Wsrv WD-xsl-19981216

ot

Extensible Stylesheet Language (XSL)
Version 1.0

World Wide Web Consortium Working Draft 16-Dec-98

This version

http://ww. w3. org/ TR/ 1998/ WD- xsl| - 19981216
http://ww. w3. org/ TR/ 1998/ WD- xsl - 19981216. xni
http://ww. w3. org/ TR/ 1998/ WD- xsl - 19981216. ht ni
http://ww. w3. org/ TR/ 1998/ WD- xsl - 19981216. pdf

Latest version
http://ww. w3. or g/ TR WD- xsl

Previous versions
http://ww. w3. org/ TR/ 1998/ WD- xsl - 19980818

Editors

James Clark (jjc@jclark.com) [Tree Construction]
Stephen Deach, Adobe (sdeach@adobe.com) [Formatting Objects]

Status of this document

ThisisaW3C Working Draft for review by W3C members and other interested parties. This adds additional
functionality to what was described in the previous draft, however the basic design of the previous draft remains
unchanged. It is a draft document and may be updated, replaced, or obsoleted by other documents at any time. The
XSL Working Group will not allow early implementation to constrain its ability to make changes to this
specification prior to final release. It isinappropriate to use W3C Working Drafts as reference material or to cite
them as other than ‘work in progress . A list of current W3C working drafts can be found at http://mwww.w3.org/TR.

Comments may be sent to xd-editors@w3.org. Public discussion of XSL takes place on the XSL-List mailing list.

Abstract

XSL isalanguage for expressing styleshests. It consists of two parts:
1. alanguagefor transforming XML documents, and
2. an XML vocabulary for specifying formatting semantics.

An XSL stylesheet specifies the presentation of a class of XML documents by describing how an instance of the
classistransformed into an XML document that uses the formatting vocabulary.

This page intentionally left blank.

Table of Contents

L. OVEI VIBIW ..ttt ettt ettt h bbbt s bt e s bt e e bt e sh e e e bt e e Rt e ab e e s R e e e Ee e eE e e nE e e aR e e aE e e e R e e nb e e nReenReenbeenReenreenreen 1
2. TTEE CONSIIUCTION ...ttt ettt et b e bbbt e s b e e s b e e s b e e s b e sb e e sbe e sbe e sbe e saeesb e e nneennnennn s 1
2.1 OVEIVIBW ...ttt ettt b et b et e s bt e s b e s bt e bt e e b e e eh e e b e e e R e e e be e e b e e e Re e e b e e nbe e e he e nbe e ebe e nReenbeenneennnenneas 1
2.2 SEYIESNEEL SITUCIUIE ...ttt ettt ettt ettt ettt e bt e et et e sbe e e sate e sabeesabeeebeeesbeeesneeesnneans 2
2.3 ProceSSiNg MOGEooiiiiiiii ettt b et e b e e et e e nae e nare e snneaan 4
2 A DEEAIMOUE ..ottt nn e e nnes 4
241 ROOEINOOEeeteeteeitee sttt b bbb e s b e nb e sb e sbe e s b e e sbe e nbeesneenneenneas 4

242 EI@MENE NOUES........coiieeitiesiee et sbe e sne e 5

2. 4.3 ATIDULE NOUES.......coieeeieteeee bbb 5

2. 4.4 NaAMEIPACE NOGES. ... eeiiteee ettt ettt et sbe e et e e st e e s b e e e sbe e e saee e snbeesabeeenees 6

2.4.5 Processing INStrUCtioN NOOESooiviiiiiieiie ettt 6

2.4.6 COMMENE NOUESccveetieitieitee sttt ettt b b e b e b e e b e sbe e be e sbe e e e sseenneenneas 6

247 TEXEINOUES ..ottt b bt b e b e s b e sb e e sbe e s be e nbe e nbeesseesneennes 6

2.4.8 WhiIteSDACE SEPPING .- veeeveeeiuteeiieeeteeesteeesteeesateesbe e s be e e sbeeesaeeesabeasbeeasbeeesaeeesnbeesnreeenees 6

25 TEMPIAIE RUIES..... ..ottt ettt et et b et e saee e s be e sabe e e beeesbeeesareesnbeaans 7
2.5.1 Conflict Resolution for Template RUIES..........cooueiiiiiiii e 8

252 BUilt-in TEMPIALE RUIES......cooiieee ettt 8

2B PaITEIMIS ...ttt e e 8
2.6. 1 INEFOTUCLION ...ttt sttt ettt b b b e b e b e sb e sbe e b e e sbe e sneenneesneennes 8

2.6.2 SyNtax and SEMENTICScueieiiie ittt sb e sab et e e s be e e sbe e e saeeesnbeeaa 10

2.7 TEMPIBLES. ...ttt bt h et e s et e e st et e ke e e ebee e sabe e sabe e e be e e eaee e enbeeanbeeeees 15
2.7 L OVEIVIEIW ...ttt ettt r bbbt e b e e bt e b e e bt bt e bt e bt e r e e ne b e n e e r e eane s 15

2.7.2 Creating Elements and AITDULEScooiiiiiiee e 16

2.7.3 CrEAING TEXL. .. ueee ittt ettt ettt ettt et et e e be e e sbe e e sabe e sabeesbeeeabeeesaeeesnbeaaas 18

2.7.4 Creating Processing INSIIUCLIONSveiivereiieieiieesieesiee ettt et see e saeeesneeean 18

2.7.5 Creating COMIMENTS ..ottt ettt ettt e sbe et e e e sbe e e sabe e sbeesbeeesbeeesaeeesnbeaaas 18

2.7.6 Processing With Templat@ RUIES.cooiiiiiiie e 19

2.7.7 DITECE PIOCESSING eeiteteteeeitee ettt e stee et e bt saee e sabe e sbe e e abe e e sbeeesabeesabeesbeeeabeeesneeesnneaans 20

2.7.8 ProCeSSING MOES.ccouueiiiiieiii ettt ettt ettt sbe e be e st e e s be e e sbe e e saeeesnbeaaas 21
AR B o 1 1] o TSRO RPOURRTRI 21
2.7.20 NUMDBEITNG. ..ttt ettt sb et e e st e e s be e e sbe e e saeeesnbeaaas 23
2.7.11 Conditionalswithin @ Template. ..o 27
2.7.02 COPYING ettt ettt ettt et ettt et e e e bt e e ebee e eaee e sabe e eabe e e be e e abeeeeabeeeabe e e beeeabeeeaneeeanreaan 28
2.7.13 Computing GENErater TEXLcoouveeiiiiiiie ettt sae e saee e 29
2.7.04 NG CONSLBNLS......eeiuteeeteieitieeeiteeeieeete e stee e saeeesabeasbeeaabeeesbeeessseesabeeabeeesbeeesaeeesnreasns 31

2.7 A5 IMIBCIOS. ..ottt b e 31

2.8 ComMDBINING SEYTESNEELS........eeiiiiiiii ettt ettt e st e e be e e sae e e snbe e s beeeees 32
2.8.1 SEYIESNEEE TMPOIT.....eeeieee ettt et et e st e e e sbe e e saee e sneeans 32

2.8.2 SLYIESNEEE INCIUSION ...ttt e sbe e e saee e sneeea 33
2.8.3EMDEdding SEYIESNEELSeiiiiie ittt 33

2 EXEONSIDIITY .ottt 34
G o 0 0= 1 Vo SRR PR PR 34
L INEFOUUCTION ...ttt ettt r bbbt bttt r e e b e bt e b e e r e e reenn e e ne e neenne e 34
3.2 FOrMAating IMOOEeeiieeieiee ettt b e st e st e e rbe e e sae e e sabe e sbeeenees 34
2. L INEFOTUCTION ...ttt et r e et r e e et ne b e e r e e nne e 35

3.2.2 RECLANQUIBN BIEBS......cciteiitiieitie et e etee et e st e saee e sabe e sbe e ettt e sbe e e sabeesabeesbeeesbeeesaeeesnbeans 35

3.2.3 DiISPIAY-SPBCES. ..o eteeetee et ettt ettt et b et a bbb e b e ehe e eabe e s be e e be e e abee e aareeanreaaa 37

.24 INITINE-GBCES. ...t etee ettt ettt ettt e bt sae e e sabe e st e e e be e e abe e e aabe e sabeeanbeeeabeeesneeeanbeaan 38

3. 2.5 AT CONTAINEYS.teeteeteeite ettt ettt b bbbt bbb r e et n e e r e ne b e re e reenne s 38

326 BIOCK-IrE8S.....ccteeteete ettt 38

2.7 LINE-BIEBS. ..ottt ettt ettt ettt b et b et e b e e bbbt e ne e n e e n e e ne e 39

2.8 INHNE-ArEBS.ccveetiete ettt e b e 40

3.2.9 Inline-area placement Within aliNE-ara...........cccee i iiiiiiii e 40

3.2.10 Line-area placement within ablock-area............coceeiiiiiiiii e 40

3.2.11 BIOCK-8rea PlACEMENTottt ettt sbe e st e e sbe e e saee e sneeaaa 41
3.3 FOrmatting ObJECES SUMMIBIYeiiiteieiuieeiteeateeerteeesteeesbeesbee e sbe e e saee e sabeesbeeesbeeesaeeesnbeesnreeenees 41
3.4 FOrMELING ODJECES ...ttt ettt ettt ettt et e st e e e b e e e ebe e e sabe e sabeeebe e e eaeeesnbeesnbeeenees 42

3.4.1 T0:D8SIC-PAgE-SEQUENCEee ettt ettt ettt e et e e sbe e e saee e snbeaa 42

A2 TOIDIOCK ...t 43

A3 TOICNAIBCEEN ...ttt 44

4.4 T0:dISPlay-graphiC.....ccoueiiii et 46

BASTOIAIFPIAY-TINK ... 47

A6 TOIISPIAY-TUIE ...ttt e sbe e saee e sareea 47

347 TO:AI SPIAY-SEUENCE. ...ttt ettt sb ettt e e sbe e e saeeesnreea 49

4.8 TOININE-GIrAPNIC ...ttt ettt saee e nnre e 49

A9 FOUNINETINK. ..t 50

A L0 TOHNINETUIR. ... e 51

3411 FOINIINE-SEOUENCE. ... ettt ettt ettt ettt ettt e bt e e sbe e e sab e e s abe e sbe e e sbeeesneeesnbeaans 52

3412 FOHINK-BNA-TOCALONc.veeeeeieeteete et e 52

AL FONISE-DIOCK ... e e 52

K {0 X T K= 1 = 4 U TP PROUUTPRURORUPRN 53

3415 fOIlIS-ITOMEDOOY ...ttt bbb s n e 54

3416 FOlIS-ITEM-IBDA ... e 55

3407 FOIPAOE-NUMDEN ...ttt sb et e st e e e sbe e e saee e snbeen 57

I B (o0 1= =TSR ROUSPOURRTRI 57

3.4.19 fO:SIMPIE-PAJE-MEBSLENeeieiie ettt ettt sb et e e st e e sbe e e saeeesnbeaas 57
3.5 FOrMAELtiNg PrOPEriES.....ccueieiieeiiee ettt ettt ettt sbee e st e st e e e be e sbe e e sabe e s abeeeees 60

3.5.1 @SISHrUNCALE-TNAICAIONcveeteeieete ettt 60

3.5.2 85 S WIAD-TNAENT ...ttt sb e sabe et e e s be e e sbe e e saeeesnbeea 60

3.5.3 85 S WIAD-TNAICALON ...cieiiiieietie ettt et et e st e e sbe e e saeeesnneaaas 61

3.5.4 background-attaChmentoo i 61

3.5.5 DACKGIOUNT-COIONeoeiiiei ettt e sae e e sneeeea 61

3.5.6 DACKGrOUNG-IMEAJE ...ttt e sbe e e saee e snbeea 61

3.5.7 DaCKGrOUNG-POSITIONeeiiieieiie ettt sbe e e saee e sneeea 61

3.5.8 DACKGrOUNT-TEPERLeeeiiiietei ettt sbe e e sae e e snbeea 62

3.5.9 DOAY-OVEITIOW ...ttt ettt e et e e sbe e e saee e snreaa 62

3.5.10 body-WITTING-MOAEceiieiiieiie ittt e e sbe e e saee e sneeea 62

3.5.11 DOIAEr-COlOr-BIEENceveeteeieete ettt 63

3.5.12 DOrder-ColOr-DEFOr........eeeieeete e e 63

3.5.13 DOrder-ColOr-DOtEOMccveeiieieei ettt 63

3.5.14 DOrAEr-COlOr-EN0.......coitieiieieete et e b e re e 64

3.5.15 DOIrAEr-COlOr=TEft........eeireeieeie et e e 64

3.5.16 DOrder-Color-rightcoooeioii e 64

3.5.17 DOIAEr-COION-SLAIeeveeteeieete ettt e 64

RN RSN ool o (= glele (ol (o) o FHU SRR RURRTRI 65

3.5.19 DOrder-Width-aftereoiieeee e 65

3.5.20 border-wWidth-DEfOre..........eoiieieee e 65

3.5.21 border-width-DOtOMc..eeiee e 65

3.5.22 Dorder-Width-endoooii e 65

3.5.23 DOrder-Width-1Eff.........coeeeei e e 65

3.5.24 DOrder-Width-FIgNT........cooiiiei e e saee e 66

3.5.25 DOrdEr-Witth-SEaITcoveeeee e e 66

3.5.26 DOrder-Witth-TOP.....ccoeeeiiei et 66

35,27 DEBK-EILEN ..ot 66

3.5.28 Dreak-DEfOre......cceeeeee e e 66

B.5.29 ChBIBCLES ...ttt bbb b b ae e ne e 67

e 0 o'o o T T TR PRSPPI TP PP 67

3.5.31 CONENIS-BlIGNIMENT. ..ottt ettt sae e sab et e e sbe e e sbe e e saeeesnbeaaas 67

3.5.32 CONLENISTOLAION ...ttt e e 67

35,33 AESNGLION ...ttt 68

R Z A= aTo BT 4o = o | TR 68

3.5.35 ENO-SIOE-OVEITIOW .eeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeesesseeessssesssesssssessssssssssssssssssssssssssssnsnnnnnnnns 68

3.5.36 ENA-SIAE-SEPAIATIONeeeiiiieiie ettt sb et b et e e nbe e e saee e nnreaa 68
35,37 ENA-SIUE-SIZE.....coeeeee e 68
3.5.38 end-SIde-WITING-MOOE......ccoiuiieiiie ittt sae e snee e 69
3.5.39 €SCapEMENt-SPACE-ENA.ei ittt ettt ettt saee e snreea 69
3.5.40 ESCaAPEMENT-SPBCE-SLAIT.eeieeiiieie et e et e et ee e e e et e e e sbr e e e s sabe e e e sabe e e e abreeeesnneas 69
3541 EXPANG-TAIS. ...ttt e e saee e sareaa 70
3542 fIrSt-PAgEMBSLENeo ettt ettt ettt et e sbe e sa e e b e e e be e e sbe e e saee e anreaaa 70
3543 FONE-TAMITY ...ttt et st sbe e saee e sareea 70
BB A4 TONI-SIZE. ..t 70
3.5.45 FONT-SIZE-AUJUSE ..ottt ettt et et e et e e sbe e saee e snreea 71
35,46 TONE-SIEICH ... 71
57 FON-SEYI@ .ttt ettt sb ettt eae e naee e snreaan 71
35,48 TONE-VANTBNT ...ttt e 71
3549 FONT-WEIGNT ...ttt sb et e sa e et e e s be e e sbe e e saeeesnbeaaas 72
3.5.50 TOOLEN-OVEITIOW ...t e 72
3.5.51 fOOLEr-SEPAIALIONcetie et ettt ettt ettt ettt e bt e e sbe e sab e e sbe e s be e e sbe e e saeeesnreaaa 72
3552 TOOLEI-SIZE......ceeeeeete ettt 73
3.5.53 fOOLEr-WITtING-MOUE.oiiieiii ettt e e sbe e e saee e sneeeaa 73
3.5.54 glyph-alignment-MOdE........ccuuii i 73
3555 GIYPN-T. e s 74
3.5.56 NEAAEI-OVEITIOWc.eeiiieiee e 74
3.5.57 NEAEI-SEPAIAHION.......eei ettt ettt ettt sbe e sa e et e e st e e ebe e e saeeesnreaa 74
3558 NEAEI-SIZE.......ee e e 75
3.5.59 header-WritiNG-MOUE.coiiiie ittt e sbe e e saee e snbeea 75
580 NEIGNT ... s 75
BB 8L NIE ... s 76
35,62 NYPNENALE ...ttt b ettt e e nbe e e saee e nnreaaa 76
3.5.63 NYPNENATON-CNEY ...ttt saee e snre e 76
3.5.64 hyPhenation-KEED.ei it sare e 76
3.5.65 hyphenation-1adder-CoUNt.............ooiiiiiiiii e 76
3.5.66 hyphenation-push-Char-CoUNLcooiiiiiii e 77
3.5.67 hyphenation-remaiN-Char-COUNL............cueiiiueieiieeriee ettt et saeeesaeeeas 77
Yo7 o FO T T TP TP PR TR PPPP 77
3.5.69 1gNOrETECONT-EBNAeeieiiieiee ettt ettt sb e sab et e st e sbe e e saeeesnbeaa 77
RN (O 11 170 L= USSR 77
3.5.7LiNNibit-liNE-BrEaKS.oveeeeee e 78
3.5.72 iNpUt-WhiteSPaCE-trEAIMENTeiiiii i 78
R ACT (= o T T T TR PR PR RPN 78
5. 74 KEEP-WITN-NEXL ...ttt ettt e sbe e e saee e sareea 78
3.5.75 KEEP-WItN-PIEVIOUSeiiiiieiii ettt ettt ettt ettt st e e sbe e e saee e snneen 79
BB 7B KM e 79
B 5.T77 KEMN-MOUE ...ttt e n e e 79
RN 4B T 010 U= TSRO RROURRTRI 79
A [1 T TP PR TR PPRPP 79
B5.B0TENGIN ... 80
R A 1= L= s o= o] oo [OOSR 80
3.5.82 letter-9pacing-liMit.........ooeiiiii e 80
e A 110 LU TSRO RPOURRTRI 80
3584 1INENEIGNT ... 81
3.5.85 lINE-NEIGNT-OPLION ...ttt sbe e e saee e snbeeea 81
3586 [INE-OFTSEL ... e 81
3.5.87 liNE-SPACING-PrECEHBINCE. ...ttt ettt ettt et et ettt sbe e sabe e be e sbe e e sbe e e saeeesabeeas 81
3.5.88 lINEThICKNESS. ..o e 81
358 MANGIN-ENA ...ttt et e e e ebe e e saee e snreaaa 82
3.5.90 MANGIN-SEAIT ...ttt ettt e bt e e sbe e e sabe e s abe e e be e e nbe e e saeeesnbeaan 82
3591 MAX-NEIGNT. ...t nb e saee e sareaaa 82

3592 MAX-WITEN ..o e 82

3.5.93 Merge-link-end-iNdiCALOISooueeiie ittt 82

3.5.94 MIN-TEBAING ...ttt sae e nare e 83
3.5.95 MiN-POSE-IINE-SPACING. ... veeeeie ettt ettt e sbe e e saee e sneeeaa 83
3.5.96 MIN-Pre-liNe-SPACING ... cciiueieiiie ittt ettt et e sbe e saee e snbeea 83
35,97 OFTENTALION ..ottt r e e bbbt et r e e n e e re e ne e r e e 84
35,98 OFPNENS. ...ttt e bt sa b e et e e et e e e abe e e aaeeennbeaaa 84
3599 OVEITIOW ...t 84
T L0 O o= [0 T gl = L= SRR SOUSRTRI 84
3.5.101 Padding-DEfOre........ccueiiieieei et 85
3.5.102 padding-DOttOM..........ceiiii e 85
3.5.103 PAAAING-ENA. ... ettt sb e saee e nnreea 85
3.5.104 PAAAiNG-TEFL ... 85
3.5.105 PAAAING-TIGNT ...ttt sbe e sab e e be e e be e e sbe e e saeeesnbeaaa 85
3.5.106 PAAUING-SLAITceeeeeiee ettt ettt et e e bt sabe e be e s be e e ebe e e saee e snreaaa 85
TN L0 oo [0 1 g To o (oo JH ROV RPOURRTRI 86
3.5.108 PAgE-NEIGNL ...ttt sb e e saee e snaeeaa 86
3.5.109 page-margiN-DOOM........ccoiiii ittt e e sae e e saee e sneeea 86
3.5.110 Page-Margin-lEft..........cooeieiei e 86
3.5.111 page-MargiN-Tightcooeiiiie et 86
3.5.112 PAGE-MAIGIN-TOP. .. eeutetiteieitiee ettt e etee et e e stee e saeeesabe e sbe e e abeeesbeeessbeesabeesbeeeabeeesaeeesnneaan 86
3.5.113 PAGE-MBSLEN -NEIME. ... eieteeeeetiee ettt e et e e sttt e e s aabe e e e aabbe e e e abeeeesanbeeeesasbeeaeanreeasannes 87
35104 PAOE-WIGLN ...t e e saee e sareea 87
3.5.115 Page-WHtING-MOUE.cueieieii ettt sae et e st e sbe e e sbe e e saeeesnreeaas 87
3.5.116 POSITION-POINL.......eeiiteeetee ettt et et e seee et e sbe e e sbe e e sbeeessbeesabeesnbeeesbeeesneeesnreaa 88
3.5.117 provisional-distance-DEtWeeN-Starts.c.ooiieriei e 88
3.5.118 provisional-1abel -SEparationccoceieieieiie e 88
3.5.119 QUEUE-NEIMEeeeieittee ettt ettt e et e e e st et e e s aate e e e s bb e e e e aabb e e e s anbeeeesnbeeeeanbreeesannes 88
3.5.120 repeatiNg-EVeN-PagE-MEBSLENccocuiiiiee et esteaebeeesteeesaeeessbeesbeesbeeesbeeesaeeesnreaaas 89
3.5.121 repeating-00d0-Page-MESLEYccociiiiieieitei et rieeeiee et see e e sbe e s be e e sbee e saeeesnreaaas 89
3.5.122 SCAlE-GraPNIC. ..ttt ettt ettt sh et b et e nbe e e saee e snreeaa 89
3.5.123 SCOME-SPACES.eeeeiuteeeeittee e ettt e e sttt e e e e bb e e e e abee e e s aabe e e e s bbe e e e aabee e e s anbeeeeanbeeeeabeeeeeannes 89
3.5.124 SNOW-CONEENTveeveeteeteeste ettt ettt ettt ettt r e r e et ne b n e e r e e 89
35,125 SPBCE-AFTENeeeeeiee ettt ettt sh et b e e e bt e e nbe e e saeeesnreaaa 90
3.5.126 SPACE-DEFOE. ... et saee e sare e 90
3.5.127 SPaCe-DEWEEN-1I SI-TOWS ... 90
35128 SPBCE-ENT. ... ettt bbbttt e e e be e e abe e e aaee e anbeaaa 90
35,129 SACE-SLAIT. ... eeeeeeietiee et ee ettt ettt e et e e e st e e e e hb e e e e e b e e e e s e be e e e e are e e e abre e e e ennes 91
35,130 SEANt-TNOENT......eeteeteete et 91
3.5.131 StArt-SIAE-OVETIOW ...c.eeeiieieeie e e 91
3.5.132 Sart-SIAE-SEPAIAION ...coviieeiie ettt ettt ettt e e saee e nnaeea 91
35,133 SAt-SIUE-SIZE.....eeeeeeteetee e e 92
3.5.134 Start-Sde-WrtiNG-MOUEcoeiieeiiee ettt sbe e sae e e sneeeea 92
35,135 SYSEEMI-TONT ...ttt b e e saee e sareea 92
O e G (= (= [T | o TSSO RTUU SRR 93
35137 tEXE-BlIGN-TBSE ...t bbb sae e e sre e 93
35,138 EXE-INUENT ...ttt 93
3.5.139 tEXI-SNAOOW. ...ttt ettt et e re e et r e e e 94
35240 VEFTICA-BIIGN. ..ottt b e nb e e saee e sareea 94
5. AT WIOWS ...ttt ettt ettt et b e e bt bbbt r e e ne b s ne e e ne s 94
5. LA2 WIOEN e e 94
3.5.143 WOIT-SPACING ... eveeuteeetee et ettt e etee e bt e e sbee e saeeesabeasabe e e abe e e abeeesabeesabeeenbeeeabeeesneeesnbeaan 95
3.5.144 WOrd-SPaCiNg-lMIT......oooeieii et sbe e sae e e saeeea 95
R T "o o o1 o o [F SR UURUU RSP 95
3.5.246 WITTING-MOOEeeieee ettt ettt sbe e e sat e e st e e sbe e e sbe e e sneeesnbeaas 96
N Sl DL K2 11 o< O PP UPPRO 98
BB L NBIMIE. ..ottt r e r bbbt E e Rt Rt r e r e R e re e e ne s 98
38,2 1D ettt E e ne e r e r e r e ne s 98

R/ S 10 0 1<= o (TR 98

BiB.5 G .. bbb e bbb e b ae e ne e 98

3.6.6 COOMTINALE.cteeteeite ettt et r e b bt et ne b ne b e 98

3.6.7 SIGNEA LENGLN ...ttt st b e saee e nare e 98

3.6.8UNSGNEA LENGLN ...t 98

3.6.9 POSIIVE LENGN.......eeiiie e 98

R SR (OIS Lo [01= o I T 1= o = SRR ROURRTRI 98

3.6.11 UNSIGNEA INEOE.....ceiteieiei ettt ettt et et e be e sbe e e sabe e sabe e sbe e e sbeeesaeeesnbeaans 98

3.6.12 POSITIVE INEEOENeeeitetetee ettt ettt ettt sbe e e sabe e s be e sbe e e sbe e e saeeesnreaans 98

A Il == (0= 0| TSR PRTUUTPRURORUPRN 98

BB, 14 COl0F .ttt r e re s 98

3.6.15 SINEA REAL ..ottt bbb e ae e ne e 99

3.6.16 UNSIGNEA REBL ..ottt bt ee 99

3.6.17 POSIIVE REA ...ttt bbb e ee 99

3.6.18 SPACE SPECITIEN ..ottt ee 99

3.6.19 LimMit SPECIHIEN .c.eeieiiee ettt bbb b s ne e 99

BB.20 URI ettt et bbb bbb e bbb e e e e b bt sae et e 99

3.0.21 LBNQUBITE.ceeeeteeee ittt e et e ettt e ettt e ettt a e s st et e e s st e e e e s bb e e e e aabbe e e s anbe e e e e nbe e e e abreeeeannes 99

3.6.22 FONE NBIMIE.....e ettt bttt bttt b e bt et e s be bt e ae e b e sbesbeeseesbesbesaeenne e 99

BB, 2B FONE LISt ettt ettt bttt bbb bbb b e b b aeene e 99

3.6.24 ENUMEIELION ...ttt ettt b e b et et n e e ne e r e s r e e 99

R SR 1 o ISR 99

3.7 DEfINEO TEIMS. ...ttt e b et r e bbb b e bt b e re e reene e b e reenne s 99
Appendices

A. DTD fOr XSL SEYIESNEELS. ..ottt bbbt bbb bbb b e ne e e e 110

B REFEIENCES ... e 115

B.1 NOrMatiVe REFEIEINCES. ..o ettt e 115

B.2 Other REFEIENCES. ... ee ettt e e r e e n e 115

C. EXamples (NON-NOFMELIVE)cooiuiiiiiieiieeiee ettt e st e e sbe e sabe e snbe s sbeeenbaeesneeas 115

D. Design PrinCiples (NON-NOM MELIVE)ccoiuiieiiiaiiiieiie ettt sabe s sbe s be e sbee e saeeesneeaaas 116

E. Acknowledgements (NON-NOF MALIVE)ooiiiiiiiiiiii ettt sbe e e saee e saee e 116

F. Changes from Previous Public Working Draft (NoN-NOrmative)cccooeeieniieenniienieeniees 117

This page intentionally left blank.

Extensible Stylesheet Language (XSL)

1. Overview

XSL isalanguage for expressing stylesheets. Each stylesheet describes rules for presenting a class of XML
source documents. There are two parts to the presentation process. First, the result treeis constructed from
the source tree. Second, the result tree isinterpreted to produce formatted output on a display, on paper, in
speech or onto other media.

Thefirst part, constructing the result tree, is achieved by associating patterns with templates. A pattern is
matched against elementsin the sourcetree. A template isinstantiated to create part of theresult tree. The
result tree is separate from the source tree. The structure of the result tree can be completely different from
the structure of the source tree. In constructing the result tree, the source tree can be filtered and reordered,
and arbitrary structure can be added.

The second part, formatting, is achieved by using the formatting vocabulary specified in this document to
construct theresult tree. Formally, this vocabulary isan XML namespace. Each element typein the
vocabulary corresponds to a formatting object class. A formatting object class represents a particular kind
of formatting behavior. For example, the block formatting object class represents the breaking of the
content of a paragraph into lines. Each attribute in the vocabulary corresponds to a formatting property. A
formatting object class has a specific set of formatting properties which provide finer control over the
behavior of the formatting object class; for example, controlling indenting of lines, spacing between lines,
and spacing before and after the collection of lines. A formatting object can have content, and its formatting
behavior is applied to its content.

XSL does not require result trees to use the formatting vocabulary and thus can be used for general XML
transformations. For example, XSL can be used to transform XML to ‘well-formed” HTML, that is, XML
that uses the element types and attributes defined by HTML.

When the result tree uses the formatting vocabulary, a conforming XSL implementation must be able to
interpret the result tree according to the semantics of the formatting vocabulary as defined in this
document; it may also be able to externalize the result tree as XML, but it is not required to be able to do
0.

This document does not specify how a stylesheet is associated with an XML document. It is recommended
that XSL processors support the mechanism described in [W3C XML Styleshest].

2. Tree Construction

2.1 Overview

A stylesheet contains a set of template rules. A template rule has two parts: a pattern which is matched
against nodes in the source tree and a template which can be instantiated to form part of the result tree. This
allows a stylesheset to be applicable to a wide class of documents that have similar source tree structures.

A template isinstantiated for a particular source eement to create part of the result tree. A template can
contain elements that specify literal result element structure. A template can also contain e ements that are
ingtructions for creating result tree fragments. When a template isinstantiated, each instruction is executed
and replaced by the result tree fragment that it creates. Instructions can select and process descendant
elements. Processing a descendant element creates a result tree fragment by finding the applicable template
rule and instantiating its template. Note that elements are only processed when they have been selected by
the execution of an instruction. Theresult treeis constructed by finding the template rule for the root node
and ingtantiating its template.

In the process of finding the applicable template rule, more than one template rule may have a pattern that
matches a given eement. However, only one template rule will be applied. The method for deciding which
template rule to apply is described in Section 2.5.1: Conflict Resolution for Template Rules.

Page 1

Extensible Stylesheet Language (XSL)

XSL uses XML namespaces [W3C XML Names] to distinguish elements that are instructions to the XSL
processor from elements that specify literal result tree structure. Instruction elements all belong to the XSL
namespace. The examplesin this document use a prefix of xsl : for dementsin the XSL namespace.

An XSL stylesheet containsan xsl : st yl esheet document element. This element may contain
xsl : t enpl at e dements specifying template rules, which will be described later in this document.

The following is an example of asimple XSL stylesheset that constructs a result tree for a sequence of par a
elements. Ther esul t - ns="f 0" attribute indicates that a tree using the formatting object vocabulary is
being constructed. The rule for the root node specifies the use of a page sequence formatted with any font
with serifs. The par a elements become bl ock formatting objects which are set in 10 point type with a 12
point space before each block.

<xsl : styl esheet
xm ns: xsl ="http://ww. w3. org/ TR/ \D- xsl "
xm ns: fo="http://ww. w3. or g/ TR WD- xsl / FO'
result-ns="fo">
<xsl:tenplate match="/">
<f 0: basi c- page- sequence font-fam | y="serif">
<xsl : appl y-tenpl at es/ >
</ f 0: basi c- page- sequence>
</ xsl : tenpl at e>

<xsl :tenpl ate mat ch="para">
<fo: bl ock font-size="10pt" space-before="12pt">
<xsl : appl y-tenpl at es/ >
</ fo: bl ock>
</ xsl : tenpl at e>
</ xsl : styl esheet >

Thexsl : st yl esheet dement can also contain el ements importing other XSL styleshests, dements
defining macros, e ements defining global constants, and & ements identifying source attributes as
individual e ement identifiers.

2.2 Stylesheet Structure

Page 2

A stylesheet isrepresented by an xsl : st yl esheet dementin an XML document.

XSL processors must use the XML namespaces mechanism [W3C XML Names] for both source
documents and stylesheets. All XSL defined elements, that is those specified in this document with a prefix
of xsl :, will only be recognized by the XSL processor if they belong to a namespace with the URI
http://ww. w3. or g/ TR/ WD- xsl; XSL defined elements are recognized only in the stylesheet not in
the source document.

Issue (versioning): Should there be some way for a stylesheet to indicate which version of XSL it conforms
to? Can this be done through the URI of the XSL namespace?

