
WD-xsl-19980818

Extensible Stylesheet Language (XSL)
Version 1.0

World Wide Web Consortium Working Draft 18-Aug-98

This version

http://www.w3.org/TR/1998/WD-xsl-19980818
http://www.w3.org/TR/1998/WD-xsl-19980818.xml
http://www.w3.org/TR/1998/WD-xsl-19980818.html
http://www.w3.org/TR/1998/WD-xsl-19980818.pdf

Latest version

http://www.w3.org/TR/WD-xsl

Editors

James Clark (jjc@jclark.com) [Tree Construction]
Stephen Deach, Adobe (sdeach@adobe.com) [Formatting Objects]

Status of this document
This is a W3C Working Draft for review by W3C members and other interested parties. It is the first working draft
of XSL. It is based on the XSL Submission, but differs substantially in many important respects. It is a draft
document and may be updated, replaced, or obsoleted by other documents at any time. The XSL Working Group
will not allow early implementation to constrain its ability to make changes to this specification prior to final
release. It is inappropriate to use W3C Working Drafts as reference material or to cite them as other than ‘work in
progress’. A list of current W3C working drafts can be found at http://www.w3.org/TR.
Comments may be sent to xsl-editors@w3.org. Public discussion of XSL takes place on the XSL-List mailing list.

Abstract
XSL is a language for expressing stylesheets. It consists of two parts:

1. a language for transforming XML documents, and
2. an XML vocabulary for specifying formatting semantics.

An XSL stylesheet specifies the presentation of a class of XML documents by describing how an instance of the
class is transformed into an XML document that uses the formatting vocabulary.



This page intentionally left blank.



Table of Contents

1. Overview............................................................................................................................................. 1

2. Tree Construction ............................................................................................................................... 1
2.1 Overview................................................................................................................................... 1
2.2 Stylesheet Structure ................................................................................................................... 2
2.3 Processing Model ...................................................................................................................... 3
2.4 Data Model................................................................................................................................ 4

2.4.1 Root Node ..................................................................................................................... 4
2.4.2 Element Nodes............................................................................................................... 4
2.4.3 Attribute Nodes.............................................................................................................. 5
2.4.4 Character Data............................................................................................................... 5
2.4.5 Whitespace Stripping..................................................................................................... 5

2.5 Template Rules.......................................................................................................................... 6
2.5.1 Conflict Resolution for Template Rules.......................................................................... 6
2.5.2 Built-in Template Rule................................................................................................... 7

2.6 Patterns ..................................................................................................................................... 7
2.6.1 Alternative Patterns ....................................................................................................... 7
2.6.2 Matching on Element Ancestry ...................................................................................... 8
2.6.3 Anchors......................................................................................................................... 8
2.6.4 Matching the Root Node ................................................................................................ 9
2.6.5 Matching on Element Types........................................................................................... 9
2.6.6 Qualifiers..................................................................................................................... 10
2.6.7 Matching on Children .................................................................................................. 10
2.6.8 Matching on Attributes ................................................................................................ 10
2.6.9 Matching on Position ................................................................................................... 11
2.6.10 Whitespace in Patterns ............................................................................................... 12
2.6.11 Specificity.................................................................................................................. 12

2.7 Templates................................................................................................................................ 13
2.7.1 Overview..................................................................................................................... 13
2.7.2 Literal Result Elements................................................................................................ 13
2.7.3 Named Attribute Sets................................................................................................... 14
2.7.4 Literal Text in Templates ............................................................................................. 14
2.7.5 Processing with xsl:process-children............................................................. 14
2.7.6 Processing with xsl:process.................................................................................. 15
2.7.7 Direct Processing......................................................................................................... 16
2.7.8 Numbering in the Source Tree...................................................................................... 17
2.7.9 Number to String Conversion Attributes....................................................................... 19
2.7.10 Conditionals within a Template.................................................................................. 20
2.7.11 Computing Generated Text ........................................................................................ 21
2.7.12 String Constants......................................................................................................... 22
2.7.13 Macros....................................................................................................................... 23

2.8 Style Rules .............................................................................................................................. 24
2.9 Combining Stylesheets............................................................................................................. 24

2.9.1 Stylesheet Import......................................................................................................... 24
2.9.2 Stylesheet Inclusion ..................................................................................................... 25
2.9.3 Embedding Stylesheets ................................................................................................ 25

2.10 Extensibility........................................................................................................................... 26

3. Formatting Objects........................................................................................................................... 26

3.1 Introduction............................................................................................................................. 26
3.2 Notations Used in this Section.................................................................................................. 26
3.3 Formatting Objects and Their Properties .................................................................................. 27
3.4 Formatting Objects to be Defined in Subsequent Drafts ............................................................ 29
3.5 Page-sequence Layout Object................................................................................................... 29

3.5.1 Purpose........................................................................................................................ 29



3.5.2 Formatting Object Summary ....................................................................................... 29
3.5.3 Formatting Object's Formal Specification..................................................................... 30
3.5.4 To Resolve .................................................................................................................. 30

3.6 Simple-page-master Layout Object........................................................................................... 30
3.6.1 Purpose........................................................................................................................ 30
3.6.2 Formatting Object Summary ....................................................................................... 31
3.6.3 Formatting Object's Formal Specification..................................................................... 33
3.6.4 To Resolve .................................................................................................................. 34

3.7 Queue Flow Object .................................................................................................................. 34
3.7.1 Purpose........................................................................................................................ 34
3.7.2 Formatting Object Summary ....................................................................................... 35
3.7.3 Formatting Object's Formal Specification..................................................................... 35

3.8 Sequence Flow Object ............................................................................................................. 35
3.8.1 Purpose........................................................................................................................ 35
3.8.2 Formatting Object Summary ....................................................................................... 35
3.8.3 Formatting Object's Formal Specification..................................................................... 35

3.9 Block Flow Object ................................................................................................................... 36
3.9.1 Purpose........................................................................................................................ 36
3.9.2 Formatting Object Summary ....................................................................................... 36
3.9.3 Formatting Object's Formal Specification..................................................................... 39
3.9.4 To Resolve .................................................................................................................. 39

3.10 Character Flow Object ........................................................................................................... 39
3.10.1 Purpose...................................................................................................................... 40
3.10.2 Formatting Object Summary ..................................................................................... 40
3.10.3 Formatting Object's Formal Specification................................................................... 40
3.10.4 To Resolve................................................................................................................. 41

3.11 List Flow Object .................................................................................................................... 41
3.11.1 Purpose...................................................................................................................... 41
3.11.2 Formatting Object Summary ..................................................................................... 41
3.11.3 Formatting Object's Formal Specification................................................................... 43

3.12 List-Item Flow Object ............................................................................................................ 43
3.12.1 Purpose...................................................................................................................... 43
3.12.2 Formatting Object Summary ..................................................................................... 43
3.12.3 Formatting Object's Formal Specification................................................................... 44

3.13 List-Item-Label Flow Object .................................................................................................. 45
3.13.1 Purpose...................................................................................................................... 45
3.13.2 Formatting Object Summary ..................................................................................... 45
3.13.3 Formatting Object's Formal Specification................................................................... 45

3.14 List-Item-Body Flow Object................................................................................................... 46
3.14.1 Purpose...................................................................................................................... 46
3.14.2 Formatting Object Summary ..................................................................................... 46
3.14.3 Formatting Object's Formal Specification................................................................... 46

3.15 Rule-Graphic Flow Object ..................................................................................................... 46
3.15.1 Purpose...................................................................................................................... 46
3.15.2 Formatting Object Summary ..................................................................................... 46
3.15.3 Formatting Object's Formal Specification................................................................... 47
3.15.4 To Resolve................................................................................................................. 47

3.16 Graphic Flow Object .............................................................................................................. 48
3.16.1 Purpose...................................................................................................................... 48
3.16.2 Formatting Object Summary ..................................................................................... 48
3.16.3 Formatting Object's Formal Specification................................................................... 48
3.16.4 To Resolve................................................................................................................. 48

3.17 Score Flow Object ................................................................................................................. 49
3.17.1 Purpose...................................................................................................................... 49
3.17.2 Formatting Object Summary ..................................................................................... 49
3.17.3 Formatting Object's Formal Specification................................................................... 49
3.17.4 To Resolve................................................................................................................. 49

3.18 Inline-box Flow Object .......................................................................................................... 50



3.18.1 Purpose...................................................................................................................... 50
3.18.2 Formatting Object Summary ..................................................................................... 50
3.18.3 Formatting Object's Formal Specification................................................................... 50
3.18.4 To Resolve................................................................................................................. 50

3.19 Block-level-box Flow Object ................................................................................................. 51
3.19.1 Purpose...................................................................................................................... 51
3.19.2 Formatting Object Summary ..................................................................................... 51
3.19.3 Formatting Object's Formal Specification................................................................... 52
3.19.4 To Resolve................................................................................................................. 52

3.20 Page-number Flow Object ...................................................................................................... 52
3.20.1 Purpose...................................................................................................................... 52
3.20.2 Formatting Object Summary ..................................................................................... 52
3.20.3 Formatting Object's Formal Specification................................................................... 53
3.20.4 To Resolve................................................................................................................. 53

3.21 Link Formatting Object.......................................................................................................... 53
3.21.1 Purpose...................................................................................................................... 53
3.21.2 Formatting Object Summary ..................................................................................... 54
3.21.3 Formatting Object's Formal Specification................................................................... 54

3.22 Link-end-locator Formatting Object ....................................................................................... 54
3.22.1 Purpose...................................................................................................................... 55
3.22.2 Formatting Object Summary ..................................................................................... 55
3.22.3 Formatting Object's Formal Specification................................................................... 55

3.23 Defined Terms....................................................................................................................... 56
3.24 Alphabetical Summary of Properties ...................................................................................... 61

Appendices

A. DTD for XSL Stylesheets ................................................................................................................. 85

B. References ........................................................................................................................................ 88

B.1 Normative References ............................................................................................................. 88
B.2 Other References..................................................................................................................... 88

C. Examples (Non-Normative) ............................................................................................................. 89

D. Design Principles (Non-Normative) ................................................................................................. 90

E. Acknowledgements (Non-Normative) .............................................................................................. 90



This page intentionally left blank.



Extensible Stylesheet Language (XSL)

Page 1

1. Overview
XSL is a language for expressing stylesheets. Each stylesheet describes rules for presenting a class of XML
source documents. There are two parts to the presentation process. First, the result tree is constructed from
the source tree. Second, the result tree is interpreted to produce formatted output on a display, on paper, in
speech or onto other media.

The first part, constructing the result tree, is achieved by associating patterns with templates. A pattern is
matched against elements in the source tree. A template is instantiated to create part of the result tree. The
result tree is separate from the source tree. The structure of the result tree can be completely different from
the structure of the source tree. In constructing the result tree, the source tree can be filtered and reordered,
and arbitrary structure can be added.

The second part, formatting, is achieved by using the formatting vocabulary specified in this document to
construct the result tree. Formally, this vocabulary is an XML namespace. Each element type in the
vocabulary corresponds to a formatting object class. A formatting object class represents a particular kind
of formatting behavior. For example, the block formatting object class represents the breaking of the
content of a paragraph into lines. Each attribute in the vocabulary corresponds to a formatting property. A
formatting object class has a specific set of formatting properties which provide finer control over the
behavior of the formatting object class; for example, controlling indenting of lines, spacing between lines,
and spacing before and after the collection of lines. A formatting object can have content, and its formatting
behavior is applied to its content.

XSL does not require result trees to use the formatting vocabulary and thus can be used for general XML
transformations. For example, XSL can be used to transform XML to ‘well-formed’ HTML, that is, XML
that uses the element types and attributes defined by HTML.

When the result tree uses the formatting vocabulary, a conforming XSL implementation must be able to
interpret the result tree according to the semantics of the formatting vocabulary as defined in this
document; it may also be able to externalize the result tree as XML, but it is not required to be able to do
so.

2. Tree Construction

2.1 Overview
A stylesheet contains a set of template rules. A template rule has two parts: a pattern which is matched
against nodes in the source tree and a template which can be instantiated to form part of the result tree. This
allows a stylesheet to be applicable to a wide class of documents that have similar source tree structures.

A template is instantiated for a particular source element to create part of the result tree. A template can
contain elements that specify literal result element structure. A template can also contain elements that are
instructions for creating result tree fragments. When a template is instantiated, each instruction is executed
and replaced by the result tree fragment that it creates. Instructions can select and process descendant
elements. Processing a descendant element creates a result tree fragment by finding the applicable template
rule and instantiating its template. Note that elements are only processed when they have been selected by
the execution of an instruction. The result tree is constructed by finding the template rule for the root node
and instantiating its template.

In the process of finding the applicable template rule, more than one template rule may have a pattern that
matches a given element. However, only one template rule will be applied. The method for deciding which
template rule to apply is described in Section 2.5.1: Conflict Resolution for Template Rules.

XSL uses XML namespaces [W3C XML Names] to distinguish elements that are instructions to the XSL
processor from elements that specify literal result tree structure. Instruction elements all belong to the XSL
namespace. The examples in this document use a prefix of xsl: for elements in the XSL namespace.



Extensible Stylesheet Language (XSL)

Page 2

An XSL stylesheet contains an xsl:stylesheet document element. This element may contain
xsl:template elements specifying template rules, which will be described later in this document.

The following is an example of a simple XSL stylesheet that constructs a result tree for a sequence of para
elements containing emphasis elements. The result-ns="fo" attribute indicates that a tree using the
formatting object vocabulary is being constructed. The rule for the root node specifies the use of a page
sequence formatted with any font with serifs. The para elements become block formatting objects which
are set in 10 point type with a 12 point space before each block.

<xsl:stylesheet
  xmlns:xsl="http://www.w3.org/TR/WD-xsl"
  xmlns:fo="http://www.w3.org/TR/WD-xsl/FO"
  result-ns="fo">
  <xsl:template match="/">
    <fo:page-sequence font-family="serif">
       <xsl:process-children/>
    </fo:page-sequence>
  </xsl:template>

  <xsl:template match="para">
    <fo:block font-size="10pt" space-before="12pt">
      <xsl:process-children/>
    </fo:block>
  </xsl:template>
</xsl:stylesheet>

The xsl:stylesheet element can also contain elements importing other XSL stylesheets, elements
defining macros, elements defining global constants, and elements identifying source attributes as
individual element identifiers.

2.2 Stylesheet Structure
A stylesheet is represented by an xsl:stylesheet element in an XML document.

XSL processors must use the XML namespaces mechanism [W3C XML Names] for both source
documents and stylesheets. All XSL defined elements, that is those specified in this document with a prefix
of xsl:, will only be recognized by the XSL processor if they belong to a namespace with the URI
http://www.w3.org/TR/WD-xsl; XSL defined elements are recognized only in the stylesheet not in
the source document.

Issue (versioning): Should there be some way for a stylesheet to indicate which version of XSL it conforms
to? Can this be done through the URI of the XSL namespace?

The xsl:stylesheet element has an optional result-ns attribute; the value must be a namespace
prefix. If this attribute is specified, all result elements must belong to the namespace identified by this
prefix. If there is a namespace declared as the default namespace, then an empty string may be used as the
value to specify that all result elements belong to that namespace. If the result-ns attribute specifies the
XSL Formatting Objects namespace, then in addition to constructing the result XML tree, the XSL
processor must interpret it according to the semantics defined in this document. The XSL Formatting
Objects namespace has the URI http://www.w3.org/TR/WD-xsl/FO. The examples in this
document use the fo: prefix for this namespace.

The xsl:stylesheet element may contain the following types of elements:

1. xsl:import
2. xsl:include
3. xsl:id
4. xsl:strip-space
5. xsl:preserve-space
6. xsl:define-macro



Extensible Stylesheet Language (XSL)

Page 3

7. xsl:define-attribute-set
8. xsl:define-constant
9. xsl:template

This example shows the structure of a stylesheet. Ellipses (...) indicate where attribute values or content
have been omitted. Although this example shows one of each type of allowed element, stylesheets may
contain zero or more of each of these elements.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
  <xsl:import href="..."/>

  <xsl:include href="..."/>

  <xsl:id attribute="..."/>

  <xsl:strip-space element="..."/>

  <xsl:preserve-space element="..."/>

  <xsl:define-macro name="...">
   ...
  </xsl:define-macro>

  <xsl:define-attribute-set name="...">
  ...
  </xsl:define-attribute-set>

  <xsl:define-constant name="..." value="..."/>

  <xsl:template match="...">
    ...
  </xsl:template>
</xsl:stylesheet>

The order in which the children of the xsl:stylesheet element occur is not significant except for
xsl:import elements and for error recovery. Users are free to order the elements as they prefer, and
stylesheet creation tools need not provide control over the order in which the elements occur.

Issue (media-rule): Should we provide the functionality of CSS's @media rule and if so how?

2.3 Processing Model
Ed. Note: This needs expanding and polishing.

A node is processed to create a result tree fragment. The result tree is constructed by processing the root
node. A node is processed by finding all the template rules with patterns that match the node, and choosing
the best amongst them. The chosen rule's template is then instantiated for the node. During the instantiation
of a template, the node for which the template is being instantiated is called the current node. A template
typically contains instructions that select an additional sequence of source nodes for processing. A
sequence of source nodes is processed by appending the result tree structure created by processing each of
the members of the sequence in order. The process of matching, instantiation and selection is continued
recursively until no new source nodes are selected for processing.

Implementations are free to process the source document in any way that produces the same result as if it
were processed using this processing model.



Extensible Stylesheet Language (XSL)

Page 4

2.4 Data Model
XSL operates on an XML document, whether a stylesheet or a source document, as a tree. Any two
stylesheets or source documents that have the same tree will be processed the same by XSL. This section
describes how XSL models an XML document as a tree. This model is conceptual only and does not
mandate any particular implementation.

XML documents operated on by XSL must conform to the XML namespaces specification [W3C XML
Names].

The tree contains nodes and character data. There are three kinds of node:

l root nodes
l element nodes
l attribute nodes

Issue (node-types): We need to support at least processing instructions and comments, possibly other
node types as well. Support requires having patterns that match/select them, being able to get at their
contents, and being able to create them. How should this work?

2.4.1 Root Node
The root node is the root of the tree. It does not occur anywhere else in the tree. It has a single child which
is the element node for the document element of the document.

2.4.2 Element Nodes
There is an element node for every element in the document. An element has an expanded name consisting
of a local name and a possibly null URI (see [W3C XML Names]); the URI will be null if the element type
name has no prefix and there is no default namespace in scope.

An element node also has a namespace prefix map that specifies the namespace URI for each namespace
prefix that is in scope for the element. The semantics of a document type may treat parts of attribute values
or data content as namespace prefixes. The namespace prefix map ensures that the semantics can be
preserved when the tree is written out as XML. When writing an element node out as XML, an XSL
processor must add sufficient namespace-declaring attributes to the start-tag to ensure that all prefixes in
the element node's namespace prefix map are correctly declared.

The children of an element node are the element nodes and characters for its content. Entity references to
both internal and external entities are expanded. Character references are resolved.

The descendants of an element node are the character children, the element node children, and the
descendants of the element node children.

The set of all element nodes in a document can be ordered according to the order of the start-tags of the
elements in the document; this is known as document order.

2.4.2.1 Unique IDs

An element object may have a unique identifier (ID). This is the value of the attribute which is declared in
the DTD as type ID. Since XSL must also work with XML documents that do not have a DTD, stylesheets
may specify which attributes in the source document should be treated as IDs. The xsl:id element has a
required attribute attribute, which gives the name of an attribute in the source document that should be
treated as specifying the element's ID. A stylesheet may contain more than one xsl:id element, for cases
where the source document uses several attributes as IDs. An xsl:id element also has an optional
element attribute which specifies the name of an element type; when the element attribute is specified,
then the xsl:id element specifies that the attribute attribute of element elements are treated as
IDs. xsl:id elements may only occur in the stylesheet body (not within a rule). The following causes
XSL to treat all name attributes in the source document as IDs.

<xsl:id attribute="name"/>



Extensible Stylesheet Language (XSL)

Page 5

It is an error if, as a consequence of the use of xsl:id, there is more than one element with the same ID in
the source tree. An XSL processor may signal the error; if it does not signal the error, it must recover by
treating only the first (in document order) of the elements as having that ID.

2.4.2.2 Base URI

An element node also has an associated URI called its base URI which is used for resolving attribute values
that represent relative URIs into absolute URIs. If an element occurs in an external entity, the base URI of
that element is the URI of the external entity. Otherwise the base URI is the base URI of the document.

2.4.3 Attribute Nodes
Each element node has an associated set of attribute nodes. A defaulted attribute is treated the same as a
specified attribute. If an attribute was declared for the element type, but the default was declared as
#IMPLIED, and the attribute was not specified on the element, then the element's attribute set does not
contain a node for the attribute.

An attribute node has an expanded name and has a string value. The expanded name consists of a local
name and a possibly null URI (see [W3C XML Names]); the URI will be null if the specified attribute
name did not have a prefix. The value is the normalized value as specified by the XML Recommendation
[W3C XML]. An attribute value whose value is of zero length is not treated specially.

There are no attribute nodes for attributes that declare namespaces (see [W3C XML Names]).

Issue (external-dtd): Should we specify something about how we expect XSL processors to process
external DTDs and parameter entities? For example, what happens if an attribute default is declared in an
external DTD?

2.4.4 Character Data
Each character within a CDATA section is treated as character data. Thus <![CDATA[<]]> in the source
document will treated the same as &lt;. Characters inside comments or processing instructions are not
character data. Line-endings in external entities are normalized to #xA as specified in the XML
Recommendation [W3C XML].

2.4.5 Whitespace Stripping
After the tree has been constructed, but before it is otherwise processed by XSL, some whitespace
characters may be stripped. The stripping process takes as input a set of element types for which
whitespace must be preserved. The stripping process is applied to both stylesheets and source documents,
but the set of whitespace-preserving element types is determined differently for stylesheets and for source
documents.

A character object is preserved if any of the following apply:

l The element type of the parent of the character is in the set of whitespace-preserving element types.
l It is part of a chunk that contains at least one non-whitespace character. As in XML, a whitespace

character is #x20, #x9, #xD or #xA. A chunk of characters is a maximal sequence of sibling characters
without any intervening elements.

l An ancestor element of the character has an xml:space attribute with a value of preserve, and no
closer ancestor element has xml:space with a value of default.

Otherwise the character object is stripped.

The xml:space attributes are not stripped from the tree.

NOTE: This implies that if an xml:space attribute is specified on a literal result element, it will be included
in the result.

For stylesheets, the set of whitespace-preserving element types consists of just xsl:text.

For source documents, the set of whitespace-preserving element types is determined using the stylesheet as
follows:



Extensible Stylesheet Language (XSL)

Page 6

l If the xsl:stylesheet element specifies a default-space attribute with a value of strip, then
the set is initially empty. Otherwise the set initially contains all element types that occur in the
document.

l The xsl:strip-space element causes an element type to be removed from the set of whitespace-
preserving element types. The element attribute gives the name of the element type.

l The xsl:preserve-space element causes an element type to be added to the set whitespace-
preserving element types. The element attribute gives the name of the element type.

