all
user agent functionalities at once, only some of them. This checkpoint is an
important special case of checkpoint 10.4.

Techniques:

Many people benefit from "single stroke", direct access to important user
agent functionalities (e.g., via a single key stroke or voice command): users
with poor physical control (who might mistakenly repeat a key stroke), users
who fatigue easily (for whom key combinations involve significant effort),
users who cannot remember key combinations, and any user who wants to
operate the user agent quickly.
Opera [OPERA] includes a mode in which users can access important user
agent functionalities with single strokes from the numeric keypad.
Mouse Keys (available on some operating systems) allow users to
simulate the mouse through the keyboard. They provide a usable command
structure without interfering with the user interface for users who do not
require keyboard-only and single-key access.

10.6 Follow operating system conventions to indicate the input configuration .
[Priority 2] (Checkpoint 10.6)

For example, on some operating systems, if a functionality is available from a
menu, the letter of the key that will activate that functionality is underlined. Note.
This checkpoint is an important special case of checkpoint 5.9.

Techniques:

46 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-info-input-conventions
http://www.w3.org/TR/UAAG10/#tech-configure-single

Use system conventions to indicate the current configuration (e.g., in
menus, indicate what key strokes will activate the functionality, underline
single keys that will work in conjunction with a trigger key such as Alt, etc.)
These are conventions used by the Sun Java Foundations Classes
[JAVA-TUT] and Microsoft Foundations Classes for Windows.
Ensure that information about changes to the input configuration is
available in a device-independent manner (e.g., through visual and audio
cues, and through text).
If the currently active configuration changes locally (e.g., a search prompt
opens, changing the keyboard mapping for the duration of the prompt), alert
the user.
Named configurations are easier to remember. This is especially important
for persons with certain types of cognitive disabilities. For example, if the
invocation of a search prompt changes the input configuration, the user
may remember more easily which key strokes are active in search mode if
alerted that there is a "Search Mode". Context-sensitive help (if available)
should reflect the change in mode, and a list of keybindings for the current
mode should be readily available to the user.

10.7 For the configuration requirements of this document, allow the user to save
user preferences in a profile . [Priority 2] (Checkpoint 10.7)

Note. This includes user preferences for styles, presentation rates, input
configurations , navigation, views, and notification. Users must be able to select
from among available profiles or no profile (i.e., the user agent default settings).

Techniques:

Follow applicable operating system conventions for input configuration
profiles .
Allow users to choose a different profile, to switch rapidly between profiles,
and to return to the default input configuration.

10.8 Ensure that frequently used functionalities are easily activated in the default
input configuration . [Priority 3] (Checkpoint 10.8)

Make the most frequent operations easy to access and operable through a
single command.

Techniques:

Provide different input configuration profiles (e.g., one keyboard profile with
key combinations close together and another with key combinations far
apart).
Test the default keyboard configuration for usability. Ask users with different
disabilities and combinations of disabilities to test configurations.
Provide convenient bindings to functionalities that promote accessibility
such as navigation of links.
Provide convenient bindings for controlling the user interface, such as

 5 Jun 2000 14:1847

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-default-input-config
http://www.w3.org/TR/UAAG10/#tech-user-profile

showing, hiding, moving, and resizing graphical viewports .
For people using one hand, a few fingers, or a headwand pointer, access to
important functionalities must be available through one or at most two key
strokes.
Consider distance between keys and key alignment (e.g., "9/I/K", which
align almost vertically on many keyboards) in the default configuration. For
instance, if Enter is used to active links, put other link navigation
commands near it (e.g., page up/down, arrow keys, etc. on many
keyboards). In configurations for users with reduced mobility, pair related
functionalities on the keyboard (e.g., left and right arrows for forward and
back navigation).
Allow users to accomplish tasks through repeated key strokes (e.g.,
sequential navigation) since this means less physical repositioning for all
users. However, repeated key strokes may not be efficient for some tasks.
For instance, do not require the user to position the pointing device by
pressing the "down arrow" key repeatedly.
So that users do not mistakenly activate certain functionalities, make
certain combinations "more difficult" to invoke (e.g., users are not likely to
press Control-Alt-Delete accidentally).
Avoid deeply nested graphical menus.
Input configurations should allow quick and direct navigation that does not
rely on graphical output. Do not require the user to navigate through
"space" (through a graphical user interface) as the only way to activate a
functionality.
Offer a mode that makes the input configuration compatible with other
versions of the software (or with other software).
Refer also to checkpoint 10.6.

10.9 Allow the user to configure the arrangement of graphical user agent user
interface controls. [Priority 3] (Checkpoint 10.9)

Note. This checkpoint is an important special case of checkpoint 10.4.

Techniques:

Allow multiple icon sizes (big, small, other sizes).
Allow the user to choose icons and/or text.
Allow the user to change the grouping of icons.
Allow the user to show and hide controls. This benefits users with cognitive
disabilities and users navigate user interface controls sequentially.
Allow the user to change the position of control bars, icons, etc. Do not rely
solely on drag-and-drop for reordering tool bar. Allow the user to configure
the user agent user interface in a device-independent manner (e.g.,
through a text-based profile).

48 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-configure-controls

Guideline 11. Provide accessible product documentation and
help.
Checkpoints for user interface accessibility:

11.1 Provide a version of the product documentation that conforms to the Web
Content Accessibility Guidelines 1.0 [WCAG10] . [Priority 1] (Checkpoint 11.1)

User agents may provide documentation in many formats, but at least one must
conform to the Web Content Accessibility Guidelines 1.0 [WCAG10] .

Techniques:

Distribute accessible documentation over the Web, on CD-ROM, or by
telephone. Alternative hardcopy formats may also benefit some users.
Documentation includes information bundled with a product when it is
released as well as information made available subsequently (e.g., bug
fixes, etc.).
Web-based support and/or documentation that is produced or maintained
by the manufacturer of a user agent or by a sub-contractor of the user
agent’s developer must conform to the Web Content Accessibility
Guidelines 1.0 [WCAG10] . In particular:

1. Provide text equivalents of all non-text content (e.g., graphics, audio
presentations , etc.);

2. Provide extended descriptions of screen-shots, flow charts, etc.;
3. Use clear and consistent navigation and search mechanisms;
4. Use the NOFRAMES element when the support/documentation is

presented in a FRAMESET;
5. Refer also to checkpoint 11.3.

Describe the user interface with device-independent terms. For example,
use "select" instead of "click on".
Provide documentation in small chunks (for rapid downloads) and also as a
single source (for easy download and/or printing). A single source might be
a single HTML file or a zip archive of several HTML documents and
included images.
Ensure that run-time help and any Web-based help or support information
is accessible and may be operated with a single, well-documented, input
command (e.g., key stroke). Use operating system conventions for input
configurations related to run-time help.
Provide documentation in alternative formats such as Braille (refer to
"Braille Formats: Principles of Print to Braille Transcription 1997"
[BRAILLEFORMATS]), large print, or audio tape. Agencies such as
Recording for the Blind and Dyslexic [RFBD] and the National Braille Press
[NBP] can create alternative formats.
Provide accessible documentation for all audiences: end users, developers,
etc. For instance, developers with disabilities may wish to add accessibility
features to the user agent, and so require information on available APIs
and other implementation details.

 5 Jun 2000 14:1849

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-accessible-doc

Ensure that product identification codes are accessible to users so they
may install their software. Codes printed on product cases will not be
accessible to people with visual disabilities.

11.2 Document all user agent features that promote accessibility. [Priority 1]
(Checkpoint 11.2)

For example, review the documentation or help system to ensure that it includes
information about the accessibility features discussed in this document.

Techniques:

Refer also to techniques for checkpoint 11.4.
Provide a sensible index to accessibility features. For instance, users
should be able to find "How to turn off blinking text" in the documentation.
The user agent may implement this feature by turning off scripts, but users
should not have to guess (or know) that turning off scripts will turn off
blinking text. Controls available through the user interface should also
present these features with the proper level of abstraction.
Document configurable features in addition to defaults for those features.
Document the features implemented to conform with these guidelines.
Include references to accessibility features in both the table of contents and
index of the documentation.

11.3 Document the default input configuration (e.g., default keyboard bindings).
[Priority 1] (Checkpoint 11.3)

Techniques:

The following table shows how one might document keyboard bindings. It
show the default keyboard configuration for versions of Navigator [NAVIGATOR]
 running on the Macintosh, Unix, and Windows operating systems. If a function
exists in the browser but does not have a shortcut, its corresponding cell is
marked with an asterisk (*). If the function does not exist, it is left blank. Note.
This table lists some, but not all, functionalities and keyboard shortcuts of
Navigator. It is meant to illustrate, not serve as definitive documentation.

Some entries contain links to special notes. The number in parentheses
following the link is the number of the relevant note.

Note. To make this table accessible, a linear version of Navigator Keyboard
Shortcuts is available.

Navigator Keyboard Shortcuts

Function
Macintosh (v

4.61)
Unix (v
4.51)

Windows (v 4.7)

Move within a document

50 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-document-default-input
http://www.w3.org/TR/UAAG10/#tech-document-functionality

Scroll to next
page

Page Down Page Down Page Down

Scroll to
previous page

Page Up Page Up Page Up

Scroll to top * * Control-Home

Scroll to bottom * * Control-End

Move between documents

Open a new
document

Command+L Alt+O Control+O

Stop loading a
document

Command+. Esc Esc

Refresh a
document

Command+R Alt+R Control+R

Load previous
document

Command+[
or
Command+Left
Arrow

Alt+Left
Arrow

Alt+Left
Arrow

Load next
document

Command+]
or
Command+Right
Arrow

Alt+Right
Arrow

Alt+Right
Arrow

Navigate elements within a document

Move focus to
next frame

* * *

Move focus to
previous frame

* * *

Move focus to
next active
element (1)

Tab Tab Tab

Move focus to
previous active
element (1)

Shift+Tab Shift+Tab Shift+Tab

Find word in
page

Command+F Alt+F Control+F

Act on HTML elements

 5 Jun 2000 14:1851

Techniques for User Agent Accessibility Guidelines 1.0

Select a link * * Enter

Toggle a check
box

* * Shift or Enter

Activate radio
button

* * Shift

Move focus to
next item in an
option box

* *
Down Arrow or
Right Arrow

Move focus to
previous item in
an option box

* *
Up Arrow or
Left Arrow

Select item in
an option box

* * Enter

Press a button
(2)

Return Enter Enter

Navigate menus

Activate menu * *
Alt+ the
underlined letter
in the menu title

Deactivate
menu

* Esc Esc

Move focus to
next menu item

* * (3) Down Arrow

Move focus to
previous menu
item

* * (3) Up Arrow

Select menu
item

*
underlined
letter in the
menu item

Enter

Move focus to
submenu

* * (3) Right Arrow

Move focus to
main menu

* * (3) Left Arrow

Navigate bookmarks

52 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

View bookmarks
menu

* (4) * Alt+C+B

Move focus to
next item in
bookmarks
menu

Down Arrow (4) * Down Arrow

Move focus to
previous item in
bookmarks
menu

Up Arrow (4) * Up Arrow

Select item in
bookmarks
menu

Return (4) * Enter

Add bookmark Command+D Alt+K Control+D

Edit bookmarks Command+B Alt+B Control+B

Delete current
bookmark (5)

Delete Alt+D Delete

Navigate history list

View history list Command+H Alt+H Control+H

Move focus to
next item in
history list

* * Down Arrow

Move focus to
previous item in
history list

* * Up Arrow

Move focus to
first item in
history list

* * Left Arrow

Select item in
history list

* * Enter (6)

Close history list Command+W Alt+W Control+W

Define view

Increase font
size (7)

Shift+Command+] Alt+] Control+]

 5 Jun 2000 14:1853

Techniques for User Agent Accessibility Guidelines 1.0

Decrease font
size (7)

Shift+Command+[Alt+[Control+[

Change font
color

* * *

Change
background
color

* * *

Turn off
author-defined
style sheets

* * *

Turn on
user-defined
style sheets (8)

? ? ?

Apply next
user-defined
style sheet

? ? ?

Apply previous
user-defined
style sheet

? ? ?

Other functionalities

Access to
documentation

* * *

Notes.
1. In Windows, active elements of the user interface include links, text entry

boxes, buttons, checkboxes, radio buttons, etc. In Unix and Macintosh, Tab
cycles through text entry boxes only.

2. In Windows, this works for any button, since any button can gain the user
interface focus using keyboard commands. In Unix and Macintosh, this
only applies to the "Submit" button following a text entry.

3. In Unix, the menus cannot be opened with shortcut keys. However, once a
menu is opened it stays opened until it is explicitly closed, which means
that the menus can still be used with shortcut keys to some extent.
Sometimes left and right arrows move between menus and up and down
arrows move within menus, but this does not seem to work consistently,
even within a single session.

4. In Macintosh, you cannot explicitly view the bookmarks menu. However, if
you choose "Edit Bookmarks", which does have a keyboard shortcut, you
can then navigate through the bookmarks and open bookmarked
documents in the current window.

54 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

5. To delete a bookmark you must first choose "Edit Bookmarks" and then
move the focus to the bookmark you want to delete.

6. In Windows, when you open a link from the history menu using Enter, the
document opens in a new window.

7. All three systems have menu items (and corresponding shortcut keys)
meant to allow the user to change the font size. However, the menu items
are consistently inactive in both Macintosh and Unix. The user seems to be
able to actually change the font sizes only in Windows.

8. It is important to allow users to set their own Cascading Style Sheets.
Although Navigator does currently allow the user to override the author’s
choice of foreground color, background color, font, and font size, it does not
allow some of the advanced capabilities that make CSS so powerful. For
example, a blind user may want to save a series of style sheets which show
only headers, only links, etc., and then view the same page using some or
all of these style sheets in order to orient himself to the contents and
organization of the page before reading any of the actual content.

11.4 In a dedicated section of the documentation , describe all features of the user
agent that promote accessibility. [Priority 2] (Checkpoint 11.4)

Note. This is a more specific requirement than checkpoint 11.2.

Techniques:

Integrate information about accessibility features throughout the
documentation. The dedicated section on accessibility should provide
access to the documentation as a whole rather than standing alone as an
independent section. For instance, in a hypertext-based help system, the
section on accessibility should link to pertinent topics elsewhere in the
documentation.
Ensure that the section on accessibility features is easy to find.

11.5 Document changes between software releases. [Priority 2] (Checkpoint 11.5)

Techniques:

At a minimum provide a text description of changes (e.g., in a README
file).
In particular, document changes to the user interface.

3 Accessibility topics
This section presents general accessibility techniques that may apply to more than
one checkpoint.