Thexsl : styl esheet dement hasan optional r esul t - ns attribute; the value must be a namespace
prefix. If thisattribute is specified, all result elements must belong to the namespace identified by this
prefix (the result namespace). If thereis a namespace declared as the default namespace, then an empty
string may be used as the value to specify that the default namespace is the result namespace. If the
resul t - ns attribute specifies the XSL Formatting Objects namespace, then in addition to constructing
the result XML tree, the XSL processor must interpret it according to the semantics defined in this
document. The XSL Formatting Objects namespace hasthe URI ht t p: / / www. w3. or g/ TR/ WWD-

xsl / FO The examplesin this document usethef o: prefix for this namespace.

NOTE: If an implementation wishes to use something in the result tree or stylesheet to control the output of
a non-XML representation of the result tree, it should use the result namespace. In particular, if it wishes to
make use of something in the result tree or stylesheet to indicate that the result tree should be output as
HTML that conforms to the HTML 4.0 Recommendation rather than as XML, it should use a result
namespace of ht t p: / / ww. wW3. or g/ TR/ REC- ht m 40; for example,

Extensible Stylesheet Language (XSL)

<xsl : styl esheet

xm ns: xsl ="http://ww. w3. org/ TR/ V\D- xsl "
xm ns="http://ww. w3. or g/ TR/ REC- ht i 40"
result-ns="">

<xsl :tenplate match="/">

<htm >
<xsl : appl y-tenpl at es/ >
</htm >

</ xsl:tenpl ate>

</ xsl : styl esheet >

Thexsl : st yl esheet eement may contain the following types of dements:

1

9.

© No gk wbd

xsl
xsl
xsl
xsl
xsl

xsl :
xsl :
xsl :

xsl

Jinport
tinclude

tid
:strip-space

: preserve-space
macr o
attribute-set
const ant

‘tenpl ate

This example shows the structure of a stylesheet. Ellipses (. . .) indicate where attribute values or content
have been omitted. Although this example shows one of each type of allowed e ement, stylesheets may
contain zero or more of each of these elements.

<?xm version="1.0"7?>
<xsl :styl esheet xm ns: xsl="http://ww. w3. or g/ TR WD- xs| " >

<xsl

<xsl

<xsl

<xsl

<xsl

<xsl

inmport href="..."/>

sinclude href="..."/>

cid attribute="..."/>
:strip-space elenent="..."/>

. preserve-space elenment="..."/>
macro name="...">

</ xsl : macr o>

<xsl

;attribute-set nanme="...">

</ xsl:attribute-set>

<xsl

<xsl

:constant nanme="..." value="..."/>

:tenplate match="...">

</ xsl : tenpl at e>
</ xsl : styl esheet >

Page 3

Extensible Stylesheet Language (XSL)

The order in which the children of thexsl : st yl esheet eement occur is not significant except for
xsl @i nport eementsand for error recovery. Users are free to order the elements as they prefer, and
stylesheet creation tools need not provide control over the order in which the elements occur.

Issue (media-rule): Should we provide the functionality of CSS's @redi a rule and if so how?

2.3 Processing Model

Ed. Note: This needs expanding and polishing.

A nodeis processed to create aresult tree fragment. The result treeis constructed by processing the root
node. A nodeis processed by finding all the template rules with patterns that match the node, and choosing
the best amongst them. The chosen rul€'s template is then instantiated for the node. During the instantiation
of atemplate, the node for which the template is being instantiated is called the current node. A template
typically contains instructions that select an additional sequence of source nodes for processing. A
sequence of source nodes is processed by appending the result tree structure created by processing each of
the members of the sequencein order. The process of matching, instantiation and selection is continued
recursively until no new source nodes are selected for processing.

Implementations are free to process the source document in any way that produces the same result asif it
were processed using this processing model.

2.4 Data Model

Page 4

XSL operates on an XML document, whether a stylesheet or a source document, as atree. Any two
stylesheets or source documents that have the same tree will be processed the same by XSL. The XML
document resulting from the tree construction processis also atree. This section describes how XSL
models an XML document as atree. Thismodel is conceptual only and does not mandate any particular
implementation.

XML documents operated on by XSL must conform to the XML namespaces specification [W3C XML
Names].

The tree contains nodes. There are seven kinds of node:

root nodes

e ement nodes

text nodes

attribute nodes

namespace nodes
processing instruction nodes
comment nodes

Neither processing instruction nodes nor comment nodes areincluded in the tree for the stylesheet.

For every type of node thereis away of determining a string value for a node of that type. For some types
of node, the valueis part of the node; for other types of node, the value is computed from the value of
descendant nodes.

Issue (data-entity): Should XSL provide support for external data entities and notations?

2.4.1 Root Node

Theroot nodeistheroot of thetree. It does not occur anywhere elsein the tree. It has a single child which
isthe element node for the document element of the document.

The value of the root node is the value of the document € ement.

Extensible Stylesheet Language (XSL)

2.4.2 Element Nodes

Thereisan e ement node for every e ement in the document. An e ement has an expanded name consisting
of alocal name and a possibly null URI (see [W3C XML Names]); the URI will be null if the element type
name has no prefix and thereis no default namespace in scope.

The children of an element node are the el ement nodes and characters for its content. Entity references to
both internal and external entities are expanded. Character references are resolved.

The descendants of an € ement node are the character children, the e ement node children, and the
descendants of the e ement node children.

The value of an element node is the string that results from concatenating all charactersthat are
descendants of the element node in the order in which they occur in the document.

The set of all eement nodes in a document can be ordered according to the order of the start-tags of the
elementsin the document; thisis known as document order.

2.4.2.1 Unique IDs

An element abject may have a unique identifier (ID). Thisisthe value of the attribute which is declared in
the DTD astypel D. Since XSL must also work with XML documents that do not have a DTD, stylesheets
may specify which attributes in the source document should be treated as IDs. Thexsl : i d dement hasa
required at t r i but e attribute, which gives the name of an attribute in the source document that should be
treated as specifying the element's ID. A stylesheet may contain more than one xsl : i d element, for cases
where the source document uses severa attributesas IDs. An xsl : i d element also has an optional

el ement attribute which specifies the name of an element type; when theel enment attributeis specified,
then thexsl : i d dement specifiesthat theat t ri but e attribute of el ement eementsaretreated as
IDs. xsl : i d dements may only occur in the stylesheet body (not within arule). The following causes
XSL totreat all nane attributesin the source document as IDs.

<xsl:id attribute="nanme"/>

Itisan error if, as a consequence of the use of xsl : i d, thereis more than one e ement with the sameID in
the source tree. An XSL processor may signal the error; if it does not signal the error, it must recover by
treating only the first (in document order) of the dements as having that I1D.

Issue (-id-content): Should it be possible for a unique id to be specified in the content of an element instead
of in an attribute?

2.4.2.2 Base URI

An element node also has an associated URI called its base URI which is used for resolving attribute values
that represent relative URIs into absolute URIs. If an element occursin an external entity, the base URI of
that element isthe URI of the external entity. Otherwise the base URI is the base URI of the document.

2.4.3 Attribute Nodes

Each element node has an associated set of attribute nodes. A defaulted attribute istreated the same asa
specified attribute. 1f an attribute was declared for the element type, but the default was declared as

#1 MPLI ED, and the attribute was not specified on the dement, then the element's attribute set does not
contain a node for the attribute.

An attribute node has an expanded name and has a string value. The expanded name consists of alocal
name and a possibly null URI (see [W3C XML Names]); the URI will be null if the specified attribute
name did not have a prefix. The value is the normalized value as specified by the XML Recommendation
[W3C XML]. An attribute value whose valueis of zero length is not treated specially.

There are no attribute nodes for attributes that declare namespaces (see [W3C XML Namesg]).

Issue (external-dtd): Should we specify something about how we expect XSL processors to process
external DTDs and parameter entities? For example, what happens if an attribute default is declared in an
external DTD?

Page 5

Extensible Stylesheet Language (XSL)

Page 6

2.4.4 Namespace Nodes

Each element has an associated set of namespace nodes, one for each namespace prefix that isin scope for
element and one for the default namespace if oneisin scope for the element. This means that an € ement
will have a namespace node:

o for every attribute on the e ement whose name starts with xm ns: ;

e for every attribute on an ancestor dement whose name starts xm ns: unlessthe eement itself or a
nearer ancestor redeclares the prefix;

e for an xm ns attribute, unlessits valueis the empty string.
NOTE: An attribute xm ns="" ‘undeclares’ the default namespace (see [W3C XML Names]).

A namespace node has a name which is a string giving the prefix. Thisis empty if the namespace nodeis
for the default namespace. A hamespace node al so has a value which is the namespace URI. If the
namespace declaration specifies arelative URI, then the resolved absolute URI is used as the value.

When writing an element node in the result tree out as XML, an XSL processor must add sufficient
namespace-decl aring attributes to the start-tag to ensure that if a tree were recreated from the XML, then
the set of namespace nodes on the element node in the recreated tree would be equal to or a superset of the
set of namespace nodes of the element node in the result tree.

NOTE: The semantics of a document type may treat parts of attribute values or data content as namespace
prefixes. The presence of namespace nodes ensures that the semantics can be preserved when the tree is
written out as XML.

2.4.5 Processing Instruction Nodes
Thereisa processing instruction node for every processing instruction.
Ed. Note: What about processing instructions in the internal subset or elsewhere in the DTD?

A processing instruction has aname. Thisisastring equal to the processing instruction's target. It also hasa
value Thisisastring equal to the part of the processing instruction following the target and any
whitespace. It does not include the terminating ?>.

2.4.6 Comment Nodes

Thereisacomment node for every comment.
Ed. Note: What about comments in the internal subset or elsewhere in the DTD?

A comment hasavalue. Thisisastring equal to the text of the comment not including the opening <! - -
or theclosing - - >.

2.4.7 Text Nodes

Character datais grouped into text nodes. As much character data as possible is grouped into each text
node: atext node never has an immediately following or preceding sibling that is a text node. The value of
atext node isthe character data.

Each character within a CDATA section istreated as character data. Thus<! [CDATA[<]] > in the source
document will treated the sameas &l t ; . Characters insde comments or processing instructions are not
character data. Line-endingsin external entities are normalized to #xA as specified in the XML
Recommendation [W3C XML].

2.4.8 Whitespace Stripping

After the tree has been constructed, but beforeiit is otherwise processed by XSL, some text nodes may be
stripped. The stripping process takes as input a set of element types for which whitespace must be
preserved. The stripping process is applied to both stylesheets and source documents, but the set of
whitespace-preserving element typesis determined differently for stylesheets and for source documents.

A text nodeis preserved if any of the following apply:

Extensible Stylesheet Language (XSL)

e Thedement type of the parent of the text node is in the set of whitespace-preserving element types.

e Thetext node contains at least one non-whitespace character. Asin XML, awhitespace character is
#x20, #x9, #xD or #xA.

e An ancestor element of the text node hasan xm : space attribute with avalue of pr eser ve, and no
closer ancestor element hasxm : space with avalueof def aul t.

Otherwise the text node is stripped.
Thexml : space attributes are not stripped from the tree.

NOTE: This implies that if an xml : space attribute is specified on a literal result element, it will be included
in the result.

For styleshests, the set of whitespace-preserving element types consists of just xsl : t ext .

For source documents, the set of whitespace-preserving e ement typesis determined using the stylesheet as
follows:

e Ifthexsl : styl esheet dement specifiesadef aul t - space attribute with avalueof st ri p, then
the set isinitially empty. Otherwise the set initially contains all e ement types that occur in the
document.

e Thexsl:strip-space eement causes an e ement type to be removed from the set of whitespace-
preserving element types. Theel enment attribute gives the name of the element type.

e Thexsl : preserve- space eement causes an e ement type to be added to the set whitespace-
preserving element types. Theel enment attribute gives the name of the element type.

Issue (declare-multiple-elements): Should the value of the el ement attribute of xsl : stri p- space,
xsl : preserve-space and xsl : i d be a list of element type names (and thus be renamed to el ement s)?
If so, should the at t ri but e attribute of xsl : i d also be a list of attribute names?

Ed. Note: Clarify how these declarations interact with each other and with xsl:import.

Thexsl : styl esheet dement canincludeani ndent - r esul t attribute with valuesyes or no. If
the stylesheet specifiesi ndent - r esul t ="yes", then the XSL processor may add whitespace to the
result tree (possibly based on whitespace stripped from either the source document or the stylesheet) in
order to indent theresult nicely; if i ndent - r esul t =" no", it must not add any whitespace to the result.
When adding whitespace with i ndent - r esul t =" yes", the XSL processor can use any algorithm
provided that the result isthe same asthe result with i ndent - r esul t =" no" after whitespaceis
stripped from both using the process described with the set of whitespace-preserving element types
consisting of just xsl : t ext.

2.5 Template Rules

A templateruleis specified with thexsl : t enpl at e dement. The mat ch attribute identifies the source
node or nodes to which the rule applies. The content of the xsl : t enpl at e ement isthe template.

For example, an XML document might contain:
This is an <enph>i nportant </ enph> poi nt.

The following template rule matches elements of type enph and has a template which produces a
fo:inline-sequence formatting object with af ont - wei ght property of bol d.

<xsl:tenpl ate match="enmph">
<fo:inline-sequence font-weight="bold">
<xsl : appl y-tenpl at es/ >
</fo:inline-sequence>
</ xsl :tenpl ate>

Asdescribed later, thexsl : appl y-t enpl at es element recursively processes the children of the source
element.

Page 7

Extensible Stylesheet Language (XSL)

2.5.1 Conflict Resolution for Template Rules

It is possible for a source node to match more than one template rule. The templateruleto beused is
determined as follows:

1. Firgt, all matching template rulesthat are less important than the most important matching template
rule or rules are diminated from consideration.

2. Next, al matching template rules that have alower priority than the matching templaterule or rules
with the highest priority are diminated from consideration. The priority of aruleis specified by the
priority attribute on therule. The value of this must be areal number (positive or negative). The
default priority isO.

Ed. Note: Say exactly what syntax is allowed for real numbers.

Issue (default-priority): Should there be a more complicated way of calculating the default priority? For
example, -1 for *, O for just an element type name, and 1 for more complex patterns.

It isan error if thisleaves more than one matching template rule. An XSL processor may signal the error; if
it does not signal the error, it must recover by choosing from amongst the matching template rulesthat are
[eft the one that occurs last in the stylesheet.

2.5.2 Built-in Template Rules

Thereisabuilt-in template rule to alow recursive processing to continuein the absence of a successful
pattern match by an explicit rule in the stylesheet. This rule applies to both e ement nodes and the root
node. The following shows the equivalent of the built-in template rule:

<xsl:tenplate match="*|/">
<xsl : appl y-t enpl at es/ >
</ xsl :tenpl ate>

Thereisalso abuilt-in template rule for text nodes that copiestext through:

<xsl:tenplate match="text()">
<xsl :val ue-of select="."/>
</ xsl :tenpl ate>

The built-in rule does not apply to processing instructions and comments. When a comment or processing
instruction is processed, and no rule is matched, nothing is created.

The built-in template rules are treated as if they were imported implicitly before the stylesheet and so are
considered lessimportant than all other template rules. Thus the author can override a built-in rule by
including an explicit rulewith mat ch="*| /" or mat ch="text ()".

2.6 Patterns

Page 8

2.6.1 Introduction

This section introduces the syntax and semantics of XSL patterns. The formal, definitive specification isin
the following section.

A pattern is a string which selects a set of nodes in a source document. The selection isrelative to the
current node. The smplest pattern is an e ement type name; it selects all the child eements of the current
node with that element type name. For example, the pattern chapt er sdectsall the chapter child dements
of the current node.

A pattern can also be matched against a node. If a node could be selected by a pattern, then the nodeis
considered to match the pattern. More precisely, for any pattern and any document there is a matching set
of nodes; thisisthe union, for each node in the document, of the set of nodes selected by the pattern with
that node as the current node. For example, a pattern chapt er matches any chapter eement because if the
current node was the parent of the chapter element, the chapter element would be one of the nodes sdlected
by the pattern chapt er . Thisincludes the case wherethe chapt er eement isthe document element,
because the root node is the parent of the document element.

Extensible Stylesheet Language (XSL)

The| operator can be used to express alternatives. For example, the pattern enph| b matches both enph
elementsand b elements.

Patterns can be composed together with the/ operator in a path-like manner. For example, a pattern
chapt er/ sect i on sdlectsthe chapt er child e ements of the current node, and then for each selected
chapt er eement, sdectsthesect i on children; in other words, it selectsthesect i on grandchildren
of the current node that have chapt er parents. A node would match a pattern chapt er/ secti onif it
wasasect i on eement with achapt er parent.

/ binds moretightly than | . Thusthepatternol /1i | ul /I i matchesl i eementsthat havean ol or ul
parent.

Whitespace can be used around operators in patterns to improve readability. Thusol /1i | ul /i canbe
writtenasol /i | ul/li.

* can be used instead of an e ement type name as awildcard. For example, a pattern * would select all
element children of the current node; a pattern */ sect i on would select al sect i on grandchildren of
the current node. A pattern chapt er / * would match any element that hasachapt er parent.

A/l canbeusad instead of / to select from descendantsinstead of from children. For example, a pattern
chapt er/ / p sdlects all the p descendants of chapt er children of the current node, and it matches all p
elementsthat haveachapt er ancestor.

A pattern . sdectsthe current node. Thisisuseful with / /. For example, . / / di v sdectsall di v
descendant e ements of the current node.

Similarily . . sdlectsthe parent of the current node. For example, . . /i t emsdectsthei t emsibling
elements of the current node.

Other types of node are treated in a similar way to elements.

e Theattributes of an eement are treated like the child dements; an attribute is distinguished from a child
element by prefixing its name with @ For example, @lat e will select the dat e attribute of the current
element; enpl oyee/ @al ary will sdlect thesal ar y attribute of each enpl oyee child e ement of
the current node. A wildcard @ isallowed just aswith elements; a pattern @ sdlects all attributes of the
current node.

e A pattern conment () sdectsall comment children of the current node. Thus a pattern comment ()
will match any comment node.

e A pattern pi () sdectsall processing instruction children of the current node. An argument can be used
to specify thetarget. Thuspi (" xm - st yl esheet ™) matches any processing instruction with a
target xm - st yl esheet . Note that the argument must be quoted.

The set of nodes selected by a pattern can be refined by following the pattern by a test in square brackets
([1)- Each nodein the set istested. The result includes only those nodes for which atest succeeds. The
following are allowed as tests:

e A pattern can be used a test; the test succeeds if the pattern selects one or more nodes when the node
being tested isthe current node. For example, apattern | i st [@ ype] matchesal i st dement with a
t ype attribute; a pattern book|[edi t or] selectsbook children e ements of the current node that
have at least one edi t or child eement.

e A pattern can be compared to a string. For example, apattern| i st [@ ype="or der ed"] would
match any list with an attributet ype with value or der ed; a pattern
enpl oyee[| ocat i on="USA"] would sdect enpl oyee children of the current e ement that have a
| ocat i on child with value equal to USA.

e Theposition of anode relativeto its siblings can be tested.
e first-of-any() succeedsif the node being tested isthefirst eement child
e | ast-of -any() succeedsif the node being tested isthe last element child
o first-of-type() succeedsif the node being tested isthe first element child of its el ement type
e |l ast-of-type() succeedsif the node being tested isthefirst eement child of its element type

e A test can be negated using not () . For example, | i st [not (@ ype)] matchesany | i st element
without at ype attribute.

Page 9

Extensible Stylesheet Language (XSL)

Page 10

e Tests can be combined with and and or . For example,
back/di v[first-of-type() and last-of-type()]
matchesadi v element with aback parent, when it istheonly di v child of its parent.

The[] operator binds moretightly than | . Thusthe pattern ol | | i st [@ ype="or der ed"] matches
either | i st dementswith at ype attribute with value or der ed or ol eements.

Theroot nodeistreated is specialy. A/ at the beginning of a pattern sdlects the root node (not the
document dement). For example, a pattern that isjust/ matchestheroot node; a pattern/ di v will match
the document dement itisadi v eement; a pattern / * will match the document element whatever is.
When a pattern startswith / the current node isirrelevant.

A pattern can also start with / /. / / f oo meansthesameas/ . / / f 00: it selectsthe f oo descendants of
the root node, which impliesthat it selects all foo elements. When a pattern startswith / / the current node
isirrelevant.

Theancest or function allows sdection of an ancestor of the current node. The argument is a match
pattern. It selectsthefirst ancestor of the current node that matches the argument. For example,
ancestor(chapter)/titl ewill sdecttheti t! e children of the first ancestor of the current node
that isachapt er.

Thei d function allows ID references to be followed. The argument can be aliteral string. For example,

i d(' foo") will select thedement with ID f 00; if thereis no such dement, the empty node set will be
returned. Multiple whitespace separated IDs are also allowed; thisi d(' f oo bar') would select
elementswith an ID f 0o or bar . The argument can be a pattern instead of aliteral string; for each node
selected by the pattern, the value of the node is treated as whitespace separated list of 1D references. For
example, if the current node is an dement with an IDREF or IDREFS attribute named r ef , then a pattern
i d(@ ef) would select the elements referenced by ther ef attribute.

Ed. Note: Would it be less confusing to call this idref?

2.6.2 Syntax and Semantics

An expression is evaluated with respect to a context, which isa single node. The result of evaluating an
expression is a set of nodes or a boolean.

In the following grammar, the nonterminal QName is defined in [W3C XML Names], and Sisdefined in
[W3C XML].

Selecting

[1] Sel ect Expr = Uni onExpr

A select pattern must match the production for SelectExpr; it returnsthe list of nodes that results from
evaluating the SelectExpr with the current node as context; the nodes arein the list are in document order.

Matching

[2] WMatchExpr ’= Sel ect Expr

A match pattern must match the production for MatchExpr; a node matches the match pattern if the
MatchExpr returns true when evaluated with that node as context.

The result of the MatchExpr istrueif, for any node in the document that contains the context of the
MatchExpr, the result of evaluating the SelectExpr with that node as context contains the context of the
MatchExpr. Otherwise theresult isfalse.

NOTE: A practical implementation needs to provide direct support for evaluating a pattern as a MatchExpr,
rather than supporting it indirectly in terms of the equivalent SelectExpr semantics. For example, to test
whether a node matches a pattern f oo, an implementation should not evaluate the pattern f oo as a select
pattern with each node in the source document as context, rather it should simply check whether the node is
an element of type f 00; to test whether a node matches a pattern f oo/ / bar is should check whether the
node is an element of type bar with an ancestor element of type f 00.

Extensible Stylesheet Language (XSL)

Unions

[3] Uni onExpr = Pat hExpr
| (PathExpr '|' UnionExpr)

The context of theright hand side expressions is the context of the left hand side expression. The results of
the right hand side expressions are node sets. The result of the left hand side UnionExpr is the union of the
results of the right hand side expressions.

Paths

[4] Pat hExpr :’= Absol ut ePat hExpr
| ConposeExpr

The context of theright hand side expressions is the context of the left hand side expression. The result of
the left hand sideisthe result of theright hand side. The result is a node set.

Absolute Paths

[5] Absol utePathExp::= '/' SubtreeExpr?
r

If the SubtreeExpr is present, then the context for the SubtreeExpr istheroot node, and the result isthe
result of the SubtreeExpr. Otherwise the result is the root node.

Subtrees

[6] SubtreeExpr = '/'? ConposeExpr

If the/ ispresent, then the result SubtreeExpr isthe union, for each node in the subtree rooted at the
context of the SubtreeExpr, of the result of evaluating the ComposeExpr with that node as context.
Otherwise the SubtreeExpr is equivalent to ComposeExpr.

Composition

[7] ConposeExpr = FilterExpr
| (FilterExpr '/' SubtreeExpr)

The context of the FilterExpr is the context of the ComposeExpr. If the SubtreeExpr is present, then, for
each nodein theresult of the FilterExpr, the SubtreeExpr is evaluated with that node as the context; the
result of the ComposeExpr is the union of the results of evaluating the SubtreeExpr. Otherwise the result is
the result of the FilterExpr.

Filtering

[8] FilterExpr :'= NodeExpr ('[' BooleanExpr ']')?

The context of the NodeExpr is the context of the FilterExpr. If the BooleanExpr is present, then for each
node in the result of the NodeExpr, the BooleanExpr is evaluated with that node as context; the result
consists of those nodes for which the BooleanExpr evaluatesto true.

Selecting Nodes
[9] NodeExpr

SubNodeExpr

| O her NodeExpr
El ement Expr

| AttributeExpr
| Text Expr

| Comment Expr
| Pi Expr
|

I

[10] SubNodeExpr

[11] O her NodeExpr dExpr

Ancest or Expr

Page 11

Extensible Stylesheet Language (XSL)

| Ancestor O Sel f Expr
| ldentityExpr
| Parent Expr

The context of theright hand side expressions is the context of the left hand side expression. The results of
the right hand side expressions are node sets. The result of the left hand side is the result of the left hand
side expression.

Issue (multiple-sources): Should it be possible for patterns to select nodes in documents other than the
source document?

Issue (sibling-qual): Should there be qualifiers that constrain an element to have an immediately preceding
or following sibling of a particular type?

Elements
[12] El ement Expr = QNane
I

okt

If * is specified, then theresult isthe child elements of the context of the ElementExpr. Otherwise, the
result isthe set of all elementsthat are the children of the context of ElementExpr and whose nameis equal
to QName.

When comparing the name of an e ement to a QName, the QName is expanded into alocal name and a
possibly null URI. Thisexpansion is donein the same way as for e ement type namesin start and end-tags
except that the default namespace declared with xm ns isnot used: if the QName does not have a prefix,
then the URI isnull (thisisthe same way attribute names are expanded). The expanded e ement type names
are compared (see Section 2.4.2: Element Nodes).

Issue (pattern-namespace-wildcards): Should patterns of the form f oo: * or *: f 0o be allowed? If so,
should * match any element or any element without a namespace URI?

Attributes

[13] AttributeExpr == ('@ QNane)
| (@ "*")

If * is specified, theresult isthe set of attribute nodes of the context of the AttributeExpr. If a QNameis
specified, the result isthe attribute node of the context of the AttributeExpr named QName, or the empty
node set if there is no such attribute node. When matching attribute names, the expanded names are
compared (see Section 2.4.3: Attribute Nodes). The QNameis expanded in the same way as a QNamein
an ElementExpr.

Issue (attribute-qual-case): Do we need to be able to match attributes in a case insensitive way?

Processing Instructions

[14] Pi Expr n= 'pit ‘(' Literal? ')

If the Literal is present, theresult isthe set of processing instruction nodes which are children of the
context of the PiExpr and whose target is equal to the value of Literal. Otherwise the result isthe set of
processing instruction nodes which are children of the context of the PiExpr.

Text

[15] Text Expr D= text' (0t)!

Theresult isthe set of all text nodes whose parent is a node in the context of the TextExpr.

Issue (regex): Should XSL support regular expressions for matching against any or all of pcdata content,
attribute values, attribute names, element type names?

Comments

[16] Comment Expr = ‘coment' (' ")’

Page 12

Extensible Stylesheet Language (XSL)

Theresult isthe set of all comment nodes which are children of the context of the CommentExpr.
IDs
[17] 1 dExpr

Const ant | dExpr

| Vari abl el dExpr

"id "(' Literal ')’
"id '(' SelectExpr ')’

[18] Const ant | dExpr
[19] Vari abl el dExpr

The context of the SelectExpr is the context of the IdExpr. A set of names is computed from the argument
asfollows:

e If itisa ConstantldExpr, then the value of the Literal is treated as a whitespace-separated list of names;
the set of names consists of the members of thelist.

e Otherwise, the value of each node in the result of the SelectExpr istreated as a whitespace-separated list
of names; the set of namesis the union for each node of the members of thelist.

Theresult isthe set of el ement nodes whose ID (see Section 2.4.2.1: Unique 1 Ds) is one of the namesin
the set of names specified by the argument.

Issue (class-attribute): Should there be a way of specifying that an attribute serves as a class attribute and
then pattern syntax that treats class attributes specially?

Ancestors

[20] Ancest or Expr
[21] AncestorOrSel fE::
Xpr

"ancestor' ' (' MatchExpr ')’
"ancestor-or-self' ' (' MatchExpr ')’

Theresult of an AncestorExpr isthe first ancestor of the context of the AncestorExpr such that MatchExpr,
when evaluated with that ancestor as the context, has aresult of true. If thereis no such ancestor, the result
is the empty node set.

With ancest or - or - sel f, anodeistreated asthefirst of its ancestors. Thusif the MatchExpr evaluates
to true with the context of the AncestorOr SelfExpr, then the result of the Ancestor Or SelfExpr is the context,
otherwise theresult is the same as the result of an Ancestor Expr.

Identity

[22] IdentityExpr n=

Theresult isthe context of the IdentityExpr.

Parents

[23] Parent Expr n= ot

Theresult isthe parent of the context of the ParentExpr. If the context isthe root node, then the result is
the empty node set.

Boolean Expressions

[24] Bool eanExpr AndExpr

| O Expr

| Bool eanPri mar yExpr
[25] Bool eanPri maryE::= Bool eanG oupExpr

Xpr

| Not Expr

| Positional Expr
| Test Expr

| EqualityExpr

Page 13

Extensible Stylesheet Language (XSL)

Page 14

The result of a BooleanExpr istrue or false. The context of the right hand side expressions is the context of
the BooleanExpr. The result of the BooleanExpr isthe result of the right hand side.

And

[26] AndExpr ::= Bool eanPri maryExpr ('and' Bool eanPri maryExpr)+

The context for each BooleanPrimaryExpr is the context of the AndExpr. The result istrueif the result of
all of the BooleanPrimaryExprsistrue; otherwise the result isfalse.

Or

[27] O Expr ::= Bool eanPri maryExpr ('or' Bool eanPri maryExpr)+

The context for each BooleanPrimaryExpr is the context of the OrExpr. Theresult istrueif the result of
any of the BooleanPrimaryExprsistrue; otherwise theresult isfalse.

Grouping

[28] Bool eanG oupExp ::= ' (' Bool eanExpr ')’
r

Theresult of the left hand sideis the result of the right hand side. The context of the right hand sideisthe
context of the left hand side.

Negation

[29] Not Expr = 'not' '(' Bool eanExpr ')’

Theresult of the NotExpr istrueif the result of the BooleanExpr isfalse; otherwise the result isfalse.

Position

[30] Positional Expr == 'first-of-type" "(' ")’
| 'last-of-type' '(' ')’
| 'first-of-any' '(' ')’
| 'last-of-any' '(' ')’

The context of the Positional Expr is asingle node.
e Forfirst-of-type(),theresultistrueif the context nodeisan eement and the el ement has no
preceding siblings that are e ements with the same element type name, and false otherwise.

e Forfirst-of-any(),theresultistrueif the context nodeisan dement and the element has no
preceding siblings that are elements, and fal se otherwise.

e Forl ast-of -type(), theresult istrueif the context nodeis an dement and the element has no
following siblings that are e ements with the same element type name, and false otherwise.

e Forl ast - of - any(), theresult istrueif the context node is an element and the element has no
following siblings that are elements, and fal se otherwise.

Testing Existence

[31] Test Expr ’= Sel ect Expr

The context of the SelectExpr is the context of the EqualityExpr. The result of the TestExpr istrueif the
result of the SelectExpr is non-empty. Otherwise theresult isfalse.

Equality

[32] EqualityExpr = SelectExpr '='" Literal

The context of the SelectExpr is the context of the EqualityExpr. Theresult istrueif thereisanodein the
result of the SelectExpr whose value is equal to the value of the Literal.

Extensible Stylesheet Language (XSL)

Ed. Note: We plan to use the data-typing facilities being developed by the XML Schema WG to allow
ordered comparisons.

Literal
[33] Literal =S N

The value of the Literal isthe sequence of charactersinsidethe” or ' characters>.

Pattern Lexical Structure

[34] PatternToken

S R F O D (A S B A B
B I

| QNane

| Oper at or Nare
| Functi onNare

| Literal

[35] Operat or Nane = "and'

| 'or’

Cid

"ancestor’
"ancestor-or-self'
'comment’

' pit

"text'

' not"'
"first-of-type'
"l ast-of -type'
"first-of-any'

'l ast - of - any’

[36] Functi onNane

[37] PatternWiitespa:= S
ce

For readability, whitespace may be used in patterns even though not explicitly allowed by the grammar:
PatternWhitespace may be freely added within patterns before or after any PatternToken.

A FunctionName token is recognized only when the following token is (. An OperatorName token is
recognized only when there is a preceding token and the preceding token isnot oneof @/, |, (,[oran
OperatorName. A string that is equal to an OperatorName or a FunctionName can be used in an
ElementExpr or an AttributeExpr. For example, and[not and or] matchesadement named and with
an eement child named not and an eement child named or .

2.7 Templates

2.7.1 Overview

When therule that isto be applied to the source e ement has been identified, the rulestemplateis
instantiated. A template can contain literal result eements, character data and instructions for creating
fragments of the result tree. Instructions are represented by elementsin the XSL namespace.

Thexsl : appl y-t enpl at es instruction can select descendant nodes for processing. Without any
attribute, thexsl : appl y-t enpl at es instruction processes the immediate children nodes of the source
element; asel ect attribute can be used to process nodes selected by a specified pattern.