Issue (declare-multiple-elements): Should the value of the element attribute of xsl:strip-space,
xsl:preserve-space and xsl:id be a list of element type names (and thus be renamed to elements)?
If so, should the attribute attribute of xsl:id also be a list of attribute names?

Ed. Note: Clarify how these declarations interact with each other and with xsl:import.

The xsl:stylesheet element can include an indent-result attribute with values yes or no. If
the stylesheet specifies indent-result="yes", then the XSL processor may add whitespace to the
result tree (possibly based on whitespace stripped from either the source document or the stylesheet) in
order to indent the result nicely; if indent-result="no", it must not add any whitespace to the result.
When adding whitespace with indent-result="yes", the XSL processor can use any algorithm
provided that the result is the same as the result with indent-result="no" after whitespace is
stripped from both using the process described with the set of whitespace-preserving element types
consisting of just xsl:text.

2.5 Template Rules
A template rule is specified with the xsl:template element. The match attribute identifies the source
node or nodes to which the rule applies. The content of the xsl:template element is the template.

For example, an XML document might contain:

This is an <emph>important</emph> point.

The following template rule matches elements of type emph and has a template which produces a
fo:sequence formatting object with a font-weight property of bold.

<xsl:template match="emph">
  <fo:sequence font-weight="bold">
    <xsl:process-children/>
  </fo:sequence>
</xsl:template>

As described later, the xsl:process-children element recursively processes the children of the
source element.

2.5.1 Conflict Resolution for Template Rules
It is possible for a source node to match more than one template rule. The template rule to be used is
determined as follows:

1. First, all matching template rules that are less important than the most important matching template
rule or rules are eliminated from consideration.

2. Next, all matching template rules that are less specific (as defined in Section 2.6.11: Specificity)
than the most specific matching template rule or rules are eliminated from consideration.

3. Next, all matching template rules that have a lower priority than the matching template rule or rules
with the highest priority are eliminated from consideration. The priority of a rule is specified by the
priority attribute on the rule. The value of this must be an integer (positive or negative). The
default priority is 0. The integer must not be greater than 2147483647 nor less than -2147483648.

It is an error if this leaves more than one matching template rule. An XSL processor may signal the error; if
it does not signal the error, it must recover by choosing from amongst the matching template rules that are
left the one that occurs last in the stylesheet.



Extensible Stylesheet Language (XSL)

Page 7

2.5.2 Built-in Template Rule
There is a built-in template rule to allow recursive processing to continue in the absence of a successful
pattern match by an explicit rule in the stylesheet. This rule applies to both element nodes and the root
node. The following shows the equivalent of the built-in template rule:

<xsl:template match="*|/">
  <xsl:process-children/>
</xsl:template>

The built-in template rule is treated as if it were imported implicitly before the stylesheet and so is
considered less important than all other template rules. Thus the author can override the built-in rule by
including an explicit rule with match="*|/".

2.6 Patterns
A pattern is a string which is matched against an element in the source document. The most common
pattern specifies the element type name of a matching element. For example, the pattern emph matches an
element whose type is emph. More complex patterns specify the element types of ancestors of a matching
element. For example, the pattern olist/item matches an element whose type is item with a parent
element of type olist. Each element type in the list of ancestors may be followed by a list of ‘qualifiers’
separated by commas. For example,

list[attribute(ordered)="yes")]/item[first-of-type()]

matches an element whose type is item, which is the first amongst its siblings of this type, and which has
a parent of type list with an ordered attribute equal to yes. This section describes the syntax and
semantics of patterns in detail.

A pattern that is matched against an element is known as a match pattern. Patterns in xsl:template are
match patterns.

A pattern can also be used to select a list of nodes; a pattern that is used for this is known as a select
pattern. In a select pattern, there is a current node which provides a context for the selection. The pattern
selects the list of the source nodes that match the pattern. Nodes in the selected list are in document order.
Patterns in xsl:process, xsl:for-each and xsl:value-of are select patterns.

In the following grammar, the nonterminals NCName and QName are defined in [W3C XML Names], and
S is defined in [W3C XML].

Issue (pattern-text-content): Should patterns be able to match elements based on their textual content? If
XSL is not to discriminate between DTDs that use attributes and those that use elements, then it needs at
least a qualifier that matches an element whose pcdata content is exactly some specified string.

Issue (pattern-text-target): At the moment, the only kind of node that can match a pattern is an element.
Should it be possible to have a pattern that matches text? What would this mean for the processing model?

Issue (pattern-pi-target): Should it be possible to have a pattern that matches a processing instruction?

Issue (regex): Should XSL support regular expressions for matching against any or all of pcdata content,
attribute values, attribute names, element type names?

2.6.1 Alternative Patterns
A pattern may consist of a set of patterns representing ancestry separated by the | character. This indicates
that an element matching any one of the ancestry patterns matches the entire pattern. Each ancestry pattern
may itself have the capability of a full pattern except for the | operator.

Alternation

[1] Pattern ::= OrPattern
[2] OrPattern ::= AncestryPattern ('|' AncestryPattern)*

This example creates an fo:sequence for either emph or strong elements:



Extensible Stylesheet Language (XSL)

Page 8

<xsl:template match="emph | strong">
  <fo:sequence font-weight="bold">
    <xsl:process-children/>
  </fo:sequence>
</xsl:template>

2.6.2 Matching on Element Ancestry
Element ancestry can be represented within the pattern by using the parent operator (/). This operator is
based on the familiar directory navigation metaphor. Two patterns separated by the parent operator match
an element if the right-hand side matches the element and the left-hand side matches the parent of the
element.

Ancestry

[3] AncestryPattern ::= NodePatterns
| (Anchor (AncestryOp NodePatterns)?)
| (RootPattern NodePatterns?)

[4] NodePatterns ::= (ElementPatterns (AncestryOp AttributePattern)?)
| AttributePattern

[5] ElementPatterns ::= ElementPattern (AncestryOp ElementPattern)*
[6] AncestryOp ::= '/' | '//'
[7] ElementPattern ::= ElementTypePattern ElementQualification?

For example, the following pattern matches title source elements that have a section element as a
parent and a chapter element as a grandparent:

<xsl:template match="chapter/section/title">
  ...
</xsl:template>

While the parent operator specifies a parent-child relationship, the ancestor operator (//) specifies an
ancestor-descendant relationship. Two patterns separated by the ancestor operator match an element if the
right-hand side matches the element and the element has at least one ancestor that the left-hand side
matches. Thus zero or more levels of hierarchy may intervene between the element matching the pattern
specified on the left-hand side of the ancestor operator and the element matching the pattern specified on
the right-hand side.

This example applies to changed elements which have a para element as an ancestor.

<xsl:template match="para//changed">
  ...
</xsl:template>

2.6.3 Anchors
The first component of an AncestryPattern can be an Anchor. An Anchor is a pattern that only a specific
element in the source tree matches (if any elements at all match). The Anchor is said to address the specific
element that matches it.

There are two kinds of anchor, relative and absolute. A relative anchor addresses an element relative to the
current node. An absolute anchor addresses an element independently of any current node. A match pattern
must not contain a RelativeAnchor; all anchors in a match pattern must be absolute. A select pattern may
contain both kinds of anchor.

Anchors

[8] Anchor ::= AbsoluteAnchor
| RelativeAnchor

[9] AbsoluteAnchor ::= IdAnchor
[10] RelativeAnchor ::= CurrentNodeAnchor

| (ParentAnchor ('/' ParentAnchor)*)



Extensible Stylesheet Language (XSL)

Page 9

| AncestorAnchor
[11] CurrentNodeAnch

or
::= '.'

[12] ParentAnchor ::= '..'

A CurrentNodeAnchor addresses the current node.

A select pattern is implicitly anchored to the current node: if an AncestryPattern in the Pattern does not
start with an Anchor or a RootPattern, it is treated as if it were ./AncestryPattern. For example, a select
pattern of foo will be treated as ./foo and will thus select the foo children of the current node.

A ParentAnchor addresses the parent of the current node.

2.6.3.1 Ancestor Anchors

Ancestor Anchors

[13] AncestorAnchor ::= 'ancestor' '(' Pattern ')'

An AncestorAnchor addresses the nearest ancestor of the current node that matches the specified pattern.
The pattern in a AncestorAnchor is a match pattern.

2.6.3.2 Id Anchors

An IdAnchor addresses the element whose ID (see Section 2.4.2.1: Unique IDs) is the specified NCName.

Id Anchors

[14] IdAnchor ::= 'id' '(' NCName ')'

2.6.4 Matching the Root Node
A RootPattern matches the root node (see Section 2.4.1: Root Node).

Root Patterns

[15] RootPattern ::= '/'

2.6.5 Matching on Element Types
The simplest pattern consists of just an element type name. This matches any element of that type.

<xsl:template match="first-name">
  ...
</xsl:template>

The * pattern is a wildcard that matches a single element of any type. When used within an ancestry chain,
the wildcard matches exactly one level of hierarchy.

Element Type Pattern

[16] ElementTypePattern ::= OneElementTypePattern
| AnyElementTypePattern

[17] OneElementTypePattern ::= ElementTypeName
[18] ElementTypeName ::= QName
[19] AnyElementTypePattern ::= '*'

The following pattern matches any element that is an immediate child of a data-samples element.

<xsl:template match="data-samples/*">
  ...
</xsl:template>



Extensible Stylesheet Language (XSL)

Page 10

When determining whether a source element matches an ElementTypeName, the expanded element type
names are compared (see Section 2.4.2: Element Nodes).

Issue (pattern-namespace-wildcards): Should patterns of the form foo:* or *:foo be allowed? If so,
should * match any element or any element without a namespace URI?

2.6.6 Qualifiers
An element within the pattern hierarchy may have qualifiers applied to it, which further constrain which
elements match the term. These qualifiers may constrain the element to have certain attributes or sub-
elements or may constrain its position with respect to its siblings. The qualifiers are specified in square
brackets ([]) following the element type name or wildcard symbol. A pattern matches only if all of the
qualifiers are satisfied.

Qualifiers

[20] ElementQualific
ation

::= '[' Qualifiers? ']'

[21] Qualifiers ::=  Qualifier (',' Qualifier)*
[22] Qualifier ::= ChildQualifier

| AttributeQualifier
| PositionalQualifier

This example matches author elements within book elements where the book contains at least one
excerpt sub-element and the author has a degree attribute:

<xsl:template match="book[excerpt]/author[attribute(degree)]">
  ...
</xsl:template>

Issue (sibling-qual): Should there be qualifiers that constrain an element to have an immediately preceding
or following sibling of a particular type?

2.6.7 Matching on Children
An element can be constrained to have a child element of a particular type by specifying the name of that
type as a qualifier.

Child Qualifier

[23] ChildQualifier ::= ElementTypeName

This example has a pattern that matches author elements within book elements which also have
excerpt children (the author and excerpt elements are siblings).

<xsl:template match="book[excerpt]/author">
  ...
</xsl:template>

NOTE: There is no requirement that each child qualifier is matched by a distinct element. Thus
foo[bar,bar] is matched by <foo><bar/></foo>.

2.6.8 Matching on Attributes
Attributes on the source element or any of its ancestor elements can also be used to determine whether a
particular rule applies to an element. An attribute qualifier constrains an element either to have a specific
attribute with a specific value, or to have a specific attribute with any value.

Attribute Qualifier

[24] AttributeQualifier ::= AttributePattern ('=' AttributeValue)?
[25] AttributePattern ::= 'attribute' '(' QName ')'
[26] AttributeValue ::= '"' [^"]* '"'



Extensible Stylesheet Language (XSL)

Page 11

| "'" [^']* "'"

When matching attribute names, the expanded names are compared (see Section 2.4.3: Attribute Nodes).

Issue (attribute-qual-case): Do we need to be able to match attributes in a case insensitive way?

The following example matches an item element that has for its parent a list element which has a
compact attribute:

<xsl:template match="list[attribute(compact)]/item">
  ...
</xsl:template>

The following example matches an item element that has for its parent a list element whose
liststyle attribute has the value enum:

<xsl:template match="list[attribute(liststyle)='enum']/item">
  ...
</xsl:template>

It is also possible to select attribute nodes. Within a select pattern, an AncestryPattern can end with an
AttributePattern. This will select the attribute node with the specified name for each element in the node
list selected by the pattern preceding AttributePattern. Within a match pattern, an AncestryPattern must not
end with an AttributePattern.

Issue (class-attribute): Should there be a way of specifying that an attribute serves as a class attribute and
then pattern syntax that treats class attributes specially?

2.6.9 Matching on Position
Positional qualifiers may be used to further constrain the pattern to match on the element's position or
uniqueness among its siblings.

XSL defines the following positional qualifiers:

l first-of-type(). The element must be the first sibling of its type.
l not-first-of-type(). The element must not be the first sibling of its type.
l last-of-type(). The element must be the last sibling of its type.
l not-last-of-type(). The element must not be the last sibling of its type.
l first-of-any(). The element must be the first sibling element of any type.
l not-first-of-any(). The element must not be the first sibling element of any type.
l last-of-any(). The element must be the last sibling element of any type.
l not-last-of-any(). The element must not be the last sibling element of any type.
l only-of-type(). The element must have no element siblings of the same type.
l not-only-of-type(). The element must have one or more element siblings of the same type.
l only-of-any(). The element must have no element siblings at all.
l not-only-of-any(). The element must have one or more element siblings.

Positional Qualifier

[27] PositionalQualifier ::= Position '(' ')'
[28] Position ::= 'first-of-type' | 'not-first-of-type'

| 'first-of-any' | 'not-first-of-any'
| 'last-of-type' | 'not-last-of-type'
| 'last-of-any' | 'not-last-of-any'
| 'only-of-type' | 'not-only-of-type'
| 'only-of-any' | 'not-only-of-any'

The following pattern matches the first item in a list:

<xsl:template match="list/item[first-of-type()]">



Extensible Stylesheet Language (XSL)

Page 12

  ...
</xsl:template>

The following rule is used for appendix elements when there is only one appendix:

<xsl:template match="backmatter/appendix[only-of-type()]">
  ...
</xsl:template>

2.6.10 Whitespace in Patterns
For readability, whitespace may be used in patterns even though not explicitly allowed by the grammar:
PatternWhitespace may be freely added within patterns before or after any PatternToken.

Pattern Lexical Structure

[29] PatternToken ::= '/' | '//' | '(' | ')' | '|' | '[' | ']' | ',' | '=' |
'.' | '..' | '*'
| 'attribute' | 'id' | 'ancestor'
| NCName
| QName
| AttributeValue
| Position

[30] PatternWhitespa
ce

::= S

2.6.11 Specificity
When a source element is matched against multiple patterns, it is possible for it to match more than one
distinct pattern. In this situation, XSL defines which pattern or patterns are the most specific.

A pattern that starts with an IdAnchor is more specific than a pattern that does not. If two patterns both start
with an IdAnchor or both do not start with an IdAnchor, then the one with the more components is the more
specific, where a component is either a Qualifier or a OneElementTypePattern.

For example, the following patterns are in decreasing order of specificity:

1. id(employee-of-the-month)
2. employee[attribute(type)='contract',attribute(country)='USA']
3. employee[attribute(type)='contract']
4. employee
5. *

When a pattern contains alternatives separated by |, each alternative is treated separately for specificity
purposes. A rule that contains a pattern with two alternatives is equivalent to two rules with the same
content each specifying one of the alternatives as its patterns. For example

<xsl:template match="EMPH|B" priority="1">
  <fo:sequence font-weight="bold"><xsl:process-children/></fo:sequence>
</xsl:template>

is equivalent to

<xsl:template match="EMPH" priority="1">
  <fo:sequence font-weight="bold"><xsl:process-children/></fo:sequence>
</xsl:template>
<xsl:template match="B" priority="1">
  <fo:sequence font-weight="bold"><xsl:process-children/></fo:sequence>
</xsl:template>



Extensible Stylesheet Language (XSL)

Page 13

2.7 Templates

2.7.1 Overview
When the rule that is to be applied to the source element has been identified, the rule's template is
instantiated. A template can contain literal result elements, character data and instructions for creating
fragments of the result tree. Instructions are represented by elements in the XSL namespace.

Instructions can select descendant elements for processing. There are two such instructions, the
xsl:process-children instruction and the xsl:process instruction; the xsl:process-
children instruction processes the immediate children of the source element, while the xsl:process
instruction processes elements selected by a specified pattern.

<xsl:template match="chapter/title">
  <fo:rule-graphic/>
  <fo:block space-before="2pt">
    <xsl:text>Chapter </xsl:text>
    <xsl:number/>
    <xsl:text>: </xsl:text>
    <xsl:process-children/>
  </fo:block>
  <fo:rule-graphic/>
</xsl:template>

Note that xsl:process-children selects any character children of the source element as well as the
element children. The result in this case is the sequence of results of processing the individual character
children and element children in sequence.

Issue (instruction-next-match): Should we add an instruction with the functionality of next-match in
DSSSL?

Issue (instruction-error): Should there be an instruction that generates an error, like the error procedure
in DSSSL?

Issue (instruction-sort): There needs to be an instruction that can do sorting. How should this work?

Issue (instruction-result-number): There needs to be instruction that allows result elements to be
numbered. How should this work?

Issue (modes): How should the functionality of DSSSL modes be provided? Should nested template rules
be used for this? Is there a way of getting source elements to appear in multiple places in the output that can
be implemented in a single pass?

Issue (identity-transform): There needs to be a way to do the identity transformation (creating a result tree
identical to the source tree). How should this be done?

2.7.2 Literal Result Elements
In a template an element in the stylesheet that does not belong to the XSL namespace is instantiated to
create an element node of the same type; the created element node will have the attributes that were
specified on the element in the template tree.

The value of an attribute of a literal result element is interpreted as an attribute value template: it can
contain string expressions contained in curly braces ({}).

The namespace prefix map of the result element node is the namespace prefix map of the element node in
the stylesheet after the removal of any prefixes that map to the XSL namespace URI.

Since an XSL processor acts on elements belonging to the XSL namespace, the problem arises of how to
create elements belonging to the XSL namespace. A namespace whose URI is
http://www.w3.org/TR/WD-xsl followed by one or more occurrences of /quote is called a
quoted namespace. Quoted namespaces are treated specially: before a result tree is written out as XML all
quoted namespace URIs in expanded names and in namespace prefix maps are unquoted by removing the
final /quote.



Extensible Stylesheet Language (XSL)

Page 14

2.7.3 Named Attribute Sets
The xsl:define-attribute-set element defines a named set of attributes. The name attribute
specifies the name of the attribute set. The content of the xsl:define-attribute-set element is an
xsl:attribute-set element that specifies the attributes. A literal result element or an
xsl:attribute-set element can specify an attribute set name as the value of the xsl:use attribute.

The following example creates a named attribute set title-style and uses it in a template rule.

<xsl:define-attribute-set name="title-style">
  <xsl:attribute-set font-size="12pt"
                     font-weight="bold"/>
</xsl:define-attribute-set>

<xsl:template match="chapter/heading">
  <fo:block xsl:use="title-style" quadding="start">
    <xsl:process-children/>
  </fo:block>
</xsl:template>

If the xsl:use attribute is specified on an element that also specifies a value for an attribute that is also
part of the attribute set named by xsl:use, the attribute in the named attribute set is not used.

Multiple definitions of an attribute set with the same name are merged. An attribute from a definition that is
more important takes precedence over an attribute from a definition that is less important. It is an error if
there are two attribute sets with the same name that are equally important and that both contain the same
attribute unless there is a more important definition of the attribute set that also contains the attribute. An
XSL processor may signal the error; if it does not signal the error, it must recover by choosing from
amongst the most important definitions that specify the attribute the one that was specified last in the
stylesheet.

An xsl:use attribute may specify a list of attribute set names separated by whitespace. These attribute
sets will be merged treating the list as being in order of increasing importance.

2.7.4 Literal Text in Templates
A template can also contain PCDATA. Each data character in a template remaining after whitespace has
been stripped as specified in Section 2.4.5: Whitespace Stripping will create a data character in the result
tree.

Literal data characters may also be wrapped in an xsl:text element. This wrapping may change what
whitespace characters are stripped (see Section 2.4.5: Whitespace Stripping) but does not affect how the
characters are handled by the XSL processor thereafter.

2.7.5 Processing with xsl:process-children
Ed. Note: There is no WG consensus on the name xsl:process-children.

Ed. Note: When we add to select patterns the ability to select characters as well as elements, the
functionality of xsl:process-children will be available from xsl:process.

This example creates a block for a chapter element and then processes its immediate children.

<xsl:template match="chapter">
  <fo:block>
    <xsl:process-children/>
  </fo:block>
</xsl:template>

The xsl:process-children instruction processes all of the children of the current node, including
characters. However, characters that have been stripped as specified in Section 2.4.5: Whitespace
Stripping will not be processed.



Extensible Stylesheet Language (XSL)

Page 15

Processing a character in the source tree adds the character to the result tree. Note that this works at the tree
level. Thus, markup of &lt; in content will be represented by a character < in the source tree which will,
with the built-in template rules, turn into a < character in the result tree, which would be represented by the
markup &lt; (or an equivalent character reference) when the result tree is externalized as an XML
document.

2.7.6 Processing with xsl:process
Ed. Note: There is no WG consensus on the name xsl:process.

Issue (process-name): What should xsl:process be called?

The xsl:process element processes elements selected by a pattern. The pattern of an xsl:process
element is a select pattern and so is implicitly anchored to the current node. The following example
processes all of the author children of the author-group:

<xsl:template match="author-group">
  <fo:sequence>
    <xsl:process select="author"/>
  </fo:sequence>
</xsl:template>

The xsl:process element processes all elements which match the specified pattern. Character data
content is not matched by an xsl:process element. The pattern must not contain an AttributePattern
except as part of an AttributeQualifier

The pattern controls the depth at which matches occur. The following example processes all of the
first-names of the authors that are direct children of author-group:

<xsl:template match="author-group">
  <fo:sequence>
    <xsl:process select="author/first-name"/>
  </fo:sequence>
</xsl:template>

The // operator can be used in the pattern to allow the matches to occur at arbitrary depths.

This example processes all of the heading elements contained in the book element.

<xsl:template match="book">
  <fo:block>
    <xsl:process select=".//heading"/>
  </fo:block>
</xsl:template>

An AncestorAnchor in the pattern allows the processing of elements that are not descendants of the current
node. This example finds an employee's department and then processes the group children of the
department.

<xsl:template match="employee">
  <fo:block>
    Employee <xsl:process select="name"/> belongs to group
    <xsl:process select="ancestor(department)/group"/>
  </fo:block>
</xsl:template>

This example assumes that a department element contains group and employee elements (at some
level). When processing the employee elements, the AncestorAnchor in the pattern allows navigation
upward to the department element in order to extract the information about the group to which the
employee belongs.

