SOMobjects Developer’s Toolkit
Programmer’s Guide, Volume I: SOM and DSOM
SOMobjects Version 3.0

Note: Before using this information and the product it supports, be sure to read the
general information under Notices on page iii.

Second Edition (December 1996)

This edition of Programmer’s Guide, Volume |: SOM and DSOM applies to SOMobjects Developer’s Toolkit for
SOM Version 3.0 and to all subsequent releases of the product until otherwise indicated in new releases or
technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: IBM CORPORATION PROVIDES THIS MANUAL “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions; therefore, this statement may not apply
to you.

IBM Corporation does not warrant that the contents of this publication or the accompanying source code
examples, whether individually or as one or more groups, will meet your requirements nor that the publication or
the accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes are incorporated in new editions of the publication. IBM Corporation might
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any
time.

This publication might contain references to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not be
construed to mean that IBM Corporation intends to announce such IBM products, programming, or services in
your country. Any reference to an IBM licensed program in this publication is not intended to state or imply that
you can use only the IBM licensed program. You can use any functionally equivalent program instead.

To initiate changes to this publication, submit a problem report from the technical support web page at URL: http://
www.austin.ibm.com/somservice/supform.html. Otherwise, address comments to IBM Corporation, Internal Zip
1002, 11400 Burnet Road, Austin, Texas 78758-3493. IBM Corporation may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

Requests for copies of this publication and for technical information about IBM products should be made to your
IBM Authorized Dealer or your IBM Marketing representative.

© Copyright IBM Corporation 1996. All rights reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Notices

IBM Corporation may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate AlX, OS/2, or Windows programming technigues. You may copy and distribute these sample programs
in any form without payment to IBM Corporation, for the purposes of developing, using, marketing, or distributing
application programs conforming to the AlX, OS/2, or Windows application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: “© (your company name) (current year), All Rights Reserved.” However, the
following copyright notice protects this documentation under the Copyright Laws of the United States and other
countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and making derivative
works.

References in this publication to IBM products, program, or services do not imply that IBM Corporation intends to
make these available in all countries in which it operates.

Any reference to IBM licensed programs, products, or services is not intended to state or imply that only IBM
licensed programs, products, or services can be used. Any functionally-equivalent product, program or service
that does not infringe upon any of the IBM Corporation intellectual property rights may be used instead of the IBM
Corporation product, program, or service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM Corporation, are the user’s responsibility.

IBM Corporation may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries in
writing to the:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, New York 10594, USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of
information between independently created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
Department 931S

11400 Burnet Road
Austin, Texas 78758 USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

Asia-Pacific users can inquire, in writing, to the:

IBM Director of Intellectual Property and Licensing

IBM World Trade Asia Corporation,

2-31 Roppongi 3-chome,

Minato-ku, Tokyo 106, Japan
This publication contains examples of data and reports used in daily business operations. To illustrate them as
completely as possible, the examples include the names of individuals, companies, brands, and products. All of

these names are fictitious and any similarity to the names and addresses used by an actual business enterprise
is entirely coincidental.

Notices iil

Trademarks and Acknowledgements

AlX is a trademark of International Business Machines Corporation.
FrameViewer is a trademark of Frame Technology.

IBM is a registered trademark of International Business Machines Corporation.
0S/2 is a trademark of International Business Machines Corporation.

SOM is a trademark of International Business Machines Corporation.
SOMobiject is a trademark of International Business Machines Corporation.
Windows and Windows NT are trademarks of Microsoft Corporation.

Java and Java-based trademarks and logos are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and other countries. IBM is independent of Sun
Microsystems, Inc.

iV Programmer's Guide for SOM and DSOM

Contents

Chapter 1. Introduction to the SOMobjects Toolkit 1
Introducing SOM and the SOMobjects Toolkit 1
The SOM Compiler. e 2
The SOM Run-Time Library e 3
Frameworks provided in the SOMobjects Toolkit. 3
Distributed SOM 3
Interface Repository Framework i 4
Emitter Framework 4
Metaclass Framework 4
What's New And Changed in SOMobjects Version 3.0 4
General Enhancements 4
SOMobjects on the World Wide Web 4
Configuration Information 4
SOMobjects Enhancements. i 5
DSOM Enhancements 6
Metaclass Framework Enhancements 7
ObjeCt ServiCeS e 7
Externalization Service 7
Naming ServiCe e 7
Object Identity Service i 7
SECUMLY SEeIVICE . ..ot e e 8
Migration Considerations i 8
Overview of the Programmers Guide 8
Chapter 2. Configuration and Startup, 11
A Quick Guide to Configuration 11
Configuring and Customizing a New Installation 12
Configuration StePS 12
Register User Applications 12
Running the Sample Programs as an Installation Test 13
Step 1. Installation and Operating System Environment Variables 13
Step 2. Generate Header Files 13
Step 3. Customize Settings in the ConfigurationFile 14
Is Customization Required? i 14
The Configuration File 15
Syntax of the Configuration File 15
Processing the Configuration Files. 15
Configuration File Stanzas i 16
ErrorLog Facility 16
SECUMNLY SEIVICE . ..o e e 17
Naming ServiCe e 17
Interface RepOSItOry 18
SOM Utilities and Metaclass Framework 18
DSOM Configuration 18
DSOM IPC . 20
DSOM TCP/IP . .ot e e 22
DSOM NetBIOS ... e 22
SOMobjects Java Client 22

Step 4.Issue somdchK 23
Sample somdchk Output for AIX 23

Step 5. Issuing the Configuration Command 24

Contents V

Vi

Selectingthe Install Host 24

Configuring the Install Host., 24
Copying the GLOBAL_OBJREF FILE 25
Configuring DSOM HOSESo 26
Naming Service CONCEPLS oo e 27
SHUCTUNE . . 27
Factory ServiCe 28
Reconfiguring DSOM 28
Alternative Configurations. 28
Specifying an Alternative Configuration 29

Step 6. Configuring User Applications 29
Registering Class Interfaces i 30
Registering Serversand Classest 31
Implementation Definitions 31
The regimpl Registration Utility 32
Registering Servers 32
Reqistering Classes i 33
Registration Steps Using regimpl 33
Adding Implementations 34
Adding Classes 35
Command Line Interface toregimpl 36
Programmatic Interface to the Implementation Repository. 38
The Naming Service and Registering Serversoo.. .. 40
Customizing ImplementationDef Objects 41
Migration Relationship to the 2.x Implementation Repository. 42
Differences between 2.xand 3.X i 42
Migrating 2.x Implementation Repositories to Current DSOM Format 44
MOVING SeIVEIS. . . .o 45
Checking Configuration Values 45
Using SOMUtgeteNV 46
Using somutgetshellenv 46
UsiNg SOMULreSeteNV e 46
Chapter 3. Tutorial for Implementing SOM Classes 49
Basic Concepts of SOM e 49
Attributes versus Instance Variables. L. 52
Basic Steps for Implementing SOM Classesiiaa... 53
Usingthe Tutorial 54
Sequence of the Tutorial Examples i i 54
Example 1. Implementing a Simple Class with One Method 55
Example 2. Adding an Attribute tothe HelloClass 58
Example 3. Overriding an Inherited Method 60
Example 4. Initializing a SOM Object 63
Example 5. Using Multiple Inheritance 65
Continuation of SOM e 68
Chapter 4. Using SOM Classes in Client Programs 69
Example Client Program Using ASOMCIass 70
SOM Classes: The BaSICSo vt e e 71
Declaring Object Variables 71
Creating InstancesofaClass. 72
Invoking Methods on Objects i 76
Making Typical Method Calls 76
Accessing Attributes 80

Programmer’s Guide for SOM and DSOM

Usingva listMethods 80

Using Name-Lookup Method Resolution 84
A Name-Lookup Example 86
Obtaining a Method’s Procedure Pointer 88
Method Name or Signature Unknown at Compile Time 90
Using Class ObjJectS e e e e 90
Gettingthe Classof anObject i ... 90
Creatinga Class Object 91
Referringto Class Objects 94
Compilingand Linking 95
Language-Neutral Methods and Functions 96
Generating QUIPUL 96
Getting Information abouta Class 96
Getting Information aboutan Object. 98
Debugging 99
Checking the Validity of Method Calls 100
Exceptions and Error Handling. 100
Introduction to EXCeptions 101
The Environment e 103
Setting an Exception Value 103
Getting an Exception Value 103
Example Of Raising an Exception 104
The Error Log Facility e 107
Configuringthe Error Log.o oo 107
Name of the Error Log File 107
Sizeofthe ErrorLog 107
Type of Information ToRecord 107
Display Error Messages 107
Using The Error LOg e e e 108
Understanding Error Log Entries 108
Locating the Correct Log File 110
Memory Management 110
Using SOM Equivalents to ANSI C Functions 110
Clearing Memory for Objects i 111
Clearing Memory for the Environment 111
SOM Manipulations Usingsomld 111
Chapter 5. SOM Interface Definition Language 115
Interface versus Implementation i 115
SOM Interface Definition Language 116
Include DIreCtiveso e 117
Type and Constant Declarations 118
Integral TYpes 118
Floating Point TYpes e 118
Character TYpe . ..o 118
Boolean Type 118
OCtet TYPE . . oo 119
ANY YD Lo 119
Constructed TYPES . ..o 119
Template Types (Sequences and Strings)ccooo .. 122
AT Y S ot e e 124
POINterS . . 124
ObJECt TYPES . oottt 124
Exception Declarations. 125