<xsl :tenplate match="chapter/title">
<fo:rul e-graphic/>
<f o: bl ock space-before="2pt">
<xsl:text>Chapter </xsl:text>
<xsl : nunmber/ >
<xsl:text> </xsl:text>

Page 15

Extensible Stylesheet Language (XSL)

Page 16

<xsl : appl y-t enpl at es/ >
</ fo: bl ock>
<fo:rul e-graphic/>
</ xsl :tenpl ate>

Issue (instruction-error): Should there be an instruction that generates an error, like the er r or procedure
in DSSSL?

Issue (multiple-results): Should it be possible to create multiple result trees?
2.7.2 Creating Elements and Attributes

2.7.2.1 Literal Result Elements

In atemplate an element in the stylesheet that does not belong to the XSL namespace isinstantiated to
create an element node of the same type. The created element node will have the attribute nodes that were
present on the element node in the stylesheet tree. The created element node will also have the namespace
nodes that were present on the element node in the stylesheet tree with the exception of any namespace
node whose valueisthe XSL namespace URI (ht t p: / / www. w3. or g/ TR/ VWD- xsl).

Thevalue of an attribute of aliteral result el ement isinterpreted as an attribute value template: it can
contain string expressions contained in curly braces ({ }).

Namespace URIs that occur literally in the stylesheet and that are being used to create nodes in the result
tree can be quoted. This appliesto:

e the namespace URI in the expanded name of an literal result element in the stylesheet

e the namespace URI in the expanded name of an attribute specified on aliteral result element in the
stylesheet

e thevalue of a namespace node on aliteral result dement in the stylesheet

A namespace URI is quoted by prefixing it with the string quot e: . This prefix will be removed when the
templateisinstantiated to create the result element node with its associated attribute nodes and namespace
nodes.

When literal result elements are being used to create e ement, attribute, or namespace nodes that use the
XSL namespace URI, the namespace must be quoted to avoid misinterpretation by the XSL processor.

NOTE: It may be necessary also to quote other namespaces. For example, literal result elements belonging
to a namespace dealing with digital signatures might cause XSL stylesheets to be mishandled by general
purpose security software; quoting the namespace would avoid the possibility of such mishandling.

For example, the stylesheet

<xsl : styl esheet
xm ns: xsl ="http://ww. w3. org/ TR/ \D- xsl "
xm ns: fo="http://ww. w3. or g/ TR WD xsl / FO'
xm ns: gxsl ="quot e: htt p: // www. w3. or g/ TR/ \D- xsl " >

<xsl:tenplate match="/">
<gxsl : styl esheet >
<xsl : appl y-t enpl at es/ >
</ gxsl : styl esheet >
</ xsl :tenpl ate>

<xsl : tenpl at e mat ch="bl ock" >
<gxsl:tenmplate match="{.}">
<f 0: bl ock><gxsl : appl y-t enpl at es/ ></f o: bl ock>
</ gxsl : tenpl at e>
</ xsl :tenpl ate>

</ xsl : styl esheet >

Extensible Stylesheet Language (XSL)

will generate an XSL stylesheet from a document of the form:

<el ement s>

<bl ock>p</ bl ock>
<bl ock>h1</ bl ock>
<bl ock>h2</ bl ock>
<bl ock>h3</ bl ock>
<bl ock>h4</ bl ock>
</ el enent s>

2.7.2.2 Creating Elements with xsl : el enent

Thexsl : el enment alowsan eement to be created with a computed name. Thexsl : el enent eement
has arequired nane attribute that specifies the name of the eement. The nane attributeisinterpreted as
an attribute value template. It isinstantiated to create an e ement with the specified name. The content of
thexsl : el ement eement isatemplate for the attributes and children of the created element.

The value of the nane attribute after instantiation must have one of two forms:

e It can bea QName. In this case the nameis expanded in the same way as an element type name using
the namespace declarations in scope for thexsl : el ement eement in the styleshest.

e It can be a namespace URI followed by a# character followed by an NCName. This can be used
conjunction with a NameExpr to compute a qualified name.

2.7.2.3 Creating Attributes with xsl :attri bute

Thexsl : attri but e eement can be used to add attributes to result e ements whether created by literal
result eementsin the stylesheet or by xsl : el enent dements. Thexsl : attri but e dement hasa
required name attribute that specifies the name of the attribute. The nane attributeisinterpreted asan
attribute value template It adds an attribute node to the containing result element node. The content of the
xsl :attri but e dementisatemplate for the value of the created attribute.

Thefollowing are all errors:

e Adding an attribute to an element after children have been added to it; implementations may either
signal the error or ignore the attribute.

e Including nodes other than text nodesin the value of an attribute; implementations may either signal the
error or ignore the added nodes.

e Adding an attribute that has the same hame as an attribute already added; implementations may either
signal the error or ignore the duplicate attribute.

e Adding an attribute to a node that is not an e ement; implementations may either signal the error or
ignore the attribute.

2.7.2.4 Named Attribute Sets

Thexsl : attri but e- set eement defines anamed set of attributes. The name attribute specifies the
name of the attribute set. Thexsl : use eement adds a named set of attributes to an ement. It hasa
required at t ri but e- set attribute that specifies the name of the attribute set. xsl : use isallowed in
thesameplacesasxsl : at t ri but e. The content of thexsl : attri but e- set consists of

xsl :attri but e dementsthat specify attributes; it may also contain xsl : use eements. The value of
attributes in an attribute set is determined when the attribute set is used rather than when the attribute set is
defined.

The following example creates a named attributeset t i t | e- st yl e and usesit in atemplaterule.

<xsl :attribute-set name="title-style">
<xsl :attribute name="font-size">12pt</xsl:attribute>
<xsl :attribute name="font-wei ght">bol d</ xsl: attri bute>
</xsl:attribute-set>

<xsl : tenpl at e mat ch="chapt er/ headi ng" >
<fo: bl ock quaddi ng="start">

Page 17

Extensible Stylesheet Language (XSL)

Page 18

<xsl:use attribute-set="title-style"/>
<xsl : appl y-tenpl at es/ >
</ fo: bl ock>
</ xsl :tenpl ate>

Any attributein a named attribute set specified by xsl : use isnot added to an element if the dement
already has an attribute of that name.

Multiple definitions of an attribute set with the same name are merged. An attribute from a definition that is
more important takes precedence over an attribute from a definition that islessimportant. It isan error if
there are two attribute sets with the same name that are equally important and that both contain the same
attribute unless there is a more important definition of the attribute set that also contains the attribute. An
XSL processor may signal the error; if it does not signal the error, it must recover by choosing from
amongst the most important definitions that specify the attribute the one that was specified last in the
styleshest.

Issue (attribute-set): Merging is the only functionality offered by attribute sets that is not provided by
macros. Is this a sufficient reason to keep attribute sets?

2.7.3 Creating Text

A template can also contain text nodes. Each text node in atemplate remaining after whitespace has been
stripped as specified in Section 2.4.8: Whitespace Stripping will create atext node with the samevaluein
the result tree. Adjacent text nodesin the result tree are automatically merged.

Note that text is processed at thetree level. Thus, markup of & t ; in atemplate will be represented in the
stylesheet tree by a text node that includes the character <. Thiswill create atext nodein theresult tree that
contains a < character, which will be represented by the markup & t ; (or an equivalent character
reference) when the result treeis externalized as an XML document.

Literal data characters may also be wrapped in an xsl : t ext eement. Thiswrapping may change what
whitespace characters are stripped (see Section 2.4.8: Whitespace Stripping) but does not affect how the
characters are handled by the XSL processor theresfter.

2.7.4 Creating Processing Instructions

Thexsl : pi dement isinstantiated to create a processing instruction node. The content of the x sl : pi
element is atemplate for the value of the processing instruction node. Thexsl : pi dement hasarequired
nane attribute that specifies the name of the processing instruction node. The value of the name attributeis
interpreted as an attribute value template.

For example, this

<xsl :pi name="xnl - styl esheet " >hr ef ="book. css" type="text/css"</xsl:pi>
would create the processing instruction

<?xm - styl esheet href="book.css" type="text/css"?>

It isan error if ingtantiating the content of xsl : pi creates anything other than characters. An XSL
processor may signal the error; if it does not signal the error, it must recover by ignoring the offending
nodes together with their content.

It isan error if the result of instantiating the content of the xsl : pi containsthe string ?>. An XSL
processor may signal the error; if it does not signal the error, it must recover by inserting a space after any
occurrence of ? that isfollowed by an >.

2.7.5 Creating Comments

Thexsl : conment dement isinstantiated to create a comment node in the result tree. The content of the
xsl : comrent dement isatemplate for the value of the comment node.

For example, this

<xsl:comrent>This file is autonatically generated. Do not edit!</xsl:coment>

Extensible Stylesheet Language (XSL)

would create the comment
<!--This file is automatically generated. Do not edit!-->

It isan error if ingtantiating the content of xsl : conmrent creates anything other than characters. An XSL
processor may signal the error; if it does not signal the error, it must recover by ignoring the offending
nodes together with their content.

Itisan error if if the result of instantiating the content of thexsl : corment containsthe string - - or ends
with - . An XSL processor may signal the error; if it does not signal the error, it must recover by inserting a
space after any occurrence of - that is followed by another - .

2.7.6 Processing with Template Rules
This example creates a block for achapt er dement and then processes itsimmediate children.

<xsl:tenpl ate match="chapter">
<f o: bl ock>
<xsl : appl y-tenpl at es/ >
</ fo: bl ock>
</ xsl :tenpl ate>

In the absence of asel ect attribute, thexsl : appl y-t enpl at es instruction processes all of the
children of the current node, including text nodes. However, text nodes that have been stripped as specified
in Section 2.4.8: Whitespace Stripping will not be processed.

Ed. Note: There is no WG consensus on the use xsl:apply-templates without a select attribute to process all
children of a node.

A sel ect attribute can be used to process nodes selected by a pattern instead of al children. The value of
thesel ect attributeis a select pattern. The following example processes all of theaut hor children of
theaut hor - gr oup:

<xsl : t enpl at e mat ch="aut hor - gr oup" >
<fo:inline-sequence>
<xsl : appl y-tenpl at es sel ect ="aut hor"/>
</fo:inline-sequence>
</ xsl :tenpl ate>

The pattern contrals the depth at which matches occur. The following example processes all of the
first-nanesof theaut hor sthat aredirect children of aut hor - gr oup:

<xsl : tenpl at e mat ch="aut hor - gr oup" >
<fo:inline-sequence>
<xsl : appl y-tenpl ates sel ect ="aut hor/first-nane"/>
</fo:inline-sequence>
</ xsl :tenpl ate>

/'] can be used in the pattern to allow the matches to occur at arbitrary depths.
This example processes all of the headi ng elements contained in the book eement.

<xsl : tenpl at e mat ch="book" >
<f o: bl ock>
<xsl : appl y-tenpl ates sel ect=".//headi ng"/ >
</ fo: bl ock>
</ xsl :tenpl ate>

An AncestorExpr in the pattern allows the processing of e ements that are not descendants of the current
node. This example finds an employee's department and then processesthe gr oup children of the
depart nent.

<xsl:tenpl ate match="enpl oyee" >
<f o: bl ock>
Enpl oyee <xsl:apply-tenpl ates sel ect ="nane"/> bel ongs to group
<xsl : appl y-tenpl at es sel ect ="ancest or (departnent)/group"/>

Page 19

Extensible Stylesheet Language (XSL)

Page 20

</ fo: bl ock>
</ xsl :tenpl ate>

This example assumesthat adepar t nent eement containsgr oup and enpl oyee eements (at some
level). When processing the enpl oyee eements, the AncestorExpr in the pattern allows navigation
upward tothedepar t nent eement in order to extract the information about the group to which the
employee belongs.

An IdExpr allows processing of e ementswith a specific ID. For example, thistemplate rule appliesto
elementswith the ID cf o; the second xsl : appl y-t enpl at es element processes the nane child of
the element with ID ceo:

<xsl:tenplate match="id(cfo)">

<xsl : appl y-tenpl ates sel ect="nane"/> reports to <xsl:apply-tenpl ates
sel ect ="i d(ceo)/ name"/ >
</ xsl :tenpl ate>

Multiplexsl : appl y-t enpl at es elements can be used within a single template to do smple
reordering. The following example creates two HTML tables. Thefirst tableisfilled with domestic sales
while the second table isfilled with foreign sales.

<xsl:tenpl ate match="product">
<TABLE>
<xsl : appl y-tenpl at es sel ect ="sal es/ donmestic"/>
</ TABLE>
<TABLE>
<xsl : appl y-tenpl at es sel ect ="sal es/ forei gn"/>
</ TABLE>
</ xsl :tenpl ate>

NOTE: It is possible for there to be two matching descendants where one is a descendant of the other. This
case is not treated specially: both descendants will be processed as usual. For example, given a source
document

<doc><di v><di v></ di v></ di v></ doc>
the rule

<xsl :tenpl ate mat ch="doc" >
<xsl : appl y-tenpl ates select=".//div"/>
</ xsl :tenpl ate>

will process both the outer di v and inner di v elements.

Use of select patternsin xsl : appl y-t enpl at es can lead toinfiniteloops. It isan error if, during the
invocation of arulefor an element, that same rule isinvoked again for that eement. An XSL processor
may signal the error; if it does not signal the error, it must recover by creating an empty result tree structure
for the nested invocation.

Issue (select-function): What mechanisms should be provided for selecting elements for processing? For
example, how can elements specified indirectly be handled? Suppose there's an xr ef element with ar ef
attribute that specifies the ID of a di v element. The template for xr ef needs to selectti t| e child of the
di v element referenced by the r ef attribute. Should it be possible to select elements in other XML
documents?

2.7.7 Direct Processing

When the result has a known regular structure, it is useful to be able to specify directly the template for
selected nodes. Thexsl : f or - each eement contains atemplate which isinstantiated for each node
selected by the pattern specified by thesel ect attribute. The template is instantiated with the selected
node as the current node.

For example, given an XML document with this structure

<cust oners>
<cust oner >

Extensible Stylesheet Language (XSL)

<pane>. .. </ name>
<order>...</order>
<order>...</order>

</ cust oner >

<cust oner >
<nane>. .. </ nanme>
<order>...</order>
<order>...</order>

</ cust oner >

</ cust oner s>

the following would create an HTML document containing a table with arow for each cust oner eement

<xsl:tenplate match="/">
<HTM_>
<HEAD>
<Tl TLE>Cust oner s</ Tl TLE>
</ HEAD>
<BODY>
<TABLE>
<TBODY>
<xsl :for-each sel ect="custoners/custoner">
<TR>
<TH>
<xsl : appl y-tenpl ates sel ect ="nane"/ >
</ TH>
<xsl : for-each sel ect="order">
<TD>
<xsl : appl y-t enpl at es/ >
</ TD>
</ xsl : for-each>
</ TR>
</ xsl : for-each>
</ TBODY>
</ TABLE>
</ BODY>
</ HTML>
</ xsl :tenpl ate>

Aswith xsl : appl y-t enpl at es the pattern isa select pattern. Thesel ect attributeisrequired.

2.7.8 Processing Modes
Processing modes allow an e ement to be processed multiple times, each time producing a different result.

Both xsl : t enpl at e and xsl : appl y-t enpl at es have an optional node attribute whose valueisa
name. If an xsl : appl y-t enpl at es eement hasanode attribute, then it applies only those template
rulesfrom xsl : t enpl at e dementsthat have anmode attribute with the same value; if an xsl : appl y-
t enpl at es eement does not have anode attribute, then it applies only those template rules from

xsl : t enpl at e dementsthat do not have aanode attribute.

If there is no matching template, then the built-in template rules are applied, even if anode attribute was
specified in xsl : appl y-t enpl at es.

Ed. Note: Add some examples.

2.7.9 Sorting

Sorting is specified by adding xsl : sort edementsas children of xsl : appl y-t enpl at es or

xsl : for-each. Thefirst xsl : sort child specifiesthe primary sort key, the second xsl : sort child
specifies the secondary sort key and so on. When xsl : appl y-t enpl at es or xsl : f or - each hasone
or morexsl : sort children, then instead of processing the selected e ementsin document order, it sorts

Page 21

Extensible Stylesheet Language (XSL)

Page 22

the elements according to the specified sort keys and then processes them in sorted order. When used in
xsl : for-each, xsl : sort eements must occur first.

xsl :sort hasasel ect attribute whose value is a sdect pattern. For each node to be processed, the
select pattern is evaluated with that node as the current node. The value of thefirst selected nodeis used as
the sort key for that node. The default value of the code sel ect attributeis. (which addressesthe current
node).

This string serves as a sort key for the node. The following optional attributes on xsl : sort control how
thelist of sort keys are sorted:

e or der specifieswhether the strings should be sorted in ascending or descending order; ascendi ng
specifies ascending order; descendi ng specifies descending order; the default isascendi ng

e | ang specifies the language of the sort keys; it has the ssme range of valuesasxm : | ang[W3C
XML]; if nol ang valueis specified, the language should be determined from the system environment

e dat a-t ype specifies the data type of the strings; the following values are allowed

o text specifiesthat the sort keys should be sorted lexicographically in the culturally correct manner
for the language specified by | ang

e nunber specifiesthat the sort keys should be converted to numbers and then sorted according to the
numeric value; the value specified by | ang can be used to assist in the conversion to numbers

The default valueist ext .
Ed. Note: We plan to leverage the work on XML schemas to define further values in the future.

e case-order hasthevalueupper-first orl ower-first;thisapplieswhen dat a-
type="t ext", and specifiesthat upper-case characters should sort before |ower-case letters or vice-
versarespectively. For example, if | ang="en" then A a B b aresorted with case-
order="upper-first”anda A b Baresorted with case- order="1 ower-first". The
default valueis language dependent.

Ed. Note: We plan also to add an attribute whose value is a label identifying the sorting scheme, to be
specified by the 118N WG.

The values of all of the above attributes are interpreted as attribute value templates.

NOTE: It is recommended that implementors consult [UNICODE TR10] for information on internationalized
sorting.

The sort must be stable: in the sorted list of nodes, any sublist that has sort keys that all compare equal must
be in document order.

For example, suppose an employee database has the form

<enpl oyees>
<enpl oyee>
<name>
<first>Janes</first>
<l ast >C ark</| ast >
</ name>

</ enpl oyee>
</ enpl oyees>

Then alist of employees sorted by name could be generated using:

<xsl:tenpl ate match="enpl oyees" >

<xsl : appl y-tenpl at es sel ect =" enpl oyee" >
<xsl :sort sel ect="nane/last"/>
<xsl :sort select="nane/first"/>
</ xsl : appl y-t enpl at es>
</ ul >

Extensible Stylesheet Language (XSL)

</ xsl :tenpl ate>

<xsl:tenpl ate match="enpl oyee" >
<|li>
<xsl : val ue-of select="nane/first"/>
<xsl:text> </ xsl:text>
<xsl : val ue- of sel ect="nane/last"/>

</ xsl :tenpl ate>

2.7.10 Numbering

2.7.10.1 Numbering in the Source Tree
Thexsl : number dement does numbering based on the position of the current node in the source tree.
Thexsl : nunmber dement can have the following attributes:

e Thel evel attribute specifieswhat levels of the source tree should be considered; it has the values
singl e,mul ti orany. Thedefaultissi ngl e.

e Thecount attributeisamatch pattern that specifies what e ements should be counted at those levels.
Thecount attribute defaults to the e ement type name of the current node.

e Thef r omattributeis a match pattern that specifies where counting starts from.

In addition thexs| : nunmber eement has the attributes specified in Section 2.7.10.3: Number to String
Conversion Attributes for number to string conversion.

Thexsl : number dement first constructs alist of positive integersusing thel evel , count andf r om
attributes:

e Whenl evel ="si ngl e", it goes up to the nearest ancestor (including the current node as its own
ancestor) that matchesthe count pattern, and constructs alist of length one containing one plus the
number of preceding siblings of that ancestor that match the count pattern. If thereis no such ancestor,
it constructs an empty list. If thef r omattribute is specified, then the only ancestorsthat are searched
are those that are descendants of the nearest ancestor that matches the f r ompattern.

e Whenl evel ="nul ti", it constructsalist of all ancestors of the current node in document order
followed by the dement itsdf; it then selects from the list those e ements that match the count pattern;
it then maps each dement of thelist to one plus the number of preceding siblings of that element that
match the count pattern. If thef r omattribute is specified, then the only ancestors that are searched are
those that are descendants of the nearest ancestor that matches the f r ompattern.

e Whenl evel ="any", it constructsalist of length one containing one plus the number of elements at
any level of the document that start before this node and that match the count pattern. If thef r om
attribute is specified, then only e ements after the first element before this element that match thef r om
pattern are considered.

Thelist of numbersisthen converted into a string using the attributes specified in Section 2.7.10.3:
Number to String Conversion Attributes; when used with xsl : nunber the value of each of these
attributes isinterpreted as an attribute value template. After conversion, the resulting string isinserted in
theresult tree.

Ed. Note: Allowing them to be attribute value templates isn't consistent with the current DTD: the declared
values would all have to be CDATA, and we couldn't use xml:lang because the XML spec doesn't allow the
value to be expressed as a template.

The following would number theitemsin an ordered list:

<xsl:tenplate match="ol /i teni>
<f o: bl ock>
<xsl : nunber/ ><xsl : text >. </ xsl :text><xsl:apply-tenpl ates/>
</ fo: bl ock>
<xsl : tenpl at e>

Page 23

Extensible Stylesheet Language (XSL)

The following two ruleswould number t i t | e elements. Thisisintended for a document that contains a
sequence of chapters followed by a sequence of appendices, where both chapters and appendices contain
sections which in turn contain subsections. Chapters are numbered 1, 2, 3; appendices are numbered A, B,
C; sectionsin chaptersare numbered 1.1, 1.2, 1.3; sectionsin appendices are numbered A.1, A.2, A.3.

<xsl:tenplate match="title">
<f o: bl ock>
<xsl : nunber level ="nmulti"
count =" chapt er | secti on| subsecti on”
format="1.1. "/>
<xsl : appl y-t enpl at es/ >
</ fo: bl ock>
</ xsl :tenpl ate>

<xsl :tenpl ate match="appendi x//title" priority="1">
<f o: bl ock>
<xsl : nunmber |evel ="multi"
count =" appendi x| sect i on| subsecti on"
formt="A 1. "/>
<xsl : appl y-t enpl at es/ >
</ fo: bl ock>
</ xsl :tenpl ate>

The following example numbers notes sequentially within a chapter:

<xsl :tenpl ate mat ch="not e">
<f o: bl ock>
<xsl : nunber |evel ="any" from"chapter"” format="(1) "/>
<xsl : appl y-t enpl at es/ >
</ fo: bl ock>
</ xsl :tenpl ate>

The following example would number H4 dementsin HTML with athree-part labd:

<xsl:tenpl ate match="H4">
<f o: bl ock>
<xsl : nunber | evel ="any" frone"H1" count="H2"/>
<xsl:text> </xsl:text>
<xsl : nunber | evel ="any" frone"H2" count="H3"/>
<xsl:text> </xsl:text>
<xsl : nunber | evel ="any" fron¥"H3" count="H4"/>
<xsl :text> </xsl:text>
<xsl : appl y-t enpl at es/ >
</ fo: bl ock>
</ xsl :tenpl ate>

2.7.10.2 Numbering in the Result Tree

The root node of the result and each result element has a set of named counters (a mapping from names to
integers).

Counter values areinserted using xsl : count er and xsl : count er s ements. The name of the
counter is specified with the nane attribute. xsl : count er first constructs alist of length one containing
the value of the named counter from the nearest ancestor in the result tree that has a counter with the
specified name; xsl : count er s first constructs alist containing, for each ancestor in the result tree that
has a counter with the specified name, the value of named counter from that ancestor. xsl : count er and
xsl : count er s then convert the list of numbersinto a string using the attributes specified in Section
2.7.10.3: Number to String Conversion Attributes;, when used with xsl : count er and

xsl : count er s thevalue of each of these attributesisinterpreted as an attribute value templ ate.

Ed. Note: The use of attribute value templates here the same problem noted for their use in the previous
section.

Page 24

Extensible Stylesheet Language (XSL)

Counters areincremented using thexsl : count er - i ncr ement dement. The nane attribute specifies
the name of the counter to beincremented. It finds the nearest ancestor in the result tree that has a counter
with the specified name and incrementsthat; if thereis no such ancestor, it adds a counter with that name
and a value of zero to the document root and then increments it. The counter isincremented by 1 by
default, but this can be changed using the anount attribute; the value can be any integer.

Thexsl : count er - r eset eement setsthe value of a counter in the current named counter set. The
current named counter set isthe set of named counters of the containing e ement in the result tree or of the
document root if there is no containing element. If the current named counter set doesn't contain a counter
of that name, a counter is added to it, otherwise the existing value is changed. The name of the counter to
be set is specified by the nane attribute. The valueto st it tois specified by theval ue attribute; the
value can be any integer; it defaultsto O.

Thexsl : count er - scope dement is a phantom result element: it behaves just like anormal result
element for the purposes of result numbering in that it is considered part of the result tree and has a set of
named counters, but doesn't actually create aresult element. Thisisfor when the result tree doesn't have
enough structure for counting.

NOTE: The numbering may be performed in the tree construction process or may be left for the formatting
process.

NOTE: These facilities for result tree numbering are based on the facilities for automatic numbering in
[CSSs2].

The following example would number notes sequentially throughout a document:

<xsl :tenpl ate mat ch="not e">
<xsl:text> (Note </xsl:text>
<xsl : count er-i ncrenent nanme="note"/>
<xsl : count er name="note"/>
<xsl :text>).</xsl:text>
</ xsl :tenpl ate>

The following would turn ordered lists into definition lists:

<xsl :tenplate match="Q0L">

<d| >
<xsl :counter-reset name="1li"/>
<xsl : appl y-tenpl at es/ >

</dl >

</ xsl :tenpl ate>

<xsl:tenplate match="LI">
<xsl : counter-increnent name="1i"/>
<dt ><xsl : counter nanme="1i"/></dt>
<dd><xsl : appl y-t enpl at es/ ></ dd>

</ xsl :tenpl ate>

The following would do HTML style numbering:

<xsl :tenpl ate mat ch="h2">
<xsl : count er-i ncrenent name="h2"/>
<p>
<xsl : count er nane="h2"/>
<xsl:text>. </xsl:text>
<xsl : appl y-t enpl at es/ >
</ p>
<xsl : count er-reset name="h3"/>
</ xsl :tenpl ate>

<xsl :tenpl ate match="h3">

<xsl : count er-i ncrenent name="h3"/>
<p>

Page 25

Extensible Stylesheet Language (XSL)

Page 26

<xsl : count er nane="h2"/>
<xsl : text>. </ xsl:text>
<xsl : count er nane="h3"/>
<xsl:text>. </xsl:text>
<xsl : appl y-t enpl at es/ >

</ p>

<xsl : count er-reset name="h4"/>

</ xsl :tenpl ate>

<xsl :tenpl ate match="h4">
<xsl : count er-i ncrenent name="h4"/>
<p>
<xsl : count er nane="h2"/>
<xsl :text>. </ xsl:text>
<xsl : count er nane="h3"/>
<xsl : text>. </ xsl :text>
<xsl : count er nane="h4"/>
<xsl :text>. </ xsl:text>
<xsl : appl y-tenpl at es/ >
</ p>
</ xsl :tenpl ate>

The following would deal with recursivedi vseach withat it e child:

<xsl :tenpl ate match="di v">
<di v>
<xsl : appl y-tenpl at es/ >
</ di v>
</ xsl :tenpl ate>

<xsl:tenplate match="title">
<p>
<xsl : count er-increnent nanme="div"/>
<xsl :counters nanme="div" format="1.1. "/>
<xsl : appl y-t enpl at es/ >
</ p>
<xsl : counter-reset nanme="div"/>
</ xsl :tenpl ate>

2.7.10.3 Number to String Conversion Attributes

The following attributes are used to control conversion of alist of numbersinto a string. The numbersare
integers greater than 0. The attributes are all optional.

Themain attribute isf or mat . The default value for thef or mat attributeis 1. Thef or mat attributeis
split into a sequence of tokens where each token is a maximal sequence of alphanumeric charactersor a
maximal sequence of non-al phanumeric characters. Alphanumeric means any character that has a Unicode
category of Nd, NI, No, Lu, LI, Lt, Lm or Lo. The aphanumeric tokens (format tokens) specify the format
to be used for each number in theligt. If thefirst token isa non-alphanumeric token, then the constructed
string will start with that token; if the last token is non-alphanumeric token, then the constructed string will
end with that token. Non-al phanumeric tokens that occur between two format tokens are separator tokens
that are used to join numbersin thelist. The n-th format token will be used to format the n-th number in the
list. If there are more numbers than format tokens, then the last format token will be used to format
remaining numbers. If there are no format tokens, then aformat token of 1 is used to format all numbers.
The format token specifies the string to be used to represent the number 1. Each number after thefirst will
be separated from the preceding number by the separator token preceding the format token used to format
that number, or, if there are no separator tokens, then by . .

Format tokens are a superset of the allowed values for thet ype attribute for the OL element in HTML 4.0
and areinterpreted as follows:

Extensible Stylesheet Language (XSL)

e Any token wherethe last character has a decimal digit value of 1 (as specified in the Unicode 2.0
character property database), and the Unicode value of preceding charactersis one less than the Unicode
value of the last character. This generates a decimal representation of the number where each number is

at least aslong as the format token. Thus aformat token 1 generatesthesequencel 2 ... 10 11
12 ..., and aformat token 01 generatesthe sequence01 02 ... 09 10 11 12 ... 99 100
101.

e A format token AgeneratesthesequenceA B C ... Z AA AB AC....

e A format token a generatesthesequencea b ¢ ... z aa ab ac. ...

e A formattokeni generatesthesequencei ii iii iv v vi vii vii ix x

e A format token | generatesthesequencel 11 111 IV V VI VII VII IX X

e Any other format token indicates a numbering sequence that starts with that token. 1f an implementation

does not support a numbering system that starts with that token, it must use a format token of 1.

When numbering with an alphabetic sequence, thexm : | ang attribute specifies which language's
alphabet isto be used.

NOTE: This can be considered as specifying the language of the value of the f or mat attribute and hence is
consistent with the semantics of xm : | ang.

Thel et t er - val ue attribute disambiguates between numbering schemes that use | etters. In many
languages there are two commonly used numbering schemes that use letters. One numbering scheme
assigns numeric valuesto letters in al phabetic sequence, and the other assigns numeric values to each letter
in some other manner. In English, these would correspond to the numbering sequences specified by the
format tokensa and i . In some languages the first member of each sequenceisthe same, and so the format
token alone would be ambiguous. A value of al phabet i ¢ specifiesthe al phabetic sequence; a value of
ot her specifies the other sequence.

Thedi gi t - gr oup- sep attribute gives the separator between groups of digits, and the optional n-
di gi t s- per - gr oup specifies the number of digits per group. For example, di gi t - gr oup-
sep="," andn-di gi t s- per - gr oup="3" would produce numbers of the form 1, 000, 000.

Thesequence- sr c attribute gives the URI of atext resource that contains a whitespace separated list of
the members of the numbering sequence.

Ed. Note: Specify what should happen when the sequence runs out.
Here are some examples of conversion specifications:

f or mat =" ア " specifies Katakana numbering

f or mat =" イ " specifies Katakana numbering in the ‘iroha order

f or mat =" ๑ " specifies numbering with Thai digits

f or mat =" א " | etter-val ue="ot her" specifies ‘traditional’ Hebrew numbering
format =" ა " | etter-val ue="ot her" specifies Georgian numbering

format =" α" | etter-val ue="ot her" specifies‘classical’ Greek numbering
for mat =" а " | etter-val ue="ot her " specifies Old Slavic numbering

2.7.11 Conditionals within a Template

There aretwo instructionsin XSL which support conditional processing in atemplate: xsl : i f and
xsl : choose. Thexsl : i f ingtruction provides smpleif-then conditionality; thexsl : choose
instruction supports selection of one choice when there are several possihilities.

2.7.11.1 Conditional Processing with xsl : i f

Thexsl : i f dement hasasingleattribute, t est which specifies a select pattern. The content isa
template. If the pattern sdects a non-empty list of eements, then the content isinstantiated; otherwise
nothing is created. In the following example, the namesin a group of names are formatted as a comma
Separated list:

<xsl :tenpl ate mat ch="nanel i st/ nane">

Page 27

Extensible Stylesheet Language (XSL)

Page 28

<xsl : appl y-t enpl at es/ >
<xsl:if test=".[not(last-of-type())]"> </xsl:if>
</ xsl :tenpl ate>

Issue (condition-test): What should be the name and allowed value of the attribute that specifies the
condition on xsl : i f and xsl : when? Should it be generalized to allow anything that is allowed within [] ?
Should it be a match pattern rather than a select pattern?