 5 Jun 2000 14:1855

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/UAAG10/#tech-document-changes
http://www.w3.org/TR/UAAG10/#tech-document-accessibility

3.1 Access to content
User agents must ensure that users have access to content , either rendered
through the user interface or made available to assistive technologies through an
API . While providing serial access to a stream of content would satisfy this
requirement, this would be analogous to offering recorded music on a cassette: other
technologies exist (e.g., CD-ROMs) that allow direct access to music. It is just as
important for user agents to allow users to access Web content efficiently, whether
the content is being rendered as a two-dimensional graphical layout, an audio
stream, or a line-by-line Braille stream). Providing efficient access to content
involves:

Preserving structure when rendering
Allowing the user to select specific content and query its structure or context
Providing access to equivalent alternatives of content.
Using and generating metadata to provide context

These topics are addressed below.

3.1.1 Preserve and provide structure

When used properly, markup languages structure content in ways that allow user
agents to communicate that structure across different renderings. A table describes
relationships among cells and headers. Graphically, user agents generally render
tables as a two-dimensional grid. However, serial renderings (e.g., speech and
Braille) must also make those relationships apparent, otherwise users will not
understand the purpose of the table and the relationships among its cells (refer to
the section on table techniques). User agents must render content in ways that
allow users to understand the underlying document structure, which may consist of
headers, lists, tables, synchronized multimedia, link relationships, etc. Providing
alternative renderings (e.g., an outline view) will also help users understand
document structure.

Note. Even though the structure of a language like HTML is defined by a
Document Type Definition (DTD), user agents may convey structure according to a
"more intelligent" document model when that model is well-known. For instance, in
the HTML DTD, header elements do not nest, but presenting the document as
nested headers may be convey the document’s structure more effectively than as a
flat list of headers.

3.1.2 Allow access to selected content

The guidelines emphasize the importance of navigation as a way to provide efficient
access to content. Navigation allows users to access content more quickly and when
used in conjunction with selection and focus mechanisms, allows users to query
content for metadata. For instance, blind users often navigate a document by
skipping from link to link, deciding whether to follow each link based on metadata
about the link. User agents can help them decided whether to follow a link by

56 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

allowing them to query each focused link for the link text, title information,
information about whether the link has been visited, whether the link involves a fee,
etc. While much of this information may be rendered, the information must also be
available to assistive technologies.

For example, the Amaya browser/editor [AMAYA] makes available all attributes
and their values to the user through a context menu. The user selects an element
(e.g., with the mouse) and opens an attribute menu that changes according to the
selected element. The selection may be widened (moved to the nearest node one
level up the document tree) by pressing the Escape key; this is a form of structured
navigation based on the underlying document object model . Information about
attributes is also available through Amaya’s structured view, which renders the
document tree as structured text.

Users may want to select content based on structure alone (as offered by Amaya)
but also based on how the content has been rendered. For instance, most user
agents allow users to select ranges of text content that may cross "element
boundaries".

3.1.3 Access to equivalent alternatives of content

Authors provide equivalent alternatives to content so that users may understand the
function of a page or part of a page even though they may not be able to make use
of a particular content type. For example, authors must provide text equivalents for
non-text content (e.g., images, video, audio presentations , etc.) because text may
be rendered as speech or Braille and may be used by users with visual or hearing or
both disabilities. User agents must ensure that these alternatives are available to
users, either through the user interface or through an API .

How authors specify equivalent alternatives depends on the markup language
used. For information about equivalent alternatives for SMIL [SMIL] content, refer to
"Accessibility Features of SMIL" [SMIL-ACCESS] . In HTML 4.01 [HTML4] , authors
supply equivalent alternatives for content as follows:

For the IMG element (section 13.2): The "alt" (section 13.8), "title" (section
7.4.3), and "longdesc" (section 13.2) attributes. Refer to the section on long
descriptions .
For the OBJECT element (section 13.3): The content of the element and the
"title" attribute.
For the deprecated APPLET element (section 13.4): The "alt" attribute and the
content of the element.
For the AREA element (section 13.6.1): The "alt" attribute.
For the INPUT element (section 17.4): The "alt" attribute.
For the ACRONYM and ABBR elements (section 9.2.1): The "title" attribute may
be used for the acronym or abbreviation expansion.
For the TABLE element (section 11.2.1), the "summary" attribute.
For frames, the NOFRAMES element (section 16.4.1) and the "longdesc"
attribute (section 16.2.2) on FRAME and IFRAME (section 16.5).

 5 Jun 2000 14:1857

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1999/REC-html401-19991224/present/frames.html#h-16.5
http://www.w3.org/TR/1999/REC-html401-19991224/present/frames.html#h-16.2.2
http://www.w3.org/TR/1999/REC-html401-19991224/present/frames.html#edef-FRAME
http://www.w3.org/TR/1999/REC-html401-19991224/present/frames.html#edef-FRAME
http://www.w3.org/TR/1999/REC-html401-19991224/present/frames.html#edef-NOFRAMES
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#adef-summary
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#edef-TABLE
http://www.w3.org/TR/1999/REC-html401-19991224/struct/text.html#edef-ABBR
http://www.w3.org/TR/1999/REC-html401-19991224/struct/text.html#edef-ACRONYM
http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html#edef-INPUT
http://www.w3.org/TR/1999/REC-html401-19991224/struct/objects.html#edef-AREA
http://www.w3.org/TR/1999/REC-html401-19991224/struct/objects.html#edef-APPLET
http://www.w3.org/TR/1999/REC-html401-19991224/struct/objects.html#edef-OBJECT
http://www.w3.org/TR/1999/REC-html401-19991224/struct/objects.html#edef-IMG
http://www.w3.org/TR/1999/REC-html401-19991224/struct/global.html#adef-title
http://www.w3.org/TR/1999/REC-html401-19991224/struct/objects.html#adef-alt
http://www.w3.org/TR/1999/REC-html401-19991224/struct/objects.html#edef-IMG

For scripts, the NOSCRIPT element (section 18.3.1).

Techniques for providing access to equivalent alternatives include the following:

Make information available with different levels of detail. For example, for a
voice browser, offer two options for equivalent alternatives to HTML images:

1. Speak only "alt" text by default, but allow the user to hear "longdesc" text
on an image by image basis.

2. Speak "alt" text and "longdesc" for all images.
Allow the user to configure how the user agent renders a long description (e.g.,
"longdesc" in HTML 4.01 [HTML4]). Some possibilities include:

1. Render the long description in a separate view.
2. Render the long description in place of the associated element.
3. Do not render the long description, but allow the user to query whether an

element has an associated long description (e.g., with a context-sensitive
menu) and provide access to it.

4. Use an icon (with a text equivalent) to indicate the presence of a long
description.

5. Use an audio cue to indicate the presence of a long description when the
user navigates to the element.

For an object with a preferred geometry (e.g., an image) that is not rendered,
allow the user to configure how the equivalent alternative should be rendered.
For example, within the preferred geometry, by ignoring the author-specified
geometry altogether, etc.
For multimedia presentations with several alternative tracks, ensure access to
all tracks and allow the user to select individual tracks. The Quicktime player
[QUICKTIME] allows users to turn on and off any number of tracks separately.
For multimedia presentations with several alternative tracks, allow users to
select tracks based on natural language preferences. SMIL 1.0 [SMIL] allows
users to specify captions in different natural languages. By setting language
preferences in the SMIL player (e.g., the G2 player [G2]), users may access
captions (or audio) in different languages. Allow users to specify different
languages for different content types (e.g., English audio and Spanish captions).
For missing equivalent alternatives of content:

The "Altifier Tool" [ALTIFIER] illustrates smart techniques for generating
text equivalents for images, etc., when the author hasn’t supplied any.
If no captioning information is available and captioning is turned on, render
"no captioning information available" in the captioning region of the
viewport.

3.1.4 Context

Authors and user agents provide context to users through content, structure,
navigation mechanisms, and query mechanisms. Titles, dimensions, dates,
relationships, the number of elements, and other metadata all help orient the user,
particularly when available as text. For instance, user agents can help orient users

58 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1999/REC-html401-19991224/interact/scripts.html#edef-NOSCRIPT

by allowing them to request that document headers and lists be numbered. Refer
also to the section on table techniques , which explains how users agents can offer
table navigation and the ability to query a table cell for information about the cell’s
row and column position, associated header information, etc.

User agents can use style sheet languages such as CSS 2 [CSS2] and XSLT
[XSLT] to generate context information (refer to techniques for generated
content).
For information about elements and attributes that convey metadata in HTML,
refer to the index of elements and attributes in "Techniques for Web Content
Accessibility Guidelines 1.0" [WCAG10-TECHS] .
For information about elements and attributes that convey metadata in SMIL,
refer to the index of attributes in the W3C Note "Accessibility Features of SMIL"
[SMIL-ACCESS] .
Describe a selected element’s position within larger structures (e.g., numerical
or relative position in a document, table, list, etc.). For example: tenth link of fifty
links; document header 3.4; list one of two, item 4.5; third table, three rows and
four columns; current cell in third row, fourth column; etc. Allow users to get this
information on demand (e.g., through a keyboard shortcut). Provide this
information on the status line on demand from the user.

3.2 User control of style
To ensure accessibility, users must be able to configure the style of rendered
content and the user interface. Author-specified styles, while important, may make
content inaccessible to some users. User agents must allow users to increase the
size of text (e.g., with a zoom mechanism or font size control), to change colors and
color combinations, to slow down multimedia presentations, etc.

To give authors design flexibility and allow users to control important aspects of
content style, user agents should implement CSS ([CSS1] , [CSS2]) and allow users
to create and apply user style sheets . CSS includes mechanisms for tailoring
rendering for a particular output medium, including audio, Braille (fixed and
refreshable), screen, and print.

User agents should implement the cascade order of CSS 2 ([CSS2] , section
6.4.1) not CSS 1. In CSS 2, user style sheets with "!important" (section 6.4.2)
take precedence over author styles . Refer also to Web Content Accessibility
Guidelines 1.0 checkpoint 3.3 [WCAG10] .
CSS-enabled user agents should take into account markup used for style into
the cascade, giving it a lower weight than actual style sheets. This allows
authors to specify style through markup for older user agents and to use more
powerful style sheets for CSS-enabled user agents. Refer to the section on the
precedence of non-CSS presentational hints in CSS 2 ([CSS2] , section 6.4.4).
To hide the CSS syntax from the user, user agents may implement user style
sheets through the user agent user interface . User agents can generate a user
style sheet from user preferences or behave as though it did. Amaya [AMAYA]

 5 Jun 2000 14:1859

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1998/REC-CSS2-19980512/cascade.html#q12
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/#tech-style-sheets
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/#tech-style-sheets
http://www.w3.org/TR/1998/REC-CSS2-19980512/cascade.html#important-rules
http://www.w3.org/TR/1998/REC-CSS2-19980512/cascade.html#cascading-order

provides a GUI-based interface to create and apply internal style sheets. The
same technique may be used to control a user style sheet.
For animations rendered natively, allow users to control the rate of animation, to
pause and play animations, to step through the animation, and to play it at the
specified rate. When an animation is synchronized with audio, the user may
need to play the animation separately from the associated audio.
Allow the user to pause a video presentation, to move, resize, and position
tracks that appear on the screen (including captions, subtitles and signed
translations) and to apply CSS stylesheets to text-based presentation.
In the user interface:

Allow the user to select large or small buttons and controls. Ensure that
these values are applied consistently across the user interface.
Allow the user to regroup buttons and controls, and reorder menus.
Use standard operating system controls for allowing configuration of font
sizes, speech rates, and other style parameters.

3.3 Link techniques
User agents make links accessible by providing navigation to links, helping users
decide whether to follow them, and allowing interaction in a device-independent
manner. Link techniques include the following:

Refer to sequential navigation techniques for information about navigating to
links.
Provide a link view that lists all links in the document. Allow the user to configure
how the links are sorted (e.g., by document order, sequential navigation order
alphabetical order, visited or unvisited or both, internal or external or both, etc.).
Help the user remember links by including metadata in the link view. For
example, identify a selected link as "Link X of Y", where "Y" is the total number
of links. Lynx [LYNX] numbers each link and provides information about the
relative position in the document. Position is relative to the current page and the
number of the current page out of all pages. Each page usually has 24 lines.
Allow the user to configure how much information about a link to present in the
content view (when a link receives focus). For instance, allow the user to
choose between "Display links using hyperlink text" or "Display links by title (if
present)", with an option to toggle between the two views. For a link without a
title, use the link text.
For links with non-text content such as images, make available a text equivalent
 as follows:

1. If the author has specified a non-empty text equivalent for the image (e.g.,
"alt" in HTML), use that as the link text;

2. Otherwise, use the link title if available;
3. Otherwise, use title information of the designated resource (e.g., the TITLE

element of HTML for links to HTML documents).
4. Otherwise, render part of the filename or URI of the designated resource.
5. Otherwise, insert a generic placeholder (e.g., [LINK]) in place of the image.

60 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

For an image in link content, ensure that the user has access to the link and any
long description associated with the image.
Ensure that all information about a link is available in a device-independent
manner. For example, do not rely solely on fonts or colors to alert the user
whether or not the link has previously been followed. Allow the user to configure
how information will be presented (colors, sounds, status bar messages, some
combination, etc.).
If the user activates a broken link, leave the viewport where it is and alert the
user (e.g., in the status bar, with graphical or aural icons, etc.). Moving the
viewport suggests that a link is not broken, which may disorient the user.
If the focus is used to select active elements, support the ’:hover’, ’:active’, and
’:focus’ pseudo-classes of CSS 2 ([CSS2] , section 5.11.3). This allows users to
modify content focus presentation with user style sheets. Use them in
conjunction with the CSS 2 ’:before’ pseudo-elements ([CSS2] , section 5.12.3)
to clearly indicate that something is a link (e.g., ’A:before { content : "LINK:" }’).
Refer also to techniques for generated content .
Do not consider that all local links (to anchors in the same page) have been
visited when the page has been visited.

Jaws for Windows [JFW] offers a view for configuring a number of rendering
features, notably some concerning link types, text link verbosity, image map link
verbosity, graphical link verbosity, and internal links:

 5 Jun 2000 14:1861

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1998/REC-CSS2-19980512/selector.html#before-and-after
http://www.w3.org/TR/1998/REC-CSS2-19980512/selector.html#dynamic-pseudo-classes
http://www.w3.org/TR/1998/REC-CSS2-19980512/selector.html#dynamic-pseudo-classes

3.4 List techniques
User agents can make lists accessible by ensuring that list structure - and in
particular, embedded list structure - is available through navigation and rendering.

Allow users to turn on "contextual" rendering of lists (even for unordered "bullet"
lists). Use compound numbers (or letters, numbers, etc.) to introduce each list
item (e.g., "1, 1.1, 1.2, 1.2.1, 1.3, 2, 2.1"). This provides more context and does
not rely on the information conveyed by a graphical rendering, as in:

1.
 1.
 2.
 1.
 3.
2.
 1.

