
Mathematical Markup Language (MathML) Version 2.0

W3C Working Draft 22 December 1999

This version: http://www.w3.org/TR/1999/WD-MathML2-19991222
Also available as: HTML zip archive, XHTML zip archive, XML zip archive,
PDF (screen), PDF (paper)

Latest version: http://www.w3.org/TR/MathML2
Previous versions: http://www.w3.org/TR/1999/WD-MathML2-19991201
Editors: Nico Poppelier (Salience)

Robert Miner (Geometry Technologies, Inc.)
Patrick Ion (Mathematical Reviews, American Mathematical Society)

Principal Writers: Stephen Buswell, Stan Devitt, Angel Diaz, Bruce Smith, Neil Soiffer,
Robert Sutor, Stephen Watt, StÈphane Dalmas, David Carlisle, Roger Hunter,
Ron Ausbrooks

Copyright c 1998, 1999 W3C R (MIT, INRIA, Keio), All Rights Reserved.W3C liability,
trademark, document use and software licensing rules apply.

Abstract

This speci�cation de�nes the Mathematical Markup Language, or MathML. MathML is
an XML application for describing mathematical notation and capturing both its structure
and content. The goal of MathML is to enable mathematics to be served, received, and
processed on the World Wide Web, just as HTML has enabled this functionality for text.

This speci�cation of the markup language MathML is intended primarily for a readership
consisting of those who will be developing or implementing renderers or editors using it,
or software that will communicate using MathML as a protocol for input or output. It is not
a User's Guide but rather a reference document.

This document begins with background information on mathematical notation, the prob-
lems it poses, and the philosophy underlying the solutions MathML proposes. MathML
can be used to encode both mathematical notation and mathematical content. About thirty
of the MathML tags describe abstract notational structures, while another one hundred
provide a way of unambiguously specifying the intended meaning of an expression. Ad-
ditional chapters discuss how the MathML content and presentation elements interact, and
how MathML renderers might be implemented and should interact with browsers. Finally,
this document addresses the issue of MathML entities (extended characters) and their rela-
tion to fonts.

While MathML is human-readable it is anticipated that, in all but the simplest cases, au-
thors will use equation editors, conversion programs, and other specialized software tools
to generate MathML. Several early versions of such MathML tools already exist, and a
number of others, both freely available software and commercial products, are under de-
velopment.

Status of this document

This is a W3C working draft for review by W3C members and other interested parties. It
is a draft document and may be updated, replaced or obsoleted by other documents at any
time. It is inappropriate to use W3C working drafts as reference material or to cite them as

http://www.w3.org/TR/1999/WD-MathML2-19991222
file:WD-MathML2-19991222.zip
file:XHTML-MathML-;19991222.zip
file:XML-MathML-19991222.zip
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/1999/WD-MathML2-19991201
http://www.w3.org/Consortium/Legal/ipr-notice.html#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice.html#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents.html
http://www.w3.org/Consortium/Legal/copyright-software.html

other than ‘work in progress’. This is work in progress and does not imply endorsement by,
or the consensus of, either W3C or members of the Math working group.

This document has been produced by theW3C Math Working Group.

A list of current W3C Technical Reports can be found athttp://www.w3.org/TR.

It is expected that there will be at least two more Working Drafts, appearing at roughly
one month intervals, before finalization of the Working Group’s proposed specification
MathML 2.0.

The present draft is a revision of the earlier correctedW3C Recommendation MathML
1.01. It differs from it in that several chapters have been modified and one added. The
introductory Chapters 1 and Chapter 2 are almost unchanged in this draft. They remain
essentially correct, but will later be revised to reflect the changes in the rest of the document
when these have settled down.

Chapters 3 and 4 have been extended to describe new functionalities added, as well as
smaller improvements of material already proposed. Chapter 5 has been newly written
to reflect changes in the technology available. The major tables in Chapter 6 are being
regenerated to reflect an improved list of characters useful for mathematics. However, since
the outcomes of several initiatives with respect to math in Unicode are not yet clear, the
main text of this Chapter has not yet been revised, and the character tables are omitted.
Chapter 7 has been completely revised. A new Chapter 8 on the DOM for MathML has
been added; the latter points to a new Appendix E for a detailed listing.

The appendices have been reorganized into normative and non-normative groups. The for-
mer have draft updates. Appendices E and H are completely new.

Comments on this document should be sent to theMath WG public mailing list.

2

http://www.w3.org/Math
http://www.w3.org/TR
http://www.w3.org/1999/07/REC-MathML-19990707
http://www.w3.org/1999/07/REC-MathML-19990707
mailto:www-math@w3.org

Contents

1 Introduction 7
1.1 Mathematics and its Notation7
1.2 Origins and Goals 8
1.2.1 The History of MathML 8
1.2.2 Limitations of HTML 9
1.2.3 Requirements for Mathematics Markup10
1.2.4 Design Goals of MathML 11
1.3 The Role of MathML on the Web 12
1.3.1 Layered Design of Mathematical Web Services12
1.3.2 Relation to Other Web Technology13
2 MathML Fundamentals 16
2.1 MathML Overview 16
2.1.1 Taxonomy of MathML Elements17
2.1.2 Expression Trees and Token Elements17
2.1.3 Presentation Markup19
2.1.4 Content Markup 19
2.1.5 Mixing Presentation and Content20
2.2 Some MathML Examples 20
2.2.1 Presentation Examples20
2.2.2 Content Examples23
2.2.3 Mixed Markup Examples25
2.3 MathML Syntax and Grammar26
2.3.1 An XML Syntax Primer 27
2.3.2 Children versus Arguments28
2.3.3 MathML Attribute Values 28
2.3.4 Attributes Shared by all MathML Elements34
2.3.5 Collapsing Whitespace in Input35
3 Presentation Markup 36
3.1 Introduction 36
3.1.1 What Presentation Elements Represent36
3.1.2 Terminology Used In This Chapter37
3.1.3 Required Arguments38
3.1.4 Elements with Special Behaviors39
3.1.5 Summary of Presentation Elements40
3.2 Token Elements 41
3.2.1 Attributes common to token elements41
3.2.2 Identifiers 43
3.2.3 Numbers 45
3.2.4 Operator, Fence, Separator or Accent46
3.2.5 Text 56

3

3.2.6 Space 58
3.2.7 String Literal 60
3.2.8 <mchar/>– refering to non-ASCII characters60
3.2.9 <mglyph/> – adding new characters to MathML61
3.3 General Layout Schemata62
3.3.1 Horizontally Group Any Number of Subexpressions62
3.3.2 Fractions 65
3.3.3 Radicals 66
3.3.4 Style Change 67
3.3.5 Error Message72
3.3.6 Adjust Space Around Content73
3.3.7 Making Content Invisible 77
3.3.8 Content Inside Pair of Fences79
3.3.9 Enclose Content Inside Notation82
3.4 Script and Limit Schemata84
3.4.1 Subscript 84
3.4.2 Superscript 85
3.4.3 Subscript-superscript Pair85
3.4.4 Underscript 86
3.4.5 Overscript 88
3.4.6 Underscript-overscript Pair89
3.4.7 Prescripts and Tensor Indices91
3.5 Tables and Matrices 92
3.5.1 Table or Matrix 93
3.5.2 Row in Table or Matrix 96
3.5.3 Labeled Row in Table or Matrix96
3.5.4 Entry in Table or Matrix 98
3.5.5 Alignment Markers 98
3.6 Enlivening Expressions 108
3.6.1 Bind Action to Subexpression108
4 Content Markup 110
4.1 Introduction 110
4.1.1 The Intent of Content Markup110
4.1.2 The Scope of Content Markup111
4.1.3 Basic Concepts of Content Markup111
4.2 Content Element Usage Guide112
4.2.1 Overview of Syntax and Usage112
4.2.2 Containers 122
4.2.3 Functions, Operators and Qualifiers126
4.2.4 Operators taking Qualifiers128
4.2.5 Relations 131
4.2.6 Conditions 131
4.2.7 Syntax and Semantics133
4.2.8 Semantic Mappings135
4.2.9 MathML element types135
4.3 Content Element Attributes136
4.3.1 Content Element Attribute Values136
4.3.2 Attributes Modifying Content Markup Semantics136
4.3.3 Attributes Modifying Content Markup Rendering139
4.4 The Content Markup Elements140

4

4.4.1 Token Elements143
4.4.2 Basic Content Elements146
4.4.3 Arithmetic, Algebra and Logic156
4.4.4 Relations 169
4.4.5 Calculus and Vector Calculus173
4.4.6 Theory of Sets 182
4.4.7 Sequences and Series187
4.4.8 Elementary classical functions191
4.4.9 Statistics 194
4.4.10 Linear Algebra 196
4.4.11 Semantic Mapping Elements201
5 Combining Presentation and Content Markup 205
5.1 Why Two Different Kinds of Markup? 205
5.2 Mixed Markup 206
5.2.1 Reasons to Mix Markup206
5.2.2 How to Mix Markup 208
5.2.3 Presentation Markup Contained in Content Markup208
5.2.4 Content Markup Contained in Presentation Markup209
5.3 Parallel Markup 210
5.3.1 Top-level Parallel Markup211
5.3.2 Fine-grained Parallel Markup211
5.3.3 Parallel Markup via Cross-References:id andxref 212
5.4 Tools, Style Sheets and Macros for Combined Markup214
5.4.1 Notational Style Sheets214
5.4.2 Content-Faithful Transformations216
5.4.3 Style Sheets for Extensions217
6 Entities, Characters and Fonts 219
6.1 Introduction 219
6.1.1 The Intent of Entity Names219
6.1.2 The STIX Project 219
6.1.3 Entity Listings 220
6.1.4 Non-Marking Entities 220
6.1.5 Printing Entity Listings 220
6.1.6 Special Constants221
6.1.7 Alphabetical Lists 221
6.1.8 ISO Entity Set Groupings222
6.1.9 Additional Entity Set Grouping223
7 The MathML Interface 226
7.1 Embedding MathML in HTML 227
7.1.1 The Top-LevelmathElement 227
7.1.2 Requirements for a MathML Browser Interface228
7.1.3 Invoking Embedded Objects as Renderers229
7.1.4 Invoking Other Applications 230
7.1.5 Mixing and Linking MathML and HTML 231
7.2 Generating, Processing and Rendering MathML232
7.2.1 MathML Compliance 233
7.2.2 Handling of Errors 234
7.2.3 An Attribute for Unspecified Data234
7.3 Future Extensions 235
7.3.1 Macros and Style Sheets235

5

7.3.2 XML Extensions to MathML 236
8 Document Object Model for MathML 237
8.1 Introduction 237
8.1.1 Scope of Level 1 and Level 2238
A Parsing MathML 240
A.1 The MathML DTD 240
B Operator Dictionary 264
B.1 Format of operator dictionary entries264
B.2 Indexing of operator dictionary 265
B.3 Choice of entity names 265
B.4 Notes onlspace andrspace attributes 265
B.5 Operator dictionary entries265
C Content Markup Validation Grammar 273
D Content Element Definitions 278
D.1 About Content Markup Elements278
D.1.1 The Structure of an MMLdefinition.279
D.2 Definitions of MathML Content Elements281
D.2.1 Leaf Elements 281
D.2.2 Basic Content Element283
D.2.3 Arithmetic, Algebra and Logic 291
D.2.4 Relations 301
D.2.5 Calculus 302
D.2.6 Theory of Sets 305
D.2.7 Sequences and Series308
D.2.8 Trigonometry 309
D.2.9 Statistics 314
D.2.10 Lineary Algebra 318
E Document Object Model for MathML (Non-Normative) 322
E.1 IDL Interfaces 322
E.1.1 Miscellaneous Object Definitions322
E.1.2 Generic MathML Elements323
E.1.3 Specific Style Methods (currfontsize, etc.)323
E.1.4 Presentation Elements326
E.1.5 Content Elements340
F Glossary (Non-Normative) 353
G Working Group Membership (Non-Normative) 358
H Changes (Non-Normative) 360
I References (Non-Normative) 362

6

Chapter 1

Introduction

1.1 Mathematics and its Notation

A distinguishing feature of mathematics is the use of a complex and highly evolved system
of two-dimensional symbolic notations. As J.R. Pierce has written in his book on commu-
nication theory, mathematics and its notations should not be viewed as one and the same
thing [Pierce1961]. Mathematical ideas exist independently of the notations that represent
them. However, the relation between meaning and notation is subtle, and part of the power
of mathematics to describe and analyze derives from its ability to represent and manipu-
late ideas in symbolic form. The challenge in putting mathematics on the World Wide Web
is to capture both notation and content (that is: meaning) in such a way that documents
can utilize the highly-evolved notational forms of written and printed mathematics, and the
potential for interconnectivity in electronic media.

Mathematical notations are constantly evolving as people continue to discover innovative
ways of approaching and expressing ideas. Even the commonplace notations of arithmetic
have gone through an amazing variety of styles, including many defunct ones advocated by
leading mathematical figures of their day [Cajori1928]. Modern mathematical notation is
the product of centuries of refinement, and the notational conventions for high-quality type-
setting are quite complicated. For example, variables, or letters which stand for numbers,
are usually typeset today in a special italic font subtly distinct from the usual text italic.
Spacing around symbols for operations such as +, -,× and / is slightly different from that
of text, to reflect conventions about operator precedence. Entire books have been devoted
to the conventions of mathematical typesetting, from the alignment of superscripts and
subscripts, to rules for choosing parenthesis sizes, to specialized notational practices for
subfields of mathematics (for instance, [Chaudry1954], [Swanson1979], [Higham1993], or
in the TEX literature [Knuth1986] and [Spivak1986]).

Notational conventions in mathematics, and printed text in general, guide the eye and make
printed expressions much easier to read and understand. Though we usually take them
for granted, we rely on hundreds of conventions such as paragraphs, capital letters, font
families and cases, and even the device of decimal-like numbering of sections such as we
are using in this document (an invention due to G. Peano, who is probably better known for
his axioms for the natural numbers). Such notational conventions are even more important
for electronic media, where one must contend with the difficulties of on-screen reading.

However, there is more to putting mathematics on the Web than merely finding ways of
displaying traditional mathematical notation in a Web browser. The Web represents a fun-
damental change in the underlying metaphor for knowledge storage, a change in which

7

interconnectivityplays a central role. It is becoming increasingly important to find ways
of communicating mathematics which facilitate automatic processing, searching and in-
dexing, and reuse in other mathematical applications and contexts. With this advance in
communication technology, there is an opportunity to expand our ability to represent, en-
code, and ultimately to communicate our mathematical insights and understanding with
each other. We believe that MathML is an important step in developing mathematics on the
Web.

1.2 Origins and Goals

1.2.1 The History of MathML

The problem of encoding mathematics for computer processing or electronic communica-
tion is much older than the Web. The common practice among scientists before the Web was
to write papers in some encoded form based on the ASCII character set, and e-mail them to
each other. Several markup methods for mathematics, in particular TEX [Knuth1986], were
already in wide use in 1992, just before the Web rose to prominence, [Poppelier1992].

Since its inception, the Web has demonstrated itself to be a very effective method of making
information available to widely separated groups of individuals. However, even though the
World Wide Web was initially conceived and implemented by scientists for scientists, the
capability to include mathematical expressions in HTML is very limited. At present, most
mathematics on the Web consists of text with images (in GIF or JPEG format) of scientific
notation, which are difficult to read and to author.

The World Wide Web Consortium (W3C) recognized that lack of support for scientific
communication was a serious problem. Dave Raggett included a proposal for HTML Math
in the HTML 3.0 working draft in 1994. A panel discussion on mathematical markup was
held at the WWW Conference in Darmstadt in April 1995. In November 1995, representa-
tives from Wolfram Research presented a proposal for doing math in HTML to the W3C
team. In May 1996, the Digital Library Initiative meeting in Champaign-Urbana played
an important role in bringing together many interested parties. Following the meeting, an
HTML Math Editorial Review Board was formed. In the intervening years, this group has
grown, and was formally reconstituted as the W3C Math working group in March 1997.

The MathML proposal reflects the interests and expertise of a very diverse group. Many
contributions to the development of MathML deserve special mention, some of which we
touch on here. One such contribution concerns the question of accessibility, especially for
the visually handicapped. T.V. Raman is particularly notable in this regard. Neil Soiffer
and Bruce Smith from Wolfram Research shared their experience with the problems of
representing mathematics in connection with the design of Mathematica 3.0, which was an
important influence in the design of the presentation elements. Paul Topping from Design
Science also contributed his expertise in mathematical formatting and editing. MathML has
benefited from the participation of a number of working group members involved in other
mathematical encoding efforts in the SGML and computer-algebra communities, including
Stephen Buswell from Stilo Technologies, Nico Poppelier from Elsevier Science, Stéphane
Dalmas from INRIA, Sophia Antipolis, Stan Devitt from Waterloo Maple, Angel Diaz and
Robert S. Sutor from IBM, and Stephen M. Watt from the University of Western Ontario.
In particular, MathML has been influenced by the OpenMath project, the work of the ISO
12083 working group, and Stilo Technologies’ work on a ‘semantic’ mathematics DTD
fragment. The American Mathematical Society has played a key role in the development of

8

MathML. Among other things, it has provided two working group chairs: Ron Whitney led
the group from May 1996 to March 1997, and Patrick Ion, who has co-chaired the group
with Robert Miner from The Geometry Center, from March 1997 to the present.

The working group has benefited from the help of many people. We would like to particu-
larly name Barbara Beeton, Chris Hamlin, John Jenkins, Ira Polans, Arthur Smith, Robby
Villegas and Joe Yurvati for help and information in assembling the character tables in
chapter6, as well as Peter Flynn, Russel S.S. O’Connor, Andreas Strotmann, and other
contributors to the www-math mailing list for their careful proofreading and constructive
criticisms.

1.2.2 Limitations of HTML

The demand for effective means of electronic scientific communication is high. Increas-
ingly, researchers, scientists, engineers, educators, students and technicians find themselves
working at dispersed locations and relying on electronic communication. At the same time,
the image-based methods that are currently the predominant means of transmitting scien-
tific notation over the Web are primitive and inadequate. Document quality is poor, au-
thoring is difficult, and mathematical information contained in images is not available for
searching, indexing, or reuse in other applications.

The most obvious problems with HTML for mathematical communication are of two types.

Display Problems.Consider the equation 22x
= 10. This equation is sized to match the

surrounding line in 14pt type on the system where it was authored. Of course, on other
systems, or for other font sizes, the equation is too small or too large. A second point
to observe is that the equation image was generated against a white background. Thus,
if a reader or browser resets the page background to another color, the anti-aliasing in the

image results in white ‘halos’. Next, consider the equationx = −b±
√

b2−4ac
2a shown with the

equation’s horizontal alignment axis above the tops of the lower-case letters in surrounding
text.

This equation has a descender which places the baseline for the equation at a point about
a third of the way from the bottom of the image. One can pad the image like this:x =
−b±
√

b2−4ac
2a , so that the centerline of the image and the baseline of the equation coincide,

but this causes problems with the inter-line spacing, which also makes the equation difficult
to read. Moreover, center alignment of images is handled in slightly different ways by
different browsers, making it impossible to guarantee proper alignment for different clients.

Image-based equations are generally harder to see, read and comprehend than the sur-
rounding text in the browser window. Moreover, these problems become worse when the
document is printed. The resolution of the equations will be around 70 dots per inch, while
the surrounding text will typically be 300 or more dots per inch. The disparity in quality is
judged to be unacceptable by most people.

Encoding Problems.Consider trying to search this page for part of an equation, for ex-
ample, the ‘=10’ from the first equation above. In a similar vein, consider trying to cut
and paste an equation into another application; even more demanding is to cut and paste
a subexpression. Using image-based methods, neither of these common needs can be ad-
equately addressed. Although the use of thealt in the document source can help, it is
clear that highly interactive Web documents must provide a more sophisticated interface
between browsers and mathematical notation. Another problem with encoding mathemat-
ics as images is that it requires more bandwidth. By using markup-based encoding, more

9

of the rendering process is moved to the client machine. Markup describing an equation is
typically smaller and more compressible than an image of the equation.

1.2.3 Requirements for Mathematics Markup

Some display problems associated with including mathematical notation in HTML doc-
uments as images could be addressed by improving browser image handling. However,
even if image handling were improved, the problem of making the information contained
in mathematical expressions available to other applications would remain. Therefore, in
planning for the future, it is not sufficient to merely upgrade image-based methods. To
fully integrate mathematical material into Web documents, a markup-based encoding of
mathematical notation and content is required.

In designing any markup language, it is essential to carefully consider the needs of its
potential users. In the case of MathML, the needs of potential users cover a broad spectrum,
from education to research, and on to commerce:

The education community is a large and important group that must be able to put scientific
curriculum materials on the Web. At the same time, educators often have limited resources
of time and equipment, and are severely hampered by the difficulty of authoring technical
Web documents. Students and teachers need to be able to create mathematical content
quickly and easily, using intuitive, easy-to-learn, low-cost tools.

Electronic textbooks are another way of using the Web which will potentially be very im-
portant in education. Management consultant Peter Drucker has recently been prophesy-
ing the end of big-campus residential higher education and its distribution over the Web
[Drucker1997]. Electronic textbooks will need to be active, allowing intercommunication
between the text and scientific software and graphics.

The academic and commercial research communities generates large volumes of dense
scientific material. Increasingly, research publications are being stored in databases, such
as the highly successful physics preprint server at Los Alamos National Laboratory. This
is especially true in some areas of physics and mathematics where academic journal prices
have been increasing at an unsustainable rate. In mathematics there are large collections
at Duke, MSRI and SISSA, and on the AMS e-MATH server. In addition, databases of
information on mathematical research, such as Mathematical Reviews and Zentralblatt für
Mathematik, offer on the Web millions of records containing mathematics.

To accommodate the research community, a design for mathematical markup must facilitate
the maintenance and operation of large document collections, where automatic searching
and indexing are important. Because of the large collection of legacy data, especially TEX
documents, the ability to convert between existing formats and new formats is also very im-
portant to the research community. Finally, the ability to maintain information for archival
purposes is vital to academic research.

Corporate and academic scientists and engineers also use technical documents in their work
to collaborate, to record results of experiments and computer simulations, and to verify cal-
culations. For such uses, mathematics on the Web must provide a standard way of sharing
information that can be easily read, processed and generated using commonly available,
easy to use tools.

Another design requirement is the ability to render mathematical material in other media
such as speech or braille, which is extremely important for the visually impaired.

10

Commercial publishers are also involved with mathematics on the Web at all levels from
electronic versions of print books to interactive textbooks to academic journals. Publishers
require a method of putting mathematics on the Web that is capable of high-quality output,
robust enough for large-scale commercial use, and preferably compatible with their current,
usually SGML-based, production systems.

1.2.4 Design Goals of MathML

In order to meet the diverse needs of the scientific community, MathML has been designed
with the following ultimate goals in mind.

MathML should:

• Encode mathematical material suitable for teaching and scientific communication
at all levels.

• Encode both mathematical notation and mathematical meaning.
• Facilitate conversion to and from other mathematical formats, both presentational

and semantic. Output formats should include:
– graphical displays
– speech synthesizers
– computer algebra systems’ input
– other mathematics typesetting languages, such as TEX
– plain text displays, e.g. VT100 emulators
– print media, including braille
It is recognized that conversion to and from other notational systems or media
may entail loss of information in the process.

• Allow the passing of information intended for specific renderers and applications.
• Support efficient browsing for lengthy expressions.
• Provide for extensibility.
• Be well suited to template and other mathematics editing techniques.
• Be human legible, and simple for software to generate and process.

No matter how successfully MathML might achieve its goals as a markup language, it is
clear that MathML will only be useful if it is implemented well. To this end, the W3C Math
working group has identified a short list of additional implementation goals. These goals
attempt to describe concisely the minimal functionality MathML rendering and processing
software should try to provide.

• MathML equations in HTML pages should render properly in popular Web browsers,
in accordance with reader and author viewing preferences, and at the highest
quality possible given the capabilities of the platform.

• HTML documents containing MathML equations should print properly and at
high-quality printer resolutions.

• MathML equations in Web pages should be able to react to mouse gestures, and
coordinate communication with other applications through the browser.

• Equation editors and converters should be developed to facilitate the creation of
Web pages containing MathML equations.

These goals can probably be adequately addressed in the near term by using embedded
elements such as Java applets, plug-ins and ActiveX controls to render MathML. However,
the extent to which these goals are ultimately met depends on the cooperation and support
of browser vendors, and other software developers. The W3C Math working group will
continue to work with the working groups for the Document Object Model (DOM) and the

11

Extensible Style Language (XSL) to ensure that the needs of the scientific community will
be met in the future.

1.3 The Role of MathML on the Web

1.3.1 Layered Design of Mathematical Web Services

The design goals of MathML require a system for encoding mathematical material for
the Web which is flexible and extensible, suitable for interaction with external software,
and capable of producing high-quality rendering in several media. Any markup language
that encodes enough information to do all these tasks well will of necessity involve some
complexity.

At the same time, it is important for many groups, such as students, to have simple ways
to include mathematics in Web pages by hand. Similarly, other groups, such as the TEX
community, would be best served by a system which allowed the direct entry of markup
languages like TEX in Web pages. In general, specific user groups are better served by more
specialized kinds of input and output tailored to their needs. Therefore, the ideal system for
communicating mathematics on the Web should provide both specialized services for input
and output, and general services for interchange of information and rendering to multiple
media.

In practical terms, the observation that mathematics on the Web should provide for both
specialized and general need naturally leads to the idea of a layered architecture. One layer
consists of powerful, general software tools exchanging, processing and rendering suitably
encoded mathematical data. A second layer consists of specialized software tools aimed
at specific user groups, and which are capable of easily generating encoded mathematical
data which can then be shared with a general audience.

MathML is designed to provide the encoding of mathematical data for the bottom, more
general layer in a two-layer architecture. It is intended to encode complex notational and
semantic structure in an explicit, regular, and easy to process way for renderers, searching
and indexing software, and other mathematical applications.

As a consequence, MathML isnot primarily intended for direct use by authors. While
MathML is human-readable, in all but the simplest cases it is too verbose and error-prone
for hand generation. Instead, it is anticipated that authors will use equation editors, conver-
sion programs, and other specialized software tools to generate MathML. Alternatively,
some renderers may convert other kinds of input directly included in Web pages into
MathML on the fly, in response to a cut-and-paste operation, for example.

In some ways, MathML is analogous to other low-level, communication formats such as
Adobe’s PostScript language. You can create a PostScript file in a variety of ways, de-
pending on your needs; experts write and modify them by hand, authors create them with
word processors, graphic artists with illustration programs, and so on. Once you have a
PostScript file, however, you can share it with a very large audience, since devices which
render PostScript, such as printers and screen previewers, are widely available.

Part of the reason for designing MathML as a markup language for a low-level, general,
communication layer is to stimulate mathematical Web software development in the layers
above. MathML provides a way of coordinating the development of modular authoring
tools and rendering software. By making it easier to develop a functional piece of a larger

12

system, MathML can stimulate a ‘critical mass’ of software development, greatly to the
benefit of potential users of mathematics on the Web.

One can envision a similar situation for mathematical data. Authors are free to create
MathML documents using the tools best suited to their needs. For example, a student might
prefer to use a menu-driven equation editor that can write out MathML to an HTML file.
A researcher might use a computer algebra package that automatically encodes the mathe-
matical content of an expression, so that it can be cut from a Web page and evaluated by a
colleague. An academic journal publisher might use a program that converts TEX markup
to HTML and MathML. Regardless of the method used to create a Web page containing
MathML, once it exists, all the advantages of a powerful and general communication layer
become available. A variety of MathML software could all be used with the same docu-
ment to render it in speech or print, to send it to a computer algebra system, or to manage it
as part of a large Web document collection. One may expect that eventually MathML can
be integrated into other arenas where mathematical formulas occur, such as spreadsheets,
statistical packages and engineering tools.

The W3C Math working group is working with vendors to ensure that a wide variety of
MathML software will soon be available, including both rendering and authoring tools. A
current list of MathML software is maintained at the World Wide Web Consortium.

1.3.2 Relation to Other Web Technology

The original conception of HTML Math was a simple, straightforward extension to HTML
that would be natively implemented in browsers. However, very early on, the explosive
growth of the Web made it clear that a general extension mechanism was required, and
that mathematics was only one of many kinds of structured data which would have to be
integrated into the Web using such a mechanism.

Given that MathML must integrate into the Web as an extension, it is extremely important
that MathML and MathML software can interact well with the existing Web environment.
In particular, MathML has been designed with three kinds of interaction in mind. First,
in order to create mathematical Web content, it is important that existing mathematical
markup languages can be converted to MathML, and that existing authoring tools can be
modified to generate MathML. Second, it must be possible to embed MathML markup
seamlessly in HTML markup in such a way that it will be accessible to future browsers,
search engines, and all kinds of Web applications which now manipulate HTML. Finally, it
must be possible to render MathML embedded in HTML in today’s Web browsers in some
fashion, even if it is less than ideal.

1.3.2.1 Existing Mathematical Markup Languages

Perhaps the most important influence on mathematical markup languages of the last two
decades is the TEX typesetting system developed by Donald Knuth [Knuth1986]. TEX is
a de facto standard in the mathematical research community, and it is pervasive in the
scientific community at large. TEX sets a standard for quality of visual rendering, and a
great deal of effort has gone into ensuring MathML can provide the same visual rendering
quality. Moreover, because of the many legacy documents in TEX, and because of the large
authoring community versed in TEX, a priority in the design of MathML was the ability
to convert TEX mathematics input into MathML format. The feasibility of such conversion
has been demonstrated by prototype software.

13

Extensive work on encoding mathematics has also been done in the SGML community, and
SGML-based encoding schemes are widely used by commercial publishers. ISO 12083 is
an important markup language which contains a DTD fragment primarily intended for de-
scribing the visual presentation of mathematical notation. Because ISO 12083 mathemat-
ical notation and its derivatives share many presentational aspects with TEX, and because
SGML enforces structure and regularity more than TEX, much of the work in ensuring
MathML is compatible with TEX also applies well to ISO 12083.

MathML also pays particular attention to compatibility with other mathematical software,
and in particular, with computer algebra systems. Many of the presentation elements of
MathML are derived in part from the mechanism of typesetting boxes. The MathML con-
tent elements are heavily indebted to the OpenMath project and the work by Stilo Tech-
nologies on a mathematical DTD fragment. The OpenMath project has close ties to both the
SGML and computer algebra communities, and has laid a foundation for an SGML-based
means of communication between mathematical software packages, among other things.
The feasibility of both generating and interpreting MathML in computer algebra systems
has been demonstrated by prototype software.

1.3.2.2 HTML Extension Mechanisms

As noted above, the success of HTML has led to enormous pressure to incorporate a wide
variety of data types and software applications into the Web. Each new format or applica-
tion potentially places new demands on HTML and on browser vendors. For some time,
it has been clear that a general extension mechanism is necessary to accommodate new
extensions to HTML. We began our work thinking of a plain extension to HTML in the
spirit of the first mathematics support suggested for HTML 3.2. But for various reasons,
once we got into the details this proved to be not so good an idea. Since work first be-
gan on MathML, XML has emerged as the leading candidate for such a general extension
mechanism.

XML stands for Extensible Markup Language. It is designed as a simplified version of
SGML (Standard Generalized Markup Language), the meta-language used to define the
grammar and syntax of HTML. One of the goals of XML is to be suitable for use on
the Web, and in the context of this discussion it can be viewed as a general mechanism
for extending HTML. As its name implies, extensibility is a key feature of XML; authors
are free to declare and use new tags and attributes. At the same time, XML grammar and
syntax rules carefully enforces document structure to facilitate automatic processing and
maintenance of large document collections.

Though details about how XML markup will ultimately be embedded in HTML remain
to be resolved, XML has garnered broad industry support including major browser ven-
dors. Devising a standard way of embedding XML in HTML is also important with the
W3C. Furthermore, other applications of XML for all kinds of document publishing and
processing promise to become increasingly important. Consequently, both on theoretical
and pragmatic grounds, it makes a great deal of sense to specify MathML as an XML
application, and we have done so.

1.3.2.3 Browser Extension Mechanisms

While details of a general model for rendering and processing XML extensions to HTML
is still being being resolved, broad features of the model are already fairly clear. Format-

14

ting Properties developed by the Cascading Style Sheets and Formatting Properties Work-
ing Group for CSS and made available through the Document Object Model (DOM) will
be applied to MathML elements to obtain some stylistic control over the presentation of
MathML. Further development of these Formatting Properties falls within the charter of
both the CSS&FP and the XSL working groups. Thus, it may soon be possible to write a
style sheet which will largely describe the correct display of MathML.

MathML was designed with the goal of style sheet-based rendering in mind. It is the in-
tention of the W3C Math Working Group to work closely with W3C style sheet activities
to ensure both that adequate support for MathML is incorporated into future style sheet
mechanisms, and that MathML style sheets are developed. In particular, providing for ad-
equate follow-on activities beyond the scope of the W3C Math working group charter is a
high priority.

Until style sheet mechanisms are capable of delivering native browser rendering of MathML,
however, it is necessary to extend browser capabilities by using embedded elements to ren-
der MathML. It may soon be possible to instruct a browser to use a particular embedded
renderer to process embedded XML markup such as MathML, and coordinate the resulting
output with the surrounding Web page. Indeed, for specialized processing, such as con-
necting to a computer algebra system, this capability is likely to remain highly desirable.
However, for this kind of interaction to be really satisfactory, it will be necessary to define a
document object model rich enough to facilitate complicated interactions between browsers
and embedded elements. For this reason, the W3C Math working group is coordinating its
efforts closely with the Document Object Model working group.

For processing by embedded elements, and for inter-communication between scientific
software generally, a style sheet-based layout model is less than ideal in some ways. It
can impose an additional implementation burden in a setting where it may offer few advan-
tages, and it imposes implementation requirements for coordination between browsers and
embedded renderers that will likely be unavailable in the immediate future.

For these reasons, the MathML specification defines an attribute-based layout model, which
has proven very effective for high-quality rendering of complicated mathematical expres-
sions in several independent implementations. MathML presentation attributes utilize W3C
Formatting Properties where possible. Also, MathML elements accept class, style and id
attributes to facilitate their use with CSS style sheets. However, at present, there are few
settings where CSS machinery is currently available to MathML renderers.

Issue (sheet-use):Now that XSL and CSS are available, the following text should be
revised.

When style sheet mechanisms become available to MathML, it is anticipated their use will
become the dominant method of stylistic control of MathML presentation meant for use in
rendering environments which support those mechanisms.

15

Chapter 2

MathML Fundamentals

2.1 MathML Overview

This chapter introduces the basic ideas of MathML. The first section describes the overall
design of MathML. The second section presents a number of motivating examples, to give
the reader something concrete to refer to while reading subsequent chapters of the MathML
Specification. The final section describes basic features of the MathML syntax and gram-
mar, which apply to all MathML markup. In particular, section2.3 should be readbefore
chapter3, chapter4 and chapter5.

A fundamental challenge in defining a mathematics markup language for the Web is recon-
ciling the need to encode both the presentation of a mathematical notation and the content
of the mathematical idea or object which it represents.

The relationship between a mathematical notation and a mathematical idea is subtle and
deep. On a formal level, the results of mathematical logic raise unsettling questions about
the correspondence between symbolic logic systems and the phenomena they model. At
a more intuitive level, anyone who uses mathematical notation knows the difference that
a good choice of notation can make; the symbolic structure of the notation suggests the
logical structure. For example, the Leibniz notation for derivatives ‘suggests’ the chain
rule of calculus through the symbolic cancellation of fractions:∂ f

∂x
∂x
∂t = ∂ f

∂t .

Mathematicians and teachers understand this very well; part of their expertise lies in choos-
ing notation that emphasizes key aspects of a problem while hiding or diminishing extrane-
ous aspects. It is commonplace in mathematics and science to write one thing when techni-
cally something else is meant, because long experience shows this actually communicates
the idea better at some higher level.

In many other settings, though, mathematical notation is used to encode the full, precise
meaning of a mathematical object. Mathematical notation is capable of prodigious rigor,
and when used carefully, it is virtually free of ambiguity. Moreover, it is precisely this lack
of ambiguity which makes it possible to describe mathematical objects so that they can
be used by software applications such as computer algebra systems and voice renderers.
In situations where such inter-application communication is of paramount importance, the
nuances of visual presentation generally play a minimal role.

MathML allows authors to encode both the notation which represents a mathematical object
and the mathematical structure of the object itself. Moreover, authors can mix both kinds
of encoding in order to specify both the presentation and content of a mathematical idea.

16

The remainder of this section gives a basic overview of how MathML can be used in each
of these ways.

2.1.1 Taxonomy of MathML Elements

All MathML elements fall into one of three categories: presentation elements, content ele-
ments and interface elements. Each of these categories is described in detail in chapter3,
chapter4 and chapter7 respectively.

Presentation elements describe mathematical notation structure. Typical examples are the
mrowelement, which is used to indicate a horizontal row of pieces of expressions, and the
msupelement, which is used to indicate a base and superscript. As a general rule, each
presentation element corresponds to a single kind of notational ‘schema’ such as a row,
a superscript, an underscript and so on. Since many notational schemata have a number
of frequently occurring variants, most presentation elements accept a number of attributes
which can be used to select between variants. For example, the superscript element accepts
a ‘superscript shift’ attribute which specifies the minimum amount the superscript should
shift upward.

Content elements describe mathematical objects directly, as opposed to describing the no-
tation which represents them. Typical examples include theplus element, which denotes
the usual addition operator for real numbers, and thevector element, which denotes a
vector from linear algebra. Each content element corresponds to some mathematical con-
cept. Some elements represent mathematical objects like vectors, while others represent
functions or operations like addition.

Every MathML element but one is either a presentation element or a content element.
The math element is neither, since its role is to serve as a top-level, interface element.
One function of themath element is to pass on parameters to a MathML processor that
affect an entire expression, such as style preferences. A second function is to communicate
parameters to a Web browser about what software to use to render a MathML expression,
and how the expression should be integrated into the surrounding HTML page. (As XML
support is added to browsers, it may ultimately be necessary to introduce one or two more
interface elements, to handle these functions separately. See chapter7 for details.)

2.1.2 Expression Trees and Token Elements

Presentation and content expressions both share a number of formal properties. In both
cases, most expressions naturally decompose into pieces, or subexpressions. For example,
the expression (a + b)2 naturally breaks into a ‘base’, the (a + b), and a ‘script’, which is the
single character ‘2’ in this case. Furthermore, as this example shows, the subexpressions
may themselves decompose into further subexpressions, and so on. Of course, the decom-
position process eventually terminates with indivisible expressions such as digits, letters,
or other symbol characters.

Although this particular example involves mathematical notation, and hence presentation
markup, the same observation applies equally well to abstract mathematical objects, and
hence to content markup. For example, in a context of content markup our superscript
example would typically be denoted by an exponentiation operation that would require
two operands: a ‘base’ and an ‘exponent’. This is no coincidence, since as a general rule,
mathematical notation closely mirrors the logical structure of the underlying mathematical
objects.

17

The recursive nature of mathematical objects and notation is strongly reflected in MathML
markup. Most presentation or content elements contain some number of other MathML
elements corresponding to the constituent pieces out of which the original object is recur-
sively built. The original schema is commonly called theparentschema, and the constituent
pieces are calledchild schemata. More generally, MathML expressions can be regarded as
trees, where each node corresponds to a MathML element, the branches under a ‘parent’
node correspond to its ‘children’, and the leaves in the tree correspond to indivisible nota-
tion or content units such as numbers, characters, etc.

Most leaf nodes in a MathML expression tree are either canonicallyempty elements, or to-
ken elements. Canonically empty elements directly represent symbols in MathML, such as
the content elementplus . MathML token elements are the only MathML elements permit-
ted to directly contain character data. The character data may consist of ASCII characters
and MathML entities, which are escape sequences of the form&name;. MathML enti-
ties typically denote non-ASCII Unicode characters such asα , → and
∑. A third kind of leaf node permitted in MathML is theannotation element, which
is used to hold data in a non-MathML format.

The most important presentation token elements aremi, mnandmofor representing iden-
tifiers, numbers and operators respectively. Typically a renderer will employ slightly dif-
ferent typesetting styles for each of these kinds of character data: numbers are usually in
upright font, identifiers in italics, and operators have extra space around them. In content
markup, there are only two tokens,ci andcn for identifiers and numbers respectively. In
content markup, separate elements are provided for commonly used functions and opera-
tors. Thefn element is provided for user-defined extensions to the base set.

In terms of markup, most MathML elements have astart tag and anend tag, which enclose
the markup for their contents. In the case of tokens, the content is character data, and in
most other cases, the content is the markup for child elements. A third category of elements,
called canonically empty elements, don’t require any contents, and are marked up using a
single tag of the form<name/>. An example of this kind of markup is<plus/> in content
markup.

Returning to the example of (a + b)2, we can now see how the principles discussed above
play out in practice. One form of presentation markup for this example is:

<msup>
<mfenced>

<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>

</mrow>
</mfenced>
<mn>2</mn>

</msup>

The content markup for the same example is:

<apply>
<power/>
<apply>

18

<plus/>
<ci>a</ci>
<ci>b</ci>

</apply>
<cn>2</cn>

</apply>

While a full discussion of presentation and content markup must wait until chapter3 and
chapter4, the main features of these sample encodings should now be relatively clear.

2.1.3 Presentation Markup

MathML presentation markup consists of 30 elements which accept over 50 attributes.
Most of the elements correspond tolayout schemata, which contain other presentation el-
ements. Each layout schema corresponds to a two-dimensional notational device, such as
a superscript or subscript, fraction or table. In addition, there are the presentation token
elementsmi, mnandmointroduced above, as well as several other less commonly used to-
ken elements. The remaining few presentation elements are empty elements, and are used
mostly in connection with alignment.

The layout schemata fall into several classes. One group of elements is concerned with
scripts, and contains elements such asmsub, munder, andmmultiscripts . Another group
focuses on more general layout and includesmrow, mstyle , andmfrac. A third group deals
with tables. Themaction element is a category by itself, and represents various kinds of
actions on notation, such as in an expression which toggles between two pieces of notation.

An important feature of many layout schemata is that the order of child schemata is sig-
nificant. For example, the first child of anmfrac element is the numerator and the second
child is the denominator. Since the order of child schemata is not enforced at the XML level
by the MathML DTD, the information added by ordering is only available to a MathML
processor, as opposed to a generic XML processor. When we want to emphasize that a
MathML element such asmfrac requires children in a specific order, we will refer to them
asarguments, and think of themfrac element as a notational ‘constructor’.

2.1.4 Content Markup

Content markup consists of about 100 elements accepting roughly a dozen attributes. The
majority of these elements are empty elements corresponding to a wide variety of opera-
tors, relations and named functions. Examples of this sort includepartialdiff , leq and
tan . Others such asmatrix andset are used to encode various mathematical data types,
and a third, important category of content elements such asapply are used to make new
mathematical objects from others.

Theapply element is perhaps the single most important content element. It is used to apply
a function to a collection of arguments. The positions of the child schemata is again sig-
nificant, with the first child denoting the function to be applied, and the remaining children
denoting the arguments of the function, with order preserved. Note that the apply construct
always uses prefix notation, like the programming language LISP. In particular, even binary
operations like subtraction are marked up by applying a prefix subtraction operator to two
arguments. For example,a - b would be marked up as

<apply>

19

<minus/>
<ci>a</ci>
<ci>b</ci>

</apply>

A number of functions and operations require one or more quantifiers to be well-defined.
For example, in addition to an integrand, a definite integral must specify the limits of in-
tegration and the bound variable. For this reason, there are severalqualifier schemata such
asbvar andlowlimit . They are used with operators such asdiff andint .

The declare construct is especially important for content markup that might be evalu-
ated by a computer algebra system. Thedeclare element provides a basic assignment
mechanism, where a variable can be declared to be of a certain type, with a certain value.
Typically, declarations are ignored for visual rendering, and are used when an expression
is evaluated.

2.1.5 Mixing Presentation and Content

Different kinds of markup will be most appropriate for different kinds of tasks. Legacy
data is probably best translated into pure presentation markup, since semantic information
about what the author meant can only be guessed at heuristically. By contrast, some math-
ematical applications and pedagogically-oriented authoring tools will likely choose to be
entirely content-based. However, the majority of applications fall somewhere in between
these extremes. For these applications, the most appropriate markup is a mixture of both
presentation and content markup.

The rules for mixing presentation and content markup derive from the general principle that
mixed content should only be allowed in places where it makes sense. For content markup
embedded in presentation markup this basically means that any content fragments should
be semantically meaningful, and should not require additional arguments or quantifiers
to be fully specified. For presentation markup embedded in content markup, this usually
means that presentation markup must be contained in a content token element, so that it
will be treated as an indivisible notational unit used as a variable or function name.

Another option is to use asemantics element. Thesemantics element is used to bind
MathML expressions to various kinds of annotations. One common use for thesemantics
element is to bind a content expression to a presentation expression as a semantic annota-
tion. In this way, an author can specify a non-standard notation to be used when displaying
a particular content expression. Another use of thesemantics element is to bind some
other kind of semantic specification, such as an OpenMath expression, to a MathML ex-
pression. In this way, thesemantics element can be used to extend the scope of MathML
content markup.

2.2 Some MathML Examples

2.2.1 Presentation Examples

Notation:x2 + 4x + 4 = 0.

Markup:

20

<mrow>
<mrow>

<msup>
<mi>x</mi>
<mn>2</mn>

</msup>
<mo>+</mo>
<mrow>

<mn>4</mn>
<mo>⁢</mo>
<mi>x</mi>

</mrow>
<mo>+</mo>
<mn>4</mn>

</mrow>
<mo>=</mo>
<mn>0</mn>

</mrow>

Note the use of nestedmrowelements to denote terms, in this case the left-hand side of
the equation functioning as an operand of ‘=’. Marking terms greatly facilitates things like
spacing for visual rendering, voice rendering, and line breaking.

Notation:x = −b±
√

b2−4ac
2a .

Markup:

<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>

<mrow>
<mrow>

<mo>-</mo>
<mi>b</mi>

</mrow>
<mo>±</mo>
<msqrt>

<mrow>
<msup>

<mi>b</mi>
<mn>2</mn>

</msup>
<mo>-</mo>
<mrow>

<mn>4</mn>
<mo>⁢</mo>
<mi>a</mi>
<mo>⁢</mo>
<mi>c</mi>

21

</mrow>
</mrow>

</msqrt>
</mrow>
<mrow>

<mn>2</mn>
<mo>⁢</mo>
<mi>a</mi>

</mrow>
</mfrac>

</mrow>

Notice that the plus/minus sign is given by a special named entity±. MathML
provides a very comprehensive list of entity names for mathematical symbols. In addition
to the mathematical symbols needed for screen and print rendering, MathML provides
symbols to facilitate audio rendering. For audio rendering, it is important to be able to
automatically determine whether

<mrow>
<mi>z</mi>
<mfenced>

<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>

</mrow>
</mfenced>

</mrow>

should be read as ‘ztimes the quantityxplusy’ or ‘ zof xplusy’. The entities⁢
and⁡ provide a way for authors to directly encode the distinction for au-
dio renderers. For instance, in the first case⁢ should be inserted after
the line containing thez. MathML also introduces entities likeⅆ which represents a
‘differential d’ which renders with slightly different spacing in print, and can be rendered
as ‘d’ or ‘with respect to’ in speech. Unless content tags, or some other mechanism, are
used to eliminate the ambiguity, authors should always use these entities, in order to make
their documents more accessible.

Notation:A =
[

x y
z w

]
.

Markup:

<mrow>
<mi>A</mi>
<mo>=</mo>
<mfenced open="[" close="]">

<mtable>
<mtr>

<mtd><mi>x</mi></mtd>
<mtd><mi>y</mi></mtd>

</mtr>
<mtr>

22

<mtd><mi>z</mi></mtd>
<mtd><mi>w</mi></mtd>

</mtr>
</mtable>

</mfenced>
</mrow>

Most elements have a number of attributes that control the details of their screen and print
rendering. For example, there are several attributes for themfencedelement that control
what delimiters should be used at the beginning and the end of the expression. The at-
tributes for operator elements given using<mo>are set to default values determined by a
dictionary. (For the suggested MathML operator dictionary, see appendixB.)

2.2.2 Content Examples

Notation:x2 + 4x + 4 = 0.

Markup:

<apply>
<eq/>
<apply>

<plus/>
<apply>

<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
<apply>

<times/>
<cn>4</cn>
<ci>x</ci>

</apply>
<cn>4</cn>

</apply>
<cn>0</cn>

</apply>

Note that theapply element is used for relations, operators and functions.

Notation:x = −b±
√

b2−4ac
2a .

Markup:

<apply>
<eq/>
<ci>x</ci>
<apply>

<divide/>
<apply>

<fn><mo>±</mo></fn>
<apply>

23

<minus/>
<ci>b</ci>

</apply>
<apply>

<root/>
<apply>

<minus/>
<apply>

<power/>
<ci>b</ci>
<cn>2</cn>

</apply>
<apply>

<times/>
<cn>4</cn>
<ci>a</ci>
<ci>c</ci>

</apply>
</apply>
<cn>2</cn>

</apply>
</apply>
<apply>

<times/>
<cn>2</cn>
<ci>a</ci>

</apply>
</apply>

</apply>

MathML content markup does not directly contain an element for the ‘plus or minus’ op-
eration. Therefore, we use thefn element to declare that we want the presentation markup
for this operator to act as a content operator. This is a simple example of how presentation
and content markup can be mixed to extend content markup.

Notation:A =
(

x y
z w

)
.

Markup:

<apply>
<eq/>
<ci>A</ci>
<matrix>

<matrixrow>
<ci>x</ci>
<ci>y</ci>

</matrixrow>
<matrixrow>

<ci>z</ci>
<ci>w</ci>

24

</matrixrow>
</matrix>

</apply>

Note that by default, the rendering of the content elementmatrix includes enclosing paren-
theses, so we need not directly encode them. This is quite different from the presentation
elementmtable which may or may not refer to a matrix, and hence requires explicit en-
coding of the parentheses if they are desired.

2.2.3 Mixed Markup Examples

Notation:

∞Z

0

dt
t

.

Markup:

<semantics>
<mrow>

<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mi>t</mi>

</msubsup>
<mfrac>

<mrow>
<mo>ⅆ</mo>
<mi>x</mi>

</mrow>
<mi>x</mi>

</mfrac>
</mrow>
<annotation-xml encoding="MathML-Content">

<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><ci>t</ci></uplimit>
<apply>

<divide/>
<cn>1</cn>
<ci>x</ci>

</apply>
</apply>

</annotation-xml>
</semantics>

In this example, we use thesemantics element to provide a MathML content expression
to serve as a ‘semantic annotation’ for a presentation expression. Thesemantics element
has as its first child the expression being annotated, and the subsequent children are the
annotations. There is no restriction on the kind of annotation that can be attached using the
semantics element. For example, one might give a TEX encoding, or computer algebra

25

input in an annotation. The type of annotation is specified by theencoding attribute and
theannotation andannotation-xml elements.

Another common use of thesemantics element arises when one wants to use a con-
tent coding, and provide a suggestion for its presentation. In this case, we would have
the markup:

<semantics>
<apply>

<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><ci>t</ci></uplimit>
<apply>

<divide/>
<cn>1</cn>
<ci>x</ci>

</apply>
</apply>
<annotation-xml encoding="MathML-Presentation">

<mrow>
<msubsup>

<mo>∫</mo>
<mn>0</mn>
<mi>t</mi>

</msubsup>
<mfrac>

<mrow>
<mo>ⅆ</mo>
<mi>x</mi>

</mrow>
<mi>x</mi>

</mfrac>
</mrow>

</annotation-xml>
</semantics>

This kind of annotation is useful when something other than the default rendering of the
content encoding is desired. For example, by default, some renderers might layout the
integrand something like ‘1/x dx’. Specifying that the integrand should by preference render
as ‘dx/x’ instead can be accomplished with the use of a MathML Presentation annotation as
shown. Be aware, however, that renderers are not required to take into account information
contained in annotations, and what use is made of them, if any, will depend on the renderer.

2.3 MathML Syntax and Grammar

MathML is an application of XML, or Extensible Markup Language [Bray1998], and as
such its syntax is governed by the rules of XML syntax, and its grammar is in part specified
by a DTD, or Document Type Definition. In other words, the details of using tags, attributes,
entity references and so on are defined in the XML language specification, and the details

26

about MathML element and attribute names, which elements can be nested inside each
other, and so on are specified in the MathML DTD.

Issue (rewrite-for-schema):The following needs to be revised pending creation of a
schema for MathML.

However, MathML also specifies some syntax and grammar rules in addition to the general
rules it inherits as an XML application. These rules allow MathML to encode a great deal
more information than would ordinarily be possible with pure XML, without introducing
many more elements, and using a substantially more complex DTD. A grammar for content
markup expressions is given in appendixC. Of course, one drawback to using MathML
specific rules is that they are invisible to generic XML processors and validators.

There are basically two kinds of additional MathML grammar and syntax rules. One kind
involves placing additional criteria on attribute values. For example, it is not possible in
pure XML to require that an attribute value be a positive integer. The second kind of rule
specifies more detailed restrictions on the child elements (for example on ordering) than
are given in the DTD. For example, it is not possible in XML to specify that the first child
be interpreted one way, and the second in another.

The following sections discuss features both of XML syntax and grammar in general, and
of MathML in particular. Throughout the remainder of the MathML specification, we will
usually take care to distinguish between usage required by XML syntax and the MathML
DTD and usage required by MathML specific rules. However, we will frequently allude to
‘MathML errors’ without identifying which part of the specification is being violated.

2.3.1 An XML Syntax Primer

Since MathML is an application of XML, the MathML Specification uses the terminology
of XML to describe it. Briefly, XML data is composed of Unicode characters (which in-
clude ordinary ASCII characters), ‘entity references’ (informally called ‘entities’) such as
→ which usually represent ‘extended characters’, and ‘elements’ such as<mi
fontstyle="normal"> x </mi> . Elements enclose other XML data called their ‘content’
between a ‘start tag’ (sometimes called a ‘begin tag’) and an ‘end tag’, much like in HTML.
There are also ‘empty elements’ such as<plus/> , whose start tag ends with/> to indicate
that the element has no content or end tag. The start tag can contain named parameters
called ‘attributes’, such asfontstyle="normal" in the example above. For further details
on XML, consult the XML specification [Bray1998].

As XML is case-sensitive, MathML element and attribute names are case-sensitive. For
reasons of legibility, the MathML defines them almost all in lowercase.

In formal discussions of XML markup a distinction is maintained between an element, such
as anmrowelement, and the tags<mrow>and</mrow>marking it. What is between the
<mrow>start tag and the</mrow>end tag is the content of themrowelement. An ‘empty
element’ such asnone is defined to have no content and so has a single tag of the form
<none/>. Usually, the distinction between elements and tags will not be so finely drawn
in this specification. For instance, we will sometimes refer to the<mrow>and<none/>
elements, really meaning the elements whose tags these are, in order that references to
elements are visually distinguishable from references to attributes. However, the words
‘element’ and ‘tag’ themselves will be used strictly in accordance with XML terminology.

27

2.3.2 Children versus Arguments

Many MathML elements require a specific number of child elements and/or attach addi-
tional meanings to children in certain positions. As noted above, these kinds of require-
ments are MathML specific, and cannot be specified entirely in terms of XML syntax and
grammar. When the children of a given MathML element are subject to these kinds of ad-
ditional conditions, we will often refer to them asargumentsinstead of merely children in
order to emphasize their MathML specific usage. Note that especially in chapter3 the term
‘argument’ is usually used in this technical sense, unless otherwise noted, and therefore
refers to a child element.

In the detailed discussions of element syntax given with each element throughout the
MathML specification, the number of required arguments and their order is implicitly in-
dicated by giving names for the arguments at various positions. This information is also
given for presentation elements in the table of argument requirements in section3.1.3, and
for content elements in appendixC.

A few elements have other requirements on the number or type of arguments. These addi-
tional requirements are described together with the individual elements.

2.3.3 MathML Attribute Values

According to the XML language specification, attributes given to elements must have one
of the forms

attribute-name = "value"

or

attribute-name = ’value’

where whitespace around the ’=’ is optional.

Attribute names are generally shown in amonospacedfont within descriptive text in this
specification, but not within examples.

The attribute value, which in general in MathML can be a string of arbitrary characters,
must be surrounded by a pair of either double quotes (") or single quotes (’). The kind of
quotes not used to surround the value may be included within it.

MathML uses a more complicated syntax for attribute values than the generic XML syntax
required by the MathML DTD. These additional rules are intended for use by MathML
applications, and it is a MathML error to violate them, though they are not enforced by
XML processing. The MathML syntax of each attribute value is specified in the table of
attributes provided with the description of each element it can be used with, using a no-
tation described below. In MathML applications these attribute values should be further
processed as follows, unless otherwise specified: whitespace is ignored except to separate
letter and/or digit sequences into individual words or numbers; and the same entity refer-
ences (listed in chapter6) which can be used within token elements to represent characters
can be used to represent those characters in attribute values (whenever those characters
would be permitted by that attribute value’s syntax).

In particular, the characters" , ’ , & and < can be included in MathML attribute values
(when permitted by the attribute value syntax) using the entity references" , ',
' and< , respectively.

28

The MathML DTD provided in appendixA declares most attribute value types asCDATA
strings. This permits increased interoperability with existing SGML and XML software
and allows extension to the lists of predefined values.

2.3.3.1 Syntax notations used in the MathML specification

To describe the MathML-specific syntax of permissible attribute values, the following con-
ventions and notations are used for most attributes in the present document.

Notation What it matches
number decimal integer or rational number (digits with one decimal point), optionally starting with ’-’
unsigned-number decimal integer or real number, no sign
integer decimal integer, optionally starting with ’-’
positive-integer decimal integer, unsigned, not 0
string arbitrary string (always the entire attribute value)
character single non-whitespace character, or MathML entity reference; whitespace separation is optional
#rgb RGB color value
#rrggbb RGB color value
h-unit unit of horizontal length (allowable units are listed below)
v-unit unit of vertical length (allowable units are listed below)
css-fontfamily explained in CSS subsection, below
html-color-name explained in CSS subsection, below
other italicized words explained in the text for each attribute
form + one or more instances of form
form * zero or more instances of form
f1 f2 ... fn one instance of each form, in sequence, perhaps separated by whitespace
f1 | f2 | ... | fn any one of the specified forms
[form] optional instance of form
(form) same as form
word in plain text that word, literally present in attribute value (unless it is obviously part of an explanatory phrase)
quoted symbol that symbol, literally present in attribute value (e.g. "+" or ’+’)

Issue (rgb-notation):Do we need to explain what RGB colour notation is?

The order of precedence of the syntax notation operators is, from highest to lowest prece-
dence:

• form + or form *
• f1 f2 ... fn (sequence of forms)
• f1 | f2 | ... | fn (alternative forms)

A stringcan contain arbitrary characters which are specifiable within XMLCDATAattribute
values; it must use entity references for certain characters, as described earlier. It can con-
tain XML-format entity or character references for any of the characters listed in chapter6.
No syntax rule in MathML includesstring as only part of an attribute value, only as the
entire value.

Issue (character):This needs to be revised for the introduction of themcharelement.

A characterconsists of a single non-whitespace character or entity reference.

As a simple example, the permissible values of boolean attributes are specified astrue |
false , meaning that the entire attribute value should be eithertrue or false .

29

Adjacent keywords and/or numbers must be separated by whitespace in the actual attribute
values, except for unit identifiers (symbolized byh-unit or v-unit syntax symbols) fol-
lowing numbers. Whitespace is not otherwise required, but is permitted between any of the
tokens listed above, except (for compatibility with CSS1) immediately before unit identi-
fiers, between the ’-’ signs and digits of negative numbers, or between# andrgb or rrggbb .

Numeric attribute values for dimensions that should depend upon the current font can be
given in font-related units, or in named absolute units (described in a separate subsection
below). Horizontal dimensions are conventionally given in em’s, and vertical dimensions
in ex’s, by immediately following a number by one of the unit identifiersemor ex. For
example, the horizontal spacing around an operator such as ‘+’ is conventionally given in
ems, though other units can be used. Using font-related units is usually preferable to using
absolute units, since it allows renderings to grow or shrink proportionately to the current
font size.

For most numeric attributes, only those in a subset of the expressible values are sensible;
values outside this subset are not errors, unless otherwise specified, but rather are rounded
up or down (at the discretion of the renderer) to the closest value within the allowed subset.
The set of allowed values may depend on the renderer, and is not specified by MathML.

If a numeric value within an attribute value syntax description is declared to allow a mi-
nus sign (’-’), e.g.numberor integer , it is not a syntax error when one is provided in
cases where a negative value is not sensible. Instead, the value should be handled by the
processing application as described in the preceding paragraph. An explicit plus sign (’+’)
is not allowed as part of a numeric value except when it is specifically listed in the syntax
(as a quoted ’+’ or "+"), and its presence can change the meaning of the attribute value (as
documented with each attribute which permits it).

Issue (html-color):The phrasehtml-color-name is used but never explained.

The symbolsh-unit , v-unit , css-fontfamily , andhtml-color-name are explained in
the following subsections.

2.3.3.2 Attributes with units

Some attributes accept horizontal or vertical lengths as numbers followed by a ‘unit identi-
fier’ (often just called a ‘unit’). The syntax symbolsh-unit andv-unit refer to a unit for
horizontal or vertical length, respectively. The possible units and the lengths they refer to
are shown in the table below; they are the same for horizontal and vertical lengths, but the
syntax symbols are distinguished in attribute syntaxes as a reminder of the direction they
are each used in.

The unit identifiers and meanings are taken from CSS1. (However, the syntax of numbers
followed by unit identifiers in MathML is not identical to the syntax of length values with
units in CSS style sheets, since numbers in CSS can’t end with decimal points, and are
allowed to start with ’+’ signs.)

The possible horizontal or vertical units in MathML are:

The typesetting unitsemandex are defined in appendixF, and discussed further under
‘Additional notes’ below.

%is a ‘relative unit’; when an attribute value is given asn%(for any numeric valuen), the
value being specified is the default value for the property being controlled multiplied by
n divided by 100. The default value (or the way in which it is obtained, when it is not

30

Unit identifier Unit description
em em (font-relative unit traditionally used for horizontal lengths)
ex ex (font-relative unit traditionally used for vertical lengths)
px pixels, or pixel size of the current display
in inches (1 inch = 2.54 centimeters)
cm centimeters
mm millimeters
pt points (1 point = 1/72 inch)
pc picas (1 pica = 12 points)
% percentage of default value

constant) is listed in the table of attributes for each element, and its meaning is described
in the subsequent documentation about that attribute. (Thempaddedelement has its own
syntax for%and does not allow it as a unit identifier.)

For consistency with CSS, length units in MathML are rarely optional. When they are, the
unit symbol is enclosed in square brackets in the attribute syntax, following the number
it applies to, e.g.number [h-unit] . The meaning of specifying no unit is given in the
documentation for each attribute; in general it is that the number given is a multiplier for
the default value of the attribute. (In such cases, specifying the numbernnnwithout a unit
is equivalent to specifying the numbernnn times 100 followed by%. For example,<mo
maxsize="2"> (</mo> is equivalent to<mo maxsize="200%"> (</mo>.)

As a special exception (also consistent with CSS), a numeric value equal to 0 need not be
followed by a unit identifier even if the syntax specified here requires one. In such cases,
the unit identifier (or lack of one) would not matter, since 0 times any unit is 0.

For most attributes, the typical unit which would be used to describe them in typesetting
is the same as the one used in that attribute’s default value in this specification; when a
specific default value is not given, the typical unit is usually mentioned in the syntax table
or in the documentation for that attribute. The typical unit is usuallyemor ex. However,
any unit can be used, unless otherwise specified for a specific attribute.

Additional notes about units

Note that some attributes, e.g.framespacing on <mtable>, can contain more than one
numeric value, each followed by its own unit.

It is conventional to use the font-relative unitex mainly for vertical lengths, andemmainly
for horizontal lengths, but this is not required. These units are relative to the font and
fontsize which would be used for rendering the element in whose attribute value they are
specified, which means they should be interpretedafter attributes such asfontfamily and
fontsize are processed, if those occur on the same element, since changing the current
font or fontsize can change the length of these units.

The definition of the length of each unit (but not the MathML syntax for length values) is
as specified in CSS1, except that if a font provides specific values for em and/or ex which
differ from the values defined by CSS1 (the font size and ‘x’-height respectively), those
values should be used.

31

2.3.3.3 CSS-compatible attributes

Several MathML attributes, listed below, correspond closely with text rendering properties
defined by Cascading Style Sheets, Level 1 (CSS1).

The names and acceptable values of these attributes have been aligned with the CSS1 rec-
ommendation where possible. In general, the MathML syntax for each attribute is intended
to be a subset of the CSS syntax for the corresponding property. Differences at the detail
level, where they exist, are explained with the documentation about each attribute, in the
sections of this specification listed in the table.

The syntax of certain attributes is partially specified, in the tables of attribute syntax in this
specification, using one of the symbolscss-fontfamily or html-color-name , as shown
in the following table. These symbols refer to syntaxes from other W3C Recommendations,
and are explained in the sections of this specification referred to in the table.

MathML attribute CSS property syntax symbol MathML elements refer to
fontsize font-size - presentation tokens;mstyle section3.2.1
fontweight font-weight - presentation tokens;mstyle section3.2.1
fontstyle font-style - presentation tokens;mstyle section3.2.1
fontfamily font-family css-fontfamily presentation tokens;mstyle section3.2.1
color color html-color-name presentation tokens;mstyle section3.3.4
background background html-color-namemstyle section3.3.4

See also section2.3.4below for a discussion of theclass , style andid attributes for use
with style sheets.

Order of processing attributes versus style sheets

CSS or analogous style sheets specify changes to rendering properties of selected MathML
elements (selecting the elements in various ways). Either the properties listed above, or any
other MathML rendering attributes or properties supported by a style sheet mechanism, can
be affected, in principle for any element. Since rendering properties can also be changed
by attributes on an element, or automatically (which can happen tofontsize , as explained
in the discussion onscriptlevel in section3.3.4), it is necessary to specify the relative
order in which changes from various sources occur. In the case of ‘absolute’ changes, i.e.
setting a new property value independent of the old value (as opposed to ‘relative’ changes,
such as increments or multiplications by a factor), the absolute change performed last will
be the only absolute change which is effective, so the sources of changes which should
have the highest priority must be processed last.

In the case of CSS1, the order of processing of changes from various sources which affect
one MathML element’s rendering properties should be as follows:

(first changes; lowest priority)

• automatic changes to properties or attributes based on the type of the parent ele-
ment, and this element’s position in the parent, as for the changes tofontsize in
relation toscriptlevel mentioned above; such changes will usually be imple-
mented by the parent element itself before it passes a set of rendering properties
to this element

• style sheet from reader: styles which arenot declared ‘important’
• explicit attribute settings on this MathML element

32

• style sheet from author: styles which arenot declared ‘important’
• style sheet from reader: styles whicharedeclared ‘important’
• style sheet from author: styles whicharedeclared ‘important’

(last changes; highest priority)

Note that the order of the changes derived from CSS style sheets is specified by CSS itself.
The following rationale is related only to the issue of where in this pre-existing order the
changes caused by explicit MathML attribute settings should be inserted.

Rationale: MathML rendering attributes are analogous to HTML rendering attributes such
asalign , which the CSS1 section on cascading order specifies should be processed with
the same priority. Furthermore, this choice of priority permits readers, by declaring cer-
tain CSS styles as ‘important’, to decide which of their style preferences should override
explicit attribute settings in MathML. Since MathML expressions, whether composed of
‘presentation’ or ‘content’ elements, are primarily intended to convey meaning, with their
‘graphic design’ (if any) intended mainly to aid in that purpose but not to be essential in it,
it is likely that readers will often want their own style preferences to have priority; the main
exception will be when a rendering attribute is intended to alter the meaning conveyed by
an expression, which is generally discouraged in the presentation attributes of MathML.

2.3.3.4 Default values of attributes

Default values for MathML attributes are in general given along with the detailed descrip-
tions of specific elements in the text. Default values shown in plain text, in the tables of
attributes for an element, are literal (unless they are obviously explanatory phrases), but
when italicized are descriptions of how default values can be computed.

Default values described asinherited are taken from the rendering environment, as de-
scribed undermstyle , or in some cases (described individually) from the values of other
attributes of surrounding elements, or from certain parts of those values. The value used
will always be one which could have been specified explicitly, had it been known; it will
never depend on the content or attributes of the same element, only on its environment.
(What it means when used may, however, depend on those.)

Default values described asautomaticshould be computed by a MathML renderer in a
way which will produce a high-quality rendering; how to do this is not usually specified
by MathML. The value computed will always be one which could have been specified
explicitly, had it been known, but it will usually depend on the element content and/or the
rendering environment.

Other italicized descriptions of default values which appear in the tables of attributes are
explained for each attribute individually.

The single or double quotes which are required around attribute values in an XML start tag
are not shown in the tables of attribute value syntax for each element, but are shown around
example attribute values in the text.

Note that, in general, there is no value which can be given explicitly for a MathML attribute
which will simulate the effect of not specifying the attribute at all, for attributes which
are inheritedor automatic. Giving the words ‘inherited’ or ‘automatic’ explicitly will not
work, and is not generally allowed. Furthermore, even for presentation attributes for which
a specific default value is documented here, themstyle element (section3.3.4) can be
used to change this for the elements it contains. Therefore, the MathML DTD declares

33

most presentation attribute default values as#IMPLIED, which prevents XML preprocessors
from adding them with any specific default value.

2.3.3.5 Attribute values in the MathML DTD

In an XML DTD, allowed attribute values can be declared as general strings, or they can
be constrained in various ways, either by enumerating the possible values, or by declaring
them to be certain special data types. The choice of an XML attribute type affects the extent
to which validity checks can be performed using a DTD.

The MathML DTD specifies formal XML attribute types for all MathML attributes, in-
cluding enumerations of legitimate values in some cases. In general, however, the MathML
DTD is relatively permissive, frequently declaring attribute values as strings; this is done to
provide for interoperability with SGML parsers while allowing multiple attributes on one
MathML element to accept the same values (such astrue andfalse), and also to allow
extension to the lists of predefined values.

At the same time, even though an attribute value may be declared as a string in the DTD,
only certain values are legitimate in MathML, as described above and in the rest of this
specification. For example, many attributes expect numerical values. In the sections which
follow, the allowed attribute values are described for each element. To determine when
these constraints are actually enforced in the MathML DTD, consult appendixA. However,
lack of enforcement of a requirement in the DTD doesnot imply that the requirement is not
part of the MathML language itself, or that it will not be enforced by a particular MathML
renderer. (See section7.2.2for a description of how MathML renderers should respond to
MathML errors.)

Furthermore, the MathML DTD is provided for convenience; although it is intended to be
fully compatible with the text of the specification, the text should be taken as definitive
if there is a contradiction. (Any contradictions which may exist between various chapters
of the text should be resolved by favoring chapter6 first, then chapter3, chapter4, then
section2.3, and then other parts of the text.)

2.3.4 Attributes Shared by all MathML Elements

In order to facilitate compatibility with Cascading Style Sheets, Level 1 (CSS1), all MathML
elements acceptclass , style , and id attributes in addition to the attributes described
specifically for each element. MathML renderers not supporting CSS may ignore these
attributes. (MathML specifies these attribute values as general strings, even if style-sheet
mechanisms have more restrictive syntaxes for them. That is, any value for them is valid in
MathML.)

Renderers supporting CSS (or analogous style sheet mechanisms) may use these attributes
to help determine which MathML elements should be subject to which style sheet-induced
changes to various rendering properties. The properties that can be affected, and how these
changes affect them, are discussed in section2.3.3.3above.

Every MathML element also accepts the attributeother (section7.2.3) for passing non-
standard attributes without violating the MathML DTD. MathML renderers are only re-
quired to process this attribute if they respond to any attributes which are not standard in
MathML.

See also section3.2.1for a list of MathML attributes which can be used on most presenta-
tion token elements.

34

2.3.5 Collapsing Whitespace in Input

MathML ignores whitespace occurring outside token elements. Non-whitespace charac-
ters are not allowed there. Whitespace occurring within the content of token elements is
‘trimmed’ from the ends (i.e. all whitespace at the beginning and end of the content is re-
moved), and ‘collapsed’ internally (i.e. each sequence of 1 or more whitespace characters
is replaced with one blank character).

In MathML, as in XML, ‘whitespace’ means blanks, tabs, newlines, or carriage returns, i.e.
characters with hexadecimal Unicode codesU+0020, U+0009, U+000a, or U+000d, respec-
tively.

For example,<mo> (</mo>is equivalent to<mo>(</mo>, and

<mtext>
Theorem
1:

</mtext>

is equivalent to<mtext>Theorem 1:</mtext>.

Authors wishing to encode whitespace characters at the start or end of the content of a
token, or in sequences other than a single blank, without having them ignored, must use
 or other ‘whitespace’ non-marking entities as described in section6.1.4. For ex-
ample, compare

<mtext>
Theorem
1:

</mtext>

with

<mtext>
 Theorem
 1:
</mtext>

When the first example is rendered, there is no whitespace before ‘Theorem’, one blank
between ‘Theorem’ and ‘1:’, and no whitespace after ‘1:’. In the second example, a single
blank is rendered before ‘Theorem’, a new line is placed after ‘Theorem’, two blanks are
rendered before ‘1:’, and there is no whitespace after the ‘1:’.

Note that thexml:space attribute does not apply in this situation since XML processors
pass whitespace in tokens to a MathML processor; it is the MathML processing rules which
specify that whitespace is trimmed and collapsed.

For whitespace occurring outside the content of the token elementsmi, mn, mo, ms, mtext ,
ci , cn andannotation , anmspaceelement should be used, as opposed to anmtext ele-
ment containing only ‘whitespace’ entities.

35

Chapter 3

Presentation Markup

3.1 Introduction

This chapter specifies the ‘presentation’ elements of MathML, which can be used to de-
scribe the layout structure of mathematical notation.

3.1.1 What Presentation Elements Represent

Presentation elements correspond to the ‘constructors’ of traditional mathematical notation
- that is, to the basic kinds of symbols and expression-building structures out of which any
particular piece of traditional mathematical notation is built. Because of the importance of
traditional visual notation, the descriptions of the notational constructs the elements repre-
sent are usually given here in visual terms. However, the elements are medium-independent
in the sense that they have been designed to contain enough information for good spoken
renderings as well. Some attributes of these elements may make sense only for visual me-
dia, but most attributes can be treated in an analogous way in audio as well (for example,
by a correspondence between time duration and horizontal extent).

MathML presentation elements only suggest (i.e. do not require) specific ways of rendering
in order to allow for medium-dependent rendering and for individual preferences of style.
This specification describes suggested visual rendering rules in some detail, but a particular
MathML renderer is free to use its own rules as long as its renderings are intelligible.

The presentation elements are meant to express the syntactic structure of mathematical no-
tation in much the same way as titles, sections, and paragraphs capture the higher level
syntactic structure of a textual document. Because of this, for example, a single row of
identifiers and operators, such as ‘x + a / b’, will often be represented not just by onemrow
element (which renders as a horizontal row of its arguments), but by multiple nestedmrow
elements corresponding to the nested subexpressions of which one mathematical expres-
sion is composed - in this case,

<mrow>
<mi> x </mi>
<mo> + </mo>
<mrow>

<mi> a </mi>
<mo> / </mo>
<mi> b </mi>

36

</mrow>
</mrow>

Similarly, superscripts are attached not just to the preceding character, but to the full ex-
pression constituting their base. This structure allows for better-quality rendering of math-
ematics, especially when details of the rendering environment such as display widths are
not known to the document author; it also greatly eases automatic interpretation of the
mathematical structures being represented.

Certain extended characters, represented by entity references, are used to name opera-
tors or identifiers which in traditional notation render the same as other symbols, such
asⅆ , ⅇ , or ⅈ , or operators which usually
render invisibly, such as⁢ , ⁡ , or ⁣ .
These are distinct notational symbols or objects, as evidenced by their distinct spoken ren-
derings and in some cases by their effects on linebreaking and spacing in visual render-
ing, and as such should be represented by the appropriate specific entity references. For
example, the expression represented visually as ‘f (x)’ would usually be spoken in En-
glish as ‘f of x’ rather than just ‘f x’; this is expressible in MathML by the use of the
⁡ operator after the ‘f ’, which (in this case) can be aurally rendered as
‘of’.

The complete list of MathML entities is described in chapter6.

3.1.2 Terminology Used In This Chapter

It is strongly recommended that, before reading the present chapter, one read section2.3
on MathML syntax and grammar, which contains important information on MathML no-
tations and conventions. In particular, in this chapter it is assumed that the reader has an
understanding of basic XML terminology described in section2.3.1, and the attribute value
notations and conventions described in section2.3.3.

The remainder of this section introduces MathML-specific terminology and conventions
used in this chapter.