2.7.11.2 Conditional Processing with xsl : choose

Thexsl : choose dement selects one among a number of possible alternatives. It consists of a series of
xsl : when eementsfollowed by an optional xsl : ot her wi se dement. Each xsl| : when element hasa
single attribute, t est , which specifies a salect pattern; thetest istreated astrueif the pattern selects a non-
empty list of elements. The content of thexs| : when and xsl : ot her wi se eementsisatemplate.
When an xsl : choose element is processed, each of thexsl : when eementsistested in turn. The
content of the first, and only thefirst, xsl : when element whose test istrue isinstantiated. If no

xsl : when istrue, the content of thexsl : ot her wi se dement isinstantiated. If noxsl : when eement
istrue, and noxsl : ot her wi se dement is present, nothing is created.

The following example enumeratesitemsin an ordered list using arabic numerals, letters, or roman
numerals depending on the depth to which the ordered lists are nested.

<xsl :tenplate match="orderedlist/listitent>
<fo:list-itemindent-start="2pi'>
<fo:list-iteml abel >
<xsl : choose>
<xsl :when test="ancestor(orderedlist/orderedlist)'>
<xsl :nunber format="i"/>
</ xsl : when>
<xsl :when test="ancestor(orderedlist)'>
<xsl : nunber format="a"/>
</ xsl : when>
<xsl : ot herw se>
<xsl : nunber format="1"/>
</ xsl : ot herw se>
</ xsl : choose>
<xsl:text> </xsl:text>
</fo:list-item]| abel >
<fo:list-item body>
<xsl : appl y-tenpl at es/ >
</fo:list-item body>
</[fo:list-itenpr
</ xsl:tenpl ate>

Issue (if-when-unify): Should xsl : i f and xsl : when be unified into a single element?

2.7.12 Copying

Thexsl : copy eement provides an easy way of copying the current node. The xsl : copy edement is
replaced by a copy of the current node. The namespace nodes of the current node are automatically copied
aswell, but the attributes and children of the node are not automatically copied. The content of the

xsl : copy dement isatemplate for the attributes and children of the created node; the content is not used
for nodes of types that do not have attribues or children (attributes, text, comments and processing
instructions).

Theroot node is treated specially because the root node of the result tree is created implicitly. When the
current nodeisthe root node, xsl : copy will not create aroot node, but will just use the content template.

For example, the identity transformation can be written using xsl : copy asfollows:

<xsl:tenplate match="*| @| comment ()| pi ()| text()">
<xsl : copy>

Extensible Stylesheet Language (XSL)

<xsl :apply-tenpl ates select="*| @| comment ()| pi()|text()"/>
</ xsl : copy>
</ xsl :tenpl ate>

2.7.13 Computing Generated Text

Within atemplate, thexsl : val ue- of eement can be used to compute generated text, for example by
extracting text from the source tree or by inserting the value of a string constant. Thexsl : val ue- of
element does this with a string expression that is specified asthe value of thesel ect attribute. String
expressions can also be used inside attribute values of literal result elements by enclosing the string
expression in curly brace ({ }).

2.7.13.1 String Expressions

String Expressions

[38] StringExpr = Sel ect Expr
| NaneExpr
| Const ant Ref
| Macr oAr gRef

The value of a string expression that is a pattern is the value of the first node selected by the pattern. The
value of each kind of nodeis described in Section 2.4: Data Model. If no nodes are selected by the pattern,
then the value is the empty string. The pattern is a select pattern.

Issue (resolve-expr): Do we need ar esol ve(patt ern) string expression that treats the characters as a
relative URI and turns it into an absolute URI using the base URI of the addressed node?

Name Expression

[39] NameExpr = 'nane' ' (' SelectExpr ')’

The value of a NameExpr is the expanded name of the first node selected by the SelectExpr. If no nodes are
sdlected or the first node does not have a name, then the value is the empty string. If the expanded name has
anull URI, then thevalueisjust thelocal name. If the expanded name has a non-null URI, the valueisthe
URI followed by the character # followed by the local name.

2.7.13.2 Using String Expressions with xsl : val ue- of

Thexsl : val ue- of eement isreplaced by the value of the string expression specified by thesel ect
attribute. Thesel ect attributeis required.

For example, the following createsan HTML paragraph from aper son eement withf i r st - nane and
sur nane attributes.

<xsl:tenpl ate match="person">
<p>
<xsl :val ue-of select="@irst-nane"/>
<xsl:text> </ xsl:text>
<xsl :val ue-of sel ect =" @ur nane"/>
</ P>
</ xsl :tenpl ate>

For example, the following createsan HTML paragraph from aper son eement withf i r st - nane and
sur nane children e ements.

<xsl:tenpl ate match="person">
<p>
<xsl : val ue- of sel ect="first-nanme"/>
<xsl:text> </ xsl:text>
<xsl : val ue- of sel ect ="surnane"/>
</ P>

Page 29

Extensible Stylesheet Language (XSL)

Page 30

</ xsl:tenpl ate>

The following precedes each pr ocedur e element with a paragraph containing the security level of the
procedure. It assumesthat the security level that appliesto a procedure is determined by asecuri ty
attribute on an ancestor element of the procedure. It also assumes that if more than one ancestor has a
securi ty attribute then the security level is determined by the closest such ancestor of the procedure.

<xsl:tenpl ate match="procedure">
<f o: bl ock>
<xsl : val ue-of sel ect="ancestor(*[@ecurity])/ @Gecurity"/>
</ fo: bl ock>
<xsl : appl y-t enpl at es/ >
</ xsl :tenpl ate>

Issue (inherited-attribute): Unless an element counts as one of its own ancestors, using

ancestor (*[@ecurity])/ @ecuritywon't work to get the inherited value of an attribute. We could
either say ancest or always includes the current node; alternatively we could provide a variant of
ancest or that does include the current node; alternatively we could provide a select pattern of the form
inherited-attribute('security").

2.7.13.3 Attribute Value Templates

In an attribute value that is interpreted as an attribute value template, such as an attribute of aliteral result
element, string expressions can be used by surrounding the string expression with curly braces ({ }). The
attribute value template isinstantiated by replacing the string expression together with surrounding curly
braces by the value of the string expression.

The following example creates an | MGresult element from aphot ogr aph eement in the source; the
value of the SRC attribute of the | MG element is computed from the value of thei mage- di r constant and
the content of the hr ef child of the phot ogr aph eement; the value of the W DTH attribute of the | MG
element is computed from the value of thewi dt h attribute of the si ze child of the phot ogr aph
element:

<xsl : constant nanme="i mage-dir" val ue="/inages"/>
<xsl: tenpl ate mat ch="phot ograph">

<I MG SRC="{constant (i mage-dir)}/{href}" WDTH="{size/ @idth}"/>
</ xsl :tenpl ate>

With this source

<phot ogr aph>
<hr ef >headquarters.jpg</href>
<si ze wi dt h="300"/>

</ phot ogr aph>

the result would be
<I MG SRC="/i mages/ headquarters.jpg" WDTH="300"/>

When an attribute value template isinstantiated, a double |eft or right curly brace outside a string
expression will bereplaced by asingle curly brace. It isan error if aright curly brace occursin an attribute
value template outside a string expression without being followed by a second right curly brace; an XSL
processor may signal the error or recover by treating the right curly brace asif it had been doubled. A right
curly braceinside an Literal in a string expression is not recognized as terminating the string expression.

Curly braces are not recognized recursively inside string expressions. For example:

isnot allowed. Instead use simply:

Extensible Stylesheet Language (XSL)

2.7.14 String Constants

Global string constants may be defined using an xsl : const ant eement. The name attribute specifies
the name of the constant, and the val ue attribute specified the value.

Issue (constant-value): Should the value of the constant be specified in the content of the xsl : const ant
element rather than by a val ue attribute?

A stylesheet must not contain more than one definition of a constant with the same name and same
importance. A definition of a constant will not be used if thereis another definition of a constant with the
same name and higher importance.

String constants are referenced using a ConstantRef string expression.

String Constant References

[40] Const ant Ref = 'constant' ' (' NCNane ')'

<xsl : const ant nanme="para-font-size" val ue="12pt"/>

<xsl :tenpl ate mat ch="para">
<fo: bl ock font-size="{constant(para-font-size)}">
<xsl : appl y-tenpl at es/ >
</ fo: bl ock>
</ xsl :tenpl ate>

Issue (local-constants): Should there be a way to define local constants?

Theval ue attributeisinterpreted as an attribute value template. If the value of a constant definition x
references a constant y, then the value for y must be computed before the value of x. It isan error if itis
impossible to do thisfor all constant definitions because of dependency cycles.

2.7.15 Macros

Issue (macro-name): Should macros be called something else?

Parts of templates can also be factored out of similar rulesinto macros for reuse. Macros allow authorsto
create aggregate result fragments and refer to the composite asif it were a single object. In this example, a
macro is defined for a boxed paragraph with the word ‘“Warning!’ preceding the contents. The macrois
referenced from arule for war ni ng elements.

<xsl : macro nane="war ni ng- para">
<f 0: bl ock-1 evel - box>
<f o: bl ock>
<xsl:text>Warni ng! </xsl:text>
<xsl : content s/ >
</ fo: bl ock>
</ fo: bl ock-1| evel - box>
</ xsl : macr o>

<xsl: tenpl ate mat ch="war ni ng" >
<xsl :i nvoke nacr o="war ni ng- para" >
<xsl : appl y-tenpl at es/ >
</ xsl -i nvoke>
</ xsl :tenpl ate>

Macros are defined using the macr o eement. The nane attribute specifies the name of the macro being
defined. The content of the macr o eement isatemplate, called the body of the macro. A macro isinvoked
using thexsl : i nvoke eement; the content of xsl : i nvoke isatemplate. The name of the macro to be
invoked is given by the macr o attribute. Invoking a macro first instantiates the content of xsl : i nvoke.
It then instantiates the body of the invoked macro passing it the result tree fragment created by the

Page 31

Extensible Stylesheet Language (XSL)

instantiation of the content of xsl : i nvoke; thisfragment can be inserted in the body of the macro using
thexsl : cont ent s element.

Macros allow named arguments to be declared with the xsl : macr o- ar g element; the nane attribute
specifies the argument name, and the optional def aul t attribute specifies the default value for the
argument. Within the body of a macro, macro arguments are referenced using a MacroArgRef string
expression. It isan error to refer to amacro argument that has not been declared. An XSL processor may
signal theerror; if it does not signal the error, it must recover by using an empty string. Arguments are
supplied to a macro invocation using the code xsl : ar g element; the nane attribute specifiesthe
argument name, and theval ue attribute specifies the argument value. It isan error to supply an argument
to amacro invocation if the macro did not declare an argument of that name. An XSL processor may signal
the error; if it does not signal the error, it must recover by ignoring the argument. Theval ue attribute of
xsl :argandthedef aul t attribute of xsl : macr o- ar g areinterpreted as attribute value templ ates;
they can contain string expressionsin curly braces aswith literal result eements.

Macro Argument References
[41] Macr oAr gRef n= 'arg' ' (' NCNane ')

This example defines amacro for anunber ed- bl ock with an argument to control the format of the
number.

<xsl| : macro nanme="nunber ed- bl ock" >
<xsl:macro-arg name="format" default="1. "/>
<xsl : nunber format="{arg(format)}"/>
<f o: bl ock/ >
<xsl : contents/>
</ fo: bl ock>
</ xsl : macr o>

<xsl :tenpl ate mat ch="appendi x/title">
<xsl :i nvoke macro="nunber ed- bl ock" >
<xsl:arg name="format" val ue="A. "/>
<xsl : appl y-tenpl at es/ >
</ xsl : i nvoke>
</ xsl :tenpl ate>

It isan error if a stylesheet contains more than one definition of a macro with the same name and same
importance. An XSL processor may signal the error; if it does not signal the error, if must recover by
choosing from amongst the definitions with highest importance the one that occurs last in the stylesheet.

Issue (macro-arg-syntax): The proposal used the same element for declaring macro arguments and for
invoking them. Should these be separate elements and if so what should they be called?

2.8 Combining Stylesheets

Page 32

XSL provides two mechanisms to combine stylesheets:

* an import mechanism that allows stylesheets to override each other, and
» aninclusion mechanism that allows stylesheets to be textually combined.

2.8.1 Stylesheet Import

An XSL stylesheet may contain xsl : i nport dements. All thexsl : i nport eements must occur at the
beginning of the stylesheet. Thexsl : i nport dement hasan hr ef attribute whose value isthe URI of a
styleshest to be imported. A relative URI is resolved relative to the base URI of thexsl : i mport eement
(see Section 2.4.2.2: Base URI).

<xsl :styl esheet xm ns: xsl="http://ww. w3. or g/ TR WD- xsl " >
<xsl:inmport href="article.xsl"/>
<xsl :inmport href="bigfont.xsl"/>
<xsl :attribute-set name="note-style">

Extensible Stylesheet Language (XSL)

<xsl:attribute name="font-style">italic</xsl:attribute>
</ xsl:attribute-set>
</ xsl : styl esheet >

Rules and definitions in the importing stylesheet are defined to be more important than rules and
definitionsin any imported stylesheets. Also rules and definitions in oneimported stylesheet are defined to
be more important than rules and definitionsin previousimported stylesheets.

In general amoreimportant rule or definition takes precedence over alessimportant rule or definition. This
is defined in detail for each kind of rule and definition.

Issue (stylesheet-partition): Should there be an XSL defined element that can be used to divide a
stylesheet into parts, each of which is treated as if it were separately imported for precedence purposes?

Issue (import-source): Provide a way for a stylesheet to import a stylesheet that is embedded in the
document.

Issue (import-media): Should we provide media-dependent imports as in CSS?

Ed. Note: Say something about the case where the same stylesheet gets imported twice. This should be
treated the same as importing a stylesheet with the same content but different URIs. What about import
loops?

xsl : appl y-i nport s processes the current node using only template rules that were imported into the
stylesheet containing the current rule; the nodeis processed in the current rule's mode.

Ed. Note: Expand this.

2.8.2 Stylesheet Inclusion

An XSL stylesheet may include another XSL stylesheet using an xsl : i ncl ude eement. The

xsl @i ncl ude dement hasan hr ef attribute whose valueisthe URI of a stylesheet to be included. A
relative URI isresolved relative to the base URI of thexsl : i ncl ude element (see Section 2.4.2.2: Base
URI). Thexsl : i ncl ude dement can occur asthe child of thexsl : st yl esheet eement at any point
after all xsl : i mport elements.

Theinclusion works at the XML tree level. The resource located by the hr ef attribute value is parsed as
an XML document, and the children of thexsl : st yl esheet dement in this document replace the
xsl @i ncl ude dement in theincuding document. Also any xsl : i nport edementsin the included
document are moved up in the including document to after any existing xsl : i nport eementsin the
including document. Unlikewith xs! : i npor t, thefact that rules or definitions are included does not
affect the way they are processed.

Ed. Note: What happens when a stylesheet directly or indirectly includes itself?

2.8.3 Embedding Stylesheets

Normally an XSL stylesheet isa complete XML document with thexsl : st yl esheet dement asthe
document element. However an XSL stylesheet may al so be embedded in another resource. Two forms of
embedding are possible:

» the XSL stylesheet may be textually embedded in anon-XML resource, or
» thexsl : styl esheet eement may occur in an XML document other than as the document element.

In the second case, the possibility arises of documents with inline style, that is documents that specify their
own style. XSL does not define a specific mechanism for this. Thisis because this can be done by means of
ageneral purpose mechanism for associating stylesheets with documents provided that:

» the mechanism allows a part of aresource to be specified as the styleshest, for example by using a URI
with a fragment identifier, and
 the mechanism can itsdlf can be embedded in the document, for example as a processing instruction.

It isnot in the scope of XSL to define such a mechanism.
NOTE: This is because the mechanism should be independent of any one stylesheet mechanism.

The xd:stylesheet element may have an 1D attribute that specifies a unique identifier.

Page 33

Extensible Stylesheet Language (XSL)

NOTE: In order for such an attribute to be used with the i d XPointer location term, it must actually be
declared in the DTD as being an ID.

The following example shows how inline style can be accomplished using thexm - st yl esheet
processing instruction mechanism for associating a stylesheet with an XML document. The URI uses an
XPointer in afragment identifier to locatethexsl : st yl esheet eement.

<?xm version="1.0"7?>
<?xm -styl esheet type="text/xsl" href="#id(stylel)"?>
<! DOCTYPE doc SYSTEM "doc. dtd">
<doc>
<head>
<xsl :styl esheet xm ns: xsl="http://ww. w3.org/ TR WD-xsl" id="stylel">
<xsl :inmport href="doc.xsl"/>
<xsl:tenplate match="id(foo)">
<f 0: bl ock font-wei ght ="bol d"><xsl : appl y-t enpl at es/ ></ f 0: bl ock>
</ xsl :tenpl ate>
</ xsl : styl esheet >
</ head>
<body>
<para id="foo">
</ par a>
</ body>
</ doc>

NOTE: The t ype pseudo-attribute in the xml - st yl esheet processing instruction identifies the stylesheet
language, not the content type of the resource of which the stylesheet is a part.

2.9 Extensibility

This section will describe an extensibility mechanism for the tree construction process.

Issue (construct-extensibility): Should there be some extensibility mechanism for the tree construction
process? If so, how should it work? Should it be language independent?

3. Formatting

3.1 Introduction

The approach that we have taken in constructing this draft was to eval uate the requirements for print and
online documents and established a target set of capabilities. This set of capahilities reflect the long-term
goalsof XSL.

In this draft we concentrated on documenting a subset of the formatting capability that addressed basic
WP-level pagination. We expect to cover more sophisticated pagination and support for layout-driven
documentsin later drafts.

Ed. Note: Because we are in the process of merging definitions to support the joint formatting model, we
have not completed transfering all definitions from the previous draft.

3.2 Formatting Model

Ed. Note: The formatting model portion of this specification is an exposition of a set of working notes
developed by a sub-committee of XSL WG. The goals of this sub-committee have been (1) to develop input
to the W3C Common Formatting Model and (2) to provide a semantic model in terms of which XSL can be
described. The sub-committee has been integrating the CSS Box Model and the Area Semantics of XSL.

W e are distributing this work in progress, recognizing that the terminology used below is not fully integrated
with the CSS or XSL terminology and that there are still technical issues in the XSL semantics needing
resolution.

Page 34

Extensible Stylesheet Language (XSL)

In XSL, one creates a number of formatting-objects that serve as inputs (or specifications) to a formatter.
The formatter, by applying the formatting model, constructs a hierarchical arrangement of areas and spaces
to produce the formatted result. This section describes that general modd of spaces and areas, aswell as
how they interact with one another. The purposeisto present the fundamental semantics of formatting
objects and properties, but not to specify individual flow objects. It should be seen as describing a series of
constraints for conforming implementations, and not a prescribing any particular algorithm, e.g. for line
breaking, letterspacing, hyphenation, or kerning.

3.2.1 Introduction
The formatting model is defined in terms of rectangular areas and spaces.

e Areasreserve space and hold content.

Selected rectangular areas may have their own coordinate systems and may contain other rectangular
aress.

Rectangular areas may befilled with other areas; when this happens the contained areas are placed in
accordance with thewr i t i ng- node, a property of the containing area which controls the direction of
placement of successive contained aress.

Ed. Note: Further versions or extensions of the model may take into account non-rectangular areas.

A rectangular areaislikea CSSbox in that it has margins, borders, and padding, which are specified by
properties of the formatting object that caused the creation of the area.

Ed. Note: We have not fully resolved technical differences between CSS's use of margins and XSL's use
of display-space and inline-space. | have left the references to margins in this section, because | believe
that these issues can be resolved and we will eventually need to describe handling of margins at those
locations in the document.. However, the descriptions of the handling of inline-space and display-space
is more accurate and more complete at this time.

e Spacesreserve space before, after, or between areas and do not have content. They are used to make
adjustmentsto the layout.

It isthe responsibility of the formatter to manage inheritance and to specify the resultant properties when
creating any area. Thisis necessary since this formatting model should be applicable to both XSL and CSS,
which have differing inheritance strategies. It is therefore necessary for the formatter to derive certain
properties when it creates (synthesizes) an area that has no directly related formatting object (such asthe
creation of line-areas within a block area).

3.2.2 Rectangular areas
There are four kinds of rectangular areas: area-containers, block-areas, line-areas, and inline-aress.

e Area-containers may contain smaller area-containers. Alternatively, an area-container may befilled with
a sequence of block-areas and display-spaces, which are stacked (placed sequentially and adjacent to
one another, possibly separated by display-spaces) within the area-container in a direction determined by
thewr i ti ng- node.

Area-containers aways haveawr i t i ng- node and set a coordinate system for all contained areas.
Thest art-i ndent andend- i ndent of any block-area is measured from the area-container's
corresponding edges, not from the edges of any intervening (nested) block-area.

Area-containers may be placed at a specific positions within the containing area or may be attached to
the inside of any edge of the containing area.

e Block-areas are filled with line-areas, display-spaces, and nested block-areas stacked (placed
sequentially and adjacent to one another, possibly separated by display-spaces) in a direction determined
by thewr i t i ng- node, or aternatively may consist of a graphic el ement.

Block-areas should not be thought of as abstract entities which are "broken" across an area-container
boundary; rather, at a container boundary a block-level formatting object may generate two (or more)
block-areas.

Block-areas are aways stacked in the containing area.

Page 35

Extensible Stylesheet Language (XSL)

Page 36

e Line-areasarefilled with inline-areas and inline-spacesin a direction determined by thewr i t i ng-
node.

Line-areas are aways stacked (placed sequentially and adjacent to one another, possibly separated by
display-spaces) in the containing block-area.

e Aninline-area may contain other inline-areas. The lowest level inline-area commonly contains a single
character glyph image (and isthen called a glyph-area). An inline-area may have more complex content
(e.g. an in-line mathematical expression).

Inline-areas should not be thought of as abstract entities which are "broken" across a line boundary;
rather, at aline boundary an inline formatting object may generate two (or more) inline-aress.

Inline-areas are always stacked (placed sequentially and adjacent to one another, possibly separated by
inline-spaces) in the containing area.

Rectangular areas have a number of common features. Each has a margin, border, and padding, defined as
follows.

e A border is an open box surrounding the content of the area. A border is specified in terms of its color
and of the thickness of each of its four sides. This thickness may be specified as a range with minimum,
optimum, and maximum values.

e Padding is the open space between the inside of the border and the content of the area. It is specified by
its thickness in each of the four directions.

e A margin isused to determine the open space reserved between the outside of the border of the
rectangular area and those of other rectangular aress. It is specified by itsthickness in each of the four
directions, though only some of these may apply in determining the allocation-rectangle, described
bel ow.

Ed. Note: <INSERT ILLUSTRATION -- src="boxmodel.gif" alt="Box model diagram" vspace=0 hspace=50
border=0>

By a rectangle we mean an open rectangle, consisting of four edges. This model identifies a number of
specific rectangles:

e The content-rectangle of arectangular areaisthe rectangle surrounding the areals content.

e The padding rectangle surrounds the area's padding. If the padding has O thickness, the padding
rectangleis the same as the content-rectangle.

e Theborder rectangle surrounds the area's border. If the border has O width, the border rectangleisthe
same as the padding rectangle.

e The margin rectangle surrounds the area's margin. If the margin has 0 width, the margin rectangleisthe
same as the border rectangle.

All rectangular areas have properties which are either specified (explicitly) or derived. Margin, border and
padding specifications are specified properties.

Among the properties of areasarethewr i t i ng- node. This determines the way glyphs are aligned
(called thegl yph- al i gnnent - node), and several directions used for rectangular area placement:

e block-progression-direction: the direction of progression of sequential block-areas within an area-
container.

e line-progression-direction: the direction of progression of sequential line-areas within a block-area. This
is usually the same as the block-progression-direction but may sometimes be opposite to the block-
progression-direction.

e inline-progression-direction: the direction of progression of sequential inline-areas within aline-area.
Thisis always perpendicular to the line-progression-direction.

e escapement-progression-direction: the direction of progression of sequential glyph-areaswithin an
inline-area. Thisis usually the same as the inline-progression-direction but may sometimes be opposite
to the inline-progression-direction.

Inline-areas have a designated position-point. We will define the descender-depth of a glyph-area to be how
far it extendsin the line-progression-direction from the position-point, and the ascender-height to be how
far it extendsin the opposite direction. Similar definitions may be made for more complex inline-areas.

Extensible Stylesheet Language (XSL)

The edges of any rectangle associated with arectangular area are identified by their relative direction,
based onthewr i t i ng- node.

e Theedge occurring first in the block-progression-direction or the line-progression-direction (as
applicable) and perpendicular to it is called the before-edge of the rectangle. The opposite edgeisthe
after-edge.

e Theedge occurring first in the inline-progression-direction or the escapement-progression-direction (as
applicable) is called the start-edge of the rectangle. The opposite edgeis called the end-edge.

In European writing systems, these are the "top" and "bottom" edges, and "left" and "right" edges,
respectively, and "ascender-height" and "descender-depth” have their usual meanings.

Two rectangles associated to a rectangular area are of particular significance:

e The content-rectangle bounds the portion of the area in which the allocation-rectangles of smaller areas
may appear. It is possible for marks associated with an area to be found outside the content-rectangle,
but these are considered decoration and are deemed not to take up area.

e The allocation-rectangle bounds the portion of the area which is used to all ocate space when placing the
areainsdealarger area. When we speak of an area's "size" we are normally referring to the dimensions
of its allocation-rectangle.

For area-containers the all ocation-rectangle extends as far as the border rectangle in the block-
progression-direction, and as far asthe margin rectangle in the perpendicular direction.

For all other rectangular areas, the all ocation-rectangle extends to the margin rectangle in the inline-
progression-direction. For block-areasit extends to the border rectangle in the line-progression-
direction, and for line-areas and inline-areas, it extends only to the content-rectanglein that direction.

Ed. Note: <INSERT ILLUSTRATION -- src="bcontent.gif" alt="Block-level content & allocation rectangle"
vspace=0 hspace=50 border=0>

Ed. Note: <INSERT ILLUSTRATION -- src="Icontent.gif" alt="Inline-level content & allocation rectangle"
vspace=0 hspace=50 border=0>

3.2.3 Display-spaces

Display-spaces are blank space assigned preceding and following line-areas and block-areas to control their
placement. They are assigned either automatically by the formatter or as otherwise specified.

A display-space between two areas (block or line) is specified by atriple of values (minimum, optimum,
maximum) which defines the limits of how the space may be transformed by later processes such as
vertical judtification. In the absence of further processing, the two areas will be separated by the optimum
value, but such processing may reduce it as small as the specified minimum or stretch it aslarge asthe
specified maximum.

A display-space is thought of as having a before-edge and after-edge separated in the bl ock-progression-
direction or line-progression-direction by the display-space's value. A display-space value may be negative,
which can cause areas to overlap.

When two or more display-spaces are adjacent, they shall be resolved into a single display-space whose
minimum, optimum and maximum values are derived according to the space-resolution-rules, as described
bel ow. These depend on certain specified properties of the display-space, namely conditionality and
precedence.

e Conditionality is a Boolean value which specifies whether the space persists at the beginning or end of
an area-container. If true, the space is called a conditional-space and is always omitted if it appears at the
before-edge or after-edge of the content-rectangle of an area-container; in this case any immediately
succeeding conditional-spaces are also omitted.

e Precedence has a value which is either an integer or the special token "force'. A space with a precedence
value of "force" is called aforcing space.

Space-resolution-rules. When several spaces are assigned to be adjacent, they are resolved into asingle
space as follows:

Page 37

Extensible Stylesheet Language (XSL)

Page 38

1. At the beginning or end of an area-container, any conditional -spaces are omitted if this has not
already been done.

2. Then, if any spaceisforcing, the resolved space is taken to be the sum of all the forcing spaces, and
all non-forcing spaces are suppressed.

3. If al spaces are non-forcing, then the eigible spaces shall be those with the maximum precedence,
and among these, the space or spaces having the greatest optimum value. All other spaces are
suppressed. The resolved space istaken to have the same optimum value as the digible spaces; its
minimum value shall be the greatest of the minimum values of the eigible spaces, and its maximum
value shall be theleast of the maximum values.

A display-space at the before-edge or after-edge of the content-rectangle of a block-areais combined with
the padding of the block-areain that direction according to the space-resolution-rules, except that the
resolved display-space is never resolved to be smaller than the padding.

Ed. Note: The border or padding associated with a rectangular area may be specified as conditional. For
purposes of conditionality, if the border or padding of the area are non-zero and not omitted, then the initial
space within the area's content rectangle is not at the beginning of an area container (and so is not omitted
in step 1).

3.2.4 Inline-spaces

Inline-spaces are blank space assigned preceding and following inline-areas. They are assigned either
automatically by the formatter (e.g. for word spacing, letterspacing, or kerning) or as otherwise specified.

Aninline-spaceis specified by atriple of values (minimum, optimum, maximum) which defines the limits
of how the space may be transformed by later processes such asjustification. It separatesinline-areasin a
direct analogy to the way display-space separates block-areas.

An inline-space is thought of as having a start-edge and end-edge, separated in the inline-progression-
direction by the inline-space's value. An inline-space value may be negative, which can causeinline-areas
to overlap.

Inline-spaces have conditionality and precedence. Conditional inline-spaces are omitted at the start and end
of aline-area. When multiple inline-spaces are assigned to be adjacent, they are resolved in accordance
with the space-resolution-rules.

Ed. Note: Most formatters have built-in algorithms for the handling of word-spacing, letter-spacing, kerning,
and combinations thereof; although this model describes these features using inline-spaces and space-
resolution-rules, it is not the intent of this standard to demand replacement of the formatter's built-in
algorithms.

3.2.5 Area containers

An area-container defines a coordinate system for its content, which may be oriented differently from that
of its containing area.

The block-progression-direction of an area-container is derived from its coordinate system and its
wri ti ng- node, and controlsthe orientation and placement of block-areas in the area-container.

The allocation-rectangle of an area-container has a fixed sizein the direction perpendicular to its block-
progression-direction, and may have a fixed size in the block-progression-direction, or may grow to
accommodeate its content.

Area-containers may directly contain smaller area-containers, or alternatively may be filled with block-
areas. Area-containers may be directly contained in larger area-containers, block-areas, or inline-areas, or
may be uncontained (e.g. a page area).

3.2.6 Block-areas

A block-area's margins, borders, and padding are specified by the formatter based on the properties of its
generating flow object.

A block-area'swri t i ng- node is specified by the formatter (though the formatter may choose to derive
the value from its containing areq). This determinesits line-progression-direction, which controls the

Extensible Stylesheet Language (XSL)

orientation and placement of line-areasin its content-rectangle, and itsinline-progress on-direction, which
is used to determine the direction of writing within contained line-aress.

Block-areas also have a specified nominal-font (afully qualified font name and font size), which is used by
the formatter to establish a default font for the block-area's directly contained line-areas and block-aress,
but may be overridden. Other propertiesincludel i ne- hei ght (the nominal distance between the before-
edges of successive line-areas), m ni mum | eadi ng (the minimum space allowed between line-areas),
and space-before and space-after specifications (which may be identified with the specifications for before-
and after-margins).

A derived property of a block-area isits nominal-glyph-height, which is the distance from the maximum
ascender-height to the maximum descender depth of the glyph-areas of the nominal-font. Thisis a property
of the nominal-font and is not dependent on which glyphs are actually present in the block-area.

The allocation-rectangle of a block-area hasfixed sizein the inline-progression-direction, and variesin the
line-progression-direction to accommodate its content, though this may not grow outside the content-
rectangle of its containing area. (Theover f | owproperty does allow the content to exceed the allocation-
rectangle under limited circumstances. The overflowing datais considered decoration and is not considered
as part of the layout. Overflowing data may be clipped or may overprint content in other areas.) A block-
area consisting of a graphic element has fixed sizein both directions.

A block-area may directly contain line-areas, display-spaces, and nested block-areas, or may consist of a
graphic element. Block-areas may be directly contained in area-containers and higher-level block-areas.

3.2.7 Line-areas

Thereis no formatting-object that directly correspondsto aline-area. Thus, line-areas are always created by
the formatter. A line-area's margins, borders, and padding are derived by the formatter from the settings on
the containing area.

A line-area also derivesitsinline-progression-direction from its containing block-area, and thisis used to
determine the direction of writing within aline. It also derivesits| i ne- hei ght and m ni num
| eadi ng properties, aswell asits nominal-font, which is used to derive its nominal-glyph-height.

The allocation-rectangle of alineis determined by the presence or absence of theni ni mum | eadi ng
property: if absent, the allocation-rectangle is the nominal-requested-line-rectangle; if present, it isthe
maximum-line-rectangle, as described below.

The nominal-requested-line-rectangle for aline-area is the rectangle bounded in the inline-progression-
direction by the content-rectangle of the containing block-area, as modified by typographic properties such
asindents, and in the perpendicular direction by its nominal-glyph-height. It has the same height for each
linein ablock-area.

The maximum-line-rectangle for aline has the same length as the nominal -requested-line-rectanglein the
inline-progression-direction. In the perpendicular direction it is bounded by the maximum ascender-height
and the maximum descender-depth for the actual fonts and inline-areas placed on theline, as raised and
lowered by verti cal - al i gn and other adjustments perpendicular to the inline-progression-direction.
Its height may vary depending on the contents of the line-area.

Ed. Note: <INSERT ILLUSTRATION -- src="linerect.gif" alt="Nominal and Maximum line rectangles"
vspace=0 hspace=50 border=0>

The nominal-font is always deemed to occur on aline, and thus the maximum-line-rectangle always
contains the nominal -requested-line-rectangle.