An IdAnchor allows processing of elements with a specific ID. For example, this template rule applies to
elements with the ID cfo; the second xsl:process element processes the name child of the element
with ID ceo:



Extensible Stylesheet Language (XSL)

Page 16

<xsl:template match="id(cfo)">
  <xsl:process select="name"/> reports to <xsl:process
select="id(ceo)/name"/>
</xsl:template>

Multiple xsl:process elements can be used within a single template to do simple reordering. The
following example creates two HTML tables. The first table is filled with domestic sales while the second
table is filled with foreign sales.

<xsl:template match="product">
  <TABLE>
    <xsl:process select="sales/domestic"/>
  </TABLE>
  <TABLE>
    <xsl:process select="sales/foreign"/>
  </TABLE>
</xsl:template>

NOTE: It is possible for there to be two matching descendants where one is a descendant of the other. This
case is not treated specially: both descendants will be processed as usual. For example, given a source
document

<doc><div><div></div></div></doc>

the rule

<xsl:template match="doc">
  <xsl:process select=".//div"/>
</xsl:template>

will process both the outer div and inner div elements.

Use of Anchors in patterns in xsl:process can lead to infinite loops. It is an error if, during the
invocation of a rule for an element, that same rule is invoked again for that element. An XSL processor
may signal the error; if it does not signal the error, it must recover by creating an empty result tree structure
for the nested invocation.

Issue (select-function): What mechanisms should be provided for selecting elements for processing? For
example, how can elements specified indirectly be handled? Suppose there's an xref element with a ref
attribute that specifies the ID of a div element. The template for xref needs to select title child of the
div element referenced by the ref attribute. Should it be possible to select elements in other XML
documents?

2.7.7 Direct Processing
When the result has a known regular structure, it is useful to be able to specify directly the template for
selected elements. The xsl:for-each element contains a template which is instantiated for each
element selected by the pattern specified by the select attribute.

For example, given an XML document with this structure

<customers>
  <customer>
    <name>...</name>
    <order>...</order>
    <order>...</order>
  </customer>
  <customer>
    <name>...</name>
    <order>...</order>
    <order>...</order>
  </customer>
</customers>

the following would create an HTML document containing a table with a row for each customer element



Extensible Stylesheet Language (XSL)

Page 17

<xsl:template match="/">
  <HTML>
    <HEAD>
      <TITLE>Customers</TITLE>
    </HEAD>
    <BODY>
      <TABLE>
        <TBODY>
          <xsl:for-each select="customers/customer">
            <TR>
              <TH>
                <xsl:process select="name"/>
              </TH>
              <xsl:for-each select="order">
                <TD>
                  <xsl:process-children/>
                </TD>
              </xsl:for-each>
            </TR>
          </xsl:for-each>
        </TBODY>
      </TABLE>
    </BODY>
  </HTML>
</xsl:template>

As with xsl:process the pattern is a select pattern and so is implicitly anchored to the current node.
The select attribute is required. The pattern must not contain an AttributePattern except as part of an
AttributeQualifier.

2.7.8 Numbering in the Source Tree
The xsl:number element does numbering based on the position of the current node in the source tree.

The xsl:number element can have the following attributes:

l The level attribute specifies what levels of the source tree should be considered; it has the values
single, multi or any. The default is single.

l The count attribute is a match pattern that specifies what elements should be counted at those levels.
The count attribute defaults to the element type name of the current node.

l The from attribute is a match pattern that specifies where counting starts from.

In addition the xsl:number element has the attributes specified in Section 2.7.9: Number to String
Conversion Attributes for number to string conversion.

The xsl:number element first constructs a list of positive integers using the level, count and from
attributes:

l When level="single", it goes up to the nearest ancestor (including the current node as its own
ancestor) that matches the count pattern, and constructs a list of length one containing one plus the
number of preceding siblings of that ancestor that match the count pattern. If there is no such ancestor,
it constructs an empty list. If the from attribute is specified, then the only ancestors that are searched
are those that are descendants of the nearest ancestor that matches the from pattern.

l When level="multi", it constructs a list of all ancestors of the current node in document order
followed by the element itself; it then selects from the list those elements that match the count pattern;
it then maps each element of the list to one plus the number of preceding siblings of that element that
match the count pattern. If the from attribute is specified, then the only ancestors that are searched are
those that are descendants of the nearest ancestor that matches the from pattern.

l When level="any", it constructs a list of length one containing one plus number of elements at any
level of the document that start before this node and that match the count pattern. If the from attribute



Extensible Stylesheet Language (XSL)

Page 18

is specified, then only elements after the first element before this element that match the from pattern
are considered.

The list of numbers is then converted into a string using the attributes specified in Section 2.7.9: Number
to String Conversion Attributes; when used with xsl:number the value of each of these attributes is
interpreted as an attribute value template. After conversion, the resulting string is inserted in the result tree.

The following would number the items in an ordered list:

<xsl:template match="ol/item">
  <fo:block>
    <xsl:number/><xsl:text>. </xsl:text><xsl:process-children/>
  </fo:block>
<xsl:template>

The following two rules would number title elements. This is intended for a document that contains a
sequence of chapters followed by a sequence of appendices, where both chapters and appendices contain
sections which in turn contain subsections. Chapters are numbered 1, 2, 3; appendices are numbered A, B,
C; sections in chapters are numbered 1.1, 1.2, 1.3; sections in appendices are numbered A.1, A.2, A.3.

<xsl:template match="title">
  <fo:block>
     <xsl:number level="multi"
                 count="chapter|section|subsection"
                 format="1.1. "/>
     <xsl:process-children/>
  </fo:block>
</xsl:template>

<xsl:template match="appendix//title">
  <fo:block>
     <xsl:number level="multi"
                 count="appendix|section|subsection"
                 format="A.1. "/>
     <xsl:process-children/>
  </fo:block>
</xsl:template>

The following example numbers notes sequentially within a chapter:

<xsl:template match="note">
  <fo:block>
     <xsl:number level="any" from="chapter" format="(1) "/>
     <xsl:process-children/>
  </fo:block>
</xsl:template>

The following example would number H4 elements in HTML with a three-part label:

<xsl:template match="H4">
 <fo:block>
   <xsl:number level="any" from="H1" count="H2"/>
   <xsl:text>.</xsl:text>
   <xsl:number level="any" from="H2" count="H3"/>
   <xsl:text>.</xsl:text>
   <xsl:number level="any" from="H3" count="H4"/>
   <xsl:text> </xsl:text>
   <xsl:process-children/>
 </fo:block>
</xsl:template>



Extensible Stylesheet Language (XSL)

Page 19

2.7.9 Number to String Conversion Attributes
The following attributes are used to control conversion of a list of numbers into a string. The numbers are
integers greater than 0. The attributes are all optional.

The main attribute is format. The default value for the format attribute is 1. The format attribute is
split into a sequence of tokens where each token is a maximal sequence of alphanumeric characters or a
maximal sequence of non-alphanumeric characters. The alphanumeric tokens (format tokens) specify the
format to be used for each number in the list; the non-alphanumeric tokens (separator tokens) specify the
separators used to join numbers in the list. Alphanumeric means any character that has a Unicode category
of Nd, Nl, No, Lu, Ll, Lt, Lm or Lo. If the first token is a separator token, then the constructed string will
start with that token; if the last token is a separator token, then the constructed string will end with that
token. The n-th format token will be used to format the n-th number in the list. If there are more numbers
than format tokens, then the last format token will be used to format remaining numbers. The format token
specifies the string to be used to represent the number 1. If there are more than n numbers, then the n-th
number will be separated from the following number by the separator token following the n-th format
token; if there is no such separator token, then the last separator token will be used; if there are no separator
tokens, then . will be used.

Format tokens are a superset of the allowed values for the type attribute for the OL element in HTML 4.0
and are interpreted as follows:

l Any token where the last character has a decimal digit value of 1 (as specified in the Unicode 2.0
character property database), and the Unicode value of preceding characters is one less than the Unicode
value of the last character. This generates a decimal representation of the number where each number is
at least as long as the format token. Thus a format token 1 generates the sequence 1 2 ... 10 11
12 ..., and a format token 01 generates the sequence 01 02 ... 09 10 11 12 ... 99 100
101.

l A format token A generates the sequence A B C ... Z AA AB AC....
l A format token a generates the sequence a b c ... z aa ab ac....
l A format token i generates the sequence i ii iii iv v vi vii vii ix x ....
l A format token I generates the sequence I II III IV V VI VII VII IX X ....
l Any other format token indicates a numbering sequence that starts with that token. If an implementation

does not support a numbering system that starts with that token, it must use a format token of 1.

When numbering with an alphabetic sequence, the xml:lang attribute specifies which language's
alphabet is to be used.

NOTE: This can be considered as specifying the language of the value of the format attribute and hence is
consistent with the semantics of xml:lang.

The letter-value attribute disambiguates between numbering schemes that use letters. In many
languages there are two commonly used numbering schemes that use letters. One numbering scheme
assigns numeric values to letters in alphabetic sequence, and the other assigns numeric values to each letter
in some other manner. In English, these would correspond to the numbering sequences specified by the
format tokens a and i. In some languages the first member of each sequence is the same, and so the format
token alone would be ambiguous. A value of alphabetic specifies the alphabetic sequence; a value of
other specifies the other sequence.

The digit-group-sep attribute gives the separator between groups of digits, and the optional n-
digits-per-group specifies the number of digits per group. For example, digit-group-
sep="," and n-digits-per-group="3" would produce numbers of the form 1,000,000.

The sequence-src attribute gives the URI of a text resource that contains a whitespace separated list of
the members of the numbering sequence.

Ed. Note: Specify what should happen when the sequence runs out.

Here are some examples of conversion specifications:

l format="&#x30A2;" specifies Katakana numbering
l format="&#x30A4;" specifies Katakana numbering in the ‘iroha’ order



Extensible Stylesheet Language (XSL)

Page 20

l format="&#x0E51;" specifies numbering with Thai digits
l format="&#x05D0;" letter-value="other" specifies ‘traditional’ Hebrew numbering
l format="&#x10D0;" letter-value="other" specifies Georgian numbering
l format="&#x03B1;" letter-value="other" specifies ‘classical’ Greek numbering
l format="&#x0430;" letter-value="other" specifies Old Slavic numbering

2.7.10 Conditionals within a Template
There are two instructions in XSL which support conditional processing in a template: xsl:if and
xsl:choose. The xsl:if instruction provides simple if-then conditionality; the xsl:choose
instruction supports selection of one choice when there are several possibilities.

2.7.10.1 Conditional Processing with xsl:if

The xsl:if element has a single attribute, test which specifies a select pattern. The content is a
template. If the pattern selects a non-empty list of elements, then the content is instantiated; otherwise
nothing is created. In the following example, the names in a group of names are formatted as a comma
separated list:

<xsl:template match="namelist/name">
  <xsl:process-children/>
  <xsl:if test=".[not-last-of-type()]">, </xsl:if>
</xsl:template>

2.7.10.2 Conditional Processing with xsl:choose

The xsl:choose element selects one among a number of possible alternatives. It consists of a series of
xsl:when elements followed by an optional xsl:otherwise element. Each xsl:when element has a
single attribute, test, which specifies a select pattern; the test is treated as true if the pattern selects a non-
empty list of elements. The content of the xsl:when and xsl:otherwise elements is a template.
When an xsl:choose element is processed, each of the xsl:when elements is tested in turn. The
content of the first, and only the first, xsl:when element whose test is true is instantiated. If no
xsl:when is true, the content of the xsl:otherwise element is instantiated. If no xsl:when element
is true, and no xsl:otherwise element is present, nothing is created.

The following example enumerates items in an ordered list using arabic numerals, letters, or roman
numerals depending on the depth to which the ordered lists are nested.

<xsl:template match="orderedlist/listitem">
  <fo:list-item indent-start='2pi'>
    <fo:list-item-label>
      <xsl:choose>
        <xsl:when test='ancestor(orderedlist/orderedlist)'>
          <xsl:number format="i"/>
        </xsl:when>
        <xsl:when test='ancestor(orderedlist)'>
          <xsl:number format="a"/>
        </xsl:when>
        <xsl:otherwise>
          <xsl:number format="1"/>
        </xsl:otherwise>
      </xsl:choose>
      <xsl:text>. </xsl:text>
    </fo:list-item-label>
    <fo:list-item-body>
      <xsl:process-children/>
    </fo:list-item-body>
  </fo:list-item>
</xsl:template>



Extensible Stylesheet Language (XSL)

Page 21

2.7.11 Computing Generated Text
Within a template, the xsl:value-of element can be used to compute generated text, for example by
extracting text from the source tree or by inserting the value of a string constant. The xsl:value-of
element does this with a string expression that is specified as the value of the expr attribute. String
expressions can also be used inside attribute values of literal result elements by enclosing the string
expression in curly brace ({}).

2.7.11.1 String Expressions

String Expressions

[31] StringExpr ::= Pattern
| ConstantRef
| MacroArgRef

The value of a string expression that is a pattern is the character content of the first node selected by the
pattern. If the first node is an attribute node, the value is the attribute value. If the first node is an element
node, the value is computed by concatenating all characters that are descendants of the element node in the
order in which they occur in the document. The pattern is a select pattern and so is implicitly anchored to
the current node.

Issue (resolve-expr): Do we need a resolve(pattern) string expression that treats the characters as a
relative URI and turns it into an absolute URI using the base URI of the addressed node?

2.7.11.2 Using String Expressions with xsl:value-of

The xsl:value-of element is replaced by the value of the string expression specified by the expr
attribute. The expr attribute is required.

For example, the following creates an HTML paragraph from a person element with first-name and
surname attributes.

<xsl:template match="person">
  <P>
   <xsl:value-of expr="attribute(first-name)"/>
   <xsl:text> </xsl:text>
   <xsl:value-of expr="attribute(surname)"/>
  </P>
</xsl:template>

For example, the following creates an HTML paragraph from a person element with first-name and
surname children elements.

<xsl:template match="person">
  <P>
   <xsl:value-of expr="first-name"/>
   <xsl:text> </xsl:text>
   <xsl:value-of expr="surname"/>
  </P>
</xsl:template>

The following precedes each procedure element with a paragraph containing the security level of the
procedure. It assumes that the security level that applies to a procedure is determined by a security
attribute on an ancestor element of the procedure. It also assumes that if more than one ancestor has a
security attribute then the security level is determined by the closest such ancestor of the procedure.

<xsl:template match="procedure">
  <fo:block>
    <xsl:value-of
expr="ancestor(*[attribute(security)])/attribute(security)"/>
  </fo:block>
  <xsl:process-children/>



Extensible Stylesheet Language (XSL)

Page 22

</xsl:template>

Issue (inherited-attribute): Unless an element counts as one of its own ancestors, using
ancestor(*[attribute(security)])/attribute(security) won't work to get the inherited value
of an attribute. We could either say ancestor always includes the current node; alternatively we could
provide a variant of ancestor that does include the current node; alternatively we could provide a select
pattern of the form inherited-attribute(security).

2.7.11.3 Attribute Value Templates

In an attribute value that is interpreted as an attribute value template, such as an attribute of a literal result
element, string expressions can be used by surrounding the string expression with curly braces ({}). The
attribute value template is instantiated by replacing the string expression together with surrounding curly
braces by the value of the string expression.

The following example creates an IMG result element from a photograph element in the source; the
value of the SRC attribute of the IMG element is computed from the value of the image-dir constant and
the content of the href child of the photograph element; the value of the WIDTH attribute of the IMG
element is computed from the value of the the width attribute of the size child of the photograph
element:

<xsl:define-constant name="image-dir" value="/images"/>

<xsl:template match="photograph">
<IMG SRC="{constant(image-dir)}/{href}" WIDTH="{size/attribute(width)}"/>
</xsl:template>

With this source

<photograph>
  <href>headquarters.jpg</href>
  <size width="300"/>
</photograph>

the result would be

<IMG SRC="/images/headquarters.jpg" WIDTH="300"/>

When an attribute value template is instantiated, a double left or right curly brace outside a string
expression will be replaced by a single curly brace. It is an error if a right curly brace occurs in an attribute
value template outside a string expression without being followed by a second right curly brace; an XSL
processor may signal the error or recover by treating the right curly brace as if it had been doubled. A right
curly brace inside an AttributeValue in a string expression is not recognized as terminating the string
expression.

Curly braces are not recognized recursively inside string expressions. For example:

<a href="#{id({attribute(ref)})/title}">

is not allowed.

2.7.12 String Constants
Global string constants may be defined using a define-constant element. The name attribute
specifies the name of the constant, and the value attribute specified the value.

A stylesheet must not contain more than one definition of a constant with the same name and same
importance. A definition of a constant will not be used if there is another definition of a constant with the
same name and higher importance.

String constants are referenced using a ConstantRef string expression.

String Constant References

[32] ConstantRef ::= 'constant' '(' NCName ')'



Extensible Stylesheet Language (XSL)

Page 23

<xsl:define-constant name="para-font-size" value="12pt"/>

<xsl:template match="para">
 <fo:block font-size="{constant(para-font-size)}">
   <xsl:process-children/>
 </fo:block>
</xsl:template>

Issue (local-constants): Should there be a way to define local constants?

The value attribute is interpreted as an attribute value template. If the value of a constant definition x
references a constant y, then the value for y must be computed before the value of x. It is an error if it is
impossible to do this for all constant definitions because of dependency cycles.

2.7.13 Macros
Issue (macro-name): Should macros be called something else?

Parts of templates can also be factored out of similar rules into macros for reuse. Macros allow authors to
create aggregate result fragments and refer to the composite as if it were a single object. In this example, a
macro is defined for a boxed paragraph with the word ‘Warning!’ preceding the contents. The macro is
referenced from a rule for warning elements.

<xsl:define-macro name="warning-para">
  <fo:box>
    <fo:block>
      <xsl:text>Warning! </xsl:text>
      <xsl:contents/>
    </fo:block>
  </fo:box>
</xsl:define-macro>

<xsl:template match="warning">
  <xsl:invoke macro="warning-para">
    <xsl:process-children/>
  </xsl-invoke>
</xsl:template>

Macros are defined using the define-macro element. The name attribute specifies the name of the
macro being defined. The content of the define-macro element is a template, called the body of the
macro. A macro is invoked using the xsl:invoke element; the content of xsl:invoke is a template.
The name of the macro to be invoked is given by the macro attribute. Invoking a macro first instantiates
the content of xsl:invoke. It then instantiates the body of the invoked macro passing it the result tree
fragment created by the instantiation of the content of xsl:invoke; this fragment can be inserted in the
body of the macro using the xsl:contents element.

Macros allow named arguments to be declared with the xsl:macro-arg element; the name attribute
specifies the argument name, and the optional default attribute specifies the default value for the
argument. Within the body of a macro, macro arguments are referenced using a MacroArgRef string
expression. It is an error to refer to a macro argument that has not been declared. An XSL processor may
signal the error; if it does not signal the error, it must recover by using an empty string. Arguments are
supplied to a macro invocation using the code xsl:arg element; the name attribute specifies the
argument name, and the value attribute specifies the argument value. It is an error to supply an argument
to a macro invocation if the macro did not declare an argument of that name. An XSL processor may signal
the error; if it does not signal the error, it must recover by ignoring the argument. The value attribute of
xsl:arg and the default attribute of xsl:macro-arg are interpreted as attribute value templates;
they can contain string expressions in curly braces as with literal result elements.

Macro Argument References

[33] MacroArgRef ::= 'arg' '(' NCName ')'



Extensible Stylesheet Language (XSL)

Page 24

This example defines a macro for a numbered-block with an argument to control the format of the
number.

<xsl:define-macro name="numbered-block">
  <xsl:macro-arg name="format" default="1. "/>
  <xsl:number format="{arg(format)}"/>
  <fo:block/>
    <xsl:contents/>
  </fo:block>
</xsl:define-macro>

<xsl:template match="appendix/title">
  <xsl:invoke name="numbered-block">
    <xsl:arg name="format" value="A. "/>
    <xsl:process-children/>
  </xsl:invoke>
</xsl:template>

It is an error if a stylesheet contains more than one definition of a macro with the same name and same
importance. An XSL processor may signal the error; if it does not signal the error, if must recover by
choosing from amongst the definitions with highest importance the one that occurs last in the stylesheet.

Issue (macro-arg-syntax): The proposal used the same element for declaring macro arguments and for
invoking them. Should these be separate elements and if so what should they be called?

2.8 Style Rules
This section will describe a facility similar to style rules in the XSL submisson.

Issue (style-rules): How should style rules work?

2.9 Combining Stylesheets
XSL provides two mechanisms to combine stylesheets:

• an import mechanism that allows stylesheets to override each other, and
• an inclusion mechanism that allows stylesheets to be textually combined.

2.9.1 Stylesheet Import
An XSL stylesheet may contain xsl:import elements. All the xsl:import elements must occur at the
beginning of the stylesheet. The xsl:import element has an href attribute whose value is the URI of a
stylesheet to be imported. A relative URI is resolved relative to the base URI of the xsl:import element
(see Section 2.4.2.2: Base URI).

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
  <xsl:import href="article.xsl"/>
  <xsl:import href="bigfont.xsl"/>
  <xsl:define-attribute-set name="note-style">
    <xsl:attribute-set font-posture="italic"/>
  </xsl:define-attribute-set>
</xsl:stylesheet>

Rules and definitions in the importing stylesheet are defined to be more important than rules and
definitions in any imported stylesheets. Also rules and definitions in one imported stylesheet are defined to
be more important than rules and definitions in previous imported stylesheets.

In general a more important rule or definition takes precedence over a less important rule or definition. This
is defined in detail for each kind of rule and definition.

Issue (stylesheet-partition): Should there be an XSL defined element that can be used to divide a
stylesheet into parts, each of which is treated as if it were separately imported for precedence purposes?



Extensible Stylesheet Language (XSL)

Page 25

Issue (import-source): Provide a way for a stylesheet to import a stylesheet that is embedded in the
document.

Issue (import-media): Should we provide media-dependent imports as in CSS?

Ed. Note: Say something about the case where the same stylesheet gets imported twice. This should be
treated the same as importing a stylesheet with the same content but different URIs. What about import
loops?

2.9.2 Stylesheet Inclusion
An XSL stylesheet may include another XSL stylesheet using an xsl:include element. The
xsl:include element has an href attribute whose value is the URI of a stylesheet to be included. A
relative URI is resolved relative to the base URI of the xsl:include element (see Section 2.4.2.2: Base
URI). The xsl:include element can occur as the child of the xsl:stylesheet element at any point
after all xsl:import elements.

The inclusion works at the XML tree level. The resource located by the href attribute value is parsed as
an XML document, and the children of the xsl:stylesheet element in this document replace the
xsl:include element in the including document. Also any xsl:import elements in the included
document are moved up in the including document to after any existing xsl:import elements in the
including document. Unlike with xsl:import, the fact that rules or definitions are included does not
affect the way they are processed.