Contents Vi

Standard Exceptions Prescribed by OMG 126

Interface Declarations. e 127
Constant, Type and Exception Declarations. 128
Attribute Declarations e 129
Method Declarations. 130
Oneway Keyword 130
Parameter List 130
RaiSES EXPresSioNttt 131
Context EXPression 132
Implementation Statements 132
Modifier Statements 133
Declaring Instance Variables and Staticdata Variables 145
Passing Parameters by Copying i 146
Passthru Statements 147
Introducing non-IDL Data TypesorClasses 148
Comments withina SOM IDL File. 149
Designating Private Methods and Attributes. 149
Defining Multiple Interfacesina .idlFile. 150
Scoping and Name Resolution 151
Name Usage in Client Programs 151
Extensions to CORBA IDL permitted by SOMIDL 152
PoiNter * TYPeS . o 152
UNSigned TYPES . . oot 153
Implementation Section 153
CommeNnt ProCeSSING . ..ot 153
Generated Header Files i 153
Chapter 6. The SOM Compiler e 155
Generating Binding Files 155
Binding Files Created By The CEmitters.. 155
Binding Files Created By The C++ Emitters. 156
Other Files the SOM Compiler Generates 157
Porting SOM Classes e e 159
Environment Variables Affecting the SOM Compiler 159
Running the SOM Compiler e 161
The pdl Facility 167
Using pdl To Maintain Common Versionsofan IDLFile 167
pdl Simplification of Conditional Expressions 168
Syntax of the pdl Command 168
Chapter 7. Implementing Classes in SOM 171
SOM Run-Time Environment e 171
Run-Time Environment Initialization. 171
SOMODbjectClass Object 172
SOMClass Class Object 172
SOMClassMgr Class Object and SOMClassMgrObject 173
Parent Class versus Metaclass. i 174
INhErItaNCEe 176
Techniques for Deriving Subclasses. 177
Deriving Classes through Inheritance 177
Deriving Classes through Specialization 177
Deriving Classes through Addition 177
Multiple Inheritance. 177
Resolving Problems with Multiple Inheritance 177

Viii Programmer's Guide for SOM and DSOM

SOM-Derived Metaclasses.o it 180

Method ResoIUtion e 183
Four kinds of SOM Methods. 184
Static Methods 184
Nonstatic Methods 184
Dynamic Methods 184
Direct-Call Procedures e 185
Offset ResolUtion 185
Name-Lookup Resolution. 186
Dispatch-Function Resolution. 187
Customizing Method Resolution. 187
Implementing SOM Classes 187
Implementation Template. 188
Stub Procedures for Methods 189
Extending the Implementation Template 191
Accessing Internal Instance Variables 191
Making Parent Method Calls 192
Converting C++ Classesto SOMClassesccuv.... 192
Running Incremental Updates of the Implementation Template File 193
Compilingand Linking 195
Initializing and Uninitializing Objects 195
Initializer Methods. e 196
Declaring New Initializersin SOMIDL 197
Considerations somlnit Initialization from Earlier SOM Releases 199
Implementing Initializers 200
Selecting non-Default Ancestor InitializerCalls 201
Using Initializers when Creating New Objects 201
Uninitialization 202
Using somDestruct 203

A Complete Example e 203
Implementation Code 204
Customizing the Initialization of Class Objects. 210
Creating SOM Class Libraries 210
General Guidelines for Class Library Designers 211
Types of Class Libraries. 211
Building Export Files. 212
Specifying the Initialization and Termination Function 215
Running the imod Emitter 216
Creatingthe Class Library 217
Building a SOM Library Implemented with C++ on AIX 220
Exporting Variables on Windows NT i 221
Other Considerations e 222
Customizing Memory Management 222
Customizing Class Loadingand Unloading 223
Customizing Class Initialization 223
Customizing DLLLoading 224
Customizing DLLUNloading. e 225
Customizing Character OUtPUL e e 225
Customizing ErrorHandling 226
Chapter 8. Distributed SOM 229
DSOM Definition e 229
DSOM Features e 229
DSOM USage . . . vt e 230

Contents X

X

Chapter Outline. 230

DSOM OVEIVIEW ettt ettt e e e e e e e e e 231
Limitations. o 232
DSOM Tutorial e 233
Application Components. 233
The Stack Interface 233
Changing a Client Program from a Local to a Remote Stack 234
Stack Server Implementation 238
Compiling the Application 239
Preparing to Run an Application. i 239
Preparing the Environment 239
Registering the Stack Class in the Interface Repository 239
Startingthe DSOM Daemon i, 240
Registering the Server in the Implementation Repository 240
Running the Application 241
Stack Example Run-Time Scenario 241
SUMIMIAIY o e e e e e 243
Basic Client Programmingt 243
Initializing a Client Program e 244
The ORB Object e 244
The SOMD_Init Function i 244
Finding Initial Object References 244
Creating Remote Objects 245
Findinga SOM Object Factory, 245
Creating an Object fromaFactory 247
Using the somdCreate Function 249
Finding Existing Objects 250
Making Remote Method Calls. 250
Remote Object Invocation Methods 250
Object Reference Passingin Method Calls 251
Memory Allocation and Ownership 252
Memory-Management FUNCLIONSt 256
Advanced Memory-Management Options 257
Passing Objects by Copying 261
Passing Foreign Data Types 262
Destroying Remote Objects 265
Inquiring about a Remote Object Interface or Implementation. 266
Working with Object References. i, 266
Saving and Restoring Referencesto Objects. 267
Exitinga Client Program. i 269
Maintaining Thread Safety 269
Writing Clients that are also Servers. i i 269
Writing Distributed Workplace Shell Applications. 270
Compiling and Linking Clients. 270
Designing Local/Remote Transparent Programs 271
Class Objects e 271
Object Creation i 272
Using Factoriesto Create Objects i 272
Using Factories While Controlling Memory Allocation 273
Gaining Access to ExistingObjects 275
Proxy versus Object Destruction, 275
Memory Management of Parameters 276
Distribution Related Errors 277
Generating and Resolving Object References 277

Programmer’s Guide for SOM and DSOM

Support for CORBA Specified Interfaces to Local Objects 277

Data Types not Supported In Distributed Interfaces 278
SOM Objects That Do not Have IDL Interfaces 278
Procedure Methods 278
Global Variables 278
Class Datao 278
Class Methods 278
Direct Instance Data ACCESSo it e 278
Passing Objectsby Value i, 278
Object Invocation: Synchronous, Oneway, Deferred Synchronous and
ASYNCNIONOUSt 279
Summary of Local/Remote Guidelines. 279
Method Classification for Local/Remote Transparency 281
Terms Used in Method Classification 281
Basic Server Programming it 286
Server RUN-TiMe ObJeCtS.o e 287
Server Implementation Definition 287
SOM Object Adapter 288
Server object (SOMDSErver) 288
Server ACtivation 289
Example Server Program 290
Initializing a Server Program i 291
Initializing the DSOM Run-Time Environment 291
Initializing the Server’s ImplementationDef 291
Initializing the SOM Object Adapter 292
When Initialization Fails 292
Processing ReQUESESo 293
Exiting a Server Program 293
Managing Objectsinthe Server. 294
Object References (SOMDObjects) 294
ReferenceData 295
Creating Simple SOM Object References 296
Creating Application-Specific Object References 296
Example: Writing a Persistent Object Server 298
Validity Checking in somdSOMObjFromRef 301
Customizing Factory Creation 302
Customizing Method Dispatching. 303
Identifying the Source of aRequest i 303
Compiling and Linking Servers. 304
Implementing Classes 304
Using SOM Class Libraries 304
Role of somdsvr 304
Role of SOMOA . . 305
Role of SOMDSEIVEr 305
Implementation Constraints 305
Using Other Object Implementations 306
Wrapping a Printer APL 306
Building and Registering Class Libraries 308
Running DSOM Applications e 308
Runningthe DSOM Daemon it e 308
RUNNiNg DSOM Servers. e e e e 309
Running the Client Program i e 310
Running Workgroup Applications 310
Freeing Interprocess Communication Resourceson AIX. 310

Contents X

Xii

Advanced TOPICSot 310

Peer versus Client-Server Processes. 310
Multi-Threaded DSOM Programs, 311
Dynamic Invocation Interface 311
The NamedValue Structure e 312

The NVLISt Classo e 314
Creating Argument Lists i 314
Buildinga Request 315
Initiating a Request 316
Example Code 317
Building a Client-Only stub DLL 318
Creating User-Supplied Proxies i 319
Customizing the Default Base Proxy Class 322
Error Reporting and Troubleshooting Hints 323
Error REpoOrting 323
DSOM Eror Codes.ot 323
Fatal ErrorS. . ..o 323
Troubleshooting HiNts. e 323
Checkingthe DSOM Setup oo e 323
Analyzing Problem Symptoms 325
Unexplained Program Crashes, 326
DSOM as a CORBA-Compliant Object Request Broker 327
Object Request Broker Run-Time Interfaces 328
Object References and Proxy Objects 329
Interface Definition Language. i 331
CLanguage Mappingo ittt e 331
Dynamic Invocation Interface 331
Implementations e 331
SIS . 332
Object Adapters 332
ORB-t0-ORB Interoperability 333
DSOM LImMitations.ot e 334
DSOM EXtENSIONS.t 334
Deprecated DSOM Objects and Methods 335
Chapter 9. The Interface Repository Framework 337
Using the SOM Compiler to Build an Interface Repository 337
Managing Interface Repository Files 338
The SOM IR File som.ir e e 338
Managing IRs With the SOMIR Environment Variable 339
Placing private Information in the Interface Repository 340
Programming with the Interface Repository Objects 340
Methods Introduced by Interface Repository Classes 341
Contained Classt 342
Container Class 342
ModuleDef Classt 342
InterfaceDef Class 342
AttributeDef Class 343
OperationDef Class e 343
ParameterDef Class 343
TypeDef Class 343
ConstantDef Class 343
ExceptionDef Class 343
Repository Class 343