3.1.2.1 Types of presentation elements

The presentation elements are divided into two classes.Token elementsrepresent indi-
vidual symbols, names, numbers, labels, etcetera, and can have only characters and entity
references (or the vertical alignment elementmalignmark) as content.

Issue (token-content):This needs to be revised pending revision of the malignmark and
mchar elements.

Layout schematabuild expressions out of parts, and can have only elements as content
(except for whitespace, which they ignore). There are also a few empty elements used only
in conjunction with certain layout schemata.

All individual ‘symbols’ in a mathematical expression should be represented by MathML
token elements. The primary MathML token element types are identifiers (e.g. variables
or function names), numbers, and operators (including fences, such as parentheses, and
separators, such as commas). There are also token elements for representing text or whites-
pace which has more aesthetic than mathematical significance, and for representing ‘string
literals’ for compatibility with computer algebra systems. Note that although a token ele-
ment represents a single meaningful ‘symbol’ (name, number, label, mathematical symbol,

37

etcetera), such symbols may be comprised of more than one character. For examplesin
and24are represented by the single tokens<mi>sin</mi> and<mn>24</mn>respectively.

In traditional mathematical notation, expressions are recursively constructed out of smaller
expressions, and ultimately out of single symbols, with the parts grouped and positioned
using one of a small set of notational structures, which can be thought of as ‘expression
constructors’. In MathML, expressions are constructed in the same way, with the layout
schemata playing the role of the expression constructors. The layout schemata specify the
way in which subexpressions are built into larger expressions. The terminology derives
from the fact that each layout schema corresponds to a different way of ‘laying out’ its
subexpressions to form a larger expression in traditional mathematical typesetting.

3.1.2.2 Terminology for other classes of elements and their relationships

The terminology used in this chapter for special classes of elements, and for relationships
between elements, is as follows: Thepresentation elementsare the MathML elements de-
fined in this chapter. These elements are listed in section3.1.5. Thecontent elementsare
the MathML elements defined in chapter4. The content elements are listed in section4.4.

A MathML expressionis a single instance of any of the presentation elements with the
exception of the empty elementsnone or mprescripts , or is a single instance of anny
of the content elements which are allowed as content of presentation elements (listed in
section5.2.4). The intuition behind the definition of an expression is that it is an element
with an unambigous rendering without some larger, enclosing construct. Asubexpression
of an expressionE is any MathML expression which is part of the content ofE, whether
directly or indirectly, i.e. whether it is a ‘child’ ofE or not.

Since layout schemata attach special meaning to the number and/or positions of their chil-
dren, a child of a layout schema is also called anargumentof that element. As a con-
sequence of the above definitions, the content of a layout schema consists exactly of a
sequence of zero or more nonoverlapping elements which are its arguments.

3.1.3 Required Arguments

Many of the elements described herein require a specific number of arguments (always 1,
2, or 3). In the detailed descriptions of element syntax given below, the number of required
arguments is implicitly indicated by giving names for the arguments at various positions.
A few elements have additional requirements on the number or type of arguments, which
are described with the individual element. For example, some elements accept sequences
of zero or more arguments - that is, they are allowed to occur with no arguments at all.

Note that MathML elements encoding rendered spacedo count as arguments of the ele-
ments they appear in. See section3.2.6for a discussion of the proper use of such space-like
elements.

3.1.3.1 Inferredmrows

The elements listed in the following table as requiring 1* argument (msqrt, mstyle , merror ,
mpadded, mphantom, andmtd) actually accept any number of arguments. However, if the
number of arguments is 0, or is more than 1, they treat their contents as a singleinferred
mrowformed from all their arguments.

For example,

38

<mtd>
</mtd>

is treated as if it were

<mtd>
<mrow>
</mrow>

</mtd>

and

<msqrt>
<mo> - </mo>
<mn> 1 </mn>

</msqrt>

is treated as if it were

<msqrt>
<mrow>

<mo> - </mo>
<mn> 1 </mn>

</mrow>
</msqrt>

This feature allows MathML data not to contain (and its authors to leave out) manymrow
elements which would otherwise be necessary.

In the descriptions in this chapter of the above-listed elements’ rendering behaviors, their
content can be assumed to consist of exactly one expression, which may be anmrowelement
formed from their arguments in this manner. However, their argument counts are shown in
the following table as 1*, since they are most naturally understood as acting on a single
expression.

3.1.3.2 Table of argument requirements

For convenience, here is a table of each element’s argument count requirements, and the
roles of individual arguments when these are distinguished. An argument count of 1* indi-
cates an inferredmrowas described above.

3.1.4 Elements with Special Behaviors

Certain MathML presentation elements exhibit special behaviors in certain contexts. Such
special behaviors are discussed in the detailed element descriptions below. However, for
convenience, some of the most important classes of special behavior are listed here.

Certain elements are considered space-like; these are defined in section3.2.6. This defini-
tion affects some of the suggested rendering rules formoelements (section3.2.4).

Certain elements, e.g.msup, are able to embellish operators which are their first argument.
These elements are listed in section3.2.4, which precisely defines an ‘embellished opera-
tor’ and explains how this affects the suggested rendering rules for stretchy operators.

39

Element Required argument count Argument roles (when these differ by position)
mrow 0 or more
mfrac 2 numerator denominator
msqrt 1*
mroot 2 base index
mstyle 1*
merror 1*
mpadded 1*
mphantom 1*
mfenced 0 or more
msub 2 base subscript
msup 2 base superscript
msubsup 3 base subscript superscript
munder 2 base underscript
mover 2 base overscript
munderover 3 base underscript overscript
mmultiscripts 1 or more base(subscript superscript)* [<mprescripts/> (presubscript presuperscript)*]
mtable 0 or more rows 0 or moremtr elements, inferred if necessary
mtr 0 or more table elements 0 or moremtdelements, inferred if necessary
mtd 1*
maction 1 or more depend onactiontype attribute

Certain elements treat their arguments as the arguments of an ‘inferredmrow’ if they are
not given exactly one argument, as explained in section3.1.3.

Themtable element can infermtr elements around its arguments, and themtr element can
infer mtdelements, as explained in the sections about those elements.

3.1.5 Summary of Presentation Elements

3.1.5.1 Token Elements

mi identifier
mn number
mo operator, fence, or separator
mtext text
mspace space
ms string literal
<mchar> referring to non-ASCII characters
<ms> adding new characters to MathML

40

mrow group any number of subexpressions horizontally
mfrac form a fraction from two subexpressions
msqrt form a square root sign (radical without an index)
mroot form a radical with specified index
mstyle style change
merror enclose a syntax error message from a preprocessor
mpadded adjust space around content
mphantom make content invisible but preserve its size
mfenced surround content with a pair of fences

msub attach a subscript to a base
msup attach a superscript to a base
msubsup attach a subscript-superscript pair to a base
munder attach an underscript to a base
mover attach an overscript to a base
munderover attach an underscript-overscript pair to a base
mmultiscripts attach prescripts and tensor indices to a base

mtable table or matrix
mtr row in a table or matrix
mtd one entry in a table or matrix
maligngroup andmalignmark alignment markers

maction bind actions to a subexpression

3.1.5.2 General Layout Schemata

3.1.5.3 Script and Limit Schemata

3.1.5.4 Tables and Matrices

3.1.5.5 Enlivening Expressions

3.2 Token Elements

Token elements can contain any sequence of zero or more characters, or extended charac-
ters represented by entity references. In particular, tokens with empty content are allowed,
and should typically render invisibly, with no width except for the normal extra spacing for
that kind of token element. The allowed set of entity references for extended characters is
given in chapter6.

In MathML, characters and MathML entity references are only allowed to occur as part of
the content of a token element. The only exception is whitespace between elements, which
is ignored.

Themalignmark element (see section3.5.5) is the only element allowed in the content of
tokens. It marks a place which can be vertically aligned with other objects, as explained in
that section.

3.2.1 Attributes common to token elements

Several attributes related to text formatting are provided on all presentation token elements
exceptmspace, and on no other elements exceptmstyle . These are:

41

Name values default
fontsize number v-unit inherited
fontweight normal | bold inherited
fontstyle normal | italic normal (except on<mi>)
fontfamily string | css-fontfamily inherited
color #rgb | #rrggbb | html-color-name inherited

(See section2.3.3for terminology and notation used in attribute value descriptions.)

Token elements (other thanmspace) should be rendered as their content (i.e. in the vi-
sual case, as a closely-spaced horizontal row of standard glyphs for the characters in their
content) using the attributes listed above, with surrounding spacing modified by rules or at-
tributes specific to each type of token element. Some of the individual attributes are further
discussed below.

Issue (style-sheet-support):Now that XSL and CSS are available, the following text
should be revised.

Recall that all MathML elements, including tokens, acceptclass , style , andid attributes
for compatibility with style sheet mechanisms, as described in section2.3.4. In principle,
the font properties controlled by the attributes listed above might be better handled using
style sheets. When style sheet support becomes available for XML, future revisions of
MathML will likely revisit the issue of font control.

MathML expressions are often embedded in a textual data format such as HTML, and their
renderings are likewise embedded in a rendering of the surrounding text. The renderer of
the surrounding text (e.g. a browser) should provide the MathML renderer with information
about the rendering environment, including attributes of the surrounding text such as its
font size, so that the MathML can be rendered in a compatible style. For this reason, most
attribute values affecting text rendering are inherited from the rendering environment, as
shown in the ‘default’ column in the table above. (Note that it is also important for the
rendering environment to provide the renderer with additional information, such as the
baseline position of surrounding text, which is not specified by any MathML attributes.)

The exception to the general pattern of inheritance is thefontstyle attribute, whose de-
fault value isnormal (non-slanted) for most tokens, but formi depends on the content in a
way described in the section aboutmi, section3.2.2. Note thatfontstyle is not inherited
in MathML, even though the corresponding CSS1 property ‘font-style’ is inherited in CSS.

Thefontsize attribute specifies the desired font size.v-unit represents a unit of vertical
length (see section2.3.3.3). The most common unit for specifying font sizes in typesetting
is pt (points).

If the requested size of the current font is not available, the renderer should approximate it
in the manner likely to lead to the most intelligible, highest quality rendering.

Many MathML elements automatically changefontsize in some of their children; see the
discussion ofscriptlevel in the section onmstyle , section3.3.4.

The value of thefontfamily attribute should be the name of a font which may be available
to a MathML renderer, or information which permits the renderer to select a font in some
manner; acceptable values and their meanings are dependent on the specific renderer and
rendering environment in use, and are not specified by MathML (but see the note about
css-fontfamily below). (Note that the renderer’s mechanism for finding fonts by name
may be case-sensitive.)

42

If the value offontfamily is not recognized by a particular MathML renderer, this should
never be interpreted as a MathML error; rather, the renderer should either use a font which
it considers to be a suitable substitute for the requested font, or ignore the attribute and act
as if no value had been given.

Note that any use of thefontfamily attribute is unlikely to be portable across all MathML
renderers. In particular, it should never be used to try to achieve the effect of a reference to
an extended character (for example, by using a reference to a character in some symbol font
which maps ordinary characters to glyphs for extended characters). As a corollary to this
principle, MathML renderers should attempt to always produce intelligible renderings for
the extended characters listed in chapter6, even when these characters are not available in
the font family indicated. Such a rendering is always possible - as a last resort, a character
can be rendered to appear as an XML-style entity reference using one of the entity names
given for the same character in chapter6.

The symbolcss-fontfamily refers to a legal value for thefont-family property in
CSS1, which is a comma-separated list of alternative font family names or generic font
types in order of preference, as documented in more detail in CSS1. MathML renderers
are encouraged to make use of the CSS syntax for specifying fonts when this is practical
in their rendering environment, even if they do not otherwise support CSS. (See also the
subsection CSS-compatible attributes within section2.3.3.3.

The syntax and meaning of thecolor attribute are as described for the same attribute of
<mstyle> (section3.3.4).

3.2.2 Identifiers

3.2.2.1 Description

An mi element represents a symbolic name or arbitrary text which should be rendered as
an identifier. Identifiers can include variables, function names, and symbolic constants.

Not all ‘mathematical identifiers’ are represented bymi elements - for example, subscripted
or primed variables should be represented usingmsubor msuprespectively. Conversely,
arbitrary text playing the role of a ‘term’ (such as an ellipsis in a summed series) can be
represented using anmi element, as shown in an example in section3.2.5.4.

It should be stressed thatmi is a presentation element, and as such, it only indicates that its
content should be rendered as an identifier. In the majority of cases, the contents of anmi
will actually represent a mathematical identifier such as a variable or function name. How-
ever, as the preceding paragraph indicates, the correspondence between notations which
should render like identifiers and notations which are actually intended to represent math-
ematical identifiers is not perfect. For an element whose semantics is guaranteed to be that
of an identifier, see the description ofci in chapter4.

3.2.2.2 Attributes ofmi

mi elements accept the attributes listed in section3.2.1, but in one case with a different
default value:

Name values default
fontstyle normal | italic (depends on content; described below)

43

A typical graphical renderer would render anmi element as the characters in its content,
with no extra spacing around the characters (except spacing associated with neighboring
elements). The defaultfontstyle would (typically) benormal (non-slanted) unless the
content is a single character, in which case it would beitalic . Note that this rule for
fontstyle is specific tomi elements; the default value for thefontstyle attribute of
other MathML token elements isnormal.

3.2.2.3 Examples ofmi

<mi> x </mi>
<mi> D </mi>
<mi> sin </mi>
<mi></mi>

An mi element with no content is allowed;<mi></mi> might, for example, be used by an
‘expression editor’ to represent a location in a MathML expression which requires a ‘term’
(according to conventional syntax for mathematics) but does not yet contain one.

Identifiers include function names such as ‘sin’. Expressions such as ‘sinx’ should be writ-
ten using the⁡ operator (which also has the short name⁡ as shown
below; see also the discussion of invisible operators in section3.2.4.

<mrow>
<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>

Miscellaneous text that should be treated as a ‘term’ can also be represented by anmi
element, as in:

<mrow>
<mn> 1 </mn>
<mo> + </mo>
<mi> ... </mi>
<mo> + </mo>
<mi> n </mi>

</mrow>

When anmi is used in such exceptional situations, explicitly setting thefontstyle at-
tribute may give better results than the default behavior of some renderers.

The names of symbolic constants should be represented asmi elements:

<mi> π </mi>
<mi> ⅈ </mi>
<mi> ⅇ </mi>

Use of special entity references for such constants can simplify the interpretation of MathML
presentation elements. See chapter6 for a complete list of character entity references in
MathML.

44

3.2.3 Numbers

3.2.3.1 Description

An mnelement represents a ‘numeric literal’ or other data which should be rendered as
a numeric literal. Generally speaking, a numeric literal is a sequence of digits, perhaps
including a decimal point, representing an unsigned integer or real number.

The concept of a mathematical ‘number’ depends on the context, and is not well-defined
in the abstract. As a consequence, not all mathematical numbers should be represented
usingmn; examples of mathematical numbers which should be represented differently are
shown below, and include negative numbers, complex numbers, ratios of numbers shown
as fractions, and names of numeric constants.

Conversely, sincemnis a presentation element, there are a few situations where it may
desirable to include arbitrary text in the content of anmnwhich should merely render as
a numeric literal, even though that content may not be unambiguously interpretable as a
number according to any particular standard encoding of numbers as character sequences.
As a general rule, however, themnelement should be reserved for situations where its
content is actually intended to represent a numeric quantity in some fashion. For an element
whose semantics are guaranteed to be that of a particular kind of mathematical number, see
the description ofcn in chapter4.

3.2.3.2 Attributes of<mn>

mnelements accept the attributes listed in section3.2.1.

A typical graphical renderer would render anmnelement as the characters of its content,
with no extra spacing around them (except spacing from neighboring elements such asmo).
Unlike mi, mnelements are (typically) rendered in an unslanted font by default, regardless
of their content.

3.2.3.3 Examples ofmn

<mn> 2 </mn>
<mn> 0.123 </mn>
<mn> 1,000,000 </mn>
<mn> 2.1e10 </mn>
<mn> 0xFFEF </mn>
<mn> MCMLXIX </mn>
<mn> twenty one </mn>

3.2.3.4 Examples of numbers which shouldnotbe written usingmnalone

Many mathematical numbers should be represented using presentation elements other than
mnalone; this includes negative numbers, complex numbers, ratios of numbers shown as
fractions, and names of numeric constants. Examples of MathML representations of such
numbers include:

<mrow> <mo> - </mo> <mn> 1 </mn> </mrow>
<mrow>

45

<mn> 2 </mn>
<mo> + </mo>
<mrow>

<mn> 3 </mn>
<mo> ⁢ </mo>
<mi> ⅈ </mi>

</mrow>
</mrow>
<mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac>
<mi> π </mi>
<mi> ⅇ </mi>

3.2.4 Operator, Fence, Separator or Accent

3.2.4.1 Description

An moelement represents an operator or anything which should be rendered as an operator.
In general, the notational conventions for mathematical operators are quite complicated,
and therefore MathML provides a relatively sophisticated mechanism for specifying the
rendering behavior of anmoelement. As a consequence, in MathML the list of things which
should ‘render as an operator’ includes a number of notations which are not mathematical
operators in the ordinary sense. Besides ordinary operators with infix, prefix, or postfix
forms, these include fence characters such as braces, parentheses, and ‘absolute value’
bars, separators such as comma and semicolon, and mathematical accents such as a bar or
tilde over a symbol.

The term ‘operator’ as used in the present chapter means any symbol or notation which
should render as an operator, and which is therefore representable by anmoelement. That
is, the term ‘operator’ includes any ordinary operator, fence, separator, or accent unless
otherwise specified or clear from the context.

All such symbols are represented in MathML withmoelements since they are subject to
essentially the same rendering attributes and rules; subtle distinctions in the rendering of
these classes of symbols, when they exist, are supported using the boolean attributesfence ,
separator andaccent which can be used to distinguish these cases.

A key feature of themoelement is that its default attribute values are set on a case-by-
case basis from an ‘operator dictionary’ as explained below. In particular, default values
for fence , separator andaccent can usually be found in the operator dictionary and
therefore need not be specified on eachmoelement.

Note that some mathematical operators are represented not bymoelements alone, but by
moelements ‘embellished’ with (for example) surrounding superscripts; this is further de-
scribed below. Conversely, as presentation elements,moelements can contain arbitrary text,
even when that text has no standard interpretation as an operator; for an example, see the
discussion ‘Mixing text and mathematics’ in section3.2.5. See also chapter4 for defini-
tions of MathML content elements which are guaranteed to have the semantics of specific
mathematical operators.

3.2.4.2 Attributes ofmo

moelements accept the attributes listed in section3.2.1, and the additional attributes listed
here. Most attributes get their default values from the section3.2.4.7, as described later in

46

this section. When a dictionary entry is not found for a givenmoelement, the default value
shown here in parentheses is used.

Name values default
form prefix | infix | postfix set by position of operator in anmrow(rule given below); used withmocontent to index operator dictionary
fence true | false set by dictionary (false)
separator true | false set by dictionary (false)
lspace number h-unit | namedspace set by dictionary (thickmathspace)
rspace number h-unit | namedspace set by dictionary (thickmathspace)
stretchy true | false set by dictionary (false)
symmetric true | false set by dictionary (true)
maxsize number [v-unit | h-unit] | namedspace | infinity set by dictionary (infinity)
minsize number [v-unit | h-unit] | namedspace set by dictionary (1)
largeop true | false set by dictionary (false)
movablelimits true | false set by dictionary (false)
accent true | false set by dictionary (false)

h-unit represents a unit of horizontal length, andv-unit represents a unit of vertical
length (see section2.3.3.2)p.namedspaceis one ofveryverythinmathspace , verythinmathspace ,
thinmathspace , mediummathspace, thickmathspace , verythickmathspace , orveryverythickmathspace .
These values are settable by themstyle element which is discussed in section3.3.4. The
default values ofveryverythinmathspace ...veryverythickmathspace are 1/18em...7/18em,
respectively.

If no unit is given withmaxsize or minsize , the number is a multiplier of the normal size
of the operator in the direction (or directions) in which it stretches. These attributes are
further explained below.

Typical graphical renderers show allmoelements as the characters of their content, with ad-
ditional spacing around the element determined from the attributes listed above. Detailed
rules for determining operator spacing in visual renderings are described in a subsection be-
low. As always, MathML does not require a specific rendering, and these rules are provided
as suggestions for the convenience of implementors.

Renderers without access to complete fonts for the MathML character set may choose
not to render anmoelement as precisely the characters in its content in some cases. For
example,<mo> ≤ </mo>might be rendered as<= to a terminal. However, as a general
rule, renderers should attempt to render the content of anmoelement as literally as possible.
That is,<mo> &le </mo>and <mo> <= </mo>should render differently. (The first one
should render as a single extended character representing a less-than-or-equal-to sign, and
the second one as the two-character sequence<=.)

3.2.4.3 Examples ofmoelements representing ordinary operators

<mo> + </mo>
<mo> < </mo>
<mo> ≤ </mo>
<mo> <= </mo>
<mo> ++ </mo>
<mo> ∑ </mo>
<mo> .NOT. </mo>

47

<mo> and </mo>
<mo> ⁢ </mo>

3.2.4.4 Examples of expressions usingmoelements for fences and separators

Note that themoelements in these examples don’t need explicitfence or separator at-
tributes, since these can be found using the operator dictionary as described below. Some
of these examples could also be encoded using themfencedelement described in sec-
tion 3.3.8.

(a+b)

<mrow>
<mo> (</mo>
<mrow>

<mi> a </mi>
<mo> + </mo>
<mi> b </mi>

</mrow>
<mo>) </mo>

</mrow>

[0,1)

<mrow>
<mo> [</mo>
<mrow>

<mn> 0 </mn>
<mo> , </mo>
<mn> 1 </mn>

</mrow>
<mo>) </mo>

</mrow>

f (x,y)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>

<mo> (</mo>
<mrow>

<mi> x </mi>
<mo> , </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>
</mrow>

48

3.2.4.5 Invisible operators

Certain operators which are ‘invisible’ in traditional mathematical notation should be rep-
resented using specific entity references withinmoelements, rather than simply by nothing.
The entity references used for these ‘invisible operators’ are:

Full name Short name Examples of use
⁢ ⁢ xy
⁡ ⁡ f (x) sinx
⁣ ⁣ m12

The MathML representations of the examples in the above table are:

<mrow>
<mi> x </mi>
<mo> ⁢ </mo>
<mi> y </mi>

</mrow>
<mrow>

<mi> f </mi>
<mo> ⁡ </mo>
<mrow>

<mo> (</mo>
<mi> x </mi>
<mo>) </mo>

</mrow>
</mrow>
<mrow>

<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>
<msub>

<mi> m </mi>
<mrow>

<mn> 1 </mn>
<mo> ⁣ </mo>
<mn> 2 </mn>

</mrow>
</msub>

The reasons for using specificmoelements for invisible operators include:

• such operators should often have specific effects on visual rendering (particularly
spacing and linebreaking rules) which are not the same as either the lack of any
operator, or spacing represented by<mspace/>or mtext elements;

• these operators should often have specific audio renderings different than that of
the lack of any operator;

• automatic semantic interpretation of MathML presentation elements is made eas-
ier by the explicit specification of such operators.

49

For example, an audio renderer might renderf (x) (represented as in the above examples) by
speaking ‘f of x’, but use the word ‘times’ in its rendering ofxy. Although its rendering must
still be different depending on the structure of neighboring elements (sometimes leaving out
‘of’ or ‘times’ entirely), its task is made much easier by the use of a differentmoelement
for each invisible operator.

3.2.4.6 Entity references for other special operators

For reasons like those for including special entities for invisible operators, MathML also
includesⅆ for use in anmoelement representing the differential operator
symbol usually denoted by ‘d’.

3.2.4.7 Detailed rendering rules formoelements

Typical visual rendering behaviors formoelements are more complex than for the other
MathML token elements, so the rules for rendering them are described in this separate
subsection.

Note that, like all rendering rules in MathML, these rules are suggestions rather than re-
quirements. Furthermore, no attempt is made to specify the rendering completely; rather,
enough information is given to make the intended effect of the various rendering attributes
as clear as possible.

The operator dictionary

Many mathematical symbols, such as an integral sign, a plus sign, or a parenthesis, have
a well-established, predictable, traditional notational usage. Typically, this usage amounts
to certain default attribute values formoelements with specific contents and a specific
form attribute. Since these defaults vary from symbol to symbol, MathML anticipates that
renderers will have an ‘operator dictionary’ of default attributes formoelements (see ap-
pendixB) indexed by eachmoelement’s content andform attribute. If anmoelement is not
listed in the dictionary, the default values shown in parentheses in the table of attributes for
moshould be used, since these values are typically acceptable for a generic operator.

Some operators are ‘overloaded’, in the sense that they can occur in more than one form
(prefix, infix, or postfix), with possibly different rendering properties for each form. For
example, ‘+’ can be either a prefix or an infix operator. Typically, a visual renderer would
add space around both sides of an infix operator, while only on the left of a prefix operator.
Theform attribute allows specification of which form to use, in case more than one form is
possible according to the operator dictionary and the default value described below is not
suitable.

Default value of theform attribute

Theform attribute does not usually have to be specified explicitly, since there are effective
heuristic rules for inferring the value of theform attribute from the context. If it is not
specified, and there is more than one possible form in the dictionary for anmoelement
with given content, the renderer should choose which form to use as follows (but see the
exception for embellished operators, described later):

50

• If the operator is the first argument in anmrowof length (i.e. number of argu-
ments) greater than one (ignoring all space-like arguments (see section3.2.6) in
the determination of both the length and the first argument), the prefix form is
used;

• if it is the last argument in anmrowof length greater than one (ignoring all space-
like arguments), the postfix form is used;

• in all other cases, including when the operator is not part of anmrow, the infix
form is used.

Note that these rules make reference to themrowin which themoelement lies. In some
situations, thismrowmight be an inferredmrowimplicitly present around the arguments of
an element such asmsqrt or mtd.

Opening (left) fences should haveform="prefix", and closing (right) fences should have
form="postfix"; separators are usually ‘infix’, but not always, depending on their surround-
ings. As with ordinary operators, these values do not usually need to be specified explicitly.

If the operator does not occur in the dictionary with the specified form, the renderer should
use one of the forms which is available there, in the order of preference: infix, postfix,
prefix; if no forms are available for the givenmoelement content, the renderer should use
the defaults given in parentheses in the table of attributes formo.

Exception for embellished operators

There is one exception to the above rules for choosing anmoelement’s defaultform at-
tribute. An moelement which is ‘embellished’ by one or more nested subscripts, super-
scripts, surrounding text or whitespace, or style changes behaves differently. It is the em-
bellished operator as a whole (this is defined precisely, below) whose position in anmrow
is examined by the above rules and whose surrounding spacing is affected by its form, not
themoelement at its core; however, the attributes influencing this surrounding spacing are
taken from themoelement at the core (or from that element’s dictionary entry).

For example, the ‘+4’ in a+4b should be considered an infix operator as a whole, due to
its position in the middle of anmrow, but its rendering attributes should be taken from
the moelement representing the ‘+’, or when those are not specified explicitly, from the
operator dictionary entry for<mo form="infix"> + </mo> . The precise definition of an
‘embellished operator’ is:

• anmoelement;
• or one of the elementsmsub, msup, msubsup, munder, mover, munderover,

mmultiscripts , mfrac, or semantics (section4.2.7), whose first argument ex-
ists and is an embellished operator;

• or one of the elementsmstyle , mphantom, or mpadded, such that anmrowcon-
taining the same arguments would be an embellished operator;

• or an maction element whose selected subexpression exists and is an embel-
lished operator;

• or anmrowwhose arguments consist (in any order) of one embellished operator
and zero or more space-like elements.

Note that this definition permits nested embellishment only when there are no intervening
enclosing elements not in the above list.

The above rules for choosing operator forms and defining embellished operators are chosen
so that in all ordinary cases it will not be necessary for the author to specify aform attribute.

51

Rationale for definition of embellished operators

The following notes are included as a rationale for certain aspects of the above definitions,
but should not be important for most users of MathML.

An mfrac is included as an ‘embellisher’ because of the common notation for a differential
operator:

<mfrac>
<mo> ⅆ </mo>
<mrow>

<mo> ⅆ </mo>
<mi> x </mi>

</mrow>
</mfrac>

Since the definition of embellished operator affects the use of the attributes related to
stretching, it is important that it includes embellished fences as well as ordinary opera-
tors; thus it applies to anymoelement.

Note that anmrowcontaining a single argument is an embellished operator if and only if its
argument is an embellished operator. This is because anmrowwith a single argument must
be equivalent in all respects to that argument alone (as discussed in section3.3.1). This
means that anmoelement which is the sole argument of anmrowwill determine its default
form attribute based on thatmrow’s position in a surrounding, perhaps inferred,mrow(if
there is one), rather than based on its own position in themrowit is the sole argument of.

Note that the above definition defines everymoelement to be ‘embellished’ - that is, ‘em-
bellished operator’ can be considered (and implemented in renderers) as a special class of
MathML expressions, of whichmois a specific case.

Spacing around an operator

The amount of space added around an operator (or embellished operator), when it occurs
in an mrow, can be directly specified by thelspace andrspace attributes. These values
are in ems if no units are given. By convention, operators that tend to bind tightly to their
arguments have smaller values for spacing than operators that tend to bind less tightly. This
convention should be followed in the operator dictionary included with a MathML renderer.
In TEX, these values can only be one of three values; typically they are 3/18em, 4/18em,
and 5/18em. MathML does not impose this limit.

Some renderers may choose to use no space around most operators appearing within sub-
scripts or superscripts, as is done in TEX.

Non-graphical renderers should treat spacing attributes, and other rendering attributes de-
scribed here, in analogous ways for their rendering medium.

3.2.4.8 Stretching of operators, fences and accents

Four attributes govern whether and how an operator (perhaps embellished) stretches so that
it matches the size of other elements:stretchy , symmetric, maxsize, andminsize . If
an operator has the attributestretchy =true , then it (that is, each character in its content)
obeys the stretching rules listed below, given the constraints imposed by the fonts and font

52

rendering system. In practice, typical renderers will only be able to stretch a small set of
characters, and quite possibly will only be able to generate a discrete set of character sizes.

There is no provision in MathML for specifying in which direction (horizontal or verti-
cal) to stretch a specific character or operator; rather, whenstretchy =true it should be
stretched in each direction for which stretching is possible. It is up to the renderer to know
in which directions it is able to stretch each character. (Most characters can be stretched
in at most one direction by typical renderers, but some renderers may be able to stretch
certain characters, such as diagonal arrows, in both directions independently.)

The minsize andmaxsize attributes limit the amount of stretching (in either direction).
These two attributes are given as multipliers of the operator’s normal size in the direction
or directions of stretching, or as absolute sizes using units. For example, if a character has
maxsize="3", then it can grow to be no more than three times its normal (unstretched) size.

Thesymmetric attribute governs whether the height and depth above and below the axis
of the character are forced to be equal (by forcing both height and depth to become the
maximum of the two). An example of a situation where one might setsymmetric=false
arises with parentheses around a matrix not aligned on the axis, which frequently occurs
when multiplying non-square matrices. In this case, one wants the parentheses to stretch to
cover the matrix, whereas stretching the parentheses symmetrically would cause them to
protrude beyond one edge of the matrix. Thesymmetric attribute only applies to characters
that stretch vertically (otherwise it is ignored).

If a stretchymoelement is embellished (as defined earlier in this section), themoelement
at its core is stretched to a size based on the context of the embellished operator as a
whole, i.e. to the same size as if the embellishments were not present. For example, the
parentheses in the following example (which would typically be set to be stretchy by the
operator dictionary) will be stretched to the same size as each other, and the same size they
would have if they were not underlined and overlined, and furthermore will cover the same
vertical interval:

<mrow>
<munder>

<mo> (</mo>
<mo> _ </mo>

</munder>
<mfrac>

<mi> a </mi>
<mi> b </mi>

</mfrac>
<mover>

<mo>) </mo>
<mo> ‾ </mo>

</mover>
</mrow>

Note that this means that the stretching rules given below must refer to the context of the
embellished operator as a whole, not just to themoelement itself.

53

Example of stretchy attributes

This shows one way to set the maximum size of a parenthesis so that it does not grow, even
though its default value isstretchy =true .

<mrow>
<mo maxsize="1"> (</mo>
<mfrac>

<mi> a </mi> <mi> b </mi>
</mfrac>
<mo maxsize="1">) </mo>

</mrow>

The above should render as(a
b) as opposed to the default rendering

(
a
b

)
.

Note that each parenthesis is sized independently; if only one of them hadmaxsize="1",
they would render with different sizes.

Vertical Stretching Rules

• If a stretchy operator is a direct subexpression of anmrowelement, or is the sole
direct subexpression of anmtd element in some row of a table, then it should
stretch to cover the height and depth (above and below theaxis) of the non-
stretchy direct subexpressions in themrowelement or table row, unless stretching
is constrained byminsize or maxsize attributes.

• In the case of an embellished stretchy operator, the preceding rule applies to the
stretchy operator at its core.

• If symmetric=true , then the maximum of the height and depth is used to deter-
mine the size, before application of theminsize or maxsize attributes.

• The preceding rules also apply in situations where themrowor mtd element is
inferred (see section3.5.1for a discussion of inferredmtdelements).

Most common opening and closing fences are defined in the operator dictionary to stretch
by default; and they stretch vertically. Also, operators such as∑, ∫ , /, and vertical
arrows stretch vertically by default.

In the case of a stretchy operator in a table cell (i.e. within anmtdelement), the above rules
assume each cell of the table row containing the stretchy operator covers exactly one row.
(Equivalently, the value of therowspanattribute is assumed to be 1 for all the table cells
in the table row, including the cell containing the operator.) When this is not the case, the
operator should only be stretched vertically to cover those table cells which are entirely
within the set of table rows that the operator’s cell covers. Table cells which extend into
rows not covered by the stretchy operator’s table cell should be ignored.

Horizontal Stretching Rules

• If a stretchy operator, or an embellished stretchy operator, is a direct subexpres-
sion of anmunder, mover, or munderover element, or if it is the sole direct
subexpression of anmtdelement (perhaps an inferred one) in some column of a
table (seemtable), then it, or themoelement at its core, should stretch to cover
the width of the other direct subexpressions in the given element (or in the same
table column), given the constraints mentioned above.

54

• If a stretchy operator is a direct subexpression of anmunder, mover, ormunderover
element, or if it is the sole direct subexpression of anmtdelement in some column
of a table, then it should stretch to cover the width of the other direct subexpres-
sions in the given element (or in the same table column), given the constraints
mentioned above.

• In the case of an embellished stretchy operator, the preceding rule applies to the
stretchy operator at its core.

• The preceding rules also apply in situations where themtd element is inferred
(see section3.5.1for a discussion of inferredmtdelements).

By default, most horizontal arrows and some accents stretch horizontally.

In the case of a stretchy operator in a table cell (i.e. within anmtdelement), the above rules
assume each cell of the table column containing the stretchy operator covers exactly one
column. (Equivalently, the value of thecolumnspanattribute is assumed to be 1 for all the
table cells in the table row, including the cell containing the operator.) When this is not the
case, the operator should only be stretched horizontally to cover those table cells which are
entirely within the set of table columns that the operator’s cell covers. Table cells which
extend into columns not covered by the stretchy operator’s table cell should be ignored.

The rules for horizontal stretching includemtdelements to allow arrows to stretch for use
in commutative diagrams laid out usingmtable. The rules for the horizontal stretchiness
include scripts to make examples such as the following work:

<mrow>
<mi> x </mi>
<munder>

<mo> → </mo>
<mtext> maps to </mtext>

</munder>
<mi> y </mi>

</mrow>

This displays asx−−−−−−→
maps to

y.

Rules Common to both Vertical and Horizontal Stretching

If a stretchy operator is not required to stretch (i.e. if it is not in one of the locations men-
tioned above, or if there are no other expressions whose size it should stretch to match),
then it has the standard (unstretched) size determined by the font and current fontsize.

If a stretchy operator is required to stretch, but all other expressions in the containing ele-
ment or object (as described above) are also stretchy, all elements that can stretch should
grow to the maximum of the normal unstretched sizes of all elements in the containing
object, if they can grow that large. If the value ofminsize or maxsize prevents this then
that (min or max) size is used.

For example, in anmrowcontaining nothing but vertically stretchy operators, each of the
operators should stretch to the maximum of all of their normal unstretched sizes, provided
no other attributes are set which override this behavior. Of course, limitations in fonts or
font rendering may result in the final, stretched sizes being only approximately the same.

55

3.2.4.9 Other attributes ofmo

The largeop attribute specifies whether the operator should be drawn larger than normal
if displaystyle =true in the current rendering environment. This roughly corresponds
to TEX’s \displaystyle style setting. MathML uses two attributes,displaystyle and
scriptlevel , to control orthogonal presentation features that TEX encodes into one ‘style’
attribute with values\displaystyle , \textstyle , \scriptstyle , and\scriptscriptstyle .
These attributes are discussed further in section3.3.4describing themstyle element. Note
that these attributes can be specified directly on anmstyle element’s begin tag, but not on
most other elements. Examples of large operators include∫ and∏ .

The movablelimits attribute specifies whether underscripts and overscripts attached to
thismoelement should be drawn as subscripts and superscripts whendisplaystyle =false .
movablelimits =false means that underscripts and overscripts should never be drawn as
subscripts and superscripts. In general,displaystyle is true for displayed mathematics
andfalse for inline mathematics. Also,displaystyle is false by default within tables,
scripts and fractions, and a few other exceptional situations detailed in section3.3.4. Thus,
operators withmovablelimits =true will display with limits (i.e. underscripts and over-
scripts) in displayed mathematics, and with subscripts and superscripts in inline mathemat-
ics, tables, scripts and so on. Examples of operators that typically havemovablelimits =true
aresum, prod, andlim .

Theaccent attribute determines whether this operator should be treated by default as an
accent (diacritical mark) when used as an underscript or overscript; seemunder, mover,
andmunderover(section3.4.4, section3.4.5and section3.4.6).

The separator attribute may affect automatic linebreaking in renderers which position
ordinary infix operators at the beginnings of broken lines rather than at the ends (that is,
which avoid linebreaking just after such operators), since linebreaking should be avoided
just before separators, but is acceptable just after them.

The fence attribute has no effect in the suggested visual rendering rules given here; it is
not needed for properly rendering traditional notation using these rules. It is provided so
that specific MathML renderers, especially non-visual renderers, have the option of using
this information.

3.2.5 Text

3.2.5.1 Description

An mtext element is used to represent arbitrary text which should be rendered as itself. In
general, themtext element is intended to denote commentary text which is not central to
the mathematical meaning or notational structure of the expression it is contained in.

Note that some text with a clearly defined notational role might be more appropriately
marked up usingmi or mo; this is discussed further below.

An mtext element can be used to contain ‘renderable whitespace’, i.e. invisible charac-
ters which are intended to alter the positioning of surrounding elements. In non-graphical
media, such characters are intended to have an analogous effect, such as introducing pos-
itive or negative time delays or affecting rhythm in an audio renderer. This is not related
to any whitespace in the source MathML consisting of blanks, newlines, tabs, or carriage
returns; whitespace present directly in the source is trimmed and collapsed, as described in
section2.3.5. Whitespace which is intended to be rendered as part of an element’s content

56

must be represented by entity references (unless it consists only of single blanks between
non-whitespace characters).

Renderable whitespace can have a positive or negative width, as in  and
​, or zero width, as in​. The complete list of
such characters is given in chapter6. Note that there is no formal distinction in MathML
between renderable whitespace characters and any other class of characters, inmtext or in
any other element.

Renderable whitespace can also include characters that affect alignment or linebreaking.
Some of these characters are:

Entity name Purpose (rough description)
NewLine start a new line and do not indent
IndentingNewLine start a new line and do indent
NoBreak do not allow a linebreak here
GoodBreak if a linebreak is needed on the line, here is a good spot
BadBreak if a linebreak is needed on the line, try to avoid breaking here

For the complete list of MathML entities, consult chapter6.

3.2.5.2 Attributes ofmtext

mtext elements accept the attributes listed in section3.2.1.

See also the warnings about the legal grouping of ‘space-like elements’ in section3.2.6,
and about the use of such elements for ‘tweaking’ or conveying meaning in section3.3.6.

3.2.5.3 Examples ofmtext

<mtext> Theorem 1: </mtext>
<mtext>   </mtext>
<mtext>      </mtext>
<mtext> /* a comment */ </mtext>

3.2.5.4 Mixing text and mathematics

In some cases, text embedded in mathematics could be more appropriately represented
usingmoor mi elements. For example, the expression ‘there existsδ> 0 such thatf (x) <1’
is equivalent to∃δ> 03 f (x)< 1 and could be represented as:

<mrow>
<mo> there exists </mo>
<mrow>

<mrow>
<mi> δ </mi>
<mo> > </mo>
<mn> 0 </mn>

</mrow>
<mo> such that </mo>

57

<mrow>
<mrow>

<mi> f </mi>
<mo> ⁡ </mo>
<mrow>

<mo> (</mo>
<mi> x </mi>
<mo>) </mo>

</mrow>
</mrow>
<mo> < </mo>
<mn> 1 </mn>

</mrow>
</mrow>

</mrow>

An example involving anmi element is:x+x2+···+xn. In this example, ellipsis should be
represented using anmi element, since it takes the place of a term in the sum (see sec-
tion 3.2.2, mi).

On the other hand, expository text within MathML is best represented with anmtext ele-
ment. An example of this is:

Theorem 1: ifx > 1, thenx2 > x.

However, when MathML is embedded in HTML, the example is probably best rendered
with only the two inequalities represented as MathML at all, letting the text be part of the
surrounding HTML.

Another factor to consider in deciding how to mark up text is the effect on rendering. Text
enclosed in anmoelement is unlikely to be found in a renderer’s operator dictionary, so it
will be rendered with the format and spacing appropriate for an ‘unrecognized operator’,
which may or may not be better than the format and spacing for ‘text’ obtained by using an
mtext element. An ellipsis entity in anmi element is apt to be spaced more appropriately
for taking the place of a term within a series than if it appeared in anmtext element.

3.2.6 Space

3.2.6.1 Description

An mspaceempty element represents a blank space of any desired size, as set by its at-
tributes. The default value for each attribute is0emor 0ex, so it will not be useful without
some attributes specified.

3.2.6.2 Attributes ofmspace

Name values default
width number h-unit | namedspace 0em
height number v-unit 0ex
depth number v-unit 0ex

h-unit andv-unit represent units of horizontal or vertical length, respectively (see sec-
tion 2.3.3).

58

Note the warning about the legal grouping of ‘space-like elements’ given below, and the
warning about the use of such elements for ‘tweaking’ or conveying meaning in sec-
tion 3.3.6. See also the other elements which can render as whitespace, namelymtext ,
mphantom, andmaligngroup .

3.2.6.3 Definition of space-like elements

A number of MathML presentation elements are ‘space-like’ in the sense that they typi-
cally render as whitespace, and do not affect the mathematical meaning of the expressions
in which they appear. As a consequence, these elements often function in somewhat excep-
tional ways in other MathML expressions. For example, space-like elements are handled
specially in the suggested rendering rules formogiven in section3.2.4. The following
MathML elements are defined to be ‘space-like’:

• anmtext , mspace, maligngroup , or malignmark element;
• anmstyle , mphantom, or mpaddedelement, all of whose direct subexpressions

are space-like;
• anmaction element whose selected subexpression exists and is space-like;
• anmrowall of whose direct subexpressions are space-like.

Note that anmphantomis not automatically defined to be space-like, unless its content
is space-like. This is because operator spacing is affected by whether adjacent elements
are space-like. Since themphantomelement is primarily intended as an aid in aligning
expressions, operators adjacent to anmphantomshould behave as if they were adjacent to
thecontentsof themphantom, rather than to an equivalently sized area of whitespace.

3.2.6.4 Legal grouping of space-like elements

Authors who insert space-like elements ormphantomelements into an existing MathML
expression should note that such elementsare counted as arguments, in elements which
require a specific number of arguments, or which interpret different argument positions
differently.

Therefore, space-like elements inserted into such a MathML element should be grouped
with a neighboring argument of that element by introducing anmrowfor that purpose. For
example, to allow for vertical alignment on the right edge of the base of a superscript, the
expression

<msup> <mi> x </mi> <malignmark edge="right"/> <mn> 2 </mn> </msup>

is illegal, becausemsupmust have exactly 2 arguments; the correct expression would be:

<msup>
<mrow>

<mi> x </mi>
<malignmark edge="right"/>

</mrow>
<mn> 2 </mn>

</msup>

See also the warning about ‘tweaking’ in section3.3.6.

59

3.2.7 String Literal

3.2.7.1 Description

Themselement is used to represent ‘string literals’ in expressions meant to be interpreted
by computer algebra systems or other systems containing ‘programming languages’. By
default, string literals are displayed surrounded by double quotes. As explained in sec-
tion 3.2.5, ordinary text embedded in a mathematical expression should be marked up with
mtext , or in some casesmoor mi, but never withms.

Note that the string literals encoded bymsare ‘Unicode strings’ rather than ‘ASCII strings’.
In practice, non-ASCII characters will typically be represented by entity references. For
example,<ms>&</ms>represents a string literal containing a single character,&, and
<ms>&amp;</ms>represents a string literal containing 5 characters, the first one of
which is&. (In fact, MathML string literals are even more general than Unicode string liter-
als, since not all MathML entity references necessarily refer to existing Unicode characters,
as discussed in chapter6.)

Like all token elements,msdoes trim and collapse whitespace in its content according
to the rules of section2.3.5, so whitespace intended to remain in the content should be
encoded as described in that section.

3.2.7.2 Attributes ofms

mselements accept the attributes listed in section3.2.1, and additionally:

Name values default
lquote string "
rquote string "

In visual renderers, the content of anmselement is typically rendered with no extra spacing
added around the string, and a quote character at the beginning and the end of the string.
By default, the left and right quote characters are both the standard double quote character
" . However, these characters can be changed with thelquote andrquote attributes
respectively.

The content ofmselements should be rendered with visible ‘escaping’ of certain characters
in the content, including at least ‘double quote’ itself, and preferably whitespace other than
individual blanks. The intent is for the viewer to see that the expression is a string literal,
and to see exactly which characters form its content. For example,<ms>double quote is
"</ms> might be rendered as ‘double quote is \"’.

3.2.8 <mchar/> – refering to non-ASCII characters

3.2.8.1 Description

<mchar/> is used to reference characters. This provides an alternative to using entity ref-
erences. Character entities are depricated for MathML 2.0 because they are not a part of
the current proposal for schemas, and documents containing entities are not well-formed
MathML in the absence of the MathML DTD.

Numeric entity references are not deprecated because they do not have the problems listed
above.

60

<mchar/> is valid inside any MathML leaf content listed in 3.5.1 (Error: mi , etc.) or
4.2.2.1 (<ci> , etc.) unless otherwise restricted by an attribute (e.g.,base=2 to<cn>).

3.2.8.2 Attributes of<mchar>

Name values default
name string required

Thenameattribute must be one of the names specified in chapter6. It is an error to use a
name which is not in that list.

Issue (specific-xref):The cross-reference above should be made more specific.

3.2.8.3 Example of<mchar/>

<mi> <mchar name=’alpha’/>1 </mi>

Issue (mchar-transition-instructions):Should we make a statement like ‘This is the
recommended replacement for <mi> α1 </mi> in MathML 1.x’?

3.2.9 <mglyph/> – adding new characters to MathML

3.2.9.1 Description

Unicode defines a large number of characters used in mathematics. Although these char-
acters should meet almost all users needs, MathML recognizes that Mathematics is not
static and that new characters are added when convenient. Characters that become well ac-
cepted will likely be eventually incorporated by the Unicode Consortium or other standards
bodies, but that is often a lengthy process.

<mglyph/> is the means by which users can specify characters that are not defined by Uni-
code.<mglyph/> names a specific character and is valid inside any MathML leaf content
listed in 3.5.1 (<mi>,etc.) or 4.2.2.1 (<ci> , etc.) unless otherwise restricted by an attribute
(e.g.,base=2 to<cn>). In order for a visually-oriented renderer to render the character, the
renderer must be told what font to use and what index within that font to use.

3.2.9.2 Attributes of<mglyph>

Name values default
alt string required
fontfamily string | css-fontfamily required
index integer required

Thealt attribute provides an alternate name for the character. If nofontfamily or index
is specified, or if the font can’t be found, the renderer may use this name in a warning mes-
sage or some unknown glyph notation. The name might also be used by an audio renderer
or symbol processing system and should be chosen to be descriptive. Thefontfamily and
index uniquely identify the<mglyph/> character; twomglyph/s with the same values for
fontfamily andindex should be considered identical by applications that must determine
whether two characters are identical. The alt attribute should not be part of the identical test.

61

The fontfamily andindex attributes name a font and position within that font. All font
properties are inherited. Variants of the font (e.g., bold) that may be inherited may be ig-
nored if the variant of the font is not present. Thefontfamily andindex are not required
because MathML applications are not required to visually render MathML. Additionally,
a MathML authoring application might leave offfontfamily and index if it knows that
they will be changed by some preprocessor or style sheet.

Authors should be aware that rendering requires the fonts referenced by<mglyph/>, which
the MathML renderer may not have access to or may be not be supported by the system on
which the renderer runs. For these reasons, authors are encouraged to use<mglyph/> only
when absolutely necessary, and not for stylistic purposes.

Issue (missing-mglyph-example):Need an example

3.3 General Layout Schemata

Besides tokens there are several families of MathML presentation elements. One family
of elements deals with various ‘scripting’ notations, such as subscript and superscript. An-
other family is concerned with matrices and tables. The remainder of the elements, dis-
cussed in this section, describe other basic notations such as fractions and radicals, or deal
with general functions such as setting style properties and error handling.

3.3.1 Horizontally Group Any Number of Subexpressions

3.3.1.1 Description

An mrowelement is used to group together any number of subexpressions, usually con-
sisting of one or moremoelements acting as ‘operators’ on one or more other expressions
which are their ‘operands’.

Several elements automatically treat their arguments as if they were contained in anmrow
element. See the discussion of inferredmrows in section3.1.3. See alsomfenced (sec-
tion 3.3.8), which can effectively form anmrowcontaining its arguments separated by
commas.

3.3.1.2 Attributes ofmrow

None (except the attributes allowed for all MathML elements, listed in section2.3.4).

mrowelements are typically rendered visually as a horizontal row of their arguments, left to
right in the order in which the arguments occur, or audibly as a sequence of renderings of
the arguments. The description in section3.2.4of suggested rendering rules formoelements
assumes that all horizontal spacing between operators and their operands is added by the
rendering ofmoelements (or, more generally, embellished operators), not by the rendering
of themrows they are contained in.

MathML is designed to allow renderers to automaticallylinebreakexpressions (that is, to
break excessively long expressions into several lines), without requiring authors to specify
explicitly how this should be done. This is because linebreaking positions can’t be chosen
well without knowing the width of the display device and the current font size, which
for many uses of MathML will not be known except by the renderer at the time of each
rendering.

62

Determining good positions for linebreaks is complex, and rules for this are not described
here; whether and how it is done is up to each MathML renderer. Typically, linebreak-
ing will involve selection of ‘good’ points for insertion of linebreaks between successive
arguments ofmrowelements.

Although MathML does not require linebreaking or specify a particular linebreaking algo-
rithm, it has several features designed to allow such algorithms to produce good results.
These include the use of special entities for certain operators, including invisible opera-
tors (see section3.2.4), or for providing hints related to linebreaking when necessary (see
section3.2.5), and the ability to use nestedmrows to describe subexpression structure (see
below).

mrow of one argument

MathML renderers are required to treat anmrowelement containing exactly one argument
as equivalent in all ways to the single argument occurring alone, provided there are no
attributes on themrowelement’s begin tag. If there are attributes on themrowelement’s
begin tag, no requirement of equivalence is imposed. This equivalence condition is intended
to simplify the implementation of MathML-generating software such as template-based
authoring tools. It directly affects the definitions of embellished operator and space-like
element and the rules for determining the default value of theform attribute of anmo
element; see sections 3.2.4 and 3.2.6. See also the discussion of equivalence of MathML
expressions in chapter7.

3.3.1.3 Proper grouping of subexpressions usingmrow

Subexpressions should be grouped by the document author in the same way as they are
grouped in the mathematical interpretation of the expression; that is, according to the un-
derlying ‘syntax tree’ of the expression. Specifically, operators and their mathematical ar-
guments should occur in a singlemrow; more than one operator should occur directly in
onemrowonly when they can be considered (in a syntactic sense) to act together on the
interleaved arguments, e.g. for a single parenthesized term and its parentheses, for chains
of relational operators, or for sequences of terms separated by+ and- . A precise rule is
given below.

Proper grouping has several purposes: it improves display by possibly affecting spacing; it
allows for more intelligent linebreaking and indentation; and it simplifies possible semantic
interpretation of presentation elements by computer algebra systems, and audio renderers.

Although improper grouping will sometimes result in suboptimal renderings, and will often
make interpretation other than pure visual rendering difficult or impossible, any grouping of
expressions usingmrowis allowed in MathML syntax; that is, renderers should not assume
the rules for proper grouping will be followed.

Precise rule for proper grouping

A precise rule for when and how to nest subexpressions usingmrowis especially desirable
when generating MathML automatically by conversion from other formats for displayed
mathematics, such as TEX, which don’t always specify how subexpressions nest. When a
precise rule for grouping is desired, the following rule should be used:

Two adjacent operators (i.e.moelements, possibly embellished), possibly separated by
operands (i.e. anything other than operators), should occur in the samemrowonly when

63

the left operator has an infix or prefix form (perhaps inferred), the right operator has an in-
fix or postfix form, and the operators are listed in the same group of entries in the operator
dictionary provided in appendixB. In all other cases, nestedmrows should be used.

When forming a nestedmrow(during generation of MathML) which includes just one of
two successive operators with the forms mentioned above (which mean that either operator
could in principle act on the intervening operand or operands), it is necessary to decide
which operator acts on those operands directly (or would do so, if they were present).
Ideally, this should be determined from the original expression; for example, in conver-
sion from an operator-precedence-based format, it would be the operator with the higher
precedence. If this cannot be determined directly from the original expression, the operator
which occurs later in the suggested operator dictionary (appendixB) can be assumed to
have a higher precedence for this purpose.

Note that the above rule has no effect on whether any MathML expression is valid, only on
the recommended way of generating MathML from other formats for displayed mathemat-
ics or directly from written notation.

(Some of the terminology used in stating the above rule in defined in section3.2.4.)

3.3.1.4 Examples ofmrow

As an example, 2x+y+x should be written as:

<mrow>
<mrow>

<mn> 2 </mn>
<mo> ⁢ </mo>
<mi> x </mi>

</mrow>
<mo> + </mo>
<mi> y </mi>
<mo> - </mo>
<mi> z </mi>

</mrow>

The proper encoding of (x, y) furnishes a less obvious example of nestingmrows:

<mrow>
<mo> (</mo>
<mrow>

<mi> x </mi>
<mo> , </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>

In this case, a nestedmrowis required inside the parentheses, since parentheses and com-
mas, thought of as fence and separator ‘operators’, do not act together on their arguments.

64

3.3.2 Fractions

3.3.2.1 Description

Themfrac element is used for fractions. It can also be used to mark up fraction-like objects
such as binomial coefficients and Legendre symbols. The syntax formfrac is <mfrac>
numerator denominator </mfrac>

3.3.2.2 Attributes ofmfrac

Name values default
linethickness number [v-unit] | thin | medium | thick 1 (rule thickness)
numalign left | center | right center
denomalign left | center | right center
beveled true | false false

The linethickness attribute indicates the thickness of the horizontal ‘fraction bar’, or
‘rule’, typically used to render fractions. A fraction withlinethickness ="0" renders
without the bar, and might be used within binomial coefficients. Alinethickness greater
than one might be used with nested fractions. These cases are shown below:(a

b

)
a
b

c
d

In general, the value oflinethickness can be a number, as a multiplier of the default
thickness of the fraction bar (the default thickness is not specified by MathML), or a number
with a unit of vertical length (see section2.3.3), or one of the keywordsmedium(same as
1), thin (thinner than 1, otherwise up to the renderer), orthick (thicker than 1, otherwise
up to the renderer).

Thenumalign anddenomalign attributes control the horizontal alignment of the numer-
ator and denominator respectively. Typically, numerators and denominators are centered,
but a very long numerator or denominator might be displayed on several lines and a left
alignment might be more appropriate for displaying them.

Issue (align-examples):Should there be examples of left and right alignment here?

The beveled attribute determines whether the fraction is displayed with the numerator
above the denominator separated by a horizontal line or whether a diagonal line is used to
separate a slightly raised numerator from a slightly lowered denominator. The later form
corresponds to the attribute value beingtrue and provides for a more compact form for
simple numerator and denominators

Issue (beveled-examples):Examples need to go here: 3/4 1/x^2

The mfrac element setsdisplaystyle to false , or if it was already false increments
scriptlevel by 1, within numeratoranddenominator. These attributes are inherited by
every element from its rendering environment, but can be set explicitly only on themstyle
element. (See section3.3.4.)

3.3.2.3 Examples ofmfrac

The examples shown above can be represented in MathML as:

65

<mrow>
<mo> (</mo>
<mfrac linethickness="0">

<mi> a </mi>
<mi> b </mi>

</mfrac>
<mo>) </mo>

</mrow>
<mfrac linethickness="2">

<mfrac>
<mi> a </mi>
<mi> b </mi>

</mfrac>
<mfrac>

<mi> c </mi>
<mi> d </mi>

</mfrac>
</mfrac>

A more generic example is:

<mfrac>
<mrow>

<mn> 1 </mn>
<mo> + </mo>
<msqrt>

<mn> 5 </mn>
</msqrt>

</mrow>
<mn> 2 </mn>

</mfrac>

3.3.3 Radicals

3.3.3.1 Description

These elements construct radicals. Themsqrt element is used for square roots, while the
mroot element is used to draw radicals with indices, e.g. a cube root. The syntax for these
elements is

<msqrt> base </msqrt>
<mroot> base index </mroot>

The mroot element requires exactly 2 arguments. However,msqrt accepts any number
of arguments; if this number is not 1, its contents are treated as a single ‘inferredmrow’
containing its arguments, as described in section3.1.3.

3.3.3.2 Attributes ofmsqrt andmroot

None (except the attributes allowed for all MathML elements, listed in section2.3.4).

66

The mroot element incrementsscriptlevel by 2, and setsdisplaystyle to false ,
within index, but leaves both attributes unchanged withinbase. Themsqrt element leaves
both attributes unchanged within all its arguments. These attributes are inherited by every
element from its rendering environment, but can be set explicitly only onmstyle . (See
section3.3.4.)

3.3.4 Style Change

3.3.4.1 Description

Themstyle element is used to make style changes which affect the rendering of its con-
tents.mstyle can be given any attribute accepted by any MathML presentation element; it
can also be given certain special attributes listed below.

The mstyle element accepts any number of arguments. If this number is not 1, its con-
tents are treated as a single ‘inferredmrow’ formed from all its arguments, as described in
section3.1.3.

Loosely speaking, the effect of themstyle element is to change the default value of an
attribute for the elements it contains. Style changes work in one of two ways, depending on
whether an attribute’s default value is documented asinherited. The two cases are:

• Some attributes, such asdisplaystyle or scriptlevel (explained below), are
inherited from the surrounding context when they are not explicitly set. Specify-
ing such an attribute on anmstyle element sets the value which will be inherited
by its child elements. Unless a child element overrides this inherited value, it
will pass it on to its children, and they will pass it to their children, and so on.
But if a child element does override it, either by an explicit attribute setting or
automatically (as is common forscriptlevel), the new (overriding) value will
be passed on to that element’s children, and then to their children, etc, until it is
again overridden.

• Other attributes, such aslinethickness on mfrac, have default values which
are not normally inherited. That is, if thelinethickness attribute is not set on
the begin tag of anmfrac element, it will normally use the default value of1, even
if it was contained in a largermfrac element which set this attribute to a different
value. For attributes like this, specifying a value with anmstyle element has the
effect of changing the default value for all elements within its scope. The net ef-
fect is that setting the attribute value withmstyle propagates the change to all the
elements it contains directly or indirectly, except for the individual elements on
which the value is overridden. Unlike in the case of inherited attributes, elements
which explicitly override this attribute have no effect on this attribute’s value in
their children.

Note that attribute values inherited from anmstyle , in either manner, affect a given element
in themstyle ’s content only if that attribute is not given a value in that element’s begin tag.
On any element for which the attribute is set explicitly, the value specified on the begin tag
overrides the inherited value. The only exception to this rule is when the value given on the
begin tag is documented as specifying an incremental change to the value inherited from
that element’s context or rendering environment.

Note also that the difference between inherited and non-inherited attributes set bymstyle ,
explained above, only matters when the attribute is set on some element within themstyle ’s
contents which has children which also set it. Thus it never matters for attributes, such as
color , which can only be set on token elements (or onmstyle itself).

67

There is one exceptional element,mpadded, whose attributes cannot be set withmstyle .
When the attributeswidth , height anddepth are specified on anmstyle element, they
apply only to themspaceelement. Similarly, whenlspace is set withmstyle , it applies
only to themoelement.

3.3.4.2 Attributes accepted bymstyle

As stated above,mstyle accepts all attributes of all MathML presentation elements. Addi-
tionally,mstyle can be given the following special attributes which are implicitly inherited
by every MathML element as part of its rendering environment:

Name values default
scriptlevel [’+’ | ’-’] unsigned-integer inherited
displaystyle true | false inherited
scriptsizemultiplier number 0.71
scriptminsize number v-unit 8pt
color #rgb | #rrggbb | html-color-name inherited
background #rgb | #rrggbb | transparent | html-color-name transparent
veryverythinmathspace number h-unit 0.0555556em
verythinmathspace number h-unit 0.111111em
thinmathspace number h-unit 0.166667em
mediummathspace number h-unit 0.222222em
thickmathspace number h-unit 0.277778em
verythickmathspace number h-unit 0.333333em
veryverythickmathspace number h-unit 0.388889em

scriptlevel anddisplaystyle

MathML uses two attributes,displaystyle andscriptlevel , to control orthogonal pre-
sentation features that TEX encodes into onestyle attribute with values \displaystyle,
\textstyle, \scriptstyle, and \scriptscriptstyle. The corresponding values ofdisplaystyle
andscriptlevel for those TEX styles would betrue and0, false and0, false and1,
andfalse and2, respectively.

The main effect of thedisplaystyle attribute is that it determines the effect of other at-
tributes such as thelargeop andmovablescripts attributes ofmo. The main effect of the
scriptlevel attribute is to control the font size. Typically, the higher thescriptlevel ,
the smaller the font size. (Non-visual renderers can respond to the font size in an analo-
gous way for their medium.) More sophisticated renderers may also choose to use these
attributes in other ways, such as rendering expressions withdisplaystyle =false in a
more vertically compressed manner.

These attributes are given initial values for the outermost expression of an instance of
MathML based on its rendering environment. A short list of layout schemata described
below modify these values for some of their subexpressions. Otherwise, values are deter-
mined by inheritance whenever they are not directly specified on a given element’s start
tag.

For an instance of MathML embedded in a textual data format (such as HTML) in ‘dis-
play’ mode, i.e. in place of a paragraph,displaystyle = true andscriptlevel = 0 for

68

the outermost expression of the embedded MathML; if the MathML is embedded in ‘in-
line’ mode, i.e. in place of a character,displaystyle = false andscriptlevel = 0 for
the outermost expression. See chapter7 for further discussion of the distinction between
‘display’ and ‘inline’ embedding of MathML and how this can be specified in particular
instances. In general, a MathML renderer may determine these initial values in whatever
manner is appropriate for the location and context of the specific instance of MathML it
is rendering, or if it has no way to determine this, based on the way it is most likely to be
used; as a last resort it is suggested that it use the most generic valuesdisplaystyle =
"true " andscriptlevel = "0".

The MathML layout schemata which typically display some of their arguments in smaller
type or with less vertical spacing, namely the elements for scripts, fractions, radicals, and
tables or matrices, setdisplaystyle to false , and in some cases increasescriptlevel ,
for those arguments. The new values are inherited by all subexpressions within those argu-
ments, unless they are overridden.

The specific rules by which each element modifiesdisplaystyle and/orscriptlevel
are given in the specification for each element which does so; the complete list of elements
which modify either attribute are: the ‘scripting’ elementsmsub, msup, msubsup, munder,
mover, munderover, andmmultiscripts ; and the elementsmfrac, mroot, andmtable.

Whenmstyle is given ascriptlevel attribute with no sign, it sets the value ofscriptlevel
within its contents to the value given, which must be a nonnegative integer. When the at-
tribute value consists of a sign followed by an integer, the value ofscriptlevel is in-
cremented (for ’+’) or decremented (for ’-’) by the amount given. The incremental syntax
for this attribute is an exception to the general rules for setting inherited attributes using
mstyle , and is not allowed by any other attribute onmstyle .

Whenever thescriptlevel is changed, either automatically or by being explicitly incre-
mented, decremented, or set, the current font size is multiplied by the value ofscriptsizemultiplier
to the power of the change inscriptlevel . For example, ifscriptlevel is increased by
2, the font size is multiplied byscriptsizemultiplier twice in succession; ifscriptlevel
is explicitly set to 2 when it had been 3, the font size is divided byscriptsizemultiplier .

The default value ofscriptsizemultiplier is less than one (in fact, it is approximately
the square root of 1/2), resulting in a smaller font size with increasingscriptlevel .
To prevent scripts from becoming unreadably small, the font size is never allowed to go
below the value ofscriptminsize as a result of a change toscriptlevel , though it
can be set to a lower value using thefontsize attribute (section3.2.1) on mstyle or
on token elements. If a change toscriptlevel would cause the font size to become
lower thanscriptminsize using the above formula, the font size is instead set equal to
scriptminsize within the subexpression for whichscriptlevel was changed.

In the syntax forscriptminsize , v-unit represents a unit of vertical length (as described
in section2.3.3). The most common unit for specifying font sizes in typesetting ispt
(points).

Explicit changes to thefontsize attribute have no effect on the value ofscriptlevel .

Further details onscriptlevel for renderers

For MathML renderers which support CSS1 style sheets, or some other analogous style
sheet mechanism, absolute or relative changes tofontsize (or other attributes) may occur

69

implicitly on any element in response to a style sheet. Changes tofontsize of this kind
also have no effect onscriptlevel . A style sheet-induced change tofontsize overrides
scriptminsize in the same way as for an explicit change tofontsize in the element’s
begin tag (discussed above), whether it is specified in the style sheet as an absolute or
a relative change. (However, any subsequentscriptlevel -induced change tofontsize
will still be affected by it.) As is required for inherited attributes in CSS1, the style sheet-
modifiedfontsize is inherited by child elements.

If the same element is subject to both a style sheet-induced and an automatic (scriptlevel -
related) change to its ownfontsize , the scriptlevel -related change is done first - in
fact, in the simplest implementation of the element-specific rules forscriptlevel , this
change would be done by the element’s parent as part of producing the rendering prop-
erties it passes to the given element, since it is the parent element which knows whether
scriptlevel should be changed for each of its child elements.

If the element’s ownfontsize is changed by a style sheet and it also changesscriptlevel
(and thusfontsize) for one of its children, the style sheet-induced change is done first,
followed by the change inherited by that child. If more than one child’sscriptlevel is
changed, the change inherited by each child has no effect on the other children. (As a
mnemonic rule which applies to a ‘parse tree’ of elements and their children, style sheet-
induced changes tofontsize can be associated to nodes of the tree, i.e. to MathML el-
ements, andscriptlevel -related changes can be associated to the edges between parent
and child elements; then the order of the associated changes corresponds to the order of
nodes and edges in each path down the tree.) For general information on the relative order
of processing of properties set by style sheets vs. by attributes, see the appropriate subsec-
tion of CSS-compatible attributes in section2.3.3.3.

If scriptlevel is changed incrementally by anmstyle element which also sets certain
other attributes, the overall effect of the changes may depend on the order in which they
are processed. In such cases, the attributes in the following list should be processed in the
following order, regardless of the order in which they occur in the XML-format attribute
list of the mstyle begin tag:scriptsizemultiplier , scriptminsize , scriptlevel ,
fontsize .

Note thatscriptlevel can, in principle, attain any integral value by being decremented
sufficiently, even though it can only be explicitly set to nonnegative values. Negative values
of scriptlevel generated in this way are legal and should work as described, generating
font sizes larger than those of the surrounding expression. Sincescriptlevel is initially
0 and never decreases automatically, it will always be nonnegative unless it is decremented
past 0 usingmstyle .

Explicit decrements ofscriptlevel after the font size has been limited byscriptminsize
as described above would produce undesirable results. This might occur, for example, in a
representation of a continued fraction, in which the scriptlevel was decremented for part of
the denominator back to its value for the fraction as a whole, if the continued fraction itself
was located in a place which had a highscriptlevel . To prevent this problem, MathML
renderers should, when decrementingscriptlevel , use as the initial font size the value
the font size would have had if it had never been limited byscriptminsize . They should
not, however, ignore the effects of explicit settings offontsize , even to values below
scriptminsize .

Since MathML renderers may be unable to make use of arbitrary font sizes with good re-
sults, they may wish to modify the mapping from scriptlevel to fontsize to produce better

70

renderings in their judgement. In particular, if fontsizes have to be rounded to available val-
ues, or limited to values within a range, the details of how this is done are up to the renderer.
Renderers should, however, ensure that a series of incremental changes toscriptlevel
resulting in its return to the same value for some subexpression that it had in a surround-
ing expression results in the same fontsize for that subexpression as for the surrounding
expression.

Color and background attributes

Thecolor attribute controls the color in which the content of tokens is rendered. Addition-
ally, when inherited frommstyle or from a MathML expression’s rendering environment,
it controls the color of all other drawing by MathML elements, including the lines or radical
signs that can be drawn bymfrac, mtable, or msqrt.

Note that thebackgroundattribute, though not inherited, has the default value ‘transparent’
(as in CSS1), which effectively allows an element’s parent to control its background.

The values ofcolor andbackgroundcan be specified as a string consisting of ’#’ followed
without intervening whitespace by either 1-digit or 2-digit hexadecimal values for the red,
green, and blue components, respectively, of the desired color, with the same number of
digits used for each component (or as the keyword ‘transparent’ forbackground). The
hexadecimal digits are not case-sensitive. The possible 1-digit values range from 0 (com-
ponent not present) to F (component fully present), and the possible 2-digit values range
from 00 (component not present) to FF (component fully present), with the 1-digit value
x being equivalent to the 2-digit valuexx (rather thanx0). % x0 would be a more strictly
correct notation, but renders terribly in some browsers.

These attributes can also be specified as anhtml-color-name , which is defined in the
following subsection.

CSS compatibility of color attributes

The color syntax described above is a subset of the syntax of thecolor andbackground-color
properties of CSS1. (Thebackground-color syntax is in turn a subset of the full CSS1
background property syntax, which also permits specification of (for example) back-
ground images with optional repeats. The more general attribute namebackground is used
in MathML to facilitate possible extensions to the attribute’s scope in future versions of
MathML.)

Color values on either attribute can also be specified as anhtml-color-name , that is, as
one of the color-name keywords defined in [HTML40]. The list of allowed color names
includes most of the commonest English color words, though notorange, brown, or pink ,
and also includes a number of less-common color words; see the reference for the com-
plete list and the equivalent RGB values. Note that the color name keywords are not case-
sensitive, unlike most keywords in MathML attribute values. (The same color name key-
words are defined for the CSS1color property, but with unspecified RGB values. See also
section2.3.3.3.)

Precise background region not specified

The suggested MathML visual rendering rules do not define the precise extent of the re-
gion whose background is affected by using thebackground attribute onmstyle , except

71

that, whenmstyle ’s content does not have negative dimensions and its drawing region is
not overlapped by other drawing due to surrounding negative spacing, this region should
lie behind all the drawing done to render the content of themstyle , but should not lie
behind any of the drawing done to render surrounding expressions. The effect of overlap
of drawing regions caused by negative spacing on the extent of the region affected by the
backgroundattribute is not defined by these rules.

3.3.4.3 Example ofmstyle

The example of limiting the stretchiness of a parenthesis shown in the section on <mo>,

<mrow>
<mo maxsize="1"> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo maxsize="1">) </mo>

</mrow>

can be rewritten usingmstyle as:

<mstyle maxsize="1">
<mrow>

<mo> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo>) </mo>

</mrow>
</mstyle>

3.3.5 Error Message

3.3.5.1 Description

Themerror element displays its contents as an ‘error message’. This might be done, for ex-
ample, by displaying the contents in red, flashing the contents, or changing the background
color. The contents can be any expression or expression sequence.

merror accepts any number of arguments; if this number is not 1, its contents are treated
as a single ‘inferredmrow’ as described in section3.1.3.

The intent of this element is to provide a standard way for programs thatgenerateMathML
from other input to report syntax errors in their input. Since it is anticipated that preproces-
sors that parse input syntaxes designed for easy hand entry will be developed to generate
MathML, it is important that they have the ability to indicate that a syntax error occurred
at a certain point. See section7.2.2.

The suggested use ofmerror for reporting syntax errors is for a preprocessor to replace the
erroneous part of its input with anmerror element containing a description of the error,
while processing the surrounding expressions normally as far as possible. By this means,
the error message will be rendered where the erroneous input would have appeared, had it
been correct; this makes it easier for an author to determine from the rendered output what
portion of the input was in error.

No specific error message format is suggested here, but as with error messages from any
program, the format should be designed to make as clear as possible (to a human viewer

72

of the rendered error message) what was wrong with the input and how it can be fixed.
If the erroneous input contains correctly formatted subsections, it may be useful for these
to be preprocessed normally and included in the error message (within the contents of the
merror element), taking advantage of the ability ofmerror to contain arbitrary MathML
expressions rather than only text.

3.3.5.2 Attributes ofmerror

None (except the attributes allowed for all MathML elements, listed in section2.3.4).

3.3.5.3 Example ofmerror

If a MathML syntax-checking preprocessor received the input

<mfraction>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mn> 2 </mn>

</mfraction>

which contains the non-MathML elementmfraction (presumably in place of the MathML
elementmfrac), it might generate the error message

<merror>
<mtext> Unrecognized element: mfraction;

arguments were: </mtext>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mtext> and </mtext>
<mn> 2 </mn>

</merror>

Note that the preprocessor’s input is not, in this case, valid MathML, but the error message
it outputs is valid MathML.

3.3.6 Adjust Space Around Content

3.3.6.1 Description

An mpaddedelement renders the same as its content, but with its overall size and other
dimensions (such as baseline position) modified according to its attributes. Thempadded
element does not rescale (stretch or shrink) its content; its only effect is to modify the ap-
parent size and position of the ‘bounding box’ around its content, so as to affect the relative
position of the content with respect to the surrounding elements. The name of the element
reflects the use ofmpaddedto effectively add ‘padding’, or extra space, around its content.
If the ‘padding’ is negative, it is possible for the content ofmpaddedto be rendered out-
side thempaddedelement’s bounding box; see below for warnings about several potential
pitfalls of this effect.

Thempaddedelement accepts any number of arguments; if this number is not 1, its contents
are treated as a single ‘inferredmrow’ as described in section3.1.3.

It is suggested that audio renderers add (or shorten) time delays based on the attributes
representing horizontal space (width andlspace).

73

Name values default
width [+ | -] unsigned-number(% [pseudo-unit] | pseudo-unit| h-unit | namedspace) same as content
lspace [+ | -]unsigned-number(% [pseudo-unit] | pseudo-unit| h-unit) 0
height [+ | -]unsigned-number(% [pseudo-unit] | pseudo-unit| v-unit) same as content
depth [+ | -]unsigned-number(% [pseudo-unit] | pseudo-unit| v-unit) same as content

3.3.6.2 Attributes ofmpadded

(Thepseudo-unitsyntax symbol is described below.)

These attributes modify the dimensions of the ‘bounding box’ of thempaddedelement.
The dimensions (which have the same names as the attributes) are defined in the next
subsection. Depending on the format of the attribute value, a dimension may be set to a
new value, or to an incremented or decremented version of the content’s corresponding
dimension. Values may be specified as multiples or percentages of any of the dimensions
of the normal rendering of the element’s content (using so-called ‘pseudo-units’), or as
multiples of standard section2.3.3.2.

If an attribute value begins with a+ or - sign, it specifies an increment or decrement of the
corresponding dimension by the following length value (interpreted as explained below).
Otherwise, the corresponding dimension is set directly to the following length value. Note
that the+ and- do not mean that the following value is positive or negative, even when an
explicit length unit (h-unit or v-unit) is given. In particular, these attributes cannot directly
set a dimension to a negative value.