Ed. Note: What happens when a stylesheet directly or indirectly includes itself?

2.9.3 Embedding Stylesheets
Normally an XSL stylesheet is a complete XML document with the xsl:stylesheet element as the
document element. However an XSL stylesheet may also be embedded in another resource. Two forms of
embedding are possible:

• the XSL stylesheet may be textually embedded in a non-XML resource, or
• the xsl:stylesheet element may occur in an XML document other than as the document element.

In the second case, the possibility arises of documents with inline style, that is documents that specify their
own style. XSL does not define a specific mechanism for this. This is because this can be done by means of
a general purpose mechanism for associating stylesheets with documents provided that:

• the mechanism allows a part of a resource to be specified as the stylesheet, for example by using a URI
with a fragment identifier, and

• the mechanism can itself can be embedded in the document, for example as a processing instruction.

It is not in the scope of XSL to define such a mechanism.

NOTE: This is because the mechanism should be independent of any one stylesheet mechanism.

The xsl:stylesheet element may have an ID attribute that specifies a unique identifier.

NOTE: In order for such an attribute to be used with the id XPointer location term, it must actually be
declared in the DTD as being an ID.

The following example shows how inline style can be accomplished using the xml:stylesheet
processing instruction mechanism for associating a stylesheet with an XML document. The URI uses an
XPointer in a fragment identifier to locate the xsl:stylesheet element.

<?xml version="1.0"?>
<?xml:stylesheet type="text/xsl" href="#id(style1)"?>
<!DOCTYPE doc SYSTEM "doc.dtd">
<doc>
<head>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl" id="style1">
<xsl:import href="doc.xsl"/>
<xsl:template match="id(foo)">
 <fo:block font-weight="bold"><xsl:process-children/></fo:block>
</xsl:template>



Extensible Stylesheet Language (XSL)

Page 26

</xsl:stylesheet>
</head>
<body>
<para id="foo">
...
</para>
</body>
</doc>

NOTE: The type pseudo-attribute in the xml:stylesheet processing instruction identifies the stylesheet
language, not the content type of the resource of which the stylesheet is a part.

2.10 Extensibility
This section will describe an extensibility mechanism for the tree construction process.

Issue (construct-extensibility): Should there be some extensibility mechanism for the tree construction
process? If so, how should it work? Should it be language independent?

3. Formatting Objects
This section describes the formatting vocabulary.

3.1 Introduction
The approach that we have taken in constructing this draft was to evaluate the requirements for print and
online documents and established a target set of capabilities. This set of capabilities reflect the long-term
goals of XSL

In this draft we concentrated on documenting a subset of the formatting capability that addressed basic WP-
level pagination. We expect to cover more sophisticated pagination and support for layout-driven
documents in later drafts.

3.2 Notations Used in this Section
The following typographic styles are used to identify different terms in this document:

property-name
The name of a property or attribute. Always all lowercase and hyphenated between words.

property-value
The value assigned to a property. Always all lowercase and hyphenated between words.
This has varying forms dependent on the value type:

a ___-specifier
See defined types for the definitions of character-specifier, color-specifier, length-specifier,
name-specifier, writing-mode-specifier.

keyword
The name of a value for enumerated types.

0.0pt
A measure (length-specifier) is always qualified with units.

0.0
A numeric value (integer and fraction).



Extensible Stylesheet Language (XSL)

Page 27

1
An integer value.

()|[]{}...
Delimiters & operators, code fragments.

( choice-1 | choice-2 | ... )
A choice-list. Choose one of the values or options listed. These may be mixed (such as a choice
between none and a length-specifier.

formatting-object-name
The name of a formatting object. Always all lowercase and hyphenated between words.
Formatting objects may be classified further as:

layout
Describes a master or layout.

flow
Classifies/groups content objects. Assigns formatting behaviors and properties.

lists
Flow objects that provide structure and behavior appropriate for ordered and unordered lists.

adornment
Flow objects that provide highlighting/borders for their children.

online
Objects that support interaction.

math
Components for the presentation of equations.

table
Parts of a table.

Non-core
Indicates that this object or property is not required for all XSL-compatible formatters. A fallback
action will be defined if the property/object is not fully supported by an implementation.

defined-term
Terms found in the glossary in Section 3.23: Defined Terms.

3.3 Formatting Objects and Their Properties
The formatting objects and their properties are described in the following sections. This section outlines the
plan for current and future drafts of this document.

NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

Objects marked as non-core are not required to be implemented by all implementors of XSL.

The following formatting objects are defined in this draft. This list and the object definitions are subject to
change in future drafts.

l Layout Formatting Objects
l page-sequence



Extensible Stylesheet Language (XSL)

Page 28

Provides the mechanism to define master sequences and to associate content with those masters.

Ed. Note: In future drafts, this object will be split into a page-sequence object and a flow-map object.
This is not necessary for this draft because simple-page-master does not allow for flexible mapping.

l simple-page-master
This object describes the general layout or layout sequencing for web pages (both print and online).

l Content Flow Objects
l queue

Gathers content to be placed in the page sequence.
l sequence

Groups content and allows the assignment of shared inherited properties.
l list

Groups all items in a list.
l  list-item

Groups the list-item-label and list-item-body for each item in the list.
l list-item-label
Holds the number or label of a list item.
l list-item-body
Holds the main content of a list item. Allows for proper formatting of multi-paragraph list items.

l block
Used to represent paragraphs, titles, captions, etc. Allows formatting of text and graphics into
textlines.

l character
Atomic unit to the formatter.
Used when one needs to explicitly override a specific character or array of characters with a specific
glyph for presentation.

Ed. Note: Open issues: glyph specification & override, non-Unicode glyph selection, expert-set
variants, ligatures.

l rule-graphic
Rule-graphics are used to draw a graphic-line that is used to divide space on the page.

l graphic
Holds an image or vector graphic.
Placement in XSL may be inline or block-level.
Content of the graphic may be instream or external (linked).

Ed. Note: Issue: Do we need to split this into 2 objects? Difference between
unprocessible(unstylable) graphics (EPSF,GIF,TIFF...) and ones that may be parsed and processed
(W3C-SVG?).

l score
Highlights text. Used to produce underlines, strike-through, overbars, etc.

l Boxes
Used to set backgrounds and borders.
l  inline-box

Highlights text or graphics.
Used to produce borders and backgrounds.
Controls spacing surrounding the content.

l  block-level-box
Highlights text or graphics.
Used to produce borders and backgrounds.



Extensible Stylesheet Language (XSL)

Page 29

Controls spacing surrounding the content.
l Building Blocks

Building-blocks are directives to the formatter to construct formatter-generated text object at this
location in the content flow.
l page-number

Used to allow the formatter to produce page-numbers.
l Online Flow Objects
l link

Web browser link.
l link-end-locator

Target (destination) for a link.

3.4 Formatting Objects to be Defined in Subsequent Drafts
The following list identifies formatting functionality that we know to be missing from the current draft.
Coverage of these areas will be added in the future. (Many of these areas require coordination with other
W3C WGs.)

l Layout objects that deal with multi-column and more sophisticated page layouts.
l Content objects to support layout-driven formatting, side-by-side and floating objects, and extracted

content (index, toc, endnotes, etc.)
l Additional international objects to handle mixed scripts, rubi, warichu, kumisuji and similar locale-

specialized formatting.
l Additional building blocks to construct formatter-generated text, including auto-leaders, cross-

references and other citations, layout-derived numbering, etc.
l Additional online objects
l Tables
l Math
l Others to be determined for online interaction and behavior

3.5 Page-sequence Layout Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

3.5.1 Purpose
This object describes the general layout or layout sequencing for web page (both print and online).

A page-sequence holds:

l a number of child simple-page-masters that define the layouts to be used for this sequence.
l a number of child queues which hold the content to be placed in this sequence.

Ed. Note: To support layout-driven documents in future drafts, the queues may not be held by the "page-
sequence" and may be moved to a separate mapping object.

NOTE: A document can contain multiple page-sequences. For example, each chapter of a document
could be a separate page-sequence; this would allow the chapter title within a header or footer.

3.5.2 Formatting Object Summary
<fo:page-sequence

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none



Extensible Stylesheet Language (XSL)

Page 30

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:page-sequence>

3.5.3 Formatting Object's Formal Specification
A page-sequence holds:

l one or more child simple-page-masters that define the layouts to be used for this sequence
l one or more child queues which hold the content to be placed in this sequence.

3.5.4 To Resolve
l Media selection:

We have defined a master for scrolling and separate masters for paged presentations. In James' note on
"Linking Stylesheets to XML Documents" he describes a simple mechanism to support media-driven
selection of different stylesheets. We do not currently have a mechanism for supporting media switches
within a stylesheet.
Media selection interacts with sequence specification.

l Sequences:

Ed. Note: A method to define the sequencing of page masters will be provided in a future draft.

3.6 Simple-page-master Layout Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

3.6.1 Purpose
A simple-page-master formatting object defines the layout of a page area. Masters may be repeated
in accordance with the page-sequence specification.

The simple-page-master defines 5 areas for presentation within the page/window design (formatted
area of the page). These are the header, body, footer, start-side, and end-side. It also provides a title, which
has no properties defined in the simple-page-master object, but may for example be presented in a
browser's title bar.

NOTE: The following simple-page-masters are the only ones supported in this draft of the standard:

first
A simple-page-master with master-name=first.
The master to be used for the first page in the sequence.

odd
A simple-page-master with master-name=odd.
The master to be used for odd-phased pages after the first page in the sequence.

even
A simple-page-master with master-name=even.
The master to be used for even-phased pages after the first page in the sequence.
For single-sided printing and paged online presentation, this master can be dropped.

scrolling
A simple-page-master with master-name=scrolling.
The master to be used for scrolling (non-paged) online presentation.



Extensible Stylesheet Language (XSL)

Page 31

3.6.2 Formatting Object Summary
<fo:simple-page-master

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

master-name (DSSSL:-none-, CSS:-none-) = name-specifier
Required

background-attachment = ( scroll | fixed )
Inherited, Initial = scroll

background-color = a color-specifier or transparent
Inherited, Initial = transparent

background-image = a URI or none
Inherited, Initial = none

background-position-x = ( a length-specifier  | left | center | right )
Value(s): {0..max-length}
Inherited, Initial = left

background-position-y = ( a length-specifier  | top | middle | bottom )
Value(s): {0..max-length}
Inherited, Initial = top

background-repeat = ( no-repeat | repeat | repeat-x | repeat-y )
Inherited, Initial = repeat

page-height (DSSSL:-same-, CSS:height) = length-specifier
Value(s): {auto | 0..max-length}
Inherited, Initial = auto

page-width (DSSSL:-same-, CSS:width) = length-specifier
Value(s): {auto | 0..max-length}
Inherited, Initial = auto

page-writing-mode (DSSSL:-none-, CSS:-none-) = writing-mode-specifier
Inherited, Initial = lr-tb

margin-bottom (DSSSL:bottom-margin, CSS:margin-bottom) = length-specifier
Value(s): {0..page-height}
Inherited, Initial = 36.0pt

margin-left (DSSSL:left-margin, margin-left) = length-specifier
Value(s): {0..page-width}
Inherited, Initial = 36.0pt

margin-right (DSSSL:right-margin, CSS:margin-right) = length-specifier
Value(s): {0..page-width}
Inherited, Initial = 36.0pt

margin-top (DSSSL:top-margin, CSS:margin-top) = length-specifier
Value(s): {0..page-height}
Inherited, Initial = 36.0pt

body-overflow (DSSSL:-none-, CSS:overflow) = ( visible | hidden | scroll |
auto )

Inherited, Initial = auto

body-writing-mode (DSSSL:-none-, CSS:-none) = a writing-mode-specifier | use-
page-writing-mode

Inherited, Initial = use-page-writing-mode

end-side-overflow (DSSSL:-none-, CSS:overflow) = ( visible | hidden | scroll
| auto )



Extensible Stylesheet Language (XSL)

Page 32

Inherited, Initial = auto

end-side-separation (DSSSL:-none-, CSS:-none-) = length-specifier
Value(s): {0.. available-size}
Inherited, Initial = 0.0pt

end-side-size (DSSSL:-none-, CSS:-none-) = length-specifier
Value(s): {0..page-height}
Inherited, Initial = 0.0pt

end-side-writing-mode (DSSSL:-none-, CSS:-none-) = a writing-mode-specifier |
use-page-writing-mode

Inherited, Initial = use-page-writing-mode

footer-overflow (DSSSL:-none-, CSS:overflow) = ( visible | hidden | scroll |
auto )

Inherited, Initial = auto

footer-precedence (DSSSL:-none-, CSS:-none) = ( true | false )
Inherited, Initial = true

footer-separation (DSSSL:footer-margin, CSS:-none-) = length-specifier
Value(s): {0.. available-size}
Inherited, Initial = 18.0pt

footer-size (DSSSL:-none-, CSS:-none-) = length-specifier
Value(s): {0..page-height}
Inherited, Initial = 36.0pt

footer-writing-mode (DSSSL:-none-, CSS:-none) = a writing-mode-specifier | use-
page-writing-mode

Inherited, Initial = use-page-writing-mode

header-overflow (DSSSL:-none-, CSS:overflow) = ( visible | hidden | scroll |
auto )

Inherited, Initial = auto

header-precedence (DSSSL:-none-, CSS:-none) = ( true | false )
Inherited, Initial = true

header-separation (DSSSL:header-margin, CSS:-none-) = length-specifier
Value(s): {0.. available-size}
Inherited, Initial = 18.0pt

header-size (DSSSL:-none-, CSS:-none-) = length-specifier
Value(s): {0..page-height}
Inherited, Initial = 36.0pt

header-writing-mode (DSSSL:-none-, CSS:-none) = a writing-mode-specifier | use-
page-writing-mode

Inherited, Initial = use-page-writing-mode

start-side-separation (DSSSL:-none-, CSS:-none-) = length-specifier
Value(s): {0.. available-size}
Inherited, Initial = 0.0pt

start-side-size (DSSSL:-none-, CSS:-none-) = length-specifier
Value(s): {0..page-height}
Inherited, Initial = 0.0pt

start-side-overflow (DSSSL:-none-, CSS:overflow) = ( visible | hidden |
scroll | auto )

Inherited, Initial = auto

start-side-writing-mode (DSSSL:-none-, CSS:-none) = a writing-mode-specifier |
use-page-writing-mode



Extensible Stylesheet Language (XSL)

Page 33

Inherited, Initial = use-page-writing-mode
NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:simple-page-master>

3.6.3 Formatting Object's Formal Specification
A simple-page-master is formatted to produce a sequence of page areas.

NOTE: The simple-page-master is intended for systems that wish to provide a very simple page layout
facility. Future versions of this specification will support more complex page layouts constructed using the
page-master and column-set formatting objects.

A simple-page-master shall be allowed only within the page-sequence.

Ed. Note: This restriction applies only to the July 1998 Draft.

The simple-page-master supports only the sequential-tiled-page-model, with an ordered set of up to
5 of the following areas: header, body, footer, end-side, and start-side. The user may specify the size
(height or width) of the header, footer, end-side, and start-side areas and the separation distances between
the adjacent areas. The height of the body area is the page's size (page-height for horizontal
writing-modes, and page-width for vertical writing-modes) minus the sum of the header &
footer heights, the separations between the areas, and the page's margin in the block-progression-direction.

The stacking direction of the areas, the page and area heights and separation distances are in the direction
specified by the writing-mode's block-progression-direction.

The width of each area is the full available distance in the inline-progression-direction after subtracting the
page's margin (and may not be negative).

A simple-page-master may use up to 6 associated queues. These queues are not direct children of
the page-sequence (but are associated with it by name or via an explicit mapping table).

title
A queue with queue-name=title.
For online presentations only, this object holds a single title textline to be presented in the window
title bar when this simple-page-master is being viewed.
If provided for print environments, this object is ignored.
If there is too much text for the title area, the browser may truncate the presentation.
The content of a title is repeated on each page by replaying the title queue after the body area is
processed. (This allows for proper presentation of "dictionary"-style running headers/footers.)

header
A queue with queue-name=header.
Holds the content to be placed in the header area(s).
For print and online environments, this object holds a set of information that is presented in a
separate area at the top of the page or window.

Ed. Note: As defined by writing-mode, we need a term for relative directions that is invariant across
inline and block-level objects.

If there is too much text for the header area, the presentation may be truncated/clipped.
The content of a header is repeated on each page by replaying the header queue after the body area is
processed. (This allows for proper presentation of "dictionary"-style running headers/footers.)

footer
A queue with queue-name=footer.
Holds the content to be placed in the footer area(s).
For print and online environments, this holds a set of information that is presented in a separate area
at the bottom of the page or window.



Extensible Stylesheet Language (XSL)

Page 34

If there is too much text for the footer area, the presentation may be truncated/clipped.
The content of a footer is repeated on each page by replaying the footer queue after the body area is
processed. (This allows for proper presentation of "dictionary"-style running headers/footers.)

start-side
A queue with queue-name=start-side.
Holds the content to be placed in the start-side area(s).
For print and online environments, this object holds a set of information that is presented in a
separate area at the starting edge (as specified by the page-writing-mode property) of the page
or window.
If there is too much text for the start-side area, the presentation may be truncated/clipped.
The content of a start-side area is repeated on each page by replaying the start-side queue after the
body area is processed. (This allows for proper presentation of "dictionary"-style running
headers/footers.)

end-side
A queue with queue-name=end-side.
Holds the content to be placed in the end-side area(s).
For print and online environments, this holds a set of information that is presented in a separate area
at the ending edge of the page or window.
If there is too much text for the end-side area, the presentation may be truncated/clipped.
The content of a end-side area is repeated on each page by replaying the end-side queue after the
body area is processed. (This allows for proper presentation of "dictionary"-style running
headers/footers.)

body
A queue with queue-name=body.
Holds the content to be placed in the body area(s).
For print and online environments, this holds the information that is presented in the main area in the
middle of the page or window.
In a print environment, if there is too much text for the body area the formatter should create
additional pages until all the content is presented.
In a online environment, if there is too much text for the body area the formatter can create additional
pages/frames/panels until all the content is presented or it can present the content in a scrolling view.

3.6.4 To Resolve
Should defaults be in points? CSS has made the recommendation that pixels are preferred due to issues
with browsers & video-drivers. The print industry wants a "real" measurements system, such as points or
mm. Points are not nationally biased and the "computer point" has been widely accepted.

How to handle left, right, and centered header & footer areas in the simple-page-master.

3.7 Queue Flow Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

3.7.1 Purpose
A queue is used to gather content flow objects to be assigned to (placed into) a given area or set of
chained-areas.



Extensible Stylesheet Language (XSL)

Page 35

3.7.2 Formatting Object Summary
<fo:queue

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

queue-name (DSSSL:-none-, CSS:-none-) = name-specifier
Required

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:queue>

3.7.3 Formatting Object's Formal Specification
A queue shall not be allowed within the content of any formatting object except a page-sequence.

Ed. Note: This restriction applies only to the July 1998 Draft.

The queue holds a sequence or tree of formatting-objects that is to be presented in a like-named area of
the layout defined by the simple-page-master.

The following properties apply to a queue:

l queue-name specifies the area name in the parent object into which this object's content will be
placed.
For the simple-page-master, the queue-name may be: title, header, body, footer,
start-side, or end-side. If two or more queues have the same queue-name, the like-named
queues will be merged into a single queue.

3.8 Sequence Flow Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

3.8.1 Purpose
A sequence is used to group flow objects and to assign inherited properties to be shared across them.
(Note the difference between a queue and a sequence.)

3.8.2 Formatting Object Summary
<fo:sequence

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:sequence>

3.8.3 Formatting Object's Formal Specification
A sequence formatting object is formatted to produce the series of the areas produced by each of its
children. This object holds its content as children. Its children may be all inline, all block-level, or a
mixture of inline & block-level, if so allowed within the sequence's parent.

NOTE: A sequence is useful for specifying inherited properties. For example, a sequence with a
specification of a font-style property may be constructed for an italic-emphasis phrase element in a
block.



Extensible Stylesheet Language (XSL)

Page 36

A sequence shall accept a formatting object if and only if its parent would accept the formatting objects
in that sequence.

A sequence has no applicable properties.

3.9 Block Flow Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

3.9.1 Purpose
A block formatting object allows the formatter to create a block-level area that contains textlines.

This object is commonly used for formatting paragraphs, titles, headlines, figure and table captions, etc.

It normally specifies a rectangular area that occupies the width of the containing area and a height that is
determined by the amount of text that the block contains.

A block may specify separation between it and a preceding block-level object or subsequent block-level
object as well as unique indents on the start of the first textline of the block and end of the last textline of
the block.