Programmer’s Guide for SOM and DSOM

Accessing Objects in the Interface Repository. 343

A Word about Memory Management i 346
Using TypeCode Pseudo-Objects 346
Providing alignment Information 349
Using tk_foreign TypeCode 350
TypeCode COoNStantsttt e 351
Usingthe IDL Basic Type anyttt 351
Building an Index for the Interface Repository 354
) 162 G 354
RetUrn MeSSages ... ot 354
Examples of IRINDEX USE e 355
Chapter 10. The Metaclass Framework 357
A Note about Metaclass Programming 358
Framework Metaclasses for before/after Behavior 358
SOMMBeforeAfter Metaclass. 359
SOM IDL for ‘Barking’ metaclass 360

C implementation for ‘Barking’ metaclass 360
Composition of before/after Metaclasses. 361
Notes and Advantages of before/after 364
SOMMSinglelnstance Metaclass 364
SOMMTraced Metaclass e 365
SOM IDL for TracedDog class 366
SOMMProxyFor Metaclass 366
Static Creation of Proxy Classes 367
Dynamic Creation of Proxy Classes.t 367
Implementation Revealing Methods 368
Proxies and the Composition of Metaclasses. 368
Chapter 11. Emitter Framework 369
Structure of the Emitter Framework 370
The Object Graph Builder. 370
The Entry ClasSesot e e 371
The Emitter Class.o 371
The Template Class and Template Definitions. 371
Emitter Framework Classesot 371
SOMTEMILC . . . oo 372
SOMTTemplateOutputC.o e e 375
SOMTEnNtryC and SOMTClassentryC 376
SOMTENIIYC . .o 377
SOMTCoOMMONENtryC ... e 378
SOMTCIlassEntryC 378
SOMTBaseClassEntryC i 378
SOMTMetaClasseEntryC e 379
SOMTModuleENtryC 379
SOMTPassthruENntryC 379
SOMTTypedefEntryC e 379
SOMTDataENtryC 379
SOMTALttributeENtryC 379
SOMTMethodENntryC 380
SOMTParameterENtryC e 380
SOMTCONSIENIrYC . .. e 380
SOMTENUMENrYC . .. e e e 380
SOMTSequenceENntryC 380

Contents Xili

Xiv

SOMTSHNgENtryC 380

SOMTUNIONENtYC e 381
SOMTEnumNameENtryC e 381
SOMTSHUCIENIIYC . . e e e e 381
SOMTUserDefinedTypeEntryC 381
Writing an Emitter: the BasiCs i 381
The newemit Facility e 381
Running the newemit Program 381
Designing the Output File 382
Constructing an Output Template. 382
Customizing Emitter Control Flow. 383
Compiling and Running the New Emitter 384
Debuggingan Emitter. 384
Writing an Emitter: Advanced TOPICSottt 385
Defining New Symbols 385
Customizing Section-Emitting Methods 387
Changing Section Names. e 387
Shadowing 388
Handling Modules. 389
Error Handling. 389
Standard Symbols 390
Symbols by Section Validity 390
Symbols by Entry Class Availability 392
For SOMTENtryC Class e 392

For SOMTCommonEntryC Class 393

For SOMTAttributeEntryC Class i 393

For SOMTENUMENtryC Classt e 393

For SOMTClassEntryC Class ..., 393

For SOMTCoNnStENtryC Classot e 394

For SOMTMethodEntryC Class oot 394

For SOMTParameterEntryC Class, 394

For SOMTPassthruEntryC Class 395

For SOMTSequenceEntryC Class 395

For SOMTStringENntryC Classo e 395

For SOMTTypedefEntryC Class 395

The Section-Name symbols 395
Appendix A. Error Codes 397
Special Error COOesttt 397
SOMKernel Error Codeso ot e 397
DSOM Error Codeso e e 398
Externalization Service Error Codes 404
Naming Service Error Codes i 406
Security Service Error Codes 408
Object Services (OS) ServerErrorCodes 410
Metaclass Framework Error Codes 415
Appendix B. Converting OIDL Filesto IDL 417
To Convertor NOtto CONVENt e 417
Converting .csc Filesto .idl Files 417
Adding Type Information 420
Appendix C. SOM IDL Language Grammaruueennnnnnn.. 421

Programmer’s Guide for SOM and DSOM

Contents XV

XVi Programmer's Guide for SOM and DSOM

Figures

Figure 1. Naming Service entries made by DSOM when a server is associated with a class 27
Figure 2. Typical class, metaclass and object relationships 51
Figure 3. Name-Lookup Resolution 86
Figure 4. Class methods versus instance methods. i 173
Figure 5. The SOM run-time environment provides four primitive objects,

three of them class objects. 174
Figure 6. Characteristics of Parent Class versus Metaclass. 175
Figure 7. Derivation of Parent Classes and Metaclasses oL, 176
Figure 8. Multiple Inheritance can Create Naming Conflicts. 178
Figure 9. Resolution of Multiple-Inheritance Ambiguities. 179
Figure 10. Example of Metaclass Incompatibility i i 181
Figure 11. Example of a Derived Metaclass. e 182
Figure 12. Multiple inheritance in SOM requires derived metaclasses. 183
Figure 13. Search Order for Name-Lookup Resolution. 186
Figure 14. A Default Initializer Ordering of a Class’s Inheritance Hierarchy. 197
Figure 15. DSOM run-time environmMeNntt 243
Figure 16. Construction of a Proxy Classt 330
Figure 17. The primitive objects of the SOM runtime. 357
Figure 18. Class organization of the Metaclass Framework. 358
Figure 19. A hierarchy of metaclasses 359
Figure 20. Example for composition of before/after metaclasses 362
Figure 21. Relationships of the three techniques for "FierceBarkingDog" 363
Figure 22. All methods (inherited or introduced) invoked on "Collie" are traced 365
Figure 23. Example of a proxy forthe "Dog" class 367
Figure 24. Structure of the SOM Compiler e 369
Figure 25. Structure of the SOM Emitter Framework 370
Figure 26. Entry Class Hierarchy e 377

Figures XVii

XViii Programmer's Guide for SOM and DSOM

Chapter 1. Introduction to the SOMobjects Toolkit

This chapter provides a brief introduction to the SOMobjects Developer’s Toolkit.

Introducing SOM and the SOMobjects Toolkit

The System Object Model (SOM) is a unified object-oriented programming technology for
building, packaging and manipulating binary class libraries.

* With SOM, you describe the interface for a class of objects; names of the methods it
supports, the return types, parameter types, and so forth, in a standard language called
the Interface Definition Language (IDL).

e You then implement methods in your preferred programming language; an object-
oriented programming language or a procedural language such as C.

Programmers can begin using SOM quickly. SOM extends the advantages of object-
oriented programming to programmers who use non-object-oriented programming
languages.

SOM accommodates changes in implementation details without breaking the binary
interface to a class library or requiring recompiling client programs. If changes to a SOM
class do not require source code changes in client programs, then those client programs do
not need to be recompiled. SOM classes can undergo the following structural changes, yet
retain full backward, binary compatibility:

* Adding new methods

» Changing the size of an object by adding or deleting instance variables

* Inserting new parent (base) classes above a class in the inheritance hierarchy
* Relocating methods upward in the class hierarchy

You can make the typical kinds of changes to an implementation and its interfaces that
evolving software systems experience over time without starting over.

SOM is language-neutral. It preserves the key object-oriented programming characteristics
of encapsulation, inheritance and polymorphism, without requiring that the user and the
creator of a SOM class use the same programming language. SOM is said to be language-
neutral for the following reasons:

» All SOM interactions consist of standard procedure calls. On systems with a standard
linkage convention for system calls, SOM interactions conform to those conventions.
Thus, most programming languages that can make external procedure calls can use
SOM.

* The form of the SOM Application Programming Interface (API) can vary widely from
language to language, due to SOM bindings. Bindings are a set of macros and
procedure calls that make implementing and using SOM classes more convenient by
tailoring the interface to a particular programming language.

e SOM supports several mechanisms for method resolution that can be readily mapped
into the semantics of a wide range of object-oriented programming languages. Thus,
SOM class libraries can be shared across object-oriented languages with differing
object models. A SOM object may be accessed with the following forms of method
resolution:

- Offset resolution: roughly equivalent to the C++ virtual function concept. Offset
resolution implies a static scheme for typing objects, with polymorphism based
strictly on class derivation. It offers the best performance characteristics for SOM

Introduction to the SOMobjects Toolkit 1

method resolution. Methods accessible through offset resolution are called static
methods, because they are considered a fixed aspect of an object’s interface.

Name-lookup resolution: similar to that employed by Objective-C and Smalltalk.
Name resolution supports untyped (sometimes called dynamically typed) access to
objects, with polymorphism based on the actual protocols that objects honor. Name
resolution lets you write code to manipulate objects with little or no awareness of
the type or shape of the object when the code is compiled.