Length values (after the optional sign, which is not part of the length value) can be specified
in several formats. Each format begins with anunsigned-number, which may be followed
by a%sign and an optional ‘pseudo-unit’ (denoted bypseudo-unitin the attribute syntaxes
above), by a pseudo-unit alone, or by one of the length units (denoted byh-unit or v-unit)
specified in section2.3.3.3, not including%. The possible pseudo-units are the keywords
width , lspace , height , anddepth; they each represent the length of the same-named di-
mension of thempaddedelement’s content (not of thempaddedelement itself). The lengths
represented byh-unit or v-unit are described in section2.3.3.3.

In any of these formats, the length value specified is the product of: the specified number;
0.01 if %is given; and the length represented by the unit or pseudo-unit. If no pseudo-unit
is given after%, the one with the same name as the attribute being specified is assumed.

Some examples of attribute formats using pseudo-units (explicit or default) are as follows:
depth="100% height" anddepth="1.0 height" both set the depth of thempaddedel-
ement to the height of its content.depth="105%"sets the depth to 1.05 times the content’s
depth, and eitherdepth="+100%"or depth="200%"sets the depth to twice the content’s
depth.

Dimensions that would be positive if the content was rendered normally cannot be made
negative usingmpadded; a positive dimension is set to 0 if it would otherwise become neg-
ative. Dimensions which are initially 0 can be made negative, but this should generally be
avoided. See the warnings below on the use of negative spacing for ‘tweaking’ or conveying
meaning.

The rules given above imply that all of the following attribute settings have the same effect,
which is to leave the content’s dimensions unchanged:

74

<mpadded width="+0em"> ... </mpadded>
<mpadded width="+0%"> ... </mpadded>
<mpadded width="-0em"> ... </mpadded>
<mpadded width="- 0 height"> ... </mpadded>
<mpadded width="100%"> ... </mpadded>
<mpadded width="100% width"> ... </mpadded>
<mpadded width="1 width"> ... </mpadded>
<mpadded width="1.0 width"> ... </mpadded>
<mpadded> ... </mpadded>

3.3.6.3 Meanings of dimension attributes

See appendixF for further information about some of the typesetting terms used here.

The width attribute refers to the overall horizontal width of a bounding box. By default
(i.e. whenlspace is not modified), the bounding box of the content of anmpaddedelement
should be rendered flush with the left edge of thempaddedelement’s bounding box. Thus,
increasingwidth alone effectively adds space on the right edge of the box.

The lspace attribute refers to the amount of space between the left edge of a bounding
box and where the rendering of its contents’ bounding box actually begins. Unlike the
other dimensions,lspace does not correspond to a real property of a bounding box, but
exists only transiently during the computations done by each instance ofmpadded. It is
provided so that there is a way to add space on the left edge of a bounding box.

The rationale behind usingwidth andlspace to control horizontal padding instead of more
symmetric attributes, such as a hypotheticalrspace and lspace , is that it is desirable to
have a ‘width’ pseudo unit, in part because ‘width’ is an actual property of a bounding box.

Theheight attribute refers to the amount of vertical space between the baseline (the line
along the bottom of most letter glyphs in normal text rendering) and the top of the bounding
box.

Thedepth attribute refers to the amount of vertical space between the bottom of the bound-
ing box and the baseline.

MathML renderers should ensure that, except for the effects of the attributes, relative spac-
ing between the contents ofmpaddedand surrounding MathML elements is not modified
by replacing anmpaddedelement with anmrowelement with the same content. This holds
even if linebreaking occurs within thempaddedelement. However, if anmpaddedelement
with non-default attribute values is subjected to linebreaking, MathML does not define how
its attributes or rendering interact with the linebreaking algorithm.

3.3.6.4 Warning: nonportability of ‘tweaking’

A likely temptation for the use of thempaddedandmspaceelements (and perhaps also
mphantomandmtext) will be for an author to improve the spacing generated by a specific
renderer by slightly modifying it in specific expressions, i.e. to ‘tweak’ the rendering.

Authors are strongly warned thatdifferent MathML renderers may use different spacing
rules for computing the relative positions of rendered symbols in expressions which have
no explicit modifications to their spacing; if renderer B improves upon renderer A’s spacing
rules, explicit spacing added to improve the output quality of renderer A may produce very
poor results in renderer B, very likely worse than without any ‘tweaking’ at all.

75

Even when a specific choice of renderer can be assumed, its spacing rules may be improved
in successive versions, so that the effect of tweaking in a given MathML document may
grow worse with time. Also, when style sheet mechanisms are extended to MathML, even
one version of a renderer may use different spacing rules for users with different style
sheets.

Therefore, it is suggested that MathML markup never usempaddedor mspaceelements to
tweak the rendering of specific expressions, unless the MathML is generated solely to be
viewed using one specific version of one MathML renderer, using one specific style sheet
(if style sheets are available in that renderer).

In cases where the temptation to improve spacing proves too strong, careful use ofmpadded,
mphantom, or the alignment elements (section3.5.5) may give more portable results than
the direct insertion of extra space usingmspaceor mtext . Advice given to the implemen-
tors of MathML renderers might be still more productive, in the long run.

3.3.6.5 Warning: spacing should not be used to convey meaning

MathML elements which permit ‘negative spacing’, namelymspace, mpadded, andmtext ,
could in theory be used to simulate new notations or ‘overstruck’ characters by the visual
overlap of the renderings of more than one MathML subexpression.

This practice isstrongly discouraged in all situations, for the following reasons:

• it will give different results in different MathML renderers (so the warning about
‘tweaking’ applies);

• it is likely to appear much worse than a more standard construct supported by
good renderers;

• such expressions are almost certain to be uninterpretable by audio renderers,
computer algebra systems, text searches for standard symbols, or other proces-
sors of MathML input.

More generally, any construct which uses spacing to convey mathematical meaning, rather
than simply as an aid to viewing expression structure, is discouraged. That is, the constructs
which are discouraged are those which would be interpreted differently by a human viewer
of rendered MathML if all explicit spacing was removed.

If such constructs are used in spite of this warning, they should be enclosed in asemantics
element which also provides an additional MathML expression which can be interpreted in
a standard way.

For example, the MathML expression

<mrow>
<mpadded width="0"> <mi> C </mi> </mpadded>
<mspace width="0.3em"/>
<mtext> | </mtext>

</mrow>

forms an overstruck symbol in violation of the policy stated above; it might be intended to
represent the set of complex numbers for a MathML renderer which lacks support for the
standard symbol used for this purpose. This kind of construct should always be avoided in
MathML, for the reasons stated above; indeed, it should never be necessary for standard
symbols, since a MathML renderer with no better method of rendering them is free to use
overstriking internally, so that it can still support general MathML input.

76

However, if for whatever reason such a construct is used in MathML, it should always be
enclosed in asemantics element such as

<semantics>
<mrow>

<mpadded width="0"> <mi> C </mi> </mpadded>
<mspace width="0.3em"/>
<mtext> | </mtext>

</mrow>
<annotation-xml encoding="mathml">

<mi> ℂ </mi>
</annotation-xml>

</semantics>

which provides an alternative, standard encoding for the desired symbol, which is much
more easily interpreted than the construct using negative spacing. (The alternative encoding
in this example uses MathML presentation elements; the content elements described in
chapter4 should also be considered.)

(The above warning also applies to most uses of rendering attributes to alter the meaning
conveyed by an expression, with the exception of attributes onmi (such asfontweight)
used to distinguish one variable from another.)

3.3.7 Making Content Invisible

3.3.7.1 Description

The mphantomelement renders invisibly, but with the same size and other dimensions,
including baseline position, that its contents would have if they were rendered normally.
mphantomcan be used to align parts of an expression by invisibly duplicating subexpres-
sions.

Themphantomelement accepts any number of arguments; if this number is not 1, its con-
tents are treated as a single ‘inferredmrow’ formed from all its arguments, as described in
section3.1.3.

It is suggested that audio renderers rendermphantomelements in an analogous way for
their medium, by rendering them as silence of the same duration as the normal rendering
of their contents.

3.3.7.2 Attributes ofmphantom

None (except the attributes allowed for all MathML elements, listed in section2.3.4).

Note that it is possible to wrap both anmphantomand anmpaddedelement around one
MathML expression, as in<mphantom><mpadded attribute-settings> ... </mpadded></mphantom>,
to change its size and make it invisible at the same time.

MathML renderers should ensure that the relative spacing between the contents of an
mphantomelement and the surrounding MathML elements is the same as it would be if the
mphantomelement were replaced by anmrowelement with the same content. This holds
even if linebreaking occurs within themphantomelement.

For the above reason,mphantomis not considered space-like (section3.2.6) unless its con-
tent is space-like, since the suggested rendering rules for operators are affected by whether

77

nearby elements are space-like. Even so, the warning about the legal grouping of space-like
elements may apply to uses ofmphantom.

There is one situation where the preceding rule for rendering anmphantommay not give the
desired effect. When anmphantomis wrapped around a subsequence of the arguments of
anmrow, the default determination of theform attribute for anmoelement within the subse-
quence can change. (See the default value of theform attribute described in section3.2.4.)
It may be necessary to add an explicitform attribute to such anmoin these cases. This is
illustrated in the following example.

3.3.7.3 Example ofmphantom

In this example,mphantomis used to ensure alignment of corresponding parts of the nu-
merator and denominator of a fraction:

<mfrac>
<mrow>

<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mrow>

<mi> x </mi>
<mphantom>

<mo form="infix"> + </mo>
<mi> y </mi>

</mphantom>
<mo> + </mo>
<mi> z </mi>

</mrow>
</mfrac>

This would render as something like
x+y+z
x +z

rather than as
x+y+z

x+z
The explicit attribute settingform="infix" on themoelement inside themphantomsets the
form attribute to what it would have been in the absence of the surroundingmphantom.
This is necessary since otherwise, the+ sign would be interpreted as a prefix operator,
which might have slightly different spacing.

Alternatively, this problem could be avoided without any explicit attribute settings, by
wrapping each of the arguments<mo>+</mo>and<mi>y</mi> in its own mphantomel-
ement, i.e.

<mfrac>
<mrow>

78

<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mrow>

<mi> x </mi>
<mphantom>

<mo> + </mo>
</mphantom>
<mphantom>

<mi> y </mi>
</mphantom>
<mo> + </mo>
<mi> z </mi>

</mrow>
</mfrac>

3.3.8 Content Inside Pair of Fences

3.3.8.1 Description

Themfencedelement provides a convenient form in which to express common constructs
involving fences (i.e. braces, brackets, and parentheses), possibly including separators (such
as comma) between the arguments.

For example,<mfenced> <mi>x</mi> </mfenced>renders as ‘(x)’and is equivalent to

<mrow> <mo> (</mo> <mi>x</mi> <mo>) </mo> </mrow>

and<mfenced> <mi>x</mi> <mi>y</mi> </mfenced>renders as ‘(x, y)’ and is equiva-
lent to

<mrow>
<mo> (</mo>
<mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow>
<mo>) </mo>

</mrow>

Individual fences or separators are represented usingmoelements, as described in sec-
tion 3.2.4. Thus, anymfencedelement is completely equivalent to an expanded form de-
scribed below; either form can be used in MathML, at the convenience of an author or of
a MathML-generating program. A MathML renderer is required to render either of these
forms in exactly the same way.

In general, anmfencedelement can contain zero or more arguments, and will enclose them
between fences in anmrow; if there is more than one argument, it will insert separators
between adjacent arguments, using an additional nestedmrowaround the arguments and
separators for proper grouping (section3.3.1). The general expanded form is shown below.
The fences and separators will be parentheses and comma by default, but can be changed
using attributes, as shown in the following table.

79

3.3.8.2 Attributes ofmfenced

Name values default
open string (
close string)
separators character * ,

A genericmfencedelement, with all attributes explicit, looks as follows:

<mfenced open="opening-fence"
close="closing-fence"
separators="sep#1 sep#2 ... sep#(n-1)" >

arg#1
...
arg#n

</mfenced>

The opening-fence and closing-fence are arbitrary strings. (Since they are used as
the content ofmoelements, any whitespace they contain will be trimmed and collapsed as
described in section2.3.5.)

The value ofseparators is a sequence of zero or more separator characters (or entity ref-
erences), optionally separated by whitespace. Eachsep#i consists of exactly one character
or entity reference. Thus,separators=",;" is equivalent toseparators=" , ; " .

The generalmfencedelement shown above is equivalent to the following expanded form:

<mrow>
<mo fence="true"> opening-fence </mo>
<mrow>

arg#1
<mo separator="true"> sep#1 </mo>
...
<mo separator="true"> sep#(n-1) </mo>
arg#n

</mrow>
<mo fence="true"> closing-fence </mo>

</mrow>

Each argument except the last is followed by a separator. The innermrowis added for proper
grouping, as described in section3.3.1.

When there is only one argument, the above form has no separators; since<mrow> arg#1
</mrow>is equivalent toarg#1 (as described in section3.3.1), this case is also equivalent
to:

<mrow>
<mo fence="true"> opening-fence </mo>
arg#1
<mo fence="true"> closing-fence </mo>

</mrow>

80

If there are too many separator characters, the extra ones are ignored. If separator characters
are given, but there are too few, the last one is repeated as necessary. Thus, the default value
of separators ="," is equivalent toseparators ="„", separators ="„,", etcetera. If there
are no separator characters provided but some are needed, for example ifseparators ="
" or "" and there is more than one argument, then no separator elements are inserted at all
- that is, the elements<mo separator="true"> sep#i </mo> are left out entirely. Note
that this is different from inserting separators consisting ofmoelements with empty content.

Finally, for the case with no arguments, i.e.

<mfenced open="opening-fence"
close="closing-fence"
separators="anything" >

</mfenced>

the equivalent expanded form is defined to include just the fences within anmrow:

<mrow>
<mo fence="true"> opening-fence </mo>
<mo fence="true"> closing-fence </mo>

</mrow>

Note that not all ‘fenced expressions’ can be encoded by anmfencedelement. Such excep-
tional expressions include those with an ‘embellished’ separator or fence or one enclosed
in anmstyle element, a missing or extra separator or fence, or a separator with multiple
content characters. In these cases, it is necessary to encode the expression using an appro-
priately modified version of an expanded form. As discussed above, it is always permissible
to use the expanded form directly, even when it is not necessary. In particular, authors can-
not be guaranteed that MathML preprocessors won’t replace occurrences ofmfencedwith
equivalent expanded forms.

Note that the equivalent expanded forms shown above include attributes on themoelements
which identify them as fences or separators. Since the most common choices of fences and
separators already occur in the operator dictionary with those attributes, authors would not
normally need to specify those attributes explicitly when using the expanded form directly.
Also, the rules for the defaultform attribute (section3.2.4) cause the opening and closing
fences to be effectively given the valuesform="prefix" and form="postfix" respectively,
and the separators to be given the valueform="infix".

Note that it would be incorrect to usemfencedwith a separator of, for instance, ‘+’, as an
abbreviation for an expression using ‘+’ as an ordinary operator, e.g.

<mrow>
<mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi>

</mrow>

This is because the+ signs would be treated as separators, not infix operators. That is, it
would render as if they were marked up as<mo separator="true">+</mo>, which might
therefore render inappropriately.

3.3.8.3 Examples ofmfenced

(a+b)

81

<mfenced>
<mrow>

<mi> a </mi>
<mo> + </mo>
<mi> b </mi>

</mrow>
</mfenced>

Note that the abovemrowis necessary so that themfencedhas just one argument. Without
it, this would render incorrectly as ‘(a, +, b)’.

[0,1)

<mfenced open="[">
<mn> 0 </mn>
<mn> 1 </mn>

</mfenced>

f (x,y)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mfenced>

<mi> x </mi>
<mi> y </mi>

</mfenced>
</mrow>

3.3.9 Enclose Content Inside Notation

3.3.9.1 Description

The menclose element renders its content inside the enclosing notation specified by its
notation attribute.mencloseaccepts any number of arguments; if this number is not 1,
its contents are treated as a single ‘inferredmrow’ containing its arguments, as described in
section3.1.3.

3.3.9.2 Attributes ofmenclose

Name values default
notation longdiv | actuarial | radical longdiv

With notation has the valuelongdiv , the contents are drawn enclosed by a long division
symbol. A complete example of long division is accomplished by also usingmtable and
malign . Whennotation is specified asactuarial , the contents are drawn enclosed by
an actuarial symbol. The case ofnotation =radical is equivalent to themsqrt schema.

3.3.9.3 Examples

The following markup might be used to encode an elementary US-style long division prob-
lem.

82

<mtable columnspacing=’0’ rowspacing=’0’>
<mtr>

<mtd></mtd>
<mtd columnalign=’right’><mn>10</mn></mtd>

</mtr>
<mtr>

<mtd columnalign=’right’><mn>131</mn></mtd>
<mtd columnalign=’right’>

<menclose notation=’longdiv’><mn>1413</mn></menclose>
</mtd>

</mtr>
<mtr>

<mtd></mtd>
<mtd columnalign=’right’>

<mrow>
<munder>

<mn>131</mn>
<mo>_</mo>

</munder>
<mphantom><mn>3</mn></mphantom>
</mrow>

</mtd>
</mtr>
<mtr>

<mtd></mtd>
<mtd columnalign=’right’><mn>103</mn></mtd>

</mtr>
</mtable>

This might render as:

Issue (missing-graphic1):long division graphic needed

.

An example of usingmenclosefor actuarial notation is

<msub>
<mi>a</mi>
<mrow>

<menclose notation=’actuarial’>
<mi>n</mi>

</menclose>
<mo>⁢</mo>
<mi>i</mi>

</mrow>
</msub>

which renders as

a_
n|i

83

Issue (missing-graphic2):actuarial graphic needed

3.4 Script and Limit Schemata

The elements described in this section position one or more scripts around a base. Attaching
various kinds of scripts and embellishments to symbols is a very common notational device
in mathematics. For purely visual layout, a single general-purpose element could suffice for
positioning scripts and embellishments in any of the traditional script locations around a
given base. However, in order to capture the abstract structure of common notation better,
MathML provides several more specialized scripting elements.

In addition to sub/superscript elements, MathML has over/underscript elements which
place scripts above and below the base. These elements can be used to place limits on
large operators, or for placing accents and lines above or below the base. The rules for
rendering accents differ from those for overscripts and underscripts, and this difference can
be controlled with theaccent andaccentunder attributes, as described in the appropriate
sections below.

Rendering of scripts is affected by thescriptlevel anddisplaystyle attributes, which
are part of the environment inherited by the rendering process of every MathML expression,
and are described undermstyle (section3.3.4). These attributes cannot be given explicitly
on a scripting element, but can be specified on the start tag of a surroundingmstyle element
if desired.

MathML also provides an element for attachment of tensor indices. Tensor indices are dis-
tinct from ordinary subscripts and superscripts in that they must align in vertical columns.
Tensor indices can also occur in prescript positions.

Because presentation elements should be used to describe the abstract notational structure
of expressions, it is important that the base expression in all ‘scripting’ elements (i.e. the
first argument expression) should be the entire expression that is being scripted, not just the
rightmost character. For example, (x+y)2 should be written as:

<msup>
<mrow>

<mo> (</mo>
<mrow>

<mi> x </mi>
<mo> + </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>
<mn> 2 </mn>

</msup>

3.4.1 Subscript

3.4.1.1 Description

The syntax for themsubelement is <msub>base subscript</msub>.

84

3.4.1.2 Attributes ofmsub

Name values default
subscriptshift number v-unit automatic (typical unit is ex)

Thesubscriptshift attribute specifies the minimum amount to shift the baseline ofsub-
script down.

v-unit represents a unit of vertical length (see section2.3.3).

Themsubelement incrementsscriptlevel by 1, and setsdisplaystyle to false , within
subscript, but leaves both attributes unchanged withinbase. (These attributes are inher-
ited by every element through its rendering environment, but can be set explicitly only on
mstyle ; see section3.3.4.)

3.4.2 Superscript

3.4.2.1 Description

The syntax for themsupelement is <msup> base superscript </msup>.

3.4.2.2 Attributes ofmsup

Name values default
superscriptshift number v-unit automatic (typical unit is ex)

The superscriptshift attribute specifies the minimum amount to shift the baseline of
superscriptup.

v-unit represents a unit of vertical length (see section2.3.3).

Themsupelement incrementsscriptlevel by 1, and setsdisplaystyle to false , within
superscript, but leaves both attributes unchanged withinbase. (These attributes are inher-
ited by every element through its rendering environment, but can be set explicitly only on
mstyle ; see section3.3.4.)

3.4.3 Subscript-superscript Pair

3.4.3.1 Description

Themsubsupelement is used so that the subscript and superscript are both tight against the
base, i.e. vertically aligned as in the second case shown here:x1

2 versusx2
1.

The syntax for themsubsupelement is <msubsup>base subscript superscript</msubsup>

3.4.3.2 Attributes ofmsubsup

Name values default
subscriptshift number v-unit automatic (typical unit is ex)
superscriptshift number v-unit automatic (typical unit is ex)

Thesubscriptshift attribute specifies the minimum amount to shift the baseline ofsub-
script down. Thesuperscriptshift attribute specifies the minimum amount to shift the
baseline ofsuperscriptup.

85

v-unit represents a unit of vertical length (see section2.3.3).

The msubsupelement incrementsscriptlevel by 1, and setsdisplaystyle to false ,
within subscriptandsuperscript, but leaves both attributes unchanged withinbase. (These
attributes are inherited by every element through its rendering environment, but can be set
explicitly only onmstyle ; see section3.3.4.)

3.4.3.3 Examples ofmsubsup

Themsubsupis most commonly used for adding sub/superscript pairs to identifiers as il-
lustrated above. However, another important use is placing limits on certain large operators
whose limits are traditionally displayed in the script positions even when rendered in dis-
play style. The most common of these is the integral. For example,

1Z

0

ex dx

would be represented as

<mrow>
<msubsup>

<mo> ∫ </mo>
<mn> 0 </mn>
<mn> 1 </mn>

</msubsup>
<mrow>

<msup>
<mi> ⅇ </mi>
<mi> x </mi>

</msup>
<mo> ⁢ </mo>
<mrow>

<mo> ⅆ </mo>
<mi> x </mi>

</mrow>
</mrow>

</mrow>

3.4.4 Underscript

3.4.4.1 Description

The syntax for themunderelement is

<munder> base underscript </munder>

3.4.4.2 Attributes ofmunder

Name values default
accentunder true | false automatic

86

The accentunder attribute controls whetherunderscriptis drawn as an ‘accent’ or as a
limit. The main difference between an accent and a limit is that the limit is reduced in size
whereas an accent is the same size as the base. A second difference is that the accent is
drawn closer to the base.

The default value ofaccentunder is false, unlessunderscriptis anmoelement or an embel-
lished operator (see section3.2.4). If underscriptis anmoelement, the value of itsaccent
attribute is used as the default value ofaccentunder . If underscriptis an embellished op-
erator, theaccent attribute of themoelement at its core is used as the default value. As
with all attributes, an explicitly given value overrides the default.

Here is an example (accent versus underscript):x+y+z︸ ︷︷ ︸ versusx+y+z︸ ︷︷ ︸. The MathML

representation for this example is shown below.

If the base is an operator withmovablelimits =true (or an embellished operator whose
moelement core hasmovablelimits =true), anddisplaystyle =false , thenunderscript
is drawn in a subscript position. In this case, theaccentunder attribute is ignored. This is
often used for limits on symbols such as∑.

Within underscript, munderalways setsdisplaystyle to false , but incrementsscriptlevel
by 1 only whenaccentunder is false . Within base, it always leaves both attributes un-
changed. (These attributes are inherited by every element through its rendering environ-
ment, but can be set explicitly only onmstyle ; see section3.3.4.)

3.4.4.3 Examples ofmunder

The MathML representation for the example shown above is:

<mrow>
<munder accentunder="true">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏟ </mo>

</munder>
<mtext> vs </mtext>
<munder accentunder="false">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏟ </mo>

</munder>
</mrow>

87

3.4.5 Overscript

3.4.5.1 Description

The syntax for themoverelement is

<mover> base overscript> </mover>

.

3.4.5.2 Attributes ofmover

Name values default
accent true | false automatic

Theaccent attribute controls whetheroverscriptis drawn as an ‘accent’ (diacritical mark)
or as a limit. The main difference between an accent and a limit is that the limit is reduced
in size whereas an accent is the same size as the base. A second difference is that the accent
is drawn closer to the base. This is shown below (accent versus limit): ˆx versuŝx.

These differences also apply to ‘mathematical accents’ such as bars over expressions:︷ ︸︸ ︷
x+y+zversus.

︷ ︸︸ ︷
x+y+z. The MathML representation for each of these examples is shown

below.

The default value ofaccentis false, unlessoverscriptis anmoelement or an embellished
operator (see section3.2.4). If overscriptis anmoelement, the value of itsaccent attribute
is used as the default value ofaccent for mover. If overscriptis an embellished operator,
theaccent attribute of themoelement at its core is used as the default value.

If the base is an operator withmovablelimits =true (or an embellished operator whose
moelement core hasmovablelimits =true), anddisplaystyle =false , thenoverscript
is drawn in a superscript position. In this case, theaccent attribute is ignored. This is often
used for limits on symbols such as∑.

Within overscript, moveralways setsdisplaystyle to false , but incrementsscriptlevel
by 1 only whenaccent is false . Within base, it always leaves both attributes unchanged.
(These attributes are inherited by every element through its rendering environment, but can
be set explicitly only onmstyle ; see section3.3.4.)

3.4.5.3 Examples ofmover

The MathML representation for the examples shown above is:

<mrow>
<mover accent="true">

<mi> x </mi>
<mo> ^ </mo>

</mover>
<mtext> vs </mtext>
<mover accent="false">

<mi> x </mi>
<mo> ^ </mo>

88

</mover>
</mrow>

<mrow>
<mover accent="true">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ‾ </mo>

</mover>
<mtext> vs </mtext>
<mover accent="false">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ‾ </mo>

</mover>
</mrow>

3.4.6 Underscript-overscript Pair

3.4.6.1 Description

The syntax for themunderoverelement is

<munderover> base underscript overscript</munderover>

3.4.6.2 Attributes ofmunderover

Name values default
accent true | false automatic
accentunder true | false automatic

Themunderoverelement is used so that the underscript and overscript are vertically spaced
equally in relation to the base and so that they follow the slant of the base as in the second
expression shown below:

∞Z

0
versus

∞Z

0

89

The MathML representation for this example is shown below.

The difference in the vertical spacing is too small to be noticed on a low resolution display
at a normal font size, but is noticeable on a higher resolution device such as a printer
and when using large font sizes. In addition to the visual differences, attaching both the
underscript and overscript to the same base more accurately reflects the semantics of the
expression.

The accent andaccentunder attributes have the same effect as the attributes with the
same names onmover(section3.4.5) andmunder(section3.4.4), respectively. Their de-
fault values are also computed in the same manner as described for those elements, with
the default value ofaccent depending onoverscriptand the default value ofaccentunder
depending onunderscript.

If the base is an operator withmovablelimits =true (or an embellished operator whosemo
element core hasmovablelimits =true), anddisplaystyle =false , thenunderscript
andoverscriptare drawn in a subscript and superscript position, respectively. In this case,
theaccent andaccentunder attributes are ignored. This is often used for limits on sym-
bols such as∑.

Within underscript, munderover always setsdisplaystyle to false , but increments
scriptlevel by 1 only whenaccentunder is false . Within overscript, munderoveral-
ways setsdisplaystyle to false , but incrementsscriptlevel by 1 only whenaccent
is false . Within base, it always leaves both attributes unchanged. (These attributes are in-
herited by every element through its rendering environment, but can be set explicitly only
onmstyle ; see section3.3.4).

3.4.6.3 Example ofmunderover

The MathML representation for the example shown above with the left expression made us-
ing separatemunderandmoverelements, and the right one using anmunderoverelement,
is:

<mrow>
<mover>

<munder>
<mo> ∫ </mo>
<mn> 0 </mn>

</munder>
<mi> ∞ </mi>

</mover>
<mtext> vs </mtext>
<munderover>

<mo> ∫ </mo>
<mn> 0 </mn>
<mi> ∞ </mi>

</munderover>
</mrow>

90

3.4.7 Prescripts and Tensor Indices

3.4.7.1 Description

The syntax for themmultiscripts element is

<mmultiscripts>
{ base}
({ subscript superscript})*
[<mprescripts/> ({ presubscript presuperscript})*]

</mmultiscripts>

Presubscripts and tensor notations are represented by a single element,mmultiscripts .
This element allows the representation of any number of vertically-aligned pairs of sub-
scripts and superscripts, attached to one base expression. It supports both postscripts (to
the right of the base in visual notation) and prescripts (to the left of the base in visual
notation). Missing scripts can be represented by the empty elementnone.

The prescripts are optional, and when present are givenafter the postscripts, because pre-
scripts are relatively rare compared to tensor notation.

The argument sequence consists of the base followed by zero or more pairs of vertically-
aligned subscripts and superscripts (in that order) that represent all of the postscripts. This
list is optionally followed by an empty elementmprescripts and a list of zero or more
pairs of vertically-aligned presubscripts and presuperscripts that represent all of the pre-
scripts. The pair lists for postscripts and prescripts are given in a left-to-right order. If no
subscript or superscript should be rendered in a given position, then the empty element
noneshould be used in that position.

The base, subscripts, superscripts, the optional separator elementmprescripts , the pre-
subscripts, and the presuperscripts, are all direct subexpressions of themmultiscripts
element, i.e. they are all at the same level of the expression tree. Whether a script argu-
ment is a subscript or a superscript, or whether it is a presubscript or a presuperscript is
determined by whether it occurs in an even-numbered or odd-numbered argument posi-
tion, respectively, ignoring the empty elementmprescripts itself when determining the
position. The first argument, the base, is considered to be in position 1. The total number
of arguments must be odd, ifmprescripts is not given, or even, if it is.

The empty elementsmprescripts andnoneare only allowed as direct subexpressions of
mmultiscripts .

3.4.7.2 Attributes ofmmultiscripts

Same as attributes ofmsubsup.

The mmultiscripts element incrementsscriptlevel by 1, and setsdisplaystyle to
false , within each of its arguments exceptbase, but leaves both attributes unchanged
within base. (These attributes are inherited by every element through its rendering envi-
ronment, but can be set explicitly only onmstyle ; see section3.3.4.)

3.4.7.3 Examples ofmmultiscripts

Two examples of the use ofmmultiscripts are:

0F1(;a;z).

91

<mrow>
<mmultiscripts>

<mi> F </mi>
<mn> 1 </mn>
<none/>
<mprescripts/>
<mn> 0 </mn>
<none/>

</mmultiscripts>
<mo> ⁡ </mo>
<mrow>

<mo> (</mo>
<mrow>

<mo> ; </mo>
<mi> a </mi>
<mo> ; </mo>
<mi> z </mi>

</mrow>
<mo>) </mo>

</mrow>
</mrow>

Ri
j
kl (wherek andl are different indices)

<mmultiscripts>
<mi> R </mi>
<mi> i </mi>
<none/>
<none/>
<mi> j </mi>
<mi> k </mi>
<none/>
<mi> l </mi>
<none/>

</mmultiscripts>

3.5 Tables and Matrices

Matrices, arrays and other table-like mathematical notation are marked up usingmtable,
mtr , mlabeledtr andmtdelements. These elements are similar to theTABLE, TRandTDel-
ements of HTML, except that they provide specialized attributes for the fine layout control
necessary for commutative diagrams, block matrices and so on.

Themlabeledtr element represents a labeled row of a table and can be used for numbered
equations.mlabeledtr first child is the label. A label is somewhat special in that it is not
considered an expression in the matrix and is not counted when determining the number of
columns in that row.

92

3.5.1 Table or Matrix

3.5.1.1 Description

A matrix or table is specified using themtable element. Inside of themtable element,
mtr , mlabeledtr , andmtd elements can be given. If some argument tomtable is not an
mtr element, MathML applications should assume a row with a single column (i.e. the
argument is effectively wrapped with an inferredmtr). Similarly, if some argument to a
(possibly inferred)mtr element is not anmtd element, that argument is treated as a table
entry by wrapping it with an inferredmtdelement. Themtr or mtdelements must be given
explicitly if they have attributes different from those they would inherit from the enclosing
mtable or mtr .

Note that the above rules imply that anmtable whose arguments are expressions other than
mtr , mlabeledtr , or mtdelements forms a single column of those expressions.

Table rows that have fewer columns than other rows of the same table (whether the other
rows precede or follow them) are effectively padded on the right with emptymtdelements
so that the number of columns in each row equals the maximum number of columns in any
row of the table. Note that the use ofmtdelements with non-default values of therowspan
or columnspanattributes may affect the number ofmtdelements which should be given in
subsequentmtr elements to cover a given number of columns. Note also that the label in
anmtlabeledtr element is not considered a column in the table.

3.5.1.2 Attributes ofmtable

Name values default
align (top | bottom | center | baseline | axis) [rownumber] axis
rowalign (top | bottom | center | baseline | axis) + baseline
columnalign (left | center | right) + center
groupalign group-alignment-list-list left
alignmentscope (true | false) + true
columnwidth (auto | number h-unit | namedspace | fit) + auto
rowspacing (number v-unit) + 1.0ex
columnspacing (number h-unit | namedspace) + 0.8em
rowlines (none | solid | dashed) + none
columnlines (none | solid | dashed) + none
frame none | solid | dashed none
framespacing (number h-unit | namedspace) (number v-unit | namedspace) 0.4em 0.5ex
equalrows true | false true
equalcolumns true | false true
displaystyle true | false false
side left | right | leftoverlap | rightoverlap right
minlabelspacing number h-unit 0.8em

Issue (equation-numbering-examples):We need some way to specify the indentation to
be used for the table and label. Here are two possibilities: margins = ’h-unit h-unit’
Specifies a left and right margin to use around the table. Eg, one might say "margins =
’1in .5in’". This would cause the table to be drawn with at least 1in of margin/indentation
on the left and .5in of margin/indentation on the right. width = ’h-unit’ Specifies the
desired width of the entire table. When the value is a percentage value, the value is relative
available horizontal space (typically the screen or page width). The default value is for the

93

table to be as large as necessary. For tables with labels, one might say "width = ’80%’".
This would make the table 80% of the window width. If the ’math’ tag centered its
contents and the window width were 10in, this would result in 1in margins on either side.

Note that the default value for each ofrowlines , columnlines and frame is the literal
string ‘none’, meaning that the default is to render no lines, rather than that there is no
default.

As described in section2.3.3, the notation(x | y) + means one or more occurrences
of eitherx or y, separated by whitespace. For example, possible values forcolumnalign
areleft , left left , andleft right center center . If there are more entries than are
necessary (e.g. more entries than columns forcolumnalign), then only the first entries will
be used. If there are fewer entries, then the last entry is repeated as often as necessary. For
example, ifcolumnalign ="right center" and the table has three columns, the first column
will be right aligned and the second and third columns will be centered. The label in a
mlabeledtr is not considered as a column in the table and the attribute values that apply
to columns do not apply to labels

Thealign attribute specifies where to align the table with respect to its environment. ‘axis’
means to align the center of the table on the environment’s axis. (The axis of an equation
is an alignment line used by typesetters. It is the line on which a minus sign typically lies.
The center of the table is the midpoint of the table’s vertical extent.) ‘center’ and ‘baseline’
both mean to align the center of the table on the environment’s baseline. ‘top’ or ‘bottom’
aligns the top or bottom of the table on the environment’s baseline.

If the align attribute value ends with a rownumber between 1 andn (for a table withn
rows), the specified row is aligned in the way described above, rather than the table as a
whole; the top (first) row is numbered 1, and the bottom (last) row is numberedn. The
same is true if therownumberis negative, between -1 and -n, except that the bottom row is
referred to as -1 and the top row as -n. Other values ofrownumberare illegal.

Therowalign attribute specifies how the entries in each row should be aligned. For exam-
ple, ‘top’ means that the tops of each entry in each row should be aligned with the tops of
the other entries in that row. Thecolumnalign attribute specifies how the entries in each
column should be aligned.

The groupalign andalignmentscope attributes are described with the alignment ele-
ments,maligngroup andmalignmark, in section3.5.5.

Thecolumnwidth attribute specifies how wide a column should be. Theauto value means
that the column should be as wide as needed, which is the default. If an explicit value is
given, then the column is exactly that wide and the contents of that column are made to fit
in that width. The contents are linewrapped or clipped at the discretion of the renderer. If
fit is given as a value, the remaining page width after subtracting the widths for columns
specified asauto and/or specific widths is divided equally among thefit columns and this
value is used for the column width. If insufficient room remains to hold the contents of the
fit columns, renderers may linewrap or clip the contents of thefit columns.

Therowspacing andcolumnspacing attributes specify how much space should be added
between each row and column. However, spacing before the first row and after the last row
(i.e. at the top and bottom of the table) is given by the second number in the value of the
framespacing attribute, and spacing before the first column and after the last column (i.e.
on the left and on the right of the table) is given by the first number in the value of the
framespacing attribute.

94

In those attributes’ syntaxes,h-unit or v-unit represents a unit of horizontal or vertical
length, respectively (see section2.3.3.3). The units shown in the attributes’ default values
(emor ex) are typically used.

Therowlines andcolumnlines attributes specify whether and what kind of lines should
be added between each row and column. Lines before the first row or column and after the
last row or column are given using theframe attribute.

If a frame is desired around the table, theframe attribute is used. If the attribute value is not
‘none’, thenframespacing is used to add spacing between the lines of the frame and the
first and last rows and columns of the table. Ifframe="none", then theframespacing at-
tribute is ignored. Theframe andframespacing attributes are not part of therowlines /columnlines ,
rowspacing/columnspacing options because having them be so would often require that
rowlines and columnlines would need to be fully specified instead of just giving a
single value. For example, if a table had five columns and we wanted lines between the
columns, but no frame, then we would have to writecolumnlines="none solid solid
solid solid none" . By separating the frame from the internal lines, we only need to
write columnlines="solid" .

Theequalrows attribute forces the rows all to be the same total height when set totrue .
Theequalcolumns attribute forces the columns all to be the same width when set totrue .

Thedisplaystyle attribute specifies the value ofdisplaystyle (described undermstyle
in section3.3.4) within each cell (mtd element, perhaps inferred) of the table. Setting
displaystyle =true can be useful for tables whose elements are whole mathematical
expressions; the default value offalse is appropriate when the table is part of an expres-
sion, for example, when it represents a matrix. In either case,scriptlevel (section3.3.4)
is not changed for the table cells.

The side attribute specifies what side of a table a label for a table row should should be
placed. This attribute is intended to be used for labeled expressions. Ifleft or right is
specified, the label is placed on the left or right side of the table row respectively. The other
two attribute values are variations onleft and right : if the labeled row fits within the
width allowed for the table without the label, but does not fit within the width if the label
is included, then the label overlaps the row and is displayed above the row ifrowalign for
that row istop ; otherwise the label is displayed below the row.

If there are multiple labels in a table, the aligment of the labels within the virtual col-
umn that they form is left-aligned for labels on the left side of the table, and right-aligned
for labels on the right side of the table. The alignment can be overriden by specifying
columnalignment for amlabeltr element.

Theminlabelspacing attribute specifies the minimum space allowed between a label and
the adjacent entry in the row.

3.5.1.3 Example ofmtable

A 3 by 3 identity matrix could be represented as follows:

<mrow>
<mo> (</mo>
<mtable>

<mtr> <mn>1</mn> <mn>0</mn> <mn>0</mn> </mtr>

95

<mtr> <mn>0</mn> <mn>1</mn> <mn>0</mn> </mtr>
<mtr> <mn>0</mn> <mn>0</mn> <mn>1</mn> </mtr>

</mtable>
<mo>) </mo>

</mrow>

This might be rendered as: 1 0 0
0 1 0
0 0 1

Note that the parentheses must be represented explicitly; they are not part of themtable
element’s rendering. This allows use of other surrounding fences, such as brackets, or none
at all.

3.5.2 Row in Table or Matrix

3.5.2.1 Description

An mtr element represents one row in a table or matrix. Anmtr element is only allowed
as a direct subexpression of anmtable element, and specifies that its contents should form
one row of the table. Each argument ofmtr is placed in a different column of the table,
starting at the leftmost column.

As described in section3.5.1, mtr elements can be inferred, and are effectively padded on
the right withmtdelements when they are shorter than other rows in a table.

3.5.2.2 Attributes ofmtr

Name values default
rowalign top | bottom | center | baseline | axis inherited
columnalign (left | center | right) + inherited
groupalign group-alignment-list-list inherited

Therowalign andcolumnalign attributes allow a specific row to override the alignment
specified by the same attributes in the surroundingmtable element.

As with mtable, if there are more entries than necessary in the value ofcolumnalign (i.e.
more entries than columns in the row), then the extra entries will be ignored. If there are
fewer entries than columns, then the last entry will be repeated as many times as needed.

The groupalign attribute is described with the alignment elements,maligngroup and
malignmark, in section3.5.5.

3.5.3 Labeled Row in Table or Matrix

3.5.3.1 Description

An mlabeledtr element represents one row in a table that has a label on either the left or
right side, as determined by theside attribute. The label is the first child ofmlabeledtr .
The rest of the children represent the contents of the row and are identical to those used for
mtr .

An mlabeledtr element is only allowed as a direct subexpression of anmtable element.
Each argument ofmlabeledtr except for the first argument (the label) is placed in a dif-
ferent column of the table, starting at the leftmost column.

96

3.5.3.2 Attributes ofmlabeledtr

The attributes formlabeledtr are the same as formtr . Unlike the attributes for themtable
element, attributes ofmlabeledtr that apply to column elements also apply to the label.
For example, in a one column table,

<mlabeledtr rowalign=’center baseline’>

means that the label is vertically centered on the row, and that the actual entry is baseline
aligned.

3.5.3.3 Equation Numbering

One of the important uses ofmlabeledtr is for numbered equations. In amlabeledtr ,
the label represents the equation number and the elements in the row are the equation
being numbered. Theside andminlabelspacing attributes of ofmtable determine the
placement of the equation number.

In larger documents with many numbered equations, automatic numbering becomes im-
portant. While automatic equation numbering and automatically resolving references to
equation numbers is outside the scope of MathML, these problems can be addressed by the
use of XSL style sheet or other means. Themlabeledtr construction provides support for
both of these functions in a way that is intended to facilitate XSL processing.

Issue (incomplete-mlabeledtr-description):Description of changes not complete

Thecolumnwidth attribute valuefit allows equations to use up as much of a page as pos-
sible, after accounting for any equation number. This allows for styles of equation numbers
that are left or right justified on a page.

In cases where only a few equations in a document are numbered, using thecolumnwidth
attribute alone is probably sufficient.

<mtable columnalign=’left right’ columnwidth=’fit auto’>
<mtr>

<mrow>
<mi>E</mi>
<mo>=</mo>
<mrow>

<mi>m</mi>
<mo>⁢</mo>
<msup>

<mi>c</mi>
<mn>2</mn>

</msup>
</mrow>

</mrow>
<mrow> <mo> (</mo> <mn> 2.1 </mn> <mo>) </mo> </mrow>

</mtr>
</mtable>

This should be rendered as:

97

E = mc2 (2.1)

Issue (equation-numbering-examples2):rendering of equation numbering needed.

3.5.4 Entry in Table or Matrix

3.5.4.1 Description

An mtdelement represents one entry in a table or matrix. Anmtdelement is only allowed
as a direct subexpression of anmtr element (perhaps an inferred one).

As described undermtr andmtable, mtd elements can be inferred. They must be given
explicitly for table elements which have attributes different than those of the enclosingmtr
or mtable.

The mtd element accepts any number of arguments; if this number is not 1, its contents
are treated as a single ‘inferredmrow’ formed from all its arguments, as described in sec-
tion 3.1.3.

3.5.4.2 Attributes ofmtd

Name values default
rowspan number 1
columnspan number 1
rowalign top | bottom | center | baseline | axis inherited
columnalign left | center | right inherited
groupalign group-alignment-list inherited

Therowspanandcolumnspanattributes allow a specific matrix element to be treated as if
it occupied the number of rows or columns specified. The interpretation of how this larger
element affects specifying subsequent rows and columns is meant to correspond with the
similar attributes for HTML 4.0 tables.

The rowspanandcolumnspanattributes can be used around anmtd element that repre-
sents the label in amlabeledtr element. Also, the label of amlabeledtr element is not
considered to be part of a previousrowspanandcolumnspan.

Therowalign andcolumnalign attributes allow a specific matrix element to override the
alignment specified by a surroundingmtable or mtr element.

The groupalign attribute is described with the alignment elements,maligngroup and
malignmark, in section3.5.5.

3.5.5 Alignment Markers

3.5.5.1 Description

These are space-like elements (see section3.2.6) which can be used to vertically align
specified points within a column of MathML expressions, by the automatic insertion of the
necessary amount of horizontal space between specified subexpressions.

The discussion that follows will use the example of a set of simultaneous equations which
should be rendered with vertical alignment of the coefficients and variables of each term,
by inserting spacing somewhat like that shown here:

98

8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

If the example expressions shown above were arranged in a column but not aligned, they
would appear as:

8.44x + 55y = 0
3.1x - 0.7y = -1.1

(For audio renderers, it is suggested that the alignment elements produce the analogous
behavior of altering the rhythm of pronunciation so that it is the same for several subex-
pressions in a column, by the insertion of the appropriate time delays in place of the extra
horizontal spacing described here.)

The expressions whose parts are to be aligned (each equation, in the example above) must
be given as the table elements (i.e. as themtd elements, perhaps inferred) of one column
of anmtable. To avoid confusion, the term ‘table cell’ rather than ‘table element’ will be
used in the remainder of this section.

All interactions between alignment elements are limited to themtable column they arise
in. That is, every column of a table specified by anmtable element acts as an ‘alignment
scope’ which contains within it all alignment effects arising from its contents. It also ex-
cludes any interaction between its own alignment elements and the alignment elements
inside any nested alignment scopes it might contain.

The reasonmtable columns are used as alignment scopes is that they are the only general
way in MathML to arrange expressions into vertical columns. Future versions of MathML
may provide anmalignscope element which allows an alignment scope to be created
around any MathML element, but even then, table columns would still sometimes need to
act as alignment scopes, and since they are not elements themselves, but rather are made
from corresponding parts of the content of severalmtr elements, they could not individually
be the content of an alignment scope element.

An mtable element can be given the attributealignmentscope=false to cause its columns
not to act as alignment scopes. This is discussed further at the end of this section. Other-
wise, the discussion in this section assumes that this attribute has its default value oftrue .

3.5.5.2 Specifying alignment groups

To cause alignment, it is necessary to specify, within each expression to be aligned, the
points to be aligned with corresponding points in other expressions, and the beginning of
eachalignment groupof subexpressions which can be horizontally shifted as a unit to
effect the alignment. Each alignment group must contain one alignment point. It is also
necessary to specify which expressions in the column have no alignment groups at all, but
are affected only by the ordinary column alignment for that column of the table, i.e. by the
columnalign attribute, described elsewhere.

The alignment groups start at the locations of invisiblemaligngroup elements, which are
rendered with zero width when they occur outside of an alignment scope, but within an
alignment scope are rendered with just enough horizontal space to cause the desired align-
ment of the alignment group which follows them. A simple algorithm by which a MathML
application can achieve this is given later. In the example above, each equation would have
onemaligngroup element before each coefficient, variable, and operator on the left-hand
side, one before the= sign, and one before the constant on the right-hand side.

99

In general, a table cell containingn maligngroup elements containsn alignment groups,
with the ith group consisting of the elements entirely after theith maligngroup element
and before the (i+1)-th; no element within the table cell’s content should occur entirely
before its firstmaligngroup element.

Note that the division into alignment groups doesnot necessarily fit the nested expression
structure of the MathML expression containing the groups - that is, it is permissible for one
alignment group to consist of the end of onemrow, all of another one, and the beginning of
a third one, for example. This can be seen in the MathML markup for the present example,
given at the end of this section.

The nested expression structure formed bymrows and other layout schemata should re-
flect the mathematical structure of the expression, not the alignment-group structure, to
make possible optimal renderings and better automatic interpretations; see the discussion
of proper grouping in section 3.3.1. Insertion of alignment elements (or other space-like el-
ements) should not alter the correspondence between the structure of a MathML expression
and the structure of the mathematical expression it represents.

Although alignment groups need to coincide with the nested expression structure of layout
schemata, there are nonetheless restrictions on where anmaligngroup element is allowed
within a table cell. Themaligngroup element may only be contained within elements of
the following types (which are themselves contained in the table cell):

• anmrowelement, including an inferredmrowsuch as the one formed by a multi-
argumentmtdelement;

• anmstyle element;
• anmphantomelement;
• anmfencedelement;
• anmaction element, though only its selected subexpression is checked;
• asemantics element.

These restrictions are intended to ensure that alignment can be unambiguously specifed,
while avoiding complexities involving things like overscripts, radical signs and fraction
bars. They also ensure that a simple algorithm suffices to accomplish the desired alignment.

Note that some positions for anmaligngroup element, although legal, are not useful, such
as for anmaligngroup element to be an argument of anmfencedelement. When insert-
ing anmaligngroup element before a given element in pre-existing MathML, it will of-
ten be necessary, and always acceptable, to form a newmrowelement to contain just the
maligngroup element and the element it is inserted before. In general, this will be nec-
essary except when themaligngroup element is inserted directly into anmrowor into an
element which can form an inferredmrowfrom its contents. See the warning about the legal
grouping of ‘space-like elements’ in section3.2.6.

For the table cells which are divided into alignment groups, every element in their content
must be part of exactly one alignment group, except the elements from the above list which
containmaligngroup elements inside them, and themaligngroup elements themselves.
This means that, within any table cell containing alignment groups, the first complete ele-
ment must be anmaligngroup element, though this may be preceded by the begin tags of
other elements.

This requirement removes a potential confusion about how to align elements before the
first maligngroup element, and makes it easy to identify table cells which are left out of
their column’s alignment process entirely.

100

Note that it is not required that the table cells in a column which are divided into alignment
groups each contain the same number of groups. If they don’t, zero-width alignment groups
are effectively added on the right side of each table cell which has fewer groups than other
table cells in the same column.

3.5.5.3 Table cells which are not divided into alignment groups

Expressions in a column which are to have no alignment groups should contain nomaligngroup
elements. Expressions with no alignment groups are aligned using only thecolumnalign
attribute which applies to the table column as a whole, and are not affected by thegroupalign
attribute described below. If such an expression is wider than the column width needed for
the table cells containing alignment groups, all the table cells containing alignment groups
will be shifted as a unit within the column as described by thecolumnalign attribute for
that column. For example, a column heading with no internal alignment could be added to
the column of two equations given above by preceding them with another table row con-
taining anmtext element for the heading, and using the defaultcolumnalign ="center" for
the table, to produce:

equations with aligned variables
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

or, with a shorter heading,

some equations
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

3.5.5.4 Specifying alignment points usingmalignmark

Each alignment group’s alignment point can either be specified by anmalignmark ele-
ment anywhere within the alignment group (except within another alignment scope wholly
contained inside it), or it is determined automatically from thegroupalign attribute. The
groupalign attribute can be specified on the group’s precedingmaligngroup element or
on its surroundingmtd, mtr , or mtable elements. In typical cases, using thegroupalign
attribute is sufficient to describe the desired alignment points, so nomalignmark elements
need to be provided.

Themalignmark element indicates that the alignment point should occur on the right edge
of the preceding element, or the left edge of the following element or character, depending
on theedgeattribute ofmalignmark. Note that it may be necessary to introduce anmrow
to group anmalignmark element with a neighboring element, in order not to alter the
argument count of the containing element. (See the warning about the legal grouping of
‘space-like elements’ in section3.2.6).

When anmalignmark element is provided within an alignment group, it can occur in an
arbitrarily deeply nested element within the group, as long as it is not within a nested
alignment scope. It is not subject to the same restrictions on location asmaligngroup
elements. However, its immediate surroundings need to be such that the element to its
immediate right or left (depending on itsedgeattribute) can be unambiguously identified.
If no such element is present, renderers should behave as if a zero-width element had been
inserted there.

101

For the purposes of alignment, an element X is considered to be to the immediate left of an
element Y, and Y to the immediate right of X, whenever X and Y are successive arguments
of one (possibly inferred)mrowelement, with X coming before Y. In the case ofmfenced
elements, MathML applications should evaluate this relation as if themfencedelement had
been replaced by the equivalent expanded form involvingmrow. Similarly, anmaction el-
ement should be treated as if it were replaced by its currently selected subexpression. In all
other cases, no relation of ‘to the immediate left or right’ is defined for two elements X and
Y. However, in the case of content elements interspersed in presentation markup, MathML
applications should attempt to evaluate this relation in a sensible way. For example, if a
renderer maintains an internal presentation structure for rendering content elements, the
relation could be evaluated with respect to that. (See chapter4 and chapter5 for further
details about mixing presentation and content markup.)

Unlike all other elements in MathML,malignmark elements are allowed to occur within
the content of token elements, such asmn, mi, or mtext . When this occurs, the character
immediately before or after themalignmark element will carry the alignment point; in all
other cases, the element to its immediate left or right will carry the alignment point. The
rationale for this is that it is sometimes desirable to align on the edges of specific characters
within multi-character token elements.

If there is more than onemalignmark element in an alignment group, all but the first one
will be ignored. MathML applications may wish to provide a mode in which they will warn
about this situation, but it is not an error, and should trigger no warnings by default. (Ra-
tionale: it would be inconvenient to have to remove all unnecessarymalignmark elements
from automatically generated data, in certain cases, such as when they are used to specify
alignment on ‘decimal points’ other than the ’.’ character.)

3.5.5.5 Attributes ofmalignmark

Name values default
edge left | right left

malignmark has one attribute,edge, which specifies whether the alignment point will be
found on the left or right edge of some element or character. The precise location meant by
‘left edge’ or ‘right edge’ is discussed below. Ifedge="right", the alignment point is the
right edge of the element or character to the immediate left of themalignmark element. If
edge="left", the alignment point is the left edge of the element or character to the imme-
diate right of themalignmark element. Note that the attribute refers to the choice of edge
rather than to the direction in which to look for the element whose edge will be used.

For malignmark elements which occur within the content of MathML token elements,
the preceding or following character in the token element’s content is used; if there is no
such character, a zero-width character is effectively inserted for the purpose of carrying the
alignment point on its edge. For all othermalignmark elements, the preceding or following
element is used; if there is no such element, a zero-width element is effectively inserted to
carry the alignment point.

The precise definition of the ‘left edge’ or ‘right edge’ of a character or glyph (e.g. whether
it should coincide with an edge of the character’s bounding box) is not specified by MathML,
but is at the discretion of the renderer; the renderer is allowed to let the edge position de-
pend on the character’s context as well as on the character itself.

102

For proper alignment of columns of numbers (usinggroupalign values ofleft , right ,
or decimalpoint), it is likely to be desirable for the effective width (i.e. the distance
between the left and right edges) of decimal digits to be constant, even if their bounding
box widths are not constant (e.g. if ‘1’ is narrower than other digits). For other characters,
such as letters and operators, it may be desirable for the aligned edges to coincide with the
bounding box.

The ‘left edge’ of a MathML element or alignment group refers to the left edge of the
leftmost glyph drawn to render the element or group, except that explicit space represented
by mspaceor mtext elements should also count as ‘glyphs’ in this context, as should
glyphs which would be drawn if not formphantomelements around them. The ‘right edge’
of an element or alignment group is defined similarly.

3.5.5.6 Attributes ofmaligngroup

Name values default
groupalign left | center | right | decimalpoint inherited

maligngroup has one attribute,groupalign , which is used to determine the position of its
group’s alignment point when nomalignmarkelement is present. The following discussion
assumes that nomalignmark element is found within a group.

In the example given at the beginning of this section, there is one column of 2 table cells,
with 7 alignment groups in each table cell; thus there are 7 columns of alignment groups,
with 2 groups, one above the other, in each column. These columns of alignment groups
should be given the 7groupalign values ‘decimalpoint left left decimalpoint left left deci-
malpoint’, in that order. How to specify this list of values for a table cell or table column as
a whole, using attributes on elements surrounding themaligngroup element is described
later.

If groupalign is ‘left’, ‘right’, or ‘center’, the alignment point is defined to be at the
group’s left edge, at its right edge, or halfway between these edges, respectively. The mean-
ings of ‘left edge’ and ‘right edge’ are as discussed above in relation tomalignmark.

If groupalign is ‘decimalpoint’, the alignment point is the right edge of the last character
before the decimal point. The decimal point is the first ‘.’ character (ASCII 0x2e) in the
first mnelement found along the alignment group’s baseline. More precisely, the alignment
group is scanned recursively, depth-first, for the firstmnelement, descending into all ar-
guments of each element of the typesmrow(including inferredmrows),mstyle , mpadded,
mphantom, mfenced, or msqrt, descending into only the first argument of each ‘scripting’
element (msub, msup, msubsup, munder, mover, munderover, mmultiscripts) or of each
mroot or semantics element, descending into only the selected subexpression of each
maction element, and skipping the content of all other elements. The firstmnso found
always contains the alignment point, which is the right edge of the last character before the
first decimal point in the content of themnelement. If there is no decimal point in themn
element, the alignment point is the right edge of the last character in the content. If the dec-
imal point is the first character of themnelement’s content, the right edge of a zero-width
character inserted before the decimal point is used. If nomnelement is found, the right edge
of the entire alignment group is used (as forgroupalign ="right").

In order to permit alignment on decimal points incn elements, a MathML application can
convert a content expression into a presentation expression which renders the same way
before searching for decimal points as described above.

103

If characters other than ‘.’ should be used as ‘decimal points’ for alignment, they should be
preceded bymalignmark elements within themntoken’s content itself.

For any of thegroupalign values, if an explicitmalignmark element is present anywhere
within the group, the position it specifies (described earlier) overrides the automatic deter-
mination of alignment point from thegroupalign value.

3.5.5.7 Inheritance ofgroupalign values

It is not usually necessary to put agroupalign attribute on everymaligngroup element.
Since this attribute is usually the same for every group in a column of alignment groups to
be aligned, it can be inherited from an attribute on themtable which was used to set up the
alignment scope as a whole, or from themtr or mtd elements surrounding the alignment
group. It is inherited via an ‘inheritance path’ which proceeds frommtable through suc-
cessively containedmtr , mtd, andmaligngroup elements. There is exactly one element of
each of these kinds in this path from anmtable to any alignment group inside it, though the
mtr and/ormtdelements might be inferred ones, as described in the sections on those ele-
ments. In general, the value ofgroupalign will be inherited by any given alignment group
from the innermost element which surrounds the alignment group and which provides an
explicit setting for this attribute.

Note, however, that eachmtd element needs, in general, a list ofgroupalign values, one
for eachmaligngroup element inside it, rather than just a single value. Furthermore, an
mtr or mtable element needs, in general, a list of lists ofgroupalign values, since it
spans multiplemtable columns, each potentially acting as an alignment scope. Such lists
of group-alignment values are specified using the following syntax rules:

group-alignment := left | right | center | decimalpoint
group-alignment-list := group-alignment +
>group-alignment-list-list := (’{’ group-alignment-list ’}’) +

As described in section2.3.3, | separates alternatives;+ represents optional repetition (i.e.
1 or more copies of what precedes it), with extra values ignored and the last value repeated
if necessary to cover additional table columns or alignment group columns;’’ and ’’
represent literal braces; and(and) are used for grouping, but do not literally appear in the
attribute value.

The permissible values of thegroupalign attribute of the elements that have this attribute
are specified using the above syntax definitions as follows:

Element type groupalign attribute syntax default value
mtable group-alignment-list-list left
mtr group-alignment-list-list inherited frommtable attribute
mtd group-alignment-list inherited from withinmtr attribute
maligngroup group-alignment inherited from withinmtdattribute

In the example near the beginning of this section, the group alignment values could be
specified on everymtd element usinggroupalign = ‘decimalpoint left left decimalpoint
left left decimalpoint’, or on everymtr element usinggroupalign = ‘decimalpoint left left
decimalpoint left left decimalpoint’, or (most conveniently) on themtable as a whole using
groupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, which provides

104

a single braced list of group-alignment values for the single column of expressions to be
aligned.

3.5.5.8 MathML representation of an alignment example

The above rules are sufficient to explain the MathML representation of the example given
near the start of this section. To repeat the example, the desired rendering is:

8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

One way to represent that in MathML is:

<mtable groupalign="decimalpoint left left decimalpoint left left decimalpoint">
<mtd>

<mrow>
<mrow>

<maligngroup/>
<mn> 8.44 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>

</mrow>
<maligngroup/>
<mo> + </mo>
<mrow>

<maligngroup/>
<mn> 55 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>

</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mn> 0 </mn>

</mtd>
<mtd>

<mrow>
<mrow>

<maligngroup/>
<mn> 3.1 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>

</mrow>
<maligngroup/>
<mo> - </mo>
<mrow>

105

<maligngroup/>
<mn> 0.7 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>

</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mrow>

<mo> - </mo>
<mn> 1.1 </mn>

</mrow>
</mtd>

</mtable>

3.5.5.9 Further details of alignment elements

The alignment elementsmaligngroup andmalignmark can occur outside of alignment
scopes, where they are ignored. The rationale behind this is that in situations in which
MathML is generated, or copied from another document, without knowing whether it will
be placed inside an alignment scope, it would be inconvenient for this to be an error.

An mtable element can be given the attributealignmentscope=false to cause its columns
not to act as alignment scopes. In general, this attribute has the syntax(true | false)
+; if its value is a list of boolean values, each boolean value applies to one column, with the
last value repeated if necessary to cover additional columns, or with extra values ignored.
Columns which are not alignment scopes are part of the alignment scope surrounding the
mtable element, if there is one. Use ofalignmentscope=false allows nested tables to
containmalignmark elements for aligning the inner table in the surrounding alignment
scope.

As discussed above, processing of alignment for content elements is not well-defined,
since MathML does not specify how content elements should be rendered. However, many
MathML applications are likely to find it convenient to internally convert content elements
to presentation elements which render the same way. Thus, as a general rule, even if a ren-
derer does not perform such conversions internally, it is recommended that the alignment
elements should be processed as if it did perform them.

A particularly important case for renderers to handle gracefully is the interaction of align-
ment elements with thematrix content element, since this element may or may not be
internally converted to an expression containing anmtable element for rendering. To par-
tially resolve this ambiguity, it is suggested, but not required, that if thematrix element is
converted to an expression involving anmtable element, that themtable element be given
the attributealignmentscope=false , which will make the interaction of thematrix ele-
ment with the alignment elements no different than that of a generic presentation element
(in particular, it will allow it to containmalignmark elements which operate within the
alignment scopes created by the columns of anmtable which contains thematrix element
in one of its table cells).

The effect of alignment elements within table cells which have non-default values of the

106

columnspanor rowspanattributes is not specified, except that such use of alignment ele-
ments is not an error. Future versions of MathML may specify the behavior of alignment
elements in such table cells.

The effect of possible linebreaking of anmtable element on the alignment elements is not
specified.

3.5.5.10 A simple alignment algorithm

A simple algorithm by which a MathML applications can perform the alignment specified
in this section is given here. Since the alignment specification is deterministic (except for
the definition of the left and right edges of a character), any correct MathML alignment
algorithm will have the same behavior as this one. Eachmtable column (alignment scope)
can be treated independently; the algorithm given here applies to onemtable column,
and takes into account the alignment elements, thegroupalign attribute described in this
section, and thecolumnalign attribute described undermtable (section3.5.1).

First, a rendering is computed for the contents of each table cell in the column, using zero
width for all maligngroup andmalignmark elements. The final rendering will be identical
except for horizontal shifts applied to each alignment group and/or table cell. The positions
of alignment points specified by anymalignmark elements are noted, and the remaining
alignment points are determined usinggroupalign values.

For each alignment group, the horizontal positions of the left edge, alignment point, and
right edge are noted, allowing the width of the group on each side of the alignment point
(left and right) to be determined. The sum of these two ‘side-widths’, i.e. the sum of the
widths to the left and right of the alignment point, will equal the width of the alignment
group.

Second, each column of alignment groups, from left to right, is scanned. Theith scan
covers theith alignment group in each table cell containing any alignment groups. Table
cells with no alignment groups, or with fewer thani alignment groups, are ignored. Each
scan computes two maximums over the alignment groups scanned: the maximum width to
the left of the alignment point, and the maximum width to the right of the alignment point,
of any alignment group scanned.

The sum of all the maximum widths computed (two for each column of alignment groups)
gives one total width, which will be the width of each table cell containing alignment
groups. Call the maximum number of alignment groups in one celln; each such cell’s
width is divided into 2n adjacent sections, called L(i) and R(i) for i from 1 ton, using the
2n maximum side-widths computed above; for eachi, the width of all sections called L(i)
is the maximum width of any cell’sith alignment group to the left of its alignment point,
and the width of all sections called R(i) is the maximum width of any cell’sith alignment
group to the right of its alignment point.

The alignment groups are then positioned in the unique way which places the part of each
ith group to the left of its alignment point in a section called L(i), and places the part of
eachith group to the right of its alignment point in a section called R(i). This results in the
alignment point of eachith group being on the boundary between adjacent sections L(i)
and R(i), so that all alignment points ofith groups have the same horizontal position.

The widths of the table cells which contain no alignment groups were computed as part of
the initial rendering, and may be different for each cell, and different from the single width

107

used for cells containing alignment groups. The maximum of all the cell widths (for both
kinds of cells) gives the width of the table column as a whole.

The position of each cell in the column is determined by the applicable part of the value
of thecolumnalign attribute of the innermost surroundingmtable, mtr , or mtd element
which has an explicit value for it, as described in the sections on those elements. This
may mean that the cells containing alignment groups will be shifted within their column,
in addition to their alignment groups having been shifted within the cells as described
above, but since each such cell has the same width, it will be shifted the same amount
within the column, thus maintaining the vertical alignment of the alignment points of the
corresponding alignment groups in each cell.

3.6 Enlivening Expressions

3.6.1 Bind Action to Subexpression

There are many ways in which it might be desirable to make mathematical content active.
Adding a link to a MathML subexpressions is one basic kind of interactivity section7.1.5.
However, many other kinds of interactivity cannot be easily accommodated by generic
linking mechanisms. For example, in lengthy mathematical expressions, the ability to ‘fold’
expressions might be provided, i.e. a renderer might allow a reader to toggle between an
ellipsis and a much longer expression which it represents.

To provide a mechanism for binding actions to expressions, MathML provides themaction
element. This element accepts any number of subexpressions as arguments, and the follow-
ing attributes:

Name values default
actiontype (described below) (required attribute, no default value)
selection positive-integer 1

By default, MathML applications which do not recognize the specifiedactiontype should
render the selected subexpression as defined below. If no selected subexpression exists, it
is a MathML error; the appropriate rendering in that case is as described in section7.2.2
on the treatment of MathML errors.

Since a MathML-compliant application is not required to recognize any particularactiontype s,
an application can be fully MathML compliant just by implementing the above-described
default behavior.

Theselection attribute is provided for thoseactiontype s which permit someone view-
ing a document to select one of several subexpressions for viewing. Its value should be a
positive integer which indicates one of the subexpressions of themaction element, num-
bered from 1 to the number of children of the element. When this is the case, the subexpres-
sion so indicated is defined to be the ‘selected subexpression’ of themaction element; oth-
erwise the ‘selected subexpression’ does not exist, which is an error. When theselection
attribute is not specified (including for actiontypes for which it makes no sense), its default
value is 1, so the selected subexpression will be the first subexpression.

Furthermore, as described in chapter7, if a MathML application responds to a user com-
mand to copy a MathML subexpression to the environment’s ‘clipboard’, anymaction

108

elements present in what is copied should be given selection attributes which correspond
to their selection state in the MathML rendering at the time of the copy command.

A suggested list ofactiontype s and their associated actions is given below. Keep in mind,
however, that this list is mainly for illustration, and recognized values and behaviors will
vary from application to application.

<maction actiontype="toggle" selection="positive-integer" > (first expression) (second expression)... </maction>
For this action type, a renderer would alternately display the given expressions,
cycling through them when a reader clicked on the active expression, starting
with the selected expression and updating theselection attribute value as de-
scribed above. Typical uses would be for exercises in education, ellipses in long
computer algebra output, or to illustrate alternate notations. Note that the ex-
pressions may be of significantly different size, so that size negotiation with the
browser may be desirable. If size negotiation is not available, scrolling, elision,
panning, or some other method may be necessary to allow full viewing.

<maction actiontype="statusline"> (expression) (message) </maction>In this case, the
renderer would display the expression in context on the screen. When a reader
clicked on the expression or moved the mouse over it, the renderer would send
a rendering of the message to the browser statusline. Since most browsers in the
forseeable future are likely to be limited to displaying text on their statusline,
authors would presumably use plain text in anmtext element for the message in
most circumstances. For non-mtext messages, renderers might provide a natural
language translation of the markup, but this is not required.

<maction actiontype="tooltip"> (expression) (message) </maction>Here the renderer
would also display the expression in context on the screen. When the mouse
pauses over the expression for a long enough delay time, the renderer displays
a rendering of the message in a pop-up ‘tooltip’ box near the expression. These
message boxes are also sometimes called ‘balloon help’ boxes. Presumably au-
thors would use plain text in anmtext element for the message in most cir-
cumstances. For non-mtext messages, renderers may provide a natural language
translation of the markup if full MathML rendering is not practical, but this is not
required.

<maction actiontype="highlight" other="color=’#ff0000’"> expression </maction> <maction actiontype="highlight" other="background=’#ff0000’"> expression </maction>
In this case, a renderer might highlight the enclosed expression on a ‘mouse-over’
event. In the example given above, use is being made of the ‘other’ attribute to
pass non-standard attributes to renderers which support them, without violating
the MathML DTD (see 7.2.3). The ‘color’ attribute changes the color of the char-
acters in the presentation, while the ‘background’ attribute changes the color of
the background behind the characters.

<maction actiontype="menu" selection="1" > (menu item 1) (menu item 2) ... </maction>
This action type instructs a renderer to provide a pop up menu. This allows a
one-to-many linking capability. Note that the menu items may be other <maction
actiontype="menu">...</maction> expressions, thereby allowing nested menus.

109

Chapter 4

Content Markup

4.1 Introduction

4.1.1 The Intent of Content Markup

As has been noted in the introductory section of this recommendation, mathematics can be
distinguished by its use of a (relatively) formal language, mathematical notation. However,
mathematics and its presentation should not be viewed as one and the same thing. Mathe-
matical sums or products exist and are meaningful to many applications completely with-
out regard to how they are rendered aurally or visually. The intent of the content markup in
Mathematical Markup Language is to provide an explicit encoding of theunderlying math-
ematical structureof an expression, rather than any particular rendering for the expression.

There are many reasons for providing a specific encoding for content. Even a disciplined
and systematic use of presentation tags cannot properly capture this semantic information.
This is because without additional information it is impossible to decide if a particular pre-
sentation was chosen deliberately to encode the mathematical structure or simply to achieve
a particular visual or aural effect. Furthermore, an author using the same encoding to deal
with both the presentation and mathematical structure might find a particular presentation
encoding unavailable simply because convention had reserved it for a different semantic
meaning.

The difficulties stem from the fact that there are many to one mappings from presentation
to semantics and vice versa. For example the mathematical construct ‘H multiplied bye’ is
often encoded using an explicit operator as inH × e. In different presentational contexts,
the multiplication operator might be invisible ‘H e’, or rendered as the spoken word ‘times’.
Generally, many different presentations are possible depending on the context and style
preferences of the author or reader. Thus, given ‘H e’ out of context it may be impossible
to decide if this is the name of a chemical or a mathematical product of two variablesH
ande.

Mathematical presentation also changes with culture and time: some expressions in com-
binatorial mathematics today have one meaning to an English mathematician, and quite
another to a French mathematician. Notations may lose currency, for example the use of
musical sharp and flat symbols to denote maxima and minima. [Chaudry1954] A notation
in use in 1644 for the multiplication mentioned above wassquareHe[Cajori1928].

When we encode the underlying mathematical structure explicitly, without regard to how it
is presented aurally or visually, we are able to interchange information more precisely with
those systems which are able to manipulate the mathematics. In the trivial example above,

110

such a system could substitute values for the variablesH ande and evaluate the result.
Further interesting application areas include interactive textbooks and other teaching aids.

4.1.2 The Scope of Content Markup

The semantics of general mathematical notation is not a matter of consensus. It would be
an enormous job to systematically codify most of mathematics - a task which can never
be complete. Instead, MathML makes explicit a relatively small number of commonplace
mathematical constructs, chosen carefully to be sufficient in a large number of applica-
tions. In addition, it provides a mechanism for associating semantics with new notational
constructs. In this way, mathematical concepts that are not in the base collection of tags
can still be encoded (section4.2.7).

The base set of content elements are chosen to be adequate for simple coding of most of the
formulas used from kindergarten to the end of high school in the United States, and prob-
ably beyond through the first two years of college, that is up to A-Level or Baccalaureate
level in Europe. Subject areas covered to some extent in MathML are:

• Arithmetic, Algebra, Logic and Relations
• Calculus and Vector Calculus
• Set Theory
• Sequences and Series
• Elementary Classical Functions
• Statistics
• Linear Algebra

It is not claimed, or even suggested, that the proposed element set is complete for these
areas, but the provision for author extensibility greatly alleviates any problem which omis-
sions from this finite list might cause.

4.1.3 Basic Concepts of Content Markup

The design of the MathML content elements are driven by the following principles:

• The expression tree structure of a mathematical expression should be directly
encoded by the MathML content elements.

• The encoding of an expression tree should be explicit, and not dependent on the
special parsing ofPCDATAor on additional processing such as operator prece-
dence parsing.

• The basic set of mathematical content constructs that are provided should have
default mathematical semantics.

• There should be a mechanism for associating specific mathematical semantics
with the constructs.

The primary goal of the content encoding is to establish explicit connections between math-
ematical structures and their mathematical meanings. The content elements correspond
directly to parts of the underlying mathematical expression tree. Each structure has an
associated default semantics and there is a mechanism for associating new mathematical
definitions with new constructs.

Significant advantages to the introduction of content specific tags include:

• Presentation element usage is less constrained. When mathematical semantics
are inferred from presentation markup, processing agents must either be quite
sophisticated, or they run the risk of inferring incomplete or incorrect semantics
when irregular constructions are used to achieve a particular aural or visual effect.

111

• It is immediately clear which kind of information is being encoded simply by the
kind tags which are used.

• Combinations of semantic and presentation tags can be used to convey both the
appearance and its mathematical meaning much more effectively than simply
trying to infer one from the other.

Expressions described in terms of content elements must still be rendered. For common
expressions, default visual presentations are usually clear. ‘Take care of the sense and the
sounds will take care of themselves’ wrote Lewis Carroll [Carroll1871]. Default presenta-
tions are included in the detailed description of each element occurring in section4.4.

To accomplish these goals, the MathML content encoding is based on the concept of an
expression tree. A content expression tree is constructed from a collection of more primitive
objects, referred to herein ascontainersand operators. MathML possesses a rich set of
predefined container and operator objects, as well as constructs for combining containers
and operators in mathematically meaningful ways. The syntax and usage of these content
elements and constructions is described in the next section.

4.2 Content Element Usage Guide

Since the intent of MathML content markup is to encode mathematical expressions in such
a way that the mathematical structure of the expression is clear, the syntax and usage of
content markup must be consistent enough to facilitate automated semantic interpretation.
There must be no doubt when, for example, an actual sum, product or function application
is intended and if specific numbers are present there must be enough information present
to reconstruct the correct number for purposes of computation. Of course, it is still up to
a MathML-compliant processor to decide what is to be done with such a content based
expression, and computation is only one of many options. A renderer or a structured edi-
tor might simply use the data and its own built-in knowledge of mathematical structure to
render the object. Alternatively, it might manipulate the object to build a new mathemati-
cal object. A more computationally oriented system might attempt carry out the indicated
operation or function evaluation.

The purpose of this section is to describe the intended, consistent usage. The requirements
involve more than just satisfying the syntactic structure specified by an XML DTD. Failure
to conform to the usage as described below will result in a MathML error, even though the
expression may be syntactically valid according to the DTD.

In addition to the usage information contained in this section, section4.4 gives a com-
plete listing of each content element, providing reference information about about their
attributes, syntax, examples and suggested default semantics and renderings. An informal
EBNF grammar describing the syntax for the content markup is given in appendixC.

4.2.1 Overview of Syntax and Usage

MathML content encoding is based on the concept of an expression tree. As a general rule,
the terminal nodes in the tree represent basic mathematical objects, such as numbers, vari-
ables, arithmetic operations and so on. The internal nodes in the tree generally represent
some kind of function application or other mathematical construction that builds up a com-
pound object. Function application provides the most important example; an internal node

112

might represent the application of a function to several arguments, which are themselves
represented by the terminal nodes underneath the internal node.

The MathML content elements can be grouped into the following categories based on their
usage:

• Containers
• Operators
• Qualifiers
• Relations
• Conditions
• Semantic Mappings

These are the building blocks out of which MathML content expressions are constructed.
Each category is discussed in a separate section below. In the remainder of this section, we
will briefly introduce some of the most common elements of each type, and consider the
general constructions for combining them in mathematically meaningful ways.