3.9.2 Formatting Object Summary
<fo:block

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

language (DSSSL:language & D:country, CSS:-none-) = ( none | use-document |
an xml:lang specifier  )

Inherited, Initial = use-document
NOTE: The value use-document specifies one should use the language/country/script specified in the
source document's xml:lang specifier. -- An explicit value has the same form as the xml:lang specifier and
overrides the language derived through xml:lang. -- Choosing "none" disables hyphenation and forces a
simple line-breaking strategy. Used for program text and poetry.

background-attachment = ( scroll | fixed )
Inherited, Initial = scroll

background-color = a color-specifier or transparent
Inherited, Initial = transparent

background-image = a URI or none
Inherited, Initial = none

background-position-x = ( a length-specifier  | left | center | right )
Value(s): {0..max-length}
Inherited, Initial = left

background-position-y = ( a length-specifier  | top | middle | bottom )
Value(s): {0..max-length}
Inherited, Initial = top

background-repeat = ( no-repeat | repeat | repeat-x | repeat-y )
Inherited, Initial = repeat

font-family (DSSSL:font-family-name, CSS:-same-) = font-name or font-name-list
Inherited, Initial = any

font-style (DSSSL:font-posture, CSS:-same-) = ( normal | italic | oblique | -
TBD- (check CSS) )

Inherited, Initial = normal



Extensible Stylesheet Language (XSL)

Page 37

font-stretch (DSSSL:font-proportionate-width, CSS:-same-) = ( ultra-
condensed | extra-condensed | condensed | semi-condensed | normal | semi-
expanded | expanded | extra-expanded | ultra-expanded )

Inherited, Initial = normal

font-size (DSSSL:-same-, CSS:-same-) = length-specifier
Value(s): {1.0pt...1024.0pt}
Inherited, Initial = 10.0pt (DSSSL)

font-size-adjust (DSSSL:-none-, CSS:-same-) = length-specifier
Value(s): {TBD...TBD}
Inherited, Initial = TBD

font-variant (DSSSL:-none-, CSS:-same-) = ( normal | small-caps )
Inherited, Initial = normal

font-weight (DSSSL:-same-, CSS:-same-) = ( any | not-applicable | ultra-
light | extra-light | light | semi-light | book (added) | normal (added) | medium
| semi-bold | bold | extra-bold | ultra-bold | ... (See CSS & PANOSE)  )

Inherited, Initial = normal

glyph-alignment-mode (DSSSL:-same-) = ( base | center | top | bottom | font )
Inherited, Initial = font

NOTE: Used to set the textline's placement-path position relative to the origin of the block-level area.
(See the extended description of "Textline Spacing", following this section.) Used to set alignment-line or
placement-path. CSS supports only font. Non-core

indent-end (DSSSL:end-indent, CSS:-object-margin-) = length-specifier
Value(s): {0.0pt...available-width}
Inherited, Initial = 0.0pt

indent-start (DSSSL:start-indent, CSS:-object-margin-) = length-specifier
Value(s): {0.0pt...available-width}
Inherited, Initial = 0.0pt

indent-first-line-start (DSSSL:first-line-start-indent, CSS:text-
indent) = length-specifier

Value(s): {-indent-start...available-width}
Optional (Non-inherited), Default = 0.0pt

NOTE: (CSS/DSSSL differ) Confirm that this is ADDED to the indent-start, not a replacement.

break-after (DSSSL:-same-) = ( none | page | page-odd | page-even )
Optional (Non-inherited), Default = none

break-before (DSSSL:-same-) = ( none | page | page-odd | page-even )
Optional (Non-inherited), Default = none

keep (DSSSL:-same-) = ( auto | no-break | page )
Optional (Non-inherited), Default = auto

NOTE: A value of no-break specifies the object may not be broken. A value of auto specifies that it
may be broken in accordance with the widow/orphan specifier. All other values indicate that this object
shall be together as a single unit if it would break over the boundary indicated by the property value.

orphans (DSSSL:orphan-count, CSS:orphans) = integer
Value(s): {0...999}
Inherited, Initial = 2

widows (DSSSL:widow-count, CSS:widows) = integer
Value(s): {0...999}
Inherited, Initial = 2

keep-with-next (DSSSL:-same-) = ( true | false )
Optional (Non-inherited), Default = false



Extensible Stylesheet Language (XSL)

Page 38

keep-with-previous (DSSSL:-same-) = ( true | false )
Optional (Non-inherited), Default = false

block-line-breaking (DSSSL:lines) = ( wrap | asis | as-is-wrap | asis-truncate
| none )

Inherited, Initial = wrap

block-asis-truncate-indicator (DSSSL:asis-truncate-char) = ( none | a
character )

Inherited, Initial = none
NOTE: Non-core

block-asis-wrap-indicator (DSSSL:asis-wrap-char) = ( none | a character )
Inherited, Initial = none

NOTE: Non-core

block-asis-wrap-indent (DSSSL:asis-wrap-indent) = length-specifier
Value(s): {-indent-start...-TBD-}
Inherited, Initial = 0.0pt

NOTE: Non-core

hyphenation-keep (DSSSL:-same-) = ( none | spread | page | column )
Inherited, Initial = none

NOTE: Non-core

hyphenation-ladder-count (DSSSL:-same-) = integer
Value(s): {1...999}
Inherited, Initial = 2

NOTE: Non-core

text-align (DSSSL:quadding, CSS:text-align) = ( start | end | left | right |
spread-inside | spread-outside | page-inside (Defer)  | page-outside (Defer)  |
center | justify | justify-force )

Inherited, Initial = start

text-align-last (DSSSL:last-line-quadding, CSS:-none-) = ( auto | start |
end | left | right | spread-inside | spread-outside | page-inside (Defer)  | page-
outside (Defer) | center | justify )

Inherited, Initial = start
NOTE: Non-core

linespacing-strategy (DSSSL: #f on min-leading) = ( fixed | auto )
Inherited, Initial = auto

linespacing (DSSSL:line-spacing) = length-specifier
Value(s): {0.0pt...-TBD-}
Inherited, Initial = 12.0pt

space-after-maximum (DSSSL:space-after) = length-specifier
Value(s): {--TBD-...-TBD-}
Optional (Non-inherited), Default = 0.0pt

NOTE: Non-core

space-after-minimum (DSSSL:space-after) = length-specifier
Value(s): {--TBD-...-TBD-}
Optional (Non-inherited), Default = 0.0pt

NOTE: Non-core

space-after-optimum (DSSSL:space-after) = length-specifier
Value(s): {--TBD-...-TBD-}
Optional (Non-inherited), Default = 0.0pt



Extensible Stylesheet Language (XSL)

Page 39

space-before-maximum (DSSSL:space-before) = length-specifier
Value(s): {--TBD-...-TBD-}
Optional (Non-inherited), Default = 0.0pt

NOTE: Non-core

space-before-minimum (DSSSL:space-before) = length-specifier
Value(s): {--TBD-...-TBD-}
Optional (Non-inherited), Default = 0.0pt

NOTE: Non-core

space-before-optimum (DSSSL:space-before) = length-specifier
Value(s): {--TBD-...-TBD-}
Optional (Non-inherited), Default = 0.0pt

writing-mode (DSSSL:-same-) = writing-mode-specifier
Inherited, Initial = lr-tb

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:block>

3.9.3 Formatting Object's Formal Specification
A block is a block-level formatting object.

A block directly contains its children, which may be a mixture of inline or block-level formatting
objects.

l Inline child formatting objects within a block are formatted to produce one or more textline areas.
Multiple inline objects may be placed successively into a single textline. Inline objects may (or
may not) be split across two or more textlines if necessary (and if allowed to split) if the inline does
not fit in the remaining space in the textline.

l Block-level child formatting objects within a block implicitly specify line-breaks before and after
the block-level object. Each child block-level produces a single area which is treated by the
formatter of the block as if it were a textline area. These areas shall be added to the resulting sequence
of areas within the block.

NOTE: This specifies that users may nest a block inside another block. When this happens the outer
block does not end before the nested block, it is simply suspended. The normal mid-block quadding
and indents apply to the last textline prior to the nested block's area. Similarly, the outer block
resumes after the nested block without a new first-textline indent.

NOTE: Typically, a break implies that a new textline is to be started.

The shift-direction for inline areas in the block is the reverse of the line-progression-direction of the
block.

3.9.4 To Resolve
The following properties apply to the block:

l country (Combine with language), language (DSSSL:language & D:country),
& script (DSSSL:-none-)
Replaced with xml:lang. Used for justification and hyphenation (Can extract from XML if the XML
identifier is comprised of 2 or more tokens, each of which are 2 chars RFC-1766 (1995)).

l Need to evaluate RFC-1766 issues

3.10 Character Flow Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.



Extensible Stylesheet Language (XSL)

Page 40

3.10.1 Purpose
The character formatting object is used when one needs to explicitly override a specific character or
array of characters with a specific glyph.

When the result tree is interpreted as a tree of formatting objects, a character in the result tree is treated as if
it were an empty element of type fo:character with a char attribute equal to the character.

3.10.2 Formatting Object Summary
<fo:character

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

background-attachment = ( scroll | fixed )
Inherited, Initial = scroll

background-color = a color-specifier or transparent
Inherited, Initial = transparent

background-image = a URI or none
Inherited, Initial = none

background-position-x = ( a length-specifier  | left | center | right )
Value(s): {0..max-length}
Inherited, Initial = left

background-position-y = ( a length-specifier  | top | middle | bottom )
Value(s): {0..max-length}
Inherited, Initial = top

background-repeat = ( no-repeat | repeat | repeat-x | repeat-y )
Inherited, Initial = repeat

text-shadow (DSSSL:-none-, CSS:-same-) = see CSS
Value(s): {-TBD-...-TBD-}
Inherited, Initial = -TBD-

text-transform (DSSSL:-none-, CSS:-same-) = ( as-entered | lower | upper |
title | (see CSS) )

Inherited, Initial = as-entered

/>

3.10.3 Formatting Object's Formal Specification
A character formatting object is atomic.

A character can only be inline.

NOTE: A character string can be implemented as a sequence of characters.

A character is formatted to produce a single inline area. This may be merged with adjacent inline
areas if the ligature property is true. The position-point of the inline area is the position-
point of the glyph specified in the font resource for the specified writing-mode. The escapement
direction is the direction between the position-point and escapement-points as specified in the font resource
for the specified writing-mode. The size of the area in the inline-progression-direction is the distance
between the position and escapement-points. [[Ed-Note: How does this deal with backgrounds when test is
letterspaced or kerned?]] The size of the area before and after the placement-path in the shift-direction is
the smallest that will enclose the extent of the glyph in those directions as specified in the font resource for
the specified writing-mode. If the nominal alignment mode of the font resource for the character's
writing-mode is not the same as the block's alignment mode, then the glyph area is automatically
adjusted as specified by the alignment-mode in the font resource for the specified writing-mode.



Extensible Stylesheet Language (XSL)

Page 41

3.10.4 To Resolve
The following properties apply to a character:

l char
l char-kern
l char-kern-mode
l char-ligature
l color (DSSSL:-same-)
l font-specification (to be supplied in future Drafts)
l glyph-alignment-mode (DSSSL:-same-, CSS:-none-) Non-core
l hyphenate
l hyphenation-char (DSSSL:-same-, CSS:-none-)
l inhibit-wrap
l language (DSSSL:language & D:country)
l position-point-shift
l letterspace-after-maximum (DSSSL:inline-space-after, CSS:letter-
spacing)

l letterspace-after-minimum (DSSSL:inline-space-after, CSS:letter-
spacing)

l letterspace-after-optimum (DSSSL:inline-space-after, CSS:letter-
spacing)

l wordspacing-maximum (DSSSL:inline-space-space, CSS:word-spacing)
l wordspacing-minimum (DSSSL:inline-space-space, CSS:word-spacing)
l wordspacing-optimum (DSSSL:inline-space-space, CSS:word-spacing)
l text-shadow (DSSSL:-none-, CSS:-same-)
l text-transform (DSSSL:-none-, CSS:-same-) Add from CSS: capitalize |

uppercase | lowercase | none
l writing-mode (DSSSL:-same-)

3.11 List Flow Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

Ed. Note: Lists are not completely specified in this draft. The formatting of lists involves the positioning and
formatting of the list-item-label before and (usually) adjacent to the first line of text in the list-item-body. CSS
and DSSSL use different models to describe this formatting behavior. They also support differing formatting
when the label becomes too wide to fit in the allowed space. We plan to resolve these issues in a future
draft.

3.11.1 Purpose
A list is used to group all the items in a list.

A list may be nested within another list, and it is a block-level object.

Lists are useful for controlling the separation between preceding and following formatting objects
through the space-before-minimum and space-after-minimum properties . They can be also
used to specify the indent and margins for nested lists, and for controlling the break preferences.
They also provide a mechanism for specifying and bracketing autonumbering sequences.

3.11.2 Formatting Object Summary
<fo:list



Extensible Stylesheet Language (XSL)

Page 42

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

background-attachment = ( scroll | fixed )
Inherited, Initial = scroll

background-color = a color-specifier or transparent
Inherited, Initial = transparent

background-image = a URI or none
Inherited, Initial = none

background-position-x = ( a length-specifier  | left | center | right )
Value(s): {0..max-length}
Inherited, Initial = left

background-position-y = ( a length-specifier  | top | middle | bottom )
Value(s): {0..max-length}
Inherited, Initial = top

background-repeat = ( no-repeat | repeat | repeat-x | repeat-y )
Inherited, Initial = repeat

break-before = ( none | page | page-odd | page-even | Optional (Non-inherited), Default =
none

NOTE: Complex mapping to CSS. Specifies whether a page, column, etc., should start before the list.

break-after = ( none | page | page-odd | page-even | Optional (Non-inherited), Default =
none

NOTE: Complex mapping to CSS. Specifies whether a page, column, etc., should start after the list.

indent-start = length-specifier
Value(s): {0.0pt...available-width}
Inherited, Initial = 0.0pt

NOTE: Specifies the initial point of indentation for all members of the list.

indent-end = length-specifier
Value(s): {0.0pt...available-width}
Inherited, Initial = 0.0pt

NOTE: Specifies the final point of indentation for all members of the list. In a left to right writing
direction languages, this is normally called right-indent.

space-before-maximum = length-specifier
Value(s): {0.0pt...available-length}
Inherited, Initial = 0.0pt

NOTE: Specifies the amount of space to be inserted before the list in the block-progression-direction.
Non-core

space-before-minimum = length-specifier
Value(s): {0.0pt...available-length}
Inherited, Initial = 0.0pt

NOTE: Specifies the amount of space to be inserted before the list in the block-progression-direction.
Non-core

space-before-optimum = length-specifier
Value(s): {0.0pt...available-length}
Inherited, Initial = 0.0pt

NOTE: Specifies the amount of space to be inserted before the list in the block-progression-direction.

space-after-maximum = length-specifier
Value(s): {0.0pt...available-length}
Inherited, Initial = 0.0pt



Extensible Stylesheet Language (XSL)

Page 43

NOTE: Specifies the amount of space to be inserted after the list in the block-progression-direction.
Non-core

space-after-minimum = length-specifier
Value(s): {0.0pt...available-length}
Inherited, Initial = 0.0pt

NOTE: Specifies the amount of space to be inserted after the list in the block-progression-direction.
Non-core

space-after-optimum = length-specifier
Value(s): {0.0pt...available-length}
Inherited, Initial = 0.0pt

NOTE: Specifies the amount of space to be inserted after the list in the block-progression-direction.

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:list>

3.11.3 Formatting Object's Formal Specification
A list is a block-level flow object that contains one or more list-item objects.

 Although a list can be nested inside another list, it cannot be a direct child; rather, it can be the child of a
list's list-item-body.

3.12 List-Item Flow Object

3.12.1 Purpose
A list-item flow object contains the label and the body of each item; it may be used for overriding and
modifying some of the list's properties on a case by case basis.

3.12.2 Formatting Object Summary
<fo:list-item

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

background-attachment = ( scroll | fixed )
Inherited, Initial = scroll

background-color = a color-specifier or transparent
Inherited, Initial = transparent

background-image = a URI or none
Inherited, Initial = none

background-position-x = ( a length-specifier  | left | center | right )
Value(s): {0..max-length}
Inherited, Initial = left

background-position-y = ( a length-specifier  | top | middle | bottom )
Value(s): {0..max-length}
Inherited, Initial = top

background-repeat = ( no-repeat | repeat | repeat-x | repeat-y )
Inherited, Initial = repeat

indent-start = length-specifier
Value(s): {0.0pt...available-width}
Inherited, Initial = 0.0pt



Extensible Stylesheet Language (XSL)

Page 44

NOTE: Specifies the initial point of indentation for the whole list-item Overrides the value set in the
list.

indent-end = length-specifier
Value(s): {0.0pt...available-width}
Inherited, Initial = 0.0pt

NOTE: Specifies the final point of indentation for the whole list-item Overrides the value set for the
list.

item-space-before-maximum = length-specifier
Value(s): {0.0pt...available-length}
Inherited, Initial = 0.0pt

NOTE: Specifies the amount of space to be inserted before each list item in the direction of the
block-progression-direction. Usually specified at the list level. Note: This is a block-level space. Non-
core

item-space-before-minimum = length-specifier
Value(s): {0.0pt...available-length}
Inherited, Initial = 0.0pt

NOTE: Specifies the amount of space to be inserted before each list item in the direction of the
block-progression-direction. Usually specified at the list level. Note: This is a block-level space. Non-
core

item-space-before-optimum = length-specifier
Value(s): {0.0pt...available-length}
Inherited, Initial = 0.0pt

NOTE: Specifies the amount of space to be inserted before each list item in the direction of the
block-progression-direction. Usually specified at the list level. Note: This is a block-level space.

item-space-after-maximum = length-specifier
Value(s): {0.0pt...available-length}
Inherited, Initial = 0.0pt

NOTE: Specifies the amount of space to be inserted after each list item in the direction of the block-
progression-direction. Usually specified at the list level. Note: This is a block-level space. Non-core

item-space-after-minimum = length-specifier
Value(s): {0.0pt...available-length}
Inherited, Initial = 0.0pt

NOTE: Specifies the amount of space to be inserted after each list item in the direction of the block-
progression-direction. Usually specified at the list level. Note: This is a block-level space. Non-core

item-space-after-optimum = length-specifier
Value(s): {0.0pt...available-length}
Inherited, Initial = 0.0pt

NOTE: Specifies the amount of space to be inserted after each list item in the direction of the block-
progression-direction. Usually specified at the list level. Note: This is a block-level space.

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:list-item>

3.12.3 Formatting Object's Formal Specification
A list-item flow object can only be contained by a list. It is a wrapper for a list-item-label and an
list-item-body. It controls their position relative to other items within the list. Most of its properties
are typically specified on the list. It controls the position and padding of the label and the body within
the list-item and in relation to other list-items in the list.



Extensible Stylesheet Language (XSL)

Page 45

3.13 List-Item-Label Flow Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

3.13.1 Purpose
A list-item-label is used to either enumerate, identify or adorn the list-item's body.

3.13.2 Formatting Object Summary
<fo:list-item-label

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

background-attachment = ( scroll | fixed )
Inherited, Initial = scroll

background-color = a color-specifier or transparent
Inherited, Initial = transparent

background-image = a URI or none
Inherited, Initial = none

background-position-x = ( a length-specifier  | left | center | right )
Value(s): {0..max-length}
Inherited, Initial = left

background-position-y = ( a length-specifier  | top | middle | bottom )
Value(s): {0..max-length}
Inherited, Initial = top

background-repeat = ( no-repeat | repeat | repeat-x | repeat-y )
Inherited, Initial = repeat

label-width = length-specifier
Value(s): {0.0pt...available-length}
Inherited, Initial = 0.0pt

NOTE: Specifies the amount of space, in the direction of the writing mode, to be reserved for the label.
Typically set at the list level. [[Ed-Note: Check the issue of value=0]] If the value is 0, the formatter should
calculate the width on the basis of the longest label in the list.

space-end = length-specifier
Value(s): {0.0pt...available-width}
Inherited, Initial = 0.0pt

NOTE: Note: Specifies the minimum space in the direction of the block-progression-direction between the
label and the body's first line.

label-separator = length-specifier
Value(s): {-TBD-..-TBD-}
Inherited, Initial = 12.0pt

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:list-item-label>

3.13.3 Formatting Object's Formal Specification
A list-item-label can be contained only in a list-item. It can be used for enumerating the
list-item. It can control the positioning of the label and its placement with respect tot he list-



Extensible Stylesheet Language (XSL)

Page 46

item-body. The label has content, and is formatted to become the adornment or enumeration of the
list-item.

3.14 List-Item-Body Flow Object

3.14.1 Purpose
The item-body flow object holds the components (usually blocks) for a list item.

It controls styling defaults for the body, the spacing between lines and between paras within the list item,
break precedences for line and paragraphs within the list item.

3.14.2 Formatting Object Summary
<fo:list-item-body

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

background-attachment = ( scroll | fixed )
Inherited, Initial = scroll

background-color = a color-specifier or transparent
Inherited, Initial = transparent

background-image = a URI or none
Inherited, Initial = none

background-position-x = ( a length-specifier  | left | center | right )
Value(s): {0..max-length}
Inherited, Initial = left

background-position-y = ( a length-specifier  | top | middle | bottom )
Value(s): {0..max-length}
Inherited, Initial = top

background-repeat = ( no-repeat | repeat | repeat-x | repeat-y )
Inherited, Initial = repeat

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:list-item-body>

3.14.3 Formatting Object's Formal Specification
The item's body contains the content of the item, generally in the form of blocks.

3.15 Rule-Graphic Flow Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

3.15.1 Purpose
A rule-graphic is used to draw a graphic-line that is used to divide space on the page.

3.15.2 Formatting Object Summary
<fo:rule-graphic

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none



Extensible Stylesheet Language (XSL)

Page 47

background-attachment = ( scroll | fixed )
Inherited, Initial = scroll

background-color = a color-specifier or transparent
Inherited, Initial = transparent

background-image = a URI or none
Inherited, Initial = none

background-position-x = ( a length-specifier  | left | center | right )
Value(s): {0..max-length}
Inherited, Initial = left

background-position-y = ( a length-specifier  | top | middle | bottom )
Value(s): {0..max-length}
Inherited, Initial = top

background-repeat = ( no-repeat | repeat | repeat-x | repeat-y )
Inherited, Initial = repeat

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:rule-graphic>

3.15.3 Formatting Object's Formal Specification

3.15.4 To Resolve
A rule-graphics may be inline or block-level.

The following properties apply to the rule-graphic:

l color (DSSSL:-same-)
l block-level-alignment
l break-after (DSSSL:-same-)
l break-before (DSSSL:-same-)
l graphic-line-thickness (DSSSL:line-thickness)
l indent-end (DSSSL:end-indent, CSS:-object-margin-)
l indent-start (DSSSL:start-indent, CSS:-object-margin-)
l inhibit-wrap
l keep (DSSSL:-same-)
l keep-with-previous (DSSSL:-same-)
l keep-with-next (DSSSL:-same-)
l rule-graphic-length
l rule-graphic-orientation
l position-point-shift
l space-after-maximum (DSSSL:space-after) Non-core
l space-after-minimum (DSSSL:space-after) Non-core
l space-after-optimum (DSSSL:space-after)
l space-before-maximum (DSSSL:space-before) Non-core
l space-before-minimum (DSSSL:space-before) Non-core
l space-before-optimum (DSSSL:space-before)
l writing-mode (DSSSL:-same-)



Extensible Stylesheet Language (XSL)

Page 48

3.16 Graphic Flow Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

3.16.1 Purpose
Holds an image or vector graphic.

Placement in XSL may be inline or block-level.

Content of the graphic may be instream or external (linked).

3.16.2 Formatting Object Summary
<fo:graphic

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

background-attachment = ( scroll | fixed )
Inherited, Initial = scroll

background-color = a color-specifier or transparent
Inherited, Initial = transparent

background-image = a URI or none
Inherited, Initial = none

background-position-x = ( a length-specifier  | left | center | right )
Value(s): {0..max-length}
Inherited, Initial = left

background-position-y = ( a length-specifier  | top | middle | bottom )
Value(s): {0..max-length}
Inherited, Initial = top

background-repeat = ( no-repeat | repeat | repeat-x | repeat-y )
Inherited, Initial = repeat

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:graphic>

3.16.3 Formatting Object's Formal Specification

3.16.4 To Resolve
The graphic formatting object is a formatting wrapper to hold graphic objects.

A graphic may be inline or block-level.

A graphic's content may be instream or external.

A graphic is not atomic.