Dispatch-function resolution: permits method resolution based on arbitrary rules
known only in the domain of the receiving object. Languages that require special
entry or exit sequences or local objects that represent distributed object domains
are good candidates for using dispatch-function resolution. This technique offers a
high degree of encapsulation for the implementation of an object, with some cost in
performance.

SOM conforms with the Object Management Group’s (OMG) Common Object Request
Broker Architecture (CORBA) standards:

Interfaces to SOM classes are described in CORBA's Interface Definition
Language, IDL. The entire SOMobjects Toolkit supports all CORBA-defined data

types.
The SOM bindings for the C language are compatible with the C bindings
prescribed by CORBA.

All information about the interface to a SOM class is available at run time through a
CORBA-defined Interface Repository.

SOM does not replace existing object-oriented languages; it complements them so that
application programs written in different programming languages can share common SOM
class libraries. For example, SOM can be used with C++ to:

Provide upwardly compatible class libraries, so that when a new version of a SOM
class is released, client code needn’t be recompiled, so long as no changes to the
client’s source code are required.

Allow other language users (and other C++ compiler users) to use SOM classes
implemented in C++.

Allow C++ programs to use SOM classes implemented using other languages.

Allow other language users to implement SOM classes derived from SOM classes
implemented in C++.

Allow C++ programmers to implement SOM classes derived from SOM classes
implemented using other languages.

Allow encapsulation (implementation hiding) so that SOM class libraries can be shared
without exposing private instance variables and methods.

Allow dynamic (run-time) method resolution in addition to static (compile-time) method
resolution (on SOM objects).

Allow information about classes to be obtained and updated at run time. C++ classes
are compile-time structures that have no properties at run time.

The SOM Compiler

The SOMobjects Developer Toolkit contains the SOM Compiler to build classes in which
interface and implementation are decoupled. The SOM Compiler reads the IDL definition of
a class interface and generates:

2 Programmer's Guide for SOM and DSOM

* animplementation skeleton for the class
e hbindings for programmers
» bindings for client programs

Bindings are language-specific macros and procedures that make implementing and using
SOM classes more convenient. These bindings offer a convenient interface to SOM that is
tailored to a particular programming language. For example, C programs can invoke
methods in the same way they make ordinary procedure calls. The C++ bindings wrap
SOM objects as C++ objects, so that C++ programs can invoke methods on SOM objects in
the same way they invoke methods on C++ objects. In addition, SOM objects receive full
C++ typechecking, just as C++ objects do. The SOM Compiler can generate both C and
C++ language bindings for a class. The C and C++ bindings work with a variety of
commercial products available from IBM and others. Vendors of other programming
languages may also offer SOM bindings.

The SOM Run-Time Library

The SOM run-time library provides, among other things, a set of classes, methods and
procedures used to create objects and invoke methods. The library allows any
programming language to use classes developed using SOM if that language can:

e Call external procedures
» Store a pointer to a procedure and subsequently invoke that procedure
* Map IDL types onto the programming language’s native types

The user and the creator of a SOM class needn't use the same programming language,
and neither is required to use an object-oriented language. The independence of client
language and implementation language extends to subclassing. A SOM class can be
derived from other SOM classes, and the subclass may or may not be implemented in the
same language as the parent classes. Moreover, SOM’s run-time environment allows
applications to access information about classes dynamically.

Frameworks provided in the SOMobjects Toolkit

In addition to the SOM Compiler and the SOM run-time library, the SOMobjects Developer
Toolkit provides a set of frameworks (class libraries) that can be used in developing object-
oriented applications. These include Distributed SOM, the Interface Repository Framework,
the Emitter Framework and the Metaclass Framework.

Distributed SOM

Distributed SOM (DSOM) lets application programs access SOM objects across address
spaces. Application programs can access objects in other processes, even on different
machines. DSOM provides this transparent access to remote objects through its Object
Request Broker (ORB): the location and implementation of the object are hidden from the
client, and the client accesses the object as if were local. DSOM supports distribution of
objects among processes within a workstation, and across a local area network consisting
of AIX, OS/2, or Windows NT systems, or some mix of these systems.

Introduction to the SOMobjects Toolkit 3

Interface Repository Framework

The Interface Repository is a database, optionally created and maintained by the SOM
Compiler, that holds all the information contained in the IDL description of a class of
objects. The Interface Repository Framework consists of the 11 classes defined in the
CORBA standard for accessing the Interface Repository. Thus, the Interface Repository
Framework provides run-time access to all information contained in the IDL description of a
class of objects. Type information is available as TypeCodes, a CORBA-defined way of
encoding the complete description of any data type that can be constructed in IDL.

Emitter Framework

The Emitter Framework is a collection of SOM classes that you write as your own emitters.
Emitter is a general term used to describe a back-end output component of the SOM
Compiler. Each emitter takes input information about an interface, generated by the SOM
Compiler as it processes an IDL specification, and produces output organized in a different
format. SOM provides a set of emitters that generate the binding files for C and C++
programming (header files and implementation templates). You can write your own special-
purpose emitters. For example, you can write an emitter to produce documentation files or
binding files for programming languages other than C or C++.

Metaclass Framework

The Metaclass Framework is a collection of SOM metaclasses that provide functions used
by SOM class designers to modify the default semantics of method invocation and object
creation. These metaclasses are described in Chapter 10, The Metaclass Framework on
page 357.

What's New And Changed in SOMobjects Version 3.0

SOMobijects Version 3.0 offers many enhancements, changes, and additions to Version
2.1. In addition to the changes listed, many editorial changes have been made to the
documentation.

General Enhancements

4

This section describes new and changed functions that affect all users.

SOMobjects on the World Wide Web

You can find the latest on IBM’s Enterprise Object Technology and Application
Development Solutions, including SOMobjects, on the World Wide Web. Look at:

http://www.software.ibm.com/clubopendoc
for the latest information.

Configuration Information

All the configuration information for SOM and DSOM has been reorganized into a separate
chapter.

The SOMENYV environment variable points to a configuration file containing many settings
needed by the SOMobjects frameworks, components and DSOM communications

Programmer’s Guide for SOM and DSOM

protocols. See “Configuration File Stanzas” on page 16 for additional information relating to
information contained in the configuration file.

SOMobjects Enhancements

The imod emitter produces a C source program that implements a class library’s
initialization and termination function. Compile and link this source file with all the class
implementation source files. See “Specifying the Initialization and Termination
Function” on page 215 for additional information.

The mods emitter creates a file with a list of modifiers specified in an IDL file. Utilities
can use this file to determine the values of the modifiers.

New modifiers have been defined for use in the implementation sections of SOM IDL
files, and some existing modifiers have been enhanced. A majority of the new modifiers
support the DSOM enhancements of Version 3.0. See “Modifier Statements” on

page 133 for a description of each modifier:

- Unqualified modifiers:

classinit (enhanced)
factory
nomplans

- Qualified modifiers:

dual_owned_parameters
dual_owned_result
impctx (enhanced)
impldef_prompts
length
maybe_by value
maybe_by value result
mplan
object_owns_parameters (enhanced)
object_owns_result (enhanced)
pass_by copy
pass_by copy_result
pointer
staticdata (enhanced)
struct
suppress_inout_free
The SOM Compiler’s -m flag that sets global modifiers has new options to control the
actions of the ir,exp, def, and imod emitters.

For situations where a method needs to modify an in parameter, the method can
receive a copy of the parameter. The IDL modifier pass_by copy is used to identify
parameters that should be copied when passed from the caller of a method to the
method’s implementation. See “Passing Parameters by Copying” on page 146. The
new modifiers listed include the related pass_by_copy and pass_by_copy_result.

SOMobijects 3.0 provides the ability to cast objects. See the SOM kernel methods
somCastObj and somResetObj.

The Service Provider Interface (SPI) interface for thread or semaphore-related
functions is no longer available.

Introduction to the SOMobjects Toolkit 5

The Error Log facility records exceptions and error conditions that occur within many of
the SOMobjects services. DSOM and Object Services use this facility. You can use the
Error Log to help debug your new applications.

DSOM Enhancements

6

The Implementation Repository no longer needs to be replicated or shared between
client and server processes. Instead, the Implementation Repository is used only on
the machine where the server runs. DSOM clients obtain information about DSOM
servers through the distributed Naming Service, rather than from the Implementation
Repository. See “Migration Relationship to the 2.x Implementation Repository” on
page 42 for how the Implementation Repository in this release differs from DSOM 2.x.

DSOM includes a migration tool, migimpl3, for converting DSOM 2.1 Implementation
Repositories into the DSOM 3.x format. See “Differences between 2.x and 3.x” on
page 42.

An Implementation Repository can now be extended through user-defined subclasses
of the ImplementationDef class. A single Implementation Repository can support a
heterogeneous mix of different types of ImplementationDef objects. See “Customizing
ImplementationDef Objects” on page 41.

New interfaces are provided to the regimpl utility for registering servers, to support the
new features of the Implementation Repository. See “The regimpl Registration Utility”
on page 32.

Improved local and remote transparency is supported. Many methods that previously
could be invoked only on or with a proxy object can now be invoked on or with a local
SOMObject. This includes DIl support for local objects, object_to_string and
string_to_object methods, and most methods of SOMDObject class. See “Dynamic
Invocation Interface” on page 311 as well as the specific methods and classes.

There is a facility for finding “factory” objects (objects that create other objects) using
the Naming Service. This facility supersedes previous SOMDObjectMgr methods and
SOMDServer methods for creating remote objects. The same interfaces can be used
to create both local and remote objects. See “Creating Remote Objects” on page 245
for more information.