4.2.1.1 Constructing Mathematical Objects

Content expression trees are built up from basic mathematical objects. At the lowest level,
leaf nodes, are encapsulated in non-empty elements that define their type. Numbers and
symbols are marked by thetoken elementscn and ci . More elaborate constructs such
as sets, vectors and matrices are also marked using elements to denote their types, but
rather than containing data directly, thesecontainer elements are constructed out of other
elements. Elements are used in order to clearly identify the underlying objects. In this way,
standard XML parsing can be used and attributes can be used to specify global properties
of the objects.

The containers such as<cn>12345<cn/>, <ci>x</ci> and<csymbol definitionURL =
"mySymbol.htm" encoding = "text"> S</csymbol> represent mathematical numbers
, identifiers and externally defined symbols. Below, we will look atoperator elements
such as<plus/> or <sin/> , which provide access to the basic mathematical operations
and functions applicable to those objects. Additional containers such as<set>...</set>
for sets, and<matrix>...</matrix> for matrices are provided for representing a variety
of common compound objects.

For example, the number 12345 is encoded as

<cn>12345</cn>

The attributes andPCDATAcontent together provide the data necessary for an application to
parse the number. For example, a default base of 10 is assumed, but to communicate that
the underlying data was actually written in base 8, simply set thebaseattribute to 8 as in

<cn base="8">12345</cn>

while complex number 3 + 4 i can be encoded as

<cn type="complex">3<sep/>4</cn>

Such information makes it possible for another application to easily parse this into the
correct number.

As another example, the scalar symbolv is encoded as

113

<ci>v</ci>

By defaultci elements represent elements from a commutative field (see appendixD). If a
vector is intended then this fact can be encoded as

<ci type="vector">v</ci>

This invokes default semantics associated with thevector element, namely an arbitrary
element of a finite dimensional vector space.

By using theci and csymbol elements we have made clear that we are referring to a
mathematical identifier or symbol but this does not say anything about how it shopuld be
rendered. By default a symbol is rendered as if theci or csymbolelement were actually the
presentation elementmi (see section3.2.2). The actual rendering of a mathematical symbol
can be made as elaborate as necessary simply by using the more elaborate presentational
constructs (as described in chapter3) in the body of theci or csymbol element.

The default rendering of a simplecn-tagged object is the same as for the presentation
elementmnwith some provision for overriding the presentation of thePCDATAby providing
explicit mntags. This is described in detail in section4.4.

The issues for compound objects such as sets, vectors and matrices are all similar to those
outlined above for numbers and symbols. Each such object has global properties as a math-
ematical object that impact how they are to be parsed. This may affect everything from the
interpretation of operations that are applied to them through to how to render the symbols
representing them. These mathematical properties are captured by setting attribute values.

4.2.1.2 Constructing General Expressions

The notion of constructing a general expression tree is essentially that of applying an oper-
ator to sub-objects. For example, the suma + b can be thought of as an application of the
addition operator to two argumentsaandb. In MathML, elements are used for operators
for much the same reason that elements are used to contain objects. They are recognized
at the XML parse level and their attributes can be used to record or modify the intended
semantics. For example, with the MathMLplus element, setting thedefinitionURL and
encoding attributes as in<plus definitionURL="www.vnbooks.com/VectorCalculus.htm"
encoding="text"/> can communicate that the intended operation is vector-based.

There is also another reason for using elements to denote operators. There is a crucial
semantic distinction between the function itself and the expression resulting from applying
that function to zero or more arguments which must be captured. This is addressed by
making the functions self-contained objects with their own properties and providing an
explicit apply construct corresponding to function application. We will consider theapply
construct in the next section.

MathML contains many pre-defined operator elements, covering a range of mathemati-
cal subjects. However, an important class of expressions involve unknown or user-defined
functions and symbols. For these situations, MathML provides a generalcsymbolelement,
which is discussed below.

4.2.1.3 Theapply construct

The most fundamental way of building up a mathematical expression in MathML content
markup is theapply construct. Anapply element typically applies an operator to its ar-

114

guments. It corresponds to a complete mathematical expression. Roughly speaking, this
means a piece of mathematics which could be surrounded by parentheses or ‘logical brack-
ets’ without changing its meaning.

For example, (x + y) might be encoded as

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>

</apply>

The opening and closing tags ofapply specify exactly the scope of any operator or func-
tion. The most typical way of usingapply is simple and recursive. Symbolically, the con-
tent model can the described as:

<apply> op a b </apply>

where theoperandsa and b are containers or other content-based elements themselves,
andop is an operator or function. Note that sinceapply is a container, this allowsapply
constructs to be nested to arbitrary depth.

An apply may in principle have any number of operands:

<apply> op a b [c...] <apply>

For example, (x + y + z) can be encoded as

<apply>
<plus/>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</apply>

Mathematical expressions involving a mixture of operations result in nested occurrences of
apply . For example,ax + b would be encoded as

<apply>
<plus/>
<apply>

<times/>
<ci> a </ci>
<ci> x </ci>

</apply>
<ci> b </ci>

</apply>

There is no need to introduce parentheses or to resort to operator precedence in order to
parse the expression correctly. Theapply tags provide the proper grouping for the re-use
of the expressions within other constructs. Any expression enclosed by anapply element
is viewed as a single coherent object.

An expression such as (F + G)(x) might be a product, as in

115

<apply>
<times/>
<apply>

<plus/>
<ci> F </ci>
<ci> G </ci>

</apply>
<ci> x </ci>

</apply>

or it might indicate the application of the functionF + G to the argumentx. This is indicated
by constructing the sum

<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>

</apply>

and applying it to the argumentx as in

<apply>
<apply>

<plus/>
<ci> F </ci>
<ci> G </ci>
</apply>

<ci> x </ci>
</apply>

Both the function and the arguments may be simple identifiers or more complicated ex-
pressions.

In MathML1.0 , another construction closely related to the use of theapply with operators
and arguments was thereln element. Thereln element was used to denote that a math-
ematical relation holds between its arguments, as opposed to applying an operator. Thus,
the MathML markup for the expressionx < y was given in MathML 1.0 by:

<reln>
<lt/>
<ci> x </ci>
<ci> y </ci>

</reln>

In MathML2.0, theapply construct is used with all operators, including logical operators.
The expression above becomes

<apply>
<lt/>
<ci> x </ci>
<ci> y </ci>

</apply>

116

in MathML 2.0. The use ofreln with relational operators is supported for reasons of
backwards compatibility, but deprecated. Authors creating new content are encouraged to
useapply in all cases.

4.2.1.4 Explicitly defined functions and operators

The most common operations and functions such as<plus/> and<sin/> have been pre-
defined explicitly as empty elements (see section4.4 attributes, and by changing these
attributes, the author can record that a different sort of algebraic operation is intended. This
allows essentially the same notation to be re-used for a discussion taking place in a different
algebraic domain.

Due to the nature of mathematics the notation must be extensible. The key to extensibility
is the ability of the user to define new functions and other symbols to expand the terrain of
mathematical discourse.

It is always possible to create arbitrary expressions, and then to use them as symbols in the
language. Their properties can then be inferred directly from that usage as was done in the
previous section. However such an approach would preclude being able to encode the fact
that the construct was a known symbol, or to record its mathematical properties except by
actually using it. Thecsymbol element is used as a container to construct a new symbol in
much the same way thatci is used to construct an identifier. (Note that symbol is used here
in the abstract sense and has no connection with any presentation of the construct on screen
or paper). The difference in usage is thatcsymbol should refer to some mathematically
defined concept with an external definition referenced via thedefinitionURL attribute,
whereasci is used for identifiers which are essentially ‘local’ to the MathML expres-
sion and do not use any external defintion mechanism. The target of thedefinitionURL
attribute on thecsymbol element may encode the definition in any format: the particular
encoding in use is given by theencoding attribute

To usecsymbol to describe a completely new function, we write

<csymbol definitionURL="www.vnbooks.com/VectorCalculus.htm"
encoding="text">
<ci>Christoffel</ci>

</csymbol>

The definitionURL attribute specifies a URI that provides a written definition for the
Christoffel symbol. Suggested default definitions for pre-defined MathML content ele-
ments appear in appendixD in a format based on OpenMath, although there is no require-
ment that a particular format be used. The role of thedefinitionURL attribute is very
similar to the role of definitions included at the beginning many mathematical papers, and
which often just refer to a definition used by a particular book.

MathML1.0 supported the use of thefn to encode the fact that a construct is explicitly being
used as a function or operator. To record the fact thatF+ G is being used semantically as if
it were a function, it was encoded as:

<fn>
<apply>

<plus/>
<ci>F</ci>

117

<ci>G</ci>
</apply>

</fn>

This usage, although allowed in MathML2.0 for reasons of backwards compatibility, is
now deprecated. The fact that a construct is being used as an operator is clear from the
position of the construct as the first child of theapply . If it is required to add additional
information to the construct, it should be wrapped in asemantics element, for example:

<semantics definitionURL="www.mathslib.com/vectorfuncs/plus.htm"
encoding="Mathematica 4.0">
<apply>

<plus/>
<ci>F</ci>
<ci>G</ci>

</apply>
</semantics>

MathML1.0 supported the use ofdefinitionURL with fn to refer to external definitions
for user-defined functions. This usage, although allowed for reasons of backwards compat-
ibility, is deprecated in MathML 2.0 in favour of usingcsymbol to define the function,
and thenapply to link the function to its arguments. For example:

<apply>
<csymbol definitionURL="http://www.defs.org/function_spaces.html#my_def"

encoding="text">
<ci>BigK</ci>

</csymbol>
<ci>x</ci>
<ci>y</ci>

</apply>

4.2.1.5 The inverse construct

Given functions, it is natural to have functional inverses. This is handled by theinverse
element.

Functional inverses can be problematic from a mathematical point of view in that it implic-
itly involves the definition of an inverse for an arbitrary functionF . Even at the K through
12 level the concept of an inverseF −1 of many common functionsF is not used in a uni-
form way. For example, the definitions used for the inverse trigonometric functions may
differ slightly depending on the choice of domain and/or branch cuts.

MathML adopts the view:

If F is a function from a domainD to D’, then the inverseG of F is a function overD’
such thatG(F(x)) = x for x in D.

This definition does not assert that such an inverse exists for all or indeed anyx in D, or
that it is single-valued anywhere. Also, depending on the functions involved, additional
properties such asF(G(y)) = y for y in D’ may hold.

Theinverse element is applied to a function whenever an inverse is required. For example,
application of the inverse sine function tox (i.e. sin−1 (x) is encoded as:

118

<apply>
<apply><inverse/>

<sin/>
</apply>
<ci> x </ci>

</apply>

While arcsin is one of the predefined MathML functions, an explicit reference to sin−1(x)
might occur in a document discussing possible definitions ofarcsin .

4.2.1.6 The declare construct

Consider a document discussing the vectorsA= (a, b, c) andB= (d, e, f) and later including
the expressionV = A + B. It is important to be able communicate the fact that wherever
A and B are used they represent a particular vector. The properties of that vector may
determine aspects of operators such asplus .

The simple fact thatA is a vector can be communicated by using the tagging

<ci type="vector">A</ci>

but this still does not communicate, for example, which vector is involved or its dimensions.

Thedeclare construct is used to associate specific properties or meanings with an object.
The actual declaration itself is not rendered visually (or in any other form). However, it
indirectly impacts the semantics of all affected uses of the declared object.

The scope of a declaration is, by default, local to the MathML element in which the declara-
tion is made. If thescopeattribute of thedeclare element is set toglobal , the declaration
applies to the entire MathML expression in which it appears.

The uses of thedeclare element range from resetting default attribute values to associating
an expression with a particular instance of of a more elaborate structure. Subsequent uses
of the original expression (within the scope of the declare) play the same semantic role as
would the paired object.

For example, the declaration

<declare>
<ci> A </ci>
<vector>

<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</vector>
</declare>

specifies thatA stands for the particular vector (a, b, c) so that subsequent uses ofA as inV
= A + Bcan take this into account. Whendeclare is used in this way, the actual encoding

<apply><eq/>
<ci> V </ci>
<apply>

<plus/>

119

<ci> A </ci>
<ci> B </ci>

</apply>
</apply>

remains unchanged but the expression can be interpreted properly as vector addition.

There is no requirement to declare an expression to stand for a specific object. For example,
the declaration

<declare type="vector">
<ci> A </ci>

</declare>

specifies thatA is a vector without indicating the number of components or the values of
specific components. The possible values for thetype attribute include all the predefined
container element names such asvector , matrix or set . (See 4.3.2.9type .)

4.2.1.7 The lambda construct

The lambda calculus allows a user to construct a function from a variable and an expression.
For example, the lambda construct underlies the common mathematical idiom illustrated
here:

Let f be the function takingx to x2 + 2

There are various notations for this concept in mathematical literature, such asλ(x,F(x)) =
F or λ(x, [F]) = F , wherex is a free variable inF .

This concept is implemented in MathML with thelambdaelement. A lambda construct
with n internal variables is encoded by alambdaelement withn+1 children. All but the
last child must bebvar elements containing the identifiers of the internal variables. The
last is an expression defining the function. This is typically anapply , but can also be any
container element.

The following constructsλ(x,sin(x+1)):

<lambda>
<bvar><ci> x </ci></bvar>
<apply>

<sin/>
<apply>

<plus/>
<ci> x </ci>
<cn> 1 </cn>

</apply>
</apply>

</lambda>

To usedeclare andlambdato construct the functionf for which f (x) = x 2 + x + 3 use:

<declare type="fn">
<ci> f </ci>
<lambda>

<bvar><ci> x </ci></bvar>

120

<apply>
<plus/>
<apply>

<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</lambda>

</declare>

The following markup declares and constructs the functionJ such thatJ(x, y) is the integral
from x to y of t 4 with respect tot.

<declare type="fn">
<ci> J </ci>
<lambda>

<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<apply> <int/>

<bvar>
<ci> t </ci>

</bvar>
<lowlimit>

<ci> x </ci>
</lowlimit>
<uplimit>

<ci> y </ci>
</uplimit>
<apply> <power/>

<ci>t</ci>
<cn>4</cn>

</apply>
</apply>

</lambda>
</declare>

The functionJ can then in turn be applied to an argument pair.

4.2.1.8 The use of qualifier elements and the condition construct

The last example of the preceding section illustrates the use ofqualifierelementslowlimit ,
uplimit , andbvar used in conjunction with theint element. A number of common math-
ematical constructions involve additional data which is either implicit in conventional nota-
tion, such as a bound variable, or thought of as part of the operator rather than an argument,
as is the case with the limits of a definite integral.

Content markup uses qualifier elements in conjunction with a number of operators, includ-
ing integrals, sums, series, and certain differential operators. Qualifier elements appear in

121

the sameapply element with one of these operators. In general, they must appear in a cer-
tain order, and their precise meaning depends on the operators being used. For details, see
section4.2.4.

The bvar qualifier element is also used in another important MathML construction. The
condition element is used to place conditions on bound variables in other expressions.
This allows MathML to define sets by rule, rather than enumeration, for example. The
following markup, for instance, encodes the setx | x < 1:

<set>
<bvar><ci> x </ci></bvar>
<condition>

<apply><lt/>
<ci> x </ci>
<cn> 1 </cn>

</apply>
</condition>

</set>

4.2.1.9 Rendering of Content elements

While the primary role of the MathML content element set is to directly encode the math-
ematical structure of expressions independent of the notation used to present the objects,
rendering issues cannot be ignored. Each content element has a default rendering, given in
section 4.4. and several mechanisms (including section4.3.3.2) are provided for associating
a particular rendering with an object.

4.2.2 Containers

Containers provide a means for the construction of mathematical objects of a given type.

Tokens ci , cn csymbol
Constructors interval , list , matrix , matrixrow , set , vector , apply , reln , lambda, fn
Specials declare

4.2.2.1 Tokens

Token elements are typically the leaves of the MathML expression tree. Token elements
are used to indicate mathematical identifiers, numbers and symbols.

It is also possible for the canonically empty operator elements such asexp, sin andcos to
be leaves in an expression tree. The usage of operator elements is described in section4.2.3.

cn Thecn element is the MathML token element used to represent numbers. The supported
types of numbers include:real , integer , rational , complex-cartesian , and
complex-polar , with real being the default type. A base attribute (defaulting
to base 10) is used to help specify how the content is to be parsed. The content
itself is essentiallyPCDATA, separated by<sep/> when two parts are needed in
order to fully describe a number. For example, the real number 3 is constructed
by <cn type="real"> 3 </cn> while the rational number 3/4 is constructed as
<cn type="rational"> 3<sep/>4 </cn> The detailed structure and specifica-
tions are provided in section4.4.1.1.

122

ci The ci element, or ‘content identifier’ is used to construct a variable, or an identifier.
A type attribute indicates the type of object the symbol represents. Typically,ci
represents a real scalar, but no default is specified. The content is eitherPCDATA
or a general presentation construct section3.1.5. For example,

<ci>
<msub>

<mi>c</mi>
<mn>1</mn>

</msub>
</ci>
encodes an atomic symbol which displays visually asc 1which, for purposes of
content, is treated as a single symbol representing a real number. The detailed
structure and specifications is provided in section4.4.1.2.

csymbol Thecsymbol element, or ‘content symbol’ is used to construct a symbol whose
semantics are not part of the core content elements provided by MathML, but
defined externally.csymbol does not make any attempt to describe how to map
the arguments occurring in any application of the function into a new MathML
expression. Instead, it depends on itsdefinitionURL attribute to point to a par-
ticular meaning, and theencoding attribute to give the syntax of this definition.
The content of acsymbol is eitherPCDATAor a general presentation construct
section3.1.5. For example,

<csymbol definitionURL="www.vnbooks.com/ContDiffFuncs.htm" encoding = "text">
<msup>

<mi>C</mi>
<mn>2</mn>

</msup>
</csymbol>
encodes an atomic symbol which displays visually asC 2 and which, for pur-
poses of content, is treated as a single symbol representing the space of twice-
differentiable continuous functions. The detailed structure and specifications is
provided in section4.4.1.3.

4.2.2.2 Constructors

MathML provides a number of elements for combining elements into familiar compound
objects. The compound objects include things like lists, sets. Each constructor produces a
new type of object.
interval The interval element is described in detail in section4.4.2.4. It denotes an

interval on the real line with the values represented by its children as end points.
The closure attribute is used to qualify the type of interval being represented.
For example,

<interval closure="open-closed">
<ci> a </ci>
<ci> b </ci>

</interval>
represents the open-closed interval often written (a,b].

set and list Theset andlist elements are described in detail in section4.4.6.1and sec-
tion 4.4.6.2. Typically, the child elements of a possibly emptylist element are

123

the actual components of an orderedlist. For example, an ordered list of the three
symbolsa, b, andc is encoded as
<list> <ci> a </ci> <ci> b </ci> <ci> c </ci> </list>
Alternatively,bvar andcondition elements can be used to define lists where
membership depends on satisfying certain conditions. Anorder attribute which
is used to specify what ordering is to be used. When the nature of the child
elements permits, the ordering defaults to a numeric or lexicographic ordering.
Sets are structured much the same as lists except that there is no implied ordering
and thetype of set may benormal or multiset with ‘multiset’ indicating that
repetitions are allowed. For both sets and lists, the child elements must be valid
MathML content elements. The type of the child elements is not restricted. For
example, one might construct a list of equations, or inequalities.

matrix and matrixrow Thematrix element is used to represent mathematical matrices.
It is described in detail in section4.4.10.2. It has zero or more child elements, all
of which arematrixrow elements. These in turn expect zero or more child ele-
ments which evaluate to algebraic expressions or numbers. These sub-elements
are often real numbers, or symbols as in

<matrix>
<matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>
<matrixrow> <cn> 3 </cn> <cn> 4 </cn> </matrixrow>

</matrix>
The matrixrow elements must always be contained inside of a matrix and all
matrixrow s in a given matrix must have the same number of elements. Note that
the behavior of thematrix andmatrixrow elements is substantially different
from themtable andmtr presentation elements.

vector Thevector element is described in detail in section4.4.10.1. It constructs vectors
from a n-dimensional vector space so that itsn child elements typically represent
real or complex valued scalars as in the three-element vector

<vector>
<apply>

<plus/>
<ci> x </ci>
<ci> y </ci>

</apply>
<cn> 3 </cn>
<cn> 7 </cn>

</vector>

apply The apply element is described in detail in section4.4.2.1. Its purpose is apply a
function or operator to its arguments to produce an an expression representing an
element of the range of the function. It is involved in everything from forming
sums such asa + b as in

<apply>
<plus/>
<ci> a </ci>
<ci> b </ci>

</apply>
through to using the sine function to construct sin(a) as in

124

<apply><sin/>
<ci> a </ci>

</apply>
or constructing integrals. Its usage in any particular setting is determined largely
by the properties of the function (the first child element) and as such its detailed
usage is covered together with the functions and operators in section4.2.3.

reln Thereln element is described in detail in section4.4.2.2. It was used in MathML1.0
to construct an expression such asa = b, as in

<apply><eq/>
<ci> a </ci>
<ci> b </ci>

</apply>
indicating an intended comparison between two mathematical values. MathML2.0
takes the view that this should be regarded as the application of a boolean func-
tion, and as such could be constructed usingapply . The use ofreln with logical
operators is supported for reasons of backwards compatibility, but deprecated in
favour ofapply .

fn The fn element was used in MathML 1.0 to make explicit the fact that an expression
is being used as a function or operator. This is allowed in MathML 2.0 for back-
wards compatibility, but is deprecated, as the use of an expression as a function
or operator is clear from its position as the first child of anapply . fn is discussed
in detail in section4.4.2.3.

lambda The lambdaelement is used to construct an user-defined function from an ex-
pression and one or more free variables. The lambda construct withn internal
variables takesn+1 children. The first (second, up ton) is abvar containing the
identifiers of the internal variables. The last is an expression defining the function.
This is typically anapply , but can also be any container element. The following
constructs lambda(x, sinx)
<lambda>

<bvar><ci> x </ci></bvar>
<apply>

<sin/>
<ci> x </ci>

</apply>
</lambda>
The following constructs the constant functionλ(x, 3)
<lambda>

<bvar><ci> x </ci></bvar>
<cn> 3 </cn>

</lambda>

4.2.2.3 Special Constructs

Thedeclare construct is described in detail in section4.4.2.8. It is special in that its entire
purpose is to modify the semantics of other objects. It is not rendered visually or aurally.

The need for declarations arises any time a symbol (including more general presentations)
is being used to represent an instance of an object of a particular type. For example, you
may wish to declare that the symbolic identifierV represents a vector.

125

The declaration

<declare type="vector"><ci>V</ci></declare>

resets the default type attribute of<ci>V</ci> to vector for all affected occurrences of
<ci>V</ci> . This avoids having to write<ci type="vector">V</ci> every time you
use the symbol.

More generally,declare can be used to associate expressions with specific content. For
example, the declaration

<declare>
<ci>F</ci>
<lambda>

<bvar><ci> U </ci></bvar>
<apply><int/>

<bvar><ci> x </ci></bvar>
<lowlimit><cn> 0 </cn></lowlimit>
<uplimit><ci> a </ci></uplimit>
<ci> U </ci>

</apply>
</lambda>

</declare>

associates the symbolF with a new function defined by thelambdaconstruct. Within the
scope where the declaration is in effect, the expression

<apply><ci>F</ci>
<ci> U </ci>

</apply>

stands for the integral ofU from 0 toa.

Thedeclare element can also be used to change the definition of a function or operator.
For example, if the URLhttp://.../MathML:noncommutplus described a non-commutative
plus operation encoded in Maple syntax, then the declaration

<declare definitionURL="http://.../MathML:noncommutplus" encoding = "Maple V">
<plus/>

</declare>

would indicate that all affected uses ofplus are to be interpreted as having that definition
of plus .

4.2.3 Functions, Operators and Qualifiers

4.2.3.1 Table of Operators

From the point of view of usage, MathML regards functions (for examplesin , cos) and
operators (for exampleplus , times) in the same way. MathML predefined functions and
operators are all canonically empty elements.

Note: Thecsymbol element can be used to construct a user-defined symbol which can be
used as a function or operator.

126

unary arithmetic exp, factorial , abs, conjugate Error: arg Error: real Error: imaginary
unary logical not
unary functional inverse , ident
unary elemtary classical funtional sin , cos, tan , sec, csc, cot , sinh , cosh, tanh , sech, csch, coth , arcsin , arccos , arctan arccosh arccot arccoth arccsc arccsch arcsec arcsech arcsinh arctanh exp , ln , log
unary linear algebra determinant , transpose
unary calculus and vector calculusdivergence , grad curl , laplacian
unary set-theoretic card
binary arithmetic quotient , divide , minus, power, rem
binary logical implies equivalent approx
binary set operators setdiff
binary linear algebra vectorproduct scalarproduct outerproduct
n-ary arithmetic plus , times , max, min, gcd
n-ary statistical mean, sdev, variance , median, mode
n-ary logical and, or , xor
n-ary linear algebra selector
n-ary set operator union , intersect
n-ary functional fn , compose
integral, sum, product operator int , sum, product
differential operator diff , partialdiff
quantifier forall , exists

4.2.3.2 MathML predefined functions and operators

MathML functions can be used in two ways. They can be used as the operator within an
apply element, in which case they refer to a function evaluated at a specific value. For
example,

<apply><sin/><cn>5</cn></apply>

denotes a real number, namely sin(5).

MathML functions can also be used as arguments to other operators, for example

<apply>
<plus/><sin/><cos/>

</apply>

denotes a function, namely the result of adding the sine and cosine functions in some func-
tion space. (The default semantic definition ofplus is such that it infers what kind of
operation is intended from the type of its arguments.)

The number of child elements in theapply is defined by the element in the first (i.e. oper-
ator) position.

Unary operators are followed by exactly one other child element within theapply .

Binary operators are followed by exactly two child elements.

N-ary operators are followed by zero or more child elements.

The one exception to these rules is thatdeclare elements may be inserted in any position
except the first.declare elements are not counted when satisfying the child element count
for anapply containing a unary or binary operator element.

127

Integral, sum, product and differential operators are discussed below in Operators taking
Qualifiers section4.2.4.

4.2.4 Operators taking Qualifiers

4.2.4.1 Table of Qualifiers and Operators taking Qualifiers

qualifiers lowlimit , uplimit , bvar , degree, logbase, interval , condition
operators int , sum, product , root , diff , partialdiff , limit , log , moment, min, max, forall , exists

Operators taking qualifiers are canonically empty functions which differ from ordinary
empty functions only in that they support the use of specialqualifier elements to specify
their meaning more fully. They are used in exactly the same way as ordinary operators,
except that when they are used as operators, certain qualifier elements are also permitted to
be in the enclosingapply . They always precede the argument if it is present. If more than
one qualifier is present, they appear in the orderbvar , lowlimit , uplimit , interval ,
condition , degree, logbase. A typical example is:

<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>1</cn></uplimit>
<apply>

<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
</apply>

It is also valid to use qualifier schema with a function not applied to an argument. For
example, a function acting on integrable functions on the interval [0,1] might be denoted:

<fn>
<apply>

<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>1</cn></uplimit>

</apply>
</fn>

The meaning and usage of qualifier schema varies from function to function. The following
list summarizes the usage of qualifier schema with the MathML functions taking qualifiers.

int The int function accepts thelowlimit , uplimit , bvar , interval andcondition
schema. If bothlowlimit anduplimit schema are present, they denote the lim-
its of a definite integral. The domain of integration may alternatively be specified
using interval or condition. Thebvar schema signifies the variable of integration.
When used withint , each qualifier schema is expected to contain a single child
schema; otherwise an error is generated.

diff Thediff function accepts thebvar schema. Thebvar schema specifies with respect
to which variable the derivative is being taken. Thebvar may itself contain a
degree schema which is used to specify the order of the derivative, i.e. a first

128

derivative, a second derivative, etc. For example, the second derivative off with
respect tox is:

<apply><diff/>
<bvar>

<ci> x </ci>
<degree>

<cn> 2 </cn>
</degree>

</bvar>
<apply><fn><ci>f</ci></fn>

<ci> x </ci>
</apply>

</apply>

partialdiff The partialdiff function accepts zero or morebvar schema. Thebvar
schema specify with respect to which variables the derivative is being taken. The
bvar elements may themselves containdegree schema which are used to specify
the order of the derivative. Variables specified by multiplebvar elements will be
used in order as the variable of differentiation in mixed partials. When used with
partialdiff , thedegree schema is expected to contain a single child schema.
For example,

<apply>
<partialdiff/>

<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<fn><ci>f</ci></fn>

</apply>
denote the mixed partial (d2 / dxdy) f .

sum, product The sumand product functions accept thebvar , lowlimit , uplimit ,
interval andcondition schema. If bothlowlimit anduplimit schema are
present, they denote the limits of the sum/product. The limits may alternatively be
specified using theinterval or condition schema. Thebvar schema signifies
the index variable in the sum or product. A typical example might be:

<apply>
<sum/>
<bvar><ci>i</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>100</cn></uplimit>
<apply>

<power/>
<ci>x</ci>
<ci>i</ci>

</apply>
</apply>
When used withsumor product , each qualifier schema is expected to contain a
single child schema; otherwise an error is generated.

limit Thelimit function accepts zero or morebvar schema and optionalcondition and
lowlimit schema. Acondition may be used to place constraints on thebvar .

129

The bvar schema denotes the variable with respect to which the limit is being
taken. Thelowlimit schema denotes the limit point. When used withlimit ,
thebvar andlowlimit schemata are expected to contain a single child schema;
otherwise an error is generated.

log The log function accepts only thelogbase schema. If present, thelogbase schema
denotes the base with respect to which the logarithm is being taken. Otherwise,
the log is assumed to be base 10. When used withlog , the logbase schema is
expected to contain a single child schema; otherwise an error is generated.

moment Themomentfunction accepts onlydegreeschema. If present, thedegreeschema
denotes the order of the moment. Otherwise, the moment is assumed to be the
first order moment. When used withmoment, thedegree schema is expected to
contain a single child schema; otherwise an error is generated.

min, max Theminandmaxfunctions accept abvar schema in cases where the max or min
is being taken over a set of values specified by acondition schema together with
an expression to be evaluated on that set. Themin andmaxfunctions are unique
in that they provide the only context in which thebvar element is optional when
using acondition ; if a condition element containing a single variable is given
by itself following amin or maxoperator, the variable is implicitly assumed to
be bound, and the expression to be maximized or minimized is assumed to be
the identity. Themin andmaxelements may also be applied to a list of values in
which case no qualifier schemata are used. For examples of all three usages, see
section4.4.3.4.

forall, exists The universal and existential quantifier operatorsforall and exists are
used conjuction with one or morebvar schemata to represent simple logical as-
sertions. There are two ways of using the logical quantifier operators. The first
usage is for representing a simple, quantified assertion. For example, the state-
ment ‘there existsx< 9’ would be represented as:

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<apply><lt/>

<ci> x </ci><cn> 9 </cn>
</apply>

</apply>
The second usage is for representing implications. Hypotheses are given by a
condition element following the bound variables. For example the statement
‘for all x < 9, x < 10’ would be represented as:

<apply>
<forall/>
<bvar><ci> x </ci></bvar>
<condition>

<apply><lt/>
<ci> x </ci><cn> 9 </cn>

</apply>
</condition>
<apply><lt/>

<ci> x </ci><cn> 10 </cn>
</apply>

130

</apply>
Note, in both usages one or morebvar qualifier is mandatory.

4.2.5 Relations

binary relation neq equivalent approx
binary logical relation implies
binary set relation in , notin , notsubset , notprsubset
binary series relation tendsto
n-ary relation eq, leq , lt , geq, gt
n-ary set relation subset , prsubset

The MathML content tags include a number of canonically empty elements which denote
arithmetic and logical relations. Relations are characterized by the fact that, if an external
application were to evaluate them (MathML does not specify how to evaluate expressions),
they would typically return a truth value. By contrast, operators generally return a value of
the same type as the operands. For example, the result of evaluatinga < b is either true or
false (by contrast, 1 + 2 is again a number).

Relations are bracketed with their arguments using theapply element in the same way
as other functions. In MathML1.0, relational operators were bracketed usingreln . This
usage, although still supported, is now deprecated in favour ofapply The relational oper-
ator element is the first child element of theapply . Thus, the example from the preceding
paragraph is properly marked up as:

<apply>
<lt/>
<ci>a</ci>
<ci>b</ci>

</apply>

It is an error to enclose a relation in an element other thanapply or reln .

The number of child elements in theappy is defined by the element in the first (i.e. relation)
position.

Unary relations are followed by exactly one other child element within theapply .

Binary relations are followed by exactly two child elements.

N-ary relations are followed by zero or more child elements.

The one exception to these rules is thatdeclare elements may be inserted in any position
except the first.declare elements are not counted when satisfying the child element count
for anapply containing a unary or binary relation element.

4.2.6 Conditions

condition condition

Thecondition element is used to define the ‘such that’ construct in mathematical expres-
sions. Condition elements are used in a number of contexts in MathML. They are used to
construct objects like sets and lists by rule instead of by enumeration. They can be used
with the forall andexists operators to form logical expressions. And finally, they can

131

be used in various ways in conjunction with certain operators. For example, they can be
used with andint element to specify domains of integration, or to specify argument lists
for operators likemin andmax.

The condition element is always used together with one or morebvar elements. sec-
tion 4.4.3.4.

The exact interpretation depends on the context, but generally speaking, thecondition
element is used to restrict the permissible values of a bound variable appearing in another
expression to those which satisfy the relations contained in thecondition . Similarly, when
thecondition element contains aset , the values of the bound variables are restricted to
that set.

A condition element contains a single child which is typically areln element, but may
also be anapply or aset element. Theapply element is allowed so that several relations
can be combined by applying logical operators.

4.2.6.1 Examples

The following encodes ‘there existsx such thatx 5 < 3’.

<apply><exists/>
<bvar><ci> x </ci></bvar>
<condition>

<apply><lt/>
<apply>

<power/>
<ci>x</ci>
<cn>5</cn>

</apply>
<cn>3</cn>

</apply>
</condition>

</apply>

The next example encodes ‘for allx, y such thatxy < 1 andyx < x + y, x < Q(y)’.

<apply><forall/>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<condition>

<apply><and/>
<apply>

<lt/>
<apply>

<power/>
<ci>x</ci>
<ci>y</ci>

</apply>
<cn>1</cn>

</apply>
<apply>

132

<lt/>
<apply>

<power/>
<ci>y</ci>
<ci>x</ci>

</apply>
<apply>

<plus/>
<ci>y</ci>
<ci>x</ci>

</apply>
</apply>

</apply>
</condition>
<apply><lt/>

<ci> x </ci>
<apply>

<fn><ci> x </ci></fn>
<ci> y </ci>

</apply>
</apply>

</apply>

A third example shows the use of quantifiers withcondition . The following markup en-
codes ‘there existsx < 3 such thatx2 = 4’.

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<condition>

<apply><lt/><ci>x</ci><cn>3</cn></apply>
</condition>
<apply>

<eq/>
<apply>

<power/><ci>x</ci><cn>2</cn>
</apply>
<cn>4</cn>

</apply>
</apply>

4.2.7 Syntax and Semantics

mappings semantics , annotation , annotation-xml

The use of content rather than presentation tagging for mathematics is sometimes referred
to assemantic tagging[Buswell1996]. The parse-tree of a fully bracketed MathML con-
tent tagged element structure corresponds directly to the expression-tree of the underlying
mathematical expression. We therefore regard the content tagging itself as encoding the
syntaxof the mathematical expression. This is, in general, sufficient to obtain some ren-
dering and even some symbolic manipulation (e.g. polynomial factorization).

133

However, even in such apparently simple expressions asX + Y, some additional informa-
tion may be required for applications such as computer algebra. AreX andY integers, or
functions, etc.? ‘Plus’ represents addition over which field? This additional information is
referred to assemantic mapping. In MathML, this mapping is provided by thesemantics ,
annotation andannotation-xml elements.

Thesemantics element is the container element for the MathML expression together with
its semantic mappings.semantics expects a variable number of child elements. The first
is the element (which may itself be a complex element structure) for which this additional
semantic information is being defined. The second and subsequent children, if any, are
instances of the elementsannotation and/orannotation-xml .

Thesemantics tags also accepts thedefinitionURL andencoding attributes for use by
external processing applications. One use might be a URI for a semantic content dictionary,
for example. Since the semantic mapping information might in some cases be provided
entirely by thedefinitionURL attribute, theannotation or annotation-xml elements
are optional.

The annotation element is a container for arbitrary data. This data may be in the form
of text, computer algebra encodings, C programs, or whatever a processing application
expects.annotation has an attributeencoding defining the form in use. Note that the
content model ofannotation is PCDATA, so care must be taken that the particular encoding
does not conflict with XML parsing rules.

The annotation-xml element is a container for semantic information in well-formed
XML. For example, an XML form of the OpenMath semantics could be given. Another
possible use here is to embed, for example, the presentation tag form of a construct given in
content tag form in the first child element ofsemantics(or vice versa).annotation-xml
has an attributeencoding defining the form in use.

For example:

<semantics>
<apply>

<divide/>
<cn>123</cn>
<cn>456</cn>

</apply>
<annotation encoding="Mathematica">

N[123/456, 39]
</annotation>
<annotation encoding="TeX">

$0.269736842105263157894736842105263157894\ldots$
</annotation>
<annotation encoding="Maple">

evalf(123/456, 39);
</annotation>
<annotation-xml encoding="MathML-Presentation">

<mrow>
<mn> 0.269736842105263157894 </mn>
<mover accent=’true’>

<mn> 736842105263157894 </mn>

134

<mo> ‾ </mo>
</mover>

</mrow>
</annotation-xml>
<annotation-xml encoding="OpenMath">

<OMA>...</OMA>
</annotation-xml>

</semantics>

where <OMA>..</OMA> are the elements defining the additional semantic information.

Of course, providing an explicit semantic mapping at all is optional, and in general would
only be provided where there is some requirement to process or manipulate the underlying
mathematics.

4.2.8 Semantic Mappings

Although semantic mappings can easily be provided by various proprietary, or highly spe-
cialized encodings, there are no widely available, non-proprietary standard semantic map-
ping schemes. In part to address this need, the goal of the OpenMath effort is to provide
a platform-independent, vendor-neutral standard for the exchange of mathematical objects
between applications. Such mathematical objects include semantic mapping information.
The OpenMath group has defined an SGML syntax for the encoding of this information
[OpenMath1996]. This element set could provide the basis of oneannotation-xml ele-
ment set.

An attraction of this mechanism is that the OpenMath syntax is specified in XML, so that
a MathML expression together with its semantic annotations can be validated using XML
parsers.

4.2.9 MathML element types

MathML functions, operators, and relations can all be thought of as mathematical functions
if viewed in a sufficiently abstract way. For example, the standard addition operator can
be regarded as a function mapping pairs of real numbers to real numbers. Similarly, a
relation can be thought of as a function from some space of ordered pairs into the set of
values true, false. To be mathematically meaningful, the domain and range of a function
must be precisely specified. In practical terms, this means that functions only make sense
when applied to certain kinds of operands. For example, thinking of the standard addition
operator, it makes no sense to speak of ‘adding’ a set to a function. Since MathML content
markup seeks to encode mathematical expressions in a way that can be unambiguously
evaluated, it is no surprise that the types of operands is an issue.

MathML specifies the types of arguments in two ways. The first way is by providing pre-
cise instructions for processing applications about the kinds of arguments expected by the
MathML content elements denoting functions, operators and relations. These operand types
are defined in a dictionary of Default Semantic Bindings for Content Elements given in ap-
pendixD. For example, the MathML Content dictionary specifies that for real scalar argu-
ments the plus operator is the standard commutative addition operator over a field. Elements
such ascn andci havetype attributes with default values ofreal . Thus some processors
will be able to use this information to verify the validity of the indicated operations.

135

Although MathML specifies the types of arguments for functions, operators and relations,
and provides a mechanism for typing arguments, a MathML compliant processor is not
required to do any type checking. In other words, a MathML processor will not generate
errors if argument types are incorrect. If the processor is a computer algebra system, it may
be unable to evaluate an expression, but no MathML error is generated.

4.3 Content Element Attributes

4.3.1 Content Element Attribute Values

Content element attributes are all of the typeCDATA,that is, any character string will be
accepted as valid. In addition, each attribute has a list of predefined values, which a content
processor is expected to recognize and process. The reason that the attribute values are not
formally restricted to the list of predefined values is to allow for extension. A processor
encountering a value (not in the predefined list) which it does not recognize may validly
process it as the default value for that attribute.

4.3.2 Attributes Modifying Content Markup Semantics

Each attribute is followed by the elements to which it can be applied.

4.3.2.1 base

cn indicates numerical base of the number. Predefined values: any numeric string. Default
is 10

4.3.2.2 closure

interval indicates closure of the interval. Predefined values:open, closed , open-closed ,
closed-open . default isclosed

4.3.2.3 definitionURL

csymbol, declare, semantics, any operator elementpoints to an external definition of
the semantics of the symbol or construct being declared. The value is a URL
or URI which should point to some kind of definition. This definition overrides
the MathML default semantics. At present, MathML does not specify the for-
mat in which external semantic definitions should be given. In particular,there
is no requirement that the target of the URI be loadable and parsable.An exter-
nal definition could, for example, define the semantics in human-readable form.
Ideally, in most situations the definition pointed to by thedefinitionURL at-
tribute would be some standard, machine-readable format. However, there are
several reasons why MathML does not require such a format. First, no such for-
mat currently exists. There are several projects underway to develop and imple-
ment standard semantic encoding formats, most notably the OpenMath effort.
But by nature, the development of a comprehensive system of semantic encoding
is a very large enterprise, and while much work has been done, much additional
work remains. Therefore, even though thedefinitionURL is designed and in-
tended for use with a formal semantic encoding language such as OpenMath,

136

it is premature to require any one particular format. Another reason for leaving
the format of thedefinitionURL attribute unspecified is that there will always
be situations where some non-standard format is preferable. This is particularly
true in situations where authors are describing new ideas. It is anticipated that
in the near term, there will be a variety of renderer-dependent implementations
of the definitionURL attribute. For example, a translation tool might simply
prompt the user with the specified definition in situations where the proper se-
mantics have been overridden, and in this case, human-readable definitions will
be most useful. Other software may utilize OpenMath encodings. Still other soft-
ware may use proprietary encodings, or look for definitions in any of several
formats. As a consequence, authors need to be aware that there is no guaran-
tee a generic renderer will be able to take advantage of information pointed to
by thedefinitionURL attribute. Of course, when widely-accepted standardized
semantic encodings are available, the definitions pointed to can be replaced with-
out modifying the original document. However, this is likely to be labor intensive.
There is no default value for thedefinitionURL attribute, i.e. the semantics are
defined within the MathML fragment, and/or by the MathML default semantics.

4.3.2.4 encoding

annotation, annotation-xml, csymbol, semantics, all operator elementsindicates the en-
coding of the annotation, or in the case ofcsymbol , semantics and operator
elements, the syntax of the target referred to bydefinitionURL . Predefined val-
ues areMathML-Presentation , MathML-Content. Other typical values:TeX,
OpenMath. default is "", i.e. unspecified.

4.3.2.5 <nargs>

declare indicates number of arguments for function declarations. Pre-defined values:nary ,
any numeric string. default is1

4.3.2.6 <occurrence>

declare indicates occurrence for operator declarations. Pre-defined values:prefix , infix ,
function-model . default isfunction-model

4.3.2.7 <order>

list indicates ordering on the list. Predefined values:lexicographic , numeric. default is
numeric

4.3.2.8 <scope>

declare indicates scope of applicability of the declaration. Pre-defined values:local ,
global .
• local means the containing MathML element.
• global means the containingmathelement.
default islocal . At present, declarations cannot affect anything outside of the
containingmathelement. Ideally, one would like to make document-wide dec-
larations by setting the value of thescope attribute to beglobal-document .

137

However, the proper mechanism for document-wide declarations very much de-
pends on details of the way in which XML will be embedded in HTML, fu-
ture XML style sheet mechanisms, and the underlying Document Object Model.
Since these supporting technologies are still in flux at present, the MathML spec-
ification does not includeglobal-document as a pre-defined value of thescope
attribute. It is anticipated, however, that this issue will be revisited in future revi-
sions of MathML as supporting technologies stabilize. In the near term, MathML
implementors that wish to simulate the effect of a document-wide declaration are
encouraged to pre-process documents in order to distribute document-wide dec-
larations to each individualmathelement in the document.

4.3.2.9 <type>

cn indicates type of the number. Predefined values:integer , rational , real , float ,
complex, complex-polar , complex-cartesian , constant . default is real .
Notes: Each data type implies that the data adheres to certain formating con-
ventions, detailed below. If the data fails to conform to the expected format, an
error is generated. Details of the individual formats are:real : A real number is
presented in decimal notation. Decimal notation consists of an optional sign (
‘+’ or ‘-’) followed by a string of digits possibly separated into an integer and
a fractional part by a ‘decimal point’. Some examples are 0.3, 1, and -31.56.
If a different base is specified, then the digits are interpreted as being digits
computed to that base. A real number may also be presented in scientific nota-
tion. Such numbers have two parts (a mantissa and an exponent) separated by
e. The first part is a real number while the second part is an integer exponent
indicating a power of the base. For example, 12.3e5 represents 12.3 times 10^5.
integer : An integer is represented by an optional sign followed by a string of
1 or more ‘digits’. What a ‘digit’ is depends on thebase attribute. If base is
present, it specifies the base for the digit encoding, and it specifies it base ten.
Thusbase=’16’ specifies a hex encoding. Whenbase > 10, letters are added
in alphabetical order as digits. The legitimate values forbase are therefore be-
tween 2 and 36.rational : A rational number is two integers separated by the
<sep/> element. Ifbase is present, it specifies the base used for the digit en-
coding of both integers.complex-cartesian : A complex number is of the form
two real point numbers separated by<sep/>. complex-polar : A complex num-
ber is specified in the form of a magnitude and an angle (in radians). The raw
data is in the form of two real numbers separated by<sep/>. constant : The
constant type is used to denote named constants. For example, an instance of
<cn type="constant">π</cn> should be interpreted as having the seman-
tics of the mathematical constant Pi. The data for a constantcn tag may be one
of the following common constants:

ci indicates type of the identifier. Predefined values:integer , rational , real , float ,
complex, complex-polar , complex-cartesian , constant , any content ele-
ment name. The meaning of the various attribute values is the same as that listed
above for thecn element. default is "" , i.e. unspecified.

declare indicates type of the identifier being declared. Predefined values: any content ele-
ment name. default isci , i.e. a generic identifier

set indicates type of the set. Predefined values:normal, multiset . multiset indicates
that repetitions are allowed. default isnormal.

138

Symbol Value
π The usualπ of trigonometry: approximately 3.141592653...
ⅇ (or ⅇ) The base for natural logarithms: approximately 2.718281828 ...
ⅈ (or ⅈ) Square root of -1.
γ Euler’s constant: approximately 0.5772156649...
∞ (or &infty;) Infinity. Proper interpretation varies with context
&true; the logical constant ‘true’
&false; the logical constant ‘false’
&NotANumber;(or &NaN;) represents the result of an ill-defined floating point division

tendsto indicates the direction from which the limiting value is approached. Predefined
values:above, below, two-sided . default isabove.

4.3.3 Attributes Modifying Content Markup Rendering

4.3.3.1 <type>

The type attribute, in addition to conveying semantic information, can be interpreted to
provide rendering information. For example in

<ci type="vector">V</ci>

a renderer could display a boldV for the vector.

4.3.3.2 General Attributes

All content elements support the following general attributes which can be used to modify
the rendering of the markup.

• class
• style
• id
• other

The class , style and id attributes are intended for compatibility with Cascading Style
Sheets (CSS), as described in section2.3.4.

Content or semantic tagging goes along with the (frequently implicit) premise that, if you
know the semantics, you can always work out a presentation form. When an author’s main
goal is to mark up re-usable, evaluatable mathematical expressions, the exact rendering of
the expression is probably not critical, provided that it is easily understandable. However,
when an author’s goal is more along the lines of providing enough additional semantic
information to make a document more accessible by facilitating better visual rendering,
voice rendering, or specialized processing, controlling the exact notation used becomes
more of an issue.

MathML elements accept an attributeother (see section7.2.3) which can be used to spec-
ify things not specifically documented in MathML. On content tags, this attribute can be
used by an author to express apreferencebetween equivalent forms for a particular con-
tent element construct, where the selection of the presentation has nothing to do with the
semantics. Examples might be

• inline or displayed equations

139

• script style fractions
• use ofx with a dot for a derivative over dx/dt

Thus, if a particular renderer recognized a display attribute to select between script style
and display style fractions, an author might write

<apply other=’display="scriptstyle"’>
<divide/>
<mn> 1 </mn>
<mi> x </mi>

</apply>

to indicate that the rendering 1/x is preferred.

The information provided in theother attribute is intended for use by specific renderers or
processors, and therefore, the permitted values are determined by the renderer being used.
It is legal for a renderer to ignore this information. This might be intentional, in the case
of a publisher imposing a house style, or simply because the renderer does not understand
them, or is unable to carry them out.

4.4 The Content Markup Elements

This section provides detailed descriptions of the MathML content tags. They are grouped
in categories which broadly reflect the area of mathematics from which they come, and also
the grouping in the MathML DTD. There is no linguistic difference in MathML between
operators and functions. Their separation here and in the DTD is for reasons of historical
usage.

When working with the content elements, it can be useful to keep in mind the following.

• The role of the content elements is analogous to data entry in a mathematical sys-
tem. The information that is provided is there to facilitate the successful parsing
of an expression as the intended mathematical object by a receiving application.

• MathML content elements do not by themselves ‘perform’ any mathematical
evaluations or operations. They do not ‘evaluate’in a browser and any ‘action’
that is ultimately taken on those objects is determined entirely by the receiving
mathematical application. For example, editing programs and applications geared
to computation for the lower grades would typically leave 3 + 4 as is, while com-
putational systems targeting a more advanced audience might evaluate this to as
7. Similarly, some computational systems might evaluate sin(0) to 0 while others
would leave it unevaluated. Yet other computational systems might be unable to
deal with pure symbolic expressions sin(x) and may even regard it as a data entry
error. None of this has any bearing on the correctness of the original MathML
representation. Where evaluation is mentioned at all in the descriptions below, it
is merely to help clarify the meaning of the underlying operation.

• Apart from the instances where there is an explicit interaction with presentation
tagging, there is no required rendering (visual or aural) – only a suggested default.
As such, the presentations that are included in this section are merely to help
communicate to the reader the intended mathematical meaning by association
with the same expression written in a more traditional notation.

The available content elements are:

140

• Token Elements
– cn
– ci
– csymbol (MathML 2.0)

• Basic Content Elements
– apply
– reln (deprecated)
– fn (deprecated for externally defined functions)
– interval
– inverse
– sep
– condition
– declare
– lambda
– compose
– ident

• Arithmetic, Algebra and Logic
– quotient
– exp
– factorial
– divide
– maxandmin
– minus
– plus
– power
– rem
– times
– root
– gcd
– and
– or
– xor
– not
– implies
– forall
– exists
– abs
– conjugate
– arg (MathML 2.0)
– real (MathML 2.0)
– imaginary (MathML 2.0)

• Relations
– eq
– neq
– gt
– lt
– geq
– leq
– equivalent (MathML 2.0)
– approx (MathML 2.0)

141

• Calculus and Vector Calculus
– int
– diff
– partialdiff
– lowlimit
– uplimit
– bvar
– degree
– divergence (MathML 2.0)
– grad (MathML 2.0)
– curl (MathML 2.0)
– laplacian (MathML 2.0)

• Theory of Sets
– set
– list
– union
– intersect
– in
– notin
– subset
– prsubset
– notsubset
– notprsubset
– setdiff
– card (MathML 2.0)

• Sequences and Series
– sum
– product
– limit
– tendsto

• Elementary classical functions
– exp
– ln
– log
– sin
– cos
– tan
– sec
– csc
– cot
– sinh
– cosh
– tanh
– sech
– csch
– coth
– arcsin
– arccos
– arctan
– arccosh

142

– arccot
– arccoth
– arccsc
– arccsch
– arcsec
– arcsech
– arcsinh
– arctanh

• Statistics
– mean
– sdev
– variance
– median
– mode
– moment

• Linear Algebra
– vector
– matrix
– matrixrow
– determinant
– transpose
– selector
– vectorproduct (MathML 2.0)
– scalarproduct (MathML 2.0)
– outerproduct (MathML 2.0)

• Semantic Mapping Elements
– annotation
– semantics
– annotation-xml

4.4.1 Token Elements

4.4.1.1 <cn>

Discussion

The cn element is used to specify actual numerical constants. The content model must
provide sufficient information that a number may be entered as data into a computational
system. By default, it represents a signed real number in base 10. Thus, the content nor-
mally consists ofPCDATArestricted to a sign, a string of decimal digits and possibly a
decimal point, or alternatively one of the predefined symbolic constants such asπ .

Thecn element uses the attributetype to represent other types of numbers such as integer,
rational, real, complex etc. andbase to specify the numerical base.

In addition to simplePCDATA, cn accepts as contentPCDATAseparated by the (empty) el-
ementsep. This determines the different parts needed to construct a rational or complex-
cartesian number.

Alternative input notations for numbers are possible, but must be explicitly defined by
using thedefinitionURL andencoding attributes to refer to a written specification of
how a<sep/> separated sequence of real numbers is to be interpreted.

143

Attributes

All attributes areCDATA:

• type : real , integer , rational , complex-cartesian , complex-polar , constant
• base: number (CDATAfor XML DTD) between 2 and 36.
• definitionURL : URI pointing to an alternative definition.
• encoding: syntax of the alternative definition.

Examples

<cn type="real"> 12345.7 </cn>
<cn type="integer"> 12345 </cn>
<cn type="integer" base="16"> AB3 </cn>
<cn type="rational"> 12342 <sep/> 2342342 </cn>
<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>
<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>
<cn type="constant"> π </cn>

Default Rendering

By default, contiguous blocks ofPCDATAcontained incn elements should render as if it
were wrapped in anmnpresentation element. Similarly, presentation markup contained in
a cn element should render as it normally would. A mixture ofPCDATAand presentation
markup should render as if it were contained wrapped in anmrowelement, with contiguous
blocks ofPCDATAwrapped inmnelements.

However, not all mathematical systems that encounter content based tagging do visual or
aural rendering. The receiving applications are free to make use of a number in the man-
ner it normally handles numerical data. Some systems might simplify the rational number
12342/2342342 to 6171/1171171 while pure floating point based systems might approx-
imate this as 0.5269085385e-2. All numbers might be re-expressed in base 10. The role
of MathML is simply to record enough information about the mathematical object and its
structure so that it may be properly parsed.

The following renderings of the above MathML expressions are included both to help clar-
ify the meaning of the corresponding MathML encoding and as suggestions for authors of
rendering applications. In each case, no mathematical evaluation is intended or implied.

• 12345.7
• 12345
• AB3 16

• 12342 / 2342342
• 12.3 + 5 i
• Polar(2 , 3.1415)
• π

4.4.1.2 <ci>

Discussion

Theci element is used to name an identifier in a MathML expression (for example a vari-
able). Such names are used to identify mathematical objects. By default they are assumed

144

to represent complex scalars. Theci element may contain arbitrary presentation markup in
its content (see chapter3) so that its presentation as a symbol can be very elaborate.

Theci element uses thetype attribute to specify the type of object that it represents. Valid
types includeinteger , rational , real , float , complex, complex-polar , complex-cartesian ,
constant , and more generally, any of the names of the MathML container elements (e.g.
vector) or their type values. ThedefinitionURL andencoding attributes can be used to
extend the definition ofci to include other types. For example, a more advanced use might
require acomplex-vector .

Examples

1. <ci> x </ci>
2. <ci type="vector"> V </ci>
3. <ci>

<msub>
<mi>x</mi>
<mi>a</mi>

</msub>
</ci>

Default Rendering

If the content of aci element is tagged using presentation tags, that presentation is used.
If no such tagging is supplied then thePCDATAcontent would typically be rendered as if it
were the content of anmi element. A renderer may wish to make use of the value of the
type attribute to improve on this. For example, a symbol of typevector might be rendered
using a bold face. Typical renderings of the above symbols are:

1. x
2. V
3. xi

4.4.1.3 csymbol

Discussion

The csymbol element allows a writer to create an element in MathML whose semantics
are externally defined (i.e. not in the core MathML content). The element can then be used
in a MathML expression as for example an operator or constant. Attributes are used to give
the syntax and location of the external definition of the symbol semantics.

Attributes

All attributes areCDATA:

• definitionURL : pointer to external definition of the semantics of the symbol.
MathML does not specify a particular syntax in which this definition should be
written.

• encoding: gives the syntax of the definition pointed to by definitionURL. An
application can then test the value of this attribute to determine whether it is
able to process the target of thedefinitionURL . This syntax might be text, or a
formal syntax such as OpenMath.

145

Examples

<!-- reference to OpenMath formal syntax definition of Bessel function -->
<apply>

<csymbol encoding="OpenMath" definitionURL="www.openmath.org/cds/BesselFunctions.ocd">
<msub><mi>J</mi><mn>0</mn></msub>

</csymbol>
<ci>y</ci>

</apply>

<!-- reference to human readable text description of Boltzmann’s constant -->
<csymbol encoding="text" definitionURL="www.uni.edu/universalconstants/Boltzmann.htm">

k
</csymbol>

Default Rendering

By default, a contiguous block ofPCDATAcontained in acsymbolelement should render as
if it were wrapped in anmopresentation element. Similarly, presentation markup contained
in a csymbol element should render as it normally would. A mixture ofPCDATAand pre-
sentation markup should render as if it were contained wrapped in anmrowelement, with
contiguous blocks ofPCDATAwrapped inmoelements. The examples above would render
by default as

• J0(y)
• k

As csymbol is used to support reference to externally defined semantics, it is a MathML
error to have embedded content MathML elements within thecsymbol element.

4.4.2 Basic Content Elements

4.4.2.1 <apply>

Discussion

Theapply element allows a function or operator to be applied to its arguments. Nearly all
expression construction in MathML content markup is carried out by applying operators
or functions to arguments. The first child ofapply is the operator, to be applied, with the
other child elements as arguments.

Theapply element is conceptually necessary in order to distinguish between a function or
operator, and an instance of its use. The expression constructed by applying a function to 0
or more arguments is always an element from the range of the function.

Proper usage depends on the operator that is being applied. For example, theplus operator
may have zero or more arguments. while theminusoperator requires one or two arguments
to be properly formed.

If the object being applied as a function is not already one of the elements known to be
a function (such asfn , sin or plus) then it is treated as if it were the contents of anfn
element.

Some operators such asdiff andint make use of ‘named’ arguments. These special argu-
ments are elements that appear as children of theapply element and identify ‘parameters’

146

such as the variable of differentiation or the domain of integration. These elements are
discussed further in section4.2.4.

Examples

1. <apply><factorial/>
<cn>3</cn>

</apply>
2. <apply><plus/>

<cn>3</cn>
<cn>4</cn>

</apply>
3. <apply><sin/>

<ci>x</ci>
</apply>

Default Rendering

A mathematical system which has been passed anapply element is free to do with it
whatever it normally does with such mathematical data. It may be that no rendering is
involved (e.g. a syntax validator), or that the ‘function application’ is evaluated and that
only the result is rendered (e.g. sin(0)→ 0).

When an unevaluated ‘function application’ is rendered there are a wide variety of ap-
propriate renderings. The choice often depends on the function or operator being applied.
Applications of basic operations such asplus are generally presented using an infix no-
tation while applications ofsin would use a more traditional functional notation such as
sin (x). Consult the ‘default rendering’ for the operator being applied.

Applications of user-defined functions (seecsymbol, fn) which are not evaluated by the
receiving or rendering application would typically render using a traditional functional
notation unless an alternative presentation is specified using thesemantics tag.

4.4.2.2 <reln>

Discussion

The reln element was used in MathML 1.0 to construct an equation or relation. Rela-
tions were constructed in a manner exactly analogous to the use ofapply . This usage is
deprecated in MathML 2.0 in favour of the more generally usableapply .

The first child ofreln is the relational operator, to be applied, with the other child elements
as arguments.

See section4.2.5for further details.

Examples and Usage

<apply><eq/>
<ci> a </ci>

147

<ci> b </ci>
</apply>
<apply><lt/>

<ci> a </ci>
<ci> b </ci>

</apply>

Default Rendering

1. a = b
2. a < b

4.4.2.3 <fn>

Discussion

Thefn element makes explicit the fact that a more general (possibly constructed) MathML
object is being used in the same manner as if it were a pre-defined function such assin or
plus .

In MathML1.0,fn was also the primary mechanism used to extend the collection of ‘known’
mathematical functions. This usage is now deprecated in favour of the more generally ap-
plicablecsymbol element. (New functions may also be introduced by usingdeclare in
conjunction with alambdaexpression.)

Examples

1. <fn><ci> L </ci> </fn>
2. <apply>

<fn>
<apply>

<plus/>
<ci> f </ci>
<ci> g </ci>

</apply>
</fn>
<ci>z</ci>

</apply>

Default Rendering

An fn object is rendered in the same way as its content. A rendering application may add
additional adornments such as +parentheses to clarify the meaning.

1. L
2. (f + g)z

148

4.4.2.4 <interval>

Discussion

The interval element is used to represent simple mathematical intervals of the real num-
ber line. It takes an attributeclosure which can take on any of the valuesopen, closed ,
open-closed , or closed-open , with a default value ofclosed .

More general domains are constructed by using thecondition andbvar elements to bind
free variables to constraints.

The interval element expectseither two child elements which evaluate to real numbers
or one child element which is acondition defining theinterval . interval accepts a
closure attribute which specifies if the interval is open, closed, or half open.

Examples

1. <interval>
<ci> a </ci>
<ci> b </ci>

</interval>
2. <interval closure="open-closed">

<ci> a </ci>
<ci> b </ci>

</interval>

Default Rendering

a, b
1. (a, b]

4.4.2.5 <inverse>

Discussion

The inverse element is applied to a function in order to construct a generic expression
for the functional inverse of that function. (See also the discussion ofinverse in sec-
tion 4.4.2.5). As with other MathML functions,inverse may either be applied to argu-
ments, or it may appear alone, in which case it represents an abstract inversion operator
acting on other functions.

A typical use of theinverse element is in an HTML document discussing a number of
alternative definitions for a particular function so that there is a need to write and define
f (−1)(x).

To associate a particular definition withf (−1), use thedefinitionURL andencoding at-
tributes.

Examples

1. <apply><inverse/>

149

<ci> f </ci>
</apply>

2. <apply><inverse definitionURL="../MyDefinition.htm" encoding = "text"/>
<ci> f </ci>

</apply>
3. <apply>

<apply><inverse/>
<ci type="matrix"> a </ci>

</apply>
<ci> A </ci>

</apply>

Default Rendering

The default rendering for a functional inverse makes use of a parenthesized exponent as in
f (−1)(x).

4.4.2.6 <sep/>

Discussion

Thesep element is to separatePCDATAinto separate tokens for parsing the contents of the
various specialized forms of thecn elements. For examplesep is used when specifying
the real and imaginary parts of a complex number (see section4.4.1). If it occurs between
MathML elements, it is a MathML error.

Examples

<cn type="complex"> 3 <sep/> 4 </cn>

Default Rendering

Thesep element is not directly rendered. (see section4.4.1)

4.4.2.7 <condition>

Discussion

The condition element is used to place a condition on one or more free variables or
identifiers. The conditions may be specified in terms of relations that are to be satisfied by
the variables, including general relationships such as set membership.

It is used to define general sets and lists in situations where the elements cannot be explicitly
enumerated. Condition contains either a singlereln or apply element; theapply element
is used to construct compound conditions. For example, it is used below to describe the set
of all x such thatx < 5. See the discussion on sets in section4.4.6.

See section4.2.6for further details.

150

Examples

1. <condition>
<apply><in/><ci> x </ci><ci type="set"> R </ci></apply>

</condition>
2. <condition>

<apply> <and/>
<apply><gt/><ci> x </ci><cn> 0 </cn></apply>
<apply><lt/><ci> x </ci><cn> 1 </cn></apply>

</apply>
</condition>

3. <apply>
<max/>
<bvar><ci> x </ci></bvar>
<condition>

<apply> <and/>
<apply><gt/><ci> x </ci><cn> 0 </cn></apply>
<apply><lt/><ci> x </ci><cn> 1 </cn></apply>

</apply>
</condition>
<apply>

<minus/>
<ci> x </ci>
<apply>

<sin/>
<ci> x </ci>

</apply>
</apply>

</apply>

Default Rendering

1. x∈ R

2. x> 0∧x< 1

3. maxx{x−sinx | 0< x< 1}

4.4.2.8 <declare>

Discussion

The declare construct has two primary roles. The first is to change or set the default
attribute values for a specific mathematical object. The second is to establish an association
between a ‘name’ and an object. Once a declaration is in effect, the ‘name’ object acquires
the new attribute settings, and (if the second object is present) all the properties of the
associated object.

The various attributes of thedeclare element assign properties to the object being declared
or determine where the declaration is in effect.

By default, the scope of a declaration is ‘local’ to the surrounding container element. Set-
ting the value of thescope attribute toglobal extends the scope of the declaration to the

151

enclosingmath element. As discussed in section4.3.2.8, MathML contains no provision
for making document-wide declarations at present, though it is anticipated that this capa-
bility will be added in future revisions of MathML, when supporting technologies become
available.declare takes one or two children. The first, mandatory, child is aci containing
the identifier being declared.

<declare type="vector"> <ci> V </ci> </declare>

The second, optional, child is a constructor initialising the variable

<declare type="vector">
<ci> V </ci>
<vector>

<cn> 1 </cn><cn> 2 </cn><cn> 3 </cn>
</vector>

</declare>

The constructor type and the type of the element declared must agree. For example, if the
type attribute of the declaration isfn , the second child (constructor) must be an element
equivalent to anfn element (This would include actualfn elements,lambdaelements and
any of the defined function in the basic set of content tags.) If no type is specified in the
declaration then the type attribute of the declared name is set to the type of the constructor
(second child) of the declaration. The type attribute of the declaration can be especially
useful in the special case of the second element being a semantic tag.

Attributes

All attributes areCDATA:

type defines the MathML element type of the identifier declared.
scope defines the scope of application of the declaration.
nargs number of arguments for function declarations.
occurrence describes operator usage asprefix , infix or function-model indica-

tions.
definitionURL URI pointing to detailed semantics of the function.
encoding syntax of the detailed semantics of the function.

Examples

The declaration

<declare type="fn" nargs="2" scope="local">
<ci> f </ci>
<apply>

<plus/>
<ci> F </ci><ci> G </ci>

</apply>
</declare>

declaresf to be a two-variable function with the property thatf (x,y) = (F + G)(x,y).

The declaration

152

<declare type="fn">
<ci> J </ci>
<lambda>

<bvar><ci> x </ci></bvar>
<apply><ln/>

<ci> x </ci>
</apply>

</lambda>
</declare>

associates the nameJ with a one-variable function defined so thatJ(x) = ln y. (Note that be-
cause of the type attribute of thedeclare element, the second argument must be something
of typefn , namely a known function likesin , anfn construct, or alambdaconstruct.)

The type attribute on the declaration is only necessary if if the type cannot be inferred
from the type of the second argument.

Even when a declaration is in effect it is still possible to override attributes values selec-
tively as in <ci type="integer"> V </ci> . This capability is needed in order to write
statements of the form ‘LetSbe a member ofS’.

Default Rendering

Since thedeclare construct is not directly rendered, most declarations are likely to be
invisible to a reader. However, declarations can produce quite different effects in an appli-
cation which evaluates or manipulates MathML content. While the declaration

<declare>
<ci> v </ci>
<vector>

<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>

</vector>
</declare>

is active the symbolv acquires all the properties of the vector, and even its dimension and
components have meaningful values. This may affect howv is rendered by some applica-
tions, as well as how it is treated mathematically.

4.4.2.9 <lambda>

Discussion

The lambdaelement is used to construct a user-defined function from an expression and
one or more free variables. The lambda construct withn internal variables takesn+1 chil-
dren. The firstn children identify the variables which are used as placeholders in the last
child for actual parameter values.

See section4.2.2for further details.

153

Examples

The following markup representsλ(x, sinx+1).

<lambda>
<bvar><ci> x </ci></bvar>
<apply><sin/>

<apply>
<plus/>
<ci> x </ci>
<cn> 1 </cn>

</apply>
</apply>

</lambda>

The following examples constructs a one argument function in which the argumentb spec-
ifies the upper bound of a specific definite integral.

<lambda>
<bvar><ci> b </ci></bvar>
<apply>

<int/>
<bvar>

<ci> x </ci>
</bvar>
<lowlimit>

<ci> a </ci>
</lowlimit>
<uplimit>

<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>
</lambda>

Such constructs are often used conjunction withdeclare to construct new functions.

Default Rendering

λ(x, f (x))

4.4.2.10 <compose/>

Discussion

The<compose/>element represents the function composition operator. Note that MathML
makes no assumption about the domain and range of the constituent functions in a compo-
sition; the domain of the resulting composition may be empty.

To override the default semantics for the<compose/>element, or to associate a more spe-
cific definition for function composition, use thedefinitionURL andencoding attributes.

154

See section4.2.2for further details.

Examples

The following markup representsf ◦g.

<apply><compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>

</apply>

The following markup representsf ◦g◦h.

<apply><compose/>
<ci type="fn"> f </ci>
<ci type="fn"> g </ci>
<ci type="fn"> h </ci>

</apply>

The following examples both represent(f ◦g)(x).

<apply>
<apply><compose/>

<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>

</apply>
<ci> x </ci>

</apply>

<apply><fn><ci> f </ci></fn>
<apply>

<fn><ci> g </ci></fn>
<ci> x </ci>
</apply>

</apply>

Default Rendering

f ◦g

4.4.2.11 <ident/>

Discussion

The ident element represents the identity function. MathML makes no assumption about
the function space in which the identity function resides. That is, proper interpretation of
the domain (and hence range) of the identity function depends on the context in which it is
used.

To override the default semantics for the<ident/> element, or to associate a more specific
definition, use thedefinitionURL andencoding attributes.

See section4.2.2for further details.

155

Examples

The following markup encoded the expressionf ◦ f−1 = id.

<apply><eq/>
<apply><compose/>

<fn><ci> f </ci></fn>
<apply><inverse/>

<fn><ci> f </ci></fn>
</apply>

</apply>
<ident/>

</apply>

Default Rendering

id

4.4.3 Arithmetic, Algebra and Logic

4.4.3.1 <quotient/>

Discussion

The quotient element is the operator used for division modulo a particular base. When
thequotient operator is applied to integer argumentsa andb, the result is the ‘quotient of
a divided byb’. That is,quotient returns the unique integer,q such thata = q b + r. (In
common usage,q is called the quotient andr is the remainder.)

Thequotient element takes the attributedefinitionURL andencoding attributes if it is
desired to override the default semantics.

Thequotient element is abinary arithmetic operator.

See section4.2.3for further details.

Example

<apply><quotient/>
<ci> a </ci>
<ci> b </ci>

</apply>

Various mathematical applications will use this data in different ways. Editing applications
might choose an image such as shown below, while a computationally based application
would evaluate it to 2 whena=13 andb=5.

Default Rendering

There is no commonly used notation for this concept. Some possible renderings are

1. quotient ofa divided byb
2. integer part ofa/b
3. ba/bc

156

4.4.3.2 <factorial/>

Discussion

Thefactorial element is used to construct factorials.

The factorial element takes the edefinitionURL andencoding attributes which may
be used to override the default semantics.

Thefactorial element is aunary arithmetic operator.

See section4.2.3for further details.

Example

<apply><factorial/>
<ci> n </ci>

</apply>

If this were evaluated atn = 5 it would evaluate to 120.

Default Rendering

n!

4.4.3.3 <divide/>

Discussion

Thedivide element is the division operator.

The divide element takes thedefinitionURL and encoding attributes which may be
used to override the default semantics.

Thedivide element is abinary arithmetic operator. See section4.2.3for further details.

Example

<apply>
<divide/>
<ci> a </ci>
<ci> b </ci>

</apply>

As a MathML expression, this does not evaluate. However, on receiving such an expression,
some applications may attempt to evaluate and simplify the value. For example, whena=5
andb=2 some mathematical applications may evaluate this to 2.5 while others will treat is
as a rational number.

Default Rendering

a/b

157

4.4.3.4 <max/> and<min/>

Discussion

The elementsmaxandmin are used to compare the values of their arguments. They return
the maximum and minimum of these values respectively.

Themaxandmin elements take thedefinitionURL andencoding attributes which can be
used to override the default semantics.

The maxand min elements aren-ary arithmetic operators. See section4.2.3 for further
details.

Examples

When the objects are to be compared explicitly they are listed as arguments to the function
as in:

<apply><max/>
<ci> a </ci>
<ci> b </ci>

</apply>

The elements to be compared may also be described using bound variables with acondition
element and an expression to be maximised, as in:

<apply><min/>
<bvar><ci>x</ci></bvar>
<condition>

<apply><notin/><ci> x </ci><ci type="set"> B </ci></apply>
</condition>
<apply>

<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
</apply>

Note that the bound variable may be implicit:

<apply><max/>
<condition>

<apply><and/>
<apply><in/><ci>x</ci><ci type="set">B</ci></apply>
<apply><notin/><ci>x</ci><ci type="set">C</ci></apply>

</apply>
</condition>

</apply>

Default Rendering

1. max{a,b}
2. minx{x2 | x /∈ B}
3. max{x∈ B∧x /∈C}

158

4.4.3.5 <minus/>

Discussion

Theminuselement is the subtraction operator.

Theminus element takes thedefinitionURL andencoding attributes which can be used
to override the default semantics.

Theminuselement can be used as aunary arithmetic operator(e.g. to represent -x) or as a
binary arithmetic operator(e.g. to representx-y). See section4.2.3for further details.

Example

<apply> <minus/>
<ci> x </ci>
<ci> y </ci>

</apply>

If this were evaluated atx=5 andy=2 it would yield 3.

Default Rendering

x - y

4.4.3.6 <plus/>

Discussion

Theplus element is the addition operator.

Theplus element takes thedefinitionURL andencoding attributes which can be used
to override the default semantics.

Theplus element is ann-ary arithemtic operator. See section4.2.3for further details.

Example

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>
<ci> z </ci>

</apply>

If this were evaluated atx = 5, y = 2 andz = 1 it would yield 8.

Default Rendering

x + y + z

159

4.4.3.7 <power/>

Discussion

Thepowerelement is generic exponentiation operator. That is, when applied to arguments
a andb, it returns the value the ‘a to the power ofb’.

Thepowerelement takes thedefinitionURL andencoding attributes which can be used
to override the default semantics.

Thepowerelement is anbinary arithmetic operator. See section4.2.3for further details.

Example

<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>

If this were evaluated atx= 5 it would yield 125.

Default Rendering

x3

4.4.3.8 <rem/>

Discussion

The rem element is the operator which returns the ‘remainder’ of a division modulo a
particular base. When theremoperator is applied to integer argumentsa andb, the result
is the ‘remainder ofa divided byb’. That is,remreturns the unique integer,r such thata =
q b+ r, wherer < q. (In common usage,q is called the quotient andr is the remainder.)

Theremelement takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

Theremelement is abinary arithmetic operator. See section4.2.3for further details.

Example

<apply><rem/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were evaluated ata = 15 andb = 8 it would yield 7.

Default Rendering

a modb

160

4.4.3.9 <times/>

Discussion

Thetimes element is the multiplication operator.

times takes thedefinitionURL andencoding attributes which can be used to override
the default semantics.

Example

<apply> <times/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were evaluated ata = 5.5 andb = 3 it would yield 16.5.

Default Rendering

a b

4.4.3.10 <root/>

Discussion

Theroot element is used to construct roots. The kind of root to be taken is specified by a
degree element, which should be given as the first child of theapply element enclosing
the root element. Thus, square roots correspond to the case wheredegree contains the
value 2, cube roots correspond to 3, and so on. If nodegree is present, a default value of 2
is used.

The root element takes thedefinitionURL andencoding attributes which can be used
to override the default semantics.

Theroot element is anoperator taking qualifiers. See section4.2.4for further details.

Example

Thenth root ofa is is given by

<apply> <root/>
<degree><ci> n </ci></degree>
<ci> a </ci>

</apply>

Default Rendering
√

na

161

4.4.3.11 <gcd/>

Discussion

Thegcd element is used to denote the greatest common divisor of its arguments.

Thegcd takes thedefinitionURL andencoding attributes which can be used to override
the default semantics.

Thegcd element is ann-ary operator. See section4.2.3for further details.

Example

<apply> <gcd/>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</apply>

If this were evaluated ata = 15,b = 21,c = 48 it would yield 3.

Default Rendering

gcd(a, b, c)

4.4.3.12 <and/>

Discussion

Theandelement is the boolean ‘and’ operator.