Inline-areas are placed within aline-area relative to a placement-point . This varies during the placement
process, but initially the placement-point is a point on the start-edge of its content-rectangle, separated from
the before-edge of the nominal-requested-line-rectangle by a distance equal to the ascender-height for the
nominal-font.

Line-areas may directly contain inline-areas and inline-spaces. They may be directly contained in block-
aress.

Ed. Note: We may require special-casing rules for the maximum line rectangle in cases such as "accented"
strings in mathematics, or ruby or non-spacing superiors.

Page 39

Extensible Stylesheet Language (XSL)

Page 40

3.2.8 Inline-areas

The most common inline-area is a glyph-area, which contains the representation for a character in a
particular font. Other examples of inline-areas might include portions of inline mathematical expressions.

Inline-areas have margins, borders, and padding, specified by the formatter. (The margins before and after
an inline-area are disregarded in determining the size of its allocation-rectangle. However, margins at the
start-edge and end-edge are incorporated into the all ocation-rectangle.)

The allocation-rectangle for an inline-area has a fixed size in both dimensions, though this may be specified
as arange within which the size may be modified by further processes such asjustification. Aninline-area
also has afont, which is derived from the containing area (if not explicitly set on the inline-area).

Each inline-area has a designated position-point on one of the edges of its all ocation-rectangle (typically
the start-edge). On the opposite edge of the all ocation-rectangle there is another point called the
escapement-point, and the vector from the position-point to the escapement-point is called the escapement-
vector.

The position-point and escapement-point are assigned according tothewr i t i ng- syst emin use (e.g. the
glyph basdline in European languages) and the current escapement-progression-direction in effect for
bidirectional text. These points may be futher adjusted in the case of mixed-language formatting involving
different gl yph- al i gnnent - nodes.

A glyph-areais atomic and may contain no other areas. An inline-area may be atomic and contain no other
areas, or may be non-atomic and contain an area-container (such asfor an inline-graphic), a block-area or
other inline-areas. Inline-areas may be directly contained only in line-areas or in other inline-aress.

3.2.9 Inline-area placement within a line-area

The formatter constructs a series of inline-areas and assigns these to line-areas according to its line-
breaking a gorithm.

Inline-areas assigned to aline-area are placed in theline-areain their display order (which may be different
from thelogical order, whenwr i ti ng- syst ensare mixed).

Before an inline-area is placed, the placement-point of the line-area may be adjusted by shifts perpendicular
to the inline-progression-direction (e.g. for subscript and superscript, or to allow for glyphs with a different
natural alignment from the line-area's glyph-alignment mode).

Each inline-areais oriented so that the direction of its escapement-vector matches the escapement-
progression-direction, and is placed so that its position-point matches the current placement-point of the
line-area. The escapement-point of the inline-area then becomes the new placement-point.

Each inline-space is placed so that its start-edge intersects the current placement-point, and the placement-
point istrandated in the inline-progression-direction, to the end-edge of the inline-space. Adjacent spaces
are combined according to the space-resolution-rules. A conditional-space is not placed if it is at the start-
edge of the content-rectangle of aline-area, but may be placed if it follows a non-conditional -space there.
Similarly a conditional-spaceis not placed if it is at the end of a line-area, but may be placed if it precedes a
non-conditional-space there.

Ed. Note: In bidirectional text, the display order is generated according to the basic algorithm for display of
bidirectional text in the Unicode Standard, version 2.1.

3.2.10 Line-area placement within a block-area

Preceding and following each line-area assigned to a block-area, the formatter assigns display-spaces,
whose conditionality and precedence are determined by the generating flow object.

The values of these display-spaces are determined by the presence or absence of them ni num | eadi ng
property. If mi ni num | eadi ng is present then the value of each is equal to half the value of m ni num
| eadi ng. Otherwiseit isequal to half of the difference between thel i ne- hei ght and nominal-glyph-
height, as derived from the containing block-area (if not set explicitly on theinline-area).

Each display-space is placed so that its before-edge coincides with the after-edge of the allocation-rectangle
of the previous block-area or line-area. Adjacent spaces are combined according to the space-resol ution-

Extensible Stylesheet Language (XSL)

rules. A conditional-space is not placed if it is at the before-edge of the content-rectangle of an area-
container, but may be placed if it follows a non-conditional -space there. Similarly a conditional-space is not
placed at the after-edge, but may be placed if it precedes a non-conditional -space there.

Each line-areais placed so that the before-edge of its all ocation-rectangle matches the after-edge of the
previous display-space, line-area, or block-area, or failing these, the before-edge of the content-rectangl e of
its containing block-area. The start-edge and end-edges of the all ocation-rectangle are placed to coincide
with corresponding edges of the content-rectangle of the containing block-area.

Ed. Note: Future versions or extensions of the model may take into account intrusions and runaround text.

3.2.11 Block-area placement

Preceding and following each block-area assigned to an area-container, or nested inside another block-area,
the formatter assigns display-spaces, whose height, conditionality and precedence are determined in
accordance with its space-before and space-after properties, and by other properties of the generating flow
object.

Each display-space is placed so that its before-edge coincides with the after-edge of the all ocation-rectangle
of the previous block-area or line-area. Adjacent spaces are combined according to the space-resol ution-
rules. A conditional-space is not placed if it is at the before-edge of the content-rectangle of an area-
container, but may be placed if it follows a non-conditional -space there, and similarly for the after-edge.

Each block-areais placed so that the before-edge of its all ocation-rectangle matches the after-edge of the
previous display-space, line-area, or block-area, or failing that, the before-edge of the content-rectangle of
the containing area-container or block-area.

The start-edge and end-edges of its all ocation-rectangle are placed to coincide with the corresponding
edges of the content-rectangle of the containing block-area or area-container.

In no case is the space between bl ock-areas affected by the display-spaces contained in those block-areas,
or in particular by their specified valuesof | i ne- hei ght .

Ed. Note: NOTE: We recognize that this requirement goes too far and plan to change it to allow the merging
of spaces from nested block-areas, while still not allowing merging between a space-after from a block with
the half-leading before the first line of the next block.

3.3 Formatting Objects Summary

basic-page-sequence
This object describes the general layout or layout sequencing for web page (both print and online).

block
A block formatting object allows the formatter to create a block-level areathat contains textlines.

char acter

The character formatting object is used when one needs to explicitly override a specific character or
array of characters with a specific glyph.

display-graphic

Creates a block-level areathat contains a graphic.
display-link

A link that produces a block-level area.
display-rule

Produces a block-level rule (line).

display-sequence

A display-sequenceis used to group block-level flow objects and to assign inherited propertiesto be
shared across them.

Page 41

Extensible Stylesheet Language (XSL)

inline-graphic

Cregtes ainline area that contains a graphic.
inline-link

A link that produces an inline area.

inline-rule
Produces ainlinerule (line).

inline-sequence

An inline-sequenceis used to group inline flow objects and to assign inherited properties to be shared
across them.

link-end-locator
Represents atarget for link.

list-block
Creates a block-level area containing alist.

list-item
A list-item flow object contains the label and the body of each item; it may be used for overriding and
modifying some of the list's properties on a case by case basis.

list-item-body

The item-body flow object holds the components (usually blocks) for alist item. It controls styling
defaults for the body, the spacing between lines and between paras within the list item, break
precedences for line and paragraphs within the list item.

list-item-label
A list-item-label isused to either enumerate, identify or adorn the list-item's body.

page-number
This object isused to instruct the formatter to construct and present a page-number.

queue

A gqueueisused to gather content flow objects to be assigned to (placed into) a given area or set of
chained-areas.

simple-page-master

A smple-page-master formatting object defines the layout of a page area. Masters may be repeated in
accordance with the page-sequence specification.

3.4 Formatting Objects

3.4.1 fo:basic-page-sequence

3.4.1.1 Purpose
This object describes the general layout or layout sequencing for web page (both print and online).

3.4.1.2 Description
A basi c-page-sequence holds:

e anumber of child smple-page-masters that define the layouts to be used for this sequence.
e anumber of child queues which hold the content to be placed in this sequence.

Page 42

Extensible Stylesheet Language (XSL)

NOTE: A document can contain multiple basic-page-sequences. For example, each chapter of a document
could be a separate basic-page-sequence; this would allow the chapter title within a header or footer.

3.4.1.3 Properties

* id: Section 3.5.68: id
 first-page-master : Section 3.5.42: fir st-page-master

3.4.2 fo:block

3.4.2.1 Purpose
A block formatting object allows the formatter to create a block-level area that contains textlines.

3.4.2.2 Description

This object is commonly used for formatting paragraphs, titles, headlines, figure and table captions, etc. It
normally specifies a rectangular area that occupies the width of the containing areaand a height that is
determined by the amount of text that the block contains. A block may specify separation between it and a
preceding block-level object or subsequent block-level object as well as unique indents on the start of the
first textline of the block and end of the last textline of the block.

A block directly containsits children, which may be a mixture of inline or block-level formatting objects:

e Inline child formatting objects within a block are formatted to produce one or more textline aress.
Multiple inline objects may be placed successively into a single textline. Inline objects may (or may not)
be split across two or moretextlinesif necessary (and if allowed to split) if theinline does not fit in the
remaining space in the textline.

e Block-level child formatting objects within a block implicitly specify line-breaks before and after the
block-level object. Each child block-level produces a single area which is treated by the formatter of the
block asif it were atextline area. These areas shall be added to the resulting sequence of areas within
the block.

NOTE: This specifies that users may nest a block inside another block. When this happens the outer block
does not end before the nested block, it is simply suspended. The normal mid-block quadding and indents
apply to the last textline prior to the nested block's area. Similarly, the outer block resumes after the nested
block without a new first-textline indent.

NOTE: Typically, a break implies that a new textline is to be started. The shift-direction for inline areas in the
block is the reverse of the line-progression-direction of the block.

3.4.2.3 Properties

background-attachment : Section 3.5.4: backgr ound-attachment
background-color : Section 3.5.5: background-color
background-image : Section 3.5.6: background-image
background-position : Section 3.5.7: backgr ound-position
background-repeat : Section 3.5.8: background-r epeat
border-color-top : Section 3.5.18: bor der-color-top
border-col or-bottom : Section 3.5.13: bor der -color -bottom
border-color-l€ft : Section 3.5.15: bor der -color -left
border-color-right : Section 3.5.16: bor der-color -right
border-color-before : Section 3.5.12: bor der -color -before
border-color-after : Section 3.5.11: bor der -color -after
border-color-start : Section 3.5.17: border-color-start
border-color-end : Section 3.5.14: border -color-end
border-width-top : Section 3.5.26: bor der-width-top
border-width-bottom : Section 3.5.21: bor der-width-bottom
border-width-left : Section 3.5.23: bor der-width-left
border-width-right : Section 3.5.24: bor der -width-right
border-width-before : Section 3.5.20: bor der-width-before
border-width-after : Section 3.5.19: bor der-width-after

Page 43

Extensible Stylesheet Language (XSL)

border-width-start : Section 3.5.25: bor der-width-start
border-width-end : Section 3.5.22: bor der -width-end
break-before : Section 3.5.28: break-before

break-after : Section 3.5.27: break-after

font-family : Section 3.5.43: font-family

system-font : Section 3.5.135: system-font

font-size: Section 3.5.44: font-size

font-size-adjust : Section 3.5.45: font-size-adjust
font-stretch : Section 3.5.46: font-stretch

font-style : Section 3.5.47: font-style

font-variant : Section 3.5.48: font-variant

font-weight : Section 3.5.49: font-weight
glyph-alignment-mode : Section 3.5.54: glyph-alignment-mode
hyphenation-keep : Section 3.5.64: hyphenation-keep
id : Section 3.5.68: id

text-indent : Section 3.5.138: text-indent

end-indent : Section 3.5.34: end-indent

start-indent : Section 3.5.130: start-indent

keep : Section 3.5.73: keep

orphans: Section 3.5.98: orphans

widows : Section 3.5.141: widows

keep-with-next : Section 3.5.74: keep-with-next
keep-with-previous : Section 3.5.75: keep-with-previous
language : Section 3.5.78: language

letter-spacing : Section 3.5.81: letter-spacing
letter-spacing-limit : Section 3.5.82: letter-spacing-limit
line-height : Section 3.5.84: line-height
line-height-option : Section 3.5.85: line-height-option
min-leading : Section 3.5.94: min-leading
min-post-line-spacing : Section 3.5.95: min-post-line-spacing
min-pre-line-spacing : Section 3.5.96: min-pre-line-spacing
line-spacing-precedence : Section 3.5.87: line-spacing-pr ecedence
padding-top : Section 3.5.107: padding-top
padding-bottom : Section 3.5.102: padding-bottom
padding-left : Section 3.5.104: padding-left
padding-right : Section 3.5.105: padding-right
padding-before : Section 3.5.101: padding-before
padding-after : Section 3.5.100: padding-after
padding-start : Section 3.5.106: padding-start
padding-end : Section 3.5.103: padding-end

space-after : Section 3.5.125: space-after

space-before : Section 3.5.126: space-before

text-align : Section 3.5.136: text-align

text-align-last : Section 3.5.137: text-align-last
asis-truncate-indicator : Section 3.5.1: asis-truncate-indicator
asiswrap-indent : Section 3.5.2: asis-wrap-indent
asiswrap-indicator : Section 3.5.3: asis-wrap-indicator
expand-tabs : Section 3.5.41: expand-tabs
ignore-record-end : Section 3.5.69: ignor e-r ecor d-end
wrap-option : Section 3.5.145: wrap-option
writing-mode : Section 3.5.146: writing-mode

3.4.3 fo:character

3.4.3.1 Purpose

The character formatting object is used when one needs to explicitly override a specific character or array
of characters with a specific glyph.

Page 44

Extensible Stylesheet Language (XSL)

3.4.3.2 Description

When theresult treeisinterpreted as atree of formatting objects, a character in the result treeistreated asif
it were an empty element of type fo:character with a char attribute equal to the character.

3.4.3.3 Properties

background-attachment : Section 3.5.4: backgr ound-attachment
background-color : Section 3.5.5: background-color
background-image : Section 3.5.6: background-image
background-position : Section 3.5.7: backgr ound-position
background-repeat : Section 3.5.8: background-r epeat
border-color-top : Section 3.5.18: bor der-color-top
border-color-bottom : Section 3.5.13: bor der -color-bottom
border-color-left : Section 3.5.15: bor der-color -left
border-color-right : Section 3.5.16: bor der-color -right
border-color-before : Section 3.5.12: border-color-before
border-color-after : Section 3.5.11: border-color -after
border-color-start : Section 3.5.17: bor der-color -start
border-color-end : Section 3.5.14: bor der-color -end
border-width-top : Section 3.5.26: bor der-width-top
border-width-bottom : Section 3.5.21: bor der -width-bottom
border-width-left : Section 3.5.23: bor der -width-left
border-width-right : Section 3.5.24: bor der -width-right
border-width-before : Section 3.5.20: bor der-width-before
border-width-after : Section 3.5.19: bor der-width-after
border-width-start : Section 3.5.25: bor der-width-start
border-width-end : Section 3.5.22: bor der -width-end
character : Section 3.5.29: character

color : Section 3.5.30: color

font-family : Section 3.5.43: font-family

system-font : Section 3.5.135: system-font

font-size: Section 3.5.44: font-size

font-size-adjust : Section 3.5.45: font-size-adjust
font-stretch : Section 3.5.46: font-stretch

font-style : Section 3.5.47: font-style

font-variant : Section 3.5.48: font-variant

font-weight : Section 3.5.49: font-weight

glyph-id : Section 3.5.55: glyph-id

hyphenate : Section 3.5.62: hyphenate

hyphenation-char : Section 3.5.63: hyphenation-char
hyphenation-ladder-count : Section 3.5.65: hyphenation-ladder -count
hyphenation-push-char-count : Section 3.5.66: hyphenation-push-char -count
hyphenation-remain-char-count : Section 3.5.67: hyphenation-r emain-char -count
id : Section 3.5.68: id

inhibit-line-breaks : Section 3.5.71: inhibit-line-breaks
kern : Section 3.5.76: kern

kern-mode : Section 3.5.77: kern-mode

language : Section 3.5.78: language

letter-spacing : Section 3.5.81: letter-spacing

ligature : Section 3.5.83: ligature

padding-top : Section 3.5.107: padding-top
padding-bottom : Section 3.5.102: padding-bottom
padding-left : Section 3.5.104: padding-left

padding-right : Section 3.5.105: padding-right
padding-before : Section 3.5.101: padding-before
padding-after : Section 3.5.100: padding-after
padding-start : Section 3.5.106: padding-start

padding-end : Section 3.5.103: padding-end

Page 45

Extensible Stylesheet Language (XSL)

vertical-align : Section 3.5.140: vertical-align

escapement-space-start : Section 3.5.40: escapement-space-start
text-shadow : Section 3.5.139: text-shadow

input-whitespace-treatment : Section 3.5.72: input-whitespace-tr eatment
word-spacing : Section 3.5.143: wor d-spacing

word-spacing-limit : Section 3.5.144: wor d-spacing-limit

writing-mode : Section 3.5.146: writing-mode

3.4.4 fo:display-graphic

3.4.4.1 Purpose
Creates a block-level areathat contains a graphic.

3.4.4.2 Description
This object creates a block-level areathat contains a graphic.

3.4.4.3 Properties

background-attachment : Section 3.5.4: backgr ound-attachment
background-color : Section 3.5.5: background-color
background-image : Section 3.5.6: background-image
background-position : Section 3.5.7: backgr ound-position
background-repeat : Section 3.5.8: background-r epeat
border-color-top : Section 3.5.18: bor der-color-top
border-col or-bottom : Section 3.5.13: bor der -color -bottom
border-color-l€ft : Section 3.5.15: bor der -color -left
border-color-right : Section 3.5.16: bor der-color -right
border-color-before : Section 3.5.12: bor der -color -before
border-color-after : Section 3.5.11: bor der -color -after
border-color-start : Section 3.5.17: border-color-start
border-color-end : Section 3.5.14: border -color-end
border-width-top : Section 3.5.26: bor der-width-top
border-width-bottom : Section 3.5.21: bor der-width-bottom
border-width-left : Section 3.5.23: bor der -width-left
border-width-right : Section 3.5.24: bor der -width-right
border-width-before : Section 3.5.20: bor der-width-before
border-width-after : Section 3.5.19: bor der-width-after
border-width-start : Section 3.5.25: bor der-width-start
border-width-end : Section 3.5.22: bor der-width-end
break-before : Section 3.5.28: break-before

break-after : Section 3.5.27: break-after

color : Section 3.5.30: color

max-height : Section 3.5.91: max-height

id : Section 3.5.68: id

image : Section 3.5.70: image

end-indent : Section 3.5.34: end-indent

gtart-indent : Section 3.5.130: start-indent
inhibit-line-breaks : Section 3.5.71: inhibit-line-breaks
keep : Section 3.5.73: keep

keep-with-next : Section 3.5.74: keep-with-next
keep-with-previous : Section 3.5.75: keep-with-previous
padding-top : Section 3.5.107: padding-top
padding-bottom : Section 3.5.102: padding-bottom
padding-left : Section 3.5.104: padding-left

padding-right : Section 3.5.105: padding-right
padding-before : Section 3.5.101: padding-before
padding-after : Section 3.5.100: padding-after

Page 46

padding-start : Section 3.5.106: padding-start
padding-end : Section 3.5.103: padding-end
position-point : Section 3.5.116: position-point
scale-graphic : Section 3.5.122: scale-graphic
space-after : Section 3.5.125: space-after
space-before : Section 3.5.126: space-before
max-width : Section 3.5.92: max-width
writing-mode : Section 3.5.146: writing-mode

3.4.5 fo:display-link

3.4.5.1 Purpose
A link that produces a block-level area.

3.4.5.2 Description

Extensible Stylesheet Language (XSL)

This object represents a link that produces a block-level area. The children of this object will be the "hot

spot” for the activation of the link.

3.4.5.3 Properties

background-attachment : Section 3.5.4: backgr ound-attachment
background-color : Section 3.5.5: background-color
background-image : Section 3.5.6: background-image
background-position : Section 3.5.7: backgr ound-position
background-repeat : Section 3.5.8: background-r epeat
border-color-top : Section 3.5.18: bor der-color-top
border-col or-bottom : Section 3.5.13: bor der -color -bottom
border-color-l€ft : Section 3.5.15: bor der -color -left
border-color-right : Section 3.5.16: bor der-color -right
border-color-before : Section 3.5.12: bor der -color -before
border-color-after : Section 3.5.11: bor der -color -after
border-color-start : Section 3.5.17: border-color-start
border-color-end : Section 3.5.14: bor der -color-end
border-width-top : Section 3.5.26: bor der-width-top
border-width-bottom : Section 3.5.21: bor der-width-bottom
border-width-left : Section 3.5.23: bor der-width-left
border-width-right : Section 3.5.24: bor der -width-right
border-width-before : Section 3.5.20: bor der-width-before
border-width-after : Section 3.5.19: bor der-width-after
border-width-start : Section 3.5.25: bor der-width-start
border-width-end : Section 3.5.22: bor der-width-end
destination : Section 3.5.33: destination

padding-top : Section 3.5.107: padding-top
padding-bottom : Section 3.5.102: padding-bottom
padding-left : Section 3.5.104: padding-left

padding-right : Section 3.5.105: padding-right
padding-before : Section 3.5.101: padding-before
padding-after : Section 3.5.100: padding-after
padding-start : Section 3.5.106: padding-start
padding-end : Section 3.5.103: padding-end

3.4.6 fo:display-rule

3.4.6.1 Purpose
Produces a block-level rule (line).

Page 47

Extensible Stylesheet Language (XSL)

3.4.6.2 Description

This object represents a block-level rule. It creates aline according to the properties that produces a block-
level area

3.4.6.3 Properties

background-attachment : Section 3.5.4: backgr ound-attachment
background-color : Section 3.5.5: background-color
background-image : Section 3.5.6: background-image
background-position : Section 3.5.7: backgr ound-position
background-repeat : Section 3.5.8: background-r epeat
border-color-top : Section 3.5.18: bor der-color-top
border-col or-bottom : Section 3.5.13: bor der -color -bottom
border-color-l€ft : Section 3.5.15: bor der -color -left
border-color-right : Section 3.5.16: bor der-color -right
border-color-before : Section 3.5.12: bor der -color -before
border-color-after : Section 3.5.11: bor der -color -after
border-color-start : Section 3.5.17: border-color-start
border-color-end : Section 3.5.14: bor der -color-end
border-width-top : Section 3.5.26: bor der-width-top
border-width-bottom : Section 3.5.21: bor der-width-bottom
border-width-left : Section 3.5.23: bor der-width-left
border-width-right : Section 3.5.24: bor der -width-right
border-width-before : Section 3.5.20: bor der-width-before
border-width-after : Section 3.5.19: bor der-width-after
border-width-start : Section 3.5.25: bor der-width-start
border-width-end : Section 3.5.22: bor der-width-end
break-before : Section 3.5.28: break-before

break-after : Section 3.5.27: break-after

color : Section 3.5.30: color

line-offset : Section 3.5.86: line-offset

line-thickness : Section 3.5.88: line-thickness

id : Section 3.5.68: id

end-indent : Section 3.5.34: end-indent

gtart-indent : Section 3.5.130: start-indent
inhibit-line-breaks : Section 3.5.71: inhibit-line-breaks
keep : Section 3.5.73: keep

keep-with-next : Section 3.5.74: keep-with-next
keep-with-previous : Section 3.5.75: keep-with-previous
length : Section 3.5.80: length

orientation : Section 3.5.97: orientation

padding-top : Section 3.5.107: padding-top
padding-bottom : Section 3.5.102: padding-bottom
padding-left : Section 3.5.104: padding-left

padding-right : Section 3.5.105: padding-right
padding-before : Section 3.5.101: padding-before
padding-after : Section 3.5.100: padding-after
padding-start : Section 3.5.106: padding-start
padding-end : Section 3.5.103: padding-end

vertical-align : Section 3.5.140: vertical-align

space-after : Section 3.5.125: space-after

space-before : Section 3.5.126: space-before
writing-mode : Section 3.5.146: writing-mode

Page 48

Extensible Stylesheet Language (XSL)

3.4.7 fo:display-sequence

3.4.7.1 Purpose

A display-sequenceis used to group block-level flow objects and to assign inherited propertiesto be shared
across them.

3.4.7.2 Description

A display-sequence formatting object is formatted to produce the series of the block-level areas produced
by each of its children. This object must contain only block-level flow objects and holds its content as
children.

A display-sequence has no applicable properties.

3.4.7.3 Properties
* id: Section 3.5.68: id

3.4.8 fo:inline-graphic

3.4.8.1 Purpose
Creates ainline area that contains a graphic.

3.4.8.2 Description
This object creates an inline area that contains a graphic.

3.4.8.3 Properties

background-attachment : Section 3.5.4: backgr ound-attachment
background-color : Section 3.5.5: background-color
background-image : Section 3.5.6: background-image
background-position : Section 3.5.7: backgr ound-position
background-repeat : Section 3.5.8: background-r epeat
border-color-top : Section 3.5.18: bor der-color-top
border-color-bottom : Section 3.5.13: bor der-color -bottom
border-color-l€eft : Section 3.5.15: bor der -color -l eft
border-color-right : Section 3.5.16: bor der-color -right
border-color-before : Section 3.5.12: bor der -color -befor e
border-color-after : Section 3.5.11: border-color -after
border-color-start ; Section 3.5.17: bor der-color -start
border-color-end : Section 3.5.14: bor der-color-end
border-width-top : Section 3.5.26: bor der-width-top
border-width-bottom : Section 3.5.21: bor der -width-bottom
border-width-1€ft : Section 3.5.23: bor der -width-left
border-width-right : Section 3.5.24: bor der -width-right
border-width-before : Section 3.5.20: bor der -width-before
border-width-after : Section 3.5.19: bor der-width-after
border-width-start : Section 3.5.25: border-width-start
border-width-end : Section 3.5.22: border-width-end

color : Section 3.5.30: color

max-height : Section 3.5.91: max-height

id : Section 3.5.68: id

image : Section 3.5.70: image

end-indent : Section 3.5.34: end-indent

sart-indent : Section 3.5.130: start-indent
inhibit-line-breaks : Section 3.5.71: inhibit-line-breaks
keep : Section 3.5.73: keep

keep-with-next : Section 3.5.74: keep-with-next

Page 49

Extensible Stylesheet Language (XSL)

keep-with-previous : Section 3.5.75: keep-with-previous
padding-top : Section 3.5.107: padding-top
padding-bottom : Section 3.5.102: padding-bottom
padding-left : Section 3.5.104: padding-left
padding-right : Section 3.5.105: padding-right
padding-before : Section 3.5.101: padding-before
padding-after : Section 3.5.100: padding-after
padding-start : Section 3.5.106: padding-start
padding-end : Section 3.5.103: padding-end
vertical-align : Section 3.5.140: vertical-align
scale-graphic : Section 3.5.122: scale-graphic
space-end : Section 3.5.128: space-end

space-start : Section 3.5.129: space-start
max-width : Section 3.5.92: max-width
writing-mode : Section 3.5.146: writing-mode

3.4.9 fo:inline-link

3.4.9.1 Purpose
A link that produces an inline area.

3.4.9.2 Description

This object represents a link that produces ainline area. The children of this object will be the "hot spot”
for the activation of the link.

3.4.9.3 Properties

background-attachment : Section 3.5.4: backgr ound-attachment
background-color : Section 3.5.5: background-color
background-image : Section 3.5.6: background-image
background-position : Section 3.5.7: backgr ound-position
background-repeat : Section 3.5.8: background-r epeat
border-color-top : Section 3.5.18: bor der-color-top
border-col or-bottom : Section 3.5.13: bor der -color -bottom
border-color-l€ft : Section 3.5.15: bor der -color -left
border-color-right : Section 3.5.16: bor der-color -right
border-color-before : Section 3.5.12: bor der -color-before
border-color-after : Section 3.5.11: bor der -color -after
border-color-start : Section 3.5.17: border-color-start
border-color-end : Section 3.5.14: bor der -color-end
border-width-top : Section 3.5.26: bor der-width-top
border-width-bottom : Section 3.5.21: bor der-width-bottom
border-width-left : Section 3.5.23: bor der -width-left
border-width-right : Section 3.5.24: bor der -width-right
border-width-before : Section 3.5.20: bor der-width-before
border-width-after : Section 3.5.19: bor der-width-after
border-width-start : Section 3.5.25: bor der-width-start
border-width-end : Section 3.5.22: bor der-width-end
destination : Section 3.5.33: destination

padding-top : Section 3.5.107: padding-top
padding-bottom : Section 3.5.102: padding-bottom
padding-left : Section 3.5.104: padding-left

padding-right : Section 3.5.105: padding-right
padding-before : Section 3.5.101: padding-before
padding-after : Section 3.5.100: padding-after
padding-start : Section 3.5.106: padding-start
padding-end : Section 3.5.103: padding-end

Page 50

Extensible Stylesheet Language (XSL)

3.4.10 fo:inline-rule

3.4.10.1 Purpose
Produces ainlinerule (line).

3.4.10.2 Description
This object representsainlinerule. It creates aline according to the properties that produces ainline area.

3.4.10.3 Properties

background-attachment : Section 3.5.4: backgr ound-attachment
background-color : Section 3.5.5: background-color
background-image : Section 3.5.6: background-image
background-position : Section 3.5.7: backgr ound-position
background-repeat : Section 3.5.8: background-r epeat
border-color-top : Section 3.5.18: bor der-color-top
border-col or-bottom : Section 3.5.13: bor der -color -bottom
border-color-l€ft : Section 3.5.15: bor der -color -left
border-color-right : Section 3.5.16: bor der-color -right
border-color-before : Section 3.5.12: bor der -color-before
border-color-after : Section 3.5.11: bor der -color -after
border-color-start : Section 3.5.17: border-color-start
border-color-end : Section 3.5.14: bor der -color-end
border-width-top : Section 3.5.26: bor der-width-top
border-width-bottom : Section 3.5.21: bor der-width-bottom
border-width-left : Section 3.5.23: bor der -width-left
border-width-right : Section 3.5.24: bor der -width-right
border-width-before : Section 3.5.20: bor der-width-before
border-width-after : Section 3.5.19: bor der-width-after
border-width-start : Section 3.5.25: bor der-width-start
border-width-end : Section 3.5.22: bor der-width-end
color : Section 3.5.30: color

line-offset : Section 3.5.86: line-offset

line-thickness : Section 3.5.88: line-thickness

id : Section 3.5.68: id

end-indent : Section 3.5.34: end-indent

start-indent : Section 3.5.130: start-indent
inhibit-line-breaks : Section 3.5.71: inhibit-line-breaks
keep : Section 3.5.73: keep

keep-with-next : Section 3.5.74: keep-with-next
keep-with-previous : Section 3.5.75: keep-with-previous
length : Section 3.5.80: length

orientation : Section 3.5.97: orientation

padding-top : Section 3.5.107: padding-top
padding-bottom : Section 3.5.102: padding-bottom
padding-left : Section 3.5.104: padding-left

padding-right : Section 3.5.105: padding-right
padding-before : Section 3.5.101: padding-before
padding-after : Section 3.5.100: padding-after
padding-start : Section 3.5.106: padding-start
padding-end : Section 3.5.103: padding-end

vertical-align : Section 3.5.140: vertical-align

space-end : Section 3.5.128: space-end

space-start : Section 3.5.129: space-start

writing-mode : Section 3.5.146: writing-mode

Page 51

Extensible Stylesheet Language (XSL)

Page 52

3.4.11 fo:inline-sequence

3.4.11.1 Purpose

An inline-sequenceis used to group inline flow objects and to assign inherited properties to be shared

across them.

3.4.11.2 Description

An inline-sequence formatting object is formatted to produce the series of inline areas produced by each of

its children. This object must contain only inline flow objects and holds its content as children.

NOTE: An inline-sequence is useful for specifying inherited properties. For example, a sequence with a
specification of a font-style property may be constructed for an italic-emphasis phrase element in a block.

An inline-sequence has no applicable properties.

3.4.11.3 Properties

id : Section 3.5.68: id

3.4.12 fo:link-end-locator

3.4.12.1 Purpose
Represents a target for link.

3.4.12.2 Description

3.4.12.3 Properties

href : Section 3.5.61; href
id : Section 3.5.68: id

show-content : Section 3.5.124: show-content

3.4.13 fo:list-block

3.4.13.1 Purpose
Creates a block-level area containing alist.

3.4.13.2 Description

The object creates a block-level area containing a list. Its allowed children are either only list-item-
label ,list-item pairs or only list-item-body objects.