DSOM includes two new initialization functions, list_initial_services and
resolve_initial_references, that initialize certain object services (for example, the
Interface Repository, Naming Service, and Factory Service). For additional information,
see “Finding Initial Object References” on page 244 as well as reference for the
methods themselves.

Support for communication through multiple protocols. On OS/2, TCP/IP and NetBIOS
are supported through AnyNet. TCP/IP can also be used alone, without AnyNet. On
AIX and Windows NT, the only supported protocol is TCP/IP. See the
SOMDPROTOCOLS environment setting.

Support for compiling information about method signatures (marshal plans) into the
class library (DLL), so that Interface Repository accesses can be reduced or
eliminated. This is done automatically by the current ih and xih emitters. For
information on when the Interface Repository is required by DSOM, see “Registering
Class Interfaces” on page 30.

Support for marshalling pointer types within larger data structures. See “Making
Remote Method Calls” on page 250.

Programmer’s Guide for SOM and DSOM

» Support for marshalling non-CORBA IDL (foreign) data types. See “Passing Foreign
Data Types” on page 262.

e Support for passing a copy of an object parameter from a client to a server, to provide
improved performance. See “Passing Objects by Copying” on page 261.

» A server's object reference table files are now stored in the directory indicated by the
SOMDDIR setting, rather than as specified in the Implementation Repository. The
same files can be used by multiple servers.

» Support for Java applications and applets as DSOM clients. This allows DSOM server
objects to be accessed from any Java-enabled client or web browser, without requiring
the installation of any additional software on the client machine. The Java client ORB is
written entirely in Java, which means that it runs unmodified on all Java-enabled
platforms.

» Support for Internet Inter-ORB Protocol 1.0, the CORBA standard for message
protocol. This allows DSOM to interoperate with other CORBA-compliant ORBSs.

Metaclass Framework Enhancements

The enhancements facilitate the making of a proxy for in-memory objects. The facility
consists of the metaclass SOMMProxyFor and helper class, SOMMProxyForObject. The
helper class may be subclassed to produce special kinds of proxies (as DSOM does).
Proxy classes can be composed with Before/After Metaclasses.

Object Services

In general, the object services are provided as a combination of concrete and mix-in
classes. Mix-in classes provide the needed behavior to manage your objects. The concrete
classes instantiate distinguished objects used in support of managing your objects.

Externalization Service

The externalization service provides the basis by which an object can externalize or
internalize its state. By inheriting this mix-in class, an object class programmer can enable
their object’s state to be managed without breaking the encapsulation boundary of their
object. Externalization is used by the DSOM pass-by-value facility.

Naming Service

The naming service provides a Naming Context. Instances of haming contexts can be
organized into a name hierarchy. You can assign a hame to your objects within a particular
context. During the configuration process, SOMobjects will build a default global name tree
and bind certain distinguished objects within that name tree.

Object ldentity Service

The object identity service lets you determine whether two objects are in fact the same
object or different. Due to the nature of encapsulation, it is not possible to tell whether two
objects are the same or different merely by examining their object pointers or object
references. By mixing the object identity service, your object is assigned an identity that can
be used by the service to unambiguously determine whether two objects are identical.

Introduction to the SOMobjects Toolkit 7

Security Service

The security service can be used to authenticate clients to secure servers. This is useful for
ensuring that client principals are indeed who they say they are, allowing the principal’'s
identity (which can be defined from the Principal object) to be used in access decisions.

Migration Considerations

When migrating to this version from earlier versions, the following changes may require
changes to your applications.

The SOM 3.0 kernel is much more sensitive to memory-management bugs than the SOM
2.1 kernel. For example, if you try to perform a SOMFree on the same pointer twice, or try
to perform a SOMFree on stack-based storage (rather than storage allocated by
SOMMalloc), a trap will occur. In the SOM 2.1 Kernel, such an act was often harmless or
caused corruption that may not have been apparent. If new traps occur from using your
code with the SOM 3.0 kernel, a memory-management bug is the likely cause of the traps.

The enumeration types exception_type and completion_status, defined in somcorba.h, are
now four bytes long instead of one byte long in order to comply with the CORBA
specification. This also aids in using these enumerations across DSOM. If your application
uses variables of these enumeration types, recompile it using the SOM header files in this
release.

The semantics of the somFree method when invoked on a proxy object has been changed
so that both the remote object and the local proxy object are destroyed. See “Destroying
Remote Objects” on page 265.

When a method invoked remotely raises a USER_EXCEPTION that is not declared in the
IDL for the invoked method, DSOM returns a SYSTEM_EXCEPTION to the client with
minor code SOMDERROR_UndeclaredException.

DSOM'’s default parameter-memory-management policy now fully adheres to the CORBA
1.1 specification. Parameter memory is now treated as uniformly caller-owned by the
DSOM runtime in both the client and server address space. Different behavior can be
requested through IDL modifiers. See “Memory Allocation and Ownership” on page 252.

Overview of the Programmer’s Guide

8

Chapter 2, Configuration and Startup on page 11 contains information relating to SOM
and DSOM configuration.

Chapter 3, Tutorial for Implementing SOM Classes on page 49 is a Tutorial with
examples that illustrate techniques for implementing classes in SOM. Study this chapter if
you are new to SOM.

Chapter 4, Using SOM Classes in Client Programs on page 69 describes how an
application program creates instances of a SOM class, how it invokes methods, and so on.
Read this chapter if you plan to create or use SOM classes.

Chapter 5, SOM Interface Definition Language on page 115 describes SOM IDL syntax.
Read this chapter if you plan to create SOM classes.

Chapter 6, The SOM Compiler on page 155 describes the SOM compiler. Read this
chapter if you plan to create SOM classes.

Chapter 7, Implementing Classes in SOM on page 171 provides more comprehensive
information about the SOM system itself, including operation of the SOM run-time
environment, inheritance, and method resolution. This chapter also describes how to create

Programmer’s Guide for SOM and DSOM

language-neutral class libraries using SOM. It includes advanced topics for customizing
SOM to better suit the needs of a particular application. Read this chapter if you plan to
create SOM classes.

Chapter 8, Distributed SOM on page 229 describes DSOM and how to use it and
customize it to access objects across address spaces, even on different machines.

Chapter 9, The Interface Repository Framework on page 337 describes the Interface
Repository Framework of classes supplied with the SOMobjects Toolkit.

Chapter 10, The Metaclass Framework on page 357 describes the Metaclass Framework
and some utility metaclasses that SOM provides to help you derive new classes with
special abilities to execute before and after operations when a method call occurs. It also
tells how to modify the default semantics of method invocation and object creation.

Appendix A, Error Codes on page 397 contains lists of the error codes that can be issued
by the SOM kernel or by the various frameworks.

Appendix B, Converting OIDL Files to IDL on page 417 tells how to convert class
definition files from OIDL syntax (the interface definition language used by a previous
release of SOM) to IDL syntax (the language prescribed by the CORBA standard).

Appendix C, SOM IDL Language Grammar on page 421 contains the SOM IDL language
grammar.

Introduction to the SOMobjects Toolkit 9

10 Programmer’s Guide for SOM and DSOM

Chapter 2. Configuration and Startup

This chapter describes the steps between installing the SOMobjects Developer’s Toolkit
software and running your applications. These steps include:

Configuration

Verifying the configuration
Registering applications and servers
Running sample programs

A Quick Guide to Configuration

The configuration information in this chapter covers a broad spectrum of needs, starting
from casual one-time SOMobjects use to the most advanced use. Identify your case in the
following list to get the information you need to configure your system efficiently.

Casel
You want to use just SOM and do not want to use DSOM or Object Services.

- Do Step 1. Installation and Operating System Environment Variables
- Do Step 2. Generate Header Files.
- Skip the rest of this chapter. No further configuration is needed to use SOM.

Case 2
You want to run, on a single machine, just the DSOM sample programs supplied in the
Toolkit.

- Do the installation and configuration, Step 1. Installation and Operating System
Environment Variables on page 13 through Step 2. Generate Header Files.

- If you are reconfiguring your system, first do the steps described in Reconfiguring
DSOM on page 28.

- Do the minimal configuration for running the sample applications, Step 5. In Step 3.
Customize Settings in the Configuration File the minimum required is:

» Decide if you want to modify the default somenv.ini file supplied with the
Toolkit or instead modify a copy of it. If you modify a copy, make sure that you
set the SOMENV environment variable to point to your copy.

- Do Step 4. Issue somdchk.

- In Step 5. Issuing the Configuration Command on page 24, issue the
som_cfg -i command and make sure it completes without error. This is all you
need do of this step.

Case 3
You want to build and run your own simple DSOM application on a single machine.

- Review DSOM concepts and the DSOM Tutorial on page 233.

- Read the information about client and server programming and then build your
application.

- Read about other dependencies of the Object Services your application may use.
- Do the minimal configuration described in Case 2.
- Register User Applications.

Case 4
You want to build and run your own DSOM application on two or more machines.

Configuration and Startup 11

- Read the configuration steps in this chapter paying special attention to the following:

e Learn about configuring one of the machines as an Install host and the others
as DSOM hosts.
e Learn about the prerequisites for re-running som_cfg.
* Read about SOMDPROTOCOLS and HOSTNAME.
» Do the steps in Case 3, but do all the configuration described in Step 5.
Issuing the Configuration Command.
- Register User Applications.