62 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

which might be serialized for speech or Braille as "1, 1, 2, 1, 2, 3, 2, 1".
Specify list numbering styles in CSS. Refer to the section generated content,
automatic numbering, and lists in CSS ([CSS2] , section 12).

Example.

The following CSS 2 style sheet (taken from CSS 2, section 12.5) shows how
to specify compound numbers for nested lists created with either UL or OL
elements. Items are numbered as "1", "1.1", "1.1.1", etc.

<STYLE type="text/css">
 UL, OL { counter-reset: item }
 LI { display: block }
 LI:before { content: counters(item, "."); counter-increment: item }
</STYLE>

End example.

3.5 Table techniques
The HTML TABLE element was designed represent relationships among data
("data" tables). Even when authored well and used according to specification, tables
may pose problems for users with disabilities for a number of reasons:

Users who access a table serially (e.g., as speech or Braille) may have difficulty
grasping the relationships among cells, especially for large and complex tables.
Users who with cognitive disabilities may have trouble grasping or remembering
relationships between cells and headers, especially for large and complex
tables.
Users of screen magnifiers or with physical disabilities may have difficulties
navigating to the desired cells of a table.

For both of these situations, user agents may assist these users by providing table
navigation mechanisms and supplying context that is present in a two-dimensional
rendering (e.g., the cells surrounding a given cell).

To complicate matters, many authors use tables to lay out Web content ("layout"
tables). Not only are table structures used to lay out objects on the screen, table
elements such as TH (table header) in HTML are used to font styling rather than to
indicate a true table header. These practices make it difficult for assistive
technologies to rely on markup to convey document structure. Consequently,
assistive technologies often must resort to interpreting the rendered content , even
though the rendered content has "lost" information encoded in the markup. For
instance, when an assistive technology "reads" a table is from its graphical
rendering, the contents of multiline cells may become intermingled. For example,
consider the following table:

 5 Jun 2000 14:1863

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#counters
http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html
http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html

This is the top left cell This is the top right cell
of the table. of the table.

This is the bottom left This is the bottom right
cell of the table. cell of the table.

Screen readers that read rendered content line by line would read the table cells
incorrectly as "This is the top left cell This is the top right cell". So that assistive
technologies are not required to gather incomplete information from renderings,
these guidelines require that user agents provide access to document source
through an API (refer to checkpoint 5.3).

The following sections discuss techniques for providing improved access to tables.

3.5.1 Table metadata

Users of screen readers or other serial access devices cannot gather information "at
a glance" about a two-dimensional table. User agents can make tables more
accessible by providing the user with table metadata such as the following:

The table caption (the CAPTION element in HTML) or summary information (the
"summary" attribute in HTML).
The number of column groups and columns.
The number of row groups and rows, in particular information about table
headers and footers.
Note that the number of columns may change according to the row.
Some parts of a table may have two dimensions, others three, others four, etc.
Project dimensionality higher than two onto two when rendering information.
Which rows contain header information (whether at the top or bottom of the
table).
Which columns contain header information (whether at the left or right of the
table).
Whether there are subheads.
How many rows or columns a header spans.

When navigating, quick access to table metadata will allow users to decide
whether to navigate within the table or skip over it. Other techniques:

Allow users to query table summary information from inside a cell.
Provide different levels of detail (e.g., brief table summary and a more detailed
summary).
Allow the user to configure navigation so that table metadata is not
(re-)rendered each time the user enters the table.

64 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

3.5.2 Linear rendering of tables

A linear rendering of tables -- cells presented one at a time, row by row or column by
column -- may be useful, but generally only for simple tables. For more complex
tables, user agents need to convey more information about relationships among
cells and their headers.

Note. The following techniques apply to columns as well as rows. The elements
listed in this section are HTML 4.01 table elements ([HTML4] , section 11).

Provide access to one row at a time, beginning with any column header. If a
header is associated with more than one row, offer that header for each row
concerned.
Render cells with their associated headers. Allow the user to configure how
often headers are rendered (e.g., by supporting the ’speak-header’ property in
CSS 2 [CSS2] , section 17.7.1). Note also that the "abbr" attribute in HTML 4.01
specifies abbreviated headers for speech and other rendering ([HTML4] ,
section 11.2.6). Refer also to information about cell headers later in this
section.
Provide access to cell content as marked up in the document source.
Refer to techniques for authoring accessible tables in "Techniques for Web
Content Accessibility Guidelines 1.0" [WCAG10-TECHS] .

3.5.3 Cell rendering

The most important aspect of rendering a table cell is that the cell’s contents be
rendered faithfully and be identifiable as the contents of a single cell. However, user
agents may provide additional information to help orient the user:

Render the row and column position of the cell in the table.
Indicate how many rows and columns a cell spans.
Since the contents of a cell in a data table may only be comprehensible in
context (i.e., with associated header information, row/column position,
neighboring cell information etc.), allow users to navigate to cells and query
them for this information.
For HTML tables, refer to the section on associating header information with
data cells of HTML 4.01 ([HTML4] , section 11.4.1).
In a table with leading row and column of TH cells, the interpretation of the
corner cell as an empty TD or TH should not contribute to the set of headings
for cells in that row and column.
For nested tables, render information about the level of nesting.
Since a cell may belong to N different dimensions in a multi-dimensional table,
provide information about headers from each dimension.

 5 Jun 2000 14:1865

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.1
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.1
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#adef-abbr
http://www.w3.org/TR/REC-CSS2/tables.html#speak-headers
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html

3.5.4 Cell header algorithm

Properly constructed data tables distinguish header cells from data cells. How
headers are associated with table cells depends on the markup language. The
following algorithm is based on the HTML 4.01 algorithm to calculate header
information ([HTML4] , section 11.4.3). For the sake of brevity, it assumes a
left-to-right ordering, but will work for right-to-left tables as well (refer to the "dir"
attribute of HTML 4.01 [HTML4] , section 8.2). For a given cell:

Search left from the cell’s position to find row header (TH) cells. Then search
upwards from the cell’s position to find column header cells. The search in a
given direction stops when the edge of the table is reached or when a data cell
is found after a header cell. If no headers are found in either direction (left or
up), search in the other directions (right or down).
Allow the user to configure how the header cell contributes the text header:
either cell content or the "abbr" attribute value ([HTML4] , section 11.2.6).
Insert row headers into the list in the (left-to-right) order they appear in the table.
Include values implicitly resulting from header cells in prior rows with
rowspan="R" , sufficient to extend into the current row.
Insert column headers after row headers, in the (top-to-bottom) order they
appear in the table. Include values implicitly resulting from header cells in other
columns with colspan="C" , sufficient to extend into the current column
containing the TD cell.
If a header cell has a value for the "headers" attribute, then insert these into the
list and stop the search for the current direction.
Treat cells with a value for the "axis" attribute as header cells.
Be sure to take into account header cells that span several rows or columns.

Not all data tables include proper header markup, which the user agent may be
able to detect. Some repair strategies for finding header information include the
following:

Consider that the top or bottom row contains header information.
Consider that the leftmost or rightmost column in a column group contains
header information.
If cells in an edge row or column span more than one row or column, consider
the following row or column to contain header information as well.
When trying to guess table structure, present several solutions to the user.

Other repair issues to consider:

TH cells on both the left and right of the table need to be considered.
For TH cells with "rowspan" set: the content of those TH cells must be
considered for each of the N-1 rows below the one containing that TH content.
An internal TH in a row surrounded on either side by TDs has no means to
specify to which (row or column) that TH overrides what existed to its left or
above it.

66 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#adef-abbr
http://www.w3.org/TR/1999/REC-html401-19991224/struct/dirlang.html#h-8.2
http://www.w3.org/TR/1999/REC-html401-19991224/struct/dirlang.html#h-8.2
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.3
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.3

Finding column header cells assumes they are all above the TD cell to which
they apply.
A TH with "colspan" set needs to be included in the list of TH for the N-1
columns to the right of the column in which the TH is found.

3.5.5 Table navigation

To permit efficient access to tables, user agents should allow users to navigate to
tables and within tables, to select individual cells, and to query them for information
about the cell and the table as a whole.

Allow users to navigate to a table, down to one of its cells, and back up to the
table level. This should work recursively for nested tables.
Allow users to navigate to a cell by its row and column position.
Allow users to navigate to all cells under a given header.
Allow users to navigate row by row or column by column.
Allow users to navigate to the cells around the current cell.
Allow users to navigate to the first or last cell of a row, column, or the table.
Allow users to navigate from a cell directly to its related headers (if it’s possible
to navigate to the headers).
Allow the user to search for text content within a table (i.e., without searching
outside of the table). Allow the user to search for text content within specific
rows or columns, row groups or column groups, or limited by associated
headers.
Notify the user when the navigation reaches a table edge and when a cell
contains another table.
Allow relative and direct navigation. For example, entering "-3, 20" might mean
"left three cells, up 20 cells").
Allow navigation of table headers or footers only.
Consider the issues raised by navigation to or from a cell that spans more than
one row or column.
For examples of table navigation, refer to [TABLENAV] .

3.6 Image map techniques
One way to make an image map accessible is to render the links it contains as text
links. This allows assistive technologies to render the links a speech or Braille, and
allows benefits users with slow access to the Web and users of small Web devices
that don’t support images but can support hypertext. User agents may allow users to
toggle back and forth between a graphical mode for image maps and a text mode.

To construct a text version of an image map in HTML:

If the content of the MAP element includes links, use these.
Otherwise, for each AREA in the map, if a (non-null) text equivalent is available
(the "alt" attribute), use it as the content of a generated link.
When the author has specified a null text equivalent, do not render the link.

 5 Jun 2000 14:1867

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1999/REC-html401-19991224/struct/objects.html#edef-MAP
http://www.w3.org/TR/1999/REC-html401-19991224/struct/objects.html#h-13.6

When the author has not specified a text equivalent, render (for example) "Map
area" followed by part of the URI of the link.

Furthermore, user agents that render a text image map instead of an image may
preface the text image map with metadata such as:

a string that announces the image map (e.g., "Start map")
any text equivalent associated with the image (e.g., "alt" for IMG).
the number of links in the map.

Allow users to suppress shrink and expand text versions of image maps so that
they may quickly navigate to an image map (which may be, for example, a
navigation tool bar) and decide whether to "expand" it and follow the links of the
map. The metadata listed above will allow users to decide whether to expand the
map. Ensure that the user can expand and shrink the map and navigate its links
using the keyboard and other input devices.

3.7 Frame techniques
Frames were originally designed so that authors could divide up graphic real estate
and allow the pieces to change independently (e.g., selecting an entry in a table of
contents in one frame changes the contents of a second frame). While frames are
not inherently inaccessible, they raise some accessibility issues:

Alternatives to frame content. Some users cannot make use of frames because
they cannot grasp the (spatial or logical) relationships conveyed by frame
layout. Others cannot use them because their user agents or assistive
technology does not support them or makes access difficult (e.g., users with
screen readers or screen magnifiers).
Navigation. Users must be able to navigate from frame to frame in a device
independent manner.
Orientation. Users need to know what frame they are in (thus, frames must be
titled), what other frames are available, and how the frames of a frameset are
organized.
Dynamic changes. Users need to know how the changes they cause in one
frame affect other frames.

To name a frame in HTML, use the following algorithm:

1. Use the "title" attribute on FRAME, or if not present,
2. Use the "name" attribute on FRAME, or if not present,
3. Use title information of the referenced frame source (e.g., the TITLE element of

the source HTML document), or
4. Use title information of the referenced long description (e.g., what "longdesc"

refers to in HTML), or
5. Use frame context (e.g., "Frame 2.1.3" to indicate the path to this frame in

nested framesets).

68 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1999/REC-html401-19991224/struct/objects.html#edef-IMG

To make frames accessible, user agents should do the following:

Make available the author-supplied to frame equivalents (e.g., provided by the
HTML 4.01 NOFRAMES element ([HTML4] , section 16.4.1).
Notify the user when the viewport contains a frameset.
Render a frameset as a list of links to named frames so the user can identify the
number of frames. The list of links may be nested if framesets are nested.
Provide information about the number of frames in the frameset.
Highlight the current frameset (e.g., with a thick border, by displaying the name
of the current frameset in the status bar, etc.
Allow the user to query the current frame for metadata about the frame. Make
available the frame title for speech synthesizers and Braille displays. Users may
also use information about the number of images and words in the frame to
guess the purpose of the frame. For example, few images and few words is
probably a title, more words is probably an index, many words is probably text
area.
Allow navigation between frames (forward and backward through the nested
structure, return to global list of links to frames). Note. Recall that the user must
be able to navigate frames through all supported input devices.
Allow navigation to frame equivalents.
Allow the user to bookmark the current frame.
Notify the user when an action one frame causes the content of another frame
to change. Allow the user to navigate quickly to the frame(s) that changed.
Authors can suppress scrolling of frames with scrolling="no" . In this case,
the user agent must make available content that is not in the viewport.
The user agent may ignore some attributes of the FRAME element of HTML
4.01 ([HTML4] , section 16.2.2): "noresize", "scrolling", and "frameborder".