3.4.13.3 Properties

background-attachment : Section 3.5.4: backgr ound-attachment
background-color : Section 3.5.5: background-color
background-image : Section 3.5.6: background-image
background-position : Section 3.5.7: backgr ound-position
background-repeat : Section 3.5.8: background-r epeat
border-color-top : Section 3.5.18: bor der-color-top
border-col or-bottom : Section 3.5.13: bor der -color -bottom
border-color-l€ft : Section 3.5.15: bor der -color -left
border-color-right : Section 3.5.16: bor der-color -right
border-color-before : Section 3.5.12: bor der -color-before
border-color-after : Section 3.5.11: bor der -color -after
border-color-start : Section 3.5.17: border-color-start
border-color-end : Section 3.5.14: bor der -color-end
border-width-top : Section 3.5.26: bor der-width-top

Extensible Stylesheet Language (XSL)

border-width-bottom : Section 3.5.21: bor der -width-bottom
border-width-left : Section 3.5.23: bor der -width-left
border-width-right : Section 3.5.24: bor der -width-right
border-width-before : Section 3.5.20: bor der -width-before
border-width-after : Section 3.5.19: bor der-width-after
border-width-start : Section 3.5.25: bor der-width-start
border-width-end : Section 3.5.22: bor der -width-end

break-before : Section 3.5.28: break-before

break-after : Section 3.5.27: break-after

id : Section 3.5.68: id

end-indent : Section 3.5.34: end-indent

start-indent : Section 3.5.130: start-indent

keep : Section 3.5.73: keep

keep-with-next : Section 3.5.74: keep-with-next
keep-with-previous : Section 3.5.75: keep-with-previous
provisional-label-separation : Section 3.5.118: provisional-label-separ ation
provisional-distance-between-starts : Section 3.5.117: provisional-distance-between-starts
space-between-list-rows : Section 3.5.127: space-between-list-rows
padding-top : Section 3.5.107: padding-top

padding-bottom : Section 3.5.102: padding-bottom

padding-left : Section 3.5.104: padding-left

padding-right : Section 3.5.105: padding-right

padding-before : Section 3.5.101: padding-before

padding-after : Section 3.5.100: padding-after

padding-start : Section 3.5.106: padding-start

padding-end : Section 3.5.103: padding-end

space-after : Section 3.5.125: space-after

space-before : Section 3.5.126: space-before

3.4.14 fo:list-item

3.4.14.1 Purpose

A list-item flow object contains the label and the body of each item; it may be used for overriding and
modifying some of the list's properties on a case by case basis.

3.4.14.2 Description

A list-item flow object can only be contained by alist. It isawrapper for alist-item-label and an list-item-
body. It controlstheir position relative to other items within thelist. Most of its properties are typically
specified on thelist. It controls the position and padding of the label and the body within the list-item and
in relation to other list-itemsin thelist.

3.4.14.3 Properties

background-attachment : Section 3.5.4: backgr ound-attachment
background-color : Section 3.5.5: background-color
background-image : Section 3.5.6: background-image
background-position : Section 3.5.7: backgr ound-position
background-repeat : Section 3.5.8: background-r epeat
border-color-top : Section 3.5.18: bor der-color-top
border-col or-bottom : Section 3.5.13: bor der -color -bottom
border-color-l€ft : Section 3.5.15: bor der -color -left
border-color-right : Section 3.5.16: bor der-color -right
border-color-before : Section 3.5.12: bor der -color-before
border-color-after : Section 3.5.11: bor der -color -after
border-color-start : Section 3.5.17: border-color-start
border-color-end : Section 3.5.14: bor der -color-end
border-width-top : Section 3.5.26: bor der-width-top

Page 53

Extensible Stylesheet Language (XSL)

Page 54

border-width-bottom : Section 3.5.21: bor der -width-bottom
border-width-left : Section 3.5.23: bor der -width-left
border-width-right : Section 3.5.24: bor der -width-right
border-width-before : Section 3.5.20: bor der-width-before
border-width-after : Section 3.5.19: bor der-width-after
border-width-start : Section 3.5.25: bor der-width-start
border-width-end : Section 3.5.22: bor der -width-end

id : Section 3.5.68: id

padding-top : Section 3.5.107: padding-top
padding-bottom : Section 3.5.102: padding-bottom
padding-left : Section 3.5.104: padding-left

padding-right : Section 3.5.105: padding-right
padding-before : Section 3.5.101: padding-before
padding-after : Section 3.5.100: padding-after
padding-start : Section 3.5.106: padding-start
padding-end : Section 3.5.103: padding-end

space-end : Section 3.5.128: space-end

Sspace-start : Section 3.5.129: space-start

space-after : Section 3.5.125: space-after

space-before : Section 3.5.126: space-before

3.4.15 fo:list-item-body

3.4.15.1 Purpose

The item-body flow object holds the components (usually blocks) for alist item. It controls styling defaults
for the body, the spacing between lines and between paras within the list item, break precedences for line
and paragraphs within thelist item.

3.4.15.2 Description
The item's body contains the content of the item, generally in the form of blocks.

3.4.15.3 Properties

background-attachment : Section 3.5.4: backgr ound-attachment
background-color : Section 3.5.5: background-color
background-image : Section 3.5.6: background-image
background-position : Section 3.5.7: backgr ound-position
background-repeat : Section 3.5.8: background-r epeat
border-color-top : Section 3.5.18: bor der-color-top
border-color-bottom : Section 3.5.13: bor der-color -bottom
border-color-l€ft : Section 3.5.15: bor der -color -l eft
border-color-right : Section 3.5.16: border-color -right
border-color-before : Section 3.5.12: bor der -color -befor e
border-color-after : Section 3.5.11: border-color -after
border-color-start ; Section 3.5.17: bor der-color -start
border-color-end : Section 3.5.14: bor der-color-end
border-width-top : Section 3.5.26: bor der-width-top
border-width-bottom : Section 3.5.21: border -width-bottom
border-width-1€ft : Section 3.5.23: bor der -width-left
border-width-right : Section 3.5.24: bor der -width-right
border-width-before : Section 3.5.20: bor der -width-before
border-width-after : Section 3.5.19: bor der-width-after
border-width-start : Section 3.5.25: border-width-start
border-width-end : Section 3.5.22: border-width-end
font-family : Section 3.5.43: font-family

system-font : Section 3.5.135: system-font

font-size : Section 3.5.44: font-size

Extensible Stylesheet Language (XSL)

font-size-adjust : Section 3.5.45: font-size-adjust
font-stretch : Section 3.5.46: font-stretch

font-style : Section 3.5.47: font-style

font-variant : Section 3.5.48: font-variant

font-weight : Section 3.5.49: font-weight
glyph-alignment-mode : Section 3.5.54: glyph-alignment-mode
hyphenation-keep : Section 3.5.64: hyphenation-keep

id : Section 3.5.68: id

text-indent : Section 3.5.138: text-indent

end-indent : Section 3.5.34: end-indent

start-indent : Section 3.5.130: start-indent

keep : Section 3.5.73: keep

orphans: Section 3.5.98: orphans

widows : Section 3.5.141: widows

keep-with-next : Section 3.5.74: keep-with-next
keep-with-previous : Section 3.5.75: keep-with-previous
language : Section 3.5.78: language

line-height : Section 3.5.84: line-height

line-height-option : Section 3.5.85: line-height-option
min-leading : Section 3.5.94: min-leading
min-post-line-spacing : Section 3.5.95: min-post-line-spacing
min-pre-line-spacing : Section 3.5.96: min-pre-line-spacing
line-spacing-precedence : Section 3.5.87: line-spacing-pr ecedence
padding-top : Section 3.5.107: padding-top

padding-bottom : Section 3.5.102: padding-bottom
padding-left : Section 3.5.104: padding-left

padding-right : Section 3.5.105: padding-right
padding-before : Section 3.5.101: padding-before
padding-after : Section 3.5.100: padding-after

padding-start : Section 3.5.106: padding-start

padding-end : Section 3.5.103: padding-end

text-align : Section 3.5.136: text-align

text-align-last : Section 3.5.137: text-align-last

text-shadow : Section 3.5.139: text-shadow
asis-truncate-indicator : Section 3.5.1: asis-truncate-indicator
asiswrap-indent : Section 3.5.2: asis-wrap-indent
asiswrap-indicator : Section 3.5.3: asis-wr ap-indicator
expand-tabs : Section 3.5.41: expand-tabs
ignore-record-end : Section 3.5.69: ignor e-r ecor d-end
wrap-option : Section 3.5.145: wrap-option

writing-mode : Section 3.5.146: writing-mode

3.4.16 fo:list-item-label

3.4.16.1 Purpose
A list-item-label isused to either enumerate, identify or adorn the list-item's body.

3.4.16.2 Description

A list-item-label can be contained only in alist-item. It can be used for enumerating the list-item. It can
control the positioning of the labdl and its placement with respect tot he list-item-body. The label has
content, and is formatted to become the adornment or enumeration of the list-item.

3.4.16.3 Properties

 background-attachment : Section 3.5.4: backgr ound-attachment
» background-color : Section 3.5.5: background-color
» background-image: Section 3.5.6: background-image

Page 55

Extensible Stylesheet Language (XSL)

Page 56

background-position : Section 3.5.7: backgr ound-position
background-repeat : Section 3.5.8: background-r epeat
border-color-top : Section 3.5.18: bor der-color-top
border-color-bottom : Section 3.5.13: bor der -color-bottom
border-color-left : Section 3.5.15: bor der-color -left
border-color-right : Section 3.5.16: border-color -right
border-color-before : Section 3.5.12: border-color-before
border-color-after : Section 3.5.11: border-color -after
border-color-start : Section 3.5.17: bor der-color -start
border-color-end : Section 3.5.14: bor der-color -end
border-width-top : Section 3.5.26: bor der-width-top
border-width-bottom : Section 3.5.21: bor der -width-bottom
border-width-left : Section 3.5.23: bor der -width-left
border-width-right : Section 3.5.24: bor der -width-right
border-width-before : Section 3.5.20: bor der -width-before
border-width-after : Section 3.5.19: bor der-width-after
border-width-start : Section 3.5.25: bor der-width-start
border-width-end : Section 3.5.22: bor der -width-end
font-family : Section 3.5.43: font-family

system-font : Section 3.5.135: system-font

font-size: Section 3.5.44: font-size

font-size-adjust : Section 3.5.45: font-size-adjust
font-stretch : Section 3.5.46: font-stretch

font-style : Section 3.5.47: font-style

font-variant : Section 3.5.48: font-variant

font-weight : Section 3.5.49: font-weight
glyph-alignment-mode : Section 3.5.54: glyph-alignment-mode
hyphenation-keep : Section 3.5.64: hyphenation-keep

id : Section 3.5.68: id

text-indent : Section 3.5.138: text-indent

end-indent : Section 3.5.34: end-indent

start-indent : Section 3.5.130: start-indent

keep : Section 3.5.73: keep

orphans: Section 3.5.98: orphans

widows : Section 3.5.141: widows

keep-with-next : Section 3.5.74: keep-with-next
keep-with-previous : Section 3.5.75: keep-with-previous
language : Section 3.5.78: language

line-height : Section 3.5.84: line-height

line-height-option : Section 3.5.85: line-height-option
min-leading : Section 3.5.94: min-leading
min-post-line-spacing : Section 3.5.95: min-post-line-spacing
min-pre-line-spacing : Section 3.5.96: min-pre-line-spacing
line-spacing-precedence : Section 3.5.87: line-spacing-pr ecedence
padding-top : Section 3.5.107: padding-top

padding-bottom : Section 3.5.102: padding-bottom
padding-left : Section 3.5.104: padding-left

padding-right : Section 3.5.105: padding-right
padding-before : Section 3.5.101: padding-before
padding-after : Section 3.5.100: padding-after

padding-start : Section 3.5.106: padding-start

padding-end : Section 3.5.103: padding-end

text-align : Section 3.5.136: text-align

text-align-last : Section 3.5.137: text-align-last

text-shadow : Section 3.5.139: text-shadow
asis-truncate-indicator : Section 3.5.1: asis-truncate-indicator
asiswrap-indent : Section 3.5.2: asis-wrap-indent
asiswrap-indicator : Section 3.5.3: asis-wrap-indicator

Extensible Stylesheet Language (XSL)

expand-tabs : Section 3.5.41: expand-tabs
ignore-record-end : Section 3.5.69: ignor e-r ecor d-end
wrap-option : Section 3.5.145: wrap-option
writing-mode : Section 3.5.146: writing-mode

3.4.17 fo:page-number

3.4.17.1 Purpose
This object isused to instruct the formatter to construct and present a page-number.

3.4.17.2 Description

This object generates a inline area containing a page number the formatting will generated based on the
pagination algorithmsit implements.

3.4.17.3 Properties

* id: Section 3.5.68: id

3.4.18 fo:queue

3.4.18.1 Purpose

A gqueueisused to gather content flow objects to be assigned to (placed into) a given area or set of chained-
aress.

3.4.18.2 Description

A queue shall not be allowed within the content of any formatting object except a page-sequence. The
gueue holds a sequence or tree of formatting-objects that is to be presented in alike-named area of the
layout defined by the simple-page-master.

3.4.18.3 Properties

* id: Section 3.5.68: id
* Queue-name: Section 3.5.119: queue-name

3.4.19 fo:simple-page-master

3.4.19.1 Purpose

A smple-page-master formatting object defines the layout of a page area. Masters may be repeated in
accordance with the page-sequence specification.

3.4.19.2 Description
A smple-page-master is formatted to produce a sequence of page areas.

NOTE: The simple-page-master is intended for systems that wish to provide a very simple page layout
facility. Future versions of this specification will support more complex page layouts constructed using the
page-master and column-set formatting objects.

A smple-page-master shall be allowed only within the page-sequence.

The ssmple-page-master supports only the sequential -tiled-page-model, with an ordered set of up to 5 of the
following areas: header, body, footer, end-side, and start-side. The user may specify the size (height or
width) of the header, footer, end-side, and start-side areas and the separation distances between the adjacent
areas. The height of the body area is the page's size (page-height for horizontal writing-modes, and page-
width for vertical writing-modes) minus the sum of the header and footer heights, the separations between
the areas, and the page's margin in the block-progress on-direction.

Page 57

Extensible Stylesheet Language (XSL)

Page 58

The stacking direction of the areas, the page and area heights and separation distances are in the direction
specified by the writing-mode's bl ock-progression-direction.

The width of each areaisthefull available distancein the inline-progression-direction after subtracting the
page's margin (and may not be negative).
A smple-page-master may use up to 6 associated queues. These queues are not direct children of the page-
sequence (but are associated with it by name or via an explicit mapping table):

title

For online presentations only, this object holds a single title textline to be presented in the window
title bar when this simple-page-master is being viewed.

If provided for print environments, this object isignored.
If thereistoo much text for thetitle area, the browser may truncate the presentation.

The content of atitleisrepeated on each page by replaying the title queue after the body areais
processed. (This allows for proper presentation of "dictionary”-style running headers/footers.)

header
Holds the content to be placed in the header area(s).

For print and online environments, this object holds a set of information that is presented in a
Separate area at the top of the page or window.

If thereistoo much text for the header area, the presentation may be truncated/clipped.

The content of a header is repeated on each page by replaying the header queue after the body areais
processed. (This allows for proper presentation of "dictionary”-style running headers/footers.)

footer
Holds the content to be placed in the footer area(s).

For print and online environments, this holds a set of information that is presented in a separate area
at the bottom of the page or window.

If thereistoo much text for the footer area, the presentation may be truncated/clipped.

The content of a footer is repeated on each page by replaying the footer queue after the body areais
processed. (This allows for proper presentation of "dictionary”-style running headers/footers.)

start-side
Holds the content to be placed in the start-side area(s).

For print and online environments, this object holds a set of information that is presented in a
Separate area at the starting edge (as specified by the page-writing-mode property) of the page or
window.

If thereis too much text for the start-side area, the presentation may be truncated/clipped.
The content of a start-side area is repeated on each page by replaying the start-side queue after the
body areais processed. (This allows for proper presentation of "dictionary”-style running
headers/footers.)

end-side
Holds the content to be placed in the end-side area(s).

For print and online environments, this holds a set of information that is presented in a separate area
at the ending edge of the page or window.

If thereistoo much text for the end-side area, the presentation may be truncated/clipped.
The content of a end-side areais repeated on each page by replaying the end-side queue after the
body areais processed. (This allows for proper presentation of "dictionary”-style running
headers/footers.)

body
Holds the content to be placed in the body area(s).

Extensible Stylesheet Language (XSL)

For print and online environments, this holds the information that is presented in the main areain the
middle of the page or window.

In aprint environment, if there istoo much text for the body area the formatter should create
additional pages until al the content is presented.

In aonline environment, if there is too much text for the body area the formatter can create additional
pages/frames/panel s until all the content is presented or it can present the content in a scrolling view.

The smple-page-master defines 5 areas for presentation within the page/window design (formatted area of
the page). These are the header, body, footer, start-side, and end-side. It also provides atitle, which has no
properties defined in the ssmple-page-master object, but may for example be presented in a browser'stitle
bar.

The following simple-page-masters are the only ones supported in this draft of the standard:

first
The master to be used for the first page in the sequence.

odd
The master to be used for odd-phased pages after the first page in the sequence.

even
The master to be used for even-phased pages after the first page in the sequence.

scrolling
The master to be used for scrolling (non-paged) online presentation.

3.4.19.3 Properties

background-attachment : Section 3.5.4: backgr ound-attachment
background-color : Section 3.5.5: background-color
background-image : Section 3.5.6: background-image
background-position : Section 3.5.7: backgr ound-position
background-repeat : Section 3.5.8: background-r epeat
border-color-top : Section 3.5.18: bor der-color-top
border-color-bottom : Section 3.5.13: bor der-color-bottom
border-color-left : Section 3.5.15: bor der-color -left
border-color-right : Section 3.5.16: bor der-color -right
border-color-before : Section 3.5.12: border-color-before
border-color-after : Section 3.5.11: border-color -after
border-color-start : Section 3.5.17: bor der-color -start
border-color-end : Section 3.5.14: bor der-color -end
border-width-top : Section 3.5.26: bor der-width-top
border-width-bottom : Section 3.5.21: bor der -width-bottom
border-width-left : Section 3.5.23: bor der -width-left
border-width-right : Section 3.5.24: bor der -width-right
border-width-before : Section 3.5.20: bor der-width-before
border-width-after : Section 3.5.19: bor der-width-after
border-width-start : Section 3.5.25: bor der-width-start
border-width-end : Section 3.5.22: bor der -width-end
page-height : Section 3.5.108: page-height

page-width : Section 3.5.114: page-width

id : Section 3.5.68: id

page-margin-left : Section 3.5.110: page-mar gin-left
page-margin-right : Section 3.5.111: page-mar gin-right
page-margin-bottom : Section 3.5.109: page-mar gin-bottom
page-margin-top : Section 3.5.112: page-mar gin-top
padding-top : Section 3.5.107: padding-top
padding-bottom : Section 3.5.102: padding-bottom
padding-left : Section 3.5.104: padding-left

Page 59

Extensible Stylesheet Language (XSL)

padding-right : Section 3.5.105: padding-right
padding-before : Section 3.5.101: padding-before
padding-after : Section 3.5.100: padding-after

padding-start : Section 3.5.106: padding-start

padding-end : Section 3.5.103: padding-end
footer-separation : Section 3.5.51: footer -separ ation
header-separation : Section 3.5.57: header -separ ation
end-side-separation : Section 3.5.36: end-side-separ ation
dtart-side-separation : Section 3.5.132: start-side-separ ation
body-overflow : Section 3.5.9: body-over flow
footer-overflow : Section 3.5.50: footer -over flow
header-overflow : Section 3.5.56: header -over flow
end-side-overflow : Section 3.5.35: end-side-over flow
start-side-overflow : Section 3.5.131: start-side-overflow
footer-size: Section 3.5.52: footer-size

header-size : Section 3.5.58: header-size

end-side-size: Section 3.5.37: end-sde-size

start-side-size : Section 3.5.133: start-side-size
page-master-name : Section 3.5.113: page-master-name
page-width : Section 3.5.114: page-width
body-writing-mode : Section 3.5.10: body-wr iting-mode
end-side-writing-mode : Section 3.5.38: end-side-writing-mode
gtart-side-writing-mode : Section 3.5.134: start-side-writing-mode
footer-writing-mode : Section 3.5.53: footer -writing-mode
header-writing-mode : Section 3.5.59: header -writing-mode
page-writing-mode : Section 3.5.115: page-writing-mode

3.5 Formatting Properties

3.5.1 asis-truncate-indicator

3.5.1.1 Allowed Values

One of the following:

e none:

A character (See Section 3.6.5: Char).

3.5.1.2 Purpose
Specifies the character (or lack of) to be inserted when truncating content.

3.5.1.3 Description

This property controls what character isinserted with asis content is truncated. If the property valueis
'non€, no character will be inserted.

3.5.2 asis-wrap-indent

3.5.2.1 Allowed Values
A signed length (See Section 3.6.7: Signed L ength).

3.5.2.2 Purpose
Specifies the indentation when asis content is wrapped.

Page 60

Extensible Stylesheet Language (XSL)

3.5.3 asis-wrap-indicator

3.5.3.1 Allowed Values

One of the following:

e none:

A character (See Section 3.6.5: Char).

3.5.3.2 Purpose
Specifies the character to be used to indicate when asis content is wrapped.

3.5.4 background-attachment

3.5.4.1 Allowed Values
One of the following:

o fixed:
e scroll : (Default)

3.5.4.2 Purpose

Specifies if the background image (see ‘background-image’) should be fixed to the viewport or scroll with
the document.

3.5.5 background-color

3.5.5.1 Allowed Values

One of the following:

e trangparent : (Default)

A color (See Section 3.6.14: Color).

3.5.5.2 Purpose
Describes the background color of a formatting object.

3.5.6 background-image

3.5.6.1 Allowed Values

One of the following:

e none: (Default)

A URI (See Section 3.6.20: URI).

3.5.6.2 Purpose
Specifies an image that should be presented in the background.

3.5.7 background-position

3.5.7.1 Allowed Values
One of the following:

e center :

Page 61

Extensible Stylesheet Language (XSL)

Page 62

| eft :
right :
bottom :
middle:
top:

A an x-y coordinate (See Section 3.6.6: Coordinate).

3.5.7.2 Purpose
Specifies the background image of a formatting object.

3.5.8 background-repeat

3.5.8.1 Allowed Values

One of the following:

no-repest :
repeat : (Default)
repest-x :
repeat-y :

3.5.8.2 Purpose
Specifiesif and how a background image (see 'background-image’) should be tiled.

3.5.9 body-overflow

3.5.9.1 Allowed Values
One of the following:

auto:
hidden :
scroll :
visible:

3.5.9.2 Purpose
Specifies the overflow behavior for the body area. (See overflow).

3.5.9.3 Description
Defines behavior when content islarger than region. (See al'so X SL:flow-type)

3.5.10 body-writing-mode

3.5.10.1 Allowed Values

One of the following:

bt-Ir :

bt-rl :
Ir-alternating-rl-bt :
Ir-alternating-rl-tb :
Ir-bt:
[r-inverting-rl-bt :

[r-inverting-rl-tb :

Ir-th:

rl-bt :

rl-th:

th-Ir :

th-rl :

tb-rl-in-rl-pairs:
use-page-writing-mode :

3.5.10.2 Purpose

Specifies the writing mode within the body of a s mple-page-master.

3.5.10.3 Description
See the writing-mode property.

3.5.11 border-color-after

3.5.11.1 Allowed Values

One of the following:

e transparent:

A color (See Section 3.6.14: Color).

3.5.11.2 Purpose
Specifies the color of the after border.

3.5.12 border-color-before

3.5.12.1 Allowed Values

One of the following:

e transparent :

A color (See Section 3.6.14: Color).

Defaults to black from the transparent color space.

3.5.12.2 Purpose
Specifies the color of the before border.

3.5.13 border-color-bottom

3.5.13.1 Allowed Values

One of the following:

e transparent:

A color (See Section 3.6.14: Color).

Defaults to black from the transparent color space.

3.5.13.2 Purpose
Specifies the color of the bottom border.

Extensible Stylesheet Language (XSL)

Page 63

Extensible Stylesheet Language (XSL)

Page 64

3.5.14 border-color-end

3.5.14.1 Allowed Values

One of the following:

e transparent :

A color (See Section 3.6.14: Color).

Defaults to black from the transparent color space.

3.5.14.2 Purpose
Specifies the color of the end border.

3.5.15 border-color-left

3.5.15.1 Allowed Values

One of the following:

e transparent:

A color (See Section 3.6.14: Color).

Defaults to black from the transparent color space.

3.5.15.2 Purpose
Specifies the color of the left border.

3.5.16 border-color-right

3.5.16.1 Allowed Values

One of the following:

e transparent:

A color (See Section 3.6.14: Color).

Defaults to black from the transparent color space.

3.5.16.2 Purpose
Specifies the color of theright border.

3.5.17 border-color-start

3.5.17.1 Allowed Values

One of the following:

e transparent:

A color (See Section 3.6.14: Color).

Defaults to black from the transparent color space.

3.5.17.2 Purpose
Specifies the color of the start border.

Extensible Stylesheet Language (XSL)

3.5.18 border-color-top

3.5.18.1 Allowed Values

One of the following:

e transparent :

A color (See Section 3.6.14: Color).

Defaults to black from the transparent color space.

3.5.18.2 Purpose
Specifies the color of the top border.

3.5.19 border-width-after

3.5.19.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.19.2 Purpose
Specifies the width of the after border.

3.5.20 border-width-before

3.5.20.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsighed L ength).

3.5.20.2 Purpose
Specifies the width of the before border.

3.5.21 border-width-bottom

3.5.21.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.21.2 Purpose
Specifies the width of the bottom border.

3.5.22 border-width-end

3.5.22.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsighed L ength).

3.5.22.2 Purpose
Specifies the width of the end border.

3.5.23 border-width-left

3.5.23.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

Page 65

Extensible Stylesheet Language (XSL)

3.5.23.2 Purpose
Specifies the width of the |eft border.

3.5.24 border-width-right

3.5.24.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsighed L ength).

3.5.24.2 Purpose
Specifies the width of the right border.

3.5.25 border-width-start

3.5.25.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.25.2 Purpose
Specifies the width of the start border.

3.5.26 border-width-top

3.5.26.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.26.2 Purpose
Specifies the width of the top border.

3.5.27 break-after

3.5.27.1 Allowed Values
One of the following:

auto-page:
column :
column-group :
none : (Default)
page:
page-region :

3.5.27.2 Purpose
Specifies page break behavior after aformatting object.

3.5.28 break-before

3.5.28.1 Allowed Values
One of the following:

e auto-page:
e column:
e column-group :

Page 66

e none: (Default)
e page:
e page-region:

3.5.28.2 Purpose
Specifies the page break behavior before a formatting object.

3.5.29 character

3.5.29.1 Allowed Values
A character (See Section 3.6.5: Char).

3.5.29.2 Purpose
Specifies the Unicode character to be substituted/presented.

3.5.30 color

3.5.30.1 Allowed Values

One of the following:

e transparent:

A color (See Section 3.6.14: Color).

3.5.30.2 Purpose

Describes the foreground color of a formatting object's text content.

3.5.31 contents-alignment

3.5.31.1 Allowed Values
One of the following:

e centered:
e end:

e justify:
e dStart:

3.5.31.2 Purpose

Extensible Stylesheet Language (XSL)

Specifies the alignment of the child areas within the containing area in the block-progression-direction of

the containing area.
3.5.32 contents-rotation

3.5.32.1 Allowed Values
One of the following:

e O:

o 90:

e 180:
o 270:

Page 67

Extensible Stylesheet Language (XSL)

3.5.32.2 Purpose
Specifies the counter-clockwise rotation to be applied to the area contents.

3.5.33 destination

3.5.33.1 Allowed Values

One of the following:

e none:

A URI (See Section 3.6.20: URI).

3.5.33.2 Purpose
Specifies the destination for the link when activated.

3.5.34 end-indent

3.5.34.1 Allowed Values
A signed length (See Section 3.6.7: Signed L ength).

3.5.34.2 Purpose
Specifies the indent of the end edge of the area in the direction of the inline-progress on-direction.

3.5.35 end-side-overflow

3.5.35.1 Allowed Values
One of the following:

e auto:

e hidden:
e scroll :
e Vvisble:

3.5.35.2 Purpose
Specifies the overflow behavior for the end-side area.

3.5.35.3 Description
Defines behavior when content islarger than region. (See al'so X SL:flow-type)

3.5.36 end-side-separation

3.5.36.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.36.2 Purpose
Specifies the distance from the edge of the body area to the adjacent end-side area.

3.5.37 end-side-size

3.5.37.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

Page 68

Extensible Stylesheet Language (XSL)

3.5.37.2 Purpose

Specifies the width of the end-side area. If the corresponding queue content is absent, this space will still be

reserved.
3.5.38 end-side-writing-mode

3.5.38.1 Allowed Values
One of the following:

bt-Ir :

bt-rl :
Ir-alternating-rl-bt :
[r-alternating-rl-tb :
Ir-bt:

[r-inverting-rl-bt :
[r-inverting-rl-tb :

Ir-th:

rl-bt :

rl-th:

th-Ir :

th-rl :

tb-rl-in-rl-pairs:
use-page-writing-mode :

3.5.38.2 Purpose

Specifies the writing-mode within the end-side area of a Ssmple-page-master.

3.5.38.3 Description
See the writing-mode property.

3.5.39 escapement-space-end

3.5.39.1 Allowed Values

A space specification (See Section 3.6.18: Space Specifier).
Minimum

Maximum
0.0pt

Optimal
0.0pt

3.5.39.2 Purpose
Specifies the space following a glyph-area.

3.5.40 escapement-space-start

3.5.40.1 Allowed Values
A space specification (See Section 3.6.18: Space Specifier).

Page 69

Extensible Stylesheet Language (XSL)

Minimum

Maximum
0.0pt

Optimal
0.0pt

3.5.40.2 Purpose
Specifies the space preceding a glyph-area.

3.5.41 expand-tabs

3.5.41.1 Allowed Values
A boolean value (See Section 3.6.4: Boolean).

3.5.41.2 Purpose
Specifies whether tabs should be expanded according to tab stops.

3.5.42 first-page-master

3.5.42.1 Allowed Values
A name (See Section 3.6.1: Name).

3.5.42.2 Purpose
Specifies the name of the page master formatting object to use for the first page.

3.5.43 font-family

3.5.43.1 Allowed Values
A font name (See Section 3.6.22: Font Name).

3.5.43.2 Purpose
Specifies a prioritized list of font family names and/or generic family names.

3.5.44 font-size

3.5.44.1 Allowed Values
A signed length (See Section 3.6.7: Signed L ength).

3.5.44.2 Purpose
Specifies the size of the font.

3.5.44.3 Description

This property specifies the size of the font. The final size of the font depend on the availability of fonts and
the value of ‘font-size-adjust'.

Page 70

Extensible Stylesheet Language (XSL)

3.5.45 font-size-adjust

3.5.45.1 Allowed Values

One of the following:

e none:

An unsigned real value (See Section 3.6.16: Unsigned Real).

3.5.45.2 Purpose
Specifiesthe ideal ratio between the x-height of a font and the size of the font.

3.5.46 font-stretch

3.5.46.1 Allowed Values
One of the following:

e condensed :
expanded :
extra-condensed :
extra-expanded :
narrower :
normal :
semi-condensed :
semi-expanded :
ultra-condensed :
ultra-expanded :
wider :

3.5.46.2 Purpose
Selects a face of a certain width within a font family.

3.5.47 font-style

3.5.47.1 Allowed Values
One of the following:
italic:

normal :

oblique :

reverse-normal :
reverse-oblique :

3.5.47.2 Purpose

Selects anormal (sometimes referred to as "roman™ or "upright"), italic, and oblique face within a font

family.
3.5.48 font-variant

3.5.48.1 Allowed Values
One of the following:

Page 71

Extensible Stylesheet Language (XSL)

Page 72

e normal :
e small-caps:

3.5.48.2 Purpose
Selects between a normal and small-caps variant of afont face.

3.5.49 font-weight

3.5.49.1 Allowed Values
One of the following:

e 100:
200:
300:
400:
500:
600 :
700:
800:
900:
bold :
bolder :
lighter :
normal :

3.5.49.2 Purpose
Specifies the weight of the font.

3.5.50 footer-overflow

3.5.50.1 Allowed Values
One of the following:

e auto:

e hidden:
e scroll :
e Vvisble:

3.5.50.2 Purpose
Specifies the overflow behavior for the footer area.

3.5.50.3 Description
Defines behavior when content islarger than region. (See al'so X SL:flow-type)

3.5.51 footer-separation

3.5.51.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

Extensible Stylesheet Language (XSL)

3.5.51.2 Purpose
Specifies the distance between the bottom of the body area to the top of the footer area.

3.5.52 footer-size

3.5.52.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsighed L ength).

3.5.52.2 Purpose
Specifies the height of the footer area.

3.5.52.3 Description

Specifies the height of the footer area. If the corresponding queue content is absent, this space will still be
reserved.