Case 5
You are an experienced DSOM user and want to customize the DSOM environment.

- Read all of this chapter and exploit the various options provided.

Configuring and Customizing a New Installation

This section first gives a quick list of the steps between installing and using SOM, then
describes each of the steps in detail. Configuration takes many steps, but each of them is
simple and you do most of them only once. The following sections give the steps for
configuring a new installation and for updating your configuration.

Configuration Steps

Complete the installation steps as described in the product README file.
Generate header files.

Customize settings in the configuration file. (This step is optional for single workstation
environments.)

4. Invoke somdchk to verify the environment settings. (This step is optional for all
environments.)

5. Issue the configuration command. All machines in a multi-machine system must be
configured.

6. Register your user applications.

Register User Applications

12

Configuration is typically a one-time process. However, you register each application before
you use it. Thus, you may repeat these steps as you continue to develop applications.

1. Customize settings in the configuration file. Each application might have different
settings, so this step can be redone as needed.

2. Run somdchk. This step is optional.
Register servers and classes in the Implementation Repository using regimpl.

Migrate any 2.1 Implementation Repositories to the current level. See Migrating 2.x
Implementation Repositories to Current DSOM Format on page 44.

Also, see Running DSOM Applications on page 308.

This sequence can be done as part of your configuration sequence if you have existing
applications. Or, you can repeat some or all of this step as often as you need once you
have created applications.

Programmer’s Guide for SOM and DSOM

Running the Sample Programs as an Installation Test

The SOMobjects Developer Toolkit includes a set of sample programs that you can use
both to learn more about using SOM and to verify your installation. The following steps tell
how to use the sample programs.

1. Change directory to a sample directory.

2. Read the README files associated with samples in general, and with the specific
sample you plan to run.

Set SOMIR to include . \som. ir as the rightmost file, which is required by the samples.

Start the DSOM daemon, somdd, from the sample directory, required for building and
running the sample. If somdd is already running, terminate it and restart it from the
sample directory so that somdd can find and start the sample server. (This is not
generally required for real application servers, which can be found using PATH.)

Build the sample as described in its README file.
Run the sample application as described in its README file.

Step 1. Installation and Operating System Environment
Variables

This process is described in detail in the product README file.

Step 2. Generate Header Files

Ensure that the $SOMBASE/include directory (for AIX) or the $SOMBASE%\include
directory (for OS/2 and Windows NT) exists and is writable. If you already have .h, .xh, or
.bld files there, make sure they are writable.

Select the type of header files appropriate for your development environment.

C++
Issue the somxh command to generate the .xh files for the classes supplied with
SOMobjects Developer Toolkit.

If you plan to program with SOM using the C bindings, you need to select either the strict
CORBA-compliant form in which asterisks (*) are not exposed in object references or the
C++-friendly form in which asterisks are visible in object references. The latter, C++-friendly
form is more appropriate if you plan to later move your class implementations from C to
C++. This choice determines how references appear in your C programs. For example, to
declare a reference to an instance of class Foo you could code:

Foo afoo /*Strict CORBA-compliant form */
or

Foo *afoo /* C++ migration or C++-friendly form */

CORBA-compliant C
Issue the somcorba command to generate the header files if asterisks (*) are not
exposed in object references.

C++-like C
Issue the somstars command to generate the headers for if asterisks are exposed in
object references.

Configuration and Startup 13

All the sample C programs provided with SOMobjects Developer Toolkit assume the
CORBA-compliant coding style and the somcorba command.

If you use somstars, you should also set the SMADDSTAR variable in your local
environment to 1. All subsequent use of the SOM compiler depends on the proper setting of
this environment variable.

If you later switch from one coding style to another, you must convert any C code to that
other style. If you switch from somstars style to somcorba style, you must remove the
SMADDSTAR variable from your environment.

If you install only some of the SOMobjects Developer Toolkit components, and later add
components, you must repeat this step after each component installation.

Step 3. Customize Settings in the Configuration File

SOMobijects looks for run-time environment settings in a configuration file designated by
the SOMENV environment setting. Compile-time settings are taken from your operating
system environment. You can edit the configuration file to specify default settings for your
installation, or you can change SOMENV to specify another file with alternate settings. The
SOMENYV environment variable can contain one or more path names spearated by colons
on AIX or by semicolons on OS/2 and Windows NT. The default setting of SOMENYV is
SOMENV/etc/somenv.ini on AIX and %SOMBASE%\etc\somenv.ini on OS/2 and
Windows NT.

The default configuration file defines many settings required by the different frameworks,
including settings for supported communications protocols. You can define your own
configuration settings. This section describes each of the default settings, tells which can
be changed, and, typically, gives suggestions for changing values.

SOMobijects provides three functions relating to the configuration file, somutgetenv,
somutgetshellenv and somutresetenv, that you can use within your applications. See
Checking Configuration Values on page 45 for additional information on these three
functions.

Is Customization Required?

14

To configure a single-machine installation, no configuration of the default configuration file
is required.

The SOMIR and SOMDDIR settings are, perhaps, the most common customizations, but
are not required. You can set SOMIR as an operating system environment variable. If set,
the environment variable takes precedence over the configuration file setting. For this
reason, a SOMIR setting in the configuration file is optional. See SOMIR and SOMDDIR.

If you are configuring a single-machine installation and do not plan to customize any
environment settings in the configuration file, skip to Step 5. Issuing the Configuration
Command.

If you are configuring a multiple-machine installation, you must set the following in your
configuration file:

SOMDPROTOCOLS
HOSTNAME (one setting for each protocol named in SOMDPROTOCOLYS)

Decide whether you want to modify the default configuration file or modify a copy of it. If
you modify a copy, set the SOMENYV environment variable to designate the new copy. The
configuration file can be edited with any ASCII text editor. After you modify the required

Programmer’s Guide for SOM and DSOM

settings, if you do not plan to customize other environment settings in the configuration file,
skip to the next step.

The Configuration File

Configuration File Stanzas on page 16 shows each stanza of the configuration file, then
describes the settings you can accept or change. The descriptions tell you which settings
should be left unchanged. In most cases, comments in the file itself give you condensed
instructions.

Syntax of the Configuration File

Follow these syntax rules when you edit the configuration file:

e Each stanza contains the settings for a component of SOM. The name of the stanza is
enclosed in square brackets ([]) at the beginning of a line. Do not edit the stanza
names.

« Comment lines begin with a semicolon (;) in the first position of the line.
» Blanks and spaces can appear anywhere in the file.

* Some settings are commented out in the sample file; delete the semicolon to set the
value.

* Some values should not be edited. Those values are noted in the file.
* Most settings are of the form item=value.

e The actual file may differ slightly in format from this explanation; the items and values
are the same.

Processing the Configuration Files

If a stanza in a configuration file contains multiple entries for the same identifier name, the
value that takes effect is the first setting for that identifier. For example, in the following
code, namex is set to 10:

[foo]
namex = 10

namex = 20
If SOMENYV defines two or more path names such that multiple configuration files contain
the same stanza and identifier names, but set different values, then the value from the
leftmost file in the path takes effect. For example, on OS/2, given the definition

SOMENV=C:\SOM\ETC\SOMENV . INI;C: \MYAPP\somenv.ini, where namey in stanza
foo is defined as shown, then namey is set to 30, as defined in the leftmost file:

[foo]l in C:\SOM\ETC\SOMENV.INI
namey = 30

[foo]l in C:\MYAPP\SOMENV.INI
namey = 15

The SOMobjects configuration file name/value pairs are read into memory on the first call to
the somutgetenv function by a SOMobjects process. Typically, the call to somutgetenv is
done by one of the SOMobjects frameworks. Unless a SOMobjects application wants to get

Configuration and Startup 15

the value of a specific setting, there is no need for an application program to call this
function.

The configuration file is not read again unless, prior to calling somutgetenv, the process
calls somutresetenv. Therefore, if you change any settings in the configuration file, you
may need to either refresh or restart your SOM application before the new setting is used.

There is a separate instance of the configuration-file settings in memory for each user
process running a SOM framework. This means that if the configuration file settings are
changed, only new user processes of a SOM framework pick up the changes. SOM
framework processes running before the configuration change continue to run with the
older settings until they are restarted or refreshed by calling somutresetenv followed by a
call to somutgetenv. See Checking Configuration Values on page 45 for additional
information on somutgetenv and somutresetenv.

Configuration File Stanzas

16

This section describes each stanza of the configuration file. You can read it as you edit your
configuration file.

If your system is a single machine, you might not have to edit the configuration file. A
multiple-system installation might need only to specify communications protocols.

Error Log Facility

The [somras] stanza contains the settings for the Error Log Facility. You can control the
size of the error log, what errors get stored, the name of the file, and whether error
information is displayed on the screen. See The Error Log Facility on page 107 for more
information.

[somras]

; RAS configuration stanza. This controls the Error Log Facility.
SOMErrorLogFile=SOMERROR.LOG

; The name of the file where error log entries will be

; stored. If unset, the default is SOMErrorLogFile=SOMERROR.LOG.

; The error log is always

; placed in the directory pointed to by the SOMDDIR

; configuration variable of the [somd] stanza. We recommend that

; all processes on a system share one error log file.

SOMErrorLogSize=128
; The size, in kilobytes, of the error log file. If unset, the
; default is SOMErrorLogSize=128. The default allows space for
; several hundred average sized log entries.