Theandelement takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

Theandelement is ann-ary logical operator. See section4.2.3for further details.

Example

<apply><and/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were evaluated and botha andb had truth values oftrue , then the value would be
true .

Default Rendering

a∧b

4.4.3.13 <or/>

Discussion

Theor element is the boolean ‘or’ operator.

Theor element takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

Theor element is ann-ary logical operator. See section4.2.3for further details.

162

Example

<apply><or/>
<ci> a </ci>
<ci> b </ci>

</apply>

Default Rendering

a∨b

4.4.3.14 <xor/>

Discussion

Thexor element is the boolean ‘exclusive or’ operator.

xor takes thedefinitionURL andencoding attributes which can be used to override the
default semantics.

Thexor element is ann-ary logical operator. See section4.2.3for further details.

Example

<apply><xor/>
<ci> a </ci>
<ci> b </ci>

</apply>

Default Rendering

a xor b

4.4.3.15 <not/>

Thenot operator is the boolean ‘not’ operator.

Thenot element takes the attributedefinitionURL andencoding attributes which can be
used to override the default semantics.

Thenot element is anunary logical operator. See section4.2.3for further details.

Example

<apply><not/>
<ci> a </ci>

</apply>

Default Rendering

a¬b

163

4.4.3.16 <implies/>

Discussion

The implies element is the boolean ‘implies’ relational operator.

The implies element takes thedefinitionURL andencoding attributes which can be
used to override the default semantics.

The implies element is abinary logical operator. See section4.2.5for further details.

Example

<apply><implies/>
<ci> A </ci>
<ci> B </ci>

</apply>

Mathematical applications designed for the evaluation of such expressions would evaluate
this totrue whena = false andb = true .

Default Rendering

A⇒ B

4.4.3.17 <forall/>

Theforall element represents the universal quantifier of logic. It must used in conjunction
with one or more bound variables, an optionalcondition element, and an assertion, which
may either take the form of anapply or reln element.

Theforall element takes thedefinitionURL andencoding attributes which can be used
to override the default semantics.

Theforall element is anquantifier. See section4.2.3for further details.

Examples

The first example encodes the sense of the expression ‘for allx, x - x = 0’.

<apply>
<forall/>
<bvar><ci> x </ci></bvar>
<apply><eq/>

<apply>
<minus/><ci> x </ci><ci> x </ci>

</apply>
<cn>0</cn>

</apply>
</apply>

A more involved example, making use of an optionalcondition element encodes the sense
of the expression: for allp, q in Q such thatp < q, p < q2.

164

<apply>
<forall/>
<bvar><ci> p </ci></bvar>
<bvar><ci> q </ci></bvar>
<condition>

<apply><and/>
<apply><in/><ci> p </ci><ci type="set"> Q </ci></apply>
<apply><in/><ci> q </ci><ci type="set"> Q </ci></apply>
<apply><lt/><ci> p </ci><ci> q </ci></apply>

</apply>
</condition>
<apply><lt/>

<ci> p </ci>
<apply>

<power/>
<ci> q </ci>
<cn> 2 </cn>

</apply>
</apply>

</apply>

A final example, utilizing both theforall andexists quantifiers, encodes the sense of
the expression: for alln > 0, n in Z, there existx, y, z in Z such thatxn + yn = zn.

<apply>
<forall/>
<bvar><ci> n </ci></bvar>
<condition>

<apply><and/>
<apply><gt/><ci> n </ci><cn> 0 </cn></apply>
<apply><in/><ci> n </ci><ci type="set"> Z </ci></apply>

</apply>
</condition>
<apply>

<exists/>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<bvar><ci> z </ci></bvar>
<condition>

<apply><and/>
<apply><in/><ci> x </ci><ci type="set"> Z </ci></apply>
<apply><in/><ci> y </ci><ci type="set"> Z </ci></apply>
<apply><in/><ci> z </ci><ci type="set"> Z </ci></apply>

</apply>
</condition>
<apply>

<eq/>
<apply>

<plus/>

165

<apply><power/><ci> x </ci><ci> n </ci></apply>
<apply><power/><ci> y </ci><ci> n </ci></apply>

</apply>
<apply><power/><ci> z </ci><ci> n </ci></apply>

</apply>
</apply>

</apply>

Default Rendering

1. for all
2. ∀

4.4.3.18 <exists/>

Theexists element represents the existential quantifier of logic. It must used in conjuction
with one or more bound variables, an optionalcondition element, and an assertion, which
may either take the form of anapply or reln element.

Theexists element takes thedefinitionURL andencoding attributes which can be used
to override the default semantics.

Theexists element is anquantifier. See section4.2.3for further details.

Example

The following example encodes the sense of the expression ‘there exists anx such thatf (x)
= 0’.

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<apply><eq/>

<apply>
<fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
<cn>0</cn>

</apply>
</apply>

Default Rendering

1. there exists
2. ∃

4.4.3.19 <abs/>

Theabs element represents the absolute value of a real quantity or the modulus of a com-
plex quantity.

Theabs element takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

Theabs element is aunary arithmetic operator. See section4.2.3for further details.

166

Example

The following example encodes the absolute value ofx.

<apply>
<abs/>
<ci> x </ci>

</apply>

Default Rendering

|x|

4.4.3.20 <conjugate/>

Theconjugate element represents the complex conjugate of a complex quantity.

Theconjugate element takes thedefinitionURL andencoding attributes which can be
used to override the default semantics.

Theconjugate element is aunary arithmetic operator. See section4.2.3for further details.

Example

The following example encodes the conjugate ofx + iy.

<apply><conjugate/>
<apply>

<plus/>
<ci> x </ci>
<apply><times/>

<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

Default Rendering

x+ iy

Default Rendering

¯x+ iy

4.4.3.21 arg

Theargoperator

Note:(introduced in MathML 2.0)

gives the "argument" of a complex number, that is the angle (in radians) it makes with the
positive real axis. Real negative numbers have arg (+ pi).

Thearg element takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

Thearg element is aunary arithmetic operator. See the section4.2.3for further details.

167

Example

The following example encodes the argument operation onx + i y.

<apply><arg/>
<apply><plus/>

<ci> x </ci>
<apply><times/>

<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

Default Rendering

arg(x+ iy)

4.4.3.22 real

Thereal operator

Note:(introduced in MathML 2.0)

gives the real part of a complex number, that is the x component inx + i y

The real element takes the attributesencoding, definitionURL which can be used to
override the default semantics.

Thereal element is aunary arithmetic operator. See the section4.2.3for further details.

Example

The following example encodes the real operation onx + i y.

<apply><real/>
<apply><plus/>

<ci> x </ci>
<apply><times/>

<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

A MathML -aware evaluation system, would return thex component, suitably encoded.

Default Rendering

Real(x+ iy)

168

4.4.3.23 imaginary

The imaginary operator

Note:(introduced in MathML 2.0)

gives the imaginary part of a complex number, that is the y component inx + i y

The imaginary element takes the attributesencoding, definitionURL which can be
used to override the default semantics.

The imaginary element is aunary arithmetic operator. See the section4.2.3 for further
details.

Example

The following example encodes the imaginary operation onx + i y.

<apply><imaginary/>
<apply><plus/>

<ci> x </ci>
<apply><times/>

<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

A MathML-aware evaluation system would return they component, suitably encoded.

Default Rendering

Imaginary(x+ iy)

4.4.4 Relations

4.4.4.1 <eq/>

Discussion

Theeq element is the ‘equals’ relational operator.

Theeq element takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

Theequals element is ann-ary relation. See the section4.2.4for further details.

Example

<apply><eq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested ata = 5.5 andb = 6 it would yield the truth value ‘false’.

169

Default Rendering

a = b

4.4.4.2 <neq/>

Discussion

Theneqelement is the ‘not equal to’ relational operator.

neq takes thedefinitionURL andencoding attributes which can be used to override the
default semantics.

Theneqelement is anbinary relation. See section4.2.5for further details.

Example

<apply><neq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested ata = 5.5 andb = 6 it would yield the truth value ‘true’.

Default Rendering

A 6= B

4.4.4.3 <gt/>

Discussion

Thegt element is the ‘greater than’ relational operator.

Thegt element takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

Thegt element is ann-ary relation. See section4.2.5for further details.

Example

<apply><gt/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested ata = 5.5 andb = 6 it would yield the truth value ‘false’.

Default Rendering

a > b

170

4.4.4.4 <lt/>

Discussion

The lt element is the ‘less than’ relational operator.

The lt element takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

The lt element is ann-ary relation. See section4.2.5for further details.

Example

<apply><lt/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested ata = 5.5 andb = 6 it would yield the truth value ‘true’.

Default Rendering

a < b

4.4.4.5 <geq/>

Discussion

Thegeqelement is the ‘greater than or equal’ relational operator.

Thegeqelement takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

Thegeqelement is ann-ary relation. See section4.2.5for further details.

Example

<apply><geq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested fora = 5.5 andb = 5.5 it would yield the truth value ‘true’.

Default Rendering

A≥ B

4.4.4.6 <leq/>

Discussion

The leq element is the ‘less than or equal’ relational operator.

The leq element takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

The leq element is ann-ary relation. See section4.2.5for further details.

171

Example

<apply><leq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If a = 5.4 andb = 5.5 this will yield the truth value ‘true’.

Default Rendering

A≤ B

4.4.4.7 <equivalent/>

Discussion

Theequivalent element is the ‘less than or equal’relational operator.

The equivalent element takes the attributesencoding, definitionURL which can be
used to override the default semantics.

Theequivalent element is ann-ary relation. See the section4.2.4for further details.

Example

<apply><equivalent/>
<ci> a </ci>
<apply> <not/>

<apply> <not/> <ci> a </ci> </apply>
</apply>

</apply>

This yields the truth value ‘true’ for all values of a.

Default Rendering

A≡ B

4.4.4.8 <approx/>

Discussion

Theapprox element is the ‘approximately equal’relational operator.

Theapprox element takes the attributesencoding, definitionURL which can be used
to override the default semantics.

Theapprox element is abinary relation. See the section4.2.4for further details.

Example

<apply><approx/>
<cn type="rational"> 22 <sep/> 7 </cn>
<cn type="constant"> π </cn>

</apply>

172

Default Rendering

A≈ B

4.4.5 Calculus and Vector Calculus

4.4.5.1 <int/>

Discussion

The int element is the operator element for an integral. The lower limit, upper limit and
bound variable are given by (optional) child elements,lowlimit , uplimit andbvar in the
enclosingapply element. The integrand is also specified as a child element of the enclosing
apply element.

The domain of integration may alternatively be specified by using aninterval element,
or by acondition element. In such cases, if a bound variable of integration is intended, it
must be specified explicitly. (The condition may involve more than one symbol.)

The int element takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

The int element anoperator taking qualifiers. See section4.2.4for further details.

Examples

This example specifies alowlimit , uplimit , andbvar .

<apply>
<int/>
<bvar>

<ci> x </ci>
</bvar>
<lowlimit>

<cn> 0 </cn>
</lowlimit>
<uplimit>

<ci> a </ci>
</uplimit>
<apply>

<fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

This example specifies the domain of integration with aninterval element.

<apply><int/>
<bvar>

<ci> x </ci>
</bvar>
<interval>

<ci> a </ci>
<ci> b </ci>

173

</interval>
<apply><cos/>

<ci> x </ci>
</apply>

</apply>

The final example specifies the domain of integration with ancondition element.

<apply><int/>
<bvar>

<ci> x </ci>
</bvar>
<condition>

<apply><in/>
<ci> x </ci>
<ci type="set"> D </ci>

</apply>
</condition>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>

Default Rendering
aZ

0

f (x)dx

bZ

a

cosxdx

Z

x∈D

f (x)dx

4.4.5.2 <diff/>

Discussion

The diff element is the differentiation operator element for functions of a single real
variable. The bound variable is given by abvar element which is a child of the containing
apply element. Thebvar elements may also contain adegree element, which specifies
the order of the derivative to be taken.

Thediff element takes thedefinitionURL andencoding attributes which can be used
to override the default semantics.

Thediff element is anoperator taking qualifiers. See section4.2.4for further details.

Example

<apply><diff/>

174

<bvar>
<ci> x </ci>

</bvar>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>

Default Rendering

d f
dx

(x)

4.4.5.3 <partialdiff/>

Discussion

The partialdiff element is the partial differentiation operator element for functions of
several real variables. The bound variables are given bybvar elements, which are children
of the containingapply element. Thebvar elements may also contain adegree element,
which specifies the order of the partial derivative to be taken in that variable.

Thepartialdiff element takes thedefinitionURL andencoding attributes which can
be used to override the default semantics.

The partialdiff element is anoperator taking qualifiers. See section4.2.4 for further
details.

Example

<apply>
<partialdiff/>
<bvar>

<ci> x </ci>
<degree>

<cn> 2 </cn>
</degree>

</bvar>
<bvar>

<ci> y </ci>
</bvar>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
<ci> y </ci>

</apply>
</apply>

Default Rendering

∂2

∂x2

∂
∂y

f (x,y)

175

4.4.5.4 <lowlimit>

Discussion

The lowlimit element is the container element used to indicate the ‘lower limit’ of an
operator using qualifiers. For example, in an integral, it can be used to specify the lower
limit of integration. Similarly, it is also used to specify the lower limit of an index for sums
and products.

The meaning of thelowlimit element depends on the context it is being used in. For
further details about howqualifiersare used in conjunction with operators taking qualifiers,
consult section4.2.4.

Example

<apply><int/>
<bvar>

<ci> x </ci>
</bvar>
<lowlimit>

<ci> a </ci>
</lowlimit>
<uplimit>

<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>

Default Rendering

The default rendering of thelowlimit element and its contents depends on the context. In
the preceding example, it should be rendered as a subscript to the integral sign:

bZ

a

f (x)dx

Consult the descriptions of individual operators which make use of thelowlimit construct
for default renderings.

4.4.5.5 <uplimit>

Discussion

The uplimit element is the container element used to indicate the ‘upper limit’ of an
operator using qualifiers. For example, in an integral, it can be used to specify the upper
limit of integration. Similarly, it is also used to specify the upper limit of an index for sums
and products.

The meaning of theuplimit element depends on the context it is being used in. For further
details about howqualifiersare used in conjunction with operators taking qualifiers, consult
section4.2.4.

176

Example

<apply><int/>
<bvar>

<ci> x </ci>
</bvar>
<lowlimit>

<ci> a </ci>
</lowlimit>
<uplimit>

<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>

Default Rendering

The default rendering of theuplimit element and its contents depends on the context. In
the preceding example, it should be rendered as a superscript to the integral sign:

bZ

a

f (x)dx

Consult the descriptions of individual operators which make use of theuplimit construct
for default renderings.

4.4.5.6 <bvar>

Discussion

The bvar element is the container element for the ‘bound variable’ of an operation. For
example, in an integral it specifies the variable of integration. In a derivative, it indicates
which variable with respect to which a function is being differentiated. When thebvar ele-
ment is used to quantifiy a derivative, thebvar element may contain a childdegree element
which specifies the order of the derivative with respect to that variable. Thebvar element
is also used for the internal variable in sums and products and for the bound variable used
with the universal and existential quantifiersforall andexists .

The meaning of thebvar element depends on the context it is being used in. For further
details about howqualifiersare used in conjunction with operators taking qualifiers, consult
section4.2.4.

Examples

<apply><diff/>
<bvar>

<ci> x </ci>
<degree>

177

<cn> 2 </cn>
</degree>

</bvar>
<apply>

<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
</apply>

<apply><int/>
<bvar><ci> x </ci></bvar>
<condition>

<apply><in/><ci> x </ci><ci> D </ci></apply>
</condition>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>

Default Rendering

The default rendering of thebvar element and its contents depends on the context. In the
preceding examples, it should be rendered as thex in the dx of the integral, and as thex in
the denominator of the derivative symbol:

d
dx2 x2

Z

x∈D

f (x)dx

Note that in the case of the derivative, the default rendering of thedegree child of thebvar
element is as an exponent.

Consult the descriptions of individual operators which make use of theuplimit construct
for default renderings.

4.4.5.7 <degree>

Discussion

The degree element is the container element for the ‘degree’ or ‘order’ of an operation.
There are a number basic mathematical constructs which come in families, such as deriva-
tives and moments. Rather than introduce special elements for each of these families,
MathML uses a single general construct, thedegree element for this concept of ‘order’.

The meaning of thedegree element depends on the context it is being used in. For further
details about howqualifiersare used in conjunction with operators taking qualifiers, consult
section4.2.4.

Example

178

<apply>
<partialdiff/>
<bvar>

<ci> x </ci>
<degree>

<ci> n </ci>
</degree>

</bvar>
<bvar>

<ci> y </ci>
<degree>

<ci> m </ci>
</degree>

</bvar>
<apply><sin/>

<apply> <times/>
<ci> x </ci>
<ci> y </ci>

</apply>
</apply>

</apply>

Default Rendering

The default rendering of thedegree element and its contents depends on the context. In
the preceding example, thedegree elements would be rendered as the exponents in the
differentiation symbols:

∂
∂xn

∂
∂ym sin(xy)

Consult the descriptions of individual operators which make use of theuplimit construct
for default renderings.

4.4.5.8 <divergence/>

Discussion

Thedivergence element is the vector calculus divergence operator, often called div.

The divergence element takes the attributesencoding, definitionURL which can be
used to override the default semantics.

The divergence element is anunary calculus operator. See the section4.2.3for further
details.

Example

<apply><divergence/>
<ci> a </ci>

</apply>

If a is a vector field defined inside a closed surfaceS enclosing a volumeV, then the
divergence ofa is given by

179

<apply><limit/>
<bvar>

<ci> V </ci>
</bvar>
<condition>

<apply>
<tendsto/>
<ci> V </ci>
<cn> 0 </cn>

</apply>
</condition>
<apply><divide/>

<apply><int encoding="text" definitionURL="SurfaceIntegrals.htm"/>
<bvar>

<ci> S</ci>
</bvar>

<ci> a </ci>
</apply>
<ci> V </ci>

</apply>
</apply>

Default Rendering

diva

4.4.5.9 grad

Discussion

Thegrad element is the vector calculus gradient operator, often called grad.

Thegrad element takes the attributesencoding, definitionURL which can be used to
override the default semantics.

Thegrad element is anunary calculus operator. See the section4.2.3for further details.

Example

<apply><grad/>
<ci> f</ci>

</apply>

Where for examplef is a scalar function and f(x,y,z) = k defines a surfaceS

Default Rendering

grad f

180

4.4.5.10 curl

Discussion

Thecurl element is the vector calculus curl operator..

Thecurl element takes the attributesencoding, definitionURL which can be used to
override the default semantics.

Thecurl element is anunary calculus operator. See the section4.2.3for further details.

Example

<apply><curl/>
<ci> a </ci>

</apply>

Where for examplea is a vector

Default Rendering

curl a

curla

4.4.5.11 laplacian

Discussion

The laplacian element is the vector calculus laplacian operator..

The laplacian element takes the attributesencoding, definitionURL which can be
used to override the default semantics.

The laplacian element is anunary calculus operator. See the section4.2.3 for further
details.

Example

<apply><eq/>
<apply><laplacian/>

<ci> f </ci>
</apply>
<apply><divergence/>
<apply><grad/>

<ci> f </ci>
</apply>
</apply>
</apply>

Where for examplef is a vector

Default Rendering

Del-squared f

Del−squared f

181

4.4.6 Theory of Sets

4.4.6.1 <set>

Discussion

Theset element is the container element which constructs a set of elements. The elements
of a set can be defined either by explicitly listing the elements, or by using thebvar and
condition elements.

Theset element is aconstructor container. See section4.2.2.2for further details.

Examples

<set>
<ci> b </ci>
<ci> a </ci>
<ci> c </ci>

</set>

<set>
<bvar><ci> x </ci></bvar>
<condition>

<apply><lt/>
<ci> x </ci>
<cn> 5 </cn>

</apply>
</condition>

</set>

Default Rendering

1. a, b, c

2. x | x < 5

4.4.6.2 <list>

Discussion

The list element is the container element which constructs a list of elements. Elements
can be defined either by explicitly listing the elements, or by using thebvar andcondition
elements.

Lists differ from sets in that there is an explicit order to the elements. Two orders are sup-
ported: lexicographic and numeric. The kind of ordering which should be used is specified
by the order attribute.

The list element is aconstructor container. See section4.2.2.2for further details.

Examples

<list>
<ci> b </ci>
<ci> a </ci>

182

<ci> c </ci>
</list>

<list order="numeric">
<bvar><ci> x </ci></bvar>
<condition>

<apply><lt/>
<ci> x </ci>
<cn> 5 </cn>

</apply>
</condition>

</list>

Default Rendering

1. [a, b, c]

2. [x | x < 5]

4.4.6.3 <union/>

Discussion

Theunion element is the operator for a set-theoretic union or join of two (or more) sets.

Theunion attribute takes thedefinitionURL andencoding attributes which can be used
to override the default semantics.

Theunion element is ann-ary set operator. See section4.2.3for further details.

Example

<apply><union/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A∪B

4.4.6.4 <intersect/>

Discussion

The intersect element is the operator for the set-theoretic intersection or meet of two (or
more) sets.

The intersect element takes thedefinitionURL andencoding attributes which can be
used to override the default semantics.

The intersect element is ann-ary set operator. See section4.2.3for further details.

183

Example

<apply><intersect/>
<ci type="set"> A </ci>
<ci type="set"> B </ci>

</apply>

Default Rendering

A∩B

4.4.6.5 <in/>

Discussion

The in element is the relational operator used for a set-theoretic inclusion (‘is in’ or ‘is a
member of’).

The in element takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

The in element is abinary set relation. See section4.2.5for further details.

Example

<apply>
<in/>
<ci> a </ci>
<ci type="set"> A </ci>

</apply>

Default Rendering

a∈ A

4.4.6.6 <notin/>

Discussion

Thenotin element is the relational operator element used for set-theoretic exclusion (‘is
not in’ or ‘is not a member of’).

Thenotin element takes thedefinitionURL andencoding attributes which can be used
to override the default semantics.

Thenotin element is abinary set relation. See section4.2.5for further details.

Example

<apply><notin/>
<ci> a </ci>
<ci> A </ci>

</apply>

184

Default Rendering

a /∈ A

4.4.6.7 <subset/>

Discussion

Thesubset element is the relational operator element for a set-theoretic containment (‘is
a subset of’).

Thesubset element takes thedefinitionURL andencoding attributes which can be used
to override the default semantics.

Thesubset element is ann-ary set relation. See section4.2.5for further details.

Example

<apply><subset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A⊆ B

4.4.6.8 <prsubset/>

Discussion

Theprsubset element is the relational operator element for set-theoretic proper contain-
ment (‘is a proper subset of’).

The prsubset element takes thedefinitionURL andencoding attributes which can be
used to override the default semantics.

Thesubset element is ann-ary set relation. See section4.2.5for further details.

Example

<apply> <prsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A⊂ B

185

4.4.6.9 <notsubset/>

Discussion

The notsubset is the relational operator element for the set-theoretic relation ‘is not a
subset of’.

Thenotsubset element takes thedefinitionURL andencoding attributes which can be
used to override the default semantics.

Thenotsubset element is abinary set relation. See section4.2.5for further details.

Example

<apply><notsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A 6⊂ B

4.4.6.10 <notprsubset/>

Discussion

The notprsubset is the operator element for the set-theoretic relation ‘is not a proper
subset of’.

Thenotprsubset takes thedefinitionURL andencoding attributes which can be used
to override the default semantics.

Thenotprsubset element is abinary set relation. See section4.2.5for further details.

Example

<apply><notprsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A* B

4.4.6.11 <setdiff/>

Discussion

Thesetdiff is the operator element for a set-theoretic difference of two sets.

The setdiff element takes thedefinitionURL andencoding attributes which can be
used to override the default semantics.setdiff is a binary operator.

Thesetdiff element is abinary set operator. See section4.2.3for further details.

186

Example

<apply><setdiff/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A\B

4.4.6.12 <card/>

Discussion

Thecard is the operator element for deriving the size or cardinality of a set

Thecard element takes the attributesdefinitionURL, encoding which can be used to
override the default semantics.

Thecard element is aunary set operator. See the section4.2.3for further details.

Example

<apply><eq/>
<apply><card/>

<ci> A </ci>
</apply>
<ci> 5 </ci>
</apply>

where A is a set with 5 elements.

Default Rendering

| A |

|A|

4.4.7 Sequences and Series

4.4.7.1 <sum/>

Discussion

Thesumelement denotes the summation operator. Upper and lower limits for the sum, and
more generally a domains for the bound variables are specified usinguplimit , lowlimit
or acondition on the bound variables. The index for the summation is specified by abvar
element.

Thesumelement takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

Thesumelement is anoperator taking qualifiers. See section4.2.4for further details.

187

Examples

<apply><sum/>
<bvar>

<ci> x </ci>
</bvar>
<lowlimit>

<ci> a </ci>
</lowlimit>
<uplimit>

<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>

<apply><sum/>
<bvar>

<ci> x </ci>
</bvar>
<condition>

<apply> <in/>
<ci> x </ci>
<ci type="set"> B </ci>

</apply>
</condition>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>

Default Rendering

b

∑
x=a

f (x)

∑
x∈B

f (x)

4.4.7.2 <product/>

Discussion

Theproduct element denotes the product operator. Upper and lower limits for the prod-
uct, and more generally a domains for the bound variables are specified usinguplimit ,
lowlimit or acondition on the bound variables. The index for the product is specified
by abvar element.

The product element takes thedefinitionURL andencoding attributes which can be
used to override the default semantics.

Theproduct element is anoperator taking qualifiers. See section4.2.4for further details.

188

Examples

<apply>
<product/>
<bvar>

<ci> x </ci>
</bvar>
<lowlimit>

<ci> a </ci>
</lowlimit>
<uplimit>

<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>

<apply>
<product/>
<bvar>

<ci> x </ci>
</bvar>
<condition>

<apply> <in/>
<ci> x </ci>
<ci type="set"> B </ci>

</apply>
</condition>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>

See section4.2for further details.

Default Rendering

b

∏
x=a

f (x)

∏
x∈B

f (x)

4.4.7.3 <limit/>

Discussion

Thelimit element is operation of taking a limit of a sequence. The limit point is expressed
by specifying alowlimit and abvar or by specifying acondition on one or more bound
variables.

The limit element takes thedefinitionURL andencoding attributes which can be used
to override the default semantics.

189

The limit element is anoperator taking qualifiers. See section4.2.4for further details.

Examples

<apply><limit/>
<bvar>

<ci> x </ci>
</bvar>
<lowlimit>

<cn> 0 </cn>
</lowlimit>
<apply><sin/>

<ci> x </ci>
</apply>

</apply>

<apply><limit/>
<bvar>

<ci> x </ci>
</bvar>
<condition>

<apply>
<tendsto type="above"/>
<ci> x </ci>
<ci> a </ci>

</apply>
</condition>
<apply><sin/>

<ci> x </ci>
</apply>

</apply>

Default Rendering

lim
x→0

sinx

lim
x→a+

sinx

4.4.7.4 <tendsto/>

Discussion

Thetendsto element is used to express the relation that a quantity is tending to a specified
value.

The tendsto element takes the attributestype to set the direction from which the the
limiting value is approached and thedefinitionURL andencoding attributes which can
be used to override the default semantics.

Thetendsto element is abinary relational operator. See section4.2.5for further details.

190

Examples

<apply>
<tendsto type="above"/>
<apply>

<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
<apply>

<power/>
<ci> a </ci>
<cn> 2 </cn>

</apply>
</apply>

To express(x,y)→ (f (x,y),g(x,y)), one might use vectors, as in:

<apply>
<tendsto/>
<vector>

<ci> x </ci>
<ci> y </ci>

</vector>
<vector>

<apply><fn><ci> f </ci></fn>
<ci> x </ci>
<ci> y </ci>

</apply>
<apply><fn><ci> g </ci></fn>

<ci> x </ci>
<ci> y </ci>

</apply>
</vector>

</apply>

Default Rendering

x2→ a2

(x,y)→ (f (x,y),g(x,y))

4.4.8 Elementary classical functions

The names of the common trigonometric functions supported by MathML are listed below.
Since their standard interpretations are widely known, they are discussed as a group.

4.4.8.1 Discussion

These operator elements denote the standard trigonometrical functions.

These elements all take thedefinitionURL andencoding attributes, which can be used
to override the default semantics.

They are allunary trigonometric operators. See section4.2.3for further details.

191

sin cos tan
sec csc cot
sinh cosh tanh
sech csch coth
arcsin arccos arctan
arccosh arccot arccoth
arccsc arccsch arcsec
arcsech arcsinh arctanh

4.4.8.2 Examples

<apply><sin/>
<ci> x </ci>

</apply>

<apply><sin/>
<apply>

<plus/>
<apply><cos/>

<ci> x </ci>
</apply>
<apply>

<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</apply>

</apply>

4.4.8.3 Default Rendering

sinx

sin(cosx + x3)

4.4.8.4 <exp/>

Discussion

Theexp element represents the exponential function associated with the inverse of theln
function. In particular, exp(1) is approximately 2.718281828.

exp takes thedefinitionURL andencoding attributes which may be used to override the
default semantics.

Theexp element is aunary arithmetic operator. See section4.2.3for further details.

Example

<apply><exp/>
<ci> x </ci>

</apply>

192

Default Rendering

ex

4.4.8.5 <ln/>

Discussion

The ln element is the natural logarithm operator.

The ln element takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

The ln element is anunary calculus operator. See section4.2.3for further details.

Example

<apply><ln/>
<ci> a </ci>

</apply>

If a = e this will yield the value 1.

Default Rendering

ln a

4.4.8.6 <log/>

Discussion

Thelog element is the operator which returns a logarithm to a given base. The base may be
specified using alogbase element, which should be the first child of the containingapply
element. If thelogbase element is not present, a default base of 10 is assumed.

The log element takes thedefinitionURL andencoding attributes which can be used to
override the default semantics.

The log element can be used as either anoperator taking qualifiersor a unary calculus
operator. See section4.2.3for further details.

Example

<apply> <log/>
<logbase>

<cn> 3 </cn>
</logbase>
<ci> x </ci>

</apply>

This markup represents ‘the base 3 log of x’. For natural logarithms base e, theln element
should be used instead.

Default Rendering

log3 x

193

4.4.9 Statistics

4.4.9.1 <mean/>

Discussion

meanis the operator element for a mean or average.

meantakes thedefinitionURL andencoding attributes, which can be used to override
the default semantics.

Example

meanis an n-ary operator.

<apply><mean/>
<ci> X </ci>

</apply>

See section4.2for further details.

Default Rendering

X̄ or 〈X〉

4.4.9.2 <sdev/>

Discussion

sdev is the operator element for the standard deviation.

sdev takes thedefinitionURL andencoding attributes, which can be used to override
the default semantics.

Example

sdev is an n-ary operator.

<apply><sdev/>
<ci> X </ci>

</apply>

See section4.2for further details.

Default Rendering

σ(X)

4.4.9.3 <variance/>

Discussion

variance is the operator element for the statistical variance.

variance takes thedefinitionURL andencoding attributes, which can be used to over-
ride the default semantics.

194

Example

variance is an n-ary operator.

<apply><variance/>
<ci> X </ci>

</apply>

See section4.2for further details.

Default Rendering

σ(X)2

4.4.9.4 <median/>

Discussion

medianis the operator element for the median .

mediantakes thedefinitionURL andencoding attributes, which can be used to override
the default semantics.

Example

medianis an n-ary operator.

<apply><median/>
<ci> X </ci>

</apply>

See section4.2for further details.

Default Rendering

median(X)

4.4.9.5 <mode/>

Discussion

modeis the operator for the statistical mode.

modetakes thedefinitionURL andencoding attributes, which can be used to override
the default semantics.

Example

modeis an n-ary operator.

<apply>
<mode/>
<ci> X </ci>

</apply>

See section4.2for further details.

195

Default Rendering

mode(X)

4.4.9.6 <moment/>

Discussion

Themomentelement represents statistical moments. Usedegree for then in ‘n-th moment’.

momenttakes thedefinitionURL andencoding attributes, which can be used to override
the default semantics.

Example

momentis an operator taking qualifiers.

<apply><moment/>
<degree>

<cn> 3 </cn>
</degree>
<ci> X </ci>

</apply>

See section4.2for further details.

Default Rendering

〈X3〉

4.4.10 Linear Algebra

4.4.10.1 <vector>

Discussion

vector is the container element for a vector. The child elements form the components of
the vector.

For purposes of interaction with matrices and matrix multiplication vectors are regarded as
equivalent to a matrix consisting of a single column and the transpose of a vector behaves
the same as a matrix consisting of a single row.

Example

vector is a constructor element.

<vector>
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>
<ci> x </ci>

</vector>

See section4.2for further details.

196

Default Rendering

(1, 2, 3,x)

4.4.10.2 <matrix>

Discussion

Thematrix is the container element formatrixrow ’s. matrixrow ’s contain the elements
of a matrix.

Example

matrix is a constructor element.

<matrix>
<matrixrow>

<cn> 0 </cn> <cn> 1 </cn> <cn> 0 </cn>
</matrixrow>
<matrixrow>

<cn> 0 </cn> <cn> 0 </cn> <cn> 1 </cn>
</matrixrow>
<matrixrow>

<cn> 1 </cn> <cn> 0 </cn> <cn> 0 </cn>
</matrixrow>

</matrix>

See section4.2for further details.

Default Rendering

A =

 0 1 0
0 0 1
1 0 0

4.4.10.3 <matrixrow>

Discussion

Thematrixrow element is the container element for the rows of a matrix.

Example

matrixrow is a constructor element.

<matrixrow>
<cn> 1 </cn>
<cn> 2 </cn>

</matrixrow>
<matrixrow>

<cn> 3 </cn>
<ci> x </ci>

</matrixrow>

See section4.2for further details.

197

Default Rendering

Matrix rows are not directly rendered by themselves outside of the context of a matrix.

4.4.10.4 <determinant/>

Discussion

Thedeterminant element is the operator for constructing the determinant of a matrix.

determinant takes thedefinitionURL andencoding attributes, which can be used to
override the default semantics.

Example

determinant is a unary operator.

<apply><determinant/>
<ci type="matrix"> A </ci>

</apply>

See section4.2for further details.

Default Rendering

detA

4.4.10.5 <transpose/>

Discussion

Thetranspose element is the operator for constructing the transpose of a matrix.

transpose takes thedefinitionURL andencoding attributes, which can be used to over-
ride the default semantics.

Example

transpose is a unary operator.

<apply><transpose/>
<ci type="matrix"> A </ci>

</apply>

See section4.2for further details.

Default Rendering

At

198

4.4.10.6 <selector/>

Discussion

Theselector element is the operator for indexing into vectors matrices and lists. It accepts
one or more arguments. The first argument identifies the vector, matrix or list from which
the selection is taking place, and the second and subsequent arguments, if any, indicate the
kind of selection taking place.

When selector is used with a single argument, it should be interpreted as giving the
sequence of all elements in the list, vector or matrix given. The ordering of elements in the
sequence for a matrix is understood to be first by column, then by row. That is, for a matrix
(ai, j), where the indices denote row and column, the ordering would bea1,1, a1,2, ... a2,1,
a2,2 ... etcetera.

When three arguments are given, the last one is ignored for a list or vector, and in the case
of a matrix, the second and third arguments specify the row and column of the selected
element.

When two arguments are given, and the first is a vector or list, the second argument specifies
an element in the list or vector. When a matrix and only one indexi is specified as in

<apply><selector/>
<matrix>

<matrixrow>
<cn> 1 </cn> <cn> 2 </cn>

</matrixrow>
<matrixrow>

<cn> 3 </cn> <cn> 4 </cn>
</matrixrow>

</matrix>
<cn> 1 </cn>

</apply>

it refers toi-th matrixrow. Thus, the preceding example selects the following row:

<matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>

selector takes thedefinitionURL andencoding attributes, which can be used to over-
ride the default semantics.

selector is classified as an n-ary linear algebra operator even though it can take only one,
two, or three arguments.

Example

<apply><selector/>
<ci type="matrix"> A </ci>
<cn> 3 </cn>
<cn> 2 </cn>

</apply>

199

Default Rendering

Theselector construct renders the same as the expression which it selects.

4.4.10.7 vectorproduct

Discussion

Thevectorproduct is the operator element for deriving the vector product of two vectors

Thevectorproduct element takes the attributesdefinitionURL, encoding which can
be used to override the default semantics.

Thevectorproduct element is abinary vector operator. See the section4.2.3for further
details.

Example

<apply><eq/>
<apply><vectorproduct/>
<ci type = "vector"> A </ci>
<ci type = "vector">B </ci>
</apply>
<apply><times/>
<ci> a </ci>
<ci> b </ci>
<apply><sin/>
<ci> θ </ci>
</apply>
</apply>
</apply>

where A and B are vectors, a,b are the magnitudes of A,B and ? is the angle between A and
B.

Default Rendering

A x B

AxB

4.4.10.8 scalarproduct

Discussion

Thescalarproduct is the operator element for deriving the scalar product of two vectors

Thescalarproduct element takes the attributesdefinitionURL, encoding which can
be used to override the default semantics.

Thescalarproduct element is abinary vector operator. See the section4.2.3for further
details.

200

Example

<apply><eq/>
<apply><scalarproduct/>
<ci type = "vector"> A </ci>
<ci type = "vector">B </ci>
</apply>
<apply><times/>
<ci> a </ci>
<ci> b </ci>
<apply><cos/>
<ci> θ </ci>
</apply>
</apply>
</apply>

where A and B are vectors, a,b are the magnitudes of A,B and ? is the angle between A and
B.

Default Rendering

A.B

A.B

4.4.10.9 outerproduct

Discussion

Theouterproduct is the operator element for deriving the outer product of two vectors

The outerproduct element takes the attributesdefinitionURL, encoding which can
be used to override the default semantics.

The outerproduct element is abinary vector operator. See the section4.2.3for further
details.

Example

<apply><outerproduct/>
<ci type = "vector"> A </ci>
<ci type = "vector">B </ci>
</apply>

where A and B are vectors.

Default Rendering

A.B

AB

4.4.11 Semantic Mapping Elements

The use of the semantic mapping elements is explained in section4.2.64.4.11.1<annotation> .

201

4.4.11.1 Discussion

Theannotation element is the container element for a semantic annotation in a non-XML
format.

annotation takes the attributeencodingto define the encoding being used.

4.4.11.2 Example

annotation is a semantic mapping element. It is always used withsemantics .

<semantics>
<apply>

<plus/>
<apply><sin/>

<ci> x </ci>
</apply>
<cn> 5 </cn>

</apply>
<annotation encoding="TeX">

\sin x + 5
</annotation>

</semantics>

4.4.11.3 Default Rendering

None. The information contained in annotations may optionally be used by a renderer able
to process the kind of annotation given.

4.4.11.4 <semantics>

Discussion

The semantics element is the container element which associates additional representa-
tions with a given MathML construct. Thesemantics element has as its first child the
expression being annotated, and the subsequent children are the annotations. There is no
restriction on the kind of annotation that can be attached using the semantics element. For
example, one might give a TEX encoding, or computer algebra input in an annotation.

The representations which are XML based are enclosed in anannotation-xml element
while those representations which are to be parsed asPCDATAare enclosed in anannotation
element.

semantics takes thedefinitionURL andencoding attributes which can be used to refer-
ence an external source for some or all of the semantic information.

An important purpose of thesemantics construct is to associate specific semantics with a
particular presentation, or additional presentation information with a content construct. The
default rendering of asemantics element is the default rendering of its first child. When a
MathML-presentation annotation is provided, a MathML renderer may optionally use this
information to render the MathML construct. This would typically be the case when the
first child is a MathML content construct and the annotation is provided to give a preferred
rendering differing from the default for the content elements.

202

Examples and Usage

semantics is a semantic mapping element.

<semantics>
<apply>

<plus/>
<apply>

<sin/>
<ci> x </ci>

</apply>
<cn> 5 </cn>

</apply>
<annotation encoding="Maple">

sin(x) + 5
</annotation>
<annotation-xml encoding="MathML-Presentation">

...

...
</annotation-xml>
<annotation encoding="Mathematica">

Sin[x] + 5
</annotation>
<annotation encoding="TeX">

\sin x + 5
</annotation>
<annotation-xml encoding="OpenMath">

<OMA>...</OMA>
</annotation-xml>

</semantics>

Default Rendering

The default rendering of asemantics element is the default rendering of its first child.

4.4.11.5 <annotation-xml>

Discussion

Theannotation-xml container element is used to contain representations that are XML
based. It is always used together with thesemantics element, and takes the attribute
encoding to define the encoding being used.

annotation-xml is a semantic mapping element.

Example

<semantics>
<apply>

<plus/>

203

<apply><sin/>
<ci> x </ci>

</apply>
<cn> 5 </cn>

</apply>
<annotation-xml encoding="OpenMath">

<OMA><OMS name="plus" cd="arith1"/>
<OMA><OMS name="sin" cd="transc1"/>

<OMV name="x"/>
</OMA>
<OMI>5</OMI>

</OMA>
</annotation-xml>

</semantics>

See alsosemantics in the Usage Guide.

Default Rendering

None. The information may optionally be used by a renderer able to process the kind of
annotation given.

204

Chapter 5

Combining Presentation and Content Markup

Presentation markup and content markup can be combined in one of two ways: The first
manner is to intersperse content and presentation elements in what is essentially a single
tree. This is calledmixed markup. The second manner is to provideboth an explicit pre-
sentation and an explicit content in a pair of trees. This is calledparallel markup. This
chapter describes both mixed and parallel markup, and how they may used in conjunction
with style sheets and other tools.

5.1 Why Two Different Kinds of Markup?

Chapters 3 and 4 describe two kinds of markup for encoding mathematical material in
documents.

Presentation markupcapturesnotational structure. It encodes the notational structure of
an expression in a sufficiently abstract way to facilitate rendering to various media. Thus,
the same presentation markup can be rendered with relative ease on screen in either wide
and narrow windows, in ASCII or graphics, in print, or it can be enunciated in a sensible
way when spoken. It does this by providing information such as structured grouping of
expression parts, classification of symbols, etc.

Presentation markup doesnot directly concern itself with the mathematical structure or
meaning of an expression. In many situations, notational structure and mathematical struc-
ture are closely related, so a sophisticated processing application may be able to heuristi-
cally infer mathematical meaning from notational structure, provided sufficient context is
known. However, in practice, the inference of mathematical meaning from mathematical
notation must often be left to the reader.

Employing presentation tags alone may limit the ability to re-use a MathML object in
another context, especially evaluation by external applications.

Content markupcapturesmathematical structure. It encodes mathematical structure in a
sufficiently regular way in order to facilitate the assignment of mathematical meaning to
an expression by application programs. Though the details of mapping from mathematical
expression structure to mathematical meaning can be extremely complex, in practice, there
is wide agreement about the conventional meaning of many basic mathematical construc-
tions. Consequently, much of the meaning of a content expression is easily accessible to
a processing application, independently of where or how it is displayed to the reader. In

205

many cases, content markup could be cut from a Web browser and pasted into a math-
ematical software tool (such as future versions of Axiom, Maple or Mathematica) with
confidence that sensible values will be computed.

Since content markup isnot directly concerned with how an expression is displayed, a
renderer must infer how an expression should be presented to a reader. While a sufficiently
sophisticated renderer and style-sheet mechanism could in principle allow a user to read
mathematical documents using personalized notational preferences, in practice, rendering
content expressions with notational nuances may still require human intervention of some
sort.

Employing content tags alone may limit the ability of the author to precisely control how
an expression is rendered.

It is important to emphasize that both content and presentation tags are necessary in order to
provide the full expressive capability one would expect in a mathematical markup language.
Often the same mathematical notation is used to represent several completely different
concepts. For example, the notationxi may be intended (in polynomial algebra) as thei-th
power of the variablex, or (in vector analysis) as thei-th component of a vectorx. In other
cases, the same mathematical concept may be displayed in one of various notations. For
instance, the factorial of a number might be expressed with an exclamation mark, a Gamma
function, or a Pochhammer symbol.

Thus the same notation may represent several mathematical ideas, and, conversely, the
same mathematical idea often has several notations. In order to provide authors with the
ability to precisely control notational nuances while at the same time encoding meanings
in a machine readable way, both content and presentation markup are needed.

In general, if it is important to control exactly how an expression is rendered, presentation
markup will generally be more satisfactory. If it is important that the meaning of an expres-
sion can be dependably and automatically interpreted, then content markup will generally
be more satisfactory.

5.2 Mixed Markup

MathML offers authors elements for both content and presentation markup. Whether to
use one or the other, or a combination of both, depends on what aspects of rendering and
interpretation an author wishes to control, and what kinds of re-use he or she wishes to
facilitate.

5.2.1 Reasons to Mix Markup

In many common situations, an author or authoring tool may choose to generate either
presentation or content markup exclusively. For example, a program for translating legacy
documents would most likely generate pure presentation markup. Similarly, an educational
software package might very well generate only content markup for evaluation in a com-
puter algebra system. However, in many other situations, there are advantages to mixing
both presentation and content markup within a single expression.

If an author is primarily presentation-oriented, interspersing some content markup will of-
ten produce more accessible, more re-usable results. For example, an author writing about
linear algebra might write:

206

<mrow>
<apply>

<power/>
<ci>x</ci><cn>2</cn>

</apply>
<mo>+</mo>
<msup>

<mi>v</mi><mn>2</mn>
</msup>

</mrow>

wherev is a vector and the superscript denotes a vector component, andx is a real variable.
On account of the linear algebra context, a visually impaired reader may have directed his
or her voice synthesis software to render superscripts as vector components. By explicitly
encoding the power, the content markup yields a much better voice rendering than would
likely happen by default.

If an author is primarily content-oriented, there are two reasons to intersperse presentation
markup. First, using presentation markup provides a way of modifying or refining how a
content expression is rendered. For example, one might write:

<apply>
<in/>
<ci><mi fontweight="bold">v</mi></ci>
<ci>S</ci>

</apply>

In this case, the use of embedded presentation markup allows the author to specify thatv
should be rendered in boldface.

A second reason to intersperse presentation in content markup is that there is a continu-
ally growing list of areas of discourse which do not have pre-defined content elements for
encoding their objects and operators. As a consequence, any system of content markup in-
evitably requires an extension mechanism which combines notation with semantics in some
way. MathML content markup specifies several ways of attaching an external semantic def-
initions to content objects. However, it is necessary to use MathML presentation markup
to specify how such user-defined semantic extensions should be rendered.

For example, the ‘rank’ operator from linear algebra is not included as a pre-defined MathML
content element. Thus, to express the statement rank(uTv)=1 we use themopresentation el-
ement inside aci element to achieve the proper presentation, along with asemantics
element which binds a semantic definition to the symbol. Themoelement indicates to a
renderer that it should use standard operator spacing around the content identifier ‘rank’,
just as it would for ‘sin’ or ‘log’:

<apply>
<eq/>
<apply>

<fn>
<semantics>

<ci><mo>rank</mo></ci>

207

<annotation-xml encoding="OpenMath">
<OMS cd="linalg1" name="rank"/>

</annotation-xml>
</semantics>

</fn>
<apply>

<times/>
<apply>

<transpose/>
<ci>u</ci>

</apply>
<ci>v</ci>

</apply>
</apply>
<cn>1</cn>

</apply>

Here, the semantics of the presentation subexpressions have been given using symbols from
OpenMath content dictionaries (CD).

5.2.2 How to Mix Markup

The main consideration when presentation markup and content markup are mixed together
in a single expression is that the result should still make sense. When both kinds of markup
are contained in a presentation expression, this means it should be possible to render the
resulting mixed expressions simply and sensibly. Conversely, when mixed markup appears
in a content expression, it should be possible to simply and sensibly assign a semantic in-
terpretation to the expression as whole. These requirements place a few natural constraints
on how presentation and content markup can be mixed in a single expression, in order to
avoid ambiguous or otherwise problematic expressions.

Two motivating examples illustrate the kinds of problems that must be avoided in mixed
markup. Consider:

<mrow> <plus/> <mi> x </mi> <mi> y </mi> </mrow>

In this example, the content elementplus has been indiscriminately embedded in a pre-
sentation expression. Should the plus sign appear in its usual infix position, as it would in
content markup, or should it render as the first thing in the row? Neither choice is very
satisfactory, and consequently, this kind of mixing is not allowed. Similarly, consider:

<apply> <ci> x </ci> <mo> + </mo> <ci> y </ci> </apply>

As before, themoelement is problematic. Should a renderer infer that the usual arithmetic
operator is intended, and act as if the prefix content elementplus had been used? Again,
there is no compelling answer, and thus this kind of mixing of content and presentation
markup is also prohibited.

5.2.3 Presentation Markup Contained in Content Markup

The use of presentation markup within content markup is limited to situations which do
not effect the ability of content markup to unambiguously encode mathematical meaning.
More specifically, presentation markup may only appear in content markup in three ways:

208

1. within ci andcn token elements
2. within thecsymbol element
3. within thesemantics element

Any other presentation markup occurring within a content markup is a MathML error. More
detailed discussion of these three cases follows:

Presentation markup within token elements.The token elementsci andcn are permit-
ted to contain any sequence ofPCDATA, presentation elements, andsep empty
elements. Contiguous blocks ofPCDATAin ci and fn elements are rendered as
if they were wrapped inmi elements. A contiguous block ofPCDATAwithin cn
should be rendered as if wrapped inmn. If a token element contains bothPCDATA
and presentation elements, contiguous blocks ofPCDATA(if any) are treated as
if wrapped inmi or mnelements as appropriate, and the resulting collection of
presentation elements are rendered as if wrapped in anmrowelement. Thesep
element is only meaningful in identifiers and numbers defined to be of complex
type, where it separatesPCDATAinto real and imaginary parts. When a token el-
ements contains bothsep elements and presentation elements, thesep elements
are ignored.

Presentation markup within the csymbol element. Thecsymbolelement may contain
eitherPCDATAinterspersed with presentation markup, or content container ele-
ments. It is a MathML error for acsymbol element to contain both presentation
and content elements. When thecsymbol element contains both raw data and
presentation markup, the same rendering rules that apply to content token ele-
ments should be used.

Presentation markup within the semantics element. One of the main purposes of the
semantics element is to provide a mechanism for incorporating arbitrary MathML
expressions into content markup in a semantically meaningful way. In particular,
any valid presentation expression can be embedded in a content expression by
placing it as the first child of asemantics element. The meaning of this wrapped
expression should be indicated by one or more annotation elements also con-
tained in thesemantics element. Suggested rendering for asemantics element
is discussed in 4.2.6.

5.2.4 Content Markup Contained in Presentation Markup

The guiding principle for embedding content markup within presentation expressions is
that the resulting expression should still have an unambiguous rendering. In general, this
means that embedded content expressions must be semantically meaningful, since render-
ing of content markup depends on its meaning. This translates into the condition that con-
tent container, operator and relation elements are permitted, while qualifier and condition
elements are not.

As a rule, content elements other than containers derive part of their semantic meaning from
the surrounding context, such as whether abvar element is qualifying an integral, logical
quantifier or lambda expression. Another example would be whether adegree element
occurs in aroot or partialdiff element. Thus, in a presentation context, elements such
as these do not have a clearly defined meaning, and hence there is no obvious choice for a
rendering. Consequently, they are not allowed.

The complete list of content elements which may appear as a child in a presentation ele-
ment is:ci , cn, csymbol, apply , lambda, reln , interval , list , matrix , matrixrow ,

209

set , vector , declare (containers),factorial , abs, conjugate , not , inverse , ident ,
exp, ln , log , sin , cos, tan , sec, csc, cot , sinh , cosh, tanh , sech, csch, coth , arcsin ,
arccos , arctan , determinant , transpose , quotient , divide , minus, power, rem, implies ,
setdiff , plus , times , max, min, gcd, mean, sdev, variance , median, mode, and, or , xor ,
selector , union , intersect , fn , compose, int , sum, product , diff , partialdiff ,
forall , exists (operators),neq, implies , in , notin , notsubset , notprsubset , tendsto ,
eq, leq , lt , geq, gt , subset , prsubset (relations).

Note that within presentation markup, content expressions may only appear in locations
where it is valid for any MathML expression to appear. In particular, content expressions
may not appear within presentation token elements. In this regard mixing presentation and
content are asymmetrical.

For rendering purposes, when a permitted content element appears within a presentation
context, a processing application should treat it as if it were replaced with anmrowcontain-
ing a presentation encoding of the rendering the application would ordinarily generate for
that content markup. For example, consider:

<mfrac>
<mi>x</mi>
<interval closure="open-closed">

<cn>1</cn>
<cn>3</cn>

</interval>
</mfrac>

In this case, a visual renderer would typically render theinterval construct as (1,3]. Using
presentation markup, this might be encoded as:

<mfenced close="]">
<mn>1</mn>
<mn>3</mn>

</mfenced>

Consequently, the original mixed markup should be visually rendered as

<mfrac>
<mi>x</mi>
<mfenced close="]">

<mn>1</mn>
<mn>3</mn>

</mfenced>
</mfrac>

5.3 Parallel Markup

Some applications are able to make use ofboth presentation and content information. For
these applications it is desirable to provide both forms of markup for the same mathematical
expression. This is calledparallel markup.

210

Parallel markup is achieved with thesemantics element. Parallel markup for an expression
can be used on its own, or can be incorporated as part of a larger content or presentation
tree.

5.3.1 Top-level Parallel Markup

In many cases what is desired is to provide presentation markup and content markup for a
mathematical expression as a whole. To achieve this, a singlesemantics element is used
pairing two markup trees, with the first branch being the MathML presentation markup,
and the second branch being the MathML content markup.

The following example encodes the boolean arithmetic expression (a+b)(c+d) in this way.

<semantics>
<mrow>

<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<mo>⁢</mo>
<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>

</mrow>
<annotation-xml encoding="MathML-Content">

<apply><and/>
<apply><xor/><ci>a</ci> <ci>b</ci></apply>
<apply><xor/><ci>c</ci> <ci>d</ci></apply>

</apply>
</annotation-xml>

</semantics>

This example is non-trivial in the sense that the content markup not could be easily derived
from the presentation markup alone.

5.3.2 Fine-grained Parallel Markup

Top-level pairing of independent presentation and content markup is sufficient for many,
but not all, situations. Applications which allow treatment ofsubexpressionsof mathemat-
ical objects require the ability to associate presentation, content or information with the
partsof an object with mathematical markup. Top-level pairing with asemantics element
is insufficient in this type of situation; identification of a subexpression in one branch of
semantics element gives no indication of the corresponding parts in other branches.

The ability to identify corresponding subexpressions is required in applications such as
mathematical expression editors. In this situation, selecting a subexpression on a visual
display can identify a particular portion of a presentation markup tree. The application then
needs to determine the corresponding annotations of the subexpressions; in particular, it the
application requires the subexpressions of theannotation-xml tree in MathML content
notation.

It is, in principle, possible to provide annotations for each presentation node by incorporat-
ing semantics elements recursively.

<semantics>
<mrow>

<semantics>

211

<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<annotation-xml encoding="MathML-Content">

<apply><plus/><ci>a</ci> <ci>b</ci></apply>
</annotation-xml>

</semantics>
<mo>⁢</mo>
<semantics>

<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>
<annotation-xml encoding="MathML-Content">

<apply><plus/><ci>c</ci> <ci>d</ci></apply>
</annotation-xml>

</semantics>
</mrow>

<annotation-xml encoding="MathML-Content">
<apply><times/>

<apply><plus/><ci>a</ci> <ci>b</ci></apply>
<apply><plus/><ci>c</ci> <ci>d</ci></apply>

</apply>
</annotation-xml>

</semantics>

To be complete this example would be much more verbose, wrapping each of the individual
leavesmi, moandmnin a further sevensemantics elements.

This approach is very general and works for all kinds of annotations (including non-
MathML annotations and multiple annotations). It leads, however, to O(n2) increase in size
of the document. This is therefore not a suitable approach for fine-grained parallel markup
of large objects.

5.3.3 Parallel Markup via Cross-References:id and xref

To better accomodate applications which must deal with sub-expressions of large objects,
MathML uses cross-references between the branches of asemanticselement to identify
corresponding substructures.

Cross-referencing is achieved usingid andxref attributes within the branches of a contain-
ing semantics element. These attributes may optionally be placed on MathML elements
of any type.

The following example shows this cross-referencing for the boolean arithmetic expression
(a+b)(c+d).

<semantics>
<mrow id="E">

<mrow id="E.1">
<mo id="E.1.1">(</mo>
<mi id="E.1.2">a</mi>
<mo id="E.1.3">+</mo>
<mi id="E.1.4">b</mi>
<mo id="E.1.5">)</mo>

</mrow>

212

<mo id="E.2">⁢</mo>
<mrow id="E.3">

<mo id="E.3.1">(</mo>
<mi id="E.3.2">c</mi>
<mo id="E.3.3">+</mo>
<mi id="E.3.4">d</mi>
<mo id="E.3.5">)</mo>

</mrow>
</mrow>

<annotation-xml encoding="MathML-Content">
<apply xref="E">

<and xref="E.2"/>
<apply xref="E.1">

<xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>
</apply>
<apply xref="E.3">

<xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>
</apply>

</apply>
</annotation-xml>

<annotation-xml encoding="OpenMath">
<OMA xref="E">

<OMS cd="logic" name="and" xref="E"/>
<OMA xref="E.1">

<OMS cd="logic" name="xor" xref="E.1.3"/>
<OMV name="a" xref="E.1.2"/>
<OMV name="b" xref="E.1.4"/>

</OMA>
<OMA xref="E.3">

<OMS cd="logic" name="xor" xref="E.3.3"/>
<OMV name="c" xref="E.3.2"/>
<OMV name="d" xref="E.3.4"/>

</OMA>
</OMA>

</annotation-xml>
</semantics>

An id attribute and a correspondingxref appearing within the samesemantics element
create a correspondence between subexpressions.

In creating these correspondences by cross-reference,all of the theid attributes refer-
enced by anyxref must be in thesamebranch of an enclosingsemantics element. This
constraint guarantees that these correspondences do not create unintentional cycles. (Note
that this restriction doesnot exclude the use ofid attributes within the other branches of
the enclosingsemantics element. It does, however, exclude references to these otherid
attributes from originating in the samesemantics element.)

There is no restriction on which branch of thesemantics element may contain the desti-
nationid attributes. It is up to the application to determine which branch to use.

213

In general, there will not be a one-to-one correspondence between nodes in parallel branches.
For example, a presentation tree may contain elements, such as parentheses, which have no
correspondents in the content tree. It is therefore often useful to put theid attributes on the
branch with the finest-grained node structre. Then all of the other branches will havexref
attributes to some subset of theid attributes.

In absence of other criteria, the first branch of thesemantics element is a sensible a choice
to contain theid attributes. Applications which add or remove annotations will then not
have to re-attribute thesemantics trees.

In general, the use ofid andxref attributes allows a full correspondence between subex-
pressions to be given in text which is at most a constant factor larger than the original. The
direction of the references should not be taken to imply that sub-expression selection is
intended to be permitted only on one child of thesemantics element. It is equally feasible
to select a subtree in any branch and to recover the corresponding subtrees of the other
branches.

5.4 Tools, Style Sheets and Macros for Combined Markup

The interaction of presentation and content markup can be greatly enhanced through the use
of various tools. While the set of tools and standards for working with XML applications
is rapidly evolving at the present, we can already outline some specific techniques.

In general, the interaction of content and presentation is handled via transformation rules
on MathML trees. These transformation rules are sometimes called ‘macros’. In principle,
these rules can be expressed using any one of a number of mechanisms, including DSSSL,
Java programs operating on a DOM, etc. We anticipate, however, that the principal mecha-
nism for these transformations in most applications shall be XSLT.

In this section we discuss transformation rules for two specific purposes: for notational
style sheets, and to simplify parallel markup.

5.4.1 Notational Style Sheets

Authors who make use of content markup may be required to deploy their documents in lo-
cales with notational conventions different than the default content rendering. It is therefore
expected that transformation tools will be used to determine notations for content elements
in different settings. Certain elements, e.g.lambda, meanand transpose , have widely
varying common notations and will often require notational selection. Some examples of
notational variations are given below.

• V versus~V
• tanx versus tgx
•

(n
m

)
versusnCm versusCn

m versusCm
n

• a0 + 1 |
| a1

+ . . .+ 1 |
| ak

versus[a0,a1, . . . ,ak]

Other elements, for exampleplus andsin , are less likely to require these features.

We observe that notational style selection is sometimes necessary for correct understanding
of documents by locale. For instance, the binomial coefficientCn

m in French notation is
equivalent toCm

n in Russian notation.

214

A natural way for a MathML application to bind a particular notation to the set of content
tags is with an XSLT style sheet. The examples of this section shall assume this is the
mechanism to express style choices. (Other choices are equally possible, for example an
application program may provide menus offering a number of rendering choices for all
content tags.)

When writing XSLT style sheets for mathematical notation, some transformation rules can
be purely local, while others will require multi-node context to determine the correct output
notation. The following example gives an local transformation rule which could be included
in a notational style sheet displaying open intervals as]a,b[, rather than as (a,b).

<xsl:template match="interval">
<mrow>

<xsl:choose>
<xsl:when test="@closure=’closed’">

<mfenced open="[" close="]" separators=",">
<xsl:apply-templates/>

</mfenced>
</xsl:when>
<xsl:when test="@closure=’open’">

<mfenced open="]" close="[" separators=",">
<xsl:apply-templates/>

</mfenced>
</xsl:when>
<xsl:when test="@closure=’open-closed’">

<mfenced open="]" close="]" separators=",">
<xsl:apply-templates/>

</mfenced>
</xsl:when>
<xsl:when test="@closure=’closed-open’">

<mfenced open="[" close="[" separators=",">
<xsl:apply-templates/>

</mfenced>
</xsl:when>
<xsl:otherwise>

<mfenced open="[" close="]" separators=",">
<xsl:apply-templates/>

</mfenced>
</xsl:otherwise>

</xsl:choose>
</mrow>

</xsl:template>

An example of a rule requiring context information would be:

<xsl:template match="apply[factorial]">
<mrow>

<xsl:choose>
<xsl:when test="not(*[2]=ci) and not(*[2]=cn)">

<mrow>
<mo>(</mo>
<xsl:apply-templates select="*[2]" />
<mo>)</mo>

215

</mrow>
</xsl:when>
<xsl:otherwise>

<xsl:apply-templates select="*[2]" />
</xsl:otherwise>

</xsl:choose>
<mo>!</mo>

</mrow>
</xsl:template>

Other examples of context-dependent transformations would be, e.g. for theapply of a
plus to rendera-b+c, rather thana+ -b+c, or for theapply of a power to render sin2x,
rather than sinx2.

Notational variation will occur both for built-in content elements as well as extensions.
Notational style for extensions can be handled as described above, with rules matching
the names of any extension tags, and with the content handling (in a content-faithful style
sheet) proceeding as described in section5.4.3.

5.4.2 Content-Faithful Transformations

There may be a temptation to view notational style sheets as a transformation from content
markup to equivalent presentation markup. This viewpoint is explicitly discouraged, since
information will be lost and content-oriented applications will not function properly.

We define a ‘content-faithful’ transformation to be a transformation which retains the orig-
inal content in parallel markup (section5.3).

Tools which support MathML should be ‘content-faithful’, and not gratuitously convert
content elements to presentation elements in their processing. Notational style sheets should
be content-faithful whenever they may be used in interactive applications.

It is possible to write content-faithful style sheets in a number of ways. Top-level parallel
markup can be achieved by incorporating the following rules in an XSLT style sheet:

<xsl:template match="/">
<semantics>

<xsl:apply-templates/>

<annotation-xml encoding="MathML-Content">
<xsl:copy-of select="."/>

</annotation-xml>
</semantics>

</xsl:template>

<xsl:template match="*">
<xsl:copy>

<xsl:apply-templates/>
</xsl:copy>

</xsl:template>

The notation would be generated by additional rules for producing presentation from con-
tent, such as those in section5.4.1.

216

5.4.3 Style Sheets for Extensions

The presentation tags of MathML are quite rich and can be used to express a rendering of
most mathematical notations. The basic layout schema are rich enough that they may be
composed to layout notations which are quite complex, or which might not have yet been
considered. In this sense, the presentation ability of MathML is open-ended. It is often
useful, however, to give a name to a new notational schema if it is going to be used ofthen.

The content tags, on the other hand, express a fixed vocabulary of concepts covering the
types of mathematics seen in most common applications. It is not reasonable to expect
users to compose existing MathML content tags to construct new content concepts. (This
approach is frought with technical difficulties even for professional mathematicians.) In-
stead, it is anticipated that applications whose mathematical content concepts extend be-
yond what is offered by MathML, will use annotations withinsemantics elements, and
that these annotations will use content description languages outside of MathML.

Often the naming of a notation and the identification of a new semantic concept are related.
This allows a single transformation rule to capture both a presentation and a content markup
for an expression. This is one of the areas of MathML which benefits most strongly the
use of macro processing. With any of the current document transformation standards, for
instance XSLT or DSSSL, it is trivial to define rules which take, for example

<rank/>

and

<tr>X</tr>

and respectively transform them to

<semantics>
<ci><mo>rank</mo></ci>
<annotation-xml encoding="OpenMath">

<OMS cd="linalg1" name="rank"/>
</annotation-xml>

</semantics>

and

<apply>
<transpose/>
<ci>X</ci>

</apply>

The lengthy sample encoding of rank(uTv)=1, from section5.2.1could then be condensed
to

<apply>
<eq/>
<apply>

<rank/>
<apply>

<times/>

217

<tr>u</tr>
<ci>v</ci>

</apply>
</apply>

<cn>1</cn>
</apply>

From this example we see how the combination of presentation and content markup could
become much simpler and effective to generate as standard style-sheet libraries become
available.

218

Chapter 6

Entities, Characters and Fonts

6.1 Introduction

6.1.1 The Intent of Entity Names

Notation has proved very important for mathematics. Mathematics has grown in part be-
cause of the succinctness and suggestiveness of its evolving notation. There have been
many new signs evolved for use in mathematical notation, and mathematicians have not
held back from making use of many symbols originally developed elsewhere. The result
is that mathematics makes use of a very large collection of symbols. It is difficult to write
mathematics fluently if these characters are not available for use in coding. It is difficult to
read mathematics if glyphs are not available for presentation on specific display devices.

This situation poses a problem for the W3C Math Working Group. It does not fall naturally
within the purview of a mathematics for HTML specification and DTD production to worry
about more than the entities allowed in the DTD. Moreover, as experience has shown, a
long list of entities with no means to display them is of little use, and a cause of frequent
frustrations in trying use a standard. On the other hand, a large collection of glyphs or
characters without a standard way to refer to them is not of much use either.

The W3C Math Working Group has therefore taken on directly specification of part of the
full mechanism of proceeding from notation to final presentation, and is collaborating with
organizations undertaking specification of the rest.

For instance, we try to use entity names that are contained in ISO TR 9573, which super-
sedes the ISO TR 8879 annex as far as mathematics is concerned. There are considerations
of mathematical usage that do on occasion militate against this, and the TR 9573 lists need
supplementing. We hope to be able to agree with the TR 9573 WG on suitable extensions,
in the course of the revision of their document that they are presently undertaking.

The STIX project of the STIPUB group of scientific and technical publishers has also
been working toward a common collection of mathematical symbols and names. The W3C
Math Working Group expects to issue further updates on the matter of character entities
as a consequence of this project’s useful work. For the latest character tables and fonts
information, see the W3C Math Working Group home page.

6.1.2 The STIX Project

The STIX project team leader, Nico Poppelier, is a member of the W3C Math Working
Group. The STIX project, set up by the STIPUB group of publishers, aims to formulate

219

a collection of characters needed in the course of scientific and technical publishing. A
database of characters in common use is being produced by collaborating publishing or-
ganizations. The team will propose to the Unicode consortium the additions to the next
revision of the Unicode character set that this process shows are needed, together with the
appropriate character codes. Finally the STIX project will commission the production of
a complete set of fonts covering those Unicode characters for science and technology, to
be made available to the public under license, but free of charge. The STIPUB group rec-
ognizes that easy availability of the characters and fonts greatly facilitates communication
and publication.

6.1.3 Entity Listings

This chapter of the MathML Specification contains a listing of entities for use in MathML.

To provide more background on the characters used by mathematics we have used a larger
comparative database showing codes and meanings in other common math environments.
The W3C Math Working Group is very grateful to Elsevier Science and to Wolfram Re-
search (makers of MathematicaR©) for making available to us so much useful data.

6.1.4 Non-Marking Entities

Some character entities, although important for the quality of print rendering do not directly
have glyph marks that correspond. They are called here non-marking entities. Below we
have a table of those adopted for the purposes of MathML. Their roles are discussed in
chapter3 and chapter4, respectively. The values of the spaces given are recommendations.
Some of these characters do not already have Unicode values. Arbitrary values up in the
Private Zone E8 range have been assigned. The correspondence between the spacing values
mentioned below and those in the Unicode descriptions are not exact, but are good matches.

6.1.5 Printing Entity Listings

Since the situation concerning availability of character codes from Unicode and under ISO
9573-13 is not yet fully clear at the time of writing, we have decided to proceed conserva-
tively.

We have taken the ISO 9573-13 proposal, as conveyed to us from Anders Berglund, and
have added a number of additional aliases based in the practice of the mathematical type-
setting community. Thus the main influence outside ISO has been the names to be found in
the TEX community.

To facilitate comprehension of a fairly large list of names, which totals over 2000 in this
case, we offer the same information in more than one form.

We have entities listed by name and sample glyphs for all of them. Each entity name is
accompanied by a code for a character grouping chosen from a list given below, a short
verbal description, and a Unicode hex code if there is a corresponding sample glyph to
be found in ISO 10646. Those codes beginning with the hex digit E, e.g. E321, indicate
assignments to the private zone of Unicode. This indicates that the character in question
is not at present an official Unicode character. It is highly recommended that authors use
entity names instead of Unicode values, especially for those characters in the Unicode
private zone, as those values may change. It is hoped that most of these characters will

220

Entity name Unicode Description
	 0009 tabulator stop; horizontal tabulation

 000A force a line break; line feed
&IndentingNewLine; E891 force a line break and indent appropriately on next line
⁠ E892 never break line here
&GoodBreak; E893 if a linebreak is needed, here is a good spot
&BadBreak; E894 if a linebreak is needed, try to avoid breaking here
&Space; 0020 one em of space in the current font
 00A0 space that is not a legal breakpoint
​ 200B space of no width at all
  200A space of width 1/18 em
  2009 space of width 3/18 em
  2005 space of width 4/18 em
   E897 space of width 5/18 em
​ E898 space of width -1/18 em
​ E899 space of width -3/18 em
​ E89A space of width -4/18 em
​ E89B space of width -5/18 em
⁣ E89C used as a separator, e.g. in indices (section3.2.4
⁣ E89C short form of⁣
⁢ E89E marks multiplication when it is understood without a mark (section3.2.4
⁢ E89E short form of⁢
⁡ E8A0 character showing function application in presentation tagging (section3.2.4
⁡ E8A0 short form of⁡

become officially endorsed by Unicode and ISO under its 10646 standard in due course.
In any case we expect fonts for these characters to become publicly available as the use
of MathML develops. If the entity name is an alias then a reference back to the ISO form
is given if there is one, and to a preferred form if not. The ISO or preferred forms have
references to their alternates where they exist.

Newly Revised.The entity listings by alphabetical and Unicode order in section6.1.7have
now been brought more into line with the corresponding ISO character sets, in that if some
part of a set is included then the entire set is included. Also, ISOCHEM has been dropped.
These changes have also been reflected in the entity declarations in the DTD in appendixA.

The tables of character sets with glyphs given in section6.1.8have not been revised from
the original tables. In cases where information from section6.1.7and section6.1.8conflict,
the tables in section6.1.6and the DTD should be considered normative.

6.1.6 Special Constants

To commence we list separately a few of the special characters which MathML has seen fit
to be a little radical in introducing. There are two for special constants and one for calculus.
They too must have private Unicode values.

6.1.7 Alphabetical Lists

The first table offered is a very large ASCII listing of printing entity names, ordered alpha-
betically, with upper-case preceding lower-case as in ASCII order. The Unicode numbers

221

Entity name Unicode Description
ⅅ F74B D for use in differentials, e.g. within integrals
ⅅ F74B short form ofⅅ
ⅆ F74C d for use in differentials, e.g. within integrals
ⅆ F74C short form ofⅆ
ⅇ F74D e for use for the exponential base of the natural logarithms
ⅇ F74D short form ofⅇ
&false; E8A7 logical constant false
ⅈ F74E i for use as a square root of -1
ⅈ F74E short form ofⅈ
&NotANumber; E8AA used in 4.3.2.9
&true; E8AB logical constant true

beginning with E are arbitrary assignments in the Private Area where there is presently no
Unicode character available. When there is no Unicode offered at all it is because the char-
acters listed can be thought of as font variations of common Roman alphabetic characters.

There is also an ASCII listing of printing entities ordered by Unicode number. Next we
have collections of the entities in entity sets which are similar to the groupings in the
corresponding ISO documents.

6.1.8 ISO Entity Set Groupings

In addition, we list the above material in the groupings used by ISO 9573-13 with an
additional grouping of aliases introduced. This table makes explicit the entity groupings
and provides links to ASCII listings of the groups and HTML tabular listings which display
the glyphs, insofar as they are to be had, as well.

6.1.8.1 ISO Symbol Entity Sets

The symbols for mathematics that ISO have considered are organized, for both historical
and mnemonic reasons into groupings with somewhat descriptive names. In the tables be-
low we reproduce the newly proposed versions of these groups and give the corresponding
Unicode sample glyphs. For each ISO 9573-13 group we give first an Extended version in
ASCII listing which includes aliases, then a similar listing with sample glyphs, then the Ba-
sic ISO 9573-13 entity set and its version with included glyphs. The entries are organized
alphabetically by entity name.

It should be noted that the sample glyphs given here are in GIF files intended for viewing
on a monitor’s screen at 72dpi. They are not suitable for printing, and in particular do not
constitute a set of fonts covering the symbols of mathematics. In addition, it is important
to note that the Unicode numbers assigned in the private zone, beginning with hex digits
E2 and above, are arbitrary and only used here to ensure that sample glyphs are available
for display. They do not constitute suggested assignments of codes. Such a set of fonts is
under development in more than one context. The MathML Working Group is engaged in
ensuring that fonts will be readily publicly available.

This first block of entity sets includes mostly non-letter symbols, along with a few letters
loaded with mathematical semantics. At the end of the block we have included the table
MMALIAS of the aliases introduced by MathML, which mostly come from the TEX com-
munity, and MMEXTRA with the additional character entities added by MathML. Note
that some of the blocks are place-holders for a possible future expansion of the tables.

222

Group Descriptive Name
ISOAMSA Added Math Symbols: Arrows Extended Glyphs Basic Glyphs
ISOAMSB Added Math Symbols: Binary Operators Extended Glyphs Basic Glyphs
ISOAMSC Added Math Symbols: Delimiters Extended Glyphs Basic Glyphs
ISOAMSN Added Math Symbols: Negated Relations Extended Glyphs Basic Glyphs
ISOAMSO Added Math Symbols: Ordinary Extended Glyphs Basic Glyphs
ISOAMSR Added Math Symbols: Relations Extended Glyphs Basic Glyphs
ISOTECH General Technical Extended Glyphs Basic Glyphs
ISOPUB Publishing Extended Glyphs Basic Glyphs
ISODIA Diacritical Marks Extended Glyphs Basic Glyphs
ISONUM Numeric and Special Graphic Extended Glyphs Basic Glyphs
ISOBOX Box and Line Drawing Basic Glyphs
MMALIAS MathML Aliases Basic Glyphs
MMEXTRA MathML Additions Basic Glyphs

6.1.8.2 ISO Entity Sets for Mathematics Alphabets

Mathematical literature displays the common use of particular font styles. Characters rep-
resenting given letters which differ only in the glyph presentation are in principle not dif-
ferent for the purposes of a character registry such as Unicode, which is not supposed to
take into account mere font differences. However usage has meant that both ISO and Uni-
code, like mathematics, recognize them as different entities. Therefore we include lists for
Greek, script, open face (also known as double struck or blackboard bold), and fraktur (also
known as gothic or German) fonts.

Group Descriptive Name
ISOGRK3 Greek Symbols ASCII Glyphs
ISOMSCR Math Alphabet Script ASCII Glyphs
ISOMOPF Math Alphabet Open Face ASCII Glyphs
ISOMFRK Math Alphabet Fraktur ASCII Glyphs

6.1.8.3 Other ISO Font Entity Sets

For reference we provide a list of the names of several other ISO font entity sets which are
really normally used for text. ISOGRK4 is actually a collection of emboldened forms of
the Greek letters.