The following properties apply to a graphic:

l inline
l block-level-alignment
l break-after (DSSSL:-same-)
l break-before (DSSSL:-same-)
l color (DSSSL:-same-)



Extensible Stylesheet Language (XSL)

Page 49

l external-graphic-id
l graphic-max-height
l graphic-max-width
l graphic-scale
l indent-end (DSSSL:end-indent, CSS:-object-margin-)
l indent-start (DSSSL:start-indent, CSS:-object-margin-)
l inhibit-wrap
l keep (DSSSL:-same-)
l keep-with-previous (DSSSL:-same-)
l keep-with-next (DSSSL:-same-)
l position-point-x
l position-point-y
l position-preference (DSSSL:-same-)
l space-after-maximum (DSSSL:space-after) Non-core
l space-after-minimum (DSSSL:space-after) Non-core
l space-after-optimum (DSSSL:space-after)
l space-before-maximum (DSSSL:space-before) Non-core
l space-before-minimum (DSSSL:space-before) Non-core
l space-before-optimum (DSSSL:space-before)
l writing-mode (DSSSL:-same-)

3.17 Score Flow Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

3.17.1 Purpose
Highlights text. Used to produce underlines, strike-through, overbars, etc.

3.17.2 Formatting Object Summary
<fo:score

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:score>

3.17.3 Formatting Object's Formal Specification

3.17.4 To Resolve
This object holds its content as children.

The content is scored (a highlight or text decoration using a graphic line under, over, or through the text).

A score can contain only inline formatting objects.

NOTE: Nest to apply multiple scoring (such as: over and underbar, double or triple underscore, double
strikethrough, strikethrough and underscore, etc.)



Extensible Stylesheet Language (XSL)

Page 50

The CSS text-decoration property sets scoring and "blink". "Conforming user agents are not required to
support blink."

Ed. Note: Do we want/need to support blink?

The following properties apply to score:

l color (DSSSL:-same-)
l graphic-line-thickness (DSSSL:line-thickness)
l position-shift
l inhibit-wrap
l score-spaces

3.18 Inline-box Flow Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

3.18.1 Purpose
Highlights text or graphics.

Used to produce borders and backgrounds.

Controls spacing surrounding the content.

3.18.2 Formatting Object Summary
<fo:inline-box

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

background-attachment = ( scroll | fixed )
Inherited, Initial = scroll

background-color = a color-specifier or transparent
Inherited, Initial = transparent

background-image = a URI or none
Inherited, Initial = none

background-position-x = ( a length-specifier  | left | center | right )
Value(s): {0..max-length}
Inherited, Initial = left

background-position-y = ( a length-specifier  | top | middle | bottom )
Value(s): {0..max-length}
Inherited, Initial = top

background-repeat = ( no-repeat | repeat | repeat-x | repeat-y )
Inherited, Initial = repeat

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:inline-box>

3.18.3 Formatting Object's Formal Specification

3.18.4 To Resolve
The following properties apply to the inline-box:



Extensible Stylesheet Language (XSL)

Page 51

l box-reserve-space
l box-open-end
l box-size-after
l box-size-before
l box-type
l break-after (DSSSL:-same-)
l break-before (DSSSL:-same-)
l color (DSSSL:-same-)
l graphic-line-thickness (DSSSL:line-thickness)
l indent-end (DSSSL:end-indent, CSS:-object-margin-)
l indent-start (DSSSL:start-indent, CSS:-object-margin-)
l inhibit-textline-breaks?
l keep (DSSSL:-same-)
l keep-with-previous? (DSSSL:-same-)
l keep-with-next? (DSSSL:-same-)
l space-after-maximum (DSSSL:space-after) Non-core
l space-after-minimum (DSSSL:space-after) Non-core
l space-after-optimum (DSSSL:space-after)
l space-before-maximum (DSSSL:space-before) Non-core
l space-before-minimum (DSSSL:space-before) Non-core
l space-before-optimum (DSSSL:space-before)
l writing-mode (DSSSL:-same-)

3.19 Block-level-box Flow Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

3.19.1 Purpose
Highlights text or graphics.

Used to produce borders and backgrounds.

Controls spacing surrounding the content.

3.19.2 Formatting Object Summary
<fo:block-level-box

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

background-attachment = ( scroll | fixed )
Inherited, Initial = scroll

background-color = a color-specifier or transparent
Inherited, Initial = transparent

background-image = a URI or none
Inherited, Initial = none

background-position-x = ( a length-specifier  | left | center | right )
Value(s): {0..max-length}
Inherited, Initial = left



Extensible Stylesheet Language (XSL)

Page 52

background-position-y = ( a length-specifier  | top | middle | bottom )
Value(s): {0..max-length}
Inherited, Initial = top

background-repeat = ( no-repeat | repeat | repeat-x | repeat-y )
Inherited, Initial = repeat

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:block-level-box>

3.19.3 Formatting Object's Formal Specification

3.19.4 To Resolve
The following properties apply to the block-level-box:

l box-reserve-space
l box-size-after
l box-size-before
l box-type
l break-after (DSSSL:-same-)
l break-before (DSSSL:-same-)
l color (DSSSL:-same-)
l graphic-line-thickness (DSSSL:line-thickness)
l indent-end (DSSSL:end-indent, CSS:-object-margin-)
l indent-start (DSSSL:start-indent, CSS:-object-margin-)
l inhibit-textline-breaks?
l keep (DSSSL:-same-)
l keep-with-previous? (DSSSL:-same-)
l keep-with-next? (DSSSL:-same-)
l space-after-maximum (DSSSL:space-after) Non-core
l space-after-minimum (DSSSL:space-after) Non-core
l space-after-optimum (DSSSL:space-after)
l space-before-maximum (DSSSL:space-before) Non-core
l space-before-minimum (DSSSL:space-before) Non-core
l space-before-optimum (DSSSL:space-before)
l writing-mode (DSSSL:-same-)

3.20 Page-number Flow Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

3.20.1 Purpose
This object is used to instruct the formatter to construct and present a page-number. (Page numbers can not
be constructed by the XSL processor because it has no knowledge of the line-breaking or actual pagination,
except in very limited cases.)

3.20.2 Formatting Object Summary
<fo:page-number



Extensible Stylesheet Language (XSL)

Page 53

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

background-attachment = ( scroll | fixed )
Inherited, Initial = scroll

background-color = a color-specifier or transparent
Inherited, Initial = transparent

background-image = a URI or none
Inherited, Initial = none

background-position-x = ( a length-specifier  | left | center | right )
Value(s): {0..max-length}
Inherited, Initial = left

background-position-y = ( a length-specifier  | top | middle | bottom )
Value(s): {0..max-length}
Inherited, Initial = top

background-repeat = ( no-repeat | repeat | repeat-x | repeat-y )
Inherited, Initial = repeat

/>

3.20.3 Formatting Object's Formal Specification

3.20.4 To Resolve
Multiple numbering sequences. (Examples: Front matter, body+appendix; Front-matter, by-chapter, by-
appendix)

Complex numbers (15-5)

See xsl:number for properties.

3.21 Link Formatting Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

3.21.1 Purpose
A link formatting object creates an area that a user can select to request traversal to another resource. An
XLink-aware processor may create these regions on its own, but that does not preclude a designer from
creating additional links from contextual information in the document.

The link contains link-end-locator flow objects, which provide information about the destination
or destinations of the link, as well as any renderable flow objects. The region of the link is coextensive
with that of the renderable flow objects contained within it. A user agent may specify two modes of link
selection: an informative one (such as hovering over the link with a mouse or tabbing to it) and an
activating one (such as clicking on the link or pressing return). When the user selects the link for
information, if there is only one link end, the content of that link end should be presented (in a tool tip, in
the status bar, or any other means appropriate to the user agent); if there are multiple link ends, they may all
be shown if the user agent has facility (such as a pop-up menu), or the user agent may simply indicate that
multiple ends exist. When the user activates the link, a choice of link ends should be offered, using the
renderable content of each link end. After the user makes a selection from that list, traversal can begin.

Since the link and its link-end-locators are created by the XSL processor, link selection does not
need to be automated at user action time. For instance, to randomly select one of a number of possible link
ends, the stylesheet would simply create a single-ended link, whose link-end-locator is drawn
randomly from the document, and present the user with only that choice.



Extensible Stylesheet Language (XSL)

Page 54

XLink's transcluding capabilities can be handled simply by processing the target.

3.21.2 Formatting Object Summary
<fo:link

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

background-attachment = ( scroll | fixed )
Inherited, Initial = scroll

background-color = a color-specifier or transparent
Inherited, Initial = transparent

background-image = a URI or none
Inherited, Initial = none

background-position-x = ( a length-specifier  | left | center | right )
Value(s): {0..max-length}
Inherited, Initial = left

background-position-y = ( a length-specifier  | top | middle | bottom )
Value(s): {0..max-length}
Inherited, Initial = top

background-repeat = ( no-repeat | repeat | repeat-x | repeat-y )
Inherited, Initial = repeat

merge-link-end-locators = ( true | false )
Optional (Non-inherited), Default = true

NOTE: Note: If this link formatting object occurs within another, and merge-link-end-locators is
true, then the effect is the same as if the link-end-locators of the ancestor were also link-end-
locators of this link. In other words, the link-end-locators of the ancestor and those of this link are
potential destinations when the user selects this link. If merge-link-end-locators is false, then
only the link-end-locators associated with this link are potential destinations from this link.

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:link>

3.21.3 Formatting Object's Formal Specification
The link formatting object simply defines the range of the selectable object. Any link-end-locator
formatting objects contained within it, but not contained within any nested link formatting objects, are its
applicable destinations. If the merge-link-end-locators characteristic is true, then the link-
end-locators of this particular link, as well as those of its ancestor link (and any merged therewith) are
applicable destinations when the user selects this link. If merge-link-end-locators is false, then
only the link-end-locators specific to this link may be reached.

In a default stylesheet for XLink, an extended link group should create one link formatting object, while the
locators should create link-end-locator formatting objects. A simple link should create a link
formatting object and a link-end-locator formatting object. An XML IDREF element would also
create a link and a link-end-locator.

3.22 Link-end-locator Formatting Object
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.



Extensible Stylesheet Language (XSL)

Page 55

3.22.1 Purpose
A link-end-locator formatting object identifies a resource which may be reached from its parent
link formatting object. Its content is used to present the link-end-locator to the user, likely derived
from the XLink title attribute.

See the description of link for more information.

3.22.2 Formatting Object Summary
<fo:link-end-locator

id (DSSSL:-none-, CSS:-none-) = id-specifier
Optional (Non-inherited), Default = none

background-attachment = ( scroll | fixed )
Inherited, Initial = scroll

background-color = a color-specifier or transparent
Inherited, Initial = transparent

background-image = a URI or none
Inherited, Initial = none

background-position-x = ( a length-specifier  | left | center | right )
Value(s): {0..max-length}
Inherited, Initial = left

background-position-y = ( a length-specifier  | top | middle | bottom )
Value(s): {0..max-length}
Inherited, Initial = top

background-repeat = ( no-repeat | repeat | repeat-x | repeat-y )
Inherited, Initial = repeat

href = ( XPointer )
Required

NOTE: The XPointer identifies the resource located by this link-end-locator. This may be taken
directly from an attribute value (as for an XLink locator) or calculated (e.g., from an XML IDREF or from
the content of a glossary reference).

show-content = ( true | false )
Optional (Non-inherited), Default = false

NOTE: Note: Typically, the content of the link-end-locator formatting object is only shown so that
the user may select a destination for the link. However, in some circumstances the designer may wish to
present the title of the link-end-locator as part of the document's initial presentation.

NOTE: The user may also provide any additional inheritable properties for use by the descendants of this
object.

> ... </fo:link-end-locator>

3.22.3 Formatting Object's Formal Specification
When a user requests traversal of a link formatting object, the user agent should present a list of possible
destinations (if there is more than one). The user agent may also offer an informative mode of interaction
with a link, such as hovering over it with a mouse pointer. In those cases, the formatted content of the
link-end-locator formatting object should be used to represent this potential destination.

A default stylesheet for XLink would create a link-end-locator for every locator element; it would
also create both a link and a link-end-locator for simple links. Similarly, an XML IDREF would
generate both a link and a link-end-locator; an xref to a chapter might create a link whose only
content is a link-end-locator to that chapter, whose content in turn is the formatted title of the
chapter, and whose show-content characteristic is set to true.



Extensible Stylesheet Language (XSL)

Page 56

3.23 Defined Terms
NOTE: Coordination between CSS and XSL properties and objects is an ongoing process, with the goal of
defining a common underlying formatting model. Therefore, some of the object names and definitions, as
well as property names, allowed values, and definitions may change as a result of this effort.

area
This is a DSSSL "area".

Ed. Note: Definition

boolean
A specifier having exactly 2 values:

false
Specifies the specifier is false.

true
Specifies the specifier is true.

NOTE: false & true may be used in other contexts. If so, their meaning will be described for that
context.

color-specifier

Ed. Note: Use CSS Definition. Should we add CMYK and other models?

direction
The term direction should be qualified as follows:

column-progression-direction

Ed. Note: Defer -- Tables & Math

block-progression-direction
The direction of progression of sequential block-level object placements as specified by the
writing-mode.
Perpendicular to the inline-progression-direction,

escapement-direction
The direction of progression of sequential glyph object placements along the placement-path as
specified by the character/glyph information. May be overridden by the escapement-
direction property. May be the same as or the reverse of the inline-progression-direction.
If unspecified, use the inline-progression-direction specified by the writing-mode.

inline-progression-direction
The direction of progression of sequential inline objects.
Usually the same direction as the escapement direction.
Perpendicular to the block-progression direction and the line-progression direction.

line-progression-direction
Perpendicular to the inline-progression-direction, the direction of successive textline
placements as specified by the writing-mode.
Usually the same as the block-progression-direction.

row-progression-direction

Ed. Note: Defer -- Tables & Math



Extensible Stylesheet Language (XSL)

Page 57

shift-direction
The direction of positive shift when characters, inline objects, or scores are shifted
perpendicular to the placement-path. Usually the reverse of the line-progression-direction.

up-direction

Ed. Note: -TBD-.

starting-edge

Ed. Note: -TBD-.

ending-edge

Ed. Note: -TBD-.

ALSO

Ed. Note: Need orthogonal direction terms for ALL 4 edged of writing-mode-based directions.
"Starting" is defined differently for inline and block-level formatting objects.

Ed. Note: Definition

id-specifier
is none, a unique-id, or a URI.
Specifies a unique identification of this object within the identifier-class or within the document, as
specified in the individual property definition.
The following properties use id-specifiers:
l id
l coalesce-id (DSSSL:-same- )[defer]
l external-graphic-id
l graphic-notation-id
l method-annotation-glyph [defer]
l method-emphasizing-mark [defer]
l method-glyph-reorder [defer]
l method-glyph-subst
l method-hyphenation (DSSSL:hyphenation-method) [defer]
l method-implicit-bidi (DSSSL:implicit-bidi-method) [defer]
l method-inline-note [defer]
l method-table-auto-width
l method-line-breaking (DSSSL:line-breaking-method) [defer]
l method-line-composition (DSSSL:line-composition-method) [defer]

 integer
This term may be qualified or unqualified, as follows:

integer
If unqualified, the term ALWAYS refers to an unsigned (positive) whole number. [0, 1, 2, ...]
The upper limit is system dependent, but shall be at least 32767.

integer, signed
An signed (positive or negative) whole number.
The lower limit is system dependent, but shall be at least -32767.
The upper limit is system dependent, but shall be at least 32767.



Extensible Stylesheet Language (XSL)

Page 58

integer, strictly positive
An unsigned (positive) whole number greater than 0. [1,2,3...]
The upper limit is system dependent, but shall be at least 32767.

length-specifier
A distance specifier.
Must be qualified by a unit specification keyword, as follows:

cm
Metric centimeters

in
US inch (25.4 mm)

mm
Metric millimeters

pt
Computer printer's points, defined as exactly 1/72 of an inch.

NOTE: max-length is defined to be a value of at least 32767 points.

%
Percent (Individual properties that allow percentage values identify the measure that is used as
the referent for this calculation)

px
Pixels (per CSS definition)

em
Fraction of current object's font-size. (See font-size property's description usage of EM and EX
in setting font-size.)

ex
Fraction of current font's x-height.

max-length
is distance specifier allowing a value of at least 32767 points. If negative values are allowed this may
have a negative value of at least 32767 points.

line
Since we have many kinds of lines, the term will be qualified as follows:

graphic-line
A graphic representation of a line-segment.

textline
a sequence of characters (and spaces) arranged along or relative to a common baseline.

queue
(This was "port" in the DSSSL specification.)

name-specifier
Specifies the name of an object, or more commonly is used to identify all members of a set of objects.
Name-specifiers may be a mixture of non-punctuation Unicode characters.
All like-named queue objects are merged into a single queue for the formatter.



Extensible Stylesheet Language (XSL)

Page 59

Name-specifiers are used for:
l auto-number-queue-name (DSSSL:-none-, CSS:-none-)
l queue-name (DSSSL:-none-, CSS:-none-)
l master-name (DSSSL:-none-, CSS:-none-)

number
A signed numeric value that may include a fraction.

Ed. Note: Specification of "decimal radix character"?

page-model
Page designs can follow several models:

Sequential-tiled-page-model
This is your typical word processor page.
The subareas do not overlap. They are full width and are separated from the preceding subarea
by a separation distance measured from the preceding area in the block-progression-direction
specified by the writing-mode of the page.

Interlocking-tiled-page-model
This is your typical newspaper page.
The subareas do not overlap. Pages consist of rectangular, T, inverted-L shaped areas. They are
non-overlapping and touch the adjacent areas (or page margins) on all sides.

Simple-freeform-page-model
 The origins of the subareas are specified as X-Y coordinates measured from the page origin.
Each area then specifies its shape relative to that origin. If areas overlap, they are overlapped in
the order that the areas are specified (or in accordance with a z-order property), hiding the
information of the underlying area.

Exclusionary-freeform-page-model
 The origins of the subareas are specified as X-Y coordinates measured from the page origin.
Each area then specifies its shape relative to that origin. If areas overlap, they are overlapped in
the order that the areas are specified (or in accordance with a z-order property), reshaping
the underlying area to wrap around the current area.

placement-path
A progression of items placed adjacently in the inline-progression-direction for inline objects or the
block-progression-direction for block-level objects.

property
An attribute of a formatting object.

qualifier
An attribute of a character. Usually derived through system-dependent font metric and classification
services.

string
An array of Unicode characters.

URI
Uniform Resource Identifier (an address of a resource [such as a file or component] on the WWW).

writing-mode-specifier
Specifies the orientation of the block-progression-direction, inline-progression-direction, line-
progression-direction, shift-direction and writing-mode of the area/container. All orientations are
absolute (based on the page orientation, not the containing area's orientation).



Extensible Stylesheet Language (XSL)

Page 60

NOTE: We are seeking input on writing directions. There is significant interest in making this standard
international to the extent that it covers active languages. We have identified those writing directions
that we believe to be in active use.

It is one of the symbols:

lr-tb
Specifies:
l  an inline-progression-direction of left-to-right.
l  a block-progression-direction and a line-progression-direction of top-to-bottom.
l  a shift-direction of bottom-to-top.

rl-tb
Specifies:
l  an inline-progression-direction of right-to-left.
l  a block-progression-direction and a line-progression-direction of top-to-bottom.
l  a shift-direction of bottom-to-top.

tb-rl
Specifies:
l  an inline-progression-direction of top-to-bottom.
l  a block-progression-direction and a line-progression-direction of right-to-left.
l  a shift-direction of left-to-right.

lr-bt
Specifies:
l  an inline-progression-direction of left-to-right.
l  a block-progression-direction and a line-progression-direction of bottom-to-top.
l  a shift-direction of bottom-to-top.

rl-bt
Specifies:
l  an inline-progression-direction of right-to-left
l  a block-progression-direction and a line-progression-direction of bottom-to-top.
l  a shift-direction of bottom-to-top.

tb-lr
Specifies:
l  an inline-progression-direction of top-to-bottom.
l  a block-progression-direction and a line-progression-direction of left-to-right.
l  a shift-direction of left-to-right.

bt-lr
Specifies:
l  an inline-progression-direction of bottom-to-top.
l  a block-progression-direction and a line-progression-direction of left-to-right.
l  a shift-direction of -TBD-.

bt-rl
Specifies:
l  an inline-progression-direction of bottom-to-top.
l  a block-progression-direction and a line-progression-direction of right-to-left.



Extensible Stylesheet Language (XSL)

Page 61

l  a shift-direction of -TBD-.

lr-alternating-rl-tb
Specifies:
l  an inline-progression-direction of left-to-right on odd lines and right-to-left on even lines.
l  a block-progression-direction and a line-progression-direction of top-to-bottom.
l  a shift-direction of -TBD-.

lr-alternating-rl-bt
Specifies:
l  an inline-progression-direction of left-to-right on odd lines and right-to-left on even lines.
l  a block-progression-direction and a line-progression-direction of bottom-to-top.
l  a shift-direction of -TBD-.

lr-inverting-rl-tb
Specifies:
l  an inline-progression-direction of left-to-right on odd lines with even lines completely

inverted (r-l glyph order, inverted shift-direction and inverted up-vector).
l  a block-progression-direction and a line-progression-direction of top-to-bottom.
l  a shift-direction of -TBD-.

lr-inverting-rl-bt
Specifies:
l  an inline-progression-direction of left-to-right on odd lines with even lines completely

inverted (r-l glyph order, inverted shift-direction and inverted up-vector).
l  a block-progression-direction and a line-progression-direction of bottom-to-top.
l  a shift-direction of -TBD-.

tb-rl-in-rl-pairs
Specifies:
l  an inline-progression-direction of -TBD-.
l  a block-progression-direction and a line-progression-direction of -TBD-.
l  a shift-direction of -TBD-.

Writing-mode-specifiers are used for the following properties:
l writing-mode
l body-writing-mode
l end-side-writing-mode
l footer-writing-mode
l header-writing-mode
l page-writing-mode (DSSSL:-none-, CSS:-none-)
l start-side-writing-mode (DSSSL:-none-, CSS:-none-)

3.24 Alphabetical Summary of Properties
NOTE: We have just begun coordination between this formatting model and CSS, with the goal of defining a
single underlying formatting model. Object names and definitions, as well as property names, allowed
values, and definitions may change considerably as a result of that effort.

background-attachment (DSSSL:-none-, CSS:-same-)
From CSS: is one of the following:



Extensible Stylesheet Language (XSL)

Page 62

scroll
The background-image will scroll with the contents of the viewport.

fixed
The background-image is presented at a fixed position.

Ed. Note: relative to what?, (origin in current context)

The initial value is scroll (property is only active if the background-image is found).

Ed. Note: Warning, scroll is meaningless for paged/print devices. Provide a better definition.

background-color (DSSSL:-same-differs, CSS:-same-)
is one of the following:

transparent
Specifies that the background-area shall not be filled with a solid color, therefore any
underlying information will show through.

a color-specifier
 Specifies that the background-area shall be filled with the color specified.

(See also: background-z-index and background-image)
The default value is transparent.

background-image (DSSSL:background-tile, CSS:-same-)
is either none or a URI. Specifies an image that should be presented in the background.
The background-attachment, background-repeat, and background-position
properties are used to control the formatting of a tiled background. The image is composed against
the background-color or any underlying information.
The default value is none.

background-position-x (DSSSL:-none-, CSS:background-position)
is one of the following:

a percentage

Ed. Note: Copy definition from CSS

-or-

a length-specifier

Ed. Note: Copy definition from CSS

-or-

one of the following keywords

left
The left edge of the image is aligned with the left edge of the background area.

center
The center of the image is aligned with the center of the background area.

right
The right edge of the image is aligned with the right edge of the background area.