SOMErrorLogControl=WARNING ERROR MAPPED EXCEPTION
; A filter to control what types of log entries will be included
; in the error log file. Multiple values may be specified,
; delimited by spaces. Valid values include INFO, WARNING,
; ERROR, and MAPPED EXCEPTION. If unset, the default is
; SOMErrorLogControl=WARNING ERROR MAPPED EXCEPTION.

SOMErrorLogDisplayMsgs=YES
; In addition to making a log entry also display each formatted
; error log message, without the extended log data, to the standard
; output device. Valid values are NO or YES. If unset, the
; default is SOMErrorLogDisplayMsgs=YES.

Programmer’s Guide for SOM and DSOM

Security Service

The [somsec] stanza contains the settings for security. You need to consider only the
setting of the LOGIN_ INFO SOURCE value which affects DSOM remote method calls.

If using the SOMobjects Security Service, users must log in to run as an authenticated
client. Users not logged in run as unauthenticated clients; their requests are rejected by any
server registered as a secure server.

How you login will depend somewhat on the platform you are logging in from and your
preferences.On OS/2, you can login with the OS/2 User Profile Manager (UPM). On AlX,
you can be prompted for your user name and password. On Windows NT, or as an
alternative to OS/2 or AIX, you can supply your user name and password in environment
variables.

If you want to login using UPM on OS/2, set the following:
LOGIN INFO SOURCE=UPM

If you want to be prompted for your user name and password on AlX, set the following:
LOGIN_ INFO_SOURCE=PROMPT

If you want to supply your user name and password in environment variables, set the
following:

LOGIN_INFO_SOURCE=ENV

Setting LOGIN SOURCE INFO=DEFAULT is equivalent to setting LOGIN SOURCE_INFO to
UPM on OS/2 and ENV on AlX or Windows NT. If you want to run as an unauthenticated
client, leave the value for LOGIN SOURCE INFO blank, as follows:

LOGIN_ INFO SOURCE=
The default for REGISTRY DB DIR is SOMDDIR.

[somsec]

; SECURITY SERVER ALIAS is the name used by som cfg to register the
; security server implementation. If unset, the default is

; securityServer

; SECURITY_SERVER_ALIAS

; LOGIN INFO SOURCE is a list of sources for obtaining login

; information of a user for authentication. The possibilities are
; LOGIN_ INFO_SOURCE=DEFAULT ENV UPM PROMPT

; The options may be specified in any order and any combination.

; The first option to yield the required login information is used
; and subsequent ones ignored. Unrecognized options are ignored.

; DEFAULT is equivalent to UPM on 0S2 and ENV on AIX and other

; platforms.

; LOGIN INFO SOURCE=

; turns off authentication. Beware that a secure server may reject
; requests from unauthenticated clients.

LOGIN_ INFO_SOURCE=DEFAULT
; LOGIN_TIMEOUT specifies the duration (in seconds) after which

; a quest for login information will timeout.
LOGIN_TIMEOUT=30

Naming Service

The [somnm] stanza contains Naming Service settings and specifies whether the machine
is an Install host or DSOM host for the Naming and Security Services. The HOSTKIND

Configuration and Startup 17

18

setting is inserted into the configuration file by som_cfg. Do not set or change HOSTKIND.
If the system needs to be reconfigured, however, by re-running som_cfg, remove
HOSTKIND from the configuration file before rerunning som_cfg.

[somnm]
HOSTKIND=DSOM
; Name Service environment configuration stanza.
; Uses SOMDDIR setting specified in the [somd] stanza to
; store Naming related files.
; If unset, the default is $%$SOMBASE%\etc\dsom.
; For the install host, the setting is HOSTKIND=INSTALL

SOMNMOBJREF in the [somnm] stanza, is set by the som_cfg utility. The setting is used
by DSOM for connecting a client application to the Naming Service. It should not be
changed by the user. If, however, the system needs to be reconfigured, by re-running
som_cfg, this setting must be removed from the configuration file before rerunning
som_cfg.

; NAMING SERVER ALIAS=

; NAMING SERVER ALIAS is the name used by som cfg to register the

; naming server_implementation. If unset, the default is
; namingServer.

; GLOBAL_OBJREF_ FILE=

; GLOBAL OBJREF FILE is the file used by som_cfg to hold

; the global object reference. In the case of an install host, the
; object reference is written to this file. In the case of a

; DSOM host, the object reference is read from this file.

; If unset, the default places the file SOMNM.REF in the

; directory pointed to by the SOMDDIR configuration variable of

; the [somd] stanza.

; For the DSOM host, this value must be set to a directory other

; than the default.

Interface Repository

The SOMIR specifies a list of files, separated by colons on AlX and semicolons on OS/2
and Windows NT. The SOMIR setting can be specified either using the SOMIR
environment variable or by setting SOMIR in the configuration file. The default is \som.ir.
See Registering Class Interfaces on page 30 and Chapter 9, The Interface Repository
Framework on page 337 for more information on how to set SOMIR and create an IR. For
DSOM, it is preferable to use full path names in the list of IR files, because the IR will be
shared by several programs that may not all be started in the same directory.

SOMIR=
; The location of the Interface Repository.

SOM Utilities and Metaclass Framework

The [somu] stanza specifies settings for the SOM utilities and the metaclass framework.

; [somu]
; SOM utilities and metaclass framework
; SOMM_TRACED=

DSOM Configuration

The [somd] stanza and the following communications stanzas contain settings for DSOM
and for communication between systems. When you edit the SOMDPROTOCOLS setting
of this stanza to specify a communications protocol, make sure to edit any subsequent
stanzas required for that protocol.

Programmer’s Guide for SOM and DSOM

[somd]
; DSOM environment configuration stanza.
SOMDDIR
specifies the directory where various DSOM-related files are stored, including the
Implementation Repository files. See Registering Servers and Classes on page 31
for more information.

Note: If this value is not set, DSOM attempts to use a default directory:either $SOMBASE/
etc/dsom on AIX or $SOMBASE%\ETC\DSOM on OS/2 and Windows NT.

Because the configuration file uses the backslash character as a line-continuation
character, do not end the SOMDDIR setting with a backslash.

; SOMDDIR

; The location of the Implementation Repository and other
; DSOM-related files.

; If unset, the default is $%$SOMBASE%\etc\dsom.

The directory named by the SOMDDIR setting must exist, be empty, and be writable.

HOSTNAME
specifies the name by which the machine is known (used to set the hostName attribute
of the Principal object, which identifies the caller of a method in a server).
HOSTNAME is also used by the Factory Service to identify the requester of a local
(same-process) factory, and by regimpl when registering classes for _LOCAL creation.
If the HOSTNAME environment variable is set, that setting supersedes the
HOSTNAME setting in the [somd] stanza of the configuration file.

There are separate HOSTNAME settings within the stanzas corresponding to the
individual protocols named by SOMDPROTOCOLS; these are unaffected by the
HOSTNAME environment variable setting.

HOSTNAME=thehostname
; USER=anyuser
; Used to set the Principal object that represents the client.
SOMDPROTOCOLS

should be set to specify the names of the DSOM communications protocols for which
the machine has been configured, separated by spaces. Valid values include:
SOMD_IPC and SOMD_TCPIP on AlX and NT; and SOM_IPC, SOMD_TCPIP, and
SOMD_NetBIOS on OS/2. (Additional protocols may be provided by other vendors.)
The default value is SOMD_IPC only. When the SOMD_IPC (single-machine) protocol
is used, it should be the first name in the list of protocols specified for
SOMDPROTOCOLS.

The setting of SOMDPROTOCOLS for a client and server process must have at least
one entry in common; otherwise, communication between the two processes is not
possible.

On 0OS/2, when AnyNet is running, DSOM processes on different machines can
communicate over any combination of TCP/IP or NetBIOS (provided they are also
running), as designated by the setting of SOMDPROTOCOLS. When AnyNet is not
running, the SOMDPROTOCOLS setting SOMD_NetBIOS is invalid.
(SOMDPROTOCOLS should include SOMD_TCPIP in this case.)

SOMDRECVWAIT
specifies the number of seconds a receiver should wait for a message to complete
transmission before generating a communications time-out error. The default value is
30 seconds. This setting is meaningful only for workgroup applications.

Configuration and Startup 19

20

. SOMDRECVWAIT=30
The number of seconds to wait for a socket to become readable
before generating a communications timeout error.

Note: This setting replaces the 2.1 environment variable SOMDTIMEOUT. For backward
compatibility, if SOMDRECVWAIT is not set, the value of SOMDTIMEOUT will be
used. Unlike SOMDTIMEOUT, however, SOMDRECVWAIT does not include the
time required for the remote method to execute.

SOMDSENDWAIT
SOMDSENDWAIT specifies the number of seconds a sender should try to send a
message before generating a communications time-out error. The default value is 30
seconds. This setting is meaningful only for workgroup applications.
SOMDSENDWAIT=30
; The number of seconds to wait for a socket to become writable
; before generating a communications timeout error.
SOMDNUMTHREADS
may optionally be set to the maximum number of request threads created per server. If
SOMDNUMTHREADS is not set, then a separate thread is created for each request, if
the server is registered as multithreaded. SOMDNUMTHREADS is relevant only for
DSOM server processes.
; SOMDNUMTHREADS=
; The maximum number of threads a multithreaded server will use.
; The default is unlimited.
SOMDTHREADSTACKSIZE
may optionally be set to increase the stack size used when creating new threads within
a multithreaded DSOM server process. The default is 65536 (bytes). This setting is
only relevant for DSOM server processes.
; SOMDTHREADSTACKSIZE=
; The stack size used when creating new threads in a server, in
; bytes.
; The default is 65536.
CHECK_CONNECTION_INTERVAL
may optionally be set to determine how often, in minutes, DSOM should check for
broken IPC connection.