Consider renderings of the following document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">
<HTML lang="en">
<HEAD>
 <META http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1">
 <TITLE>Time Value of Money</TITLE>
</HEAD>

<FRAMESET COLS="*, 388">
 <FRAMESET ROWS="51, *">
 <FRAME src="sizebtn" marginheight="5" marginwidth="1"
 name="Size buttons" title="Size buttons">
 <FRAME src="outlinec" marginheight="4" marginwidth="4"
 name="Presentation Outline"
 title="Presentation Outline">
 </FRAMESET>

 <FRAMESET ROWS="51, 280, *">
 <FRAME src="navbtn" marginheight="5" marginwidth="1"
 name="Navigation buttons"

 5 Jun 2000 14:1869

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1999/REC-html401-19991224/present/frames.html#h-16.2.2
http://www.w3.org/TR/1999/REC-html401-19991224/present/frames.html#edef-NOFRAMES

 title="Navigation buttons">
 <FRAME src="slide001" marginheight="0" marginwidth="0"
 name="Slide Image" title="Slide Image">
 <FRAME src="note001" name="Notes" title="Notes">
 </FRAMESET>
<NOFRAMES>
<P>List of Presentation Slides</P>

Time Value of Money
Topic Overview
Terms and Short Hand
Future Value of a Single CF
Example 1: FV example:The
NBAŸs new Larry Bird exception
FV Example: NBAŸs Larry
Bird Exception (cont.)
SuperStarŸs Contract
Breakdown
Present Value of a Single
Cash Flow
Example 2: Paying Jr, and
A-Rod
Example 3: Finding Rate of
Return or Interest Rate
Annuities
FV of Annuities
PV of Annuities
Example 4: Invest Early in
an IRA
Example 4 Solution
Example 5: Lotto Fever

Uneven Cash Flows: Example
6:Fun with the CF function
Example 6 CF worksheet inputs
CF inputs continued
Non-Annual Interest
Compounding
Example 7: What rate are
you really paying?
Nominal to EAR Calculator
Continuous Interest Compounding
FV and PV with non-annual
interest compounding
Non-annual annuities
Example 8: Finding Monthly
Mortgage Payment
solution to Example 8

</NOFRAMES>
</FRAMESET>
</HTML>

The following examples show how some user agents handle this frameset. First,
rendering in Internet Explorer [IE] :

70 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

Rendering by Lynx [LYNX] :

 Time Value of Money

 FRAME: Size buttons
 FRAME: Presentation Outline
 FRAME: Navigation buttons
 FRAME: Slide Image
 FRAME: Notes

 List of Presentation Slides
 1. Time Value of Money
 2. Topic Overview
 3. Terms and Short Hand
 4. Future Value of a Single CF
 5. Example 1: FV example:The NBA’s new Larry Bird exception
 6. FV Example: NBA’s Larry Bird Exception (cont.)
 7. SuperStar’s Contract Breakdown
 8. Present Value of a Single Cash Flow
 9. Example 2: Paying Jr, and A-Rod
 10. Example 3: Finding Rate of Return or Interest Rate
 11. Annuities
 12. FV of Annuities
 13. PV of Annuities
 14. Example 4: Invest Early in an IRA
 15. Example 4 Solution

 5 Jun 2000 14:1871

Techniques for User Agent Accessibility Guidelines 1.0

 16. Example 5: Lotto Fever
 17. Uneven Cash Flows: Example 6:Fun with the CF function
 18. Example 6 CF worksheet inputs
 19. CF inputs continued
 20. Non-Annual Interest Compounding
 21. Example 7: What rate are you really paying?
 22. Nominal to EAR Calculator
 23. Continuous Interest Compounding
 24. FV and PV with non-annual interest compounding
 25. Non-annual annuities
 26. Example 8: Finding Monthly Mortgage Payment
 27. solution to Example 8

Graphical rendering by Home Page Reader [HPR] :

User agents may also indicate the number of frames in a document and which
frame is the current frame via the menu bar or popup menus. Users can configure
the user agent to include a FRAMES menu item in their menu bar. The menu bar
makes the information highly visible to all users and is very accessible to assistive
technologies. In the following image of the Accessible Web Browser [AWB] , the
menu bar indicates the number of frames and uses a check mark next to the name
of the current frame:

72 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

3.8 Form techniques
To make forms accessible, user agents need to ensure that users may interact with
them in a device-independent manner, that users can navigate to the various form
controls, and that information about the form and its controls is available on demand.

3.8.1 Form navigation techniques

Allow users to navigate to forms and to all controls within a form (refer also to
table navigation techniques). Opera [OPERA] and Navigator [NAVIGATOR]
provide such functionality in a non-interactive manner, a "form navigation"
keyboard commands. When invoked, these "form navigation" commands move
the user agent’s current focus to the first form control (if any) in the document.
If there are no forms in a document and the user attempts to navigate to a form,
alert the user.
Provide a navigable, structured view of form controls (e.g., those grouped by
LEGEND or OPTGROUP in HTML) along with their labels.
For labels explicitly associated with form controls (e.g., "for" attribute on LABEL
in HTML), make available label information when the user navigates among the
form controls.
As the user navigates to a form control, provide information about whether the

 5 Jun 2000 14:1873

Techniques for User Agent Accessibility Guidelines 1.0

control must be activated before form submission.
Allow the user to navigate away from a menu without selecting any option (e.g.,
by pressing the Escape key).
As the user navigates to a form control, provide information (e.g., through
context-sensitive help) about how the user can activate the control. Provide
information about what is required for each form control. Lynx [LYNX] conveys
this information by providing information about the currently selected form
control via a status line message:

(Radio Button) Use right-arrow or Return to toggle
(Checkbox Field) Use right-arrow or Return to toggle
(Option List) Press return and use arrow keys and return to select option
(Text Entry Field) Enter Text. Use Up or Down arrows or Tab to move off
(Textarea) Enter text. Up or Down arrows or Tab to move off (^Ve for editor)
Note. The ^Ve (caret-V, e) command, included in the TEXTAREA status
line message, enables the user to invoke an external editor defined in the
local Lynx configuration file (lynx.cfg).

3.8.2 Form orientation techniques

Provide the following information about forms on demand:

The number of forms in the document.
The percentage of a form that has already been filled out. This will help users
with serial access to form controls know whether they have completed the form.
Otherwise, users who encounter a submit button that is not the last control of
the form might inadvertently submit the incomplete form.

3.8.3 Form control orientation techniques

Provide the following information about the controls in a form on demand (e.g., for
the control with focus):

Indicate the number of controls in the form.
Indicate the number of controls that have not yet been completed.
Provide a list of controls that must be activated before form submission.
Provide information about the order of form controls (e.g., as specified by
"tabindex" in HTML). This is important since:

1. Most forms are visually oriented, employing changes in font size and color.
2. Users who access forms serially need to know they have supplied all the

necessary information before submitting the form.
Provide information about which control has focus (e.g., "control X of Y for the
form named "MyForm"). The form name is very important for documents that
contain more than one form. This will help users with serial access to form
controls know whether they have completed the form.
Allow the user to query a form control for information about title, value, grouping,
type, status, and position.
When a group of radio buttons receives content focus , identify the radio button

74 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

with content focus as "Radio Button X of Y", where "Y" represents the total
number of radio buttons in the group. HTML 4.01 specifies the FIELDSET
element ([HTML4] , section 17.10), which allows authors to group thematically
related controls and labels. The LEGEND element ([HTML4] , section 17.10)
assigns a caption to a FIELDSET. For example, the LEGEND element might
identify a FIELDSET of radio buttons as "Connection Rate". Each button could
have a LABEL element ([HTML4] , section 17.9.1) stating a rate. When it
receives content focus, identify the radio button as "Connection Rate: Radio
button X of Y: 28.8kpbs", where "Y" represents the total number of radio buttons
in the grouping and "28.8kbps" is the information contained in the LABEL.
Allow the user to invoke an external editor instead of editing directly in a
TEXTAREA control. This allows users to use all the features of the external
editor: macros, spell-checkers, validators, known input configurations, backups
and local copies, etc.
Provide an option for transforming menus into checkboxes or radio buttons. In
the transformation, retain the accessibility information supplied by the author for
the original form controls. Preserve the labels provided for the OPTGROUP and
each individual OPTION, and re-associate them with the generated checkboxes.
The LABEL defined for the OPTGROUP should be converted into a LEGEND
for the result FIELDSET, and each checkbox should retain the LABEL defined
for the corresponding OPTION. Lynx [LYNX] does this for HTML SELECT
elements that have the "multiple" attribute specified.

3.8.4 Form submission techniques

Users (an in particular, users with blindness or any user unaccustomed to online
forms) do not want forms to be submitted without their consent. The following
techniques address user control of form submissions:

Allow the user to turn off scripts, as authors may write scripts that submit a form
when particular events occur (e.g., "onchange" events). Be aware of this type of
practice:

 <SELECT NAME="condition" onchange="switchpage(this)">

As soon as the user attempts to navigate the menu, the "switchpage" function
opens a document in a new viewport. Try to eliminate orientation problems that
may be caused by scripts bound to form controls.
Offer a configuration to prevent (or allow) automatic submission of forms.
Allow the user to request confirmation before any form submission not initiated
by the user . This should be the default setting. Allow the user to suppress
future prompts or to change the setting to "always/never/prompt".
Be aware that users may inadvertently pressing the Return or Enter key and
accidentally submit a form.

 5 Jun 2000 14:1875

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html#h-17.9.1
http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html#h-17.10
http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html#h-17.10
http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html#h-17.10

3.9 Generated content techniques
User agents may help orient users by generating additional content that "announces"
a context change. This may be done through CSS 2 [CSS2] style sheets using a
combination of selectors (including the ’:before’ and ’:after’ pseudo-elements
described in section 12.1) and the ’content’ property (section 12.2).

For instance, the user might choose to hear "language:German" when the natural
language changes to German and "language:default" when it changes back. This
may be implemented in CSS 2 with the ’:before’ and ’:after’ pseudo-elements
([CSS2] , section 5.12.3)

For example, with the following definition in the stylesheet:

 [lang|=es]:before { content: "start Spanish "; }
 [lang|=es]:after { content: " end Spanish"; }

the following HTML example:

<P lang="es" class="Spanish">
 <A href="foo_esp.html"
 hreflang="es">Esta pagina en español</P>

might be spoken "start Spanish _Esta pagina en espanol_ end Spanish". Refer
also to information on matching attributes and attribute values useful for language
matching in CSS 2 ([CSS2] , section 5.8.1).

The following example uses style sheets to distinguish visited from unvisited links
with color and a text prefix.

The phrase "Visited link:" is inserted before every visited link:

 A:link { color: red } /* For unvisited links */
 A:visited { color: green } /* For visited links */
 A:visited:before { content: "Visited link: "; }

To hide content, use the CSS ’display’ or ’visibility’ properties ([CSS2] , sections
9.2.5 and 11.2, respectively). The ’display’ property suppresses rendering of an
entire subtree. The ’visibility’ property causes the user agent to generate a rendering
structure, but display it invisibly (which means it takes up space, but cannot be
seen).

The following XSLT style sheet (excerpted from the XSLT Recommendation
[XSLT] , Section 7.7) shows how to one might number H4 elements in HTML with a
three-part label.

Example.

76 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1998/REC-CSS2-19980512/visufx.html#propdef-visibility
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-display
http://www.w3.org/TR/1998/REC-CSS2-19980512/selector.html#q10
http://www.w3.org/TR/1998/REC-CSS2-19980512/selector.html#before-and-after
http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#content
http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#before-after-content

<xsl:template match="H4">
 <fo:block>
 <xsl:number level="any" from="H1" count="H2"/>
 <xsl:text>.</xsl:text>
 <xsl:number level="any" from="H2" count="H3"/>
 <xsl:text>.</xsl:text>
 <xsl:number level="any" from="H3" count="H4"/>
 <xsl:text> </xsl:text>
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

End example.

3.10 Script and applet techniques
User agents must make dynamic content accessible to users who may be
disoriented by changes in content, who may have a physical disability that prevents
them from interacting with a document within a time interval specified by the author,
or whose user agent does not support scripts or applets. Not only must user agents
must make available equivalent alternatives to dynamic content, they must allow
users to turn off scripts, to stop animations, adjust timing parameters, etc.

3.10.1 Script techniques

Certain elements of a markup language may have associated event handlers that
are triggered when certain events occur. User agents must be able to identify those
elements with event handlers statically associated (i.e., associated in the document
source, not in a script). In HTML 4.01 ([HTML4] , section 18.2.3), intrinsic events are
specified by the attributes beginning with the prefix "on": "onblur", "onchange",
"onclick", "ondblclick", "onkeydown", "onkeypress", "onkeyup", "onload",
"onmousedown", "onmousemove", "onmouseout", "onmouseover", "onmouseup",
"onreset", "onselect", "onsubmit", and "onunload".

Techniques for providing access to scripts include the following:

Allow the user to configure the user agent so that mouseover/mouseout events
may be triggered by (and trigger) focus/blur events. Similarly, allow the user to
use a key command, such as "enter" and "Shift-enter" to trigger "onclick" and
"ondblclick" events.
Implement DOM 2 [DOM2] events with a single activation event and provide a
method for triggering that event from each supported input device or input API.
These should be the same as the click events and mappings provided above
(but note that a user agent which is also an editor may wish to use single click
events for moving a system caret, and want to provide a different behavior to
activate using the mouse). For example, Amaya [AMAYA] uses a "doAction"
command for activating links and form controls, which can be triggered either by
the mouse (and it is possible to set it for single-click or double-click) or by the
keyboard (it is possible to set it for any key using Amaya’s keyboard
configuration)

 5 Jun 2000 14:1877

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1999/REC-html401-19991224/interact/scripts.html#h-18.2.3

Allow the user to stop and start the flow of changes made by scripts. Prompt the
user for confirmation of a pending change. Note. Some user agents allow users
to turn off scripts for security reasons.
Document the effects of known important scripts to give users an idea in
advance of what they do. Make script source available to users so that those
familiar with the scripting language may be able to understand their effects.

3.10.2 Applet techniques

When a user agent loads an applet, it should support the Java system conventions
for loading an assistive technology (refer to the appendix on loading assistive
technologies for DOM access). If the user is accessing the applet through an
assistive technology, the assistive technology should notify the user when the applet
receives content focus as this will likely result in the launch of an associated plug-in
or browser-specific Java Virtual Machine. The user agent then needs to turn control
of the applet over to the assistive technology. User agents must make available
equivalent alternatives to the assistive technology. Applets generally include an
application frame that provides title information.

3.11 Input configuration techniques
User agents that allow users to modify default input configurations must account for
configuration information from several sources: user agent defaults, user
preferences, author-specified configurations, and operating system conventions. In
HTML, the author may specify keyboard bindings with the "accesskey" attribute
([HTML4] , section 17.11.2). Users generally specify their preferences through the
user interface but may also do so programmatically or through a profile . The user
agent may also consider user preferences set at the operating system level.

To the user, the most important information is the configuration once all sources
have been cascaded (combined) and all conflicts resolved. Knowing the default
configuration is also important; checkpoint 11.3 requires that the default
configuration be documented. The user may also want to know how the current
configuration differs from the default configuration and what configuration in the
current viewport comes from the author. This information may also be useful to
technical support personnel who may be assisting users.

The user interfaces for viewing and editing the input configuration may be
combined, but need not be. When a single interface is available to the user,
allow the user to apply filters to the list of bindings (e.g., author-supplied only,
user agent default, user preference, final configuration, etc.).
The user interfaces for viewing and editing the input configuration must be
accessible: do not rely on color alone to convey information, use standard
controls, allow device-independent input and output, etc.
In the user interface, associate with each binding a short text description of the
function to be activated. For example, if "Control-P" maps to a print
functionality, a short description might be "Print" or "Print setup". For
author-supplied configurations, use available information (e.g., "title") or use

78 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html#h-17.11.2

generic descriptions of what action will be triggered (e.g., "Follow the link with
this link text").
When displaying a "tool tip" for a user interface control, display pertinent input
configuration information as well (e.g., what key will activate the functionality).