3.5.53 footer-writing-mode

3.5.53.1 Allowed Values
One of the following:

bt-Ir :

bt-rl :
[r-alternating-rl-bt :
[r-alternating-rl-tb :
Ir-bt:

[r-inverting-rl-bt :
[r-inverting-rl-tb :

Ir-th:

rl-bt :

rl-th :

th-Ir :

th-rl :

tb-rl-in-rl-pairs:
use-page-writing-mode :

3.5.53.2 Purpose
Specifies the writing-mode within the footer area of a s mple-page-master.

3.5.53.3 Description
See the writing-mode property.

3.5.54 glyph-alignment-mode

3.5.54.1 Allowed Values
One of the following:

e base:
e bottom :
e center :

Page 73

Extensible Stylesheet Language (XSL)

font :

| eft :
math-middle:
middle:

right :

top:

3.5.54.2 Purpose
Used to set the textline's placement-path position relative to the origin of the block-level area.

3.5.55 glyph-id

3.5.55.1 Allowed Values

One of the following:

e use-char-map:

A name (See Section 3.6.1: Name).

3.5.55.2 Purpose
Ed. Note: TODO

3.5.56 header-overflow

3.5.56.1 Allowed Values
One of the following:

e auto:

e hidden:
e scroll :
e Vvisble:

3.5.56.2 Purpose
Specifies the overflow behavior for the header area.

3.5.56.3 Description
Defines behavior when content islarger than region. (See al'so X SL:flow-type)

3.5.57 header-separation

3.5.57.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsighed L ength).
Defaults to 18.0pt.

3.5.57.2 Purpose
Specifies the distance between the top of the body area to the adjacent header area.

Page 74

Extensible Stylesheet Language (XSL)

3.5.58 header-size

3.5.58.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.58.2 Purpose
Specifies the height of the header area.

3.5.58.3 Description

Specifies the height of the header area. If the corresponding queue content is absent, this space will till be
reserved.

3.5.59 header-writing-mode

3.5.59.1 Allowed Values
One of the following:

e bt-Ir:

e bt-rl:

e Ir-alternating-rl-bt :
e Ir-alternating-ri-tb :
e |r-bt:

e Ir-inverting-rl-bt :
e Ir-inverting-rl-tb :
o Irth:

e rl-bt:

e rl-th:

o thr:

o thrl:

e th-rl-in-rl-pairs:

e Uuse-page-writing-mode :

3.5.59.2 Purpose
Specifies the writing-mode within the header area of a simple-page-master.

3.5.59.3 Description
See the writing-mode property.
3.5.60 height

3.5.60.1 Allowed Values

One of the following:

e auto:

An unsigned length (See Section 3.6.8: Unsighed L ength).

3.5.60.2 Purpose
Specifies the content height of boxes.

Page 75

Extensible Stylesheet Language (XSL)

3.5.61 href

3.5.61.1 Allowed Values
A URI (See Section 3.6.20: URI).

3.5.61.2 Purpose
Specifiesa URI target.

3.5.62 hyphenate

3.5.62.1 Allowed Values
A boolean value (See Section 3.6.4: Boolean).

3.5.62.2 Purpose
Specifies whether hyphenation is allowed.

3.5.63 hyphenation-char

3.5.63.1 Allowed Values
A character (See Section 3.6.5: Char).

3.5.63.2 Purpose
Specifies the character to be inserted on automatic hyphenation.

3.5.64 hyphenation-keep

3.5.64.1 Allowed Values
One of the following:

e column:
e none:

e page:
e Spread:

3.5.64.2 Purpose
Specifies the hyphenation constraints.

3.5.64.3 Description
This property specifies the hyphenation constraints when at the end of a facing page pair or column.

3.5.65 hyphenation-ladder-count

3.5.65.1 Allowed Values

One of the following:

e none:

An unsigned integer value (See Section 3.6.11: Unsigned I nteger).

3.5.65.2 Purpose
Specifies the limit of number of successive hyphenated lines.

Page 76

Extensible Stylesheet Language (XSL)

3.5.65.3 Description
This property specifies the limit number of successive hyphenated lines.

3.5.66 hyphenation-push-char-count

3.5.66.1 Allowed Values
An unsigned integer value (See Section 3.6.11: Unsigned Integer).

3.5.66.2 Purpose
Specifies the minimum number of characters that must follow an automatically inserted hyphen.

3.5.67 hyphenation-remain-char-count

3.5.67.1 Allowed Values
An unsigned integer value (See Section 3.6.11: Unsigned Integer).

3.5.67.2 Purpose
Specifies the minimum number of characters the must precede an automatically inserted hyphen.

3.5.68 id

3.5.68.1 Allowed Values
One of the following:

e none:

An id(See Section 3.6.2: I1D).

3.5.68.2 Purpose
Specifies a uniqueidentifier for this object within all members of the formatter-object-tree.

3.5.68.3 Description
A unique identifier within all members of the formatter-object tree that allows references to this object.

3.5.69 ignore-record-end

3.5.69.1 Allowed Values
A boolean value (See Section 3.6.4: Boolean).

3.5.69.2 Purpose
Specifies whether a record-end shall be ignored.

3.5.69.3 Description

Specifies whether arecord-end shall be ignored. If this property istrue, then a character with the char-is-
record-end qualifier true shall be ignored.

3.5.70 image

3.5.70.1 Allowed Values
A URI (See Section 3.6.20: URI).

Page 77

Extensible Stylesheet Language (XSL)

3.5.70.2 Purpose
Specifies the location of theimage.

3.5.71 inhibit-line-breaks

3.5.71.1 Allowed Values
A boolean value (See Section 3.6.4: Boolean).

3.5.71.2 Purpose
Specifies whether line breaks are allowed.

3.5.71.3 Description

This property controls the behavior of line breaking within or between areas produced by formatting
objects. When this property istrue no line breaks are all owed.

3.5.72 input-whitespace-treatment

3.5.72.1 Allowed Values

One of the following:

e preserve:

e collapse:

e ignore:

3.5.72.2 Purpose

Specifies treatment of whitespace from the source document.

3.5.73 keep

3.5.73.1 Allowed Values
One of the following:

e avoid:

Specifies that the formatter should avoid breaking a page inside the areas generated by object to which
this property applies.
e auto:

Specifies that the formatter should use the system default for determining how to breaking a pageinside
the areas generated by object to which this property applies.

3.5.73.2 Purpose
Describes a page break behavior inside a formatting object.

3.5.74 keep-with-next

3.5.74.1 Allowed Values
A boolean value (See Section 3.6.4: Boolean).

3.5.74.2 Purpose
Specifies whether the formatting object shall be kept in the same area as the next formatting object.

Page 78

Extensible Stylesheet Language (XSL)

3.5.75 keep-with-previous

3.5.75.1 Allowed Values
A boolean value (See Section 3.6.4: Boolean).

3.5.75.2 Purpose
Specifies whether the formatting object shall be kept in the same area as the previous formatting object.

3.5.76 kern

3.5.76.1 Allowed Values
A boolean value (See Section 3.6.4: Boolean).

3.5.76.2 Purpose
Specifies whether kerning (placement-adjustment) is all owed.

3.5.77 kern-mode

3.5.77.1 Allowed Values

One of the following:

e loose:

e normal : (Default)

e tight:

e touch:

3.5.77.2 Purpose

Specifies the placement adjustment mode.

3.5.78 language

3.5.78.1 Allowed Values
One of the following:

e none:
disables hyphenation and forces a simple line-breaking strategy. Used for program text and poetry.
e use-document :

Specifies one should use the language/country/script specified in the source document's xml:lang
specifier.

A language (See Section 3.6.21: L anguage).

3.5.78.2 Purpose
Specifies the language in which the content is written.

3.5.79 left

3.5.79.1 Allowed Values
A signed length (See Section 3.6.7: Signed L ength).

Page 79

Extensible Stylesheet Language (XSL)

3.5.79.2 Purpose

Specifies how far a box'sleft content edge is offset to the right of the | eft edge of the box's containing
block.

3.5.80 length

3.5.80.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.80.2 Purpose
Specifies the the length (width).

3.5.81 letter-spacing

3.5.81.1 Allowed Values

A space specification (See Section 3.6.18: Space Specifier).
Minimum

Maximum
0.0pt

Optimal
0.0pt

3.5.81.2 Purpose
Specifies spacing behavior between text characters.

3.5.82 letter-spacing-limit

3.5.82.1 Allowed Values
A limit specification (See Section 3.6.19: Limit Specifier).
Minimum

Maximum
0.0pt

3.5.82.2 Purpose
Specifies the minimum and maximum amount of |etter spacing that may be applied.

3.5.83 ligature

3.5.83.1 Allowed Values
A boolean value (See Section 3.6.4: Boolean).

3.5.83.2 Purpose
Specifies whether ligatures are allowed.

Page 80

Extensible Stylesheet Language (XSL)

3.5.84 line-height

3.5.84.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.84.2 Purpose
Specifies the minimal height of the generated areas.

3.5.84.3 Description

In an block formatting context, this property specifies the minimal height of the generated inline areas. In
an inline formatting context, this property specifies the exact height of the generated areas.

3.5.85 line-height-option

3.5.85.1 Allowed Values
One of the following:

e consider-shifts:
e disregard-shifts:

3.5.85.2 Purpose
Specifies whether line spacing should consider superior and inferior text in deriving the line height.

3.5.86 line-offset

3.5.86.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.86.2 Purpose
Specifies the offset distance from the alignment-lineto the line.

3.5.87 line-spacing-precedence

3.5.87.1 Allowed Values

One of the following:

e force:

An unsigned integer value (See Section 3.6.11: Unsigned I nteger).

3.5.87.2 Purpose
Specifies a precendence for display-space which is generated as a result of the line spacing calculations.

3.5.88 line-thickness

3.5.88.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.88.2 Purpose
Specifies the thickness of the line.

Page 81

Extensible Stylesheet Language (XSL)

Page 82

3.5.89 margin-end

3.5.89.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsighed L ength).
Defaults to 0.0pt.

3.5.89.2 Purpose
Specifies the width of the unprinted area measured inward from the end edge of any area.

3.5.89.3 Description

Specifies the distance from the edge of the resulting areathat islast in the block-progression-direction's
block-progression-direction to the nearest edge of the text area.

3.5.90 margin-start

3.5.90.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).
Defaults to 0.0pt.

3.5.90.2 Purpose
Specifies the width of the unprinted area measured inward from the start edge of any area.

3.5.90.3 Description

Specifies the distance from the edge of the resulting area that isfirst in the block-progression-direction's
block-progression-direction to the nearest edge of the text area.

3.5.91 max-height

3.5.91.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.91.2 Purpose
Specifies the maximum height of the content area.

3.5.92 max-width

3.5.92.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.92.2 Purpose
Specifies the maximum width of the content area.

3.5.93 merge-link-end-indicators

3.5.93.1 Allowed Values
A boolean value (See Section 3.6.4: Boolean).

Extensible Stylesheet Language (XSL)

3.5.93.2 Purpose
Specifies whether nested links are shown separately.

3.5.93.3 Description

If thislink formatting object occurs within another, and merge-link-end-locators istrue, then the effect is
the same as if the link-end-locators of the ancestor were also link-end-locators of thislink. In other words,
the link-end-locators of the ancestor and those of thislink are potential destinations when the user selects
thislink. If merge-link-end-locatorsis false, then only the link-end-locators associated with thislink are
potential destinations from thislink.

3.5.94 min-leading

3.5.94.1 Allowed Values

One of the following:

e none:

An unsigned length (See Section 3.6.8: Unsighed L ength).

3.5.94.2 Purpose
Specifies the minimum addition space that must be guaranteed between two lines.

3.5.94.3 Description

This property specifies the minimum addition space that must be guaranteed between two lines. It isused in
the calculation of the size of the maximum-line-rectangle.

3.5.95 min-post-line-spacing

3.5.95.1 Allowed Values

One of the following:

e use-font-metrics:

A signed length (See Section 3.6.7: Signed L ength).

3.5.95.2 Purpose
Overrides the default ascender-depth.

3.5.95.3 Description
See ascender-depth.
3.5.96 min-pre-line-spacing

3.5.96.1 Allowed Values

One of the following:

e use-font-metrics:

A signed length (See Section 3.6.7: Signed L ength).

3.5.96.2 Purpose
Overrides the default ascender-height.

Page 83

Extensible Stylesheet Language (XSL)

3.5.96.3 Description
See ascender-height.

3.5.97 orientation

3.5.97.1 Allowed Values

One of the following:

e escapement :
e horizontal :

e line-progression :

e vertical :

3.5.97.2 Purpose

Specifiesthe orientation of arule.

3.5.98 orphans

3.5.98.1 Allowed Values
An unsigned integer value (See Section 3.6.11: Unsigned Integer).

3.5.98.2 Purpose
Specifies the minimum number of lines of a paragraph that must be left at the bottom of a page.

3.5.99 overflow

3.5.99.1 Allowed Values
One of the following:

auto

hidden :

scroll :
visible:

3.5.99.2 Purpose

Specifies the action to be taken if the content of the area does not fit within the dimensions specified for the
area.

3.5.99.3 Description
Defines behavior when content islarger than region.

3.5.100 padding-after

3.5.100.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsighed L ength).

3.5.100.2 Purpose
Specifies the width of the after padding area.

Page 84

3.5.101 padding-before

3.5.101.1 Allowed Values

An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.101.2 Purpose
Specifies the width of the before padding area.

3.5.102 padding-bottom

3.5.102.1 Allowed Values

An unsigned length (See Section 3.6.8: Unsighed L ength).

3.5.102.2 Purpose
Specifies the width of the bottom padding area.

3.5.103 padding-end

3.5.103.1 Allowed Values

An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.103.2 Purpose
Specifies the width of the end padding area.

3.5.104 padding-left

3.5.104.1 Allowed Values

An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.104.2 Purpose
Specifies the width of the left padding area.

3.5.105 padding-right

3.5.105.1 Allowed Values

An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.105.2 Purpose
Specifies the width of theright padding area.

3.5.106 padding-start

3.5.106.1 Allowed Values

An unsigned length (See Section 3.6.8: Unsighed L ength).

3.5.106.2 Purpose
Specifies the width of the start padding area.

Extensible Stylesheet Language (XSL)

Page 85

Extensible Stylesheet Language (XSL)

3.5.107 padding-top

3.5.107.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsighed L ength).

3.5.107.2 Purpose
Specifies the width of the top padding area.

3.5.108 page-height

3.5.108.1 Allowed Values
One of the following:

e auto:
Specifies that the formatter will determine the height of the page.

An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.108.2 Purpose
Specifies the total height of the page.

3.5.109 page-margin-bottom

3.5.109.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.109.2 Purpose
Specifies the width of the unprinted area measured inward from the bottom edge of the page area.

3.5.110 page-margin-left

3.5.110.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.110.2 Purpose
Specifies the width of the unprinted area measured inward from the |eft edge of the page area.

3.5.111 page-margin-right

3.5.111.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.111.2 Purpose
Specifies the width of the unprinted area measured inward from the right edge of the page area.

3.5.112 page-margin-top

3.5.112.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

Page 86

Extensible Stylesheet Language (XSL)

3.5.112.2 Purpose
Specifies the width of the unprinted area measured inward from the top edge of the page area.

3.5.113 page-master-name

3.5.113.1 Allowed Values
One of the following:

first:

repeating :

even :

odd :

scrolling :

A name (See Section 3.6.1: Name).

3.5.113.2 Purpose
Specifies the name of the page master.

3.5.114 page-width

3.5.114.1 Allowed Values

One of the following:

e auto:

An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.114.2 Purpose
Specifies the size and orientation of a page box.

3.5.115 page-writing-mode

3.5.115.1 Allowed Values

One of the following:

e bt-Ir:

e bt-rl:

e Ir-alternating-rl-bt :
e Ir-alternating-ri-tb :
e |r-bt:

e Ir-inverting-rl-bt :
e Ir-inverting-rl-tb :
o Irth:

e rl-bt:

e rl-th:

o thlr:

o thrl:

e th-rl-in-rl-pairs:

Page 87

Extensible Stylesheet Language (XSL)

Page 88

3.5.115.2 Purpose
Specifies the writing-mode and layout directions for a page in a S mple-page-master.

3.5.115.3 Description
See the writing-mode property.

3.5.116 position-point

3.5.116.1 Allowed Values
A an x-y coordinate (See Section 3.6.6: Coordinate).

3.5.116.2 Purpose
Specifies the position in terms of a coordinate.

3.5.117 provisional-distance-between-starts

3.5.117.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.117.2 Purpose
Specifies the default distance between the start-edge list-item-label and the start-edge of the list-item-body.

3.5.117.3 Description

Used to calculate: magic-label-end = (container? width - (list-block: provisional -distance-between-starts +
list-block:start-indent - list-block:provisional -label -separation));

3.5.118 provisional-label-separation
3.5.118.1 Allowed Values
A space specification (See Section 3.6.18: Space Specifier).
Minimum
Maximum
0.0pt
Optimal
0.0pt

3.5.118.2 Purpose
Specifies the default distance between the list-item-label and the list-item-body.

3.5.118.3 Description

Used to calculate: magic-label-end = (container? width - (list-block: provisional -distance-between-starts +
list-block:start-indent - list-block:provisional -label -separation));

3.5.119 queue-name

3.5.119.1 Allowed Values
A name (See Section 3.6.1: Name).

Extensible Stylesheet Language (XSL)

3.5.119.2 Purpose
Defines the name of the queue.

3.5.120 repeating-even-page-master

3.5.120.1 Allowed Values
A name (See Section 3.6.1: Name).

3.5.120.2 Purpose
Specifies the name of the page master formatting object to use for the repeating even pages.

3.5.121 repeating-odd-page-master

3.5.121.1 Allowed Values
A name (See Section 3.6.1: Name).

3.5.121.2 Purpose
Specifies the name of the page master formatting object to use for the repeating odd pages.

3.5.122 scale-graphic

3.5.122.1 Allowed Values
One of the following:

e Max :
e max-uniform :

An signed real value (See Section 3.6.15: Signed Real).

3.5.122.2 Purpose
Specifies whether a graphic should be automatically or manually scaled.

3.5.123 score-spaces

3.5.123.1 Allowed Values
A boolean value (See Section 3.6.4: Boolean).

3.5.123.2 Purpose
Specifies whether the scoring shall be applied to spaces.

3.5.123.3 Description
A value of true means that scoring will be applied to spaces.

3.5.124 show-content

3.5.124.1 Allowed Values
A boolean value (See Section 3.6.4: Boolean).

3.5.124.2 Purpose
Specifies whether the content of the link should be displayed.

Page 89

Extensible Stylesheet Language (XSL)

3.5.125 space-after

3.5.125.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsighed L ength).

3.5.125.2 Purpose
Specifies the desired space following the after-edge any area.

3.5.126 space-before

3.5.126.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsighed L ength).

3.5.126.2 Purpose
Specifies the desired space preceding the before-edge any area.

3.5.127 space-between-list-rows

3.5.127.1 Allowed Values

A space specification (See Section 3.6.18: Space Specifier).
Minimum

Maximum
0.0pt

Optimal
0.0pt

3.5.127.2 Purpose

Specifies the nominal space between list itemswithin alist block.

3.5.128 space-end

3.5.128.1 Allowed Values

A space specification (See Section 3.6.18: Space Specifier).
Minimum

Maximum
0.0pt

Optimal
0.0pt

3.5.128.2 Purpose
Specifies the desired space on the following the end-edge of any area.

Page 90

Extensible Stylesheet Language (XSL)

3.5.129 space-start

3.5.129.1 Allowed Values
A space specification (See Section 3.6.18: Space Specifier).
Minimum
Maximum
0.0pt
Optimal
0.0pt

3.5.129.2 Purpose
Specifies the desired space preceding the start-edge any area.

3.5.130 start-indent

3.5.130.1 Allowed Values
A signed length (See Section 3.6.7: Signed L ength).

3.5.130.2 Purpose
Specifies the indent of the starting edge of the areain the direction of the inline-progression-direction.

3.5.131 start-side-overflow

3.5.131.1 Allowed Values
One of the following:

auto

hidden :

scroll :
visible:

3.5.131.2 Purpose
Specifies the overflow behavior for the start-side area.

3.5.131.3 Description
Defines behavior when content islarger than region. (See al'so X SL:flow-type)

3.5.132 start-side-separation

3.5.132.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsigned L ength).

3.5.132.2 Purpose
Specifies the distance from the edge of the body area to the adjacent start-side area.

Page 91

Extensible Stylesheet Language (XSL)

3.5.133 start-side-size

3.5.133.1 Allowed Values
An unsigned length (See Section 3.6.8: Unsighed L ength).

3.5.133.2 Purpose
Specifies the width of the start-side area.

3.5.133.3 Description

Specifies the width of the start-side area. If the corresponding queue content is absent, this space will till
be reserved.

3.5.134 start-side-writing-mode

3.5.134.1 Allowed Values
One of the following:

e bt-Ir:

e bt-rl:

e Ir-alternating-rl-bt :
e Ir-alternating-ri-tb :
e |r-bt:

e Ir-inverting-rl-bt :
e Ir-inverting-rl-tb :
e Irth:

e rl-bt:

e rl-th:

o thlr:

o thrl:

e th-rl-in-rl-pairs:

e Uuse-page-writing-mode :

3.5.134.2 Purpose
Specifies the writing-mode within the start-side area of a smple-page-master.

3.5.134.3 Description
See the writing-mode property.

3.5.135 system-font

3.5.135.1 Allowed Values

One of the following:
e caption :

icon :

menu :
message-box :
small-caption :
datus-bar :

Page 92

3.5.135.2 Purpose
Specifies the system font to be used.

3.5.136 text-align

3.5.136.1 Allowed Values
One of the following:

centered :
end:

justify :
page-inside :
page-outside :
Sart :

3.5.136.2 Purpose
Describes how inline content of a block is aligned.

3.5.137 text-align-last

3.5.137.1 Allowed Values
One of the following:

centered :
end:

justify :
page-inside:
page-outside :
relative:

Sart :

3.5.137.2 Purpose

Extensible Stylesheet Language (XSL)

Specifies the alignment of the last textline in the block in the line-progression-direction determined by the

writing-mode.

3.5.137.3 Description

A value of auto specifiesthat the value of the text-align property shall be used, except when that value is

justify or justify-force, in which case, avalue of start shall be used.

A value of spread-inside or spread-outside shall be allowed only if the formatting object has an ancestor of
class page-master. A value of page-inside or page-outside shall be allowed only if the formatting object has

an ancestor of column-set-master.

3.5.138 text-indent

3.5.138.1 Allowed Values
A signed length (See Section 3.6.7: Signed L ength).

3.5.138.2 Purpose

Specifies the indentation of the first line of text in a block.

Page 93

Extensible Stylesheet Language (XSL)

Page 94

3.5.139 text-shadow

3.5.139.1 Allowed Values
One of the following:

e none:
Specifies that no shadow should be used for text.

A color (See Section 3.6.14: Color).

3.5.139.2 Purpose
Specifies the shadow effects that should be applied to the text.

3.5.140 vertical-align

3.5.140.1 Allowed Values
One of the following:
basdine:

bottom :

middle:

sub:

super :

text-bottom :

text-top :

top:

A signed length (See Section 3.6.7: Signed L ength).

3.5.140.2 Purpose
Describes how a formatting object is positioned inside a line box.

3.5.141 widows

3.5.141.1 Allowed Values
An unsigned integer value (See Section 3.6.11: Unsigned Integer).

3.5.141.2 Purpose
Specifies the minimum number of lines of a paragraph that must be left at the top of a page.

3.5.142 width

3.5.142.1 Allowed Values

One of the following:

e auto:

An unsigned length (See Section 3.6.8: Unsighed L ength).

3.5.142.2 Purpose
Specifies the content width of boxes.

3.5.143 word-spacing

3.5.143.1 Allowed Values
One of the following:
e normal :

A space specification (See Section 3.6.18: Space Specifier).

Minimum

Maximum
0.0pt

Optimal
0.0pt

3.5.143.2 Purpose
Specifies spacing behavior between words.

3.5.144 word-spacing-limit

3.5.144.1 Allowed Values

A limit specification (See Section 3.6.19: Limit Specifier).
Minimum

Maximum
0.0pt

3.5.144.2 Purpose

Extensible Stylesheet Language (XSL)

Specifies the minimum and maximum amount of word spacing that may be applied.

3.5.144.3 Description

This value indicates the amount of inter-word space to be added to each the normal space between words.
The value may be negative (indicating the amount of space to remove). There may be implementation
specific limits on the length specified. The application may also adjust inter-word spacing to justify the

line

3.5.145 wrap-option

3.5.145.1 Allowed Values
One of the following:

normal :
no-wrap :
pre:
asis-overrun :
asis-truncate :
asiswrap :
wrap

Page 95

Extensible Stylesheet Language (XSL)

Page 96

3.5.145.2 Purpose
Show whitespace inside the formatting object is to be handled.

3.5.146 writing-mode

3.5.146.1 Allowed Values

One of the following:

bt-Ir :

Specifies:

e Theinline-progression-direction & escapement-progression-direction are set to bottom-to-tap.

e Theblock-progression-direction and line-progression-direction are top-to-bottom.

e Theshift-direction isright-to-left.

bt-rl :

Specifies:

e Theinline-progression-direction & escapement-progression-direction are set to bottom-to-tap.

o Theblock-progression-direction and line-progression-direction are right-to-left.

e Theshift-direction isleft-to-right.

Ir-alternating-rl-bt :

Specifies:

e Thefirgt lin€sinline-progression-direction & escapement-progression-direction are set to left-to-
right. The second lin€'sinline-progression-direction & escapement-progression-direction are right-to-
left. This alternating direction pattern continues through the end of the block.

e Theblock-progression-direction and line-progression-direction are bottom-to-top.

e Theshift-direction istop-to-bottom.

[r-alternating-rl-tb :

Specifies:

o Thefirst lin€sinline-progression-direction & escapement-progression-direction are set to left-to-
right. The second lin€'sinline-progression-direction & escapement-progression-direction are right-to-
left. This alternating direction pattern continues through the end of the block.

e Theblock-progression-direction and line-progression-direction are top-to-bottom.

¢ The shift-direction is bottom-to-top.

Ir-bt:

Specifies:

e Theinline-progression-direction & escapement-progression-direction are set to left-to-right.

e Theblock-progression-direction and line-progression-direction are bottom-to-top.

¢ The shift-direction is bottom-to-top.

[r-inverting-rl-bt :

Specifies:

o Thefirst lin€sinline-progression-direction & escapement-progression-direction are set to left-to-
right. The second lineiswritten upside-down in the opposite direction. This alternating direction
pattern continues through the end of the block.

o The block-progression-direction and line-progress on-direction are bottom-to-top.

e Linesthat are written |eft-to-right have a shift-direction of bottom-to-top. Lines that are written
inverted and right-to-left have a shift-direction of top-to-bottom.

[r-inverting-rl-tb :
Specifies:

Extensible Stylesheet Language (XSL)

o Thefirgt lin€sinline-progression-direction & escapement-progression-direction are set to left-to-
right. The second line iswritten upside-down in the opposite direction. This alternating direction
pattern continues through the end of the block.

e Theblock-progression-direction and line-progression-direction are top-to-bottom.

e Linesthat are written |eft-to-right have a shift-direction of bottom-to-top. Lines that are written
inverted and right-to-left have a shift-direction of top-to-bottom.

e |rth:
Specifies (European, most western languages) :
e Theinline-progression-direction & escapement-progression-direction are set to left-to-right.
e Theblock-progression-direction and line-progression-direction are top-to-bottom.
e The shift-direction is bottom-to-top.
e rl-bt:
Specifies:
e Theinline-progression-direction & escapement-progression-direction are set to right-to-left.
e Theblock-progression-direction and line-progression-direction are bottom-to-top.
¢ The shift-direction is bottom-to-top.
o rl-th:
Specifies (Arabic/Hebrew):
e Theinline-progression-direction & escapement-progression-direction are set to right-to-left.
e Theblock-progression-direction and line-progression-direction are top-to-bottom.
¢ The shift-direction is bottom-to-top.
o thlr:
Specifies (Mongolian, western signage):
e Theinline-progression-direction & escapement-progression-direction are set to top-to-bottom.
e Theblock-progression-direction and line-progression-direction are | eft-to-right.
e Theshift-direction isleft-to-right.
o thrl:
Specifies (CXK):
e Theinline-progression-direction & escapement-progression-direction are set to top-to-bottom.
e Theblock-progression-direction and line-progression-direction are right-to-left.
e Theshift-direction isleft-to-right.
e th-rl-in-rl-pairs:
Specifies (Korea):
e Two characters are placed beside each other in aright-to-left order. These pairs are stacked into a
top-to-bottom row (line). Inlines are treated like a character-pair.

e Theinline-progression-direction is set to top-to-bottom.
o Theblock-progression-direction and line-progression-direction are right-to-left.
e Theshift-direction isleft-to-right.
e Uuse-page-writing-mode :
Uses the inherited writing-mode val ue from the writing-mode of the page.

3.5.146.2 Purpose

This property sets the text orientation, block-progression-direction, line-progression-direction, inline-
progression-direction, and escapement-direction.

Page 97

Extensible Stylesheet Language (XSL)

3.6 Datatypes

Page 98

3.6.1 Name
An string of characters conforming to the XML NMTOKEN definition.

3.6.21D
A string of characters conforming to the XML NMTOKEN definition that is unique within the styleshest.

3.6.3 IDREF

A string of characters conforming to the XML NMTOKEN definition that uses a 1D property value used
within the stylesheet.

3.6.4 Boolean

A boolean value where the allowed values are the strings 'true’ and 'false'.

3.6.5 Char
A single unicode character value--whitespace is not allowed.

3.6.6 Coordinate
A pair of signed real values separated by a comma.

Ed. Note: Is the comman appropriate here?

3.6.7 Signed Length
A signed length value where a'length' isareal number plusaunit qualification. .

3.6.8 Unsigned Length

An unsigned length value including zero where a'length’ isareal number plusa unit qualification. .

3.6.9 Positive Length

A positive length value not including zero where a'length’ isareal number plusaunit qualification. .

3.6.10 Signed Integer
A signed integer value which consists of an optional '+' or - character followed by a sequence of digits.

3.6.11 Unsigned Integer

An unsigned integer value including zero which consists of a sequence of digits.

3.6.12 Positive Integer

An unsigned integer value not including zero which consists of a sequence of digits.

3.6.13 Percent
A percentage which isasigned real value (e.g. 45.5 is 455/1000).

3.6.14 Color

A color specification where '#xxxxxx' is an RGB value encoded in hexidecimal or a named color.

Extensible Stylesheet Language (XSL)

Ed. Note: How does other color spaces get encoded?

Ed. Note: What set of "named colors" will we use?

3.6.15 Signed Real

A signed real number which consists of an optional '+' or - character followed by a sequence of digits
followed by an optional *." character and sequence of digits.

3.6.16 Unsigned Real

An unsigned real number including zero which consists of a sequence of digits followed by an optional "'
character and sequence of digits.

3.6.17 Positive Real

An unsigned real number not including zero which consists of a sequence of digits followed by an optional
"." character and sequence of digits.

3.6.18 Space Specifier

A semi-colon separated triplit of lengths specifying the minimum, maximum, and optimal space lengths
respectively.

3.6.19 Limit Specifier
A semi-colon separated pair of lengths specifying the minimum and maximum lengths.

3.6.20 URI
A sequence of characters conforming to a URI value as specified in the URI specification.

Ed. Note: This should refer to the proper specification.

3.6.21 Language
A string of characters conforming to the xml:lang attribute value from XML 1.0

3.6.22 Font Name
A string of charactersidentifying a font.

Ed. Note: Shouldn't this have a standardized format?

3.6.23 Font List
A list of font names separated by whitespace.

3.6.24 Enumeration
A enumerated list of XML NMTOKEN values.

3.6.25 String
A sequence of characters.

3.7 Defined Terms

NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

Page 99

Extensible Stylesheet Language (XSL)

Page 100

alignment-point

Thisisathelocal origin point of an area. It isthe point in the areathat is used as the positioning
reference for placement within a parent or for aligning multiple aress.

allocation-rectangle

The boundary of the portion of an area which is deemed to take up room when placing the areainside
alarger area.

area

A "region” isthe specification (in a formatting-object) instructing the formatter on how to create one
or more areas. An "ared’ istheresult of formatting.

(See the "Formatting Model" section of this specification for more complete descriptions of all types
of areas.)

area-container

Area-containers are the highest level objectsin the formatted result. They specify portions of a
page or portions of another area-container.

Area containers are always placed objects. (They have an x-y coordinate specifying thier
placement or they are attached to a designated edge of a parent area-container.)

Area-containers may set alocal coordinate space and always set alocal writing-mode (which
inheritsto all areas contained in the container.

(See the "Formatting Model" section of this specification for more complete descriptions of all
types of areas.)

block-area

Area-containers contain a set of block-areas. Block areas are stacked (placed sequentially and
adjacent to one another) within the area-container..

Block-areas are always stacked objects. They are stacked within the area-container or within
another block-areain the direction specified by the block-progerssion-direction (as derived
from the active writing-mode). Theinitial edge of one block-areais normally placed touching
the final-edge of the preceding block-area. However, if space-before/space-after is specified or
if the parent object has a spread or a space-out property, then spae may be inserted between the
block-areas in the stack.

Block-areas may be nested, however, the start-indent and end-indent of a block is measured
from the area-container, not from the parent-block.

Blocks may NOT set alocal coordinate space nor set alocal writing-mode.

(See the "Formatting Model" section of this specification for more complete descriptions of all
types of areas.)

line-area

Line-areas are stacked (placed sequentially and adjacent to one ancther) inside block-areas.
They are aways the full width of the block-area (except when adjusted by the text-indent and
last-line-indent properties.