Group Descriptive Name
ISOGRK1 Greek Letters
ISOGRK2 Monotoniko Greek
ISOGRK4 Alternative Greek Symbols
ISOCYR1 Russian Cyrillic
ISOCYR2 Non-Russian Cyrillic

6.1.9 Additional Entity Set Grouping

In addition to the above listed, for the sake of completeness, we provide a table of other
entities not within the ISO lists which are referred to somewhere in this specification. It is

223

not certain that all these characters, though of mathematical significance, will reach incor-
poration within Unicode. The W3C Math WG continues to wrestle with the problems of
the characters of mathematics.

224

&LeftSkeleton; E850 start of missing information
&RightSkeleton; E851 end of missing information
&LeftBracketingBar; F603 left vertical delimiter
&RightBracketingBar; E604 right vertical delimiter
&LeftDoubleBracketingBar; F605 left double vertical delimiter
&RightDoubleBracketingBar; F606 right double vertical delimiter
─ E859 short horizontal line
| E85A short vertical line
≔ E85B assignment operator
❘ E85C vertical separating operator
⫤ E30F alias for⫤
⥰ F524 right double arrow with rounded head (looks like thin superset)
⊏̸ E604 negated set-like partial order operator
⊐̸ E615 negated set-like partial order operator
⊈ 2288 alias of⊈
⊉ 2289 alias of⊉
⥐ F50B left-down-right-down harpoon
⥞ F50E left-down harpoon from bar
⥖ F50C left-down harpoon to bar
⥟ F50F right-down harpoon from bar
⥗ F50D right-down harpoon to bar
⇤ 21E4 alias for⇤
⥎ F505 left-up-right-up harpoon
↤ 21A4 alias for↤
⥚ F509 left-up harpoon from bar
⥒ F507 left-up harpoon to bar
⇥ 21E5 alias for⇥
⥛ F50A right-up harpoon from bar
⥓ F508 up-right harpoon to bar
⩵ F431 two consecutive equal signs
⪢ E2F7 alias for≫
⧏ F410 not left triangle, vertical bar
⪡ E2FB alias for≪
≭ 226D alias for&nasymp;
≂̸ E84E alias for≂̸
≎̸ E616 alias for≎̸
≏̸ E84D alias for≏̸
⧏̸ F412 not left triangle, vertical bar
⪢̸ F428 not double greater-than sign
⪡̸ F423 not double less-than sign
&NotPrecedesTilde; E5DC alias for⪯̸
⧐̸ E870 not vertical bar, right triangle
≿̸ E837 not succeeds or similar
⧐ F411 vertical bar, right triangle
∏ 220F alias for∏
⋄ 22C4 alias for⋄
⨯ E619 cross or vector product
□ 25A1 alias for□
⤓ F504 down arrow to bar
↧ 21A7 alias for↧
⥡ F519 down-left harpoon from bar
⥙ F517 down-left harpoon to bar
⥑ F515 up-left-down-left harpoon
⥠ F518 up-left harpoon from bar
⥘ F516 up-left harpoon to bar
⥝ F514 down-right harpoon from bar
⥕ F512 down-right harpoon to bar
⥏ F510 up-right-down-right harpoon
⥜ F513 up-right harpoon from bar
⥔ F511 up-right harpoon to bar
↓ E87F short down arrow
↑ E880 sort up arrow
⤒ F503 up arrow to bar
↥ 21A5 ↥
̑ 0311 breve, inverted (non-spacing)
‾ 00AF over bar
⏞ F612 over brace
⎴ F614 over bracket
⏜ F610 over parenthesis
_ 0332 combining low line
⏟ F613 under brace
⎵ F615 under bracket
⏝ F611 under parenthesis
▫ F530 empty very small square
▪ F529 filled very small square
◻ F527 empty small square
◼ F528 filled small square
⧴ F51F rule-delayed (colon right arrow)

225

Chapter 7

The MathML Interface

To be effective, MathML must work well with a wide variety of renderers, processors,
translators and editors. This chapter addresses some of the interface issues involved in
generating and rendering MathML. Since MathML exists primarily to encode mathematics
in Web documents, perhaps the most important interface issues are related to embedding
MathML in HTML.

There are three kinds of interface issues that arise in embedding MathML in HTML. First,
MathML must be semantically integrated into HTML. Browsers must recognize MathML
markup as embedded XML content, and not as an HTML syntax error. This is primarily a
question of managingnamespaces in XML.

Second, MathML rendering must be integrated into browser software. Some browsers al-
ready implement MathML rendering natively, and one can expect more browsers will do
so in the future. At the same time, other browsers have developed infrastructure to facili-
tate the rendering of MathML and other embedded XML content by embedded elements.
While substantial progress has been made, further improvement in coordination between
browsers and embedded elements will be necessary. For example, better support for coordi-
nating initialization and size negotiation is needed, as is better support for high-resolution
printing.

Third, other tools for generating and processing MathML must be able to intercommuni-
cate. A number of MathML tools have been or are being developed, include editors, trans-
lators, computer algebra systems, and other scientific software. However, since MathML
expressions tend to be lengthy, and prone to error when entered by hand, special emphasis
must be given to insuring that MathML can be easily generated by user-friendly conver-
sion and authoring tools, and that these tools work together in a dependable, platform and
vendor independent way.

The W3C Math working group is committed to providing support software vendors devel-
oping all kinds of MathML tools. the working group monitors the public www-math@w3.org
mailing list, and will attempt answer questions about the MathML specification. The work-
ing group also intends to try to stimulate the formation of MathML developer and user
groups. For current information about MathML tools, applications and user support activi-
ties, consult the W3C Math home page.

226

http://www.w3.org/TR/REC-xml-names/

7.1 Embedding MathML in HTML

MathML specifies a single top-levelmath element, which encapsulates each instance of
MathML markup within an HTML page. As such, themathelement provides an attachment
point for information which affects a MathML expression as a whole.

In practice, themathelement also serves as the interface for embedding MathML in HTML.
In this capacity, themathelement simultaneously signals the semantic inclusion of MathML
(XML) content in HTML, and provides the necessary machinery for rendering its content
in a browser either by invoking an embedded element, or by specifying parameters for a
native renderer in the browser. Both semantic inclusion and rendering present a number of
issues that extend beyond the scope of this specification.

In order to produce a complete and self-contained description of MathML, this document
only specifies the attributes and usage of themath element as a top-level element for
MathML, and not as an interface element. The W3C Math working group will continue
working closely with other World Wide Web Consortium activities to insure that emerging
standards for embedding XML in HTML accommodate seamless integration of MathML
in HTML. section7.1.2lists requirements which an interface element for MathML would
have to meet in order to fully integrate MathML into HTML. However, it is important to
note that the MathML specification is independent of embedding mechanisms.

7.1.1 The Top-Levelmath Element

As stated above, MathML specifies a single top-levelmath element. All other MathML
content must be contained in amathelement; equivalently, every valid, complete MathML
expression must be contained in<math>tags. Themathelement must always be the out-
ermost element in a MathML expression; it is an error for onemath element to contain
another.

Applications which return subexpressions of other MathML expressions, for example as
the result of a cut-and-paste operation, should always wrap them in<math>tags. The pres-
ence of enclosing<math>tags should be a reasonable heuristic test for MathML content.
Similarly, applications which insert MathML expressions in other MathML expressions
must take care to remove the<math>tags from the inner expressions.

The math element can contain an arbitrary number of children schemata. The children
schemata render by default as if they were contained in amrowelement.

The attributes of themathelement are:

class="value", id="value", style="value" Provided for style sheet compatibility.
macros="URL URL ..." This attribute provides a way of pointing to external macro def-

inition files. Macros are not part of the MathML specification, and it is antici-
pated that in the future, many uses of macros in MathML can be accommodated
by XSL transformations (http://www.w3.org/TR/xslt). However, themacros is
provided to make possible future development of more streamlined, MathML-
specific macro mechanisms.

mode="display|inline" (deprecated) The modeattribute specifies whether the enclosed
MathML expression should be rendered in a display style or an in-line style.
The default ismode="inline". This attribute is deprecated in favor of the standard
CSS2 ‘display’ propertywith the analogousblock andinline values.

227

http://www.w3.org/TR/xslt
http://www.w3.org/TR/CSS2/visuren.html#propdef-display

7.1.2 Requirements for a MathML Browser Interface

The top-levelmathelement described in the preceding section is concerned with encapsu-
lating MathML content and defining attributes which affect the entire enclosed expression.
It is, in a sense, ‘inward looking’. However, to render MathML properly in a browser, and
to integrate it properly into an HTML document, an ‘outward looking’ interface element
is also required. This interface element must be aware of its surrounding environment, and
provide a mechanism for passing information between the browser, and the MathML ren-
derer.

As noted above, the MathML interface element and the MathML top-level element are
in practice one and the same. Themathelement must serve both to encapsulate MathML
content, and admit additional attributes for controlling how a MathML renderer should
interact with the surrounding context, typically a browser.

While general mechanisms for embedding XML in HTML are beginning to be deployed,
wide variations in strategy and level of implementation remain between vendors. Conse-
quently, the remainder of this section describes attributes and functionality that would be
highly desirable in a MathML interface element. In the near term, implementors attempting
to provide interim solutions for rendering MathML in browsers should try to give authors
some way of passing the following interface attributes to the renderer:

type="mime type" The type attribute assigns a MIME type to the tag content. This at-
tribute should ideally be used to select an embedded element to invoke, such as a
Java applet, plug-in or ActiveX control, to render the tag content as described in
the next section.

name="value" Provided for scripting.
height=nn, width=nn, baseline=nn Ideally, embedded elements should be able to dy-

namically negotiate height, width and baseline alignment with browsers. How-
ever, these optional attributes are suggested as an interim solution for software
vendors that want to support MathML, but are unable to provide dynamic resiz-
ing and alignment.

overflow="scroll|elide|truncate|scale" In cases where size negotiation is not possible or
fails (for example in the case of an extremely long equation), this attribute is
provided to suggest an alternative processing method to the renderer.
scroll The window provides a viewport into the larger complete display of the

mathematical expression. Horizontal or vertical scrollbars are added to the
window as necessary to allow the viewport to be moved to a different posi-
tion.

elide The display is abbreviated by removing enough of it so that the remainder
fits into the window. For example, a large polynomial might have the first
and last terms displayed with ‘+ ... +’ between them. Advanced renderers
may provide a facility to zoom in on elided areas.

truncate The display is abbreviated by simply truncating it at the right and bot-
tom borders. It is recommended that some indication of truncation is made
to the viewer.

scale The fonts used to display the mathematical expression are chosen so that
the full expression fits in the window. Note that this only happens if the
expression is too large. In the case of a window larger than necessary, the
expression is shown at its normal size within the larger window.

altimg=URL, alttext="value" These attributes provide graceful fall-backs for browsers
that do not support embedded elements, or images respectively.

228

Attributes which apply to the MathML interface element necessarily take effect when the
document is first loaded, and therefore suffer the limitation that they cannot change in
response to reader interaction unless they are exposed in the Document Object Model
(http://www.w3.org/TR/WD-DOM-Level-2) and subject to programmatic control. Theheight
andwidth attributes are good examples; if the reader changes the current font size, the
height and width of the embedded mathematical fragments also need to change.

At present, browser support for the DOM, and embedded element access to the DOM, is
too limited to provide acceptable rendering for MathML. The W3C Math working group
is working closely with the Document Object Model working group in an effort to pro-
vide better communication between embedded MathML renderers and browsers (see ap-
pendixE).

The basic requirements for communication between an embedded MathML and a browser
include:

• Embedded elements must be able to determine the ambient style parameters, in-
cluding font characteristics, foreground and background colors, and link color
schemes. Embedded elements must also be able to align themselves to an arbi-
trary baseline.

• Embedded elements must be able to detect and react to reader input. In particu-
lar, embedded elements must be able to dynamically resize themselves when the
ambient font size changes.

• Embedded elements must be able to print in context, and at high resolution.

7.1.3 Invoking Embedded Objects as Renderers

In browsers where MathML is not natively supported, we anticipate that MathML rendering
will be carried out via embedded objects such as plug-ins, applets, or helper applications.
In the near term, the W3C Math working group advocates the use of MIME types to bind
embedded MathML to renderers. Mechanisms for assigning MIME types already exist in
HTML, and mechanisms for registering and automatically invoking embedded elements
such as plug-ins based on MIME type already exist in Web browsers.

The type attribute, described in the previous section as a requirement for the MathML in-
terface element, is intended to associate a MIME type with its content. The HTML element
META is proposed as a means of specifying document-wide default MIME types for an
element.

We propose a simple MIME type naming convention which is flexible enough to accom-
modate several common situations:

• An author wishing to reach an as wide an audience as possible might like MathML
to be rendered by any available renderer.

• An author targeting a specific audience might like indicate that a particular MathML
be used.

• A reader might wish to specify which of several available renderers should be
used.

We propose that generic MathML be assigned the MIME typetext/mathml , and for
browser registry, we suggest the standard file extension.mml be used. To invoke specific
renderers, we suggest assigning a MIME type of the following format:

text/mathml-renderer

229

http://www.w3.org/TR/WD-DOM-Level-2

7.1.3.1 Example

A user downloads and installs renderer A, and registers it with the browser for thetext/mathml
MIME type to process generic MathML. However renderer A also accepts TEX as an in-
put syntax, and therefore during the installation process, it requests to be registered for
application/x-tex as well. Later, the user discovers renderer B provides additional fea-
tures, such as cut and paste capability. Therefore, the user downloads, installs and registers
renderer B for thetext/mathml-rendererB MIME type.

An author then creates a document that contains the the following line in the document
header:

<META Content-math-Type="text/mathml">

Later, the document contains the following expressions:

<math>
<msup><mi>x</mi><mn>2</mn></msup>

</math>
<math type="text/mathml-rendererB">

<mi>α</mi><mo>=</mo><mn>0.4</mn>
</math>

When our hypothetical reader views this document, renderer A is invoked to process the
first expression, while renderer B is invoked for the second. Later, when our hypothetical
reader later views a document with MIME typeapplication/x-tex , renderer A is again
invoke, this time in TEX processing mode.

7.1.4 Invoking Other Applications

Although rendering MathML expressions typically occurs in place in a Web browser, other
MathML processing functions take place more naturally in other applications. Particularly
common tasks include opening a MathML expression in an equation editor or computer
algebra system.

At present, there is no standard way of specifying that embedded content should be ren-
dered with one application, edited in another, and evaluated by a third. As work pro-
gresses on coordination between browsers and embedded elements and the Document Ob-
ject Model (DOM), providing this kind of functionality should be a priority. Both authors
and readers should be able to indicate a preference about what MathML application to
use in a given context. For example, one might imagine that some mouse gesture over
a MathML expression would cause a browser to present the reader with a pop-up menu,
showing the various kinds of MathML processing available on the system, and the MathML
processors recommended by the author.

Since MathML will probably be widely generated by authoring tools, it is particularly
important that opening a MathML expression in an editor should be easy to do and to
implement. In many cases, it will be desirable for an authoring tool to record some infor-
mation about its internal state along with a MathML expression, so that an author can pick
up editing where he or she left off. The MathML specification does not explicitly contain
provisions for recording authoring tool information. In some circumstances, it may be pos-
sible to include authoring tool information which applies to an entire document as meta
data; interested readers are encouraged to consult the W3C Metadata Activity for current

230

information about metadata and resource definition. For encoding authoring tool state in-
formation that applies to a particular MathML instance, readers are referred to the possible
use of thesemantics element for this purpose.

7.1.5 Mixing and Linking MathML and HTML

In order to be fully integrated into HTML, it should be possible not only to embed MathML
in HTML, but also to embed HTML in MathML. However, the problem of supporting
HTML in MathML presents many difficulties. Moreover, the problems are not specific
to MathML; they are problems for XML applications in HTML generally. Therefore, at
present, the MathML specification does not permit any HTML elements within a MathML
expression, although this may be subject to change in a future revision of MathML, when
mechanisms for embedding XML in HTML have been further developed.

In most cases, HTML elements either do not apply in mathematical contexts (headings,
paragraphs, lists, etcetera), or MathML already provides equivalent or better functionality
specifically tailored to mathematical content (tables, style changes, etcetera). However,
there are two notable exceptions.

7.1.5.1 Linking

MathML has no element which corresponds to the HTML anchor elementa. In HTML,
anchors are used both to make links, and to provide locations to link to. MathML, as an
XML application, defines links by the use of the XLink mechanism. However, MathML
at present does not provide a way for other documents to make links into a MathML ex-
pression. One reason for this omission is that linking into embedded XML content is better
addressed as part of a general mechanism for embedding XML in HTML. Moreover, until
browsers either natively implement MathML rendering, or substantially better coordination
between embedded elements and browsers becomes possible, there is no reasonable way
of implementing links into MathML expressions.

MathML linking elements are generic XML linking elements as described in theXML
Linking Language (XLink)working draft. The reader is cautioned that this is as present
still a working draft, and is therefore subject to future revision. Since the MathML linking
mechanism is defined in terms of the XML linking specification, the same proviso holds
for it as well.

A MathML element is designated as a link by the presence of thexlink:href attribute.
To use thexlink:href attribute, it is also necessary to declare the xlink namespace. Thus,
a typical MathML link might look like:

<mrow xmlns:xlink="http://www.w3.org/XML/XLink/0.9" xlink:href="sample.xml"> ... </mrow>

Issue (add-xlink-to-DTD):If we say this, we ought to add these attributes to all linkable
elements in the DTD. See section 5.1 of the XLink working draft.

MathML designates that almost all elements can be used as an XML linking element.
The only elements which cannot serve as linking elements are those such as the<sep/>
element which exist primarily to disambiguate other MathML constructs and in general do
not correspond to any part of a typical visual rendering. The full list of exceptional elements
which cannot be used as linking elements is given below in table 7.1.5.1.

231

http://www.w3.org/TR/xlink
http://www.w3.org/TR/xlink

Table 7.1: MathML elements which cannot be linking elements.
<mprescripts/> <none/> <sep/>
<malignmark/> <maligngroup/>

7.1.5.2 Images

The IMG element has no MathML equivalent. The decision to omit a general image in-
clusion mechanism in MathML was based on several factors. First, a simple mechanism
for including images in MathML along the lines of the IMG element would not be more
closely tied to mathematical content or notation than the HTML IMG element itself. There-
fore, such an element would likely be superseded by the IMG element if it becomes possible
to mix XML and HTML generally.

Another reason for not providing an image facility is that MathML takes great pains to
make the notational structure and mathematical content it encodes easily available to pro-
cessors while information contained in images is only available to a human reader looking
at a visual representation. Thus, for example, in the MathML paradigm, it would be prefer-
able to introduce new glyphs by the creation of special symbol fonts, rather than simply
including them as images.

Finally, apart from the introduction of new glyphs, many of the situations where one
might be inclined to use an image amount to some sort of labeled diagram. For exam-
ple, knot diagrams, Venn diagrams, Dynkin diagrams, Feynman diagrams and complicated
commutative diagrams all fall into this category. As such, their content would be better
encoded via some combination of structured graphics and MathML markup. Because of
the generality of the ‘labeled diagram’ construction, the definition of a markup language
to encode such constructions extends beyond the scope of the W3C Math activity. (See
http://www.w3.org/Graphicsfor further W3C activity in this area.)

7.2 Generating, Processing and Rendering MathML

Information is increasingly generated, processed and rendered by software tools. The expo-
nential growth of the Web is fueling the development of advanced systems for automatically
searching, categorizing, and interconnecting information. Thus, although MathML can be
written by hand and read by humans, the future of MathML is also tied to the ability to
process it with software tools.

There are many different kinds of MathML editors, translators, processors and renderers.
What it means to support MathML varies widely between applications. For example, the
issues that arise with a MathML-compliant validating parser are very different from those
for a MathML-compliant equation editor.

In this section, guidelines are given for describing different types of MathML support, and
for quantifying the extent of MathML support in a given application. Developers, users
and reviewers are encouraged to use these guidelines in characterizing products. The in-
tention behind these guidelines is to facilitate reuse and interoperability between MathML
applications by accurately characterizing their capabilities in quantifiable terms.

232

http://www.w3.org/Graphics

7.2.1 MathML Compliance

A well-formed MathML expression is a XML construct determined by the MathML DTD
together with the additional requirements given in the specifications of the MathML docu-
ment.

We define a ‘MathML processor’ to mean any application that can accept, produce, or
‘roundtrip’ a well-formed MathML expression. An example of an application that might
round-trip a MathML expression might be an editor that writes a new file even though no
modifications are made.

We specify three forms of MathML compliance:

1. A MathML-input-compliant processor must accept all well-formed MathML ex-
pressions, and faithfully translate all MathML expressions into application-specific
form allowing native application operations to be performed.

2. A MathML-output-compliant processor must generate well-formed MathML,
faithfully representing all application-specific data.

3. A MathML-roundtrip-compliant processor must preserve MathML equivalence.
Two MathML expressions are ‘equivalent’ if and only if both expressions have
the same interpretation (as stated by the MathML DTD and specification) under
any circumstances, by any MathML processor. Equivalence on an element-by-
element basis is discussed elsewhere in this document.

Beyond the above definitions, the MathML specification makes no demands of individual
processors. In order to guide developers, the MathML specification includes advisory ma-
terial; for example, there are suggested rendering rules included in chapter3. However, in
general, developers are given wide latitude in interpreting what kind of MathML imple-
mentation is meaningful for their own particular application.

To clarify the difference between compliance and interpretation of what is meaningful,
consider some examples:

1. In order to be MathML-input-compliant, a validating parser needs to only to ac-
cept expressions, and return ‘true’ for expressions which are valid MathML. In
particular, it need not render or interpret the MathML expressions at all.

2. A MathML computer algebra interface based on content markup might choose
to ignore all presentation markup. Provided the interface accepts all well-formed
MathML expressions included those containing presentation markup, it would be
technically correct to characterize the application as MathML-input-compliant.

3. A equation editor might have an internal data representation which makes it easy
to export some equations as MathML but not others. If the editor exports the sim-
ple equations, and merely displays an error message to the effect that conversion
failed for the others, it is still technically MathML-output-compliant.

As the previous examples show, to be useful, the concept of MathML compliance fre-
quently involves a judgment about what parts of the language are meaningfully imple-
mented, as opposed to parts that are merely processed in a technically correct way with re-
spect to the definitions of compliance. This requires some mechanism for giving a quantita-
tive statement about which parts of MathML are meaningfully implemented by a given ap-
plication. To this end, the W3C Math Working Group has provided a test suite of MathML
expressions athttp://www.w3.org/Math/testsuite.

The test suite consists of a large number of MathML expressions categorized by markup
category and dominant MathML element being tested. The existence of this test suite makes

233

http://www.w3.org/Math/testsuite

is possible, for example, to characterize quantitatively the hypothetical computer algebra
interface mentioned above by saying that it is a MathML-input compliant processor which
meaningfully implements MathML content markup, including all of the expressions given
under http://www.w3.org/testsuite/tests/4.

Developers who choose not to implement parts of the MathML specification in a meaning-
ful way are encouraged to itemize the parts they leave out by referring to specific categories
in the test suite.

For MathML-output-compliant processors, there is also a MathML validator online at
http://www.w3.org/Math/validator. Developers of MathML-output-compliant processors
are encouraged to verify their output using this validator.

Customers of MathML applications who wish to verify claims as to which parts of the
MathML specification are implemented by an application are encouraged to use the test
suites as a part of their decision processes.

7.2.2 Handling of Errors

If a MathML-input-compliant application receives input containing one or more elements
with an illegal number or type of attributes or children schemata, it should nonetheless
attempt to render all the input in an intelligible way, i.e. to render normally those parts of
the input which were well-formed, and to render error messages (rendered as if enclosed in
an<merror> element) in place of ill-formed expressions.

MathML-output-compliant applications such as editors and translators may choose to gen-
erate<merror> expressions to signal errors in their input. This is usually preferable to
generating well-formed, but possibly erroneous, MathML.

7.2.3 An Attribute for Unspecified Data

The MathML attributes described in the MathML specification are necessary for display
and content markup. Ideally, the MathML attributes should be an open-ended list so that
users could add specific attributes for specific renderers. However, this can’t be done within
the confines of a single XML DTD. Although it can be done using extensions of the stan-
dard DTD, some authors will wish to use nonstandard attributes while remaining strictly in
compliance with the standard DTD.

To allow this, this specification also allows the attributeother ="..." for all elements, for
use as a hook to pass on renderer-specific information. In particular, it can be used as a
hook for passing information to audio renderers, computer algebra systems, and for pattern
matching in any future macro/extension mechanism. This idea is used in other languages.
For example, PostScript comments are widely used to pass information that is not part of
PostScript.

At the same time, the intent of theother attribute is not to encourage software developers
to use this as a loophole for circumventing the MathML core markup conventions. We trust
both authors and applications will use theother attribute judiciously.

The value of theother attribute should be a string containing an attribute list in valid
XML format (i.e. attr1="val1" attr2="val2"; ..., with appropriate escaping of the double
quotes). Renderers which accept nonstandard attributes directly should also accept them
when they occur within the string value of theother attribute. This is not required for
attributes specifically documented by the MathML standard.

234

http://www.w3.org/Math/validator

7.3 Future Extensions

MathML is in its infancy; it is to be expected that MathML will need to be extended and
revised in various ways. Some of these extensions can be easily foreseen; as noted repeat-
edly in this chapter, the mechanisms for fully integrating MathML into HTML are not
yet developed, and these mechanisms may have a significant impact on some aspects of
MathML.

Similarly, there are several kinds of functionality that are fairly obvious candidates for
future MathML extensions. These include macros, style sheets, and perhaps a general ‘la-
beled diagram’ facility. However, there will also no doubt be other desirable extensions
to MathML which will only emerge as MathML is widely used. For these extensions, the
W3C Math working group relies on the extensible architecture of XML, and the common
sense of the larger Web community.

7.3.1 Macros and Style Sheets

The development of style sheet mechanisms for XML is part of the ongoing XML activity
at the World Wide Web Consortium. Both XSL and CSS are working to incorporate greater
support for mathematics. Further, XSL can be used to provide basic macro capability as
well.

Macros, however, play a very important and useful role in encoding mathematical con-
tent and meaning. Moreover, it is difficult to devise a coherent, general macro system for
MathML, because there are so many distinct applications for MathML macros. Therefore, a
good direction for further work is the definition of a macro mechanism specifically tailored
to MathML, in addition to participating in general ongoing XML style sheet and macro
facility activities.

Some of the possible uses of MathML macros include:

Abbreviation One common use of macros is for abbreviation. Authors needing to repeat
some complicated but constant notation can define a macro. This greatly facili-
tates hand authoring. Macros that allow for substitution of parameters facilitate
such usage even further.

Extension of Content Markup By defining macros for semantic objects, for example a
binomial coefficient, or a Bessel function, one can in effect extend the content
markup for MathML. Such a macro could include an explicit semantic binding,
or such a binding could be easily added by an external applications. Narrowly
defined disciplines should be able to easily introduce standardize content markup
by using standard macro packages. For example, the OpenMath project could
release macro packages for attaching OpenMath content markup up.

Rendering and Style Control Another basic way in which macros are often used is to
provide a way of controlling style and rendering behavior by replacing high level
macro definitions. This is especially important for controlling the rendering be-
havior of MathML content tags in a context sensitive way. Such a macro capa-
bility is also necessary to provide a way of attaching renderings to user defined
XML extensions to the MathML core.

Accessibility Reader controlled style sheets are important in providing accessibility to
MathML. For example, a reader listening to a voice renderer might by default
hear a bit of MathML presentation markup read as ‘D sub x sup 2 of f’. Knowing
the context to be multi-variable calculus, the reader may wish to use a style sheet

235

or macro package which instructs the renderer to render this<msubsup>element
as ‘second derivative with respect to x of f’.

7.3.2 XML Extensions to MathML

The set of elements and attributes specified in the MathML specification are necessary for
rendering common mathematical expressions. It is recognized that not all mathematical
notation is covered by this set of elements, that new notations are continually invented,
and that sub-communities within mathematics often have specialized notations; and fur-
thermore that the explicit extension of a standard is a necessarily slow and conservative
process; this implies that the MathML standard could never explicitly cover all the presen-
tational forms used by every sub-community of authors and readers of mathematics, much
less encode all mathematical content.

In order to facilitate the use of MathML by the widest possible audience, and to enable
its smooth evolution to encompass more notational forms and more mathematical content
(perhaps eventually covered by explicit extensions to the standard), the set of tags and
attributes is open-ended, in the sense described in this section.

MathML is described by an XML-compliant DTD, which necessarily limits the elements
and attributes to those which occur in the DTD. Renderers desiring to accept nonstandard
elements or attributes, and authors desiring to include these in documents, should accept
or produce documents which conform to an appropriately extended XML-compliant DTD
which has the standard MathML DTD as a subset.

MathML compliant renderers are allowed, but not required, to accept nonstandard elements
and attributes, and to render them in any way. If a renderer does not accept some or all
nonstandard tags, it is encouraged to either handle them as errors as described above for
elements with the wrong number of arguments, or to render their arguments as if they were
arguments to anmrow, in either case rendering all standard parts of the input normally.

236

Chapter 8

Document Object Model for MathML

Issue (questions):The following is provided as a first draft approximation. There are a
number of issues on which we would solicit input. Some of these are:

1. Is aMathMLRowElementdesirable? This would (presumably) provide no
additional interface beyondMathMLElement, but could be useful as a return
value for various methods on other objects. Methods which are defined below to
returnNodeLists could returnMathMLRowElementsinstead. The advantage
would be in retrieval of the children for further processing, as they could be
retrieved directly asMathMLElements. In other words, the object would give us
a generic container object to be used wherever appropriate/convenient.

2. Contrariwise (to quote TweedleDum), is the
MathMLElement::getMathElement() method sufficiently useful to justify its
existence?

3. Some potential layers of object hierarchy have not been stipulated here, in view
of the limited scope of the Level 1 DOM. Particularly glaring is the absence of a
MathMLPresentationElement / MathMLContentElementdichotomy. In fact,
there seem to be no interface considerations (in Level 1, at any rate) which are
appropriate to these hypothetical elements. (The nature of potential applications
might suggest that we separate content elements from presentation elements in
an optionalmodule(would vice-versa really be workable?); this would follow
the lead of the W3 DOM WG’s structuring of Level 2. But it doesn’t seem an
undue burden to place on a DOM-compliant application to support both sets of
elements.)

4. TheMathMLMultiScriptsElement interface will probably elicit some
comment. There may easily be methods deemed unnecessary here, or methods
missing but deemed necessary. Please take a look.

8.1 Introduction

This document extends the Level 1 Core API to describe objects and methods specific to
MathML elements in documents. The functionality needed to manipulate hierarchical doc-
ument structures, elements, and attributes will be found in the core document; functionality
that depends on the specific elements defined in MathML will be found in this document.

The goals of the MathML-specific DOM API are:

• To specialize and add functionality that relates specifically to MathML elements.

237

• To provide convenience mechanisms, where appropriate, for common and fre-
quent operations on MathML elements.

This document includes the following specializations for MathML:

• A MathMLElement interface derived from the core Element interface. MathM-
LElement specifies the operations and queries that can be made on any MathML
element. Methods on MathMLElement include those for the retrieval and modi-
fication of attributes that apply to all MathML elements.

• Specializations for all MathML elements that have attributes that extend beyond
those specified in the MathMLElement interface. For all such attributes, the de-
rived interface for the element contains explicit methods for setting and getting
the values.

MathML specifies rules that are invisible to generic XML processors and validators. The
fact that MathML DOM objects are required to respect these rules, and to throw exceptions
when those rules are violated, is an important reason for providing a MathML specific
DOM extension.

There are basically two kinds of additional MathML grammar and syntax rules. One kind
involves placing additional criteria on attribute values. For example, it is not possible in
pure XML to require that an attribute value be a positive integer. The second kind of rule
specifies more detailed restrictions on the child elements (for example on ordering) than
are given in the DTD. For example, it is not possible in XML to specify that the first child
be interpreted one way, and the second in another. The MathML DOM objects are required
to provide this interpretation.

MathML ignores whitespace occurring outside token elements. Non-whitespace charac-
ters are not allowed there. Whitespace occurring within the content of token elements is
‘trimmed’ from the ends (i.e. all whitespace at the beginning and end of the content is re-
moved), and ‘collapsed’ internally (i.e. each sequence of 1 or more whitespace characters
is replaced with one blank character). The MathML DOM elements perform this whites-
pace trimming as necessary. In MathML, as in XML, ‘whitespace’ means blanks, tabs,
newlines, or carriage returns, i.e. characters with hexadecimal Unicode codes U+0020,
U+0009, U+000a, or U+000d, respectively.

8.1.1 Scope of Level 1 and Level 2

Issue (level-scopes):Two levels of the MathML DOM have been specified. Unadorned
interface names are part of level 1, while those whose names end in the digit 2 are part of
level 2. The two levels have been specified to aid impementors. The interfaces described
to represent MathML elements include access to a number of attributes (in the sense of
XML) belonging to those elements. The intent of these methods in the core (level 1)
interfaces (the ‘get’/‘set’ pairs) is only to accessexplicitly specifiedattributes of the
elements, and specificallynot to access implicit values which may be application-specific.
Calls to the level 1 interfaces to get attributes that have not been explicitly specified
should return nothing (an empty DOMString). It seems important to belabor this
distinction in light of the nature of the MathML elements and their attributes; all of the
attributes defined for MathML presentation elements are declared in the DTD with a
default value of#IMPLIED, for instance. This is particularly relevant for the<mo>
element’s interface, where theform attribute may be inferred from context if not given
explicitly, but other attributes are normally collected from an operator dictionary available
to a renderer. The variety of applications which may need to implement the MathML

238

DOM may sometimes be concerned with validation, computation or other aspects of the
document to the exclusion of rendering or editing; such applications do not need to
resolve#IMPLIEDattributes, and thus there is no access to such resolution implied in the
level 1 MathML DOM. The level 2 interfaces provide methods that supply values for all
attributes that have defaults or have values obtained from an operator dictionary.

239

Appendix A

Parsing MathML

MathML documents should be validated using the XML DTD below. Note in particular
that the xml attributexml:space is not used, so whitespace characters in element content
(that is, outside the presentation token elementsmi, mo, mn, mtext , mspace, mtext , ms, the
content token elementsci , cn andannotation) are not significant.

If the MathML is parsed without a DTD, in other words as a well-formed XML fragment,
it is the responsibility of the processing application to treat these whitespace characters as
not significant.

An SGML parser (such asnsgmls) can be used to validate MathML. In this case an SGML
declaration defining the constraints of XML applicable to an SGML parser must be used.
See thenote on SGML and XML.

A.1 The MathML DTD

A zip file of the full DTD including entity declarations is provided for reference. Here we
give the main body of the DTD, without including the entity declarations. See chapter6 for
a list of entity names ordered bynameor byUnicode value.

<!-- ** -->
<!-- Content model definition for content, presentation -->
<!-- and browser interface elements of MathML -->
<!-- -->
<!-- $Id: mathml2.dtd,v 1.2 1999/12/17 18:35:08 davidc Exp $ -->
<!-- -->
<!-- Initial draft (syntax = XML) 1997-05-09 -->
<!-- Stephen Buswell -->
<!-- Revised 1997-05-14 by Robert Miner -->
<!-- Robert Miner -->
<!-- Revised 1997-06-29 and 1997-07-02 -->
<!-- Stephen Buswell -->
<!-- Revised 1997-12-15d -->
<!-- Stephen Buswell -->
<!-- Revised 1998-02-08 -->
<!-- Stephen Buswell -->
<!-- Revised 1998-04-04 -->
<!-- Stephen Buswell -->

240

http://www.w3.org/TR/NOTE-sgml-xml
file:mmlents.zip
file:chap6/byalpha.html
file:chap6/bycodes.html

<!-- Entities and small revisions 1999-02-21 -->
<!-- David Carlisle -->
<!-- Added attribute definitionURL to ci and cn 1999-10-11 -->
<!-- Nico Poppelier -->
<!-- Additions for MathML 2 1999-12-16 -->
<!-- David Carlisle -->
<!-- -->
<!-- Became W3C Recommendation 7 April 1998 -->
<!-- ** -->

<!-- ** -->
<!-- Attributes shared by all elements -->
<!-- ** -->

<!ENTITY % att-global ’xmlns CDATA #IMPLIED
xmlns:xlink CDATA #IMPLIED
xlink:href CDATA #IMPLIED
class CDATA #IMPLIED
style CDATA #IMPLIED
id ID #IMPLIED
xref IDREF #IMPLIED
other CDATA #IMPLIED’ >

<!-- ** -->
<!-- Presentation element set -->
<!-- ** -->

<!-- Attribute definitions -->

<!ENTITY % att-fontsize ’fontsize CDATA #IMPLIED’ >
<!ENTITY % att-fontweight ’fontweight (normal | bold) #IMPLIED’ >
<!ENTITY % att-fontstyle ’fontstyle (normal | italic) #IMPLIED’ >
<!ENTITY % att-fontfamily ’fontfamily CDATA #IMPLIED ’ >
<!ENTITY % att-color ’color CDATA #IMPLIED’ >

<!ENTITY % att-fontinfo ’%att-fontsize;
%att-fontweight;
%att-fontstyle;
%att-fontfamily;
%att-color;’ >

<!ENTITY % att-form ’form (prefix | infix | postfix) #IMPLIED’ >
<!ENTITY % att-fence ’fence (true | false) #IMPLIED’ >
<!ENTITY % att-separator ’separator (true | false) #IMPLIED’ >
<!ENTITY % att-lspace ’lspace CDATA #IMPLIED’ >
<!ENTITY % att-rspace ’rspace CDATA #IMPLIED’ >
<!ENTITY % att-stretchy ’stretchy (true | false) #IMPLIED’ >
<!ENTITY % att-symmetric ’symmetric (true | false) #IMPLIED’ >
<!ENTITY % att-maxsize ’maxsize CDATA #IMPLIED’ >
<!ENTITY % att-minsize ’minsize CDATA #IMPLIED’ >

241

<!ENTITY % att-largeop ’largeop (true | false) #IMPLIED’ >
<!ENTITY % att-movablelimits ’movablelimits (true | false) #IMPLIED’ >
<!ENTITY % att-accent ’accent (true | false) #IMPLIED’ >

<!ENTITY % att-opinfo ’%att-form;
%att-fence;
%att-separator;
%att-lspace;
%att-rspace;
%att-stretchy;
%att-symmetric;
%att-maxsize;
%att-minsize;
%att-largeop;
%att-movablelimits;
%att-accent;’ >

<!ENTITY % att-width ’width CDATA #IMPLIED’ >
<!ENTITY % att-height ’height CDATA #IMPLIED’ >
<!ENTITY % att-depth ’depth CDATA #IMPLIED’ >

<!ENTITY % att-sizeinfo ’%att-width;
%att-height;
%att-depth;’ >

<!ENTITY % att-lquote ’lquote CDATA #IMPLIED’ >
<!ENTITY % att-rquote ’rquote CDATA #IMPLIED’ >

<!ENTITY % att-linethickness ’linethickness CDATA #IMPLIED’ >

<!ENTITY % att-scriptlevel ’scriptlevel CDATA #IMPLIED’ >
<!ENTITY % att-displaystyle ’displaystyle (true | false) #IMPLIED’ >
<!ENTITY % att-scriptsizemultiplier ’scriptsizemultiplier CDATA #IMPLIED’ >
<!ENTITY % att-scriptminsize ’scriptminsize CDATA #IMPLIED’ >
<!ENTITY % att-background ’background CDATA #IMPLIED’ >

<!ENTITY % att-open ’open CDATA #IMPLIED’ >
<!ENTITY % att-close ’close CDATA #IMPLIED’ >
<!ENTITY % att-separators ’separators CDATA #IMPLIED’ >

<!ENTITY % att-subscriptshift ’subscriptshift CDATA #IMPLIED’ >
<!ENTITY % att-superscriptshift ’superscriptshift CDATA #IMPLIED’ >

<!ENTITY % att-accentunder ’accentunder (true | false) #IMPLIED’ >

<!ENTITY % att-align ’align CDATA #IMPLIED’ >
<!ENTITY % att-rowalign ’rowalign CDATA #IMPLIED’ >
<!ENTITY % att-columnalign ’columnalign CDATA #IMPLIED’ >
<!ENTITY % att-columnwidth ’columnwidth CDATA #IMPLIED’ >
<!ENTITY % att-groupalign ’groupalign CDATA #IMPLIED’ >

242

<!ENTITY % att-alignmentscope ’alignmentscope CDATA #IMPLIED’ >

<!ENTITY % att-rowspacing ’rowspacing CDATA #IMPLIED’ >
<!ENTITY % att-columnspacing ’columnspacing CDATA #IMPLIED’ >
<!ENTITY % att-rowlines ’rowlines CDATA #IMPLIED’ >
<!ENTITY % att-columnlines ’columnlines CDATA #IMPLIED’ >
<!ENTITY % att-frame ’frame (none | solid | dashed) #IMPLIED’ >
<!ENTITY % att-framespacing ’framespacing CDATA #IMPLIED’ >
<!ENTITY % att-equalrows ’equalrows CDATA #IMPLIED’ >
<!ENTITY % att-equalcolumns ’equalcolumns CDATA #IMPLIED’ >

<!ENTITY % att-tableinfo ’%att-align;
%att-rowalign;
%att-columnalign;
%att-columnwidth;
%att-groupalign;
%att-alignmentscope;
%att-rowspacing;
%att-columnspacing;
%att-rowlines;
%att-columnlines;
%att-frame;
%att-framespacing;
%att-equalrows;
%att-equalcolumns;
%att-displaystyle;’ >

<!ENTITY % att-rowspan ’rowspan CDATA #IMPLIED’ >
<!ENTITY % att-columnspan ’columnspan CDATA #IMPLIED’ >

<!ENTITY % att-edge ’edge (left | right) #IMPLIED’ >

<!ENTITY % att-actiontype ’actiontype CDATA #IMPLIED’ >
<!ENTITY % att-selection ’selection CDATA #IMPLIED’ >

<!-- Presentation schemata with content -->

<!ENTITY % ptoken ’mi | mn | mo | mtext | ms’ >

<!ATTLIST mi %att-fontinfo;
%att-global; >

<!ATTLIST mn %att-fontinfo;
%att-global; >

<!ATTLIST mo %att-fontinfo;
%att-opinfo;
%att-global; >

<!ATTLIST mtext %att-fontinfo;

243

%att-global; >

<!ATTLIST ms %att-fontinfo;
%att-lquote;
%att-rquote;
%att-global; >

<!-- Empty presentation schemata -->

<!ENTITY % petoken ’mspace’ >
<!ELEMENT mspace EMPTY >

<!ATTLIST mspace %att-sizeinfo;
%att-global; >

<!-- Presentation: general layout schemata -->

<!ENTITY % pgenschema ’mrow|mfrac|msqrt|mroot|menclose|
mstyle|merror|mpadded| mphantom|mfenced’ >

<!ATTLIST mrow %att-global; >

<!ATTLIST mfrac %att-linethickness;
%att-global; >

<!ATTLIST msqrt %att-global; >
<!ATTLIST menclose %att-global; notation CDATA "longdiv" >

<!ATTLIST mroot %att-global; >

<!ATTLIST mstyle %att-fontinfo;
%att-opinfo;
%att-lquote;
%att-rquote;
%att-linethickness;
%att-scriptlevel;
%att-scriptsizemultiplier;
%att-scriptminsize;
%att-background;
%att-open;
%att-close;
%att-separators;
%att-subscriptshift;
%att-superscriptshift;
%att-accentunder;
%att-tableinfo;
%att-rowspan;
%att-columnspan;
%att-edge;
%att-actiontype;

244

%att-selection;
%att-global; >

<!ATTLIST merror %att-global; >

<!ATTLIST mpadded %att-sizeinfo;
%att-lspace;
%att-global; >

<!ATTLIST mphantom %att-global; >

<!ATTLIST mfenced %att-open;
%att-close;
%att-separators;
%att-global; >

<!-- Presentation layout schemata: scripts and limits -->

<!ENTITY % pscrschema ’msub|msup|msubsup|
munder|mover|munderover|mmultiscripts’ >

<!ATTLIST msub %att-subscriptshift;
%att-global; >

<!ATTLIST msup %att-superscriptshift;
%att-global; >

<!ATTLIST msubsup %att-subscriptshift;
%att-superscriptshift;
%att-global; >

<!ATTLIST munder %att-accentunder;
%att-global; >

<!ATTLIST mover %att-accent;
%att-global; >

<!ATTLIST munderover %att-accent;
%att-accentunder;
%att-global; >

<!ATTLIST mmultiscripts %att-subscriptshift;
%att-superscriptshift;
%att-global; >

<!-- Presentation layout schemata: empty elements for scripts -->

<!ENTITY % pscreschema ’mprescripts|none’ >

<!ELEMENT mprescripts EMPTY >

245

<!ELEMENT none EMPTY >

<!-- Presentation layout schemata: tables -->

<!ENTITY % ptabschema ’mtable|mtr|mlabeledtr|mtd’ >

<!ATTLIST mtable %att-tableinfo;
%att-global; >

<!ATTLIST mtr %att-rowalign;
%att-columnalign;
%att-groupalign;
%att-global; >

<!ATTLIST mlabeledtr %att-rowalign;
%att-columnalign;
%att-groupalign;
%att-global; >

<!ATTLIST mtd %att-rowalign;
%att-columnalign;
%att-groupalign;
%att-rowspan;
%att-columnspan;
%att-global; >

<!ENTITY % plschema ’%pgenschema;|%pscrschema;|%ptabschema;’ >

<!-- Empty presentation layout schemata -->

<!ENTITY % peschema ’maligngroup | malignmark’ >

<!ELEMENT malignmark EMPTY >

<!ATTLIST malignmark %att-edge; >

<!ELEMENT maligngroup EMPTY >
<!ATTLIST maligngroup %att-groupalign;

%att-global; >

<!-- Presentation action schemata -->

<!ENTITY % pactions ’maction’ >
<!ATTLIST maction %att-actiontype;

%att-selection;
%att-global; >

<!-- The following entity for substitution into content constructs -->
<!-- excludes elements that are not valid as expressions. -->

246

<!ENTITY % PresInCont ’%ptoken; | %petoken; |
%plschema; | %peschema; | %pactions;’ >

<!-- Presentation entity: all presentation constructs -->

<!ENTITY % Presentation ’%ptoken; | %petoken; | %pscreschema; |
%plschema; | %peschema; | %pactions;’>

<!-- ** -->
<!-- Content element set -->
<!-- ** -->

<!-- Attribute definitions -->

<!ENTITY % att-base ’base CDATA "10"’ >
<!ENTITY % att-closure ’closure CDATA "closed"’ >
<!ENTITY % att-definition ’definitionURL CDATA ""’ >
<!ENTITY % att-encoding ’encoding CDATA ""’ >
<!ENTITY % att-nargs ’nargs CDATA "1"’ >
<!ENTITY % att-occurrence ’occurrence CDATA "function-model"’ >
<!ENTITY % att-order ’order CDATA "numeric"’ >
<!ENTITY % att-scope ’scope CDATA "local"’ >
<!ENTITY % att-type ’type CDATA #IMPLIED’ >

<!-- Content elements: leaf nodes -->

<!ENTITY % ctoken ’csymbol|ci | cn’ >

<!ATTLIST ci %att-type;
%att-definition;
%att-global; >

<!ATTLIST csymbol %att-encoding;
%att-type;
%att-definition;
%att-global; >

<!ATTLIST cn %att-type;
%att-base;
%att-definition;
%att-global; >

<!-- Content elements: specials -->

<!ENTITY % cspecial ’apply | reln | lambda’ >

<!ATTLIST apply %att-global; >

<!ATTLIST reln %att-global; >

247

<!ATTLIST lambda %att-global; >

<!-- Content elements: others -->

<!ENTITY % cother ’condition | declare | sep’ >

<!ATTLIST condition %att-global; >

<!ATTLIST declare %att-type;
%att-scope;
%att-nargs;
%att-occurrence;
%att-definition;
%att-encoding;
%att-global; >

<!ELEMENT sep EMPTY >

<!-- Content elements: semantic mapping -->

<!ENTITY % csemantics ’semantics | annotation | annotation-xml’ >

<!ATTLIST semantics %att-definition;
%att-encoding;
%att-global; >

<!ATTLIST annotation %att-encoding;
%att-global; >

<!ATTLIST annotation-xml %att-encoding;
%att-global; >

<!-- Content elements: constructors -->

<!ENTITY % cconstructor ’interval | list | matrix | matrixrow |
set | vector’ >

<!ATTLIST interval %att-closure;
%att-global; >

<!ATTLIST set %att-global; >

<!ATTLIST list %att-order;
%att-global; >

<!ATTLIST vector %att-global; >

<!ATTLIST matrix %att-global; >

248

<!ATTLIST matrixrow %att-global; >

<!-- Content elements: operators -->

<!ENTITY % cfuncop1ary ’inverse | ident’ >

<!ELEMENT inverse EMPTY >
<!ATTLIST inverse %att-definition;

%att-global; >

<!ENTITY % cfuncopnary ’fn | compose’ >

<!ATTLIST fn %att-definition;
%att-global; >

<!ELEMENT ident EMPTY >
<!ATTLIST ident %att-definition;

%att-global; >

<!ELEMENT compose EMPTY >
<!ATTLIST compose %att-definition;

%att-global; >

<!ENTITY % carithop1ary ’abs | conjugate | exp | factorial | arg |
real | imaginary’ >

<!ELEMENT exp EMPTY >
<!ATTLIST exp %att-definition;

%att-global; >

<!ELEMENT abs EMPTY >
<!ATTLIST abs %att-definition;

%att-global; >

<!ELEMENT arg EMPTY >
<!ATTLIST arg %att-definition;

%att-global; >

<!ELEMENT real EMPTY >
<!ATTLIST real %att-definition;

%att-global; >

<!ELEMENT imaginary EMPTY >
<!ATTLIST imaginary %att-definition;

%att-global; >

<!ELEMENT conjugate EMPTY >
<!ATTLIST conjugate %att-definition;

%att-global; >

249

<!ELEMENT factorial EMPTY >
<!ATTLIST factorial %att-definition;

%att-global; >

<!ENTITY % carithop1or2ary ’minus’ >

<!ELEMENT minus EMPTY >
<!ATTLIST minus %att-definition;

%att-global; >

<!ENTITY % carithop2ary ’quotient | divide | power | rem’ >

<!ELEMENT quotient EMPTY >
<!ATTLIST quotient %att-definition;

%att-global; >

<!ELEMENT divide EMPTY >
<!ATTLIST divide %att-definition;

%att-global; >

<!ELEMENT power EMPTY >
<!ATTLIST power %att-definition;

%att-global; >

<!ELEMENT rem EMPTY >
<!ATTLIST rem %att-definition;

%att-global; >

<!ENTITY % carithopnary ’plus | times | max | min | gcd’ >

<!ELEMENT plus EMPTY >
<!ATTLIST plus %att-definition;

%att-global; >

<!ELEMENT max EMPTY >
<!ATTLIST max %att-definition;

%att-global; >

<!ELEMENT min EMPTY >
<!ATTLIST min %att-definition;

%att-global; >

<!ELEMENT times EMPTY >
<!ATTLIST times %att-definition;

%att-global; >

<!ELEMENT gcd EMPTY >
<!ATTLIST gcd %att-definition;

%att-global; >

250

<!ENTITY % carithoproot ’root’ >

<!ELEMENT root EMPTY >
<!ATTLIST root %att-definition;

%att-global; >

<!ENTITY % clogicopquant ’exists | forall’ >

<!ELEMENT exists EMPTY >
<!ATTLIST exists %att-definition;

%att-global; >

<!ELEMENT forall EMPTY >
<!ATTLIST forall %att-definition;

%att-global; >

<!ENTITY % clogicopnary ’and | or | xor’ >

<!ELEMENT and EMPTY >
<!ATTLIST and %att-definition;

%att-global; >

<!ELEMENT or EMPTY >
<!ATTLIST or %att-definition;

%att-global; >

<!ELEMENT xor EMPTY >
<!ATTLIST xor %att-definition;

%att-global; >

<!ENTITY % clogicop1ary ’not’ >

<!ELEMENT not EMPTY >
<!ATTLIST not %att-definition;

%att-global; >

<!ENTITY % clogicop2ary ’implies’ >

<!ELEMENT implies EMPTY >
<!ATTLIST implies %att-definition;

%att-global; >

<!ENTITY % ccalcop ’log | int | diff | partialdiff | divergence |
grad | curl | laplacian’ >

<!ELEMENT divergence EMPTY >
<!ATTLIST divergence %att-definition;

%att-global; >

251

<!ELEMENT grad EMPTY >
<!ATTLIST grad %att-definition;

%att-global; >

<!ELEMENT curl EMPTY >
<!ATTLIST curl %att-definition;

%att-global; >

<!ELEMENT laplacian EMPTY >
<!ATTLIST laplacian %att-definition;

%att-global; >

<!ELEMENT log EMPTY >
<!ATTLIST log %att-definition;

%att-global; >

<!ELEMENT int EMPTY >
<!ATTLIST int %att-definition;

%att-global; >

<!ELEMENT diff EMPTY >
<!ATTLIST diff %att-definition;

%att-global; >

<!ELEMENT partialdiff EMPTY >
<!ATTLIST partialdiff %att-definition;

%att-global; >

<!ENTITY % ccalcop1ary ’ln’ >

<!ELEMENT ln EMPTY >
<!ATTLIST ln %att-definition;

%att-global; >

<!ENTITY % csetop1ary ’card’ >

<!ELEMENT card EMPTY >
<!ATTLIST card %att-definition;

%att-global; >

<!ENTITY % csetop2ary ’setdiff’ >

<!ELEMENT setdiff EMPTY >
<!ATTLIST setdiff %att-definition;

%att-global; >

<!ENTITY % csetopnary ’union | intersect’ >

<!ELEMENT union EMPTY >

252

<!ATTLIST union %att-definition;
%att-global; >

<!ELEMENT intersect EMPTY >
<!ATTLIST intersect %att-definition;

%att-global; >

<!ENTITY % cseqop ’sum | product | limit’ >

<!ELEMENT sum EMPTY >
<!ATTLIST sum %att-definition;

%att-global; >

<!ELEMENT product EMPTY >
<!ATTLIST product %att-definition;

%att-global; >

<!ELEMENT limit EMPTY >
<!ATTLIST limit %att-definition;

%att-global; >

<!ENTITY % ctrigop ’sin | cos | tan | sec | csc | cot | sinh |
cosh | tanh | sech | csch | coth |
arcsin | arccos | arctan’ >

<!ELEMENT sin EMPTY >
<!ATTLIST sin %att-definition;

%att-global; >

<!ELEMENT cos EMPTY >
<!ATTLIST cos %att-definition;

%att-global; >

<!ELEMENT tan EMPTY >
<!ATTLIST tan %att-definition;

%att-global; >

<!ELEMENT sec EMPTY >
<!ATTLIST sec %att-definition;

%att-global; >

<!ELEMENT csc EMPTY >
<!ATTLIST csc %att-definition;

%att-global; >

<!ELEMENT cot EMPTY >
<!ATTLIST cot %att-definition;

%att-global; >

<!ELEMENT sinh EMPTY >

253

<!ATTLIST sinh %att-definition;
%att-global; >

<!ELEMENT cosh EMPTY >
<!ATTLIST cosh %att-definition;

%att-global; >

<!ELEMENT tanh EMPTY >
<!ATTLIST tanh %att-definition;

%att-global; >

<!ELEMENT sech EMPTY >
<!ATTLIST sech %att-definition;

%att-global; >

<!ELEMENT csch EMPTY >
<!ATTLIST csch %att-definition;

%att-global; >

<!ELEMENT coth EMPTY >
<!ATTLIST coth %att-definition;

%att-global; >

<!ELEMENT arcsin EMPTY >
<!ATTLIST arcsin %att-definition;

%att-global; >

<!ELEMENT arccos EMPTY >
<!ATTLIST arccos %att-definition;

%att-global; >

<!ELEMENT arctan EMPTY >
<!ATTLIST arctan %att-definition;

%att-global; >

<!ENTITY % cstatopnary ’mean | sdev | variance | median | mode’ >

<!ELEMENT mean EMPTY >
<!ATTLIST mean %att-definition;

%att-global; >

<!ELEMENT sdev EMPTY >
<!ATTLIST sdev %att-definition;

%att-global; >

<!ELEMENT variance EMPTY >
<!ATTLIST variance %att-definition;

%att-global; >

<!ELEMENT median EMPTY >

254

<!ATTLIST median %att-definition;
%att-global; >

<!ELEMENT mode EMPTY >
<!ATTLIST mode %att-definition;

%att-global; >

<!ENTITY % cstatopmoment ’moment’ >

<!ELEMENT moment EMPTY >
<!ATTLIST moment %att-definition;

%att-global; >

<!ENTITY % clalgop1ary ’determinant | transpose’ >

<!ELEMENT determinant EMPTY >
<!ATTLIST determinant %att-definition;

%att-global; >

<!ELEMENT transpose EMPTY >
<!ATTLIST transpose %att-definition;

%att-global; >

<!ENTITY % clalgop2ary ’vectorproduct | scalarproduct | outerproduct’ >

<!ELEMENT vectorproduct EMPTY >
<!ATTLIST vectorproduct %att-definition;

%att-global; >

<!ELEMENT scalarproduct EMPTY >
<!ATTLIST scalarproduct %att-definition;

%att-global; >

<!ELEMENT outerproduct EMPTY >
<!ATTLIST outerproduct %att-definition;

%att-global; >

<!ENTITY % clalgopnary ’selector’ >

<!ELEMENT selector EMPTY >
<!ATTLIST selector %att-definition;

%att-global; >

<!-- Content elements: relations -->

<!ENTITY % cgenrel2ary ’neq’ >

<!ELEMENT neq EMPTY >
<!ATTLIST neq %att-definition;

%att-global; >

255

<!ENTITY % cgenrelnary ’eq | leq | lt | geq | gt| equivalent | approx’ >

<!ELEMENT eq EMPTY >
<!ATTLIST eq %att-definition;

%att-global; >

<!ELEMENT equivalent EMPTY >
<!ATTLIST equivalent %att-definition;

%att-global; >

<!ELEMENT approx EMPTY >
<!ATTLIST approx %att-definition;

%att-global; >

<!ELEMENT gt EMPTY >
<!ATTLIST gt %att-definition;

%att-global; >

<!ELEMENT lt EMPTY >
<!ATTLIST lt %att-definition;

%att-global; >

<!ELEMENT geq EMPTY >
<!ATTLIST geq %att-definition;

%att-global; >

<!ELEMENT leq EMPTY >
<!ATTLIST leq %att-definition;

%att-global; >

<!ENTITY % csetrel2ary ’in | notin | notsubset | notprsubset’ >

<!ELEMENT in EMPTY >
<!ATTLIST in %att-definition;

%att-global; >

<!ELEMENT notin EMPTY >
<!ATTLIST notin %att-definition;

%att-global; >

<!ELEMENT notsubset EMPTY >
<!ATTLIST notsubset %att-definition;

%att-global; >

<!ELEMENT notprsubset EMPTY >
<!ATTLIST notprsubset %att-definition;

%att-global; >

<!ENTITY % csetrelnary ’subset | prsubset’ >

256

<!ELEMENT subset EMPTY >
<!ATTLIST subset %att-definition;

%att-global; >

<!ELEMENT prsubset EMPTY >
<!ATTLIST prsubset %att-definition;

%att-global; >

<!ENTITY % cseqrel2ary ’tendsto’ >

<!ELEMENT tendsto EMPTY >
<!ATTLIST tendsto %att-definition;

%att-type;
%att-global; >

<!-- Content elements: quantifiers -->

<!ENTITY % cquantifier ’lowlimit | uplimit | bvar | degree | logbase’ >

<!ATTLIST lowlimit %att-global; >

<!ATTLIST uplimit %att-global; >

<!ATTLIST bvar %att-global; >

<!ATTLIST degree %att-global; >

<!ATTLIST logbase %att-global; >

<!-- Operator groups -->

<!ENTITY % cop1ary ’%cfuncop1ary; | %carithop1ary; | %clogicop1ary; |
%ccalcop1ary; | %ctrigop; | %clalgop1ary; | %csetop1ary;’ >

<!ENTITY % cop2ary ’%carithop2ary; | %clogicop2ary;|
%clalgop2ary; | %csetop2ary;’ >

<!ENTITY % copnary ’%cfuncopnary; | %carithopnary; | %clogicopnary; |
%csetopnary; | %cstatopnary; | %clalgopnary;’ >

<!ENTITY % copmisc ’%carithoproot; | %carithop1or2ary; | %ccalcop; |
%cseqop; | %cstatopmoment; | %clogicopquant;’ >

<!-- Relation groups -->

<!ENTITY % crel2ary ’%cgenrel2ary; | %csetrel2ary; | %cseqrel2ary;’ >

<!ENTITY % crelnary ’%cgenrelnary; | %csetrelnary;’ >

257

<!-- Content constructs: all -->

<!ENTITY % Content ’%ctoken; | %cspecial; | %cother; | %csemantics; |
%cconstructor; | %cquantifier; |
%cop1ary; |%cop2ary; |%copnary; |%copmisc; |
%crel2ary; |%crelnary;’ >

<!-- Content constructs for substitution in presentation structures -->

<!ENTITY % ContInPres ’ci |csymbol| cn | apply | fn | lambda | reln |
interval | list | matrix | matrixrow |
set | vector | semantics |declare’ >

<!-- ** -->
<!-- Recursive definition for content of expressions. -->
<!-- Include presentation constructs at lowest level -->
<!-- so presentation layout schemata hold presentation -->
<!-- or content elements. -->
<!-- Include content constructs at lowest level so -->
<!-- content elements hold PCDATA or presentation elements -->
<!-- at leaf level (for permitted substitutable elements in context) -->
<!-- ** -->

<!ENTITY % ContentExpression ’(%Content; | %PresInCont;)*’ >
<!ENTITY % PresExpression ’(%Presentation; | %ContInPres;)*’ >
<!ENTITY % MathExpression ’(%PresInCont; | %ContInPres;)*’ >

<!-- Content elements: tokens -->
<!-- (may contain embedded presentation constructs) -->

<!ELEMENT ci (#PCDATA | %PresInCont;)* >
<!ELEMENT csymbol (#PCDATA | %PresInCont;|ci)* > <!-- ci ? -->
<!ELEMENT cn (#PCDATA | sep | %PresInCont;)* >

<!-- Content elements: special -->

<!ELEMENT apply (%ContentExpression;) >
<!ELEMENT reln (%ContentExpression;) >
<!ELEMENT lambda (%ContentExpression;) >

<!-- Content elements: other -->

<!ELEMENT condition (%ContentExpression;) >
<!ELEMENT declare (%ContentExpression;) >

<!-- Content elements: semantics -->

<!ELEMENT semantics (%ContentExpression;) >
<!ELEMENT annotation (#PCDATA) >
<!ELEMENT annotation-xml ANY >

258

<!-- Content elements: constructors -->

<!ELEMENT interval (%ContentExpression;) >
<!ELEMENT set (%ContentExpression;) >
<!ELEMENT list (%ContentExpression;) >
<!ELEMENT vector (%ContentExpression;) >
<!ELEMENT matrix (%ContentExpression;) >
<!ELEMENT matrixrow (%ContentExpression;) >

<!-- Content elements: operator (user-defined) -->

<!ELEMENT fn (%ContentExpression;) >

<!-- Content elements: quantifiers -->

<!ELEMENT lowlimit (%ContentExpression;) >
<!ELEMENT uplimit (%ContentExpression;) >
<!ELEMENT bvar (%ContentExpression;) >
<!ELEMENT degree (%ContentExpression;) >
<!ELEMENT logbase (%ContentExpression;) >

<!-- ** -->
<!-- Presentation layout schemata contain tokens, -->
<!-- layout and content schemata. -->
<!-- ** -->

<!ELEMENT mstyle (%PresExpression;) >
<!ELEMENT merror (%PresExpression;) >
<!ELEMENT mphantom (%PresExpression;) >
<!ELEMENT mrow (%PresExpression;) >
<!ELEMENT mfrac (%PresExpression;) >
<!ELEMENT msqrt (%PresExpression;) >
<!ELEMENT menclose (%PresExpression;) >
<!ELEMENT mroot (%PresExpression;) >
<!ELEMENT msub (%PresExpression;) >
<!ELEMENT msup (%PresExpression;) >
<!ELEMENT msubsup (%PresExpression;) >
<!ELEMENT mmultiscripts (%PresExpression;) >
<!ELEMENT munder (%PresExpression;) >
<!ELEMENT mover (%PresExpression;) >
<!ELEMENT munderover (%PresExpression;) >
<!ELEMENT mtable (%PresExpression;) >
<!ELEMENT mtr (%PresExpression;) >
<!ELEMENT mlabeledtr (%PresExpression;) >
<!ELEMENT mtd (%PresExpression;) >
<!ELEMENT maction (%PresExpression;) >
<!ELEMENT mfenced (%PresExpression;) >
<!ELEMENT mpadded (%PresExpression;) >

259

<!-- Presentation elements contain PCDATA or malignmark constructs. -->

<!ELEMENT mi (#PCDATA | malignmark)* >
<!ELEMENT mn (#PCDATA | malignmark)* >
<!ELEMENT mo (#PCDATA | malignmark)* >
<!ELEMENT mtext (#PCDATA | malignmark)* >
<!ELEMENT ms (#PCDATA | malignmark)* >

<!-- ** -->
<!-- Browser interface definition -->
<!-- ** -->

<!-- Attributes for top-level element ’math’ -->

<!ENTITY % att-macros ’macros CDATA #IMPLIED’ >
<!ENTITY % att-mode ’mode CDATA #IMPLIED’ >

<!ENTITY % att-topinfo ’%att-global;
%att-macros;
%att-mode;’ >

<!-- Attributes for browser interface element -->

<!ENTITY % att-name ’name CDATA #IMPLIED’ >
<!ENTITY % att-baseline ’baseline CDATA #IMPLIED’ >
<!ENTITY % att-overflow ’overflow (scroll|elide|truncate|scale) "scroll"’ >
<!ENTITY % att-altimg ’altimg CDATA #IMPLIED’ >
<!ENTITY % att-alttext ’alttext CDATA #IMPLIED’ >

<!ENTITY % att-browif ’%att-type;
%att-name;
%att-height;
%att-width;
%att-baseline;
%att-overflow;
%att-altimg;
%att-alttext;’ >

<!-- ** -->
<!-- The top-level element ’math’ contains MathML encoded mathematics. -->
<!-- The ’math’ element has the browser info attributes iff it is -->
<!-- also the browser interface element. -->
<!-- ** -->

<!ELEMENT math (%MathExpression;) >

<!ATTLIST math %att-topinfo;
%att-browif; >

<!-- ** -->

260

<!-- Entity sets from ISO Technical Report 9573-13 -->
<!-- ** -->

<!ENTITY % ent-isoamsa PUBLIC
"-//W3C//ENTITIES Added Math Symbols: Arrow Relations for MathML 2.0//EN"
"isoamsa.ent" >

%ent-isoamsa;

<!ENTITY % ent-isoamsb PUBLIC
"-//W3C//ENTITIES Added Math Symbols: Binary Operators for MathML 2.0//EN"
"isoamsb.ent" >

%ent-isoamsb;

<!ENTITY % ent-isoamsc PUBLIC
"-//W3C//ENTITIES Added Math Symbols: Delimiters for MathML 2.0//EN"
"isoamsc.ent" >

%ent-isoamsc;

<!ENTITY % ent-isoamsn PUBLIC
"-//W3C//ENTITIES Added Math Symbols: Negated Relations for MathML 2.0//EN"
"isoamsn.ent" >

%ent-isoamsn;

<!ENTITY % ent-isoamso PUBLIC
"-//W3C//ENTITIES Added Math Symbols: Ordinary for MathML 2.0//EN"
"isoamso.ent" >

%ent-isoamso;

<!ENTITY % ent-isoamsr PUBLIC
"-//W3C//ENTITIES Added Math Symbols: Relations for MathML 2.0//EN"
"isoamsr.ent" >

%ent-isoamsr;

<!ENTITY % ent-isogrk3 PUBLIC
"-//W3C//ENTITIES Greek Symbols for MathML 2.0//EN"
"isogrk3.ent" >

%ent-isogrk3;

<!ENTITY % ent-isomfrk PUBLIC
"-//W3C//ENTITIES Math Alphabets: Fraktur for MathML 2.0//EN"
"isomfrk.ent" >

%ent-isomfrk;

<!ENTITY % ent-isomopf PUBLIC
"-//W3C//ENTITIES Math Alphabets: Open Face for MathML 2.0//EN"
"isomopf.ent" >

%ent-isomopf;

<!ENTITY % ent-isomscr PUBLIC
"-//W3C//ENTITIES Math Alphabets: Script for MathML 2.0//EN"

261

"isomscr.ent" >
%ent-isomscr;

<!ENTITY % ent-isotech PUBLIC
"-//W3C//ENTITIES General Technical for MathML 2.0//EN"
"isotech.ent" >

%ent-isotech;

<!-- ** -->
<!-- Entity sets from informative annex to -->
<!-- ISO Standard 8879:1986 (the SGML standard) -->
<!-- ** -->

<!ENTITY % ent-isobox PUBLIC
"-//W3C//ENTITIES Box and Line Drawing for MathML 2.0//EN"
"isobox.ent" >

%ent-isobox;

<!ENTITY % ent-isocyr1 PUBLIC
"-//W3C//ENTITIES Russian Cyrillic for MathML 2.0//EN"
"isocyr1.ent" >

%ent-isocyr1;

<!ENTITY % ent-isocyr2 PUBLIC
"-//W3C//ENTITIES Non-Russian Cyrillic for MathML 2.0//EN"
"isocyr2.ent" >

%ent-isocyr2;

<!ENTITY % ent-isodia PUBLIC
"-//W3C//ENTITIES Diacritical Marks for MathML 2.0//EN"
"isodia.ent" >

%ent-isodia;

<!ENTITY % ent-isolat1 PUBLIC
"-//W3C//ENTITIES Added Latin 1 for MathML 2.0//EN"
"isolat1.ent" >

%ent-isolat1;

<!ENTITY % ent-isolat2 PUBLIC
"-//W3C//ENTITIES Added Latin 2 for MathML 2.0//EN"
"isolat2.ent" >

%ent-isolat2;

<!ENTITY % ent-isonum PUBLIC
"-//W3C//ENTITIES Numeric and Special Graphic for MathML 2.0//EN"
"isonum.ent" >

%ent-isonum;

<!ENTITY % ent-isopub PUBLIC

262

"-//W3C//ENTITIES Publishing for MathML 2.0//EN"
"isopub.ent" >

%ent-isopub;

<!-- ** -->
<!-- MathML aliases for characters defined above -->
<!-- ** -->

<!ENTITY % ent-mmlalias PUBLIC
"-//W3C//ENTITIES Aiases for MathML 2.0//EN"
"mmlalias.ent" >

%ent-mmlalias;

<!-- ** -->
<!-- New characters defined by MathML -->
<!-- ** -->

<!ENTITY % ent-mmlextra PUBLIC
"-//W3C//ENTITIES Extra for MathML 2.0//EN"
"mmlextra.ent" >

%ent-mmlextra;

<!-- end of DTD fragment -->

263

Appendix B

Operator Dictionary

The following table gives the suggested dictionary of rendering properties for operators,
fences, separators, and accents in MathML, all of which are represented bymoelements.
For brevity, all such elements will be called simply ‘operators’ in this Appendix.

B.1 Format of operator dictionary entries

The operators are divided into groups, which are separated by blank lines in the listing
below. The grouping, and the order of the groups, is significant for the proper grouping of
subexpressions using<mrow>(section3.3.1); the rule described there is especially relevant
to the automatic generation of MathML by conversion from other formats for displayed
mathematics, such as TEX, which do not always specify how subexpressions nest.

The format of the table entries is: the<mo>element content between double quotes (start
and end tags not shown), followed by the attribute list in XML format, starting with the
form attribute, followed by the default rendering attributes which should be used formo
elements with the given content andform attribute.

Any attribute not listed for some entry has its default value, which is given in parentheses
in the table of attributes in section3.2.4.

Note that the characters & and < are represented in the following table entries by the entity
references&and < respectively, as would be necessary if they appeared in the
content of an actualmoelement (or any other MathML or XML element).

For example, the first entry,

"(" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

could be expressed as anmoelement by:

<mo form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"> (</mo>

(note the lack of double quotes around the content, and the whitespace added around the
content for readability, which is optional in MathML).

This entry means that, for MathML renderers which use this suggested operator dictionary,
giving the element<mo form="prefix"> (</mo> alone, or simply<mo> (</mo>in a
position for whichform="prefix" would be inferred (see below), is equivalent to giving
the element with all attributes as shown above.

264

B.2 Indexing of operator dictionary

Note that the dictionary is indexed not just by the element content, but by the element
content andform attribute value, together. Operators with more than one possible form
have more than one entry. The MathML specification describes how the renderer chooses
(‘infers’) which form to use when noform attribute is given; see section3.2.4.7.

Having made that choice, or with theform attribute explicitly specified in the<mo>ele-
ment’s start tag, the MathML renderer uses the remaining attributes from the dictionary
entry for the appropriate single form of that operator, ignoring the entries for the other
possible forms.

B.3 Choice of entity names

Extended characters in MathML (and in the operator dictionary below) are represented
by XML-style entity references using the syntax&character-name; the complete list of
characters and character names is given in chapter6. Many characters can be referred to by
more than one name; often, memorable names composed of full words have been provided
in MathML, as well as one or more names used in other standards, such as Unicode. The
characters in the operators in this dictionary are generally listed under their full-word names
when these exist. For example, the integral operator is named below by the one-character
sequence∫ , but could equally well be named∫ . The choice of name for a
given character in MathML has no effect on its rendering.

It is intended that every entity named below appears somewhere in chapter6. If this is not
true, it is an error in this specification. If such an error exists, the abovementioned chapter
should be taken as definitive, rather than this appendix.

B.4 Notes onlspace and rspace attributes

The values forlspace and rspace given here range from 0 to (verythickmathspace
which has a default value of 6/18em. For the invisible operators whose content is⁢
or ⁡ , it is suggested that MathML renderers choose spacing in a context-
sensitive way (which is an exception to the static values given in the following table). For
<mo>⁡</mo>, the total spacing (lspace +rspace) in expressions such as
‘sin x’ (where the right operand doesn’t start with a fence) should be greater than zero; for
<mo>⁢</mo>, the total spacing should be greater than zero when both
operands (or the nearest tokens on either side, if on the baseline) are identifiers displayed
in a non-slanted font (i.e. under the suggested rules, when both operands are multi-character
identifiers).

Some renderers may wish to use no spacing for most operators appearing in scripts (i.e.
whenscriptlevel is greater than 0; see section3.3.4), as is the case in TEX.