3.11.1 Resolution of input configuration conflicts

In general, user preferences should override other configurations, however this may
not always be desirable. For example, users should be prevented from configuring
the user agent in a way that would interfere with important functionalities such as
quitting the user agent or reconfiguring it.

Some possible options user agents may make available to the user to resolve
conflicts include:

Allow author configurations to override other configurations and alert the user
when this happens.
Do not allow author configurations to override other configurations. Alert the
user when an author-specified binding has been overridden and provide access
to the author-specified control through other means (e.g., an unused binding, a
menu, in a list of all author-specified bindings, etc.)
Author-specified keyboard bindings in combination with the user agent’s trigger
mechanism may conflict with system conventions. For example, Internet
Explorer [IE] in Windows uses the Alt key as the trigger key for
author-specified bindings. If the author has specified a configuration with the
characters "h" or "f", this will interfere with the system conventions for accessing
help and the file menu. In addition to the previous two options for handling
conflicts, the user agent may allow the user to choose another trigger key (either
globally or on a per-document basis when conflicts are detected).

3.11.2 Invocation through the input configuration

Users may want to use a keyboard or voice binding to shift focus without actually
triggering the associated functionality (refer to parallel behavior described for
navigation of active elements in the section on sequential navigation techniques).
First-time users may want to access additional information before deciding whether
to activate a control. More experienced users or those familiar with a page may want
to select and activate in one step. Therefore, the user agent may provide the user
with the following options:

1. On invocation of the input binding, move focus to the associated active element,
but do not activate it.

2. On invocation of the input binding, move focus to the associated active element
and prompt the user with information that will allow the user to decide whether
to activate the element (e.g., link title or text). Allow the user to suppress future
prompts for this particular input binding.

3. On invocation of the input binding, move focus to the associated active element
and activate it.

 5 Jun 2000 14:1879

Techniques for User Agent Accessibility Guidelines 1.0

3.12 Synthesized speech techniques
The following techniques apply to any user agent that renders content as
synthesized speech. Refer to "Speak to Write" [SPEAK2WRITE] for information on
speech recognition and accessibility.

Since these user agents do not always pronounce text correctly, they should
provide additional context to facilitate understanding. Techniques include:

Spelling words
Indicating punctuation, capitalization, etc.
Allowing users to repeat words alone and in context.
Using auditory nuances - including pitch, articulation model, volume, and
orientation - to convey meaning the way fonts, spacing, and borders do in
graphical media.
Generating context. For example, a user agent might speak the word "link"
before a link, "header" before the text content of a header or "item 1.4"
before a list item.
Rendering text according in the appropriate natural language .

User agents that synthesize speech should implement the CSS 2 aural style
sheet properties ([CSS2] , section 19) to allow users to configure speech rate,
volume, and pitch.
Speech-based user agents providing accessible solutions for images should, by
default, provide no information about images for which the author has provided
no text equivalent , otherwise information may clutter the user’s view of the
content and cause confusion. This user should be able to turn off this option.
User agents may recognize different natural languages and be able to render
content according to language markup defined for a certain part of the
document. For instance, a screen reader might change the pronunciation of
spoken text according to the language definition. This is usually desired and
done according to the capabilities of the tool. Some specialized tools might give
some finer user control for the pronunciation as well. Note. A user agent may
not support all languages.
The following techniques for speaking data tables are adapted from the "Tape
Recording Manual" produced by the National Braille Association [NBA] :

1. Read the title, source, captions and any explanatory keys.
2. Describe the structure of the table. Include the number of columns, the

headings of each column and any associated sub-columns, reading from
left to right. The subhead is not considered a column. If column heads have
footnotes, read them following each heading.

3. Explain whether the table will be read by rows (horizontally) or by columns
(vertically). The horizontal reading is usual but, in some cases, the vertical
reading better conveys the content. On rare occasions it is necessary to
read a table both ways.

4. Repeat the column headings with the figures under them for the first two
rows. If the table is long, repeat the headings every fifth row. Always repeat
them during the reading of the last row.

80 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html

5. Indicate the last row by saying, "and finally . . . " or "last row ..."
6. At the completion of the reading say "End table X." If table appeared on a

page other than the one you were recording, add "Returning to text on page
Y."

4 Appendix: Accessibility features of some operating
systems
Several mainstream operating systems now include built-in accessibility features
designed to assist individuals with varying abilities. Despite operating systems
differences, the built-in accessibility features use a similar naming convention and
offer similar functionalities, within the limits imposed by each operating system (or
particular hardware platform). The following is a list of built-in accessibility features
from several platforms:

StickyKeys
StickyKeys allows users who have difficulties with pressing several keys
simultaneously to press and release sequentially each key of the configuration.

MouseKeys
These allow users to move the mouse cursor and activate the mouse button(s)
from the keyboard.

RepeatKeys
RepeatKeys allows users to set how fast a key repeats ("repeat rate") when the
key is held pressed. It also allows users to control how quickly the key starts to
repeat after the key has been pressed ("delay until repeat"). Users can also turn
of key repeating.

SlowKeys
SlowKeys instructs the computer not to accept a key as pressed until it has
been pressed and held down for more than a user-configurable length of time.

BounceKeys
BounceKeys prevents extra characters from being typed if the user bounces
(e.g., due to a tremor) on the same key when pressing or releasing it.

ToggleKeys
ToggleKeys provides an audible indication for the status of keys that have a
toggled state (keys that maintain status after being released). The most
common toggling keys include Caps Lock, Num Lock, and Scroll Lock.

SoundSentry
SoundSentry monitors the operating system and applications for sounds in
order to provide a graphical indication when a sound is being played. Older
versions of SoundSentry may have flashed the entire display screen for
example, while newer versions of SoundSentry provide the user with a selection
of options, such as flashing the active window or flashing the active window
caption bar.

 5 Jun 2000 14:1881

Techniques for User Agent Accessibility Guidelines 1.0

The next three built-in accessibility features are not as commonly available as the
above group of features, but are included here for definition, completeness, and
future compatibility.

ShowSounds
ShowSounds are user settings or software switches that the user wishes audio
information to be presented graphically as well. Applications may use these
switches as the basis of user preferences.

HighContrast
HighContrast sets fonts and colors designed to make the screen easier to read.

TimeOut
TimeOut turns of built-in accessibility features automatically if the computer
remains idle for a user-configurable length of time. This is useful for computers
in public settings such as a library. TimeOut might also be referred to as "reset"
or "automatic reset".

The next accessibility feature listed here is not considered to be a built-in
accessibility feature (since it only provides an alternate input channel) and is
presented here only for definition, completeness, and future compatibility.

SerialKeys
SerialKeys allows a user to perform all keyboard and mouse functions from an
external assistive device (such as communication aid) communicating with the
computer via a serial character stream (e.g., serial port, IR port, etc.) rather than
or in conjunction with, the keyboard, mouse, and other standard input
devices/methods.

Microsoft Windows 95, Windows 98, and Window NT 4.0
To find out about built-in accessibility features on Windows platforms, ask the
system via the "SystemParametersInfo" function. Please refer to [MS-ENABLE] for
more information.

For information about Microsoft keyboard configurations (Internet Explorer,
Windows 95, Windows 98, and more), refer to documentation on keyboard
assistance for Internet Explorer and MS Windows [MS-KEYBOARD] .

The following accessibility features can be adjusted from the Accessibility Options
Control Panel:

StickyKeys: modifier keys include Shift, Control, and Alt.
FilterKeys: grouping term for SlowKeys, RepeatKeys, and BounceKeys.
MouseKeys
ToggleKeys
SoundSentry
ShowSounds
Automatic reset: term used for TimeOut
High Contrast

82 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

SerialKeys

Additional accessibility features available in Windows 98:

Magnifier
Magnifier is a windowed, screen enlargement and enhancement program used
by persons with low vision to magnify an area of the graphical display (e.g., by
tracking the text cursor, current focus , etc.). Magnifier can also invert the colors
used by the system within the magnification window.

Accessibility Wizard
The Accessibility Wizard is a setup tool to assist users with the configuration of
system accessibility features.

Apple Macintosh operating system
The following accessibility features can be adjusted from the Easy Access Control
panel. Note. By Apple convention, accessibility features have spaces between
names.

Sticky Keys: modifier keys include the Shift, OPEN APPLE (Command),
OPTION (Alt) and Control keys.
Slow Keys
Mouse Keys

The following accessibility features can be adjusted from the Keyboard Control
Panel.

Key Repeat Rate (part of RepeatKeys)
Delay Unit Repeat (part of RepeatKeys)

The following accessibility feature can be adjusted from the Sound or Monitors
and Sound Control Panel (depending on system version).

Adjusting the volume to off or mute causes the Macintosh to flash the title bar
whenever the operating system detects a sound (e.g., SoundSentry)

Additional accessibility features available for the Macintosh OS:

CloseView
CloseView is a full screen, screen enlargement and enhancement program used
by persons with low vision to magnify the information on the graphical display,
and it can also change the colors used by the system.

SerialKeys
SerialKeys is available as freeware from Apple and several other Web sites.

 5 Jun 2000 14:1883

Techniques for User Agent Accessibility Guidelines 1.0

AccessX, X Keyboard Extension (XKB), and the X Window
System
The following accessibility features can be adjusted from the AccessX graphical user
interface X client on some DEC, SUN, and SGI operating systems. Other systems
supporting XKB may require the user to manipulate the features via a command line
parameter(s).

StickyKeys: modifier keys are platform-dependent, but usually include the
Shift, Control, and Meta keys.
RepeatKeys
SlowKeys
BounceKeys
MouseKeys
ToggleKeys

Note. AccessX became a supported part of the X Window System X Server with
the release of the X Keyboard Extension in version X11R6.1

DOS (Disk Operating System)
The following accessibility features are available from a freeware program called
AccessDOS, which is available from several Internet Web sites including IBM,
Microsoft, and the Trace Center, for either PC-DOS or MS-DOS versions 3.3 or
higher.

StickyKeys: modifier keys include the Shift, Control, and Alt keys.
Keyboard Response Group: grouping term for SlowKeys, RepeatKeys, and
BounceKeys
MouseKeys
ToggleKeys
SoundSentry (incorrectly named ShowSounds)
SerialKeys
TimeOut

5 Appendix: Loading assistive technologies for access
to the document object model
Many of the checkpoints in the guidelines require a "host" user agent to
communicate information about content and the user interface to assistive
technologies. This appendix explains how developers can ensure the timely
exchange of this information (refer to checkpoint 5.8). The techniques described
here include:

84 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

1. Loading the entire assistive technology in the address space of the host user
agent;

2. Loading part of the assistive technology in the address space of the host user
agent (e.g., piece of stub code, a dynamically linked library (DLL), a browser
helper object , etc.);

3. Out-of-process access to the document object model .

The first two techniques are similar, differing is the amount of, or capability of, the
assistive technology loaded in the same process or address space as the host user
agent. These techniques are likely to provide faster access to the document object
model since they will not be subject to inter-process communication overhead.

Note. This appendix does not address specialized user agents that offer assistive
technology functions natively (e.g., [PWWEBSPEAK]).

Loading assistive technologies for direct navigation of the
document object model
First, the host user agent needs to know which assistive technology to load. One
technique for this is to store a reference to an assistive technology in a system
registry file or, in the case of Java, a properties file. Registry files are common
among many operating system platforms:

Windows: use the system registry file
OS/2: use the system.ini
On client/server systems: use a system registry server that an application
running on the network client computer can query.
In Java 2, use the "accessibility.properties" file, which causes the system event
queue to examine the file for assistive technologies required for loading. If the
file contains a property called "assistive_technologies", it will load all registered
assistive technologies and start them on their own thread in the Java Virtual
Machine that is a single process.

Here is an example entry for Java:

 assistive_technologies=com.ibm.sns.svk.AccessEngine

In Windows, a similar technique could be followed by storing the name of a
Dynamic Link Library (DLL) for an assistive technology in a designated assistive
technology key name/assistive technology pair.

Here is an example entry for Windows:

 HKEY_LOCAL_MACHINE\Software\Accessibility\DOM
 "ScreenReader, VoiceNavigation"

 5 Jun 2000 14:1885

Techniques for User Agent Accessibility Guidelines 1.0

Attaching the assistive technologies to the document object model

Once the assistive technology has been registered, any other user agent can
determine whether it needs to be loaded and then load it. Once loaded, the assistive
technology can monitor the document object model (DOM) as needed.

On a non-Java platform, a technique to do this would be to create a separate
thread with a reference to the DOM using a DLL. This new thread will load the DLL
and call a specified DLL entry name with a pointer to the DOM interface. The
assistive technology process will then run as long as required.

The assistive technology has the option of communicating with a main assistive
technology of its own and process the DOM as a caching mechanism for the main
assistive technology application or be used as a bridge to the DOM for the main
assistive technology.

In the future, it will be necessary to provide a more comprehensive reference to
the application that not only provides direct navigation to its client area DOM, but
also multiple DOMs that it is processing and an event model for monitoring them.

Java’s direct access

Java is a working example where the direct access to application components is
executed in a timely manner. Here, an assistive technology running on a separate
thread monitors user interface events such as focus changes. When focus changes,
the assistive technology is notified of which component object has focus. The
assistive technology can communicate directly with all components in the application
by walking the parent/child hierarchy and connecting to each component’s methods
and monitor events directly. In this case, an assistive technology has direct access
to component specific methods as well as those provided for by the Java
Accessibility API. There is no reason that a DOM interface to user agent
components could not be provided.

In Java 1.1.x, Sun’s Java access utilities load an assistive by monitoring the Java
awt.properties file for the presence of assistive technologies and loads them as
shown in the following code example:

import java.awt.*;
import java.util.*;

String atNames = Toolkit.getProperty("AWT.assistive_technologies",null);
if (atNames != null) {
 StringTokenizer parser = new StringTokenizer(atNames," ,");
 String atName;
 while (parser.hasMoreTokens()) {
 atName = parser.nextToken();
 try {
 Class.forName(atName).newInstance();
 }
 catch (ClassNotFoundException e) {
 throw new AWTError("Assistive Technology not found: " + atName);
 }
 catch (InstantiationException e) {

86 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

 throw new AWTError("Could not instantiate Assistive" +
 " Technology: " + atName);
 }
 catch (IllegalAccessException e) {
 throw new AWTError("Could not access Assistive" +
 " Technology: " + atName);
 } catch (Exception e) {
 throw new AWTError("Error trying to install Assistive" +
 " Technology: " + atName + " " + e);
 }
 }
}

In the above code example, the function
Class.forName(atName).newInstance() creates a new instance of the
assistive technology. The constructor for the assistive technology will then be
responsible for monitoring application component objects by monitoring system
events.