The default value is 0% (left) (This property is only active if the background-image is found.)



Extensible Stylesheet Language (XSL)

Page 63

background-position-y (DSSSL:-none-, CSS:background-position)
is one of the following:

a percentage

Ed. Note: Copy definition from CSS

-or-

a length-specifier

Ed. Note: Copy definition from CSS

-or-

one of the following keywords

top
The top edge of the image is aligned with the top edge of the background area.

middle
The middle of the image is aligned with the middle of the background area.

bottom
The bottom edge of the image is aligned with the bottom edge of the background area.

The default value is 0% (=top) (This property is only active if the background-image is found.)

background-repeat (DSSSL:-none-, CSS:-same-)
is one of the following:

repeat
The image specified by the background-image is repeated in both the x & y directions to
fill the background-area.

repeat-x
The image specified by the background-image is repeated in the x direction to fill the
background-area.

repeat-y
The image specified by the background-image is repeated in the y direction to fill the
background-area.

no-repeat
The image specified by the background-image is not repeated.

The default value is repeat. (This property is only active if the background-image is found.)

body-overflow (DSSSL:-none-, CSS:overflow)
Specifies the overflow behavior for the body area.
(See overflow)

body-writing-mode (DSSSL:-none-, CSS:-none-)
a writing-mode-specifier or the value use-page-writing-mode .
Specifies the writing-mode within the body of a simple-page-master.
This property is inherited by the body-area's children as writing-mode.
The initial value is use-page-writing-mode.



Extensible Stylesheet Language (XSL)

Page 64

break-after (DSSSL:-same-, CSS:page-break-after)
Specifies that a break after the formatting object is disallowed, allowed, or forced. On allowed and
forced breaks, indicates that the formatting object shall start an area of the indicated type.

none
No break shall be allowed.

auto-page
Break shall be allowed but not forced. Should a break be necessary, this object shall be the last
one placed in the current page. The object following this one shall begin a new page.

page
Break shall be forced, this object shall be the last one placed in the current page.

page-odd
Break shall be forced, this object shall be the last one placed in the current page, the next object
shall be placed in a new odd-numbered page.

page-even
Break shall be forced, this object shall be the last one placed in the current page, the next object
shall be placed in a new even-numbered page.

Should there be a conflict between break-after on the prior object and break-before on this
object, the following precedence order applies. (The value closest to the top of the list shall be
chosen.)
l page-odd
l page-even
l page
l auto-page
l none
This property is not inherited.
The default is none.

break-before (DSSSL:-same-, CSS:page-break-before)
Specifies that a break after the formatting object is disallowed, allowed, or forced. On allowed and
forced breaks, indicates that the formatting object shall start an area of the indicated type.

none
No break shall be allowed.

auto-page
Break shall be allowed but not forced. Should a break be necessary, this object shall begin a
new page.

page
Break shall be forced, this object shall begin a new page.

page-odd
Break shall be forced, this object shall be the first placed in a new odd-numbered page.

page-even
Break shall be forced, this object shall be the first placed in a new even-numbered page.

Should there be a conflict between break-after on the prior object and break-before on this
object, the following precedence order applies. (The value closest to the top of the list shall be
chosen.)



Extensible Stylesheet Language (XSL)

Page 65

l page-odd
l page-even
l page
l auto-page
l none
This property is not inherited.
The default is none.

char
is a char-specifier. Specifies the Unicode character to be substituted/presented.
This property is not inherited.

1. If it is not specified, and there is a current node, and the current node has a char qualifier,
then the value of the char qualifier shall be used as the value of this property.

2. If the value of the char-map property is not none, then it is applied to the value of the char
qualifier, and the result is used as the value of the property.

This property may be used to control hyphenation as well as possibly being used in the selection of
the glyph.

char-kern
is a boolean. Specifies whether kerning (placement-adjustment) is allowed.
If true, then kerning shall be performed according to the char-kern-mode property.

NOTE: Placement-adjustment is not performed for glyphs whose placement-adjustment qualifier
has the value non-adjusting.

The default value is false.

char-kern-mode
is one of the symbols
l loose,
l normal,
l kern,
l tight, or
l touch
specifying the placement-adjustment mode.
The default value is normal.

char-ligature
is a boolean. Specifies whether ligatures are allowed.
The default value is false.

color (DSSSL:-same-)
is a color-specifier that specifies the color in which the formatting object's marks should be made.
This property may be inherited.
The initial value is the default color in the Device Gray color space.

Ed. Note: Should color be split into 4 (or more) separate properties: "color-stroke", "color-fill", "color-
background", and "color-shadow" (and ...)?

contents-alignment
is one of the symbols start, end, center, or justify. Specifies the alignment of the child
areas within the containing area in the block-progression-direction of the containing area.
The default value is start.



Extensible Stylesheet Language (XSL)

Page 66

contents-rotation
is one of the integers 0, 90, 180, or 270. Specifies the counter-clockwise rotation to be applied to the
area contents.
This property is not inherited.
The default is 0.

destination
is either

none
Ed. Note: -TBD-

an address-specifier
or

a list of one or more objects of type address.
See .

This property is not inherited and shall be specified.
A value of none is used for a nested link and specifies that the contents of the formatting object
shall not be considered part of the containing link.

direction-embedded-text
is one of the symbols left-to-right or right-to-left.
It shall be parallel to the writing-mode of the block.
This property is not inherited and shall be specified.

inline
is a boolean.
Specifies whether the formatting object is inline rather than block-level.
This property is not inherited.
The default value is false.

end-side-overflow (DSSSL:-none-, CSS:overflow)
Specifies the overflow behavior for the end-side area.
(See overflow)

end-side-separation (DSSSL:-none-, CSS:-none-)
is a length-specifier. Specifies the distance from the edge of the body area to the adjacent end-side
area.
This property may be inherited.
The initial value is 18.0pt.

end-side-size (DSSSL:-none-, CSS:-none-)
A length-specifier.
Specifies the width of the end-side area. If the corresponding queue content is absent, this space will
still be reserved.

end-side-writing-mode (DSSSL:-none-, CSS:-none-)
a writing-mode-specifier or the value use-page-writing-mode .
Specifies the writing-mode within the end-side area of a simple-page-master.
This property is inherited by the end-side-area's children as writing-mode.
The initial value is use-page-writing-mode.



Extensible Stylesheet Language (XSL)

Page 67

external-graphic-id
An id-specifier.
Specifies the entity containing the external graphic or none if the graphic is instream.
This property is not inherited and shall be specified.

Font-related properties
All font- properties may be inherited.

font-family (DSSSL:font-family-name, CSS:-same-)
Defines the name of a font/typeface family.

CSS
is an array of the following:

family-name

Ed. Note: -CSS definition-

generic-name
is one of the following:

serif
Ed. Note: -CSS definition-

sans-serif
Ed. Note: -CSS definition-

cursive
Ed. Note: -CSS definition-

fantasy
Ed. Note: Where did this come from, usually "Decorative"

monospace
A monospace font.

This is a ordered list of typeface family names. The user-agent chooses the first in the list
that is available. If no match is found, uses Panose mapping to find the closest match,
(again) using this list in order.

font-style (DSSSL:font-posture, CSS:-same-)
specifies the posture property of the desired font resource.

normal
Intuitively obvious.

oblique
If the face is available in oblique, you get oblique; if not but italic is available you DO
NOT GET ITALIC, instead the font match fails and you attempt the next entry in the
font-family list.

italic
If the face is available in italic, you get italic; if not, then if available in oblique use
oblique. If neither is available the font match fails and you attempt the next entry in the
font-family list.

The initial value is normal.



Extensible Stylesheet Language (XSL)

Page 68

font-style-math (DSSSL:font-posture-math, CSS:-none-) [defer]
specifies the posture qualifier of the desired font resource to be used when the has the value
math. It shall have the value any or one of the symbols.
The initial value is the value of the font-style-math character qualifier of the char
property.

font-stretch (DSSSL:font-proportionate-width, CSS:-same-)
Specifies the designed setwidth (aspect ratio) of the desired member of the font-family.
is one of the following:

narrower
Ed. Note: -CSS definition-

wider
Sets font stretch to the next value above

ultra-condensed
Ed. Note: -CSS definition-

extra-condensed
Ed. Note: -CSS definition-

condensed
Ed. Note: -CSS definition-

semi-condensed
Ed. Note: -CSS definition-

normal
Ed. Note: -CSS definition-

semi-expanded
Ed. Note: -CSS definition-

expanded
Ed. Note: -CSS definition-

extra-expanded
Ed. Note: -CSS definition-

ultra-expanded
Ed. Note: -CSS definition-

The initial value is normal.

font-size (DSSSL:-same-, CSS:-same-)
Specifies the "body" height of the typeface. For Roman/Latin fonts, this is measured as the
height from the bottom of the lowest descender to the top of the tallest ascender or highest
accent in the typeface.
Can be specified using any of the following:

an absolute-size

Ed. Note: -CSS definition-



Extensible Stylesheet Language (XSL)

Page 69

a relative-size
Size specified in EMs or EXs, relative to inherited size.

a length-specifier

Ed. Note: -CSS definition-

a percentage
Size specified in percent, relative to inherited size.

Ed. Note: ?

The initial value is

Ed. Note: -TBD-

.

font-size-adjust (DSSSL:-none-, CSS:-same-)
Specifies an adjustment to the "body" height of the typeface.
l CSS:

is one of the following:

number

Ed. Note: -CSS definition-

none
Ed. Note: -CSS definition-

The initial value is

Ed. Note: -CSS definition-

.

font-variant (DSSSL:-none-, CSS:-same-)
Specifies if lowercase letters are to be normal or small caps in the desired font resource.
Is one of the following:

normal
Use standard lowercase representation.

small-caps
Use small caps if available or synthesize.

The initial value is normal.

font-weight (DSSSL:-same-, CSS:-same-)
Specifies the weight property of the desired font resource.

Ed. Note: Neither system adequately covers the full range of 40+ weight designators in
common usage for Roman/Latin fonts.

Is one of the following:

normal
Same as400.

bold
Same as 700.



Extensible Stylesheet Language (XSL)

Page 70

bolder
Ed. Note: -CSS definition-

lighter
Ed. Note: -CSS definition-

a number between 100 & 900
Note that this is a list of defined numbers, not a numeric value that can be anywhere in
the range.

Ed. Note: -CSS definition-

There is no correlation between a setting of 700 in one font and an identical value in another.
The value scales are unique to each font.
The initial value is

Ed. Note: -TBD-

.

footer-overflow (DSSSL:-none-, CSS:overflow)
Specifies the overflow behavior for the footer area.
(See overflow)

footer-precedence (DSSSL:-none-, CSS:-none)
A boolean.
A value of true specifies that the footer takes precedence and extends across the body and any start-
side, start-side separation, end-side and end-side-separation.
A value of false specifies that the sides take precedence over the footer. The footer has the same
width as the body and any start-side or end-side extends across the height of the footer and the footer
separation.

footer-separation (DSSSL:footer-margin, CSS:-none-)
is a length-specifier. Specifies the distance between the bottom of the body area to the top of the
footer area.
This property may be inherited.
The initial value is 18.0pt.

footer-size (DSSSL:-none-, CSS:-none-)
A length-specifier.
Specifies the height of the footer area. If the corresponding queue content is absent, this space will
still be reserved.

footer-writing-mode (DSSSL:-none-, CSS:-none-)
a writing-mode-specifier or the value use-page-writing-mode .
Specifies the writing-mode within the footer area of a simple-page-master.
This property is inherited by the footer-area's children as writing-mode.
The initial value is use-page-writing-mode.

graphic-line-thickness (DSSSL:line-thickness)
is a length-specifier that specifies the thickness of the graphic line or graphic-lines.

Ed. Note: Coordinate with W3C-VectorGraphics-WG

This property may be inherited.
The initial value is 1.0pt.



Extensible Stylesheet Language (XSL)

Page 71

graphic-line-offset (DSSSL:line-position)
is a length-specifier that specifies the offset distance from the alignment-line to the graphic line or
graphic-lines.

Ed. Note: Coordinate with W3C-VectorGraphics-WG

This property may be inherited.
The initial value is 1.0pt.

graphic-max-width
is a length-specifier. Specifies the maximum allowed width of the resulting area when scale is max
or max-uniform.
This property is not inherited.

graphic-max-height
is a length-specifier. Specifies the maximum allowed height of the resulting area when scale is
max or max-uniform.
This property is not inherited.

graphic-notation-id
An id-specifier.
Specifies the system mime-type of the notation of the graphic.
This property is not inherited and shall be specified.

graphic-scale
is one of the following:

 a number
the graphic shall be scaled by that factor in both the horizontal and vertical directions.

a list of two numbers
the graphic shall be scaled by the factor specified by the first number in the horizontal direction
and by the factor specified by the second number in the vertical direction.

max
 If it is the symbol max, then it shall be scaled in the horizontal and vertical directions so that
its size in the horizontal and vertical directions is as large as allowed.

max-uniform.
If it is the symbol max-uniform, then it shall be scaled uniformly in the horizontal and
vertical directions so that its size in either the horizontal or vertical direction is as large as
allowed.

This property is not inherited.
The default value is max-uniform.

header-overflow (DSSSL:-none-, CSS:overflow)
Specifies the overflow behavior for the header area.
(See overflow)

header-precedence (DSSSL:-none-, CSS:-none)
A boolean.
A value of true specifies that the header takes precedence and extends across the body and any
start-side, start-side separation, end-side and end-side-seapartion.



Extensible Stylesheet Language (XSL)

Page 72

A value of false specifies that the sides take precedence over the header. The header has the same
width as the body and any start-side or end-side extends across the height of the header and the
header separation..

header-separation (DSSSL:header-margin, CSS:-none-)
is a length-specifier. Specifies the distance between the top of the body area to the adjacent header
area.
This property may be inherited.
The initial value is 18.0pt.

header-size (DSSSL:-none-, CSS:-none-)
A length-specifier.
Specifies the height of the header area. If the corresponding queue content is absent, this space will
still be reserved.

header-writing-mode (DSSSL:-none-, CSS:-none-)
a writing-mode-specifier or the value use-page-writing-mode .
Specifies the writing-mode within the header area of a simple-page-master.
This property is inherited by the header-area's children as writing-mode.
The initial value is use-page-writing-mode.

height
is a length-specifier. Specifies the height of the area.
This property is not inherited.

id
An id-specifier.
Specifies a unique identifier for this object within all members of the formatter-object-tree.
Usually optional, default=none.
Required if this object must be referenced by another object in the formatter-object-tree.

indent-end (DSSSL:end-indent, CSS:-object-margin-)
is a length-specifier.
Specifies the indent of the ending edge of the area in the direction of the inline-progression-
direction.
This property may be inherited.
The initial value is 0.0pt.

indent-start (DSSSL:start-indent, CSS:-object-margin-)
is a length-specifier.
Specifies the indent of the starting edge of the area in the direction of the inline-
progression-direction.
This property may be inherited.
The initial value is 0.0pt.

indent-first-line-start (DSSSL:first-line-start-indent, CSS:text-
indent)

is a length-specifier giving an indent to be added to the indent-start for the first textline. This
length-specifier may be negative. (User agents may limit a negative indent-first-line-start to a value
less-than-or-equal to the applicable value of indent-start.)
This property may be inherited.
The initial value is 0.0pt.



Extensible Stylesheet Language (XSL)

Page 73

inhibit-wrap
is a boolean.
Specifies whether textline breaks shall be inhibited before and after each area produced by this
formatting object. This applies only to textline breaks introduced by the formatter to make textlines
fit in the available space.
The default value is false.

letterspacing-after-maximum (DSSSL:inline-space-after, CSS:letter-
spacing)

A length-specifier.
This value indicates the greatest amount of inter-character space to be added to each letter.
The value may be negative (indicating the amount of space to remove). There may be implementation
specific limits on the length specified.
l DSSSL:

is an length-specifier.
Specifies the minimum-space, optimum-space, and maximum-space to be added after the last
result area in the inline-progression-direction.

l CSS:
is one of the following:

normal
Use the normal spacing from the font as an initial value. The formatter may add or remove
space to justify the line.

a length-specifier
This value indicates the amount of inter-character space to be added to each letter. The value
may be negative (indicating the amount of space to remove). There may be implementation
specific limits on the length specified. The application may NOT adjust inter-character
spacing to justify the line. (Note that a length of 0 disables automatic letterspacing.)

The default value is 0.0pt.

letterspacing-after-minimum (DSSSL:inline-space-after, CSS:letter-
spacing)

A length-specifier.
This value indicates the smallest amount of inter-character space to be added to each letter.
The value may be negative (indicating the amount of space to remove). There may be implementation
specific limits on the length specified.
The default value is 0.0pt.

letterspacing-after-optimum (DSSSL:inline-space-after, CSS:letter-
spacing)

A length-specifier.
This value indicates the desired amount of inter-character space to be added to each letter.
The value may be negative (indicating the amount of space to remove). There may be implementation
specific limits on the length specified.
The default value is 0.0pt.

wordspacing-maximum (DSSSL:inline-space-space, CSS:word-spacing)
l DSSSL:

is an length-specifier which is applicable to the formatting object if it is a space. This is in addition
to any space from the letterspacing-before-minimum and letterspacing-
after-minimum properties.



Extensible Stylesheet Language (XSL)

Page 74

l CSS:
is one of the following:

normal
Use the normal spacing from the font as an initial value. The formatter may add or remove
space to justify the line.

a length-specifier
This value indicates the amount of inter-word space to be added to each the normal space
between words. The value may be negative (indicating the amount of space to remove).
There may be implementation specific limits on the length specified. The application may
also adjust inter-word spacing to justify the line.

The default value is 0.0pt.

wordspacing-minimum (DSSSL:inline-space-space, CSS:word-spacing)
l DSSSL:

is an length-specifier which is applicable to the formatting object if it is a space. This is in addition
to any space from the letterspacing-before-minimum and letterspacing-
after-minimum properties.

l CSS:
is one of the following:

normal
Use the normal spacing from the font as an initial value. The formatter may add or remove
space to justify the line.

a length-specifier
This value indicates the amount of inter-word space to be added to each the normal space
between words. The value may be negative (indicating the amount of space to remove).
There may be implementation specific limits on the length specified. The application may
also adjust inter-word spacing to justify the line.

The default value is 0.0pt.

wordspacing-optimum (DSSSL:inline-space-space, CSS:word-spacing)
l DSSSL:

is an length-specifier which is applicable to the formatting object if it is a space. This is in addition
to any space from the letterspacing-before-minimum and letterspacing-
after-minimum properties.

l CSS:
is one of the following:

normal
Use the normal spacing from the font as an initial value. The formatter may add or remove
space to justify the line.

a length-specifier
This value indicates the amount of inter-word space to be added to each the normal space
between words. The value may be negative (indicating the amount of space to remove).
There may be implementation specific limits on the length specified. The application may
also adjust inter-word spacing to justify the line.

The default value is 0.0pt.



Extensible Stylesheet Language (XSL)

Page 75

input-record-end-ignore (DSSSL:ignore-record-end)
is a boolean. Specifies whether a record-end shall be ignored. If this property is true, then a
character with the char-is-record-end qualifier true shall be ignored.
This property may be inherited.
The initial value is false.

input-tab
is a boolean.
Specifies whether the formatting object is a tab on input.
This property is not inherited.
Characters that are tabs shall be treated differently by blocks for which the input-tab-expand
qualifier is not none.
The default value is the value of the input-tab character qualifier of the char property if the
char property was not explicitly specified, and otherwise none.

input-tab-expand (DSSSL:expand-tabs)
is either none or a strictly positive integer. Specifies the tab interval. When a tab interval is
specified, each character that has the input-tab property true shall be treated as equivalent to
the smallest strictly positive number of spaces that when added to the number of characters following
the last preceding record-end shall be a multiple of the tab interval.
This property may be inherited.
The initial value is 8.

input-whitespace
is a boolean. Specifies whether the character shall be considered as whitespace on input.
This property is not inherited.
The default value is the value of the input-whitespace character qualifier of the char property
if the char property was not explicitly specified, and otherwise false.

input-whitespace-treatment
is one of the following symbols:

preserve
Specifies no special action.

collapse
Specifies that a character for which the input-whitespace property is true shall be
ignored if the preceding character also has the input-whitespace property true.

ignore
Specifies that any character for which the input-whitespace property is true shall be
ignored.

The default value is preserve.

keep (DSSSL:-same-)
is one of the following:

no-break
the areas produced by this formatting object shall be kept together within the smallest possible
area.

page
Specifies that the areas produced by the formatting object shall lie within the same page; in this
case, the formatting object shall have an ancestor formatting object of class page-master.



Extensible Stylesheet Language (XSL)

Page 76

column-set
Specifies that the areas produced by the formatting object shall lie within the same column set;
in this case, the formatting object shall have an ancestor of class column-set.

column
Specifies that the areas produced by the formatting object shall lie within the same column set,
and that the first column that each area spans in the column set shall be the same.

auto
Specifies that this property is to be ignored.

This property is not inherited.
The default value is auto.

orphans (DSSSL:orphan-count, CSS:orphans)
is a positive integer. Specifies the minimum number of textlines of the block that shall be kept
together at the end of an area.
If the orphans is n, then no break shall be allowed between the first n textlines of the block.
This property may be inherited.
The initial value is 2.

widows (DSSSL:widow-count, CSS:widows)
is a positive integer. Specifies the minimum number of textlines of the block that shall be kept
together at the beginning of an area.
If the widows is n, then no break shall be allowed between the last n textlines of the block.
This property may be inherited.
The initial value is 2.

keep-with-next (DSSSL:-same-)
is a boolean. Specifies whether the formatting object shall be kept in the same area as the next
formatting object.
This property is not inherited.
The default value is false.

keep-with-previous (DSSSL:-same-)
is a boolean. Specifies whether the formatting object shall be kept in the same area as the previous
formatting object.
This property is not inherited.
The default value is false.

label-alignment
is one of the symbols start, end, or center. Specifies the alignment of the contents of the field.
The default value is start.

label-width
is a length-specifier. Specifies the width of the area produced by the formatting object.
The default value is 0.0pt.

language (DSSSL:language & D:country)
Has the values:

use-document
Specifies one should use the language/country/script specified in the source document's
xml:lang specifier.



Extensible Stylesheet Language (XSL)

Page 77

none
disables hyphenation and forces a simple line-breaking strategy. Used for program text and
poetry.

an explicit value
has the same form as the xml:lang specifier and overrides the language derived through
xml:lang.