B.5 Operator dictionary entries

"(" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

265

")" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"[" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"]" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"{" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"}" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"”" form="postfix" fence="true" lspace="0em" rspace="0em"
"’" form="postfix" fence="true" lspace="0em" rspace="0em"
"⟨" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"&LeftBracketingBar;" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"⌈" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"⟦" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"&LeftDoubleBracketingBar;" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"⌊" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"“" form="prefix" fence="true" lspace="0em" rspace="0em"
"‘" form="prefix" fence="true" lspace="0em" rspace="0em"
"⟩" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"&RightBracketingBar;" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"⌉" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"⟧" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"&RightDoubleBracketingBar;" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"⌋" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"&LeftSkeleton;" form="prefix" fence="true" lspace="0em" rspace="0em"
"&RightSkeleton;" form="postfix" fence="true" lspace="0em" rspace="0em"
"⁣" form="infix" separator="true" lspace="0em" rspace="0em"
"," form="infix" separator="true" lspace="0em" rspace="verythickmathspace"
"─" form="infix" stretchy="true" minsize="0" lspace="0em" rspace="0em"
"|" form="infix" stretchy="true" minsize="0" lspace="0em" rspace="0em"
";" form="infix" separator="true" lspace="0em" rspace="thickmathspace"
";" form="postfix" separator="true" lspace="0em" rspace="0em"
":=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≔" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∵" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∴" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"❘" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"//" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∷" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"&" form="prefix" lspace="0em" rspace="thickmathspace"
"&" form="postfix" lspace="thickmathspace" rspace="0em"
"*=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"-=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"+=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"/=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"->" form="infix" lspace="thickmathspace" rspace="thickmathspace"
":" form="infix" lspace="thickmathspace" rspace="thickmathspace"
".." form="postfix" lspace="mediummathspace" rspace="0em"
"..." form="postfix" lspace="mediummathspace" rspace="0em"
"∋" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⫤" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊨" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊤" form="infix" lspace="thickmathspace" rspace="thickmathspace"

266

"⊣" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊢" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⇒" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥰" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"|" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"||" form="infix" lspace="mediummathspace" rspace="mediummathspace"
"⩔" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"
"&&" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⩓" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"
"&" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"!" form="prefix" lspace="0em" rspace="thickmathspace"
"⫬" form="prefix" lspace="0em" rspace="thickmathspace"
"∃" form="prefix" lspace="0em" rspace="thickmathspace"
"∀" form="prefix" lspace="0em" rspace="thickmathspace"
"∄" form="prefix" lspace="0em" rspace="thickmathspace"
"∈" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∉" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∌" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊏̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋢" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊐̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋣" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊂⃒" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊈" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊃⃒" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊉" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∋" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊏" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊑" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊐" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊒" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋐" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊆" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊃" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊇" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⇐" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇔" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇒" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥐" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥞" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↽" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥖" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥟" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇁" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥗" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"←" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇤" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇆" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↔" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥎" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

267

"↤" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥚" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↼" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥒" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↙" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↘" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"→" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇥" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇄" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↦" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥛" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇀" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥓" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"←" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"→" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"↖" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↗" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"<" form="infix" lspace="thickmathspace" rspace="thickmathspace"
">" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"!=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"==" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"<=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
">=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≡" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≍" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≐" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∥" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⩵" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≂" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⇌" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"≥" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋛" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≧" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪢" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≷" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⩾" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≳" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≎" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≏" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊲" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⧏" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊴" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≤" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋚" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≦" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≶" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪡" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⩽" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≲" form="infix" lspace="thickmathspace" rspace="thickmathspace"

268

"≫" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≪" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≢" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≭" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∦" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≠" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≂̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≯" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≱" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≧̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≫̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≹" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⩾̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≵" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≎̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≏̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋪" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⧏̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋬" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≮" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≰" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"&NotLessFullEqual;" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≪̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⩽̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≴" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪢̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪡̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊀" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪯̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋠" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"&NotPrecedesTilde;" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋫" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⧐̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋭" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊁" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪰̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋡" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≿̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≁" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≄" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≇" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≉" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∤" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≺" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪯" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≼" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≾" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∷" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∝" form="infix" lspace="thickmathspace" rspace="thickmathspace"

269

"⇋" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⊳" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⧐" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊵" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≻" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪰" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≽" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≿" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∼" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≃" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≅" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≈" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊥" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∣" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊔" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"
"⋃" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"
"⊎" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"
"-" form="infix" lspace="mediummathspace" rspace="mediummathspace"
"+" form="infix" lspace="mediummathspace" rspace="mediummathspace"
"⋂" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"
"∓" form="infix" lspace="mediummathspace" rspace="mediummathspace"
"±" form="infix" lspace="mediummathspace" rspace="mediummathspace"
"⊓" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"
"⋁" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"⊖" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"
"⊕" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"
"∑" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"⋃" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"⊎" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"lim" form="prefix" movablelimits="true" lspace="0em" rspace="thinmathspace"
"max" form="prefix" movablelimits="true" lspace="0em" rspace="thinmathspace"
"min" form="prefix" movablelimits="true" lspace="0em" rspace="thinmathspace"
"⊖" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⊕" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"∲" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"
"∮" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"
"∳" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"
"∯" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"
"∫" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"
"⋓" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⋒" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"≀" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⋀" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"⊗" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"
"∐" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"∏" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"⋂" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"∐" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⋆" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⊙" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"

270

"*" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⁢" form="infix" lspace="0em" rspace="0em"
"·" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⊗" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⋁" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⋀" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⋄" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"∖" form="infix" stretchy="true" lspace="thinmathspace" rspace="thinmathspace"
"/" form="infix" stretchy="true" lspace="thinmathspace" rspace="thinmathspace"
"-" form="prefix" lspace="0em" rspace="veryverythinmathspace"
"+" form="prefix" lspace="0em" rspace="veryverythinmathspace"
"∓" form="prefix" lspace="0em" rspace="veryverythinmathspace"
"±" form="prefix" lspace="0em" rspace="veryverythinmathspace"
"." form="infix" lspace="0em" rspace="0em"
"⨯" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"**" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"⊙" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"∘" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"□" form="prefix" lspace="0em" rspace="verythinmathspace"
"∇" form="prefix" lspace="0em" rspace="verythinmathspace"
"∂" form="prefix" lspace="0em" rspace="verythinmathspace"
"ⅅ" form="prefix" lspace="0em" rspace="verythinmathspace"
"ⅆ" form="prefix" lspace="0em" rspace="verythinmathspace"
"√" form="prefix" stretchy="true" lspace="0em" rspace="verythinmathspace"
"⇓" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⟸" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⟺" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⟹" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⇑" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⇕" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"↓" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⤓" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⇵" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"↧" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥡" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⇃" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥙" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥑" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥠" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"↿" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥘" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⟵" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⟷" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⟶" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥯" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥝" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⇂" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥕" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥏" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥜" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

271

"↾" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥔" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"↓" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"↑" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"↑" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⤒" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⇅" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"↕" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥮" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"↥" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"^" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"<>" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"’" form="postfix" lspace="verythinmathspace" rspace="0em"
"!" form="postfix" lspace="verythinmathspace" rspace="0em"
"!!" form="postfix" lspace="verythinmathspace" rspace="0em"
"~" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"@" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"--" form="postfix" lspace="verythinmathspace" rspace="0em"
"--" form="prefix" lspace="0em" rspace="verythinmathspace"
"++" form="postfix" lspace="verythinmathspace" rspace="0em"
"++" form="prefix" lspace="0em" rspace="verythinmathspace"
"⁡" form="infix" lspace="0em" rspace="0em"
"?" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"_" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"˘" form="postfix" accent="true" lspace="0em" rspace="0em"
"¸" form="postfix" accent="true" lspace="0em" rspace="0em"
"`" form="postfix" accent="true" lspace="0em" rspace="0em"
"˙" form="postfix" accent="true" lspace="0em" rspace="0em"
"˝" form="postfix" accent="true" lspace="0em" rspace="0em"
"&DiacriticalLeftArrow;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"&DiacriticalLeftRightArrow;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"&DiacriticalLeftRightVector;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"&DiacriticalLeftVector;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"´" form="postfix" accent="true" lspace="0em" rspace="0em"
"&DiacriticalRightArrow;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"&DiacriticalRightVector;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"˜" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"¨" form="postfix" accent="true" lspace="0em" rspace="0em"
"̑" form="postfix" accent="true" lspace="0em" rspace="0em"
"ˇ" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"^" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"‾" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"⏞" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"⎴" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"⏜" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"⃛" form="postfix" accent="true" lspace="0em" rspace="0em"
"_" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"⏟" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"⎵" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"⏝" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

272

Appendix C

Content Markup Validation Grammar

Informal EBNF grammar for Content Markup structure validation
===
// Notes
//
// This defines the valid expression trees in content markup
//
// ** it does not define attribute validation -
// ** this has to be done on top
//
// Presentation_tags is a placeholder for a valid
// presentation element start tag or end tag
//
// #PCDATA is the XML parsed character data
//
// symbols beginning with ’_’ for example _mmlarg are internal symbols
// (recursive grammar usually required for recognition)
//
// all-lowercase symbols for example ’ci’ are terminal symbols
// representing MathML content elements
//
// symbols beginning with Uppercase are terminals
// representating other tokens
//
// revised sb 3.nov.97, 16.nov.97 and 22.dec.1997
// revised sb 6.jan.98, 6.Feb.1998 and 4.april.1998
// whitespace definitions including presentation_tags
Presentation_tags ::= "presentation" //placeholder
Space ::= #x09 | #xoA | #xoD | #x20 //tab, lf, cr, space characters
S ::= (Space | Presentation_tags)* //treat presentation as space
// only for content validation
// characters
Char ::= Space | [#x21 - #xFFFD]

| [#x00010000 - #x7FFFFFFFF] //valid XML chars
// start and end tag functions
// start(\%x) returns a valid start tag for the element \%x

273

// end(\%x) returns a valid end tag for the element \%x
// empty(\%x) returns a valid empty tag for the element \%x
//
// start(ci) ::= "<ci>"
// end(cn) ::= "</cn>"
// empty(plus) ::= "<plus/>"
//
// The reason for doing this is to avoid writing a grammar
// for all the attributes. The model below is not complete
// for all possible attribute values.
_start(\%x) ::= "<\%x" (Char - ’>’)* ">"
// returns a valid start tag for the element \%x
_end(\%x) ::= "<\%x" Space* ">"
// returns a valid end tag for the element \%x
_empty(\%x) ::= "<\%x" (Char - ’>’)* "/>"
// returns a valid empty tag for the element \%x
_sg(\%x) ::= S _start(\%x)
// start tag preceded by optional whitespace
_eg(\%x) ::= _end(\%x) S
// end tag followed by optional whitespace
_ey(\%x) ::= S _empty(\%x) S
// empty tag preceded and followed by optional whitespace
// mathml content constructs
// allow declare within generic argument type so we can insert it anywhere
_mmlall ::= _container | _relation | _operator | _qualifier | _other
_mmlarg ::= declare* _container declare*
_container ::= _token | _special | _constructor
_token ::= ci | cn
_special ::= apply | lambda | reln
_constructor ::= interval | list | matrix | matrixrow | set | vector
_other ::= condition | declare | sep
_qualifier ::= lowlimit | uplimit | bvar | degree | logbase
// relations
_relation ::= _genrel | _setrel | _seqrel2ary
_genrel ::= _genrel2ary | _genrelnary
_genrel2ary ::= ne
_genrelnary ::= eq | leq | lt | geq | gt
_setrel ::= _seqrel2ary | _setrelnary
_setrel2ary ::= in | notin | notsubset | notprsubset
_setrelnary ::= subset | prsubset
_seqrel2ary ::= tendsto
//operators
_operator ::= _funcop | _sepop | _arithop | _calcop

| _seqop | _trigop | _statop | _lalgop
| _logicop | _setop

_funcop ::= _funcop1ary | _funcopnary
_funcop1ary ::= inverse | ident
_funcopnary ::= fn| compose // general user-defined function is n-ary
// arithmetic operators
// (note minus is both 1ary and 2ary)

274

_arithop ::= _arithop1ary | _arithop2ary | _arithopnary | root
_arithop1ary ::= abs | conjugate | exp | factorial | minus
_arithop2ary ::= quotient | divide | minus | power | rem
_arithopnary ::= plus | times | max | min | gcd
// calculus
_calcop ::= _calcop1ary | log | int | diff | partialdiff
_calcop1ary ::= ln
// sequences and series
_seqop ::= sum | product | limit
// trigonometry
_trigop ::= sin | cos | tan | sec | csc | cot | sinh

| cosh | tanh | sech | csch | coth
| arcsin | arccos | arctan

// statistics operators
_statop ::= _statopnary | moment
_statopnary ::= mean | sdev | variance | median | mode
// linear algebra operators
_lalgop ::= _lalgop1ary | _lalgopnary
_lalgop1ary ::= determinant | transpose
_lalgopnary ::= selector
// logical operators
_logicop ::= _logicop1ary | _logicopnary | _logicop2ary | _logicopquant
_logicop1ary ::= not
_logicop2ary ::= implies
_logicopnary ::= and | or | xor
_logicopquant ::= forall | exists
// set theoretic operators
_setop ::= _setop2ary | _setopnary
_setop2ary ::= setdiff
_setopnary ::= union | intersect
// operator groups
_unaryop ::= _func1ary | _arithop1ary | _trigop | _lalgop1ary

| _calcop1ary | _logicop1ary
_binaryop ::= _arithop2ary | _setop2ary | _logicop2ary
_naryop ::= _arithopnary | _statopnary | _logicopnary

| _lalgopnary | _setopnary | _funcopnary
_ispop ::= int | sum | product
_diffop ::= diff | partialdiff
_binaryrel ::= _genrel2ary | _setrel2ary | _seqrel2ary
_naryrel ::= _genrelnary | _setrelnary
//separator
sep ::= _ey(sep)
// leaf tokens and data content of leaf elements
// note _mdata includes Presentation constructs here.
_mdatai ::= (#PCDATA | Presentation_tags)*
_mdatan ::= (#PCDATA | sep | Presentation_tags)*
ci ::= _sg(ci) _mdatai _eg(ci)
cn ::= _sg(cn) _mdatan _eg(cn)
// condition - constraints constraints. contains either
// a single reln (relation), or

275

// an apply holding a logical combination of relations, or
// a set (over which the operator should be applied)
condition ::= _sg(condition) reln | apply | set _eg(condition)
// domains for integral, sum , product
_ispdomain ::= (lowlimit uplimit?)

| uplimit
| interval
| condition

// apply construct
apply ::= _sg(apply) _applybody _eg(apply)
_applybody ::= (_unaryop _mmlarg)
//1-ary ops

| (_binaryop _mmlarg _mmlarg)
//2-ary ops

| (_naryop _mmlarg*)
//n-ary ops, enumerated arguments

| (_naryop bvar* condition _mmlarg)
//n-ary ops, condition defines argument list

| (_ispop bvar? _ispdomain? _mmlarg)
//integral, sum, product

| (_diffop bvar* _mmlarg)
//differential ops

| (log logbase? _mmlarg)
//logs

| (moment degree? _mmlarg*)
//statistical moment

| (root degree? _mmlarg)
//radicals - default is square-root

| (limit bvar* lowlimit? condition? _mmlarg)
//limits

| (_logicopquant bvar+ condition? (reln | apply))
//quantifier with explicit bound variables
// equations and relations - reln uses lisp-like syntax (like apply)
// the bvar and condition are used to construct a "such that" or
// "where" constraint on the relation
reln ::= _sg(reln) _relnbody _eg(reln)
_relnbody ::= (_binaryrel bvar* condition? _mmlarg _mmlarg)

| (_naryrel bvar* condition? _mmlarg*)
// fn construct
fn ::= _sg(fn) _fnbody _eg(fn)
_fnbody ::= Presentation_tags | container
// lambda construct - note at least 1 bvar must be present
lambda ::= _sg(lambda) _lambdabody _eg(lambda)
_lambdabody ::= bvar+ _container //multivariate lambda calculus
//declare construct
declare ::= _sg(declare) _declarebody _eg(declare)
_declarebody ::= ci (fn | constructor)?
// constructors
interval ::= _sg(interval) _mmlarg _mmlarg _eg(interval)
//start, end define interval

276

set ::= _sg(set) _lsbody _eg(set)
list ::= _sg(list) _lsbody _eg(list)
_lsbody ::= _mmlarg* //enumerated arguments

| (bvar* condition _mmlarg) //condition constructs arguments
matrix ::= _sg(matrix) matrixrow* _eg(matrix)
matrixrow ::= _sg(matrixrow) _mmlall* _eg(matrixrow)
//allows matrix of operators
vector ::= _sg(vector) _mmlarg* _eg(vector)
//qualifiers - note the contained _mmlarg could be a reln
lowlimit ::= _sg(lowlimit) _mmlarg _eg(lowlimit)
uplimit ::= _sg(uplimit) _mmlarg _eg(uplimit)
bvar ::= _sg(bvar) ci degree? _eg(bvar)
degree ::= _sg(degree) _mmlarg _eg(degree)
logbase ::= _sg(logbase) _mmlarg _eg(logbase)
//relations and operators
// (one declaration for each operator and relation element)
_relation ::= _ey(\%relation) //for example <eq/> <lt/>
_operator ::= _ey(\%operator) //for example <exp/> <times/>
//the top level math element
math ::= _sg(math) mmlall* _eg(math)

277

Appendix D

Content Element Definitions

D.1 About Content Markup Elements

Every content element must have a mathematical definition associated with it in some form.
The purpose of this appendix is to providedefaultdefinitions. (An index to the definitions
is provided later in this document.) For this release of MathML definitions have not been
restricted to any one format. There are several reasons for allowing flexibility at this time.

1. Many mathematical constructs are not yet implemented in any computation based
system. However, MathML must still allow authors to associate mathematical
constructs with definitions for archival purposes and so that work on such imple-
mentations can begin.

2. The task of defining a mathematical object, and establishing an association with
a particular definition does not logically depend on the existence of an imple-
mentation in a computational system. It is a perfectly legitimate mathematical
activity independent of whether it is ever implemented. Providing a record of
those author specified associations is integral part of the role of MathML.

3. The task of designing a machine readable language suitable for recording seman-
tic descriptions is an onerous one that goes substantially beyond the scope of this
particular recommendation. It also overlaps substantially with efforts groups such
as the OpenMath Consortium. (See also: North American OpenMath Initiative,
and The European OpenMath Consortium)

The feasibilty of implementing a particular object in a particular computational system and
the details of particular implementations have very little to do with the requirement that
there actually be a mathematical definition. An author’s decision to use content elements is
a decision to work with defined objects. The definitions may be as vague as claiming that,
sayF , is an unknown, but differentiable function from the real numbers to the real numbers,
or as complicated as requiring thatF to be an elaborate new function or operation as defined
in some recent research paper. The primary role of MathML content elements is to provide
a mechanism for recording the fact that a particular structure has a particular mathematical
meaning. If a definition is implemented in a computational system, this is a bonus.

Of course, default definitions and semantics should be chosen to be as useful as possible.
Where possible they should be already implemented or easy to implement and all other
things being equal, an author would be well advised to use a definition that is in common
use. This is no different from noting that most well written mathematical communications
(in any format) benefit substantially from the author’s use of widely used and understood
terms.

278

A requirement that there be a definition is also very different from a requirement that a
definition be provided in some specific manner. Before requiring a particular approach to
definitions one needs to consider such issues as:

1. providing a language for defining semantics.
2. deciding if it is reasonable torequirethe use of such a syntax. (Authors may not

have the time or expertise to provide a formal description in a new and unfamiliar
language.)

3. not being constrained by the limitations of existing computational systems.

In order to leave open the discussion of such fundamental issues we have deliberately lim-
ited the support for new or author defined definitions to support for specifying an appro-
priatedefinitionURL . The format of the content of that URL is unspecified. It might be
the URL of a mathematical paper whose whole purpose is to define a new operator, or even
a simple reference to a traditional text. If the author’s mathematical operator matches ex-
actly with an operator in a particular computational system, an appropriate definition might
be a MathMLsemantics element establishing a correspondence between two encodings.
Whatever is chosen, the only essential feature is that the definition be provided.

This rest of this appendix provides detailed descriptions of the default semantics associated
with each of the MathML content elements. Since this is exactly the role intended for
the encodings under development by the OpenMath Consortium and one of our goals is
to foster international cooperation in such standardization efforts we have presented the
default definitions in a format modeled on OpenMath’scontent dictionaries. While the
actual details differ somewhat from the OpenMath specification, the underlying principles
are the same and this is being used as input to ongoing discussions underway with the
OpenMath Consortium aimed at ensuring that the OpenMath encodings will be capable of
conveying the necessary information.

D.1.1 The Structure of an MMLdefinition.

Each MathML element is described using an XML format. The top element isMMLdefinition .
The sub-elements identify the various parts of the description and include:

name PCDATAproviding the name of the MathML element.
description A text based description of the object that an element represents. Thiscross

will often include cross references to more traditional texts or papers or existing
papers on the Web.

functorclass Each MathML element must be classified according to its mathematical role.
punctuation Some elements exist simply as an aid to parsing. For example the

sep element is used to separate theCDATAdefining a rational number into
two parts in a manner that is easily parsed by an XML application. These
objects are refered to aspunctuation.

modifier Some elements exist simply to modify the properties of an existing
element or mathematical object. For example the declare construct is used
to reset the default attribute values, or to associate a name with a specific
instance of an object. These kinds of elements are referred to asmodifiers
and the result is of the same type, but with different attributes.

constructor The remaining objects which ‘contain’ sub-elements are all object
constructorsof some sort or another. They combine the sub-elements into
a compound mathematical object such as a constant, set, list, or an expres-
sion representing a function application. For example, thelambdaelement
is actually a constructor whichconstructsa function definition from a list

279

of variables and an expression, while thefn element is a constructor that,
in effect, sets the type of an object to function and if necessary, provides
an external definition. Any use of apply produces an object of typeapply
whose sub-type is determined by the first operand and its properties. The
signature of a constructor indicates the type of its sub-elements and the type
(and sometimes subtype) of the resulting object.

function (operator) The MathML objects represented by empty XML elements
are functions or operators. Thesefunction definitions are parameterized by
their XML attribute values and are used as the first argument to anapply or
reln . Functions are classified according to how they are used. For example
the empty<sin/> element represents theunarymathematical function sine.
In every case, element attributes may be used to further qualify the object.
The<plus/> element is annary operator. The result of using a function or
operator is an expression which represents an object in a certain algebraic
domain.

parameter Another class of objects are the namedparameters. For example,
these named objects are used to identify bounds of integration, or differen-
tiation variables.

MMLattribute Some of the XML attributes of a MathML content element have a direct
impact on the mathematical semantics of the object. For example thetype at-
tribute of thecn element is used to determine what type of constant (integer, real,
etc.) is being constructed. Only those attributes that affect the mathematical prop-
erties of an object are listed here and typically they also appear explicitly in the
signature.

signature The signature is systematic representation which associates the different pos-
sible combinations of attributes and function arguments to the different kinds of
mathematical objects that are constructed. The possible combinations of param-
eter and argument types (the left-hand side) each result in an object of some type
(the right-hand side). It in effect describes how to resolve operator overloading.
For constructors (including parameters), the left-hand side of the signature de-
scribes the types of the child elements and the right-hand side describes the type
of object that is constructed. For functions, the left-hand side of the signature in-
dicates the types of the parameters and arguments that would be expected when
it is applied, or used to construct a relation, and the right-hand side represents
the mathematical type of the object constructed by the<apply>. Modifiers mod-
ify the the attributes of an existing object. For example asymbol might become
a symbol of type vector. The signature must be able to record specific attribute
values and argument types on the left, and and parameterized types on the right..
The syntax used for signatures is of the general form:
[<attribute name>=<attributevalue>](<list of argument types>)
--> <mathematical result type>(<mathematical subtype>)
The MMLattributes, if any, appear in the form<attribute name> = <attribute
value> . They are separated notationally from the rest of the arguments by square
braces. The possible values are usually taken from an enumerated list, and the sig-
nature is usually affected by selection of a specific value. For the actual function
arguments and named parameters on the left, the focus is on the mathematical
types involved. The function argument types are presented in a syntax similar to
that used for a DTD, with the one main exception. The types of the named param-
eters appear in the signature as<elementname>=<type>in a manner analogous
for that used for attribute values. For example, if the argument is named (e.g.

280

bvar) then it is represented in the signature by an equation as in:

[<attribute name>=<attributevalue>](bvar=symbol,<argument list>) -->
<mathematical result type>(<mathematical subtype>)
No mathematical evaluation ever takes place in MathML. Every MathML con-
tent element either refers to a defined object such as a mathematical function or
it combines such objects in some way to build a new object. For purposes of
the signature, the constructed object represents an object of a certain type pa-
rameterized type. For example the result of applying <plus/> to arguments is an
expression which respresents a sum. The type of the resulting expression depends
on the types of the operands, and the values of the MathML attributes.

example Examples of the use of this object in MathML and possibly other syntax are
included in these elements.

property This element describes the mathematical properties of such objects. For simple
associations of values with specific instances of an object, the first child is an
instance of the object being defined. The second is avalue or approx (approx-
imation) element which contains a MathML description of this particular value.
More elaborate conditions on the object are expressed using the MathML syntax.

D.2 Definitions of MathML Content Elements

D.2.1 Leaf Elements

D.2.1.1 <cn>

<MMLdefinition>
<name> cn </name>
<description>

A numerical constant. The mathematical type of number
is given as an attribute. The default type is "real".
Numbers such as rational, complex or real, require two
parts for a complete specification. The parts of such
a number are separated by an empty "sep" element.
There are a number of pre-defined constants including:

π &Exponential; &ComplexI &true; &false; &NaN;
the properties of some of which are outlined below.
The &NaN; is IEEE’s "Not a Number", as defined in
IEEE 854 standard for Floating point arithmetic.

</description>
<functorclass> constant </functorclass>
<MMLattribute>

<name> type </name>
<value> integer | rational | complex-cartesian

| complex-polar | real
</value>
<default> real </default>

</MMLattribute>
<MMLattribute>

<name> base </name>
<value> positive_integer </value>

281

<default> 10 </default>
</MMLattribute>
<signature> [type=integer](numstring) -> constant(integer) </signature>
<signature> [base=basevalue](numstring) -> constant(integer) </signature>
<signature> [type=rational](numstring,numstring) -> constant(rational) </signature>
<signature> [type=complex-cartesian](numstring,numstring) -> constant(complex) </signature>
<signature> [type=rational](numstring,numstring) -> constant(rational) </signature>
<signature> [type=real](π) -> constant(real) </signature>
<signature> [definition](numstring,numstring) -> constant(userdefined) </signature>
<signature> (γ) -> constant</signature>
<example> <cn> 245 </cn> </example>
<example> <cn type="integer"> 245 </cn> </example>
<example> <cn type="integer" base="16"> A </cn></example>
<example> <cn type="rational"> 245 <sep> 351 </cn> </example>
<example> <cn type="complex-cartesian"> 1 <sep/> 2 </cn> </example>
<example> <cn> 245 </cn> </example>
<property> <approx>

<cn> π </cn>
<cn> 3.141592654 </cn>

</approx></property>
<property> <approx>

<cn> γ </cn>
<cn> .5772156649 </cn>

</approx> </property>
<property> <reln><identity/>

<cn>ⅈ </cn>
<apply><root><cn>-1</cn><cn>2</cn></apply>

</reln>
</property>
<property> <reln><approx>
<cn> ⅇ </cn><cn>2.718281828 </cn>
</reln> </property>
<property> <apply><forall/>

<bvar><ci type=boolean>p</ci></bvar>
apply><and/>

<ci>p</ci><cn>&true;</cn></apply>
<ci>p</ci>

</apply>
</property>
<property> <apply><forall/>

<bvar><ci type=boolean>p</ci></bvar>
<apply><or/>

<ci>p</ci><cn>&true;</cn></apply>
<cn>&true;</cn>

</apply>
</property>

<bvar><ci type=boolean>p</ci></bvar>
<apply><or/>

<ci>p</ci><cn>&true;</cn></apply>
<cn>&true;</cn>

282

</apply>
</property>
<property>

<identity>
<apply><not/><cn> &true; </apply>
<cn> &false; </cn>

</identity>
</property>
<property> <reln><identity/>

<cn base="16"> A </cn> <cn> 10 </cn> </reln> </property>
<property> <reln><identity/>

<cn base="16"> B </cn> <cn> 11 </cn> </reln></property>
<property> <reln><identity/>

<cn base="16"> C </cn> <cn> 12 </cn> </reln></property>
<property> <reln><identity/>

<cn base="16"> D </cn> <cn> 13 </cn> </reln></property>
<property> <reln><identity/>

<cn base="16"> E </cn> <cn> 14 </cn> </reln></property>
<property> <reln><identity/>

<cn base="16"> F </cn> <cn> 15 </cn> </reln></property>
</MMLdefinition>

D.2.1.2 <ci>

<MMLdefinition>
<name> ci </name>
<description>

A symbolic name constructor. The type attribute can
be set to any valid MathML type.

</description>
<functorclass> constructor , unary </functorclass>
<MMLattribute>

<name> type </name>
<value> constant | matrix | set | vector | list | MathMLtype </value>
<default> real </default>

</MMLattribute>
<signature> ({string|mmlpresentation}) -> symbol(constant) </signature>
<signature> [type=MathMLType]({string|mmlpresentation}) -> symbol(MathMLType) </signature>
<example><ci> xyz </ci> </example>
<example><ci> type="vector"> V </ci> </example>
</MMLdefinition>

D.2.2 Basic Content Element

D.2.2.1 <apply>

<MMLdefinition>
<name> apply </name>
<description>

This is the MathML constructor for function application.

283

The first argument is applied to the remaining arguments.
It may be the case that some of the child elements are
named elements. (See the signature.)

</description>
<functorclass> constructor , nary </functorclass>
<signature> (function,anything*) -> application </signature>
<example><apply><plus/><ci>x</ci><cn>1</cn></apply></example>
<example><apply><sin/><ci>x</ci></apply></example>
</MMLdefinition>

D.2.2.2 <reln>

<MMLdefinition>
<name> reln </name>
<description>

This is the MathML constructor for expressing a relation between
two or more mathematical objects. The first argument indicates
the type of "relation" between the remaining arguments. (See the signature.)
No assumptions are made about the truth value of such a relation.
Typically, the relation is used as a component in the construction
of some logical assertion. Relations may be combined into
sets, etc. just like any other mathematical object.

</description>
<functorclass> constructor </functorclass>
<signature> (function,anything*) -> reln </signature>
<example><reln><and/><ci>P</ci><ci>Q</ci></reln></example>
<example><reln><lt/><ci>x</ci><ci>y</ci></reln></example>
</MMLdefinition>

D.2.2.3 <fn>

<MMLdefinition>
<name> fn </name>
<description>

This is the MathML constructor for building new function
names. The "name" can be a general MathML content element.
It identifies that object as "usable" in a function
context.
By setting its definitionURL value, you can
associate it with a particular function definition.
Use the MathML Declare to associate a name with a lambda
construct.

</description>
<MMLattribute>

<name>definitionURL</name>
<value> URL </value>
<default> none </default>

</MMLattribute>
<functorclass> constructor </functorclass>
<signature> (anything) -> function </signature>

284

<signature> [definitionURL=functiondef](anything) ->
function(definitionURL=functiondef)

</signature>
<example><fn><ci>F</ci></fn></example>
<example><fn definitionURL="http://www.w3c/...">

<lt/><ci>G</ci></fn>
</example>
<!--Declaring Id to be the identity function.-->
<example>

<declare><fn><ci>Id</ci></fn><lambda><ci>x</ci><ci>x</ci></declare>
</example>
</MMLdefinition>

D.2.2.4 <interval>

<MMLdefinition>
<name> interval </name>
<description>

This is the MathML constructor element for building an interval
on the real line. While an interval could be expressed by
combining relations appropriately, they occur explicitly because
of their frequence of occurrence in common use.

</description>
<MMLattribute>

<name>type</name>
<value> closed | open | open-closed | closed-open </value>
<default> closed </default>

</MMLattribute>
<functorclass> constructor , binary </functorclass>
<signature> [type=intervaltype](expression,expression) -> interval </signature>
<example><reln><and/><ci>x</ci><cn>1</cn></reln></example>
<example><reln><lt/><ci>x</ci></reln></example>
</MMLdefinition>

D.2.2.5 <inverse>

<MMLdefinition>
<name> inverse </name>
<description>

This MathML element is applied to a function in order to
construct a new function that is to be interpreted as the
inverse function of the original function. For a particular
function F, inverse(F) composed with F behaves like the
identity map on the domain of F and F composed with inverse(F)
should be an identity function on a suitably restricted
subset of the Range of F.
The MathML definitionURL attribute should be used to resolve
notational ambiguities, or to restrict the inverse to a
particular domain or make it one-sided.

</description>

285

<MMLattribute>
<name>definitionURL</name>
<value> CDATA </value>
<default> none </default>

<!--none corresponds to using the default MathML definition ...-->
</MMLattribute>
<functorclass> operator, unary </functorclass>
<signature> (function) -> function </signature>
<signature> [definitionURL=URL](function) ->

function(definition) </signature>
<example><apply><inverse/><sin/></apply></example>
<example>

<apply>
<inverse definitionURL="www.w3c.org/MathML/Content/arcsin"/>
<sin/>
</apply>

</example>
<property><apply><forall/>

<bvar><ci>y</ci></bvar>
<apply><sin/>

<apply>
<apply><inverse/><sin/></apply>
<ci>y</ci>

</apply>
</apply>
<value><ci>y</ci></value>

</apply>
</property>
<property>
<apply>

<apply><inverse/><sin/></apply>
<apply>

<sin/>
<ci>x</ci>

</apply>
</apply>
<value><ci>x</ci></value>
</property>
<property>F(inverse(F)(y))<value>y</value></property>
</MMLdefinition>

D.2.2.6 <sep>

<MMLdefinition>
<name> sep </name>
<description>

This is the MathML infix constructor used to sub-divide PCDATA into
separate components. for example, this is used in the description of
a multipart number such as a rational or a complex number.

</description>

286

<functorclass> punctuation </functorclass>
<example><cn type="complex-polar">123<sep/>456</cn></example>
<example><cn>123</cn></example>
</MMLdefinition>

D.2.2.7 <condition>

<MMLdefinition>
<name> condition </name>
<description>

This is the MathML constructor for building conditions.
A condition differs from a relation in how it is used.
A relation is simply an expression, while a condition
is used as a predicate to place a conditions on a bound
variables.
For a compound condition use relations or apply
operators such as "and" or "or" or a set of
relations).

</description>
<functorclass> constructor, unary </functorclass>
<signature> ({reln|apply|set}) -> predicate </signature>
<example>
<condition>

<reln><lt/>
<apply><power/>

<ci>x</ci><cn>5</cn>
</apply>
<cn>3</cn>

</reln>
</condition>
</example>
</MMLdefinition>

D.2.2.8 <declare>

<MMLdefinition>
<name> declare </name>
<description>

This is the MathML constructor for redefining the properties and
values with mathematical objects. For example V may be a name
delcared to be a vector, or V may be a name which stands for a
particular vector.
The attribute values of the declare statement are assigned as the
corresponding default attribute values of the first object.

</description>
<functorclass> modifier , (unary | binary) </functorclass>
<MMLattribute>
<name>definitionURL</definition>
<value> Any valid URL </value>
</MMLattribute>

287

<MMLattribute>
<name>type</name><value> MathMLType </value>
</MMLattribute>
<MMLattribute>
<name>nargs</name><value> number of arguments for an object of type fn </value>
</MMLattribute>
<signature> [attributename=attributevalue](anything) -> anything(attributevalue) </signature>
<!-- The two argument form updates the properties of the first
object to be those of the second. The attribute values override the
properties of the "value".
-->
<signature> [attributename=attributevalue](anything,anything) -> anything(attributevalue) </signature>
<example><reln><and/><ci>x</ci><cn>1</cn></reln></example>
<example><reln><lt/><ci>x</ci></reln></example>
</MMLdefinition>

D.2.2.9 <lambda>

<MMLdefinition>
<name> lambda </name>
<description> The operation of lambda calculus that makes a
function from an expression and a variable. The definition
at this level uses only one variable. Lambda is a binary
function, where the first argument is the variable and
the second argument is a the expression.
Lambda(x, F) is written as \lambda x [F] in the lambda
calculus literature.
The lambda function can be viewed as the inverse of function
application.
Although the expression F may contain x, the lambda expression
is interpreted to be free of x. That is, the x variable is
a variable local to the environment of the definition of
the function or operator. Formally, lambda(x,F) is free of
x, and any substitutions, evaluations or tests for x in
lambda(x,F) should not happen.
A lambda expression on an arbitrary function applied to a
simple argument is equivalent to the arbitrary function.
E.g. lambda(x, f(x)) == f. This is a common shortcut.

</description>
<functorclass> Nary , Constructor </functorclass>
<property>

<lambda><ci>x</ci>
<apply><fn><ci>F</ci></fn><ci>x</ci></apply>

</lambda>
<value> <fn><ci>F</ci></fn> </value>

</property>
<!-- Constructing a variant of the sine function -->

<example>
<lambda>

<ci> x </ci>

288

<apply><sin/>
<apply><plus/>

<ci> x </ci>
<cn> 3 </cn>

</apply>
</lambda>

</example>
<!-- the identity operator -->

<example>
<lambda><ci> x </ci> <ci> x </ci> </lambda>

</example>
<property>
<reln><identity/>

<lambda><ci>x</ci>
<apply><fn><ci>F</ci></fn><ci>x</ci></apply>

</lambda>
<fn><ci>F</ci></fn>

</reln>
</property>

<MMLdefinition>

D.2.2.10 <compose/>

<MMLdefinition>
<name> compose </name>
<description>

This is the MathML constructor for composing functions.
In order for a composition to be meaningful, the range of
the first function must be the domain of the second function,
etc. .
The result is a new function whose domain is the domain of
the first function and whose range is the range of the last
function and whose definition is equivalent to applying
each function to the previous outcome in turn as in:
(f @ g)(x) == f(g(x)).

This function is often denoted by a small circle infix
operator.

</description>
<functorclass> Nary , Operator </functorclass>
<signature> (fn*) -> fn </signature>
<example>
<apply><compose/>

<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>

</apply></example>
<property>
<apply><forall>

<bvar><ci>x</ci></bvar>
<reln><eq/>

<apply>

289

<apply><compose/>
<ci>f</ci>
<ci>g</ci>

</apply>
<ci>x</ci>

</apply>
<apply><ci>f</ci>

<apply><ci>g</ci>
<ci>x</ci>

</apply>
</apply>

</reln>
</apply>
</property>
</MMLdefinition>

D.2.2.11 <ident/>

<MMLdefinition>
<name> ident </name>
<description>

This is the MathML constructor for the identity function.
This function has the property that

f(x) = x, for all x in its domain.
</description>
<functorclass> Nary , Operator </functorclass>
<signature> (symbol) -> symbol </signature>
<example>
<apply><ident/>

<ci> f </ci>
<ci> x </ci>

</apply>
</example>
<property>
<apply><forall>

<bvar><ci>x</ci></bvar>
<reln><eq/>

<apply><ident/>
<ci>f</ci>
<ci>x</ci>

</apply>
<ci>x</ci>
</reln>

</apply>
</property>
</MMLdefinition>

290

D.2.3 Arithmetic, Algebra and Logic

D.2.3.1 <quotient/>

<MMLdefinition>
<name> quotient </name>

<description> Integer quotient, the result of integer
division. For arguments a and b, it returns q,
where a = b*q+r, |r| < |b| and a*r ≥ 0 (or
the sign of r is the same as the sign of a).

</description>
<functorclass> Binary, Function </functorclass>
<signature> (integer, integer) -> integer </signature>
<signature> (symbolic, symbolic) -> symbolic </signature>

<!--
ForAll(bvar(a,b),identity(a ,b*Quotient(a,b) + Remainder(a,b))
-->

<property>
<apply><forall/>

<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<reln/><eq/>

<ci>a</ci>
<apply><plus/>

<apply><times/>
<ci>b</ci>
<apply><quotient/><ci>a</ci><ci>b</ci></apply>

</apply>
<apply><rem/><ci>a</ci><ci>b</ci></apply>

</apply>
<reln>

</apply>
</property>

<!-- 1 = quotient(5,4) -->
<property>
<apply><identity/>

<apply><quotient/>
<ci>5</ci>
<ci>4</ci>

</apply>
<ci>1</ci>

<apply>
</property>

</MMLdefinition>

D.2.3.2 <exp/>

<MMLdefinition>
<name> exp </name>

<description> The exponential function.
<Reference> M. Abramowitz and I. Stegun, Handbook of

291

Mathematical Functions, [4.2]
</Reference>

</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property><reln><eq/>

<apply><exp/><cn>0</cn></apply>
<cn>1</cn></reln>

</property>
<property><apply><identity/>

<apply><exp/><ci>x</ci></apply>
<apply><power/>

<cn>ExponentialE;</cn><ci>x</ci>
</apply>

</apply>
</property>
<property> exp(x) = limit((1+x/n)^n, n, infinity) </property>

</MMLdefinition>

D.2.3.3 <factorial/>

<MMLdefinition>
<name>

factorial
</name>
<description>

This element is used to construct factorials
as in n! = n * (n-1) * (n-2) ... 1 .

</description>
<functorclass> Unary , function </functorclass>
<signature> (algebraic) -> algebraic </signature>
<example> <apply><factorial/><ci>n</ci></apply> </example>
<!-- for all n > 0, n! = n*(n-1)! -->
<property><apply><forall/>

<bvar><ci>n<ci></bvar>
<condition>

<reln><gt/><ci>n</ci><cn>0</cn></reln>
</condition>
<reln><eq/>

<apply><factorial/><ci>n</ci></apply>
<apply><times/>

<ci>n</ci>
<apply><factorial/>

<apply><minus/><ci>n</ci><cn>1</cn></apply>
</apply>

</apply>
</reln>

</property>
</MMLdefinition>

292

D.2.3.4 <divide/>

<MMLdefinition>
<name> divide </name>
<description>

The MathML operator that is used to construct
a "divided by" b. If a and b are from an algebraic
domain with a non-commutative times then this is defined
as a * (b)^(-1). The result is from the same algebraic
domain as the operands.

</description>
<MMLattribute>

<name> type </name>
<value> non-commutative </name>
<default> none </default>

</MMLattribute>
<functorclass> binary , function </functorclass>
<signature> (complex, complex) -> complex </signature>
<signature> (real, real) -> real </signature>
<signature> (rational, rational) -> rational </signature>
<signature> (integer, integer) -> rational </signature>
<signature> (symbolic, symbolic) -> symbolic </signature>
<example>

<apply> <divide/>
<ci> a </ci>
<ci> b </ci>

</apply>
</example>
<property>

<apply><forall/>
<bvar>a</bvar>
<reln><eq/>
<apply> <divide/>

<ci> a </ci>
<ci> 0 </ci>

<ci>Error, Division by 0</ci>
</apply>

</property>
</MMLdefinition>

D.2.3.5 <max/>

<MMLdefinition>
<name> max </name>
<description>

Represent the maximum of a set of elements. The elements
may be given explicitly or described by membership in
some set. To be well defined, the elements must all be
comparable. </description>

<functorclass> function </functorclass>

293

<signature> (ordered_set_element *) -> ordered_set_element </signature>
<signature> (condition) -> ordered_set_element </signature>
<example>

<apply><max/><cn>2</cn><cn>3</cn> <cn>5</cn> </apply>
</example>
<example>

<apply><max/>
<condition>

<bvar><ci>x</ci></bvar>
<reln> <notin/>

<ci> x </ci>
<ci type="set"> B </ci>

</reln>
</condition>

</apply>
</example>
</MMLdefinition>

D.2.3.6 <min/>

<MMLdefinition>
<name> min </name>
<description>

Represent the minimum of a set of elements. The elements
may be given explicitly or described by membership in
some set. To be well defined, the elements must all be
comparable. </description>

<functorclass> function </functorclass>
<signature> (ordered_set_element *) -> ordered_set_element </signature>
<signature> (condition) -> ordered_set_element </signature>
<example>

<apply><min/><cn>2</cn><cn>3</cn> <cn>5</cn> </apply>
</example>
<example>

<apply><min/>
<condition>

<bvar><ci>x</ci></bvar>
<reln> <notin/>

<ci> x </ci>
<ci type="set"> B </ci>

</reln>
</condition>

</apply>
</example>
</MMLdefinition>

D.2.3.7 <minus/>

<MMLdefinition>
<name> minus </name>

294

<description>
The subtraction operator of a group. </description>

<MMLattribute>
<name> definitionURL </name>
<value> URL </name>
<default> none </default>

</MMLattribute>
<functorclass>

Operator , (Unary | Binary)
</functorclass>
<signature>(real,real) -> real</signature>
<signature>(integer,integer) -> integer</signature>
<signature>(rational,rational) -> rational</signature>
<signature>(complex,complex) -> complex</signature>

<!--
Note that complex-cartesian is a data input format,
but the resulting data type is complex. !

-->
<signature> (vector,vector) -> vector</signature>
<signature>(matrix,matrix) -> matrix</signature>
<signature>(real) -> real </signature>
<signature>(integer) -> integer </signature>
<signature>(complex) -> complex </signature>
<signature>(rational) -> rational </signature>
<signature>(vector) -> vector </signature>
<signature>(matrix) -> matrix </signature>

<example>
<apply><minus/><cn>3</cn><cn>5</cn></apply>

</example>
<example>

<apply><minus/><cn>3</cn></apply>
</example>

<!-- Definition of the unary operator (-1) = -(1) -->
<property>

<reln><eq/>
<bvar><ci>n</ci>
<apply><minus/><cn>1</cn></apply>
<cn>-1</cn>

</reln>
</property>
</MMLdefinition>

D.2.3.8 <plus/>

<MMLdefinition>
<name> plus </name>
<description> The N-ary addition operator of an
algebraic structure.
If no operands are provided, the expression represents
the additive identity.

295

If one operand a is provided, the expression represents
a.
If two or more operands are provided, the expression
represents the group element corresponding to a left
associative binary pairing of the operands.
Issues with regard to the "value" of mixed operands
are left up to the target system. If the author wishes
to refer to specific type coercion rules, then
the definitionURL attribute should be used to refer
to a suitable specification.
</description>
<functorclass> Operator , Nary </functorclass>
<signature>(real,real) -> real</signature>
<signature>(integer,integer) -> integer</signature>
<signature>(rational,rational) -> rational</signature>
<signature> (vector,vector) -> vector</signature>
<signature>(matrix,matrix) -> matrix</signature>
<signature>(complex,complex) -> complex</signature>
<signature>(symbolic,symbolic) -> symbolic </signature>
<signature> real -> real </signature>
<signature> rational -> rational </signature>
<signature> integer -> integer </signature>
<signature> symbolic -> symbolic </signature>
<signature>(real) -> real </signature>
<signature>(integer) -> integer </signature>
<signature>(complex) -> complex </signature>
<signature>(rational) -> rational </signature>
<signature>(vector) -> vector </signature>
<signature>(matrix) -> matrix </signature>
<example><apply><plus/><cn>3</cn></apply></example>
<example><apply><plus/><cn>3</cn><cn>5</cn></apply></example>
<example><apply><plus/><cn>3</cn><cn>5</cn><cn>7</cn></apply></example>
<!-- The properties for more restricted algebraic structures should
be defined using a definitionURL
-->
<property> +() = 0 </property>
<property> +(a) = a </property>
<property> ForAll(a,Commutative, a + b = b + a)</property>
</MMLdefinition>

D.2.3.9 <power/>

<MMLdefinition>
<name> power </name>
<description> The powering operator </description>
<functorclass> binary, operator </functorclass>
<signature> (complex complex) -> complex </signature>
<signature> (real real) -> complex </signature>
<signature> (rational rational) -> complex </signature>
<signature> (rational integer) -> rational </signature>

296

<signature> (integer integer) -> rational </signature>
<signature> (symbolic symbolic) -> symbolic </signature>
<property> ForAll(a,Condition(a<>0),a^0=1) </property>
<property> ForAll(a,a^1=a) </property>
<property> ForAll(a,1^a=1) </property>
<property>ForAll(a,0^0=Undefined)</property>

</MMLdefinition>

D.2.3.10 <rem/>

<MMLdefinition>
<name> rem </name>
<description> Integer remainder, the result of integer
division. For arguments a and b, it returns r,
where a = b*q+r, |r| < |b| and a*r ≥ 0 (the
sign of r is the same as the sign of a when both are
non-zero).
</description>
<functorclass> binary, function </functorclass>
<signature> (integer integer) -> integer </signature>
<signature> (symbolic symbolic) -> symbolic </signature>
<property> a = b*rem(a,b) + rem(a,b) </property>
<property>rem(a,0) = Division_by_Zero</property>
</MMLdefinition>

D.2.3.11 <times/>

<MMLdefinition>
<name> times </name>
<description> The multiplication operator of any
ring.
</description>
<functorclass> N-ary, Operator </functorclass>
<signature> (complex complex) -> complex </signature>
<signature> (real, real) -> real </signature>
<signature> (rational, rational) -> rational </signature>
<signature> (integer, integer) -> integer </signature>
<signature> (symbolic, symbolic) -> symbolic </signature>
<property>ForAll(bvars(a,b),condition(in({a,b},Commutative)),a*b=b*a)</property>
<property>ForAll(bvars(a,b,c),Associative,a*(b*c)=(a*b)*c), associativity </property>
<property> a*1=a </property>
<property> 1*a=a </property>
<property> a*0=0 </property>
<property> 0*a=0 </property>
</MMLdefinition>

D.2.3.12 <root/>

<MMLdefinition>
<name> root </name>

297

<description>
Construct the nth root of an object.
The first argument "a" is the object and the
second object "n" denotes the root, as in

(a) ^ (1/n)
</description>
<MMLattribute>

<name> type </name>
<value> real | complex | principle_branch </name>
<default> real </default>

</MMLattribute>
<functorclass> binary , function </functorclass>
<signature> (anything , symbol) -> root </signature>
<example>

<apply> <root/>
<ci> a </ci>
<ci> n </ci>

</apply>
</example>
<property> Forall(bvars(a,n),root(a,n) = a^(1/n)) </property>
</MMLdefinition>

D.2.3.13 <gcd/>

<MMLdefinition>
<name> gcd </name>
<description>

This represents the greatest common divisor
of its arguments.

</description>
<MMLattribute>

<name> type </name>
<value> anything </name>
<default> integer </default>

</MMLattribute>
<functorclass> Function , Nary </functorclass>
<signature> [type=typevalue](typevalue*) -> typevalue </signature>
<example>

<apply><gcd/><cn>12</cn> <cn>17</cn></apply>
</example>
<property>Forall(p,q,(is(p,prime) and is(q,prime)) , gcd(p,q)=1 </property>
</MMLdefinition>

D.2.3.14 <and/>

<MMLdefinition>
<name> and </name>
<description>

This is the logical "and" operator.
</description>

298

<functorclass> function, Nary </functorclass>
<signature> (boolean*) -> boolean </signature>
<example> <apply><and/><ci>p</ci><ci>q</ci></apply> </example>
<property> identity(true and p , p) </property>
<property> identity(p and q , q and p) </property>
</MMLdefinition>

D.2.3.15 <or/>

<MMLdefinition>
<name> or </name>
<description> The logical "or" operator.
</description>
<functorclass> Binary, Function </functorclass>
<signature> (boolean,boolean) -> boolean </signature>
<signature> [type=boolean](symbolic symbolic) -> symbolic </signature>
<property> identity(true or p , true) </property>

...
</MMLdefinition>

D.2.3.16 <xor/>

<MMLdefinition>
<name> or </name>
<description> The logical "xor" operator.
</description>
<functorclass> Binary, Function </functorclass>
<signature> (boolean,boolean) -> boolean </signature>
<signature> [type=boolean](symbolic symbolic) -> symbolic </signature>
<property> ...</property>
</MMLdefinition>

D.2.3.17 <not/>

<MMLdefinition>
<name> not </name>
<description> The logical "not" operator.
</description>
<functorclass> Unary, Function </functorclass>
<signature> (boolean) -> boolean </signature>
<signature> [type=boolean](symbolic) -> symbolic </signature>
<property> ... </property>
</MMLdefinition>

D.2.3.18 <implies/>

<MMLdefinition>
<Name> implies </Name>
<description> The implies operator. This represents
the construction "A implies B".

299

</description>
<functorclass> Binary, relation </functorclass>
<signature> (boolean,boolean) -> boolean </signature>
<property> <apply></forall>

<bvar><ci>A</ci></bvar>
<bvar><ci>B</ci></bvar>
<reln><eq/>

<apply><implies/>
<ci>A</ci>
<ci>B</ci>

</apply>
<apply><or/>

<ci>B</ci>
<apply><not/>

<ci> A </ci>
</apply>

</apply>
</reln>

</property>
</MMLdefinition>

D.2.3.19 <forall/>

<MMLdefinition>
<name> forall </name>
<description> The logical "For all" quantifier.
</description>
<functorclass> Nary, Operator </functorclass>
<signature> (bvar*,condition?,(reln|apply)) -> boolean </signature>
<property> ... </property>
</MMLdefinition>

D.2.3.20 <exists/>

<MMLdefinition>
<name> exists </name>
<description> The logical "There exists" quantifier.
</description>
<functorclass> Nary, Operator </functorclass>
<signature> (bvar*,condition?,(reln|apply)) -> boolean </signature>
<property> ... </property>
</MMLdefinition>

D.2.3.21 <abs/>

<MMLdefinition>
<name> exists </name>
<description> The absolute value of a number.
</description>
<functorclass> Unary, Operator </functorclass>

300

<signature> (algebraic) -> algebraic </signature>
<property> ... </property>
</MMLdefinition>

D.2.3.22 <conjugate/>

<MMLdefinition>
<name> conjugate </name>
<description> The "conjugate" arithmetic operator
used to represent the conjugate of a complex number.
</description>
<functorclass> Unary, Operator </functorclass>
<signature> (algebraic) -> algebraic </signature>
<property> ... </property>
</MMLdefinition>

D.2.4 Relations

D.2.4.1 <eq/>

<MMLdefinition>
<Name> eq </Name>
<description> The equality operator. </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

D.2.4.2 2<neq/"/>

<MMLdefinition>
<Name> neq </Name>
<description> The notequals operator. </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

D.2.4.3 <gt/>

<MMLdefinition>
<Name> gt </Name>
<description> The equality operator. </description>
<functorclass> binary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

301

D.2.4.4 <lt/>

<MMLdefinition>
<Name> lt </Name>
<description> The inequality equality operator "<" </description>
<functorclass> binary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic, symbolic*) -> boolean </signature>
</MMLdefinition>

D.2.4.5 <geq/>

<MMLdefinition>
<Name> geq </Name>
<description> The inequality operator. >= </description>
<functorclass> Nary, relation </functorclass>
<signature> (symbolic, symbolic*) -> boolean </signature>
<property> ... Commutative ? ... </property>
</MMLdefinition>

D.2.4.6 <leq/>

<MMLdefinition>
<Name> leq </Name>
<description> The inequality operator </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

D.2.5 Calculus

D.2.5.1 <ln/>

<MMLdefinition>
<Name> ln </Name>
<description> The logarithmic function. Also called

the natural logarithm.
The inverse of the exponential function.
<Reference> M. Abramowitz and I. Stegun, Handbook of

Mathematical Functions, [4.1]
</Reference>

</description>
<functorclass> Unary, Function </functorclass>
<property>

Error("logarithm has a singularity at 0")
</property>
<signature> Intersect(real,positive) -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> ln(1) = 0 </property>
<property> ln(exp(x)) = x, "for real x" </property>

302

<property> exp(ln(x)) = x, always </property>
</MMLdefinition>

D.2.5.2 <log/>

<MMLdefinition>
<Name> log </Name>
<description> The logarithmic function (base 10), or any
any other user specified base. Also called

the natural logarithm.
The inverse of the exponential function.
<Reference> M. Abramowitz and I. Stegun, Handbook of

Mathematical Functions, [4.1]
</Reference>

</description>
<functorclass> Unary, Function </functorclass>
<signature> (real,logbase) -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>

Error("logarithm has a singularity at 0")
</property>

</MMLdefinition>

D.2.5.3 <int/>

<MMLdefinition>
<Name> int </Name>
<description>

The definite or indefinite integral of a function or algebraic
expression.
There are several forms of calling sequences depending on
the nature of the areguments, and whether or not it is a
definite integral.

</description>
<functorclass> Binary , Function </functorclass>
<signature> (function) -> function </signature>
<signature> (algebraic,bvar) -> algebraic </signature>
<signature> (algebraic,bvar,interval) -> algebraic </signature>
<signature> (algebraic,bvar,condition) -> algebraic </signature>

</MMLdefinition>

D.2.5.4 <diff/>

<MMLdefinition>
<Name> diff </Name>
<description>

For expressions, this represents the derivative of
its first argument evaluated at the second argument.
For Unary functions (only one argument) it represents
f’.

303

</description>
<functorclass> (Unary | Binary) , Function </functorclass>
<signature> (algebraic,bvar) -> algebraic </signature>
<property>Forall(x,diff(sin(x) , x) = cos(x)) </property>
<property>Forall(x,diff(x , x) = 1) </property>
<property>Forall(x,diff(x^2 , x) = 2x) </property>
<property>identity(diff(sin) , cos) </property>

</MMLdefinition>

D.2.5.5 <partialdiff/>

<MMLdefinition>
<Name> partialdiff </Name>
<description>

For expressions, this represents the derivative of
its first argument evaluated at the second argument.
For Unary functions (only one argument) it represents
f’.

</description>
<functorclass> (Binary) , Function </functorclass>
<signature> (algebraic,bvar) -> algebraic </signature>
<property>Forall(x,diff(sin(x*y) , x) = cos(x)) </property>
<property>Forall(x,y,diff(x*y , x) = diff(x,x)*y + diff(y,x)*x) </property>
<property>Forall(x,a,b,diff(a + b , x) = diff(a,x) + diff(b,x)) </property>
<property>identity(diff(sin) , cos) </property>

</MMLdefinition>

D.2.5.6 <lowlimit/>

<MMLdefinition>
<Name> lowlimit </Name>
<description> Construct a lower limit. Limits
are used in some integrals as alternative way
of describing the region over which an integral
is computed. (i.e. a connected component of the
real line.)
</description>

<functorclass> Constructor </functorclass>
<signature> (anything*) -> list </signature>

</MMLdefinition>

D.2.5.7 <uplimit/>

<MMLdefinition>
<Name> uplimit </Name>
<description> Construct a an upper limit. Limits
are used in some integrals as alternative way
of describing the region over which an integral
is computed. (i.e. a connected component of the
real line.)

304

</description>
<functorclass> Constructor </functorclass>
<signature> (anything*) -> list </signature>

</MMLdefinition>

D.2.5.8 <bvar/>

<MMLdefinition>
<Name> bvar </Name>
<description>

The bvar element is the container element
for the "bound variable" of an operation.
For example, in an integral it specifies the
variable of integration. In a derivative, it
indicates which variable with respect to
which a function is being differentiated.
When the bvar element is used to quantifiy a derivative,
the bvar element may contain a child degree element which
specifies the order of the derivative with respect to that
variable. The bvar element is also used for the internal
variable in sums and products.

</description>
<functorclass> Constructor </functorclass>
<signature> (symbol) -> symbol </signature>
<example> <bvar><ci>x</ci></bvar></example>

</MMLdefinition>

D.2.5.9 <degree/>

<MMLdefinition>
<Name> degree </Name>
<description> A parameter used by some
MathML data-types to specify that, for example,
a bound variable is repeated several times.
</description>
<functorclass> Constructor </functorclass>
<signature> (algebraic) -> algebraic </signature>
<example> <degree><ci>x</ci></degree></example>
<property> ... </property>

</MMLdefinition>

D.2.6 Theory of Sets

D.2.6.1 <set>

<MMLdefinition>
<Name> set </Name>
<description> Construct a set. </description>
<functorclass> Nary, Constructor </functorclass>
<signature> (anything*) -> set </signature>

</MMLdefinition>

305

D.2.6.2 <list>

<MMLdefinition>
<Name> list </Name>
<description> Construct a list. </description>
<functorclass> Nary, Constructor </functorclass>
<signature> (anything*) -> list </signature>

</MMLdefinition>

D.2.6.3 <union/>

<MMLdefinition>
<Name> union </Name>
<description> The union of two sets. </description>
<functorclass> Binary, Function </functorclass>
<signature> (set*) -> set </signature>

</MMLdefinition>

D.2.6.4 <intersect/>

<MMLdefinition>
<Name> intersection </Name>
<description> The intersection of two sets. </description>
<functorclass> Binary, Function </functorclass>
<signature> (set set) -> set </signature>

</MMLdefinition>

D.2.6.5 <in/>

<MMLdefinition>
<Name> in </Name>
<description>

The membership testing operation (also commonly
called "in" or "including"). Returns true if the first
argument is part of the second argument. The second
argument must be a set.

</description>
<functorclass> Binary, Function </functorclass>
<signature> (anything, set) -> boolean </signature>

</MMLdefinition>

D.2.6.6 <notin/>

<MMLdefinition>
<Name> notin </Name>
<description>

The membership exclusion operation (also commonly
called "notin" or "including").
It is defined as "not in".

</description>

306

<functorclass> Binary, Function </functorclass>
<signature> (anything set) -> boolean </signature>

</MMLdefinition>

D.2.6.7 <subset/>

<MMLdefinition>
<Name> subset </Name>
<description>

Boolean function whose value is determined by
whether or not one set is a subset of another.

</description>
<functorclass> Binary, Function </functorclass>
<signature> (set*) -> boolean </signature>

</MMLdefinition>

D.2.6.8 <prsubset/>

<MMLdefinition>
<Name> prsubset </Name>
<description>

Boolean function whose value is determined by
whether or not one set is a proper subset of another.

</description>
<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> boolean </signature>
<property>...</property>

</MMLdefinition>

D.2.6.9 <notsubset/>

<MMLdefinition>
<Name> notsubset </Name>
<description>

Boolean function whose value is the complement
of "subset".

</description>
<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> boolean </signature>
<property>...</property>

</MMLdefinition>

D.2.6.10 <notprsubset/>

<MMLdefinition>
<Name> notprsubset </Name>
<description>

Boolean function whose value is the complement
of "proper subset".

</description>

307

<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> boolean </signature>
<property>...</property>

</MMLdefinition>

D.2.6.11 <setdiff/>

<MMLdefinition>
<Name> setdiff </Name>
<description>

Function indicating the difference of two sets.
</description>
<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> set </signature>
<property>...</property>
</MMLdefinition>

D.2.7 Sequences and Series

D.2.7.1 <sum/>

<MMLdefinition>
<Name> sum </Name>
<description>
The sum element denotes the summation operator. Upper and lower
limits for the sum, and more generally a domains for the bound variables
are specified using uplimit, lowlimit or a condition on the bound
variables. The index for the summation is specified by a bvar element.
The sum element takes the attribute definition which can be used to
override the default semantics.
</description>
<functorclass> Unary, Function </functorclass>
<signature> (bvar*,((lowlimit,uplimit)|condition),algebraic) -> sum </signature>
<signature> ... </signature>
</MMLdefinition>

D.2.7.2 <product/>

<MMLdefinition>
<Name> product </Name>
<description>
The product element denotes the product operator. Upper and lower
limits for the product, and more generally a domains for the bound
variables are specified using uplimit, lowlimit or a condition on the
bound variables. The index for the product is specified by a bvar
element.
The product element takes the attribute definition which can be used
to override the default semantics.
</description>
<functorclass> Unary, Function </functorclass>

308

<signature> (bvar*,((lowlimit,uplimit)|condition),algebraic) -> product </signature>
<signature> ... </signature>
<signature> ... </signature>
</MMLdefinition>

D.2.7.3 <limit/>

<MMLdefinition>
<Name> limit </Name>
<description>
The sum element denotes the summation operator.
Upper and lower limits for the sum, and more
generally a domains for the bound variables are
specified using uplimit, lowlimit or a condition
on the bound variables. The index for the summation is
specified by a bvar element.
</description>
<functorclass> Nary, Function </functorclass>
<signature> (bvar*,(lowlimit | condition*),algebraic) -> limit </signature>
</MMLdefinition>

D.2.7.4 <tendsto/>

<MMLdefinition>
<Name> tendsto </Name>
<description> tendsto is used to specify how a limit is
computed. It accepts a type attribute that determines the
manner in which it tends to a value.
</description>
<functorclass> binary, Function </functorclass>
<signature> (symbol,anything) -> condition(limit) </signature>
<signature> [type=direction](symbol,anything) -> condition(limit) </signature>
</MMLdefinition>

D.2.8 Trigonometry

D.2.8.1 <sin/>

<MMLdefinition>
<Name> sin </Name>
<description> The circular trigonometric function sine

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> sin(0) = 0 </property>
<property> sin(integer*Pi) = 0 </property>

309

<property> sin((Z+1/2)*Pi) = (-1)^Z, "for integer Z" </property>
<property> -1 <= sin(real) </property>
<property> sin(real) <= 1 </property>
<property> sin(3*x)=-4*sin(x)^3+3*sin(x), "triple angle formula"

<Reference> ditto, [4.3.27] </Reference>
</property>

</MMLdefinition>

D.2.8.2 <cos/>

<MMLdefinition>
<Name> cos </Name>
<description> The cosine function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> cos(0) = 1 </property>
<property> cos(integer*Pi+Pi/2) = 0 </property>
<property> cos(Z*Pi) = (-1)^Z, "for integer Z" </property>
<property> -1 <= cos(real) </property>
<property> cos(real) <= 1 </property>

</MMLdefinition>

D.2.8.3 <tan/>

<MMLdefinition>
<Name> tan </Name>
<description> The tangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> tan(integer*Pi) = 0 </property>
<property> tan(x) = sin(x)/cos(x) </property>

</MMLdefinition>

D.2.8.4 <sec/>

<MMLdefinition>
<Name> sec </Name>
<description> The secant function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

310

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> sec(x) = 1/cos(x) </property>

</MMLdefinition>

D.2.8.5 <csc/>

<MMLdefinition>
<Name> csc </Name>
<description> The cosecant function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> csc(x) = 1/sin(x) </property>

</MMLdefinition>

D.2.8.6 <cot/>

<MMLdefinition>
<Name> cot </Name>
<description> The cotangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> cot(integer*Pi+Pi/2) = 0 </property>
<property> cot(x) = cos(x)/sin(x) </property>

</MMLdefinition>

D.2.8.7 <sinh/>

<MMLdefinition>
<Name> sinh </Name>
<description> The hyperbolic sine function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>

311

<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

D.2.8.8 <cosh/>

<MMLdefinition>
<Name> sinh </Name>
<description> The hyperbolic sine function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

D.2.8.9 <tanh/>

<MMLdefinition>
<Name> tanh </Name>
<description> The hyperbolic tangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

D.2.8.10 <sech/>

<MMLdefinition>
<Name> sech </Name>
<description> The hyperbolic secant function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

312

D.2.8.11 <csch/>

<MMLdefinition>
<Name> csch </Name>
<description> The hyperbolic cosecant function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

D.2.8.12 <coth/>

<MMLdefinition>
<Name> coth </Name>
<description> The hyperbolic cotangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

D.2.8.13 <arcsin/>

<MMLdefinition>
<Name> arcsin </Name>
<description> The inverse of the sine function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.4]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> sin(arcsin(x)) = x </property>
<property> arcsin(sin(x)) = x, "for x between -Pi/2 and Pi/2" </property>

</MMLdefinition>

D.2.8.14 <arccos/>

<MMLdefinition>
<Name> arccos </Name>

313

<description> The inverse of the cosine function.
<Reference> M. Abramowitz and I. Stegun, Handbook of

Mathematical Functions, [4.4]
</Reference>

</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> cos(arccos(x)) = x </property>
<property> arccos(cos(x)) = x, "for x between 0 and Pi" </property>

</MMLdefinition>

D.2.8.15 <arctan/>

<MMLdefinition>
<Name> arctan </Name>
<description> The inverse of the tangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.4]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> tan(arctan(x)) = x </property>
<property> arctan(tan(x)) = x, "for x between -Pi/2 and Pi/2" </property>

</MMLdefinition>

D.2.9 Statistics

D.2.9.1 <mean/>

<MMLdefinition>
<Name> mean </Name>
<description>

Given k unspecified scalar arguments they are treated as equiprobable
values of a random variable and the mean is computed as:

mean(a1, a2, ... an) Sum(ai, i=1... n)/ n.
(see section 7.7 in CRC’s Standard Mathematical tables and Formulae).
More generally, if the first argument is a symbol X of type
"discrete_random_variable", this is the 1st moment of the
random variable X and is defined as
E[X] = Sum(x*f(x), x in S)
where the probability that x = x_i is P(x = x_i) = f(x_i) .
The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and
k dimenions following the definitions provided in the reference:
<Reference> CRC Standard Mathematical Tables and Formulae,

editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]

314

</Reference>
</description>
<MMLattribute>

<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>

</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(scalar*) -> scalar</signature>
<signature>(scalar(type=data)*) -> scalar</signature>
<signature>(symbol(type=random_variable)*) -> scalar</signature>
<signature>(symbol(type=continuous_random_variable)*) -> scalar</signature>
<property> </property>

</MMLdefinition>

D.2.9.2 <sdev/>

<MMLdefinition>
<Name> sdev </Name>
<description>

This represents the standard deviation.
Given k unspecified scalar arguments they are treated as equiprobable
values of a random variable and the "standard deviation" is
computed as the square root of the second moment about the mean U.

sdev(a1, a2, ... an)^2 = E((X - U)^2).
If the first argument is a symbol X of type
"discrete_random_variable", then all arguments are treated as
discrete random variables, instead of data and the second moment
about the mean is computed as

Sum((x_i - U)^2 * f(x_i) , x_i in S)
as
where the probability that x = x_i is P(x = x_i) = f(x_i) .
The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and to
k dimenions following the definitions found in:
<Reference> CRC Standard Mathematical Tables and Formulae,

editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]
</Reference>

</description>
<MMLattribute>

<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>

</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(scalar*) -> scalar</signature>
<signature>(scalar(type=data)*) -> scalar</signature>
<signature>(symbol(type=discrete_random_variable)*) -> scalar</signature>
<signature>(symbol(type=continuous_random_variable)*) -> scalar</signature>

315

<property> </property>
</MMLdefinition>

D.2.9.3 <variance/>

<MMLdefinition>
<Name> variance </Name>
<description>

This computes the second centered moment, also known as the variance.
Given k unspecified scalar arguments they are treated as equiprobable
values of a random variable and the "variance" is
computed as the second moment about the mean U.

variance(a1, a2, ... an) = E((X - U)^2).
If the first argument is a symbol X of type
"discrete_random_variable", then all arguments are treated as
discrete random variables, instead of data and the second moment
about the mean is computed as in section [7.7] (see reference below.)

Sum((x_i - U)^2 * f(x_i) , x_i in S)
as
where the probability that x = x_i is P(x = x_i) = f(x_i) .
The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and to
k dimenions following the definitions found in:
<Reference> CRC Standard Mathematical Tables and Formulae,

editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]
</Reference>

</description>
<MMLattribute>

<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>

</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(scalar*) -> scalar</signature>
<signature>(scalar(type=data)*) -> scalar</signature>
<signature>(symbol(type=discrete_random_variable)*) -> scalar</signature>
<signature>(symbol(type=continuous_random_variable)*) -> scalar</signature>

</MMLdefinition>

D.2.9.4 <median/>

<MMLdefinition>
<Name> median </Name>
<description>

This represents the median of n data values.
If n =2k + 1 then the mode is x_k.
If n = 2k then the median is (x_k + x_(k+1)/2).
(Note this discription assumes that the data has been
sorted into ascending order.)

316

<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.7]

</Reference>
</description>
<functorclass>Nary , Operator</functorclass>
<signature>(scalar*) -> scalar</signature>

</MMLdefinition>

D.2.9.5 <mode/>

<MMLdefinition>
<Name> mode </Name>
<description>

This represents the mode of n data values.
The mode is the data value that occurs with the
greatest frequency.
<Reference> CRC Standard Mathematical Tables and Formulae,

editor: Dan Zwillinger, CRC Press Inc., 1996, [7.7]
</Reference>

</description>
<functorclass>Nary , Operator</functorclass>
<signature>(scalar*) -> scalar</signature>

</MMLdefinition>

D.2.9.6 <moment/>

<MMLdefinition>
<Name> moment </Name>
<description>

This computes the ith moment of a set of data, or a random variable..
Given k scalar arguments of unspecified type, they are treated
as equiprobable values of a random variable. and the "moments" are
computed as the second moment about the mean U.

moment(degree=i, scalar*)= E(X^i).
If the first data argument x1 is a symbol X of type
"discrete_random_variable", then all arguments are treated as
discrete random variables, instead of data and the ith moment
about the mean is computed as

Sum((x)^i * f(x) , x in S)
where the probability that x = x_i is P(x = x_i) = f(x_i) .

The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and to
k dimenions following the definitions found in:
<Reference> CRC Standard Mathematical Tables and Formulae,

editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2]
</Reference>

</description>
<MMLattribute>

<name>type</name>

317

<values> random_variable | continuous_random_variable | data </value>
<default> data </default>

</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(degree,scalar*) -> scalar</signature>
<signature>(degree,scalar(type=data)*) -> scalar</signature>
<signature>(degree,symbol(type=discrete_random_variable)*) -> scalar</signature>
<signature>(degree, symbol(type=continuous_random_variable)*) -> scalar</signature>

</MMLdefinition>

D.2.10 Lineary Algebra

D.2.10.1 <vector>

<MMLdefinition>
<Name> vector </Name>
<description>

A vector is an ordered n-tuple of values
representing an element of an n-dimensional
vector space. The "values" are all from the
same ring, typically real or complex. They may
be numbers, symbols, or general algebraic expressions.
The type attribute can be used to specify the type of
vector that is represented.
<Reference> CRC Standard Mathematical Tables and Formulae,

editor: Dan Zwillinger, CRC Press Inc., 1996, [2.4]
</Reference>

</description>
<MMLattribute>

<name> type </name>
<value> real | complex | symbolic | anything </value>
<default> real </default>

</MMLattribute>
<MMLattribute>

<name> other </name>
<value> row | column </value>
<default> row </default>

</MMLattribute>
<functorclass> constructor , N-ary </functorclass>
<signature>

((cn|ci|apply)*) -> vector(type=real)
</signature>
<signature>

[type=vectortype]((cn|ci|apply)*) -> vector(type=vectortype)
</signature>
<!-- Note that there is a notational need for expressing a sequence

v1, v2, ... vn with an in-explicit value of n . Also, in the
following property, it should be clarified that b,v1, and v2 are all
elements of the same ring. -->

<property> <!-- scalar multiplication-->

318

<apply><forall/>
<bvar><ci>b</ci></bvar>
<bvar><ci>v1</ci></bvar>
<bvar><ci>v2</ci></bvar>
<reln>

<apply><times/>
<ci>ci>b</ci>
<vector><ci>ci>v1</ci><ci>ci>v2</ci></vector>
</apply>
<vector>

<apply><ci>b</ci><ci>v1</ci></apply>
<apply><ci>b</ci><ci>v2</ci></apply>

</vector>
</reln>

</apply>
</property>
<property> vector addition </property>
<property> distributive over scalars</property>
<property> associativity.</property>
<property> Matrix * column vector </property>
<property> row vector * Matrix </property>
</property>

</MMLdefinition>

D.2.10.2 <matrix>

<MMLdefinition>
<Name> matrix </Name>
<description>

This is the constructor for a matrix. The matrix is
constructed from matrix rows. The type and properties
spell out the normal interaction with vectors and
scalars.
<Reference> CRC Standard Mathematical Tables and Formulae,

editor: Dan Zwillinger, CRC Press Inc., 1996, [2.5.1]
</Reference>

</description>
<MMLattribute>

<name>type</name>
<value>real | complex | integer | symbolic | anything </value>
<default> real </default>

</MMLattribute>
<functorclass>constructor , N-ary </functorclass>
<signature>(matrixrow*) -> matrix</signature>
<signature>

[type=matrixtype](matrixrow*) ->
matrix(type=matrixtype)</signature>

<property>scalar multiplication </property>
<property>Matrix*column vector</property>
<property>Addition</property>

319

<property>Matrix*Matrix</property>
</MMLdefinition>

D.2.10.3 <matrixrow>

<MMLdefinition>
<Name> matrixrow </Name>
<description>

This is a constructor for describing the rows of a matrix.
This only occurs inside a matrix. Its "type" is determined
from the containing matrix element.

</description>
<functorclass>constructor , N-ary</functorclass>
<signature>(cn|ci|apply)->matrixrow </signature>

</MMLdefinition>

D.2.10.4 <determinant/>

<MMLdefinition>
<Name>determinant</Name>
<description>The "determinant" of a matrix.

<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [2.5.4]

</Reference>
</description>
<functorclass>Unary, operator</functorclass>
<signature>(matrix)-> scalar </signature>
</MMLdefinition>

D.2.10.5 <transpose/>

<MMLdefinition>
<Name> transpose </Name>
<description>The transpose of a matrix or vector.

<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [2.4] and [2.5.1]

</Reference>
</description>
<functorclass>Unary, Operator</functorclass>
<signature>(vector)->vector(other=row)</signature>
<signature>[other=column](vector)->vector(other=row)</signature>
<signature>[other=row](vector)->vector(other=column)</signature>
<signature>(matrix)->matrix</signature>
<property>transpose(transpose(A))= A</property>
<property>transpose(transpose(V))= V</property>

</MMLdefinition>

D.2.10.6 <selector/>

<MMLdefinition>

320

<Name> selector </Name>
<description>

The operator used to extract sub-objects from vectors, matrices
matrix rows and lists.
Elements are accessed by providing one index element for each
dimension. For Matrices, sub-matrices are selected by providing
one fewer index items. For a matrix A and a column vector V :
select(i,j , A) is the i,j th element of A.
select(i , A) is the matrixrow formed from the ith row of A.
select(i , V) is the ith element of V.
select(V) is the sequence of all elements of V.
select(A) is the sequence of all elements of A, extracted row
by row.
select(i,L) is the ith element of a list.
select(L) is the sequence of elements of a list.

</description>
<functorclass>N-ary, operator)</functorclass>
<signature>(scalar,scalar,matrix)->scalar</signature>
<signature>(scalar,matrix)->matrixrow</signature>
<signature>(matrix)->scalar* </property>
<signature>(scalar,(vector|list|matrixrow))->scalar</signature>
<signature>(vector|list|matrixrow)->scalar*</signature>
<property>

Forall(
bvar(A(type=matrix)),bvar(V(type=vector)),
select(A) = select(V)

)
</property>
<property>For all vectors V, V = vector(select(V))</property>

</MMLdefinition>

321

Appendix E

Document Object Model for MathML (Non-Normative)

The following sections describe the interfaces that have been defined in the Document
Object Model for MathML. Please refer to chapter8 for more information.

E.1 IDL Interfaces

E.1.1 Miscellaneous Object Definitions

Interface MathMLCollection

This interface is included by analogy with the interfaceHTMLCollection, and for the same
reasons. (Specifically, it allows access to a list of nodes either by index or bynameor id
attributes. The rationale making this desirable for the HTML DOM applies also to the
MathML DOM; particularly the presence of named hyperlink targets.) The documentation
below is essentially copied from the definition ofHTMLCollection.