In the following code example, the constructor for the assistive technology,
AccessEngine , adds a focus change listener using Java accessibility utilities.
When the assistive technology is notified of an objects gaining focus it has direct
access to that object. If the Object, o, has implemented a DOM interface, the
assistive technology will have direct access to the DOM in the same process space
as the application.

 import java.awt.*;
 import javax.accessibility.*;
 import com.sun.java.accessibility.util.*;
 import java.awt.event.FocusListener;

 class AccessEngine implements FocusListener {
 public AccessEngine() {
 //Add the AccessEngine as a focus change listener
 SwingEventMonitor.addFocusListener((FocusListener)this);
 }

 public void focusGained(FocusEvent theEvent) {
 // get the component object source
 Object o = theEvent.getSource();
 // check to see if this is a DOM component
 if (o instanceof DOM) {
 ...
 }
 }
 public void focusLost(FocusEvent theEvent) {
 // Do Nothing
 }
 }

In this example, the assistive technology has the option of running stand-alone or
acting as a cache for a bridge that communicates with a main assistive technology
running outside the Java virtual machine.

 5 Jun 2000 14:1887

Techniques for User Agent Accessibility Guidelines 1.0

Loading part of the assistive technologies for direct access to
the document object model
In order to attach to a running instance of Internet Explorer 4.0, you can use a
Browser Helper Object ([BHO]), which is a DLL that will attach itself to every new
instance of Internet Explorer 4.0 [IE] (only if you explicitly run iexplore.exe). You can
use this feature to gain access to the object model of a particular running instance of
Internet Explorer. You can also use this feature to get events from an instance of
Internet Explorer 4.0. This can be tremendously helpful when many method calls
need to be made to IE, as each call will be executed much more quickly than the out
of process case.

There are some requirements when creating a Browser Helper Object:

The application that you create must be an in-proc server (that is, DLL).
This DLL must implement IObjectWithSite .
The IObjectWithSite::SetSite() method must be implemented. It is
through this method that your application receives a pointer to Internet
Explorer’s IUnknown . Internet Explorer actually passes a pointer to
IWebBrowser2 but the implementation of SetSite() receives a pointer to
IUnknown . You can use this IUnknown pointer to automate Internet Explorer
or to sink events from Internet Explorer.
It must be registered as a Browser Helper Object as described above.

Java access bridge

To provide native Windows assistive technologies access to Java applications
without creating a Java native solution, Sun Microsystems provides the "Java
Access Bridge." This bridge is loaded as an assistive technology as described in the
section on loading assistive technologies for direct navigation of the document object
model. The bridge uses a Java Native Invocation (JNI) to Dynamic Link Library
(DLL) communication and caching mechanism that allows a native assistive
technology to gather and monitor accessibility information in the Java environment.
In this environment, the assistive technology determines that a Java application or
applet is running and communicates with the Java Access Bridge DLL to process
accessibility information about the application/applet running in the Java Virtual
Machine.

Loading assistive technologies for indirect access to the
document object model
Access to application specific data across process boundaries or address space
might be costly in terms of performance. However, there are other reasons to
consider when accessing the document object model that might lead a developer to
wish to access it from their own process or memory address space. One obvious
protection this method provides is that, if the user agent application fails, it does not
disable the user’s assistive technology as well. Another consideration would be

88 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

legacy systems, where the user relies on their assistive technology for access to
applications other than the user agent, and thus would have their application loaded
all the time.

There are several ways to gain access to the user agent’s document object model
. Most user agents support some kind of external interface, or act as a mini-server to
other applications running on the desktop. Internet Explorer [IE] is a good example
of this, as IE can behave as a component object model (COM) server to other
applications. Mozilla [MOZILLA] , the open source release of Navigator also supports
cross platform COM (XPCOM).

The following example illustrates the use of COM to access the IE object model.
This is an example of how to use COM to get a pointer to the WebBrowser2
module, which in turn enables access to an interface/pointer to the document object,
or IE DOM for the content.

 /* first, get a pointer to the WebBrowser2 control */
 if (m_pIE == NULL) {
 hr = CoCreateInstance(CLSID_InternetExplorer,
 NULL, CLSCTX_LOCAL_SERVER, IID_IWebBrowser2,
 (void**)&m_pIE);

 /* next, get a interface/pointer to the document in view,
 this is an interface to the document object model (DOM)*/

 void CHelpdbDlg::Digest_Document() {
 HRESULT hr;
 if (m_pIE != NULL) {
 IDispatch* pDisp;
 hr = m_pIE->QueryInterface(IID_IDispatch, (void**) &pDisp);
 if (SUCCEEDED(hr)) {

 IDispatch* lDisp;
 hr = m_pIE->get_Document(&lDisp);
 if (SUCCEEDED(hr)) {

 IHTMLDocument2* pHTMLDocument2;
 hr = lDisp->QueryInterface(IID_IHTMLDocument2,
 (void**) &pHTMLDocument2);
 if (SUCCEEDED(hr)) {

 /* with this interface/pointer, IHTMLDocument2*,
 you can then work on the document */
 IHTMLElementCollection* pColl;
 hr = pHTMLDocument2->get_all(&pColl);
 if (SUCCEEDED(hr)) {

 LONG c_elem;
 hr = pColl->get_length(&c_elem);
 if (SUCCEEDED(hr)) {
 FindElements(c_elem, pColl);
 }
 pColl->Release();
 }
 pHTMLDocument2->Release();

 5 Jun 2000 14:1889

Techniques for User Agent Accessibility Guidelines 1.0

 }
 lDisp->Release();
 }
 pDisp->Release();
 }
 }
 }
 }

For a working example of this method, refer to [HELPDB] .

90 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

6 Appendix: Glossary
Active element

An active element is an element with behaviors that may be activated (or
"triggered") either through the user interface or through scripts. Which elements
are active depends on the document language and whether the features are
supported by the user agent. In HTML 4.01 [HTML4] documents, for example,
active elements include links, image maps, form controls, element instances
with a value for the "longdesc" attribute, and element instances with scripts
(event handlers) explicitly associated with them (e.g., through the various "on"
attributes). Most systems use the content focus to navigate active elements and
identify which is to be activated. An active element’s behavior may be triggered
through any number of mechanisms, including the mouse, keyboard, an API ,
etc. The effect of activation depends on the element. For instance, when a link
is activated, the user agent generally retrieves the linked resource. When a form
control is activated, it may change state (e.g., check boxes) or may take user
input (e.g., a text field). Refer also to the definition of event handler .

Application Programming Interface (API)
An application programming interface (API) defines how communication may
take place between applications.

Assistive technology
In the context of this document, an assistive technology is a user agent that
relies on one or more other user agents to help people with disabilities interact
with a computer. For example, screen reader software is an assistive
technology because it relies on browsers or other application software to enable
Web access, particularly for people with visual and learning disabilities.

Examples of assistive technologies that are important in the context of this
document include the following:

screen magnifiers, which are used by people with visual disabilities to
enlarge and change colors on the screen to improve the visual readability of
text and images.
screen readers, which are used by people who are blind or have reading
disabilities to read textual information through synthesized speech or Braille
displays.
speech recognition software, which may be used by people who have some
physical disabilities.
alternative keyboards, which are used by people with certain physical
disabilities to simulate the keyboard.
alternative pointing devices, which are used by people with certain physical
disabilities to simulate mouse pointing and button activations.

Beyond this document, assistive technologies consist of software or hardware
that has been specifically designed to assist people with disabilities in carrying
out daily activities, e.g., wheelchairs, reading machines, devices for grasping,
text telephones, vibrating pagers, etc.

 5 Jun 2000 14:1891

Techniques for User Agent Accessibility Guidelines 1.0

Audio presentation
An audio presentation is a stand-alone audio track. Examples of audio
presentations include a musical performance, a radio-style news broadcast, and
a book reading. When an audio presentation includes natural language, one can
create a text equivalent for it (e.g., a text transcript).

Auditory description
An auditory description is either a prerecorded human voice or a synthesized
voice (recorded or generated dynamically) describing the key visual elements of
a presentation. The auditory description is synchronized with the auditory track
of the presentation, usually during natural pauses in the auditory track. Auditory
descriptions include information about actions, body language, graphics, and
scene changes.

Author styles
Authors styles are style property values that come from a document, its
associated style sheets, or are generated by the server.

Captions
Captions (or sometimes "closed captions") are text transcripts that are
synchronized with other auditory or visual tracks. Captions convey information
about spoken words and non-spoken sounds such as sound effects. They
benefit people who are deaf or hard-of-hearing, and anyone who cannot hear
the audio (e.g., someone in a noisy environment). Captions are generally
rendered graphically above, below, or superimposed over video. Note. Other
terms that include the word "caption" may have different meanings in this
document. For instance, a "table caption" is a title for the table, often positioned
graphically above or below the table. In this document, the intended meaning of
"caption" will be clear from context.

Collated text transcript
A collated text transcript is a text equivalent of a movie or animation. More
specifically, it is the combination of the text transcript of the auditory track and
the text equivalent of the visual track. For example, a collated text transcript
typically includes segments of spoken dialogue interspersed with text
descriptions of the key visual elements of a presentation (actions, body
language, graphics, and scene changes). Refer also to the definitions of text
transcript and auditory description . Collated text transcripts are essential for
individuals who are deaf-blind.

Configure
In the context of this document, to configure means to choose, from a set of
options, preferences for interface layout, user agent behavior, rendering style,
and other parameters required by this document. This may be done through the
user agent’s user interface , through profiles , style sheets, by scripts, etc. Users
should be able to save their configurations across user agent sessions (e.g., in
a profile).

Content
In this document, content means the document source, including its elements,
attributes, comments, and other features defined by a markup language
specification such as HTML 4.01 or an XML application. Refer also to the

92 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

definitions of rendered content and equivalent alternatives for content
Control

In this document, the noun "control" means "user interface component" or "form
component".

Device-independence
Device-independence refers to the ability to make use of software via the API
for any supported input or output device API . User agents should follow
operating system conventions and use standard system APIs for device input
and output.

Document Object Model (DOM)
A document object model is an interface to a standardized tree structure
representation of a document. This interface allows authors to access and
modify the document with a scripting language (e.g., JavaScript) in a consistent
manner across scripting languages. As a standard interface, a document object
model makes it easier not just for authors but for assistive technology
developers to extract information and render it in ways most suited to the needs
of particular users. The relevant W3C DOM Recommendations are listed in the
references .

Documentation
Documentation refers to all information provided by the vendor about a product,
including all product manuals, installation instructions, the help system, and
tutorials.

Equivalent alternatives for content
Since rendered content in some forms is not always accessible to users with
disabilities, authors must supply equivalent alternatives for content. In the
context of this document, the equivalent must fulfill essentially the same function
for the person with a disability (at least insofar as is feasible, given the nature of
the disability and the state of technology), as the "primary" content does for the
person without any disability. For example, the text "The Full Moon" might
convey the same information as an image of a full moon when presented to
users. Note that equivalent information focuses on fulfilling the same function. If
the image is part of a link and understanding the image is crucial to guessing
the link target, an equivalent must also give users an idea of the link target.
Equivalent alternatives of content include text equivalents (long and short,
synchronized and unsynchronized) and non-text equivalents (e.g., an auditory
description , or a visual track that shows a sign language translation of a written
text, etc.). Please also consult the Web Content Accessibility Guidelines 1.0
[WCAG10] and its associated Techniques document [WCAG10-TECHS] .
Each markup language defines its own mechanisms for specifying equivalent
alternatives. For instance, in HTML 4.01 [HTML4] or SMIL 1.0 [SMIL] , the "alt"
attribute specifies alternative text for many elements. In HTML 4.01, authors
may provide alternatives in attribute values (e.g., the "summary" attribute for the
TABLE element), in element content (e.g., OBJECT for external content it
specifies, NOFRAMES for frame alternatives, and NOSCRIPT for script
alternatives), and in prose.

 5 Jun 2000 14:1893

Techniques for User Agent Accessibility Guidelines 1.0

Events and scripting, event handler
User agents often perform a task when a certain event occurs, caused by user
interaction (e.g., mouse motion or a key press), a request from the operating
system, etc. Some markup languages allow authors to specify that a script,
called an event handler), be executed when a specific event occurs, such as
document loading and unloading, mouse press or hover events, keyboard
events, and other user interface events. Note. The combination of HTML, style
sheets, the Document Object Model , and scripting is commonly referred to as
"Dynamic HTML" or DHTML. However, as there is no W3C specification that
formally defines DHTML, this document only refers to event handlers and
scripts.

Focus, content focus, user interface focus, current focus
The notion of focus refers to two identifying mechanisms of user agents:

1. The "content focus" designates an active element in a document. A
viewport has at most one content focus.

2. The "user interface focus" designates a control of the user interface that will
respond to user input (e.g., a radio button, text box, menu, etc.).

The term "focus" encompasses both types of focus. Where one is meant
specifically in this document, it is identified.
When several viewports co-exist, each may have a content and user interface
focus. At all times, only one content focus or one user interface focus is active,
called the current focus. The current focus responds to user input and may be
toggled between content focus and user interface focus through the keyboard,
pointing device, etc. Both the content and user interface focus may be
highlighted . Refer also to the definition of point of regard .

Graphical
In this document, the term graphical refers to information (text, graphics, colors,
etc.) rendered for visual consumption.

Highlight
A highlight mechanism emphasizes selected or focused content. For example,
graphical highlight mechanisms include dotted boxes, underlining, and reverse
video. Synthesized speech highlight mechanisms include alterations of voice
pitch and volume.

Input configuration
An input configuration is the mapping of user agent functionalities to some user
interface trigger mechanisms (e.g., menus, buttons, keyboard keys, voice
commands, etc.). The default input configuration is the mapping the user finds
after installation of the software; it must be included in the user agent
documentation .

Native support
A user agent supports a feature natively if it does not require another piece of
software (e.g., plug-in or external program) for support. Operating system
features adopted as part of the user agent are considered part of native support.
However, since the user agent is responsible for the accessibility of native
features, it is also considered responsible for the accessibility of adopted
operating system features.

94 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

Natural language
Natural language is spoken, written, or signed human language such as French,
Japanese, and American Sign Language. On the Web, the natural language of
content may be specified by markup or HTTP headers. Some examples include
the "lang" attribute in HTML 4.01 ([HTML4] section 8.1), the "xml:lang" attribute
in XML 1.0 ([XML] , section 2.12), the HTML 4.01 "hreflang" attribute for links in
HTML 4.01 ([HTML4] , section 12.1.5), the HTTP Content-Language header
([RFC2616] , section 14.12) and the Accept-Language request header
([RFC2616] , section 14.4).