The language property is used to control spelling, hyphenation, line-breaking, and justification.
This affects textline composition in a system-dependent way.
This property may be inherited.
The initial value is use-document.
For reference: country (DSSSL:country)is none or a symbol. Specifies the country code in
uppercase.

linespacing (DSSSL:line-spacing)
is a length-specifier giving the normal spacing between the placement-paths of textlines in the
block as described in .
This property may be inherited.
The initial value is 12.0pt.

margin-bottom
is a length-specifier.
Specifies the width of the unprinted area measured inward from the bottom edge of any area.
Specifies the distance from the bottom of the page to the bottom of the lowest area (usually footer)
used for the content in the simple-page-master.
The default value is 0.0pt.

margin-end
is a length-specifier.
Specifies the width of the unprinted area measured inward from the end edge of any area.
Specifies the distance from the edge of the resulting area that is last in the block-progression-
direction's block-progression-direction to the nearest edge of the text area.
The default value is 0.0pt.

margin-left
is a length-specifier.
Specifies the width of the unprinted area measured inward from the left edge of any area.
Specifies the distance from the left edge of the page to the edge of the leftmost area (usually start-side
area) used for the content in the simple-page-master.
The default value is 0.0pt.

margin-right
is a length-specifier.
Specifies the width of the unprinted area measured inward from the right edge of any area.
Specifies the distance from the right edge of the page to the edge of the rightmost area (usually end-
side area) used for the content in the simple-page-master.
The default value is 0.0pt.

margin-start
is a length-specifier.
Specifies the width of the unprinted area measured inward from the start edge of any area.



Extensible Stylesheet Language (XSL)

Page 78

Specifies the distance from the edge of the resulting area that is first in the block-progression-
direction's block-progression-direction to the nearest edge of the text area.
The default value is 0.0pt.

margin-top
is a length-specifier.
Specifies the width of the unprinted area measured inward from the top edge of any area.
Specifies the distance from the bottom of the page to the top of the highest area (usually header) used
for the content in the simple-page-master.
The default value is 0.0pt.

overflow
Specifies the action to be taken if the content of the area does not fit within the dimensions specified
for the area.
Is one of the following:

visible
Get CSS definition.

hidden
Get CSS definition.

scroll
Get CSS definition.

auto
Get CSS definition.

The default value is auto.

page-height (DSSSL:-same-, CSS:height [of a page-box])
is:
l a length-specifier. Specifies the total height of the page (the distance between the top edge of the

page to the bottom edge of the page). -or-
l auto Specifies the formatter shall determine the page height from the paper or window height.
This property is may be inherited.
The initial value is auto.

page-width (DSSSL:page-width, CSS:width [of a page-box])
is:
l a length-specifier. Specifies the total width of the page (the distance between the left edge of the

page to the right edge of the page). -or-
l auto Specifies the formatter shall determine the page width from the paper (trim size) or window

size.
This property is may be inherited.
The initial value is auto.

page-writing-mode (DSSSL:-none-, CSS:-none-)
a writing-mode-specifier.
Specifies the writing-mode and layout directions for a page in a simple-page-master.
This property is not inherited by the simple-page-master's children, but may be accessed,
where so indicated, through the use-page-writing-mode  value of the writing-mode
property.
The initial value is lr-tb.



Extensible Stylesheet Language (XSL)

Page 79

position-point-x
is a length-specifier giving the x-coordinate of the position-point of the resulting area in the
containing area's coordinate system.
This applies only when the formatting object is inline.
This property is not inherited.
If this property is not specified and the writing-mode property is left-to-right or right-
to-left, then the value shall default to 0.

position-point-y
is a length-specifier giving the y-coordinate of the position-point of the resulting area in the
containing area's coordinate system.
This applies only when the formatting object is inline.
This property is not inherited.
If this property is not specified and the writing-mode property is top-to-bottom, then the
value shall default to 0.

position-point-shift
is a length-specifier. Specifies a shift of the position-point in the shift-direction.
The default value is 0.0pt.

queue-name (DSSSL:-none-, CSS:-none-)
A name-specifier.
Defines the name of this queue.

rule-graphic-length
is a length-specifier. Specifies the length of the rule-graphic.
This property is not inherited. If this property is not specified, the length of the rule-graphic
shall be determined by the context in which it is used.

rule-graphic-orientation
is one of the symbols
l horizontal,
l vertical,
l escapement, or
l textline-placement
which specifies the orientation of the rule-graphic and also determines whether the rule-
graphic is inline or block-level.

1. If the orientation is horizontal or vertical, then the rule-graphic is block-
level.
In this case:

l If the orientation of the rule-graphic is perpendicular to the line-progression-direction,
then the size of the area in the line-progression-direction shall be 0;

l If the orientation of the rule-graphic is parallel to the line-progression-direction, the size
of the area in the line-progression-direction shall be equal to the length of the rule-
graphic.

NOTE: The size of the area is distinct from the thickness of the rule-graphic.

2. If the orientation is escapement, then the rule-graphic shall be inline.
In this case, the rule-graphic shall be centered in the shift-direction about the position-
point, and the escapement shall be equal to the length of the rule-graphic. The rule-
graphic may be offset in the shift-direction using the position-point-shift
property.



Extensible Stylesheet Language (XSL)

Page 80

3. If the orientation is textline-placement, the rule-graphic shall be inline.
In this case, the rule-graphic shall start at the position-point and extend in the shift-
direction the length of the rule-graphic.
The escapement shall be 0.

NOTE: Thus, a rule-graphic whose orientation is textline-placement  does not affect the
positioning of subsequent formatting objects.

This property is not inherited.
It has no default value and so it shall be specified.

scale
is a number. Specifies a scaling factor to be applied to the content of the area. Numbers less than 1
shall make the content smaller. Numbers greater than 1 shall make it larger.
This property is not inherited.
If not specified, it shall default to 1.

score-spaces
is a boolean. Specifies whether the scoring shall be applied to spaces.
The default value is true.

space-after-maximum (DSSSL:space-after)
is a length-specifier.
Specifies the maximum-space to be inserted after the areas produced by the formatting object in the
block-progression-direction.
This property is not inherited.
The default is for no space after to be inserted.
Non-core

space-after-minimum (DSSSL:space-after)
is a length-specifier.
Specifies the minimum-space to be inserted after the areas produced by the formatting object in the
block-progression-direction.
This property is not inherited.
The default is for no space after to be inserted.
Non-core

space-after-optimum (DSSSL:space-after)
is a length-specifier.
Specifies the optimum-space to be inserted after the areas produced by the formatting object in the
block-progression-direction.
This property is not inherited.
The default is for no space after to be inserted.

space-before-maximum (DSSSL:space-before)
is a length-specifier.
Specifies the maximum-space to be inserted before the areas produced by the formatting object in the
block-progression-direction.This property is not inherited.
The default is for no space before to be inserted.
Non-core

space-before-minimum (DSSSL:space-before)
is a length-specifier.



Extensible Stylesheet Language (XSL)

Page 81

Specifies the minimum-space to be inserted before the areas produced by the formatting object in the
block-progression-direction.This property is not inherited.
The default is for no space before to be inserted.
Non-core

space-before-optimum (DSSSL:space-before)
is a length-specifier.
Specifies the optimum-space to be inserted before the areas produced by the formatting object in the
block-progression-direction.This property is not inherited.
The default is for no space before to be inserted.

start-side-overflow (DSSSL:-none-, CSS:overflow)
Specifies the overflow behavior for the start-side area.
(See overflow)

start-side-separation (DSSSL:footer-margin, CSS:-none-)
is a length-specifier. Specifies the distance from the edge of the body area to the adjacent start-side
area.
This property may be inherited.
The initial value is 18.0pt.

start-side-size (DSSSL:-none-, CSS:-none-)
A length-specifier.
Specifies the width of the start-side area. If the corresponding queue content is absent, this space
will still be reserved.

start-side-writing-mode (DSSSL:-none-, CSS:-none-)
a writing-mode-specifier or the value use-page-writing-mode .
Specifies the writing-mode within the start-side area of a simple-page-master.
This property is inherited by the start-side-area's children as writing-mode.
The initial value is use-page-writing-mode.

master-name (DSSSL:-none-, CSS:-none-)
A name-specifier.
Specifies the name of a simple-page-master. Used in the page-sequence's sequence-
rule to control activation of this master.
For this draft, master-names are restricted to the values: "first", "odd", "even" or
"scrolling".

text-align (DSSSL:quadding, CSS:text-align)
l DSSSL:

is one of the symbols:

start
Ed. Note: -TBD-

end
Ed. Note: -TBD-

left
Ed. Note: For CSS compatibility, -TBD-



Extensible Stylesheet Language (XSL)

Page 82

right
Ed. Note: For CSS compatibility, -TBD-

center
Ed. Note: -TBD-

justify
Ed. Note: -TBD-

justify-force
Ed. Note: -TBD-

Specifies the alignment of textlines other than the last textline in the block in the line-
progression-direction determined by the writing-mode. A value of spread-inside or
spread-outside shall be allowed only if the formatting object has an ancestor of class page-
master. A value of page-inside or page-outside shall be allowed only if the formatting
object has an ancestor of column-set-master.

l CSS:
is one of the symbols:

left
Specifies that all lines in the paragraph are left-aligned (ragged-right).

center
Specifies that all lines in the paragraph are centered.

right
Specifies that all lines in the paragraph are right-aligned (ragged-left).

justify
Specifies that all lines in the paragraph are justified (spread), except the last/only line which
is left-aligned.

This property may be inherited.
The initial value is start.

text-align-last (DSSSL:last-line-quadding, CSS:-none-)
l DSSSL:

is one of the symbols:

auto
Alignment of the last line in a block shall be the same as text-align, except if text-
align is justify or justify-force, then the alignment of the last line shall be
start.

start
Ed. Note: -TBD-

end
Ed. Note: -TBD-

left
Ed. Note: For CSS compatibility, -TBD-



Extensible Stylesheet Language (XSL)

Page 83

right
Ed. Note: For CSS compatibility, -TBD-

center
Ed. Note: -TBD-

justify
Ed. Note: -TBD-

justify-force
Ed. Note: -TBD-

Specifies the alignment of the last textline in the block in the line-progression-direction
determined by the writing-mode.
A value of auto specifies that the value of the text-align property shall be used, except
when that value is justify or justify-force, in which case, a value of start shall be
used.
A value of spread-inside or spread-outside shall be allowed only if the formatting
object has an ancestor of class page-master. A value of page-inside or page-outside
shall be allowed only if the formatting object has an ancestor of column-set-master.

l CSS: assumes:left
This property may be inherited.
The initial value is auto.
Non-core

block-justification-letterspace-max-add (DSSSL:justify-glyph-space-
max-add)

is a length-specifier. Specifies the maximum space that may be added between glyphs in order to
justify a textline.

NOTE: The interaction between block-justification-letterspace-max-add, block-
justification-letterspace-max-remove, block-justification-wordspace-max, and
block-justification-wordspace-min is system dependent.

This property may be inherited.
The initial value is 0.0pt.

block-justification-letterspace-max-remove (DSSSL:justify-glyph-
space-max-remove)

is a length-specifier. Specifies the maximum space that may be removed between glyphs in order to
justify a textline.

NOTE: The interaction between block-justification-letterspace-max-add, block-
justification-letterspace-max-remove, block-justification-wordspace-max, and
block-justification-wordspace-min is system dependent.

This property may be inherited.
The initial value is 0.0pt.

block-justification-wordspace-max (DSSSL:-none-)
is a number from 100 to 400 indicating the percent of the nominal wordspace width. Specifies the
maximum width that the wordspaces may have in order to justify a textline.

NOTE: The interaction between block-justification-letterspace-max-add, block-
justification-letterspace-max-remove, block-justification-wordspace-max, and
block-justification-wordspace-min is system dependent.

This property may be inherited.



Extensible Stylesheet Language (XSL)

Page 84

The initial value is 200.0%.

block-justification-wordspace-min (DSSSL:-none-)
is a number from 0 to 100 indicating the percent of the nominal wordspace width. Specifies the
minimum width that the wordspaces may have in order to justify a textline.

NOTE: The interaction between block-justification-letterspace-max-add, block-
justification-letterspace-max-remove, block-justification-wordspace-max, and
block-justification-wordspace-min is system dependent.

This property may be inherited.
The initial value is 50.0%.

block-line-breaking (DSSSL:lines)
is a symbol. Specifies how the content of the block shall be broken into textlines in the formatted
output, as follows:

wrap
Specifies that textlines shall be broken so that they fit in the available space.

asis
Specifies that textlines shall be broken only after characters for which the char-is-
record-end property is true.

asis-wrap
Specifies that textlines shall be broken after characters for which the char-is-record-
end property is true, and as necessary to make textlines fit in the available space.

asis-truncate
Specifies that textlines shall be broken only after characters for which the char-is-
record-end property is true, and that textlines that do not fit the in the available space
shall be truncated.

none
Specifies that textlines shall not be broken at all.

NOTE: This is useful in tables when the table-width property is auto to ensure that the
width of a column is made large enough so that the content of a cell fits on a single textline.

In all cases, textline breaks shall also be allowed where explicitly specified with the break-
before or break-after properties.
This property may be inherited.
The initial value is wrap.

width
is a length-specifier. Specifies the width of the area.
This property is not inherited.

writing-mode (DSSSL:-same-)
a writing-mode-specifier.
May be specified and is used by most text and layout objects.
This property may be inherited.
The initial value is left-to-right.



Extensible Stylesheet Language (XSL)

Page 85

Appendices

A. DTD for XSL Stylesheets
The following entity can be used to construct a DTD for XSL stylesheets that create instances of a
particular result DTD. Before referencing the entity, the stylesheet DTD must define a result-
elements parameter entity listing the allowed result element types. For example:

<!ENTITY % result-elements "
  | fo:sequence
  | fo:block
">

The stylesheet DTD may also need to define additional attributes for xsl:attribute-set.

<!ENTITY % instructions "
  | xsl:process-children
  | xsl:process
  | xsl:for-each
  | xsl:value-of
  | xsl:number
  | xsl:choose
  | xsl:if
  | xsl:contents
  | xsl:invoke
  | xsl:text
">

<!ENTITY % template "
 (#PCDATA
  %instructions;
  %result-elements;)*
">

<!ENTITY % space-att "xml:space (default|preserve) #IMPLIED">

<!ELEMENT xsl:stylesheet
 (xsl:import*,
  (xsl:include
  | xsl:id
  | xsl:strip-space
  | xsl:preserve-space
  | xsl:define-macro
  | xsl:define-attribute-set
  | xsl:define-constant
  | xsl:template)*)
>

<!ATTLIST xsl:stylesheet
  result-ns NMTOKEN #IMPLIED
  default-space (preserve|strip) "preserve"
  indent-result (yes|no) "no"
  id ID #IMPLIED
  xmlns:xsl CDATA #FIXED "http://www.w3.org/TR/WD-xsl"
  %space-att;
>

<!-- Used for attribute values that are URIs.-->



Extensible Stylesheet Language (XSL)

Page 86

<!ENTITY % URI "CDATA">

<!-- Used for attribute values that are patterns.-->
<!ENTITY % pattern "CDATA">

<!-- Used for attribute values that are a priority. -->
<!ENTITY % priority "NMTOKEN">

<!ELEMENT xsl:import EMPTY>
<!ATTLIST xsl:import href %URI; #REQUIRED>

<!ELEMENT xsl:include EMPTY>
<!ATTLIST xsl:include href %URI; #REQUIRED>

<!ELEMENT xsl:id EMPTY>
<!ATTLIST xsl:id
  attribute NMTOKEN #REQUIRED
  element NMTOKEN #IMPLIED
>

<!ELEMENT xsl:strip-space EMPTY>
<!ATTLIST xsl:strip-space element NMTOKEN #REQUIRED>

<!ELEMENT xsl:preserve-space EMPTY>
<!ATTLIST xsl:preserve-space element NMTOKEN #REQUIRED>

<!ELEMENT xsl:template %template;>
<!ATTLIST xsl:template
  match %pattern; #REQUIRED
  priority %priority; #IMPLIED
  %space-att;
>

<!ELEMENT xsl:attribute-set EMPTY>

<!ATTLIST xsl:attribute-set
  xsl:use NMTOKENS #IMPLIED
>

<!ELEMENT xsl:process-children EMPTY>

<!ELEMENT xsl:value-of EMPTY>
<!ATTLIST xsl:value-of expr CDATA #IMPLIED>

<!ENTITY % conversion-atts '
   format CDATA "1"
   xml:lang NMTOKEN #IMPLIED
   letter-value (alphabetic|other) #IMPLIED
   digit-group-sep CDATA #IMPLIED
   n-digits-per-group NMTOKEN #IMPLIED
   sequence-src %URI; #IMPLIED
'>

<!ELEMENT xsl:number EMPTY>
<!ATTLIST xsl:number
   level (single|multi|any) "single"
   count CDATA #IMPLIED
   from CDATA #IMPLIED



Extensible Stylesheet Language (XSL)

Page 87

   %conversion-atts;
>

<!ELEMENT xsl:process EMPTY>
<!ATTLIST xsl:process
  select %pattern; #REQUIRED
>

<!ELEMENT xsl:for-each %template;>
<!ATTLIST xsl:for-each
  select %pattern; #REQUIRED
  %space-att;
>

<!ELEMENT xsl:if %template;>
<!ATTLIST xsl:if
  test %pattern; #REQUIRED
  %space-att;
>

<!ELEMENT xsl:choose (xsl:when+, xsl:otherwise?)>
<!ATTLIST xsl:choose %space-att;>

<!ELEMENT xsl:when %template;>
<!ATTLIST xsl:when
  test %pattern; #REQUIRED
  %space-att;
>

<!ELEMENT xsl:otherwise %template;>
<!ATTLIST xsl:otherwise %space-att;>

<!ELEMENT xsl:define-attribute-set (xsl:attribute-set)>
<!ATTLIST xsl:define-attribute-set
  name NMTOKEN #REQUIRED
>

<!ELEMENT xsl:define-constant EMPTY>
<!ATTLIST xsl:define-constant
  name NMTOKEN #REQUIRED
  value CDATA #REQUIRED
>

<!-- xsl:macro-arg cannot occur after any other elements or
any non-whitespace character -->

<!ELEMENT xsl:define-macro
 (#PCDATA
  %instructions;
  %result-elements;
  | xsl:macro-arg)*
>

<!ATTLIST xsl:define-macro
  name NMTOKEN #REQUIRED
  %space-att;
>



Extensible Stylesheet Language (XSL)

Page 88

<!ELEMENT xsl:macro-arg EMPTY>
<!ATTLIST xsl:macro-arg
  name NMTOKEN #REQUIRED
  default CDATA #IMPLIED
>

<!-- This is allowed only within xsl:define-macro -->
<!ELEMENT xsl:contents EMPTY>

<!-- xsl:arg cannot occur after any other elements or
any non-whitespace character -->

<!ELEMENT xsl:invoke
 (#PCDATA
  %instructions;
  %result-elements;
  | xsl:arg)*
>

<!ATTLIST xsl:invoke
  macro NMTOKEN #REQUIRED
  %space-att;
>

<!ELEMENT xsl:arg EMPTY>
<!ATTLIST xsl:arg
  name NMTOKEN #REQUIRED
  value CDATA #REQUIRED
>

<!ELEMENT xsl:text (#PCDATA)>
<!ATTLIST xsl:text %space-att;>

B. References

B.1 Normative References

W3C XML
World Wide Web Consortium. Extensible Markup Language (XML) 1.0. W3C Recommendation. See
http://www.w3.org/TR/1998/REC-xml-19980210

W3C XML Names
World Wide Web Consortium. Namespaces in XML. W3C Working Draft. See
http://www.w3.org/TR/WD-xml-names

B.2 Other References

CSS2
World Wide Web Consortium. Cascading Style Sheets, level 2 (CSS2). W3C Recommendation. See
http://www.w3.org/TR/1998/REC-CSS2-19980512

DSSSL
International Organization for Standardization, International Electrotechnical Commission. ISO/IEC
10179:1996. Document Style Semantics and Specification Language (DSSSL). International Standard.



Extensible Stylesheet Language (XSL)

Page 89

C. Examples (Non-Normative)
The following is a simple but complete stylesheet.

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl"
                xmlns:fo="http://www.w3.org/TR/WD-xsl/FO"
                result-ns="fo"
                indent-result="yes">
<xsl:template match='/'>
 <fo:page-sequence font-family="serif">
  <fo:simple-page-master name='scrolling'/>
  <fo:queue queue-name='body'>
   <xsl:process-children/>
  </fo:queue>
 </fo:page-sequence>
</xsl:template>

<xsl:template match="title">
 <fo:block font-weight="bold">
  <xsl:process-children/>
 </fo:block>
</xsl:template>

<xsl:template match="p">
 <fo:block>
  <xsl:process-children/>
 </fo:block>
</xsl:template>

<xsl:template match="emph">
 <fo:sequence font-style="italic">
  <xsl:process-children/>
 </fo:sequence>
</xsl:template>

</xsl:stylesheet>

With the following source document

<doc>
<title>An example</title>
<p>This is a test.</p>
<p>This is <emph>another</emph> test.</p>
</doc>

it would produce the following result

<fo:page-sequence xmlns:fo="http://www.w3.org/TR/WD-xsl/FO"
  font-family="serif">
<fo:simple-page-master name="scrolling"/>
<fo:queue queue-name="body">
<fo:block font-weight="bold">An example</fo:block>
<fo:block>This is a test.</fo:block>
<fo:block>This is <fo:sequence
  font-style="italic">another</fo:sequence> test.</fo:block>
</fo:queue>
</fo:page-sequence>



Extensible Stylesheet Language (XSL)

Page 90

D. Design Principles (Non-Normative)
In the design of any language, trade-offs in the solution space are necessary. To aid in making these trade-
offs the follow design principles were used:

• XSL should support browsing, printing, and interactive editing and design tools
• XSL should be capable of specifying presentations for traditional and Web environments
• XSL should support interaction with structured information, as well as presentation of it.
• XSL should support all kinds of structured information, including both data and documents.
• XSL should support both visual and non-visual presentations.
• XSL should be a declarative language.
• XSL should be optimized to provide simple specifications for common formatting tasks and not

preclude more sophisticated formatting tasks.
• XSL should provide an extensibility mechanism
• The number of optional features in XSL should be kept to a minimum.
• XSL should provide the formatting functionality of at least DSSSL and CSS
• XSL should leverage other recommendations and standards, including XML, XLL, DOM, HTML and

ECMAScript.
• XSL should be expressed in XML syntax.
• XSL stylesheets should be human-readable and reasonably clear.
• Terseness in XSL markup is of minimal importance.

E. Acknowledgements (Non-Normative)
The following have contributed to authoring this draft:

• Sharon Adler, Inso Corporation
• Anders Berglund, Inso Corporation
• Paul Grosso, ArborText
• Eduardo Gutentag, Sun Microsystems
• Chris Lilley, W3C
• Chris Maden, O'Reilly & Associates
• Jonathan Marsh, Microsoft Corporation
• Henry S. Thompson, University of Edinburgh
• Paul Trevithick, Bitstream
• Norman Walsh, ArborText
• Steve Zilles, Adobe