Line-areas are always stacked objects. They are stacked within the block-area in the direction
specified by the active line-progression-direction (as derived from the active writing-mode).
Theinitial edge of oneline-areais normally placed touching the final-edge of the preceding
line-area. However, if line-spacing is specified or if the parent object has a spread or a space-
out property, then space may be inserted between the line-areas in the stack.

Line-areas are always generated by the formatter (there is no formatting-object that corresponds
directly to aline-area.) Line-areas may not be nested.

Line-areas may NOT set alocal coordinate space nor set alocal writing-mode, however, the
direction of inline-progressi on-direction, escapement=progression-direction, shift-direction,
and up-direction may change from line-to-line on an algorithmic basis.

Extensible Stylesheet Language (XSL)

(See the "Formatting Model" section of this specification for more complete descriptions of all
types of areas.)

inline-area

Inline-areas are stacked (placed sequentially and adjacent to one another) inside line-areas or
inside other inline-areas.

Inline-areas are always stacked objects. They are stacked within the line-area in the direction
specified by the active inline-progression-direction (as derived from the active writing-mode).
The start edge of oneinline-areais normally placed touching the end-edge of the preceding
inline-area. However, if line-spacing is specified or if the parent object has ajutified or a
distributed property, then space may be inserted between theinline-areasin theline.
Aninline-areais created for each inline-formatting-object. Additional line areas may be
generated when an inline-area must be split for line-breaking or hyphenation and may be split
for Unicode bidi support. Inline-areas may be nested.

Inline-areas may NOT set alocal coordinate space nor set alocal writing-mode, however, the
direction of inline-progression-direction and escapement-progression-direction may be changed
on an agorithmic basis (for Unicode bidi) or by setting the direction property on the inline-
formatting-object.

Note that ruby, wari-chu, and emphasizing-mark specify the creation of multiple inline-areas
that are placed within a parent inline-area with a number of specific justapositions. To smplify
the formatting-model, these are treated as special cases.

(See the "Formatting Model" section of this specification for more complete descriptions of all
types of areas.)

glyph-area
Each character (glyph) generatesits own inline area.

Glyph-areas are always stacked (placed sequentially and adjacent to one another) objects. They
are stacked within theinline-areain the direction specified by the active escapement-
progression-direction (as derived from the active writing-mode). The start edge of one glyph-
areais normally placed touching the end-edge of the preceding glyph-area. However, if |etter-
spacing or kerning is specified, then space may be inserted between the glyph-aress.

A glyph-areais created for each glyph (including space glyphs). Several characters may be
merged into a single glyph. (This occurs when a ligature or a composite accented character can
be substituted for a multi-character sequence. Glyph-areas are the lowest-level text areas and
may not be nested.

(See the "Formatting Model" section of this specification for more complete descriptions of all
types of areas.)

ascender-height

The distance from an glyph-area's position point to its nominally greatest extent in the direction
opposite the line-progression direction. Thisis a property of the glyph's font as a whole and not of the
individual glyph represented.

border
A solid open rectangle surrounding an area's content rectangle, possibly separated by padding.

conditionality

A boolean property indication if the display-space should be suppressed at the if it appearsfirst or last
in an area-container.

content-rectangle

The boundary of the portion of the area in which the content of the area appears, including the
allocation-rectangles of smaller areas.

Page 101

Extensible Stylesheet Language (XSL)

descender-depth

The distance from an glyph-area's position point to its nominally greatest extent in the line-
progression direction. Thisis a property of the glyph's font as awhole and not of the individual glyph
represented.

directionsand edges

XSL uses absolute-direction-specifiers for page layout and for explicit placement of regions/area-
containers.

XSL uses relative-direction-specifiers for al stacked (placed sequentially and adjacent to one
another) areas (block-level and inline areas).

It also uses consistent and specific definitions for: start, end, before, after, initial, final, middle,
midpoint, center, centered, justify, justified, distribute, distributed, spread, and space-out.

Position and alignment specifiers

It should be noted that areas may have either absolute position and alignment specifiers or they
may have relative position and alignment specifiers, but they may not have both.

absolute position and alignment specifiers

Theseterms are values to properties that specify the position of one object within another
or adjacent to another or the relative positioning of 2 aligned objects. This set of values
are used only when absol ute directions are applicable.

(From CSS, except as noted.)

In the vertical direction
One of the following:

bottom
the bottom-edge of
In positions: the bottom edge of an area.

In alignments: the bottommost edge of an areais aligned with the alignment-
point of the referenced object, usually the bottommost edge of the container.

Used only when absol ute directions are applicable.

middle

(CSS uses center, which is ambiguous and must be resolved based on the
context of usage. XSL uses middle to remove this ambiguity.).

In positions. the position halfway between top and bottom.

In alignments: the middle of an areais aligned with the alignment-point of
the referenced object, usually the middle of the container.

Used only when absol ute directions are applicable.

top
In positions: the top edge of an area.

In alignments: the topmost edge of an areais aligned with the alignment-
point of the referenced object, usually the topmost edge of the container.

Used only when absol ute directions are applicable.

In the horizontal direction
One of the following:

center
In positions: the position halfway between left and right.

In alignments: the center of an areais aligned with the alignment-point of the
referenced object, usually the center of the container.

Page 102

Extensible Stylesheet Language (XSL)

Used only when absol ute directions are applicable.
(Note present tense.)

distribute
In positions: this term should not be used.

In alignments: the contents of the area are stretched or spaced so that it fills
the available | eft-right width, however, additional spaceisalso inserted at the
|eft-edge and right-edge of the area.

Used only when absol ute directions are applicable.
(Note present tense.)

justify
In positions: this term should not be used.

In alignments: the contents of the area are stretched or spaced so that it fills
the available | eft-right width.

Used only when absol ute directions are applicable.
(Note present tense.)

left
In positions: the left edge of an area.

In alignments: the leftmost edge of an areais aligned with the alignment-
point of the referenced object, usually the leftmost edge of the container.

Used only when absol ute directions are applicable.

right
In positions: the right edge of an area.

In alignments: the rightmost edge of an area is aligned with the alignment-
point of the referenced object, usually the rightmost edge of the container.

Used only when absol ute directions are applicable.

relative position and alignment specifiers

Theseterms are values to properties that specify the position of one object within another
or adjacent to another or the relative positioning of 2 aligned objects. This set of values
are used only when relative directions are applicable.

In the line-progr ession-dir ection and the block-pr ogr ession-dir ection
One of the following:

after

In positions: The last-edge of an areain the line-/block-progression-direction,
or the space after that edge. (If the writing mode is Ir-tb, thiswould be the
bottom edge).

In alignments: Theitem is placed outside the area adjacent to the last-edge
(after-edge) of the area.

Used only when relative directions are applicable.

before

In positions: The first-edge of an areain the line-/bl ock-progression-
direction, or the space before that edge. (If the writing modeis|r-tb, this
would be the top edge).

In alignments: Theitem is placed outside the area adjacent to the first-edge
(before-edge) of the area.

Used only when relative directions are applicable.

Page 103

Extensible Stylesheet Language (XSL)

final

In positions: The last position (closest to the after-edge) that an area can be
placed within its parent container.

In alignments: The object's alignment-point of the referenced object is
aligned with the alignment-point of the referenced object (usualy the
basdline) of the last item placed within the area.

Used only when relative directions are applicable.

initial

In positions: The first position (closest to the before-edge) that an area can be
placed within its parent container.

In alignments: The object's alignment-point of the referenced object is
aligned with the alignment-point of the referenced object (usualy the
baseline) of thefirst item placed within the area.

Used only when relative directions are applicable.

midpoint

In positions: the position halfway between before-edge and after-edge.

In alignments: the center of an areais aligned with the alignment-point of the
referenced object, usually the center of the container.

Used only when relative directions are applicable.
(Note midpoint vs. middle)

spaced-out

In positions: this term should not be used.

In alignments: the contents of the area are stretched or spaced so that it fills
the available initial-final height, however, additional spaceisalso inserted at
theinitial-edge and final-edge of the area.

Used only when relative directions are applicable.
(Note past tense.)

spread

In positions: this term should not be used.

In alignments: the contents of the area are stretched or spaced so that it fills
the availableinitial-final height.

Used only when relative directions are applicable.
(Note past tense.)

I n the escapemant-pr ogr ession-dir ection and the inline-pr ogr ession-dir ection
One of the following:

centered

In positions: the position halfway between start and end.

In alignments: the centered point of an areais aligned with the alignment-
point of the referenced object, usually the centered point of the container.

Used only when relative directions are applicable.
(Note past tense.)

end

Page 104

In positions: the edge of an area closest to the end edge indicated by the first
term of the writing-mode that appliesto the area. (If the writing modeis|r-tb,
thiswould be the right edge).

direction

Extensible Stylesheet Language (XSL)

In alignments: the end edge of an areais aligned with the alignment-point of
the referenced object, usually the end edge of the container.

Used only when relative directions are applicable.

distributed

In positions: this term should not be used.

In alignments: the contents of the area are stretched or spaced so that it fills
the available start-end width, however, additional spaceisalso inserted at the
start-edge and end-edge of the area.

Used only when relative directions are applicable.
(Note past tense.)

Start

In positions: the edge of an area closest to the start edge indicated by the first
term of the writing-mode that appliesto the area. (If the writing modeis|r-tb,
thiswould be the left edge).

In alignments: the start edge of an area is aligned with the alignment-point of
the referenced object, usually the start edge of the container.

Used only when relative directions are applicable.

justified

In positions: this term should not be used.

In alignments: the contents of the area are stretched or spaced so that it fills
the available start-end width.

Used only when relative directions are applicable.
(Note past tense.)

Theterm "direction” should be qualified as described in the following list. All relative positions
and progressionsin XSL are specified in terms of one or more of these direction specifiers.

The "writing-mode" property is used to set these values as a set.

For some formatting objects, the "direction” property can override one of these (or the subset of
the direction specifiersthat would be paralld -- for example, it may set both the block-
progression-direction and the line-progression-direction or override both the inline-progression-
direction and the escapement-progression-direction).

block-progression-direction
The direction of progression of sequential block-level area placements as specified by the

last term of the writing-mode. (If the writing-mode isIr-tb, the block-progression-
direction istop-to-bottom.)

Always perpendicular to the inline-progression-direction.

column-progression-direction

The direction of progression of sequential column area placements as specified by the
first term of the writing-mode. (If the writing-mode is Ir-tb, the column-progression-
direction isleft-to-right.)

For writing modes that have alternating or inverting first terms, this direction does not

escapement-progression-direction

Thedirection of progression of sequential glyph area placements along the placement-
path as specified by the character/glyph information. May be overridden by the direction
property. May be the same as or the reverse of the inline-progression-direction. (If the
writing-mode is Ir-tb, the escapement-progression-direction is | eft-to-right.)

Page 105

Extensible Stylesheet Language (XSL)

edge

If unspecified, use the inline-progression-direction specified by thefirst term of the
writing-mode.

For writing modes that have alternating or inverting first terms, this direction reverses
accordingly.

inline-progression-direction
Thedirection of progression of sequential inline areas as specified by the first term of the
writing-mode. (If the writing-mode isIr-tb, the inline-progression-direction is | eft-to-
right.)
Usually the same direction as the escapement direction.
Perpendicular to the block-progression direction and the line-progression direction.

For writing modes that have alternating or inverting first terms, this direction reverses
accordingly.

line-progression-direction
Perpendicular to the inline-progression-direction, the direction of successive textline
placements as specified by the last term of the writing-mode. (If the writing-modeis Ir-tb,
the line-progression-direction is top-to-bottom.)

Usually the same as the block-progressi on-direction.

row-progression-direction
Thedirection of progression of sequential row area placements as specified by the last
term of the writing-mode. (If the writing-modeis Ir-tb, the row-progression-direction is
top-to-bottom.)

shift-direction
Thedirection of positive shift when characters, inline areas, or scores are shifted

perpendicular to the placement-path. Usually the reverse of the line-progression-
direction. (If the writing-mode is Ir-tb, the shift-direction is bottom-to-top.)

For writing modes that have inverting first terms, this direction reverses accordingly.

up-direction
The direction of the characterOs up-vector.
For mixed-width-non-joining text, thisis usually the same as the shift-direction.

For vertically-written ideographic text, the up-vector isthe reverse of the first-term of the
writing-mode. (If the writing mode istb-Ir, the up-vector is bottom-to-top.)

For roman text in vertically-written ideographic text, the up-vector is specified by the
vertical-roman-orientation property. (If the writing-mode istb-Ir: and vertical-roman-
orientation=vertical then the up-direction for roman text is bottom-to-top, however, if the
vertical-roman-orientation=perpendicul ar then the up-direction for roman-text isright-to-
left.)

Theterm "edge" specifies each of the sides of any area, based on writing-mode. "Edge" should
be qualified as follows:

Page 106

after-edge
The areafollowing the current areain the direction specified by the last term of the

writing mode. (Also the edge of the current area toward the area following the current
areain the direction specified by the last term of the writing mode.)

final-edge
The edge of the current area toward the area following the current areain the direction
specified by the last term of the writing mode.

Extensible Stylesheet Language (XSL)

before-edge

The area prior to the current area in the direction specified by the last term of the writing
mode. (Also the edge of the current area toward the area prior to the current areain the
direction specified by the last term of the writing mode.)

initial-edge

The edge of the current area toward the area prior to the current area in the direction
specified by the last term of the writing mode.

end-edge

The areafollowing the current areain the direction specified by the first term of the
writing mode. (Also the edge of the current area toward the area following the current
areain the direction specified by the first term of the writing mode.)

For writing modes that have alternating or inverting first terms, this direction reverses
accordingly.
dtart-edge

The area prior to the current areain the direction specified by the first term of the writing
mode. (Also the edge of the current area toward the area prior to the current areain the
direction specified by the first term of the writing mode.)

For writing modes that have alternating or inverting first terms, this direction reverses
accordingly.
escapement-point
A designated point of an inline-area which, when the areais placed, is used in determining the
containing line-area's new placement-point. It is always on the edge opposite the position-point.
escapement-vector
The vector from the placement-point of an inline-area to its escapement-point.
line
Since we have many kinds of lines, the term will be qualified as follows:
graphic-line

A graphic representation of aline-segment. Used for rules and scores (underscore, overscore,
and strike-through).

textline
A sequence of characters (and spaces) arranged along or relative to a common basdline.
margin

We have not resolved all differences between CSS's use of the term margin and XSL's use of the
terms display-space or inline-space. The term margin is used for page-margins and cell-margins. It is

|eft as a placeholder in a number of other locations until all the details of the difference between the 2
models can be full resolved.

maximum-line-rectangle

The rectangle associated with aline area which is as wide as the content rectangle in the inline-
progression direction, and which in the perpendicular direction stretches from the maximum
ascender-height to the maximum descender-depth for the actual fonts and inline-areas placed on the
line, asraised and lowered by ver ti cal - al i gn and other adjustments perpendicular to theinline-
progression-direction. Used for placing the line when minimum-leading isin effect.

nominal-font

The default font associated with an area. This consists of a fully qualified nominal-font name and font
size.

Page 107

Extensible Stylesheet Language (XSL)

nominal-glyph-height
The height from the descender-depth to the ascender-height of the default font associated with this
line-areaor inline-area area.

nominal-requested-line-rectangle

The rectangle associated with aline area which is as wide as the content rectangle in the inline-
progression direction, and which in the perpendicular direction stretches from the ascender-height to
the descender-depth of the nominal-font. Used for placing the line when minimum-leading isin
effect.

offset
A fixed height/width adjustment that occurs between 2 objects within an area.

In the absence of futher qualification in the property definition, if this adjustment is positive, the
offset object will be displaced in the shift-direction by the distance specified.

Similarly, if this adjustment is negative, the offset object will be displaced in the reverse of shift-
direction by the distance specified.
(See also: "space” and "separation”.)

padding
The open space between an area's content rectangle and its border.

page-model
Page designs can follow several models:

sequential-tiled-page-model
Thisisyour typical word processor page.

The subareas do not overlap. They are full width and are separated from the preceding subarea
by a separation distance measured from the preceding area in the block-progression-direction
specified by the writing-mode of the page.

interlocking-tiled-page-model
Thisisyour typical newspaper page.

The subareas do not overlap. Pages consist of rectangular, T, inverted-L shaped areas. They are
non-overlapping and touch the adjacent areas (or page margins) on all sides.

simple-freeform-page-model

The origins of the subareas are specified as X-Y coordinates measured from the page origin.
Each area then specifies its shape relative to that origin. If areas overlap, they are overlapped in
the order that the areas are specified (or in accordance with az- or der property), hiding the
information of the underlying area.

exclusionary-freeform-page-model

The origins of the subareas are specified as X-Y coordinates measured from the page origin.
Each area then specifies its shape relative to that origin. If areas overlap, they are overlapped in
the order that the areas are specified (or in accordance with az- or der property), reshaping
the underlying area to wrap around the current area.

placement-path
A progression of items placed adjacently in the inline-progression-direction for inline areas or the
bl ock-progression-direction for block-level aress.

placement-point
During thefilling of aline-area, the point at which the next inline-area will be placed.

Page 108

Extensible Stylesheet Language (XSL)

position-point
A designated point on one edge of an inline-area, which is used to align inline-areas along a common
placement-path.

precedence

An indication of the importance of one value over another. Display-space and inline-space values
with greater precedence take effect over those with lower precedence.

property
An attribute of a formatting-object.

region
The specification, in a formatting object, directing/controlling the creation of an area. (Specifically an
area-container.)

qualifier
An attribute of a character. Usually derived through system-dependent font metric and classification
Services.

queue
(Thiswas "port" in the DSSSL specification.)

separation
A fixed height/width adjustment that occurs between 2 aress.
If this adjustment is positive, the 2 areas will be separated by the resultant distance.
If this adjustment is negative, the 2 areas will overlap by the resultant distance.
(See also: "space” and "offset”.)

space
A variable height/width adjustment that occurs between 2 areas.
If this adjustment is positive, the 2 areas will be separated by the resultant distance.
If this adjustment is negative, the 2 areas will overlap by the resultant distance.
(See also: "separation” and "offset".)

conditional-space
A display-space or inline-space with conditionality = true.

display-space
Space used between line areas or block aress.

inline-space
Space used between areas within aline area.

space-character
The character at codepoint 0x20 (ascii-space).

space-resolution-rules

The rules used to resolve how several adjacent display spaces or inline spaces are combined into a
single display space or inline space.

Page 109

Extensible Stylesheet Language (XSL)

Appendices
A. DTD for XSL Stylesheets

The following entity can be used to construct aDTD for XSL stylesheets that create instances of a
particular result DTD. Before referencing the entity, the stylesheet DTD must definear esul t -
el ement s parameter entity listing the allowed result ement types. For example:

<IENTITY %result-elenents "
| fo:inline-sequence
| fo:block

">

<IENTITY % instructions "
| xsl:apply-tenplates
| xsl:apply-inports
| xsl:for-each
| xsl:val ue- of
| xsl: nunber
| xsl:counter
| xsl:counters
| xsl:counter-increnent
| xsl:counter-reset
| xsl:counter-scope
| xsl:choose
| xsl:if

| xsl:contents

| xsl:invoke

| xsl:text

| xsl: pi

| xsl:coment

| xsl: el enent

| xsl:attribute

| xsl:use

| xsl:copy

">

<IENTITY %tenplate "
(#PCDATA
% nstructions;
% esul t-el ements;)*
">

<IENTITY % space-att "xm :space (defaul t|preserve) #l MPLI ED">

<! ELEMENT xsl : styl esheet
(xsl:inmport*,
(xsl :include
| xsl:id
| xsl:strip-space
| xsl: preserve-space
| xsl:macro
| xsl:attribute-set
| xsl:constant
| xsl:tenplate)*)

>

<! ATTLI ST xsl : styl esheet

Page 110

Extensible Stylesheet Language (XSL)

resul t-ns NMIOKEN #l| MPLI ED

def aul t-space (preserve|strip) "preserve"
indent-result (yes|no) "no
id | D #l MPLI ED

xm ns: xsl CDATA #FI XED "http://ww. w3. or g/ TR/ \D- xsl "
Y%space-att;

>
<l-- Used for attribute values that are URIs.-->
<IENTITY % URI " CDATA">

<l-- Used for attribute values that are patterns.-->
<IENTITY % pattern " CDATA">

<!-- Used for attribute values that are a priority. -->
<IENTITY %opriority "NMIOKEN'>

<! ELEMENT xsl :i nport EMPTY>
<I ATTLI ST xsl:inmport href %JRI; #REQU RED>

<! ELEMENT xsl :incl ude EMPTY>
<I ATTLI ST xsl:include href %JRI; #REQUI RED>

<! ELEMENT xsl:id EMPTY>

<I' ATTLI ST xsl:id
attri bute NMIOKEN #REQUI RED
el ement NMIOKEN #l MPLI ED

<! ELEMENT xsl :stri p-space EMPTY>
<I ATTLI ST xsl :strip-space el enent NMIOKEN #REQUI RED>

<! ELEMENT xsl : preserve-space EMPTY>
<! ATTLI ST xsl : preserve-space el ement NMIOKEN #REQUI RED>

<! ELEMENT xsl :tenpl ate % enpl at e; >

<! ATTLI ST xsl :tenpl ate
mat ch Y%attern; #REQU RED
priority Y%riority; #l MPLIED
node NMIOKEN #| MPLI ED
Yspace-att;

>

<! ELEMENT xsl : val ue- of EMPTY>
<! ATTLI ST xsl :val ue-of sel ect CDATA #l MPLI ED>

<IENTITY % conversion-atts '
format CDATA "1"
xm : 1 ang NMIOKEN #| MPLI ED
| etter-val ue (al phabetic|other) #l MPLI ED
di git-group-sep CDATA #l MPLI ED
n-di gi ts-per-group NMIOKEN #| MPLI ED
sequence-src %JRl; #l MPLI ED

">

<! ELEMENT xsl : nunber EMPTY>

<! ATTLI ST xsl : nunber
| evel (single|lmlti|any) "single"

Page 111

Extensible Stylesheet Language (XSL)

count CDATA #l| MPLI ED
from CDATA #| MPLI ED
9%conversion-atts

>

<! ELEMENT xsl:counter EMPTY>
<! ATTLI ST xsl:counter
name NMIOKEN #REQUI RED
9%conver sion-atts;

<! ELEMENT xsl:counters EMPTY>
<! ATTLI ST xsl:counters
name NMIOKEN #REQUI RED
o%conver sion-atts;

<! ELEMENT xsl :counter-increnment EMPTY>
<! ATTLI ST xsl:counter-increnent

name NMIOKEN #REQUI RED

amount NMIOKEN #| MPLI ED

<! ELEMENT xsl:counter-reset EMPTY>
<! ATTLI ST xsl:counter-reset

name NMIOKEN #REQUI RED

val ue NMIOKEN #| MPLI ED

<! ELEMENT xsl : count er - scope % enpl at e; >
<! ATTLI ST xsl : counter-scope %pace-att;>

<! ELEMENT xsl : appl y-tenpl ates (xsl:sort*)>
<! ATTLI ST xsl : appl y-tenpl ates

sel ect Ypattern; #l MPLI ED

node NMIOKEN #| MPLI ED
>

<! ELEMENT xsl : appl y-i nports EMPTY>

<!-- xsl:sort cannot occur after any other el ements or
any non-whi t espace character -->

<! ELEMENT xsl : for-each
(#PCDATA
% nstructions;
% esul t-el enent s
| xsl:sort)*
>

<! ATTLI ST xsl:for-each
sel ect Ypattern; #REQUI RED
Y%space-att;

>

<! ELEMENT xsl:sort EMPTY>
<! ATTLI ST xsl :sort
sel ect Ypattern;

Page 112

Extensible Stylesheet Language (XSL)

| ang CDATA #l MPLI ED

data-type (text]|nunber) "text"

order (ascending|descendi ng) "ascendi ng"
case-order (upper-first|lower-first) #l MPLIED

<! ELEMENT xsl:if % enpl ate; >
<V ATTLI ST xsl:if
test %attern; #REQU RED
Y%space-att;

<l ELEMENT xsl : choose (xsl:when+, xsl:otherw se?)>
<! ATTLI ST xsl : choose %pace-att; >

<! ELEMENT xsl : when % enpl at e; >
<! ATTLI ST xsl : when
test %attern; #REQU RED
Yspace-att;

<! ELEMENT xsl : ot herwi se % enpl ate; >
<! ATTLI ST xsl : ot herw se ¥%space-att; >

<! ELEMENT xsl :attri bute-set (xsl:attribute|xsl:use)*>
<! ATTLI ST xsl :attri bute-set
nane NMIOKEN #REQUI RED

<! ELEMENT xsl : constant EMPTY>
<! ATTLI ST xsl : const ant

name NMIOKEN #REQUI RED

val ue CDATA #REQUI RED
>

<!-- xsl:macro-arg cannot occur after any other elements or
any non-whi t espace character -->

<! ELEMENT xsl : macro
(#PCDATA
% nstructions;
% esul t - el enent s;
| xsl:macro-arg)*
>

<! ATTLI ST xsl: macro
name NMIOKEN #REQUI RED
Y%space-att;

>

<! ELEMENT xsl : macr o-arg EMPTY>
<! ATTLI ST xsl: macro-arg
nane NMIOKEN #REQUI RED
defaul t CDATA #l MPLI ED
>

<!-- This is allowed only within xsl:macro -->
<! ELEMENT xsl : contents EMPTY>

Page 113

Extensible Stylesheet Language (XSL)

<!-- xsl:arg cannot occur after any other el enents or
any non-whi t espace character -->

<! ELEMENT xsl :i nvoke
(#PCDATA
% nstructions;
% esul t - el ement s;
| xsl:arg)*
>

<! ATTLI ST xsl :i nvoke
macr o NMITOKEN #REQUI RED
Y%space-att;

>

<! ELEMENT xsl :arg EMPTY>
<! ATTLI ST xsl :arg
nane NMIOKEN #REQUI RED
val ue CDATA #REQUI RED
>

<! ELEMENT xsl :text (#PCDATA) >
<! ATTLI ST xsl :text %space-att;>

<! ELEMENT xsl :pi % enpl ate; >
<! ATTLI ST xsl : pi
name CDATA #REQUI RED
Y%space-att;

<! ELEMENT xsl : el enent % enpl at e; >
<! ATTLI ST xsl : el enent
nanme CDATA #REQUI RED
Yspace-att;

<! ELEMENT xsl :attribute % enpl ate; >
<I ATTLI ST xsl:attribute

nanme CDATA #REQUI RED

Yspace-att;
>

<! ELEMENT xsl : use EMPTY>
<! ATTRI BUTE xsl : use attribute-set NMIOKEN #REQUI RED>

<! ELEMENT xsl : conment % enpl at e; >
<! ATTLI ST xsl : conment %space-att; >

<! ELEMENT xsl : copy % enpl ate; >
<! ATTLI ST xsl :copy Y%pace-att; >

Page 114

Extensible Stylesheet Language (XSL)

B. References

B.1 Normative References

W3C XML
World Wide Web Consortium. Extensible Markup Language (XML) 1.0. W3C Recommendation. See
http://mww.w3.0rg/ TR/1998/REC-xml-19980210

W3C XML Names
World Wide Web Consortium. Namespacesin XML. W3C Working Draft. See
http://mww.w3.org/ TR/WD-xml-names

B.2 Other References

CSs2
World Wide Web Consortium. Cascading Style Sheets, level 2 (CSS2). W3C Recommendation. See
http://mww.w3.org/ TR/1998/REC-CSS2-19980512

DSSSL
International Organization for Standardization, International Electrotechnical Commission. 1SO/IEC
10179:1996. Document Style Semantics and Specification Language (DSSSL). International Standard.

UNICODE TR10
Unicode Consortium. Draft Unicode Technical Report #10. Unicode Collation Algorithm. Draft
Unicode Technical Report. See http://mmw.unicode.org/unicode/reports/tr10/index.html.

W3C XML Styleshest
World Wide Web Consortium. Associating stylesheets with XML documents. W3C Working Draft. See
http://mww.w3.org/TR/WD-xml -styl esheet

C. Examples (Non-Normative)

Thefollowing is asimple but complete stylesheet.

<?xm version='1.0"?>
<xsl : styl esheet xm ns:xsl="http://ww. w3. org/ TR/ WD- xsl "
xm ns: fo="http://ww. wW3. or g/ TR WD xsl / FO'
result-ns="fo"
i ndent -result ="yes" >
<xsl:tenplate match="/"'>
<f 0: basi c- page- sequence font-fam|ly="serif">
<f 0: si npl e- page- mast er page- nast er-nanme='scrol ling' />
<f 0: queue queue- nane=' body' >
<xsl : appl y-tenpl at es/ >
</ fo: queue>
</ f o: basi c- page- sequence>
</ xsl :tenpl ate>

<xsl:tenplate match="title">
<f 0: bl ock font-wei ght="bol d">
<xsl : appl y-t enpl at es/ >
</ fo: bl ock>
</ xsl :tenpl ate>
<xsl:tenpl ate match="p">
<f o: bl ock>
<xsl : appl y-t enpl at es/ >
</ fo: bl ock>

Page 115

Extensible Stylesheet Language (XSL)

</ xsl:tenpl ate>

<xsl:tenpl ate match="enph">
<fo:inline-sequence font-style="italic">
<xsl : appl y-t enpl at es/ >
</fo:inline-sequence>

</ xsl :tenpl ate>

</ xsl : styl esheet >

With the following source document

<doc>

<title>An exanple</title>

<p>This is a test.</p>

<p>Thi s i s <enph>anot her </ enph> test. </ p>
</ doc>

it would produce the following result

<f 0: basi c- page- sequence xm ns:fo="http://ww. w3. org/ TR/ \D- xsl| / FO'
font-famly="serif">

<f o: si npl e- page- nast er page- mast er - nane="scrol li ng"/>

<f 0: queue queue- nane="body" >

<f 0: bl ock font-wei ght="bol d">An exanpl e</f o: bl ock>

<fo: bl ock>This is a test.</fo:bl ock>

<fo: bl ock>This is <fo:inline-sequence
font-style="italic">another</fo:inline-sequence> test.</fo:bl ock>

</ fo: queue>

</ f o: basi c- page- sequence>

D. Design Principles (Non-Normative)

In the design of any language, trade-offs in the solution space are necessary. To aid in making these trade-
offs the follow design principles were used:

XSL should support browsing, printing, and interactive editing and design tools

XSL should be capable of specifying presentations for traditional and Web environments
XSL should support interaction with structured information, aswell as presentation of it.
XSL should support all kinds of structured information, including both data and documents.
XSL should support both visual and non-visual presentations.

XSL should be a declarative language.

XSL should be optimized to provide simple specifications for common formatting tasks and not
preclude more sophisticated formatting tasks.

XSL should provide an extensibility mechanism

The number of optional featuresin XSL should be kept to a minimum.

XSL should provide the formatting functionality of at least DSSSL and CSS

XSL should leverage other recommendations and standards.

XSL should be expressed in XML syntax.

XSL stylesheets should be human-readable and reasonably clear.

Tersenessin XSL markup is of minimal importance.

E. Acknowledgements (Non-Normative)

The following have contributed to authoring this draft:

Page 116

Sharon Adler, Inso Corporation

Anders Berglund, Inso Corporation

Jeff Caruso, Bitstream (Formatting Model, Defined Terms)
Paul Grosso, ArborText

Extensible Stylesheet Language (XSL)

Eduardo Gutentag, Sun Microsystems

ChrisLilley, W3C

Chris Maden, O'Reilly & Associates

Jonathan Marsh, Microsoft Corporation

Alex Milowski, Veo Systems (formatting objects and properties database)
Henry S. Thompson, University of Edinburgh

Paul Trevithick, Bitstream

Norman Walsh, ArborText

Steve Zilles, Adobe

F. Changes from Previous Public Working Draft (Non-
Normative)

The following is a summary of changesin the Tree Construction part since the previous public working
draft.

xsl : process and xsl : process- chi | dr en have been combined into xsl : appl y-t enpl at es.
Theexpr attribute of xsl : val ue- of hasbeen renamedtosel ect .

Support for comments has been added.

Support for processing instructions has been added.

Support for text nodes has been added.

Support for result tree numbering has been added.

Support for sorting has been added.

Thexsl : copy eement has been added.

Thexsl : el ement eement has been added.

Thexsl : attri but e dement has been added.

Attribute patterns have been changed: the syntax is @ oo rather thanat t r i but e(f 00) ; they can be
used as match patterns and select patterns; @ can be used to match all attributes.

The argument to id() must now be quoted. Select patterns can also be used as an argument.
The syntax for patterns has been reworked; it is now more general than before.

The syntax for quoting namespaces has been changed.

Specificity has been removed.

Priorities can be real numbers.

Support for processing modes has been added.

xsl :appl y-i nport s has been added.

def i ne- hasbeen removed from the name of top-level elements. xsl : attri but e- set now contains
xsl :attribut e eements.

Thexsl : use attribute has been replaced by an xsl : use eement.

The default namespace (as declared with the x i ns attribute) is not used for el ement type namesin
patterns.

Theancest or - or - sel f function has been added.

Page 117