Offscreen model
An offscreen model is rendered content created by an assistive technology that
is based on the rendered content of another user agent. Assistive technologies
that rely on an offscreen model generally construct it by intercepting standard
system drawing calls. For example, in the case of display drivers, some screen
readers are designed to monitor what is drawn on the screen by hooking
drawing calls at different points in the drawing process. While knowing about the
user agent’s formatting may provide some useful information to assistive
technologies, this document emphasizes access to the document object model
rather than a particular rendering. For instance, instead of relying on system
calls to draw text, assistive technologies should access the text through the
document object model.

Point of regard
The point of regard of a viewport is its position in rendered content . Since
users may be viewing rendered content with browsers that render in various
ways (graphically , as speech, as Braille, etc.), what is meant precisely by "the
point of regard" may vary. Depending on the user agent and browsing context, it
may refer to a two dimensional area (e.g., for graphical rendering) or a single
point (e.g., for aural rendering or voice browsing). The point of regard may also
refer to a particular moment in time for content that changes over time (e.g., an
audio presentation). User agents may use the focus , selection , or other means
to designate the point of regard. A user agent should not change the point of
regard unexpectedly as this may disorient the user.

Profile
A profile is a named and persistent representation of user preferences that may
be used to configure a user agent. Preferences include input configurations,
style preferences, etc. On systems with distinct user accounts, profiles enable
users to reconfigure software quickly when they log on, and they may be shared
by several users. Platform-independent profiles are useful for those who use the
same user agent on different platforms.

Properties, values, and defaults
A user agent renders a document by applying formatting algorithms and style
information to the document’s elements. Formatting depends on a number of
factors, including where the document is rendered: on screen, on paper, through
speakers, on a Braille display, on a mobile device, etc. Style information (e.g.,
fonts, colors, voice inflection, etc.) may come from the elements themselves
(e.g., certain style attributes in HTML), from style sheets, or from user agent

 5 Jun 2000 14:1895

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1999/REC-html401-19991224/struct/links.html#adef-hreflang
http://www.w3.org/TR/1998/REC-xml-19980210#sec-lang-tag
http://www.w3.org/TR/1998/REC-xml-19980210#sec-lang-tag
http://www.w3.org/TR/1999/REC-html401-19991224/struct/dirlang.html#adef-lang

settings. For the purposes of these guidelines, each formatting or style option is
governed by a property and each property may take one value from a set of
legal values. Generally in this document, the term "property" has the meaning
defined in CSS 2 ([CSS2] , section 3). A reference to "styles" in this document
means a set of style-related properties.
The value given to a property by a user agent when it is installed is called the
property’s default value.

Recognize
A user agent is said to recognize markup, content types, or rendering effects
when it can identify the information. Recognition may occur through built-in
mechanisms, Document Type Definitions (DTDs) style sheets, headers, and
other means. An example of failure of recognition is that HTML 3.2 user agents
may not recognize the new elements or attributes of HTML 4.01 [HTML4] .
While a user agent may recognize blinking content specified by elements or
attributes, it may not recognize blinking in an applet. The Techniques Document
[UAAG10-TECHS] lists some markup known to affect accessibility that should
be recognized by user agents.

Rendered content
Rendered content is the part of content that is rendered after the application of
style sheets, transformations, user agent settings, etc. The content rendered for
a given element may be what appears between the element’s start and end
tags, the value of an attribute (e.g., the "alt", "title", and "summary" attributes in
HTML), or external data (e.g., the IMG element or the resourced designated by
the "longdesc" attribute in HTML). Content may be rendered to a graphical
display, to an auditory display (to a speaker device as speech and non-speech
sounds) or to a tactile display (Braille and haptic displays).

Selection, current selection
The selection generally identifies a range of content (e.g., text, images, etc.) in a
document. The selection may be structured (based on the document tree) or
unstructured (e.g., text-based). Content may be selected through user
interaction, scripts, etc. The selection may be used for a variety of purposes: for
cut and paste operations, to designate a specific element in a document, to
identify what a screen reader should read, etc.
The selection may be set by the user (e.g., by a pointing device or the
keyboard) or through an application programming interface (API). A viewport
has at most one selection (though the selection may be rendered graphically as
discontinuous text fragments). When several viewports co-exist, each may have
a selection, but only one is active, called the current selection.
On the screen, the selection may be highlighted using colors, fonts, graphics,
magnification, etc. The selection may also be rendered as inflected speech, for
example.

Standard device APIs
Operating systems are designed to be used by default with devices such as
pointing devices, keyboards, voice input, etc. The operating system (or
windowing system) provides "standard APIs " for these devices. On desktop
computers today, the standard input APIs are for the mouse and keyboard. For

96 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1998/REC-CSS2-19980512/conform.html

touch screen devices or mobile devices, standard input APIs may include stylus,
buttons, voice, etc. The display and sound card are considered standard ouput
devices for a graphical desktop computer environment, and each has a
standard API.

Text transcript
A text transcript is a text equivalent of audio information (e.g., an audio
presentation or the auditory track of a movie or animation). It provides text for
both spoken words and non-spoken sounds such as sound effects. Text
transcripts make audio information accessible to people who have hearing
disabilities and to people who cannot play the audio. Text transcripts are usually
pre-written but may be generated on the fly (e.g., by speech-to-text converters).
Refer also to the definitions of captions and collated text transcripts .

User agent
A user agent is an application that retrieves and renders Web content, including
text, graphics, sounds, video, images, and other content types. A user agent
may require additional user agents that handle some types of content. For
instance, a browser may run a separate program or plug-in to render sound or
video. User agents include graphical desktop browsers, multimedia players, text
browsers, voice browsers, and assistive technologies such as screen readers,
screen magnifiers, speech synthesizers, onscreen keyboards, and voice input
software.

User interface
For the purposes of this document, user interface includes both:

1. the "user agent user interface", i.e., the controls and mechanisms offered
by the user agent for user interaction, such as menus, buttons, keyboard
access, etc.

2. the "content user interface", i.e., the active elements that are part of
content, such as form controls, links, applets, etc. that are implemented
natively .

The document distinguishes them only where required for clarity.
User styles

User styles are style property values that come from user interface settings,
user style sheets, or other user interactions.

User-initiated, user agent initiated
An action initiated by the user is one that results from user operation of the user
interface. An action initiated by the user agent is one that results from the
execution of a script (e.g., an event handler bound to an event not triggered
through the user interface), from operating system conditions, or from built-in
user agent behavior.

Views, viewports, and current viewport
User agents may handle different types of content : a markup language, sound,
video, etc. The user views rendered content through a viewport, which may be
a window, a frame, a piece of paper, a speaker, a virtual magnifying glass, etc.
A viewport may contain another viewport (e.g., nested frames). Viewports do not
include user interface controls that do not present content, such as prompts,
menus, alerts, etc.

 5 Jun 2000 14:1897

Techniques for User Agent Accessibility Guidelines 1.0

User agents may render the same content in a variety of ways; each rendering
is called a view. For instance, a user agent may allow users to view an entire
document or just a list of the document’s headers. These are two different views
of the document.
The view corresponds to how source information is rendered and the viewport is
where it is rendered. The viewport that contains both the current focus and the
current selection is called the current viewport. The current viewport is
generally highlighted when several viewports co-exist.
A viewport may not give users access to all rendered content at once. In this
case, the user agent should provide a scrolling mechanism or advance and
rewind mechanism.

98 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

7 Acknowledgments
The active participants of the User Agent Guidelines Working Group who produced
this document were: James Allan, Denis Anson, Kitch Barnicle, Harvey Bingham,
Dick Brown, Al Gilman, Jon Gunderson, Ian Jacobs, Marja-Riitta Koivunen, Charles
McCathieNevile, Mark Novak, David Poehlman, Mickey Quenzer, Gregory Rosmaita,
Madeleine Rothberg, and Rich Schwerdtfeger.

Many thanks to the following people who have contributed through review and
past participation: Paul Adelson, Olivier Borius, Judy Brewer, Bryan Campbell, Kevin
Carey, Wendy Chisholm, David Clark, Chetz Colwell, Wilson Craig, Nir Dagan,
Daniel Dardailler, B. K. Delong, Neal Ewers, Geoff Freed, John Gardner, Larry
Goldberg, Glen Gordon, John Grotting, Markku Hakkinen, Eric Hansen, Earle
Harrison, Chris Hasser, Kathy Hewitt, Philipp Hoschka, Masayasu Ishikawa, Phill
Jenkins, Earl Johnson, Jan Kärrman (for help with html2ps), Leonard Kasday,
George Kerscher, Peter Korn, Josh Krieger, Catherine Laws, Greg Lowney, Susan
Lesch, Scott Luebking, William Loughborough, Napoleon Maou, Peter Meijer, Karen
Moses, Masafumi Nakane, Charles Oppermann, Mike Paciello, David Pawson,
Michael Pederson, Helen Petrie, Michael Pieper, Jan Richards, Hans Riesebos, Joe
Roeder, Lakespur L. Roca, Lloyd Rutledge, Liam Quinn, T.V. Raman, Robert
Savellis, Constantine Stephanidis, Jim Thatcher, Jutta Treviranus, Claus Thogersen,
Steve Tyler, Gregg Vanderheiden, Jaap van Lelieveld, Jon S. von Tetzchner, Willie
Walker, Ben Weiss, Evan Wies, Chris Wilson, Henk Wittingen, and Tom
Wlodkowski.

 5 Jun 2000 14:1899

Techniques for User Agent Accessibility Guidelines 1.0

http://www.tdb.uu.se/~jan/html2ps.html

8 References
For the latest version of any W3C specification please consult the list of W3C
Technical Reports at http://www.w3.org/TR.

[ATAG10]
"Authoring Tool Accessibility Guidelines 1.0", J. Treviranus, C. McCathieNevile,
I. Jacobs, and J. Richards, eds., 3 February 2000. This ATAG 1.0
Recommendation is http://www.w3.org/TR/2000/REC-ATAG10-20000203.

[ATAG10-TECHS]
"Techniques for Authoring Tool Accessibility Guidelines 1.0", J. Treviranus, C.
McCathieNevile,, I. Jacobs, and J. Richards, eds. The latest version of this
techniques document is http://www.w3.org/TR/ATAG10-TECHS/.

[CHARMOD]
"Character Model for the World Wide Web", M. Dürst, 25 February 1999. This
W3C Working Draft is http://www.w3.org/TR/1999/WD-charmod-19990225.

[CSS-ACCESS]
"Accessibility Features of CSS", I. Jacobs, J. Brewer, The latest version of this
W3C Note is available at http://www.w3.org/TR/CSS-access.

[CSS1]
"CSS, level 1 Recommendation", B. Bos, H. Wium Lie, eds., 17 December
1996, revised 11 January 1999. This CSS 1 Recommendation is
http://www.w3.org/TR/1999/REC-CSS1-19990111.

[CSS2]
"CSS, level 2 Recommendation", B. Bos, H. Wium Lie, C. Lilley, and I. Jacobs,
eds., 12 May 1998. This CSS 2 Recommendation is
http://www.w3.org/TR/1998/REC-CSS2-19980512.

[DOM2]
"Document Object Model (DOM) Level 2 Specification", L. Wood, A. Le Hors, V.
Apparao, L. Cable, M. Champion, J. Kesselman, P. Le Hégaret, T. Pixley, J.
Robie, P. Sharpe, C. Wilson, eds. The latest version of the specification is
available at: http://www.w3.org/TR/DOM-Level-2.

[HTML4]
"HTML 4.01 Recommendation", D. Raggett, A. Le Hors, and I. Jacobs, eds., 24
December 1999. This HTML 4.01 Recommendation is
http://www.w3.org/TR/1999/REC-html401-19991224.

[MATHML]
"Mathematical Markup Language", P. Ion and R. Miner, eds., 7 April 1998. This
MathML 1.0 Recommendation is
http://www.w3.org/TR/1998/REC-MathML-19980407.

[MICROPAYMENT]
"Common Markup for micropayment per-fee-links", T. Michel, ed. The latest
version of this W3C Working Draft is available at
http://www.w3.org/TR/Micropayment-Markup.

[PNG]
"PNG (Portable Network Graphics) Specification 1.0", T. Boutell, ed., 1 October

100 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/REC-png
http://www.w3.org/TR/Micropayment-Markup/
http://www.w3.org/TR/1998/REC-MathML-19980407
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/DOM-Level-2
http://www.w3.org/TR/1998/REC-CSS2-19980512
http://www.w3.org/TR/1999/REC-CSS1-19990111
http://www.w3.org/TR/CSS-access
http://www.w3.org/TR/1999/WD-charmod-19990225
http://www.w3.org/TR/ATAG10-TECHS/
http://www.w3.org/TR/2000/REC-ATAG10-20000203
http://www.w3.org/TR
http://www.w3.org/TR

1996. This W3C Recommendation is http://www.w3.org/TR/REC-png.
[RFC2616]

"Hypertext Transfer Protocol -- HTTP/1.1, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, T. Berners-Lee, June 1999.

[SMIL]
"Synchronized Multimedia Integration Language (SMIL) 1.0 Specification", P.
Hoschka, ed., 15 June 1998. This SMIL 1.0 Recommendation is
http://www.w3.org/TR/1998/REC-smil-19980615.

[SMIL-ACCESS]
"Accessibility Features of SMIL", M-R. Koivunen, I. Jacobs. The latest version of
this W3C Note is available at http://www.w3.org/TR/SMIL-access.

[UAAG10]
"User Agent Accessibility Guidelines 1.0," J. Gunderson, I. Jacobs, eds. The
latest draft of the guidelines is available at
http://www.w3.org/TR/UAAG10-TECHS/.

[UAAG10-TECHS]
"Techniques for User Agent Accessibility Guidelines 1.0," J. Gunderson, I.
Jacobs, eds. The latest draft of the techniques document is available at
http://www.w3.org/TR/UAAG10-TECHS/.

[W3CPROCESS]
World Wide Web Consortium Process Document, I. Jacobs ed. The 11
November 1999 version of the Process Document is
http://www.w3.org/Consortium/Process/Process-19991111/.

[WCAG10]
"Web Content Accessibility Guidelines 1.0", W. Chisholm, G. Vanderheiden, and
I. Jacobs, eds., 5 May 1999. This WCAG 1.0 Recommendation is
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505.

[WCAG10-TECHS]
"Techniques for Web Content Accessibility Guidelines 1.0", W. Chisholm, G.
Vanderheiden, and I. Jacobs, eds. The latest version of this document is
available at http://www.w3.org/TR/WCAG10-TECHS.

[XHTML10]
"XHTML[tm] 1.0: The Extensible HyperText Markup Language", S. Pemberton,
et al. The 26 January 2000 XHTML 1.0 Recommendation is
http://www.w3.org/TR/2000/REC-xhtml1-20000126.

[XML]
"Extensible Markup Language (XML) 1.0.", T. Bray, J. Paoli, C.M.
Sperberg-McQueen, eds., 10 February 1998. This XML 1.0 Recommendation is
http://www.w3.org/TR/1998/REC-xml-19980210.