IDL Definition

interface MathMLCollection {
readonly attribute unsigned long length;
Node item(in unsigned long index);
Node namedItem(in DOMString name);

};

Attributes

length This attribute specifies the length orsizeof the list.

Methods

item This method retrieves a node specified by ordinal index. Nodes are numbered in tree
order (depth-first traversal order).Parameters
index The index of the node to be fetched. The index origin is 0.Return value
TheNodeat the corresponding position upon success. A value ofnull is returned
if the index is out of range. This method raises no exceptions.

322

namedItem This method retrieves aNodeusing a name. It first searches for aNodewith
a matchingid attribute. If it doesn’t find one, it then searches for aNodewith
a matchingnameattribute, but only on those elements that are allowed a name
attribute.Parameters
nameThe name of theNodeto be fetched.Return value
The Nodewith a nameor id attribute whose value corresponds to the specified
string. Upon failure (e.g., no node with this name exists), returnsnull . This
method raises no exceptions.

E.1.2 Generic MathML Elements

Interface MathMLElement

All MathML element interfaces derive from this object, which derives from the basic DOM
interfaceElement.

IDL Definition

interface MathMLElement: Element {
attribute DOMString className;
attribute DOMString style;
attribute DOMString id;
attribute DOMString other;
attribute NamedNodeMap otherAttributes;
MathMLElement getMathElement(in unsigned long index);

};

Attributes

className The class attribute of the element. See the MathML discussion and the
HTML definition of theclass attribute.

style A string identifying the element’sstyle attribute.(?)
id The element’s identifier. See the MathML discussion and the HTML definition of the

id attribute.
other Direct access to the element’sother attribute, as a string.
otherAttributes This attribute retrieves or sets aNamedNodeListrepresenting the

contents of the element’sother attribute. This will allow more convenient access
to the name-key pairs which this attribute is defined to contain.

Methods

getMathElement A convenience method to retrieve child elements.Parameters
index Return value
The same value as a call toNode::childNodes().item(index) ,but returned
as aMathMLElementinstead of aNode. This method raises no exceptions.

E.1.3 Specific Style Methods (currfontsize, etc.)

Issue (style-methods):At the August 1999/ F2F meeting, the group agreed that the
following level 2 interface for obtaining the current values of certain style attributes

323

should be included. However, after careful study of the XML DOM levels 1 and 2, we
(Roger and Ron) now believe that they are not appropriate. These methods are considered
desirable because we see the need to make frequent calls to discover style information and
the current script level and display style. As anyone who’s implemented math rendering
knows, there’s a constant need for this information, and it must be obtained very quickly.
The July 1999 DOM Level 2 draft states that mechanisms for obtaining the cascaded,
computed and actual style for a specific element are being considered. This would obviate
the need for the font and color methods. Why do we believe now that these interfaces
should not be specified here? The primary reason is that the XML DOM, at both levels,
does not include methods for obtaining these values. If they are introduced in some later
iteration of the XML DOM, the font methods would not be necessary here. It would then
be appropriate to include the currscriptlevel and currdisplaystyle methods in the MathML
DOM. If we include the style related methods because they are necessary for a renderer
implementation, it seems equally appropriate to include methods for returning the actual
size of elements as rendered (these are the currheight, currdepth, and currwidth methods
below). This information is also essential for rendering, and it is necessary for hit
detection. We’ve concluded that the XML DOM assumes a model where the renderer
itself implements methods to obtain the cascaded, computed style values, and the size and
placement of objects. The inclusion of mouse events in the level 2 DOM without
including these style, size, and placement methods emphasizes this implied model. The
parallel for MathML would be to assume that a renderer that includes a MathML
component would implement its own methods for obtaining the current script level,
display style, and other inherited computed values that are essential for MathML
rendering, and so these methods would not be specified here.

Interface MathMLElement2

This interface is required for implementations that perform rendering.

IDL Definition

interface MathMLElement2: MathMLElement {
readonly attribute DOMString currscriptlevel;
readonly attribute DOMString currdisplaystyle;
readonly attribute DOMString currfontsize;
readonly attribute DOMString currfontweight;
readonly attribute DOMString currfontstyle;
readonly attribute DOMString currfontfamily;
readonly attribute DOMString currcolor;
readonly attribute DOMString currheight;
readonly attribute DOMString currdepth;
readonly attribute DOMString currwidth;
DOMString getCurrScriptLevel();
DOMString getCurrDisplayStyle();
DOMString getCurrFontSize();
DOMString getCurrFontWeight();
DOMString getCurrFontStyle();
DOMString getCurrFontFamily();
DOMString getCurrColor();

};

324

Note that these methods are specified for MathMLElement. This means that they return
results for all MathML elements, including content elements. This is to facilitate
rendering of mixed markup. DOM implementations that do not render should not have to
implement the MathMLElement2 interface. In fact, they may not have the information
necessary to implement them. If IDL attributes are to be used only for explicit XML
attributes, the above interface should use methods for getting current (cascaded,
computed, and actual) values. They would take the following form.

DOMString getCurrScriptLevel();
DOMString getCurrDisplayStyle();
DOMString getCurrFontSize();
DOMString getCurrFontWeight();
DOMString getCurrFontStyle();
DOMString getCurrFontFamily();
DOMString getCurrColor();

Question: How does a DOM handle multiple clients? These style methods could return
different values for different clients.

Attributes

currscriptlevel Computes and returns the current script level. This is the
cascaded, computed value for the element.

currdisplaystyle Computes and returns the current display style. This is the
cascaded, computed value for the element.

currfontsize Computes and returns the current font size. This is the cascaded,
computed value for the element.

currfontweight Computes and returns the current font weight. This is the cascaded,
computed value for the element.

currfontstyle Computes and returns the current font style. This is the cascaded,
computed value for the element.

currfontfamily Computes and returns the current font family. This is the cascaded,
computed value for the element.

currcolor Computes and returns the current text color. This is the cascaded,
computed value for the element.

currheight Computes and returns the current element height, relative to its baseline
origin, as rendered.

currdepth Computes and returns the current element depth, relative to its baseline
origin, as rendered.

currwidth Computes and returns the current element width as rendered.

Methods

getCurrScriptLevel Return value
This method raises no exceptions.

getCurrDisplayStyle Return value
This method raises no exceptions.

getCurrFontSize Return value
This method raises no exceptions.

getCurrFontWeight Return value
This method raises no exceptions.

325

getCurrFontStyle Return value
This method raises no exceptions.

getCurrFontFamily Return value
This method raises no exceptions.

getCurrColor Return value
This method raises no exceptions.

E.1.4 Presentation Elements

Interface MathMLTokenElement

This interface extends theMathMLElementinterface to include access for attributes specific
to text presentation. It serves as the base class for all MathML presentation token elements.
Access to the body of the element is via thenodeValue attribute inherited fromNode.
Elements which expose only the core presentation token attributes are directly supported
by this object. These elements are:

mi MathML identifier element
mn MathML number element
mtext MathML text element

Issue (methodless-interfaces):Interfaces with no Methods? Should we provide interfaces
with no methods for<mi>, <mn>, and<mtext>? This would provide separate objects for
these elements. Since the element name provides complete information, there is no
pressing need for such ‘interfaces’. Of course, extending this argument could lead to no
MathML DOM specification at all.

IDL Definition

interface MathMLTokenElement: MathMLElement {
attribute DOMString fontsize;
attribute DOMString fontweight;
attribute DOMString fontstyle;
attribute DOMString fontfamily;
attribute DOMString color;

};

Attributes

fontsize The font size attribute for the element, if specified.
fontweight The font weight attribute for the element, if specified.
fontstyle The font style attribute for the element, if specified.
fontfamily The font family attribute for the element, if specified.
color The color attribute for the element, if specified.

Interface MathMLOperatorElement

This interface extends theMathMLTokenElementinterface for the MathMLoperatorele-
ment<mo>.

326

IDL Definition

interface MathMLOperatorElement: MathMLTokenElement {
attribute DOMString form;
attribute DOMString fence;
attribute DOMString separator;
attribute DOMString lspace;
attribute DOMString rspace;
attribute DOMString stretchy;
attribute DOMString symmetric;
attribute DOMString maxsize;
attribute DOMString minsize;
attribute DOMString largeop;
attribute DOMString moveablelimits;
attribute DOMString accent;

};

Attributes

form Theform attribute (prefix , infix or postfix) for the<mo>element, if specified.
fence Thefence attribute (true or false) for the<mo>element, if specified.
separator Theseparator attribute (true or false) for the<mo>element, if specified.
lspace The lspace attribute (spacing to left) of the<mo>element, if specified.
rspace Therspace attribute (spacing to right) of the<mo>element, if specified.
stretchy Thestretchy attribute (true or false) for the<mo>element, if specified.
symmetric Thesymmetric attribute (true or false) for the<mo>element, if specified.
maxsize Themaxsize attribute for the<mo>element, if specified.
minsize Theminsize attribute for the<mo>element, if specified.
largeop The largeop attribute for the<mo>element, if specified.
moveablelimits The moveablelimits (true or false) attribute for the<mo>ele-

ment, if specified.
accent Theaccent attribute (true or false) for the<mo>element, if specified.

Issue (default-values):Level 2, Default Values, and the Operator Dictionary In Scientific
WorkPlace and Scientific Notebook, we use knowledge of fence delimiters at certain
times to aid in conversion from presentation to content form. Knowledge of form attribute
values could be used for conversions of this type. It’s conceivable that other<mo>
attributes might also give valuable clues. Some elements have default attribute values - for
example,<mfence>has default delimiters. Do we expect renderers and content
manipulators to manage their own operator dictionaries and to know the default values, or
is it reasonable to ask the DOM to supply the affected attribute values? It seems
unreasonable to expect all DOM implementations to use an operator dictionary - those
dealing exclusively with content form won’t want to be burdened this way. With these
considerations in mind, we propose the following optional interface that supplies all
operator attribute values, whether or not they have appear explicitly in the markup. Note
that the interface uses IDL attributes (instead of Get methods) because the values can be
supplied explicitly. We have specified this interface for the operator dictionary only. That
is, we expect all clients of the DOM to know the default values of attributes for all
elements. We’ve used the prefix ‘resolved’ here. Any better suggestions?

327

Interface MathMLOperatorElement2

This interface extends the MathMLOperator interface to provide values for all attributes.
Values that are not explicit would normally be obtained from an operator dictionary.

IDL Definition

interface MathMLOperatorElement2: MathMLOperatorElement {
readonly attribute DOMString resolvedform;
readonly attribute DOMString resolvedfence;
readonly attribute DOMString resolvedseparator;
readonly attribute DOMString resolvedlspace;
readonly attribute DOMString resolvedrspace;
readonly attribute DOMString resolvedstretchy;
readonly attribute DOMString resolvedsymmetric;
readonly attribute DOMString resolvedmaxsize;
readonly attribute DOMString resolvedminsize;
readonly attribute DOMString resolvedlargeop;
readonly attribute DOMString resolvedmoveablelimits;
readonly attribute DOMString resolvedaccent;

};

Attributes

resolvedform Theform attribute (prefix , infix or postfix) for the<mo>element,
from the operator dictionary if not explicit.

resolvedfence Thefence attribute (true or false) for the<mo>element, from the
operator dictionary if not explicit.

resolvedseparator Theseparator attribute (true or false) for the<mo>
element, from the operator dictionary if not explicit.

resolvedlspace The lspace attribute (spacing to left) of the<mo>element, from the
operator dictionary if not explicit.

resolvedrspace Therspace attribute (spacing to right) of the<mo>element, from
the operator dictionary if not explicit.

resolvedstretchy Thestretchy attribute (true or false) for the<mo>element,
from the operator dictionary if not explicit.

resolvedsymmetric Thesymmetric attribute (true or false) for the<mo>
element, from the operator dictionary if not explicit.

resolvedmaxsize Themaxsize attribute for the<mo>element, from the operator
dictionary if not explicit.

resolvedminsize Theminsize attribute for the<mo>element, from the operator
dictionary if not explicit.

resolvedlargeop The largeop attribute for the<mo>element, from the operator
dictionary if not explicit.

resolvedmoveablelimits Themoveablelimits (true or false) attribute for the
<mo>element, from the operator dictionary if not explicit.

resolvedaccent Theaccent attribute (true or false) for the<mo>element, from
the operator dictionary if not explicit.

328

Interface MathMLSpaceElement

This interface extends theMathMLElementinterface for the MathMLspaceelement<mspace>.
Note that this isnot derived fromMathMLTokenElement, despite the fact that<mspace>is
classified as a token element, it doesn’t carry the attributes declared forMathMLTokenElement.

IDL Definition

interface MathMLSpaceElement: MathMLElement {
attribute DOMString width;
attribute DOMString height;
attribute DOMString depth;

};

Attributes

width A string of the form ‘number h-unit’; represents thewidth attribute for the<mspace>
element, if specified.

height A string of the form ‘number v-unit’; represents theheight attribute for the
<mspace>element, if specified.

depth A string of the form ‘number v-unit’; represents thedepth attribute for the<mspace>
element, if specified.

Interface MathMLStringLitElement

This interface extends theMathMLTokenElementinterface for the MathMLstring literal
element<ms>.

IDL Definition

interface MathMLStringLitElement: MathMLTokenElement {
attribute DOMString lquote;
attribute DOMString rquote;

};

Attributes

lquote A string giving the opening delimiter for the string literal; represents thelquote
attribute for the<ms>element, if specified.

rquote A string giving the closing delimiter for the string literal; represents therquote
attribute for the<ms>element, if specified.

Interface MathMLFractionElement

This interface extends theMathMLElementinterface for the MathMLfraction element
<mfrac>.

329

IDL Definition

interface MathMLFractionElement: MathMLElement {
attribute DOMString linethickness;
attribute MathMLElement numerator;
attribute MathMLElement denominator;

};

Attributes

linethickness A string representing thelinethickness attribute of the<mfrac>, if
specified.

numerator The first childMathMLElementof theMathMLFractionElement; represents
the numerator of the represented fraction.

denominator The second childMathMLElementof theMathMLFractionElement; rep-
resents the denominator of the represented fraction.

Interface MathMLRadicalElement

This interface extends theMathMLElementinterface for the MathMLradical andsquare
root elements<mroot>and<msqrt>.

IDL Definition

interface MathMLRadicalElement: MathMLElement {
attribute MathMLElement radicand;
attribute MathMLElement index;

};

Attributes

radicand The first childMathMLElementof the MathMLRadicalElement; represents
thebaseof the represented radical.

index The second childMathMLElementof theMathMLRadicalElement; represents the
index of the represented radical. This must benull for <msqrt> elements.

Interface MathMLStyleElement

This interface extends theMathMLElementinterface for the MathMLstyleelement<mstyle>.
While the<mstyle> element may contain anyattributesallowable on any MathML pre-
sentation element, onlyattributesspecific to the<mstyle> element are included in the in-
terface below. Other attributes should be accessed using the methods on the baseElement
class, particularly theElement::getAttribute andElement::setAttribute methods,
or even theNode::attributes attribute to access all of them at once. Not only does this
obviate a lengthy list below, but it seems likely that most implementations will find this a
considerably more useful interface to aMathMLStyleElement.

330

IDL Definition

interface MathMLStyleElement: MathMLElement {
attribute DOMString scriptlevel;
attribute DOMString displaystyle;
attribute DOMString scriptsizemultiplier;
attribute DOMString scriptminsize;
attribute DOMString color;
attribute DOMString background;

};

Attributes

scriptlevel A string of the form "+/- unsigned integer"; represents thescriptlevel
attribute for the<mstyle> element, if specified. See also the discussion of this
attribute.

displaystyle Eithertrue or false ; a string representing thedisplaystyle attribute
for the<mstyle> element, if specified. See also the discussion of this attribute.

scriptsizemultiplier A string of the form ‘number’; represents thescriptsizemultiplier
attribute for the<mstyle> element, if specified. See also the discussion of this
attribute.

scriptminsize A string of the form ‘number v-unit’; represents thescriptminsize
attribute for the<mstyle> element, if specified. See also the discussion of this
attribute.

color A string representation of a color; represents thecolor attribute for the<mstyle>
element, if specified. See also the discussion of this attribute.

background A string representation of a color or the stringtransparent ; represents
the background attribute for the<mstyle> element, if specified. See also the
discussion of this attribute.

Interface MathMLPaddedElement

This interface extends theMathMLElementinterface for the MathMLspacing adjustment
element<mpadded>.

IDL Definition

interface MathMLPaddedElement: MathMLElement {
attribute DOMString width;
attribute DOMString lspace;
attribute DOMString height;
attribute DOMString depth;

};

Attributes

width A string representing the totalwidth of the<mpadded>element, if specified. See
also the discussion of this attribute.

lspace A string representing thelspace attribute - the additional space to the left - of
the<mpadded>element, if specified. See also the discussion of this attribute.

331

height A string representing theheight above the baseline of the<mpadded>element,
if specified. See also the discussion of this attribute.

depth A string representing thedepth beneath the baseline of the<mpadded>element,
if specified. See also the discussion of this attribute.

Interface MathMLFencedElement

This interface extends theMathMLElementinterface for the MathMLfenced contentele-
ment<mfenced>.

IDL Definition

interface MathMLFencedElement: MathMLElement {
attribute DOMString open;
attribute DOMString close;
attribute DOMString separators;

};

Attributes

open A string representing theopening-fencefor the <mfenced>element, if specified;
this is the element’sopenattribute.

close A string representing theopening-fencefor the<mfenced>element, if specified;
this is the element’sclose attribute.

separators A string representing any separating characters inside the<mfenced>ele-
ment, if specified; this is the element’sseparators attribute.

Editor’s note: Nico Poppelier (16 October 1999)
The definition of the next interface could not be converted completely, because attribute
definitions do not have a child ’raises’, which method definitions do have. I left the
exception descriptions inside the attribute descriptions.

Interface MathMLScriptElement

This interface extends theMathMLElementinterface for the MathMLsubscript, superscript
andsubscript-superscript pairelements<msub>, <msup>, and<msubsup>.

IDL Definition

interface MathMLScriptElement: MathMLElement {
attribute DOMString subscriptshift;
attribute DOMString superscriptshift;
attribute MathMLElement base;
attribute MathMLElement subscript;
attribute MathMLElement superscript;

};

332

Attributes

subscriptshift A string representing the minimum amount to shift the baseline of
thesubscriptdown, if specified; this is the element’ssubscriptshift attribute.
This must returnnull for a<msup>.

superscriptshift A string representing the minimum amount to shift the baseline
of the superscriptup, if specified; this is the element’ssuperscriptshift at-
tribute. This must returnnull for a<msub>.

base A MathMLElementrepresenting thebaseof the script. This is the first child of the
element.

subscript A MathMLElementrepresenting thesubscriptof the script. This is the sec-
ond child of a<msub>or <msubsup>; retrieval must returnnull for a <msup>.
Exceptions on setting: theDOMException NOT_FOUND_ERRis raised when the
element is a<msup>.

superscript A MathMLElementrepresenting thesuperscriptof the script. This is the
second child of a<msup>or the third child of a<msubsup>; retrieval must return
null for a <msub>. Exceptions on setting: theDOMException NOT_FOUND_ERR
is raised when the element is a<msub>.

Interface MathMLUnderOverElement

This interface extends theMathMLElementinterface for the MathMLunderscript, over-
script andoverscript-underscript pairelementsmunder, moverandmunderover.

IDL Definition

interface MathMLUnderOverElement: MathMLElement {
attribute DOMString accentunder;
attribute DOMString accent;
attribute MathMLElement base;
attribute MathMLElement underscript;
attribute MathMLElement overscript;

};

Attributes

accentunder Either true or false if present; a string controlling whetherunderscript
is drawn as an ‘accent’ or as a ‘limit’, if specified; this is the element’saccentunder
attribute. This must returnnull for a<mover>.

accent Eithertrue or false if present; a string controlling whetheroverscriptis drawn
as an ‘accent’ or as a ‘limit’, if specified; this is the element’saccent attribute.
This must returnnull for a<munder>.

base A MathMLElementrepresenting thebaseof the script. This is the first child of the
element.

underscript A MathMLElementrepresenting theunderscriptof the script. This is the
second child of a<munder>or <munderover>; retrieval must returnnull for
a <mover>. Exceptions on setting: theDOMException NOT_FOUND_ERRis raised
when the element is a<mover>.

333

overscript A MathMLElementrepresenting theoverscriptof the script. This is the sec-
ond child of a<mover>or the third child of a<munderover>; retrieval must re-
turnnull for a<munder>. Exceptions on setting: theDOMException NOT_FOUND_ERR
is raised when the element is a<munder>.

Editor’s note: Nico Poppelier (16 October 1999)
The definition of the next interface did not convert due to a mismatch between the IDL
definition and the informal descriptions. I edited the HTML source by hand in order to run
the conversion.

Interface MathMLMultiScriptsElement

This interface extends theMathMLElementinterface for the MathMLmultiscripts (includ-
ing prescripts or tensors)element<mmultiscripts> .

IDL Definition

interface MathMLMultiScriptsElement: MathMLElement {
attribute DOMString subscriptshift;
attribute DOMString superscriptshift;
attribute MathMLElement base;
attribute NodeList prescripts;
attribute NodeList scripts;
readonly attribute unsigned long numprescriptcolumns;
readonly attribute unsigned long numscriptcolumns;
MathMLElement getPreSubScript(in unsigned long colIndex);
MathMLElement getSubScript(in unsigned long colIndex);
MathMLElement getPreSuperScript(in unsigned long colIndex);
MathMLElement getSuperScript(in unsigned long colIndex);
MathMLElement insertPreSubScriptAt(in unsigned long colIndex, in MathMLElement newElement);
MathMLElement insertSubScriptAt(in unsigned long colIndex, in MathMLElement newElement);
MathMLElement insertPreSuperScriptAt(in unsigned long colIndex, in MathMLElement newElement);
MathMLElement insertSuperScriptAt(in unsigned long colIndex, inout MathMLElement newElement);

};

Attributes

subscriptshift A string representing the minimum amount to shift the baseline of
thesubscriptsdown, if specified; this is the element’ssubscriptshift attribute.

superscriptshift A string representing the minimum amount to shift the baseline
of thesuperscriptsup, if specified; this is the element’ssuperscriptshift at-
tribute.

base A MathMLElementrepresenting thebaseof the script. This is the first child of the
element.

prescripts A NodeList representing theprescriptsof the script, which appear in the
order described by the expression(prescript presuperscript)*. This is the same as
traversing the contents of theNodeList returned byNode::childNodes() from
theNodefollowing the<mprescripts/> (if present) to the end of the list.

scripts A NodeList representing thescriptsof the script, which appear in the order
described by the expression(script superscript)*. This is the same as traversing

334

the contents of theNodeList returned byNode::childNodes() from the first
Nodeup to and including theNodepreceding the<mprescripts/> (if present).

numprescriptcolumns The number of script/subscript columns preceding (to the left
of) thebase. Should always be half ofgetprescripts().length()

numscriptcolumns The number of script/subscript columns following (to the right
of) thebase. Should always be half ofgetcripts().length()

Methods

getPreSubScript A convenience method to retrievepre-subscriptchildren of the el-
ement, referenced by column index .Parameters
colIndex Column index ofprescript(where 0 represents the leftmostprescript
column).Return value
Returns theMathMLElementrepresenting thecolIndex-th presubscript (to the left
of thebase, counting from 0 at the far left). Note that this may be theMathMLElement
corresponding to the special element<none/> in the case of a ‘missing’presub-
script (see the discussion of<mmultiscripts>), or it may benull if colIndex
is out of range for the element. This method raises no exceptions.

getSubScript A convenience method to retrievesubscriptchildren of the element,
referenced by column index.Parameters
colIndex Column index ofscript (where 0 represents the leftmostscriptcolumn,
the first to the right of thebase).Return value
Returns theMathMLElementrepresenting thecolIndex-th subscript to the right
of thebase. Note that this may be theMathMLElementcorresponding to the spe-
cial element<none/> in the case of a ‘missing’subscript(see the discussion
of <mmultiscripts>), or it may benull if colIndex is out of range for the
element. This method raises no exceptions.

getPreSuperScript A convenience method to retrievepre-superscriptchildren of
the element, referenced by column index .Parameters
colIndex Column index ofpre-superscript(where 0 represents the leftmostpre-
script column).Return value
Returns theMathMLElementrepresenting thecolIndex-th presuperscript (to the
left of thebase, counting from 0 at the far left). Note that this may be theMathMLElement
corresponding to the special element<none/> in the case of a ‘missing’presuper-
script (see the discussion of<mmultiscripts>), or it may benull if colIndex
is out of range for the element. This method raises no exceptions.

getSuperScript A convenience method to retrievesuperscriptchildren of the ele-
ment, referenced by column index .Parameters
colIndex Column index ofscript (where 0 represents the leftmostscriptcolumn,
the first to the right of thebase)Return value
Returns theMathMLElementrepresenting thecolIndex-th superscript to the right
of thebase. Note that this may be theMathMLElementcorresponding to the spe-
cial element<none/> in the case of a ‘missing’superscript(see the discussion
of <mmultiscripts>), or it may benull if colIndex is out of range for the
element. This method raises no exceptions.

insertPreSubScriptAt A convenience method to insert apre-subscriptchild at the
position referenced by column index. If there is currently apre-subscriptat this
position, it is replaced bynewElement.Parameters
colIndex Column index ofpre-subscript (where 0 represents the leftmostpre-
script column).newElementMathMLElementto be inserted.Return value

335

TheMathMLElementbeing inserted. This method raises no exceptions.
insertSubScriptAt A convenience method to insert asubscriptchild at the position

referenced by column index. If there is currently asubscriptat this position, it is
replaced bynewElement.Parameters
colIndex Column index ofsubscript (where 0 represents the leftmostscript
column, the first to the right of thebase).newElementMathMLElementto be in-
serted.Return value
TheMathMLElementbeing inserted. This method raises no exceptions.

insertPreSuperScriptAt A convenience method to insert apre-superscriptchild
at the position referenced by column index. If there is currently apre-superscript
at this position, it is replaced bynewElement.Parameters
colIndex Column index ofpre-superscript(where 0 represents the leftmostpre-
script column).newElementMathMLElementto be inserted.Return value
TheMathMLElementbeing inserted. This method raises no exceptions.

insertSuperScriptAt A convenience method to insert asuperscriptchild at the po-
sition referenced by column index. If there is currently asuperscriptat this posi-
tion, it is replaced bynewElement.Parameters
colIndex Column index ofsuperscript(where 0 represents the leftmostscript
column, the first to the right of thebase).newElementMathMLElementto be in-
serted.Return value
TheMathMLElementbeing inserted. This method raises no exceptions.

Interface MathMLTableElement

This interface extends theMathMLElementinterface for the MathMLtable or matrixele-
ment<mtable>.

IDL Definition

interface MathMLTableElement: MathMLElement {
attribute DOMString align;
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;
attribute DOMString alignmentscope;
attribute DOMString rowspacing;
attribute DOMString columnspacing;
attribute DOMString rowlines;
attribute DOMString columnlines;
attribute DOMString frame;
attribute DOMString framespacing;
attribute DOMString equalrows;
attribute DOMString equalcolumns;
attribute DOMString displaystyle;
readonly attribute MathMLCollection rows;
MathMLTableRowElement insertRow(in unsigned long index);
void deleteRow(in unsigned long index);

};

336

Attributes

align A string representing the vertical alignment of the table with the adjacent text.
Allowed values are (top | bottom | center | baseline | axis)[rownumber],
whererownumberis between 1 andn (for a table withn rows) or -1 and -n.

rowalign A string representing the alignment of entries in each row. Allowed values are
(top | bottom | center | baseline | axis)+.

columnalign A string representing the alignment of entries in each column. Allowed
values are (left | center | right)+.

groupalign A string specifying how the alignment groups within the cells of each
row are to be aligned with the corresponding items above or below them in
the same column. The string consists of a sequence of braced group alignment
lists. Each group alignment list has the form(left | right | center |
decimalpoint)+ .

alignmentscope A string consisting of the valuestrue or false indicating, for each
column, whether it can be used as an alignment scope.

rowspacing A string of the form(number v-unit)+ representing the space to be
added between rows.

columnspacing A string of the form(number h-unit)+ representing the space to
be added between columns.

rowlines A string specifying whether and what kind of lines should be added between
each row. Allowed values are(none | solid | dashed)+ .

columnlines A string specifying whether and what kind of lines should be added be-
tween each column. Allowed values are(none | solid | dashed)+ .

frame A string specifying a frame around the table. Allowed values are(none | solid
| dashed) .

framespacing A string of the formnumber h-unit number v-unit specifying the
spacing between table and its frame.

equalrows A string with the valuestrue or false .
equalcolumns A string with the valuestrue or false .
displaystyle A string with the valuestrue or false .
rows A MathMLCollection consisting of the rows of the table.

Methods

insertRow A convenience method to Insert a new (empty) row in the table at the speci-
fied index.Parameters
index Index at which to insert row.Return value
Returns theMathMLTableRowElementrepresenting the<mtr> being inserted.
This method raises no exceptions.

deleteRow A convenience method to delete the row of the table at the specified in-
dex.Parameters
index Index of row to be deleted..Return value
None. This method raises no exceptions.

Interface MathMLTableRowElement

This interface extends theMathMLElementinterface for the MathML table or matrix row
element<mtr>.

337

IDL Definition

interface MathMLTableRowElement: MathMLElement {
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;
attribute MathMLCollection cells;
MathMLTableCellElement insertCell(in unsigned long index);
void deleteCell(in unsigned long index);

};

Attributes

rowalign A string representing an override of the rowalign specified in the contain-
ing <mtable>. Allowed values aretop | bottom | center | baseline |
axis .

columnalign A string representing an override of the columnalign specified in the con-
taining<mtable>. Allowed values are(left | center | right)+ .

groupalign [To be changed?]
cells A MathMLCollection consisting of the cells of the row.

Methods

insertCell A convenience method to insert a new (empty) cell in the row.Parameters
index Index at which to insert cell.Return value
Returns theMathMLTableCellElementrepresenting the<mtd>being inserted.
This method raises no exceptions.

deleteCell A convenience method to delete a cell in the row.Parameters
index Index of cell to be deleted.Return value
None. This method raises no exceptions.

Interface MathMLTableCellElement

This interface extends theMathMLElementinterface for the MathML table or matrix cell
element<mtd>.

IDL Definition

interface MathMLTableCellElement: MathMLElement {
attribute DOMString rowspan;
attribute DOMString columnspan;
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;
readonly attribute boolean hasaligngroups;
readonly attribute DOMString cellindex;

};

338

Attributes

rowspan A string representing a positive integer that specifies the number of rows spanned
by this cell. The default is 1.

columnspan A string representing a positive integer that specifies the number of columns
spanned by this cell. The default is 1.

rowalign A string specifying an override of the inherited vertical alignment of this cell
within the table row. Allowed values aretop | bottom | center | baselne
| axis .

columnalign A string specifying an override of the inherited horizontal alignment of
this cell within the table column. Allowed values areleft | center | right .

groupalign A string specifying how the alignment groups within the cell are to be
aligned with those in cells above or below this cell. Allowed values are(left |
center | right | decimalpoint)+ .

hasaligngroups A string with the valuestrue or false indicating whether the cell
contains align groups.

cellindex A string representing the integer index (1 based??) of the cell in its contain-
ing row. [What about spanning cells? How do these affect this value?]

Interface MathMLAlignGroupElement

This interface extends theMathMLElementinterface for the MathMLgroup alignmentel-
ement<maligngroup/> .

IDL Definition

interface MathMLAlignGroupElement: MathMLElement {
attribute DOMString groupalign;

};

Attributes

groupalign A string specifying how the alignment group is to be aligned with other
alignment groups above or below it. Allowed values areleft | center | right
| decimalpoint .

Interface MathMLAlignMarkElement

This interface extends theMathMLElementinterface for the MathMLalignment markele-
ment<malignmark/>.

IDL Definition

interface MathMLAlignMarkElement: MathMLElement {
attribute DOMString edge;

};

Attributes

edge A string specifying alignment on the right edge of the preceding element or the left
edge of the following element. Allowed values areleft | right .

339

Interface MathMLActionElement

This interface extends theMathMLElementinterface for the MathMLenlivening expression
element<maction>.

IDL Definition

interface MathMLActionElement: MathMLElement {
attribute DOMString actiontype;
attribute DOMString selection;

};

Attributes

actiontype A string specifying the action. Possible values includetoggle | statusline
| tooltip | highlight | menu .

selection A string specifying an integer that selects the current subject of the action.

E.1.5 Content Elements

Issue (content-names):We have named all of the content element interfaces
MathMLnameElement where<name>is the MathML element.

Issue (number-seps):We are assuming that there is no predetermined limit on the
number of<sep>separated arguments to a<cn>. Is this true?

Interface MathMLcnElement

The<cn>element is used to specify actual numeric constants.

IDL Definition

interface MathMLcnElement: MathMLElement {
attribute DOMString type;
attribute DOMString base;
readonly attribute unsigned long nargs;
attribute DOMString definitionURL;
MathMLElement getArgument(in unsigned long index);
MathMLElement insertArgument(in unsigned long index, in MathMLelement arg);

};

Attributes

type Values include, but are not restricted to,real | integer | rational | complex-cartesian
| complex-polar | constant .

base A string representing an integer between 2 and 36; the base of the numerical repre-
sentation.

nargs The number of<sep>separated arguments.
definitionURL A URL pointing to an alternative definition

340

Methods

getArgument A convenience method to retrieve an argumentParameters
index Position of the argument in the list of (<sep>-separated arguments. The
first argument is numbered 1.Return value
TheMathMLElementargument in theindex place. This method raises no excep-
tions.

insertArgument A convenience method to insert an argument child at the position ref-
erenced byindex . If there is currently an argument at this position, it is replaced
by arg .Parameters
index Position ofarg in the list of arguments. The first argument is numbered
1.argMathMLElementto be inserted as the argument.Return value
TheMathMLElementinserted. This is the element within the DOM. This method
raises no exceptions.

Interface MathMLciElement

The<ci> element is used to specify a symbolic name.

IDL Definition

interface MathMLciElement: MathMLElement {
attribute DOMString type;
attribute MathMLElement body;
attribute DOMString definitionURL;

};

Attributes

type Values includeinteger , rational , real , float , complex, complex-polar , complex-cartesian ,
constant , any of the MathML content container types (vector , matrix , set ,
list etc.) or their types.

body The content of the identifier.
definitionURL A URL pointing to an alternative definition.

Interface MathMLapplyElement

The<apply> element allows a function or operator to be applied to its arguments.

IDL Definition

interface MathMLapplyElement: MathMLElement {
attribute MathMLElement operator;
readonly attribute unsigned long nargs;
MathMLElement getArgument(in unsigned long index);
MathMLElement insertArgument(in unsigned long index, in MathMLelement arg);

};

341

Attributes

operator The MathML element representing the function or operator that is applied to
the list of arguments.

nargs An integer representing the number of arguments. This does not include the func-
tion or operator itself; note that this causes the return value to be less than the
return fromNode::childNodes().length() .

Methods

getArgument A convenience method to retrieve an argumentParameters
index Position of the argument in the list of arguments. The first argument is
numbered 1.Return value
TheMathMLElementargument at positionindex . This method raises no excep-
tions.

insertArgument A convenience method to insert an argument child at the position ref-
erenced byindex . If there is currently an argument at this position, it is replaced
by arg .Parameters
index Position ofarg in the list of arguments. The first argument is numbered
1.argTheMathMLElementto be inserted as the argument.Return value
The MathMLElementinserted. This is the new element within the DOM. This
method raises no exceptions.

Issue (reln-deprecated):reln has been deprecated, so we do not include an interface(?).

Interface MathMLfnElement

The<fn> element makes explicit the fact that a more general MathML object is intended to
be used in the same manner as if it were a pre-defined function such as<sin> or <plus>.

IDL Definition

interface MathMLfnElement: MathMLElement {
attribute MathMLElement body;
attribute DOMString definitionURL;

};

Attributes

body The MathML object that is to be treated as if it were a pre-defined function.
definitionURL A URL pointing to a definition for this function-type element. Note

that there is no stipulation about the form this definition may take!

Issue (interval-types):There are really two distinct objects here. Should we treat them as
different with a common abstract parent class (interval) and two derived classes
(endpointsInterval and conditionInterval)? We’ve chosen to have a single element that can
be transformed from one type to the other.

Interface MathMLintervalElement

The <interval> element is used to represent simple mathematical intervals on the real
number line. It contains either two child elements which evaluate to real numbers or one
child element which is a condition for defining membership in the interval.

342

IDL Definition

interface MathMLintervalElement: MathMLElement {
attribute DOMString closure;
readonly attribute boolean isCondition;
attribute MathMLconditionElement condition;
attribute MathMLcnElement start;
attribute MathMLcnElement end;

};

Attributes

closure A string with valueopen, closed , open-closed or closed-open . The default
value isclosed .

isCondition true if this interval is defined by a condition rather than by two real
number endpoints.

condition A MathML <condition> element in the case that the interval is defined
using a condition. Setting this attribute has the side effect of setting isCondition
to true. Getting this attribute raises an exception ifisCondition is false .

start A MathMLcnElementrepresenting the real number defining the start of the inter-
val. Setting this attribute has the side effect of settingisCondition to false. If
end has not already been set, it becomes the same asstart until set otherwise.
Getting this attribute raises an exception ifisCondition is true .

end A MathMLcnElementrepresenting the real number defining the end of the interval.
Setting this attribute has the side effect of settingisCondition to false . If
start has not already been set, it becomes the same asend until set otherwise.
Getting this attribute raises an exception ifisCondition is true .

Issue (sep-interface):There is no separate interface for sep. Each element that allows
<sep>has interface methods to access the separated components.

Issue (condition-reln):The 1.01 specification says that a condition contains a single
<reln> element or a single<apply> element. Since<reln> is being deprecated in 2.0,
we have typed the body asMathMLapplyElement. Is this OK? It may be dangerous if
there are documents that use<reln> in this context.

Interface MathMLconditionElement

The <condition> element is used to place a condition on one or more free variables or
identifiers.

IDL Definition

interface MathMLconditionElement: MathMLElement {
attribute MathMLapplyElement condition;

};

Attributes

condition A MathMLapplyElementthat represents the condition.

343

Issue (declare-constructor):The identifier and theconstructor are IDL attributes.
However, theconstructor is optional. Can we specify that an attempt to get the
constructor when it isn’t present returnsnull , or should it raise an exception? Should
either of these be IDL attributes?

Interface MathMLdeclareElement

The <declare> construct has two primary roles. The first is to change or set the default
attribute values for a specific mathematical object. The second is to establish an association
between a ‘name’ and an object.

IDL Definition

interface MathMLdeclareElement: MathMLElement {
attribute DOMString type;
attribute DOMString scope;
attribute unsigned long nargs;
attribute DOMString occurrence;
attribute DOMString definitionURL;
attribute MathMLciElement identifier;
attribute MathMLElement constructor;

};

Attributes

type A string indicating the type of the identifier. It must be compatible with the type
of theconstructor , if a constructor is present. The type is inferred from the
constructor if present, otherwise it must be specified.

scope A string with valueslocal or global .
nargs If the identifier is a function, this attribute specifies the number of arguments the

function takes.
occurrence A string with the valuesprefix , infix or function-model . [What about

postfix ?]
definitionURL A URL specifying an alternative definition. [Is ‘alternative’ correct

here?]
identifier A MathMLciElementrepresenting the name being declared.
constructor An optionalMathMLElementproviding an initialial value for the object

being declared.

Interface MathMLlambdaElement

The<lambda>element is used to construct a user-defined function from an expression and
one or more free variables.

IDL Definition

interface MathMLlambdaElement: MathMLElement {
attribute MathMLElement expression;
readonly attribute unsigned long nvars;
MathMLElement getVariable(in unsigned long index);
MathMLElement insertVariable(in unsigned long index, in MathMLelement variable);

};

344

Attributes

expression TheMathMLElementrepresenting the expression.
nvars An integer representing the number of variables in the expression.

Methods

getVariable A convenience method to retrieve a variable by position.Parameters
index Position of the variable in the list of variables. The first variable is num-
bered 1.Return value
TheMathMLElementrepresenting the variable. This method raises no exceptions.

insertVariable A convenience method to insert an argument at the position refer-
enced byindex . If there is currently an argument at this position, it is replaced
by arg .Parameters
index Position ofarg in the list of arguments. The first argument is numbered
1.variable TheMathMLElementto be inserted as the argument.Return value
The MathMLElementbeing inserted. This is the new element within the DOM.
This method raises no exceptions.

Issue (builtin-interface): I propose that all built in operator, relation, and function
interfaces either derive from or be directly supported through theMathMLbuiltIn
interface. Note that the name does not end with ‘Element’ because this interface does not
correspond to a MathML element. The alternative is to provide an interface for every one
of these elements individually. Again, this interface supports all empty elements that have
only the additionaldefinitionURL attribute. This includes elements that take qualifiers. I
don’t particularly like the name builtin. Any better suggestions? QUESTION: Should we
treat these as objects that own their arguments and provide methods for accessing those
arguments? Similarly for operators taking qualifiers - we could provide access to the
qualifiers. No, I suppose not. It’s the<apply> that owns the arguments. Unless<apply>
does the work of validating the arguments (ensuring the correct number, type, and
checking any other conditions), there’s no easy way to introduce this.

Interface MathMLbuiltIn

This interface supports all of the empty built-in operator, relation, and function elements
that have thedefinitionURL attribute in addition to the standard set of attributes. The
elements supported in order of their appearance in 4.4 are:

• <inverse>
• <compose>
• <ident>
• <quotient>
• <exp>
• <factorial>
• <divide>
• <max>
• <min>
• <minus>
• <plus>
• <power>
• <rem>
• <times>

345

• <root>
• <gcd>
• <and>
• <or>
• <xor>
• <not>
• <implies>
• <forall>
• <exists>
• <abs>
• <conjugate>
• <eq>
• <neq>
• <gt>
• <lt>
• <geq>
• <leq>
• <ln>
• <log>
• <int>
• <diff>
• <partialdiff>
• <union>
• <intersect>
• <in>
• <notin>
• <subset>
• <prsubset>
• <notsubset>
• <notprsubset>
• <setdiff>
• <sum>
• <product>
• <limit>
• <tendsto>
• <sin>
• <cos>
• <tan>
• <sec>
• <csc>
• <cot>
• <sinh>
• <cosh>
• <tanh>
• <sech>
• <csch>
• <coth>
• <arcsin>
• <arccos>
• <arctan>

346

• <mean>
• <sdev>
• <variance>
• <median>
• <mode>
• <moment>
• <determinant>
• <transpose>

IDL Definition

interface MathMLbuiltIn: MathMLElement {
attribute DOMString definitionURL;
attribute DOMString arity;

};

Attributes

definitionURL A string that provides an override to the default semantics, or provides
a more specific definition

arity A string representing the number of arguments. Values include 0, 1, ... andvariable .

Issue (qualifiers):Qualifiers have the standard attributes, so there is no real need for a
separate interface, or in fact to mention them at all in the DOM specification. An interface
that is undefined at present is included here just as a placeholder to remind us that it would
be nice to provide another form of access and control through theMathMLapplyElement
interface.

Interface MathMLqualifierElement

Qualifier elements provide additional data for the operators<int> , <sum>, <product> ,
<diff> , <partialdiff> , <limit> , <log>, <moment>, <min>, <max>, <forall> , <exists> .
The qualifier elements are<lowlimit> , <uplimit> , <bvar>, <degree>, <logbase>, <interval> ,
and<condition> .

IDL Definition

interface MathMLqualifierElement: MathMLElement {
};

Issue (sets):The following interface seems unsatisfactory. The first problem is that<set>
is really two things - a condition set or an explicit list set. Another problem is that it’s not
easy to express the union of two sets as a set (although it’s possible - the problem is that
the union of a condition set and a list set is only awkwardly expressed as a condition set).
The dual nature of the object makes the interface awkward. Access to the elements of an
explicit list set seems problematic. What if another process deletes an element between
the time you determine its position and when you delete it? Perhaps the delete function
should take only a MathMLElement argument as returned by getElement - this would be
the element in the DOM, so there would be no problem of a changing index. NOTE: I’ve
forgotten to provide access to the bvar element(s). How many can we have?

347

Interface MathMLsetElement

The <set> element is the container element which represents a set of elements. The el-
ements of a set can be defined either by explicitly listing the elements, or by using the
<bvar> and<condition> elements.

IDL Definition

interface MathMLsetElement: MathMLElement {
readonly attribute boolean isConditionSet;
attribute MathMLconditionElement condition;
readonly attribute unsigned long nelements;
MathMLElement getElement(in unsigned long index);
MathMLElement addElement(in MathMLelement element);
deleteElement(in unsigned long index);

};

Attributes

isConditionSet This is true if the set is specified using a condition and false if the set
is an explicit list.

condition A MathMLconditionElement that determines the set. Setting this makes the
set causesisConditionSet to be set totrue . Getting this if theisConditionSet
is false (so the set is an explicit list) should raise an exception?

nelements The number of elements if the set is an explicit list. Should this raise an
exception if this is a condition set? Even if the conditions really amount to an
explicit list?

Methods

getElement A convenience method to retrieve an element. There is no default ordering
of the elements. Inserting or deleting an element is not guaranteed to leave the
element in thei -th place unchanged even if the action takes place at a larger
index.Parameters
index Position of the element in the list of elements. The first element is num-
bered 1.Return value
The MathMLElementelement at positionindex . This method raises no excep-
tions.

addElement A convenience method to insert an element. The insertion may change the
indices of any of the other elements. Since element equivalence is not easy to
determine, it seems hard to specify that inserting the same element twice is an
error.Parameters
elementTheMathMLElementto be added to the set.Return value
The MathMLElementbeing added. This is the element within the DOM. This
method raises no exceptions.

deleteElement A convenience method to delete an element. The deletion may change
the indices of any of the other elements.Parameters
index Position of the element in the setReturn value
None This method raises no exceptions.

348

Issue (lists):The following interface seems unsatisfactory. The first problem is that
<list> is really two things - a condition list or an explicit list. Another problem is that it’s
not easy to express the union of two lists as a list (although it’s possible - the problem is
that the union of a condition list and an explicit list set is only awkwardly expressed as a
condition list). The dual nature of the object makes the interface awkward. Should an
exception be raised if an attempt is made to insert an element into a specified position in a
list which is given by a condition? A priori, probably not; but allowing this would
certainly seem to give rise to implementation problems! Access to the elements of an
explicit list seems problematic. What if another process deletes an element between the
time you determine its position and when you delete it? Perhaps the delete function should
take only a MathMLElement argument as returned by getElement - this would be the
element in the DOM, so there would be no problem of a changing index.

Interface MathMLlistElement

The <list> element is the container element which represents a list of elements. Ele-
ments can be defined either by explicitly listing the elements, or by using the<bvar> and
<condition> elements.

IDL Definition

interface MathMLlistElement: MathMLElement {
readonly attribute boolean isConditionList;
attribute MathMLconditionElement condition;
readonly attribute unsigned long nelements;
MathMLElement getElement(in unsigned long index);
MathMLElement addElement(in unsigned long index, in MathMLelement element);
deleteElement(in unsigned long index);

};

Attributes

isConditionList This is true if the<list> is specified using a condition and false if
the<list> is an explicit list.

condition A MathMLconditionElement that determines the<list> . Setting this causes
isConditionList to betrue . Getting this if the list is an explicit list (ifisConditionList
is false) should raise an exception?

nelements The number of elements if the<list> is an explicit list. Should this raise
an exception if this is a condition list? Even if the conditions really amount to an
explicit list?

Methods

getElement A convenience method to retrieve an element.Parameters
index Position of the element in the list of elements. The first element is num-
bered 1.Return value
TheMathMLElementelement at positionindex in the list. This method raises no
exceptions.

349

addElement A convenience method to insert an element.Parameters
index The position in the list at whichelement is to be added.elementThe
MathMLElementto be added to the list.Return value
TheMathMLElementbeing added. This is the new element within the DOM. This
method raises no exceptions.

deleteElement A convenience method to delete an element. The deletion may change
the indices of elements occurring afterindex in the list.Parameters
index Position of the element in the list.Return value
None This method raises no exceptions.

Interface MathMLvectorElement

<vector> is the container element for a vector.

IDL Definition

interface MathMLvectorElement: MathMLElement {
readonly attribute unsigned long ncomponents;
MathMLElement getComponent(in unsigned long index);
MathMLElement insertComponent(in MathMLelement component);
deleteComponent(in unsigned long index);

};

Attributes

ncomponents The number of components in the vector.

Methods

getComponent A convenience method to retrieve a component.Parameters
index Position of the component in the list of components. The first element is
numbered 1.Return value
TheMathMLElementcomponent at the position specified byindex . This method
raises no exceptions.

insertComponent A convenience method to insert a component. If there is already a
component at the position specified byindex , it is replaced.Parameters
componentThe MathMLElementwhich is to be theindex -th component of the
vector.Return value
TheMathMLElementwhich is added. This is the new element within the DOM.
This method raises no exceptions.

deleteComponent A convenience method to delete an element. The deletion changes
the indexes of the following components.Parameters
index Position of the component in the vector. The position of the first component
is 1Return value
None This method raises no exceptions.

Interface MathMLmatrixElement

The<matrix> element is the container element for<matrixrow> ’s.

350

IDL Definition

interface MathMLmatrixElement: MathMLElement {
readonly attribute unsigned long nrows;
MathMLmatrixrowElement getRow(in unsigned long index);
MathMLmatrixrowElement insertRow(in MathMLrowElement row, in unsigned long index);
deleteRow(in unsigned long index);

};

Attributes

nrows The number of rows in the represented matrix.

Methods

getRow A convenience method to retrieve a specified row.Parameters
index Position of the row in the list of rows. The first row is numbered 1.Return
value
The MathMLmatrixrowElementrepresenting theindex -th row. This method
raises no exceptions.

insertRow A convenience method to insert a row. If there is already a row at the speci-
fied index, it is replaced.Parameters
rowMathMLmatrixrowElementto be inserted into the matrix.index Unsigned in-
teger giving the row position at which the row is to be inserted.Return value
TheMathMLmatrixrowElementadded. This is the new element within the DOM.
This method raises no exceptions.

deleteRow A convenience method to delete a row. The deletion changes the indices of
the following rows.Parameters
index Position of the row to be deleted in the list of rowsReturn value
None This method raises no exceptions.

Issue (matrix-vector): matrix, matrixrow, and vector How to we convert between these
elements? The specification states that vectors are equivalent to single column or single
row matrices in appropriate contexts. What about matrixrow’s? It would help
tremendously to have some form of compatibility. Is there any requirement that the
number of elements be the same for each matrixrow of a matrix? If so, do we need
exceptions to handle the cases where there is an attempt to add incompatible rows to a
matrix?

Interface MathMLmatrixrowElement

The<matrixrow> element is the container element for the elements of a<matrix> .

IDL Definition

interface MathMLmatrixrowElement: MathMLElement {
readonly attribute unsigned long nelements;
MathMLElement getElement(in unsigned long index);
MathMLElement insertElement(in MathMLElement element, in unsigned long index);
deleteElement(in unsigned long index);

};

351

Attributes

nelements The number of elements in the row.

Methods

getElement A convenience method to retrieve an element by index.Parameters
index Position of the element in the row. The first element is numbered 1.Return
value
TheMathMLElementelement at indexindex in the row. This method raises no
exceptions.

insertElement A convenience method to insert an element. If there is already an ele-
ment at the specified index, it is replaced by the new element.Parameters
elementTheMathMLElementto be inserted in the row.index The index at which
element is to be inserted in the row.Return value
TheMathMLElementcreated by the insertion. This is the new element within the
DOM. This method raises no exceptions.

deleteElement A convenience method to delete an element. The deletion changes the
indices of the following elements.Parameters
index Position of the element to be deleted in the row.Return value
None This method raises no exceptions.

Issue (computed-values):Computed Values In general, mixing of presentation and
content elements in a single expression is encouraged. Also, I would encourage a bias
toward using content markup as much as possible, even in presentation-only systems. This
seems to mean that we would want computed values for many common constructs. Or
should this be handled in a completely different way?

352

Appendix F

Glossary (Non-Normative)

Several of the following definitions of terms have been borrowed or modified from similar
definitions in documents originating from W3C or standards organisations. See the indi-
vidual definitions for more information.

Argument A child of a presentation layout schema. That is, ‘A is an argument of B’
means ‘A is a child of B and B is a presentation layout schema’. Thus, to-
ken elements have no arguments, even if they have children (which can only
be</malignmark>).

Attribute A parameter used to specify some property of an SGML or XML element type.
It is defined in terms of an attribute name, attribute type, and a default value. A
value may be specified for it on a start-tag for that element type.

Axis The axis is an imaginary alignment line upon which a fraction line is centered. Often,
characters that can stretch such as parentheses, brackets, braces, summation signs
and so forth„ and operators are centered on the axis and are symmetric with
respect to it.

Baseline The baseline is an imaginary alignment line upon which a glyph without a de-
scender rests. The baseline is an intrinsic property of the glyph (namely a hori-
zontal line). Often baselines are aligned (joined) during typesetting.

Black box The bounding box of the actual size taken up by the viewable portion (ink) of
a glyph or expression.

Bounding box The rectangular box of smallest size, taking into account the constraints
on boxes allowed in a particular context, which contains some specific part of a
rendered display.

Box A rectangular plane area considered to contain a character or further sub-boxes, used
in discussions of rendering for display. It is usually considered to have a baseline,
height, depth and width.

Cascading Style Sheets (CSS)A mechanism that allows authors and readers to attach
style (e.g. fonts, colors and spacing) to HTML and XML documents.

Character A member of a set of identifiers used for the organization, control or represen-
tation of text.

Character Data (CDATA) A SGML/XML data type for raw data which does not include
markup or entity references. Attributes of typeCDATAmay contain entity refer-
ences. These are expanded by an XML processor before the attribute value is
processed asCDATA.

Character or expression depth Distance between the baseline and bottom edge of the
character glyph or expression. Also known as the descent.

353

Character or expression height Distance between the baseline and top edge of the char-
acter glyph or expression. Also know as the ascent.

Character or expression width Horizontal distance taken by the character glyph as indi-
cated in the font metrics, or the total width of an expression.

Condition A MathML content element used to place a mathematical condition on one or
more variables.

Contained (element A is contained in element B)A is part of B’s content.
Container (Constructor) A non-empty MathML Content element that is used to con-

struct a mathematical object such as a number, set, or list.
Content elementsMathML elements which explicitly specify the mathematical meaning

of a portion of a MathML expression (defined in chapter4).
Content token element Content element having onlyPCDATA, <sep/> and presentation

expressions as content. Represents either an identifier (<ci>) or a number (<cn>).
Context (of a given MathML expression) Information provided during the rendering of

some MathML data to the rendering process for the given MathML expression;
especially information about the MathML which surrounds that expression.

Declaration An instance of the declare element.
Depth (of a box) The distance from the baseline of the box to the bottom edge of the box.
Direct subexpression (of a MathML expression ‘E’) A subexpression which is directly

contained in E.
Directly contained (element A in element B)A is a child of B (as defined in XML); i.e.

A is contained in B, but not in any element which is itself contained in B.
Document Object Model A model in which the document or Web page is treated as an

object repository. This model is developed by the DOM Working Group (DOM)
of the W3C.

Document Style Semantics and Specification Language(DSSSL)A method of specify
the formatting and transformation of SGML documents. ISO International Stan-
dard 10179:1996.

Document Type Definition (DTD) In SGML or XML a formal definition of the elements
and the relationship among the data elements (the structure) for a particular type
of document.

Em A font-relative measure encoded by the font. Before electronic typesetting, anemwas
the width of an ‘M’ in the font. In modern usage, anemis either specified by the
designer of the font or is taken to be the height (point size) of the font. Em’s are
typically used for font-relative horizontal sizes.

Ex A font-relative measure that is the height of an ‘x’ in the font.exs are typically used
for font-relative vertical sizes.

Height (of a box) The distance from the baseline of the box to the top edge of the box.
Inferred mrow An <mrow>element which is ‘inferred’ around the contents of certain lay-

out schemata when they have other than exactly one argument. Defined precisely
in section3.1.5

Embedded object Embedded objects such as Java applets, Microsoft Component Object
Model (COM) objects (e.g. ActiveX Controls and ActiveX Document embed-
dings), and plug-ins which reside in an HTML document.

Embellished operator An operator, including any ‘embellishment’ it may have, such as
superscripts or style information. The ‘embellishment’ is represented by a layout
schema which contains the operator itself. Defined precisely in section3.2.4.

Entity reference A sequence of ASCII characters of the form&name;which represents
some other data, typically a non-ASCII character, a sequence of characters, or an

354

external source of data, e.g. a file containing a set of standard entity definitions
such as ISOLat1.

Extensible Markup Language (XML) A simple dialect of SGML intended to enable generic
SGML to be served, received, and processed on the Web.

Fences In typesetting, bracketing tokens like parentheses, braces, and brackets which usu-
ally appear in matched pairs.

Font A particular collection of glyphs of a typeface of a given size, weight and style, eg
‘Times Roman Bold 12 point’.

Glyph The actual shape (bit pattern, outline) of a character image.
Input syntax layer A planned MathML extension mechanism designed to facilitate hand

entry of MathML content.
Indirectly contained A is contained in B, but not directly contained in B.
Instance of MathML A single instance of the toplevel element of MathML, and/or a sin-

gle instance of embedded MathML in some other data format.
Inverse function A mathematical function that, when composed with the original function

acts like an identity function.
Lambda Expression A mathematical expression used to define a function in terms of

variables and an expression in those variables.
Layout schema (plural: schemata)A presentation element defined in Sections 3.3-3.6,

other than the empty elements defined there (i.e. not the elements defined in sec-
tion3.5.5(about alignment) or the empty elements<none/>and<mprescripts/>
defined in section3.4.7 (about <mmultiscripts>). The layout schemata are
never empty elements (though their content may contain nothing in some cases),
are always expressions, and all allow any MathML expressions as arguments
(except for argument count requirements and the requirement for a certain empty
element in<mmultiscripts>).

Mathematical Markup Language (MathML) The markup language (specified in this
document) for describing mathematical expression structure, together with a math-
ematical context.

MathML element An XML element which forms part of the logical structure of a MathML
document.

MathML expression (within some well-formed MathML data) A single instance of a
presentation element, except for the empty elements<none/>or<mprescripts/>
or an instance of<malignmark/> within a token element (defined below); or a
single instance of certain of the content elements (see chapter4 for a precise
definition of which ones).

Multi-purpose Internet Mail Extensions (MIME) A set of specifications that offers a
way to interchange text in languages with different character sets, and multi-
media content among many different computer systems that use Internet mail
standards.

Operator, content element A mathematical object that is applied to arguments using the
apply element.

Operator, an <mo>element Used to represent ordinary operators, fences, separators in
MathML presentation. (<mo>, a token element, is defined in section3.2.4).

OpenMath A general representation language for communicating mathematical objects
between application programs.

Parsed Character Data (PCDATA) An SGML/XML data type for raw data occurring in
a context where text is parsed and markup (for instance entity references and
element start/end tags) is recognised.

355

Pt Point (pt), 1 pt = 1/72 inch. Points are typically used to specify absolute sizes for font-
related objects.

Pre-defined function One of the empty elements defined in section4.2.3and used with
the apply construct to build function applications.

Presentation elementsMathML tags and entities intended to express the syntactic struc-
ture of mathematical notation (defined in chapter3).

Presentation layout schemaA presentation element that can have other MathML ele-
ments as content.

Presentation token elementA presentation element that can contain only parsed charac-
ter data or the<malignmark/> element.

Qualifier A MathML content element that is used to specify the value of a specific named
parameter in the application of selected pre-defined functions.

Relation A MathML content element used to construct expressions such asa < b.
Render Faithfully translate into application-specific form allowing native application op-

erations to be performed.
Scope of a DeclarationThe portion of a MathML document to over which a particular

definition is active.
Selected subexpression (of an<maction> element) The argument of an<maction>el-

ement (a layout schema defined in section3.6) which is (at any given time) ‘se-
lected’ within the viewing state of a MathML renderer, or by theselection
attribute when the element exists only in MathML data. Defined precisely in the
abovementioned section.

Spacelike (MathML expression) A MathML expression which is ignored by the sug-
gested rendering rules for MathML presentation elements when they determine
operator forms and effective operator rendering attributes based on operator po-
sitions in <mrow> elements. Defined precisely in section3.2.6.

Standard Generalized Markup Language (SGML) An ISO standard (ISO 8879:1986)
which provides a formal mechanism for the definition of document structure via
DTDs (Document Type Definitions), and a notation for the markup of document
instances conforming to a DTD.

Subexpression (of a MathML expression ‘E’) A MathML expression contained (directly
or indirectly) in E’s content.

Suggested rendering rules for MathML presentation elementsDefined throughout chap-
ter 3; the ones which use other terms defined here occur mainly in section3.2.4
and in section3.6.

TEX A software system written by Donald Knuth for typesetting documents.
Token element Presentation token element or a Content token element. (See above.)
Top-level element (of MathML) math(defined in chapter7).
Typeface A typeface is a specific design of a set of letters, numbers and symbols, such as

‘Times Roman’ or ‘Chicago’.
Well-Formed MathML data MathML data which (1) conforms to the MathML DTD; (2)

obeys the additional rules defined in the MathML standard for the legal contents
and attribute values of each MathML element; (3) Satisfies the EBNF grammar
for content elements.

Width The distance from the left edge of the box to the right edge of the box.
Extensible Style Language (XSL)A style language for XML developed by W3C. See

XSL FO and XSLT.
Extensible Style Language Formatting Objects (XSL FO)An XML vocabulary to ex-

press formatting, which is a part of XSL.

356

Extensible Style Language Transformation (XSLT) A language to express the transfor-
mation of XML documents into other XML documents.

357

Appendix G

Working Group Membership (Non-Normative)

The W3C Math Working Group is presently co-chaired by Patrick Ion of the AMS, and
Angel Diaz of IBM. Contact the co-chairs if you are interested in joining the group. For the
present membership see its working grouphome page.

Members of the Working Group responsible for MathML 2.0 are:

• Ron Ausbrooks, Mackichan Software, Las Cruces NM, USA
• Laurent Bernardin, Waterloo Maple, Inc., Waterloo ON, CAN
• Stephen Buswell, Stilo Technologies, Cardiff, UK
• David Carlisle, NAG Ltd., Oxford, UK
• Stéphane Dalmas, INRIA, Sophia Antipolis, FR
• Stan Devitt, Radical Flow Inc., Waterloo ON, CAN
• Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
• Ben Hinkle, Waterloo Maple, Inc., Waterloo ON, CAN
• Stephen Hunt, MATH.EDU Inc., Champaign IL, USA
• Douglas Lovell, IBM Hawthorn Research, Yorktown Heights NY, USA
• Patrick Ion, Mathematical Reviews (American Mathematical Society), Ann Ar-

bor MI, USA
• Robert Miner, Geometry Technologies Inc., Minneapolis MN, USA
• Ivor Philips, Boeing, Seattle WA, USA
• Nico Poppelier, Salience, Utrecht, NL
• Dave Raggett, W3C (Hewlett Packard), Bristol, UK
• T.V. Raman, IBM Almaden, Palo Alto CA, USA
• Murray Sargent III, Microsoft, Redmond WA, USA
• Neil Soiffer, Wolfram Research Inc., Champaign IL, USA
• Irene Schena, Universitá di Bologna, Bologna, IT
• Paul Topping, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN

Earlier active members of this second W3C Math Working Group have included:

• Sam Dooley, IBM Research, Yortown Heights NY, USA
• Robert Sutor, IBM Research, Yortown Heights NY, USA
• Barry MacKichan, MacKichan Software, Las Cruces NM, USA

At the time of release of MathML 1.0 the Math Working Group was co-chaired by Patrick
Ion and Robert Miner, then of the Geometry Center. Since that time several changes in
membership have taken place. In the course of the update to MathML 1.01, in addition to
people listed in the original membership below, corrections were offered by David Carlisle,
Don Gignac, Kostya Serebriany, Ben Hinkle, Sebastian Rahtz, Sam Dooley and others.

358

http://www.w3.org/Math/

Members of the Math Working Group responsible for the finished MathML 1.0 were:

• Stephen Buswell, Stilo Technologies, Cardiff, UK
• Stéphane Dalmas, INRIA, Sophia Antipolis, FR
• Stan Devitt, Maplesoft Inc., Waterloo ON, CAN
• Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
• Brenda Hunt, Wolfram Research Inc., Champaign IL, USA
• Stephen Hunt, Wolfram Research Inc., Champaign IL, USA
• Patrick Ion, Mathematical Reviews (American Mathematical Society), Ann Ar-

bor MI, USA
• Robert Miner, Geometry Center, University of Minnesota, Minneapolis MN, USA
• Nico Poppelier, Elsevier Science, Amsterdam, NL
• Dave Raggett, W3C (Hewlett Packard), Bristol, UK
• T.V. Raman, Adobe Inc., Mountain View CA, USA
• Bruce Smith, Wolfram Research Inc., Champaign IL, USA
• Neil Soiffer, Wolfram Research Inc., Champaign IL, USA
• Robert Sutor, IBM Research, Yorktown Heights NY, USA
• Paul Topping, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN
• Ralph Youngen, American Mathematical Society, Providence RI, USA

Others who had been members of the W3C Math WG for periods at earlier stages were:

• Stephen Glim, Mathsoft Inc., Cambridge MA, USA
• Arnaud Le Hors, W3C, Cambridge MA, USA
• Ron Whitney, Texterity Inc., Boston MA, USA
• Lauren Wood, Softquad, Surrey BC, CAN
• Ka-Ping Yee, University of Waterloo, Waterloo ON, CAN

359

Appendix H

Changes (Non-Normative)

This appendix summarises the changes with respect to the preceding version (1.01) of the
MathML Specification.

• changes to chapter1 (upto revision 1.10)
– none

• changes to chapter2 (upto revision 1.13)
– added reference to XML recommendation
– removed error in description of allowed character in attribute values

• changes to chapter3 (upto revision 1.15)
– the attributedefinitionURL can have a URL or a URI as value
– added sections aboutmencloseandmeqno
– added attributesbeveled, numalign anddenomalign to mfrac, and up-

dated text accordingly
• changes to chapter4 (upto revision 1.14)

– discuss changed use ofapply , and the deprecation ofreln
– introducecsymbol and discuss the relation withfn
– introduce the new category of elementary classifical functions
– introduce new content elementsarg , real , imaginary , equivalent , approx,

divergence , grad, curl , laplacian , size , vectorproduct , scalarproduct
andouterproduct

• changes to chapter5 (upto revision 1.10)
– added description of content-faithful transformation
– usecsymbol and notfn in examples
– define list of content that can appear in presentation
– add attributexref for cross-referencing purposes

• changes to chapter6 (upto revision 1.6)
– none

• changes to chapter7 (upto revision 1.11)
– rewrote introductory text in section 7.2 and all text of section 7.2.1
– rewrote many statements in future tense to present or past tense
– reworked the text in acknowledgement of the fact that the top-level and

interface elements for MathML are now in practice the same
– rewrote the text about linking in accordance with the new XLink draft
– revisited the material about interactions with embedded renderers to reflect

the current state of DOM implementation
• changes to chapter8 (upto revision 1.1)

– this is a completely new chapter

360

• changes to appendixA (upto revision 1.8)
– renamed attributeoccurence to occurrence
– added global attributexref

• changes to appendixB (upto revision 1.7)
– none

• changes to appendixC (upto revision 1.5)
– none

• changes to appendixD (upto revision 1.8)
– none

• changes to appendixE (upto revision 1.9)
– this is a completely new appendix

• changes to appendixF (upto revision 1.8)
– added entries for XSL, XSLT and XSL FO

• changes to appendixG (upto revision 1.8)
– all members of first and second Math working group are listed

• changes to appendixH (upto revision 1.7)
– this appendix is completely new, and is based on the logs obtained from

CVS
• changes to appendixI (upto revision 1.6)

– added entry for XML recommendation
• general changes

– text of specification now in XML form, with HTML rendering by means of
XSLT, and PDF rendering by means of XSLT and TEX

– fixed errors in spelling and notation
– non-normative formula images replaced by HTML equivalents where pos-

sible
– improved cross-referencing

361

Appendix I

References (Non-Normative)

362

Bibliography

[Bray1998] Bray, Tim, Jean Paoli and C.M. Sperberg-Mcqueen;Extensible Markup Lan-
guage 1.0, 10 February 1998, http://www.w3.org/TR/1998/REC-xml-19980210.

[Buswell1996] Buswell, S., Healey, E.R. Pike, and M. Pike;SGML and the Semantic
Representation of Mathematics, UIUC Digital Library Initiative SGML Mathemat-
ics Workshop, May 1996 and SGML Europe 96 Conference, Munich 1996.

[Cajori1928] Cajori, Florian;A History of Mathematical Notations, vol. I & II. Open Court
Publishing Co., La Salle Illinois, 1928 & 1929 republished Dover Publications Inc.,
New York, 1993, xxviii+820 pp. ISBN 0-486-67766-4 (paperback).

[Carroll1871] Carroll, Lewis [Rev. C. L. Dodgson];Through the Looking Glass and What
Alice Found There, Macmillian & Co., 1871.

[Chaudry1954]Chaudry, T.W., P.R.Barrett, and C.Batey;The Printing of Mathematics.
Aids for authors and editors and rules for compositors and readers at the University
Press, Oxford, Oxford University Press, London, 1954, ix+105 pp.

[Drucker1997] Drucker,Peter; Forbes, 10 Mar 1997 [quoted by Gene Klotz].
[Higham1993] Higham, Nicholas J.,Handbook of writing for the mathematical sciences.

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1993.
xii+241 pp. ISBN: 0-89871-314-5.

[Knuth1986] Knuth, Donald E.,The TEXbook. American Mathematical Society, Provi-
dence, RI and Addison-Wesley Publ. Co., Reading, MA, 1986, ix+483 pp. ISBN:
0-201-13448-9.

[LieBos1996] Lie, Håkon Wium and Bert Bos; Cascading Style Sheets, level 1, W3C Rec-
ommendation, 17 Dec 1996, http://www.w3.org/pub/WWW/TR/REC-CSS1.

[OpenMath1996]OpenMath Release 1, December 1996; www.openmath.org.
[Pierce1961]Pierce, John R.;An Introduction to Information Theory. Symbols, Signals

and Noise., Revised edition ofSymbols, Signals and Noise: the Nature and Process
of Communication(1961). Dover Publications Inc., New York, 1980, xii+305 pp.
ISBN 0-486-24061-4.

[Poppelier1992]Poppelier, N.A.F.M., E. van Herwijnen, and C.A. Rowley;Standard
DTD’s and Scientific Publishing, EPSIG News 5 (1992) #3, September 1992, 10-19.

[HTML40] Raggett, Dave, Arnaud Le Hors and Ian Jacobs; HTML 4.0 Specification, 18
Dec 1997, http://www.w3.org/TR/REC-html40/; section on data types.

[Spivak1986] Spivak, M. D.The Joy of TEX A gourmet guide to typesetting with the AMS-
TEX macro package. American Mathematical Society, Providence, RI, MA 1986,
xviii+290 pp. ISBN: 0-8218-2999-8.

[Swanson1979]Swanson, Ellen,Mathematics into type. Copy editing and proofreading of
mathematics for editorial assistants and authors. Revised edition. American Mathe-
matical Society, Providence, R.I., 1979. x+90 pp. ISBN: 0-8218-0053-1.

363

	Mathematical Markup Language Specification
	 Introduction
	 Mathematics and its Notation
	 Origins and Goals
	 The History of MathML
	 Limitations of HTML
	 Requirements for Mathematics Markup
	 Design Goals of MathML

	 The Role of MathML on the Web
	 Layered Design of Mathematical Web Services
	 Relation to Other Web Technology

	 MathML Fundamentals
	 MathML Overview
	 Taxonomy of MathML Elements
	 Expression Trees and Token Elements
	 Presentation Markup
	 Content Markup
	 Mixing Presentation and Content

	 Some MathML Examples
	 Presentation Examples
	 Content Examples
	 Mixed Markup Examples

	 MathML Syntax and Grammar
	 An XML Syntax Primer
	 Children versus Arguments
	 MathML Attribute Values
	 Attributes Shared by all MathML Elements
	 Collapsing Whitespace in Input

	 Presentation Markup
	 Introduction
	 What Presentation Elements Represent
	 Terminology Used In This Chapter
	 Required Arguments
	 Elements with Special Behaviors
	 Summary of Presentation Elements

	 Token Elements
	 Attributes common to token elements
	 Identifiers
	 Numbers
	 Operator, Fence, Separator or Accent
	 Text
	 Space
	 String Literal
	 <mchar/> -- refering to non-ASCII characters
	 <mglyph/> -- adding new characters to MathML

	 General Layout Schemata
	 Horizontally Group Any Number of Subexpressions
	 Fractions
	 Radicals
	 Style Change
	 Error Message
	 Adjust Space Around Content
	 Making Content Invisible
	 Content Inside Pair of Fences
	 Enclose Content Inside Notation

	 Script and Limit Schemata
	 Subscript
	 Superscript
	 Subscript-superscript Pair
	 Underscript
	 Overscript
	 Underscript-overscript Pair
	 Prescripts and Tensor Indices

	 Tables and Matrices
	 Table or Matrix
	 Row in Table or Matrix
	 Labeled Row in Table or Matrix
	 Entry in Table or Matrix
	 Alignment Markers

	 Enlivening Expressions
	 Bind Action to Subexpression

	 Content Markup
	 Introduction
	 The Intent of Content Markup
	 The Scope of Content Markup
	 Basic Concepts of Content Markup

	 Content Element Usage Guide
	 Overview of Syntax and Usage
	 Containers
	 Functions, Operators and Qualifiers
	 Operators taking Qualifiers
	 Relations
	 Conditions
	 Syntax and Semantics
	 Semantic Mappings
	 MathML element types

	 Content Element Attributes
	 Content Element Attribute Values
	 Attributes Modifying Content Markup Semantics
	 Attributes Modifying Content Markup Rendering

	 The Content Markup Elements
	 Token Elements
	 Basic Content Elements
	 Arithmetic, Algebra and Logic
	 Relations
	 Calculus and Vector Calculus
	 Theory of Sets
	 Sequences and Series
	 Elementary classical functions
	 Statistics
	 Linear Algebra
	 Semantic Mapping Elements

	 Combining Presentation and Content Markup
	 Why Two Different Kinds of Markup?
	 Mixed Markup
	 Reasons to Mix Markup
	 How to Mix Markup
	 Presentation Markup Contained in Content Markup
	 Content Markup Contained in Presentation Markup

	 Parallel Markup
	 Top-level Parallel Markup
	 Fine-grained Parallel Markup
	 Parallel Markup via Cross-References: id and xref

	 Tools, Style Sheets and Macros for Combined Markup
	 Notational Style Sheets
	 Content-Faithful Transformations
	 Style Sheets for Extensions

	 Entities, Characters and Fonts
	 Introduction
	 The Intent of Entity Names
	 The STIX Project
	 Entity Listings
	 Non-Marking Entities
	 Printing Entity Listings
	 Special Constants
	 Alphabetical Lists
	 ISO Entity Set Groupings
	 Additional Entity Set Grouping

	 The MathML Interface
	 Embedding MathML in HTML
	 The Top-Level math Element
	 Requirements for a MathML Browser Interface
	 Invoking Embedded Objects as Renderers
	 Invoking Other Applications
	 Mixing and Linking MathML and HTML

	 Generating, Processing and Rendering MathML
	 MathML Compliance
	 Handling of Errors
	 An Attribute for Unspecified Data

	 Future Extensions
	 Macros and Style Sheets
	 XML Extensions to MathML

	 Document Object Model for MathML
	 Introduction
	 Scope of Level 1 and Level 2

	 Parsing MathML
	 The MathML DTD

	 Operator Dictionary
	 Format of operator dictionary entries
	 Indexing of operator dictionary
	 Choice of entity names
	 Notes on lspace and rspace attributes
	 Operator dictionary entries

	 Content Markup Validation Grammar
	 Content Element Definitions
	 About Content Markup Elements
	 The Structure of an MMLdefinition.

	 Definitions of MathML Content Elements
	 Leaf Elements
	 Basic Content Element
	 Arithmetic, Algebra and Logic
	 Relations
	 Calculus
	 Theory of Sets
	 Sequences and Series
	 Trigonometry
	 Statistics
	 Lineary Algebra

	 Document Object Model for MathML (Non-Normative)
	 IDL Interfaces
	 Miscellaneous Object Definitions
	 Generic MathML Elements
	 Specific Style Methods (currfontsize, etc.)
	 Presentation Elements
	 Content Elements

	 Glossary (Non-Normative)
	 Working Group Membership (Non-Normative)
	 Changes (Non-Normative)
	 References (Non-Normative)