[XSLT]
"XSL Transformations (XSLT) Version 1.0", J. Clark. The 16 November 1999
Recommendation is http://www.w3.org/TR/1999/REC-xslt-19991116.

 5 Jun 2000 14:18101

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/2000/REC-xhtml1-20000126
http://www.w3.org/TR/WCAG10-TECHS
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505
http://www.w3.org/Consortium/Process/Process-19991111/
http://www.w3.org/TR/UAAG10-TECHS
http://www.w3.org/TR/UAAG10
http://www.w3.org/TR/SMIL-access
http://www.w3.org/TR/1998/REC-smil-19980615
http://www.ietf.org/rfc/rfc2616.txt

9 Resources
Note. W3C does not guarantee the stability of any of the following references
outside of its control. These references are included for convenience. References to
products are not endorsements of those products.

9.1 Operating system and programming guidelines

[APPLE-HI]
Refer to the following guidelines from Apple:

Information on accessibility guidelines for Macintosh applications.
Inside Macintosh: Macintosh Human Interface Guidelines / Part 1 -
Fundamentals Chapter 2 - General Design Considerations (Very General).
Inside Macintosh: Mac OS 8 Control Manager Reference / Addresses
Keyboard Focus.
Inside Macintosh: Mac OS 8 Human Interface Guidelines / Chapter 3 -
Dialog Box Guidelines / Keyboard Navigation and Focus.
Inside Macintosh: Programmer’s Guide to MacApp / Part 1 - MacApp
Theory and Architecture / Chapter 8 - Displaying, Manipulating, and Printing
Data / Cursor Handling
Inside Macintosh: Programmer’s Guide to MacApp / Part 1 - MacApp
Theory and Architecture / Chapter 8 - Displaying, Manipulating, and Printing
Data / Basic View TechnologyHighlighting in a View
Inside Macintosh: Macintosh Human Interface Guidelines / Part 2 - The
Interface Elements / Chapter 10 - Behaviors / Selecting
Inside Macintosh: Imaging with QuickDraw / Highlighting
Information on Apple’s scripting model can be found at tn1095 and tn1164.
Refer also to the Inside Macintosh chapter devoted to Inter-application
Communication.

[BHO]
Browser Helper Objects: The Browser the Way You Want It, D. Esposito,
January 1999. Refer also to
http://support.microsoft.com/support/kb/articles/Q179/2/30.asp.

[ED-DEPT]
"Requirements for Accessible Software Design", US Department of Education,
version 1.1 March 6, 1997.

[EITAAC]
"EITAAC Desktop Software standards", Electronic Information Technology
Access Advisory (EITAAC) Committee.

[IBM-ACCESS]
"Software Accessibility" IBM Special Needs Systems.

[ICCCM]
"The Inter-Client communication conventions manual". A protocol for
communication between clients in the X Window system.

102 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://ftp.x.org/pub/R6.3/xc/doc/specs/ICCCM/
http://www.austin.ibm.com/sns/accesssoftware.html
http://trace.wisc.edu/docs/eitacc_desktop_software_standards/desktop_software_standards.htm
http://ocfo.ed.gov/coninfo/clibrary/software.htm
http://support.microsoft.com/support/kb/articles/Q179/2/30.asp
http://msdn.microsoft.com/library/techart/bho.htm
http://developer.apple.com/techpubs/mac/IAC/IAC-2.html
http://developer.apple.com/techpubs/mac/IAC/IAC-2.html
http://developer.apple.com/technotes/tn/tn1164.html
http://developer.apple.com/technotes/tn/tn1095.html
http://developer.apple.com/techpubs/quicktime/qt4beta/INMAC/MACWIN/imClrQuickDraw.b.htm
http://developer.apple.com/techpubs/mac/HIGuidelines/HIGuidelines-216.html
http://developer.apple.com/techpubs/mac/MacAppProgGuide/MacAppProgGuide-65.html#HEADING65-109
http://developer.apple.com/techpubs/mac/MacAppProgGuide/MacAppProgGuide-66.html#HEADING66-0
http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-47.html
http://developer.apple.com/techpubs/macos8/HumanInterfaceToolbox/ControlManager/ControlMgr8Ref/ControlMgrRef.8.html
http://developer.apple.com/techpubs/mac/HIGuidelines/HIGuidelines-40.html#HEADING40-0
http://developer.apple.com/techpubs/mac/HIGuidelines/HIGuidelines-2.html

[ICE-RAP]
"An ICE Rendezvous Mechanism for X Window System Clients", W. Walker. A
description of how to use the ICE and RAP protocols for X Window clients.

[JAVA-ACCESS]
"IBM Guidelines for Writing Accessible Applications Using 100% Pure Java", R.
Schwerdtfeger, IBM Special Needs Systems.

[JAVA-CHECKLIST]
"Java Accessibility Guidelines and Checklist". IBM Special Needs Systems.

[JAVA-TUT]
"The Java Tutorial. Trail: Creating a GUI with JFC/Swing". An online tutorial that
describes how to use the Swing Java Foundation Class to build an accessible
user interface.

[JAVAAPI]
Information on Java Accessibility API can be found at Java Accessibility Utilities.

[MOTIF]
The OSF/Motif Style Guide.

[MS-ENABLE]
Information on accessibility guidelines for Windows applications. Refer also to
Built-in accessibility features.

[MS-KEYBOARD]
Information on keyboard assistance for Internet Explorer and MS Windows.

[MS-SOFTWARE]
"The Microsoft Windows Guidelines for Accessible Software Design". Note. This
page summarizes the guidelines and includes links to the full guidelines in
various formats (including plain text).

[MSAA]
Information on active accessibility can be found at the Microsoft WWW site on
Active Accessibility.

[NISO]
National Information Standards Organization. One activity pursued by this
organization concerns Digital Talking Books. Refer to the "Digital Talking Book
Features List" draft for more information.

[NOTES-ACCESS]
"Lotus Notes Accessibility Guidelines" IBM Special Needs Systems.

[SUN-DESIGN]
"Designing for Accessibility", Eric Bergman and Earl Johnson. This paper
discusses specific disabilities including those related to hearing, vision, and
cognitive function.

[SUN-HCI]
"Towards Accessible Human-Computer Interaction", Eric Bergman, Earl
Johnson, Sun Microsytems 1995. A substantial paper, with a valuable print
bibliography.

[TRACE-REF]
"Application Software Design Guidelines" compiled by G. Vanderheiden. A
thorough reference work.

 5 Jun 2000 14:18103

Techniques for User Agent Accessibility Guidelines 1.0

http://trace.wisc.edu/docs/software_guidelines/software.htm
http://www.sun.com/tech/access/updt.HCI.advance.html
http://www.sun.com/tech/access/software.guides.html
http://www.austin.ibm.com/sns/accessnotes.html
http://www.niso.org/talkbookdraft.html
http://www.niso.org/talkbookdraft.html
http://www.niso.org/
http://www.microsoft.com/enable/msaa/develop.htm
http://www.microsoft.com/enable/msaa/develop.htm
http://www.microsoft.com/enable/dev/guidelines/software.htm
http://www.microsoft.com/enable/training/keyboard.htm
http://msdn.microsoft.com/library/psdk/msaa/access_8y0j.htm
http://www.microsoft.com/enable/dev/apps.htm
http://autarch.loni.ucla.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/Motif_SG/@Generic__BookTocView/1089/*
http://www.sun.com/access/
http://java.sun.com/docs/books/tutorial/uiswing/
http://www.austin.ibm.com/sns/accessjava.html
http://www.austin.ibm.com/sns/snsjavag.htm
http://trace.wisc.edu/docs/x_win_andice/x_andice.htm

[WHAT-IS]
"What is Accessible Software", James W. Thatcher, Ph.D., IBM, 1997. This
paper gives a short example-based introduction to the difference between
software that is accessible, and software that can be used by some assistive
technologies.

[XGUIDELINES]
Information on accessibility guidelines for Unix and X Window applications. The
Open Group has various guides that explain the Motif and Common Desktop
Environment (CDE) with topics like how users interact with Motif/CDE
applications and how to customize these environments. Note. In X, the terms
client and server are used differently from their use when discussing the Web.

9.2 User agents and other tools
A list of alternative Web browsers (assistive technologies and other user agents
designed for accessibility) is maintained at the WAI Web site.

[ALTIFIER]
The Altifier Tool generates "alt" text intelligently.

[AMAYA]
Amaya is W3C’s testbed browser/editor.

[AWB]
The Accessible Web Browser senior project at the University of Illinois
Champaign-Urbana.

[CSSVALIDATOR]
W3C’s CSS Validator service.

[G2]
The G2 player.

[HELPDB]
HelpDB is a test tool for Web table navigation.

[HPR]
Home Page Reader.

[IE]
Internet Explorer. Refer also to information on using COM with IE. Refer also to
information about monitoring HTML events in the IE document object model.

[JAVAWEBLET]
Java Weblets are Java client programs that access the user agent’s document
object model.

[JFW]
Jaws for Windows.

[LYNX]
The Lynx Browser.

[MOZILLA]
The Mozilla browser.

[NAVIGATOR]
Netscape Navigator.

104 5 Jun 2000 14:18

Techniques for User Agent Accessibility Guidelines 1.0

http://www.netscape.com/browsers/index.html
http://www.mozilla.org/
http://lynx.browser.org/
http://www.hj.com/JFW/JFW.html
http://www.alphaworks.ibm.com/tech/weblets
http://msdn.microsoft.com/workshop/browser/mshtml/tutorials/sink.asp
http://www.microsoft.com/com/default.asp
http://www.microsoft.com/ie
http://www.austin.ibm.com/sns/hpr.html
http://trace.wisc.edu/world/web/document_access/
http://www.real.com/
http://jigsaw.w3.org/css-validator/
http://cmos-eng.rehab.uiuc.edu/browser/
http://www.w3.org/Amaya
http://www.vorburger.ch/projects/alt/
http://www.w3.org/WAI/References/Browsing
http://www.opengroup.org/
http://www.opengroup.org/
http://www.opengroup.org/publications/catalog/mo.htm
http://www.austin.ibm.com/sns/software.html

[OPERA]
The Opera Browser.

[PWWEBSPEAK]
pwWebSpeak.

[TABLENAV]
A table navigation script from the Trace Research Center.

[VALIDATOR]
W3C’s HTML/XML Validator service.

[WINDOWEYES]
Window-Eyes.

[WINVISION]
Winvision.

9.3 Accessibility resources

[BRAILLEFORMATS]
"Braille Formats: Principles of Print to Braille Transcription 1997".

[NBA]
The National Braille Association.

[NBP]
The National Braille Press.

[RFBD]
Recording for the Blind and Dyslexic.

[SPEAK2WRITE]
Speak to Write is a site about using speech recognition to promote accessibility.

9.4 Standards resources

[ISO639]
"Codes for the representation of names of languages", ISO 639:1988. For more
information, consult http://www.iso.ch/cate/d4766.html. Refer also to
http://www.oasis-open.org/cover/iso639a.html.

[UNICODE]
The Unicode Consortium. "The Unicode Standard, Version 3.0", Reading, MA,
Addison-Wesley Developers Press, 2000. ISBN 0-201-61633-5. Refer also to
http://www.unicode.org/unicode/standard/versions/.

 5 Jun 2000 14:18105

Techniques for User Agent Accessibility Guidelines 1.0

http://www.unicode.org/unicode/standard/versions/
http://www.oasis-open.org/cover/iso639a.html
http://www.iso.ch/cate/d4766.html
http://www.edc.org/spk2wrt/
http://www.rfbd.org/
http://www.nbp.org/
http://members.aol.com/nbaoffice/index.htm
http://www.brl.org/formats/
http://www.artictech.com/
http://www.gwmicro.com/
http://validator.w3.org/
http://trace.wisc.edu/world/computer_access/table_nav_script/table-nav.html
http://www.prodworks.com/
http://www.operasoft.com/

	Techniques for User Agent Accessibility Guidelines 1.0
	W3C Working Draft 10 March 2000
	Abstract
	Status of this document
	Table of contents
	1 Introduction
	1.1 How the techniques are organized
	1.2 Related resources
	1.3 Document conventions
	1.4 Priorities

	2 User agent accessibility guidelines
	Guideline 1. Support input and output device-independence.
	Guideline 2. Ensure user access to all content.
	Guideline 3. Allow the user to turn off rendering or stop behavior that may reduce accessibility.
	Guideline 4. Ensure user control of styles.
	Guideline 5. Observe system conventions and standard interfaces.
	Guideline 6. Implement accessible specifications.
	Guideline 7. Provide navigation mechanisms.
	Sequential navigation techniques
	Direct navigation techniques

	Guideline 8. Orient the user.
	Guideline 9. Notify the user of content and viewport changes.
	Guideline 10. Allow configuration and customization.
	Guideline 11. Provide accessible product documentation and help.

	3 Accessibility topics
	3.1 Access to content
	3.1.1 Preserve and provide structure
	3.1.2 Allow access to selected content
	3.1.3 Access to equivalent alternatives of content
	3.1.4 Context

	3.2 User control of style
	3.3 Link techniques
	3.4 List techniques
	3.5 Table techniques
	3.5.1 Table metadata
	3.5.2 Linear rendering of tables
	3.5.3 Cell rendering
	3.5.4 Cell header algorithm
	3.5.5 Table navigation

	3.6 Image map techniques
	3.7 Frame techniques
	3.8 Form techniques
	3.8.1 Form navigation techniques
	3.8.2 Form orientation techniques
	3.8.3 Form control orientation techniques
	3.8.4 Form submission techniques

	3.9 Generated content techniques
	3.10 Script and applet techniques
	3.10.1 Script techniques
	3.10.2 Applet techniques

	3.11 Input configuration techniques
	3.11.1 Resolution of input configuration conflicts
	3.11.2 Invocation through the input configuration

	3.12 Synthesized speech techniques

	4 Appendix: Accessibility features of some operating systems
	Microsoft Windows 95, Windows 98, and Window NT 4.0
	Apple Macintosh operating system
	AccessX, X Keyboard Extension †XKB‡, and the X Window System
	DOS †Disk Operating System‡

	5 Appendix: Loading assistive technologies for access to the document object model
	Loading assistive technologies for direct navigation of the document object model
	Attaching the assistive technologies to the document object model
	Java's direct access

	Loading part of the assistive technologies for direct access to the document object model
	Java access bridge

	Loading assistive technologies for indirect access to the document object model

	6 Appendix: Glossary
	7 Acknowledgments
	8 References
	9 Resources
	9.1 Operating system and programming guidelines
	9.2 User agents and other tools
	9.3 Accessibility resources
	9.4 Standards resources