;CHECK _CONNECTION_ INTERVAL=5

DSOM IPC

The [SOMD_IPC] stanza, in conjunction with the [somd] stanza contains settings for the
IPC protocol.
[SOMD_IPC]

; Stanza for the DSOM IPC protocol for workstation communication
; (UNO IIOP).

HOSTNAME
specifies the name by which the machine is known, for that protocol. For the IPC
transport, this setting must be the same for both the client and the server.

HOSTNAME=thehostname
Set this value to the name by which this machine is known.

Programmer’s Guide for SOM and DSOM

SOMDPORT
specifies the well-known port number (a 16-bit integer) over which the DSOM daemon,
somdd, listens for requests for the current protocol. Each protocol should have its own
port number. Select port numbers that are not likely to be used by other applications.
(Check the %ETC%\SERVICES (on OS/2 and Windows NT) or /etc/services (on AlX)
file for ports reserved for other applications on your machine.) Typically, values below
1024 are reserved and should not be used.

SOMDPORT=3002
; The port on which the DSOM daemon will listen for requests.

CSFactoryClass
is the name of a class capable of creating client-to-server connections for that protocol.
The default SOMobjects configuration file contains valid settings of CSFactoryClass
for the protocols that DSOM provides (SOMD_IPC, SOMD_TCPIP, and
SOMD_NetBIOS). This setting should not be changed or removed.

CSFactoryClass=SOMDCallStrmIIOP: :CallStreamFactoryIIOP
; The CallStreamFactory class name for this protocol.
; This setting should not be changed or removed.
CSRegistrarClass

specifies the name of a class that regimpl can use to register a server supporting that
protocol. The configuration file contains valid settings of CSRegistrarClass for the
protocols that DSOM provides (SOMD_IPC, SOMD_TCPIP, and SOMD_NetBIOS).
This setting should not be changed or removed.

CSRegistrarClass=SOMDCSRegRI::CallStreamRegistrarRI
; The CallStreamRegistrar class name for this protocol.
; This setting should not be changed or removed.
CSTransportClass

specifies the name of a transport class supporting that protocol. The configuration file
contains valid settings of CSTransportClass for the protocols that DSOM provides
(SOMD_IPC, SOMD_TCPIP, and SOMD_NetBIOS). This setting should not be
changed or removed.

CSTransportClass=SOMDtipc: : IPCTransportFactory
; The Listening transport class name for this protocol.
; This setting should not be changed or removed.
CSLocationName

CSLocationName specifies the protocol used by the server to contact the DSOM
daemon, somdd, when registering itself. The default is to use the same protocol to
contact the daemon as to communicate with client processes. This setting is
meaningful only within the SOMD_IPC, SOMD_TCPIP, and SOMD_NetBIOS stanzas.
This setting should not be changed or removed.

CSLocationName=SOMD IPC

; This is the name of the protocol the server uses to communicate
; with the location service (SOMDD). This setting should not be

; changed or removed.

CSProfileTag
CSProfileTag is a unique tag representing the protocol within object references. These
are defined by the OMG and DSOM. This setting should not be changed or removed.

CSProfileTag=1229081857;
; CallStreamFactory tag for this protocol; its decimal "IBM1".
; This is a protocol-unique tag used to represent the protocol
; within object references.

Configuration and Startup 21

22

CALL_POOL_SIZE
CALL_POOL_SIZE specifies the average number of outstanding remote method calls
a DSOM process expects to have at any one time, over that protocol. The default, if not
specified, is 16. DSOM maintains a pool of internal objects, of this maximum size, for
remote requests. If the number of such objects needed exceeds this limit, they are
created and destroyed on demand.

CALL_ POOL_SIZE=16
; The average number of requests that a client expects to send
; simultaneously over this protocol, or if its a server, then
; its the average number of simultaneous objects the server
; expects to export (or return) over this protocol.
ENCAP_POOL_SIZE
ENCAP_POOL_SIZE specifies the average number of requests that a client expects to
send simultaneously over the protocol, or, if a server, the average number of
simultaneous objects the server expects to export (or return) over the protocol. The

default is 4.

ENCAP_POOL_ SIZE=4
The average number of requests that a client expects to send
simultaneously over this protocol, or if a server,
the average number of simultaneous objects the server
expects to export (or return) over this protocol.

DSOM TCP/IP

The [SOMD_TCPIP] stanza, in conjunction with the [somd] stanza contains settings for the
TCP/IP protocol. These settings are the same as those documented for the [SOMD_IPC]
stanza, although the default values may differ.

[SOMD_TCPIP]
; Stanza for the DSOM TPC/IP protocol (UNO IIOP).

DSOM NetBIOS

The [SOMD_NetBIOS] stanza, in conjunction with the [somd] stanza contains settings for
the NetBIOS Protocol. These settings are the same as those documented for the
[SOMD_IPC] stanza, although the default values may differ.

[SOMD_NetBIOS]
; Stanza for the DSOM NetBIOS protocol (UNO IIOP).

SOMobjects Java Client

The [SOMD_JCLIENT]] stanza contains settings used for configuring the SOMobjects Java
client.

SERVICES_FILE_TARGET
specifies the directory in which the Java client "well-known services" object reference
file will be placed. This file is read by the Java client ORB during its initialization (that is,
when the resolve_initial_references function is called).

SERVICES FILE TARGET=

; The web server directory location of the "well-known objects" file.
; This file can be placed anywhere in the HTML directory tree of the
; Java applet web server, as long as it it not protected by

; any security access mechanisms. A recommended location for this

; file is in the top-level HTML directory, for example

Programmer’s Guide for SOM and DSOM

; SERVICES FILE TARGET=d:\WWW\HTML (/WWW/HTML on AIX)

; where "d:" is the drive letter.

; The services file will be named "services" and created in this

; directory during som cfg execution. If you do not intend to use
; Java clients from this SOM server machine, you can comment this

; line out.

Step 4. Issue somdchk

This step is optional. After you issue the som_cfg command you can re-run somdchk and
save the output in a file. The output may be useful in later problem determination.

Issue the somdchk command to verify the configuration file settings.

somdchk evaluates the environment to verify whether DSOM can operate correctly. As
described in Implementing Classes on page 304 and DSOM Configuration on page 18,
to operate correctly DSOM must be able to find the appropriate libraries (DLLS), the
Interface Repository, and, for servers, the Implementation Repository. The settings of
various environment variables and/or configuration file settings help DSOM find the path to
the libraries and repositories.

The somdchk program generates messages that evaluate the DSOM environment to
determine whether the necessary SOM DLLs can be located, whether Interface and
Implementation Repositories can be located, and it displays important environment
settings. In verbose mode, somdchk gives the default settings for DSOM configuration-file
settings and explains how DSOM uses them.

Invoke the program from the command line using the following. The -v option turns on
verbose mode:

somdchk [-v]

The following example shows sample output from the somdchk -v command. Your output
may differ.

Sample somdchk Output for AIX

DSOM ENVIRONMENT EVALUATTION

SOMBASE = /usr/lpp/som
SOMBASE should be set to the base directory of the SOMObjects
Developer Toolkit.

SOMENV = /usr/lpp/som/etc/somenv.ini.
SOMENV specifies a list of filenames (similar to SOMIR) that make
up the single, logical configuration file.

Default is /usr/lpp/som/etc/somenv.ini

/usr/lpp/som/etc/somenv.ini found.

Searching for important DLLsS.....
/usr/lpp/som/lib/som.dll found.
/usr/lpp/som/lib/somd.dll found.
/usr/lpp/som/lib/soms.dll found.
/usr/lpp/som/lib/somdcomm.dll found.

SOMDDIR = /u/somuser/impl rep/
Valid Implementation Repository found in /u/somuser/impl rep/
SOMDDIR may be set to a valid directory in which the Implementation
Repository resides.

Default is /usr/lpp/som/etc/dsom

Configuration and Startup 23

SOMIR = /u/somuser/somuser.ir
SOMIR may be set to a list of file names which together form the
Interface Repository.

SOMDDEBUG =1
SOMDDEBUG may be set to 1 to enable run time error messages.
Default value is 0.

SOMDMESSAGELOG = (null).
SOMDMESSAGELOG may be set to the name of a file where messages may
be logged.

Default is stdout.

SOMDPROTOCOLS = SOMD_IPC SOMD_TCPIP.
SOMDPROTOCOLS provides a list of communications protocols that a
DSOM client/server will attempt to use.

Default is SOMD_ IPC.

etc.

Step 5. Issuing the Configuration Command

som_cfg, the configuration command, configures DSOM and Object Services for a network
of machines. See Chapter 4, Naming Service on page 17 of Programmer’s Guide for
Object Services.

On a single machine you need only to configure an Install host. For a multi-machine
system, you first configure one Install host, then copy configuration information to the other
machines, and then configure those other machines as DSOM hosts.

After Naming Service configuration is complete, somdd, the DSOM daemon remains
running. The DSOM daemon can be stopped and restarted repeatedly without requiring
reconfiguration. Servers can also be started, stopped, and restarted without
reconfiguration. Servers need not be started manually; when a server is required by an
application including the naming or security server), it is started automatically by somdd.

Be aware that if certain environment settings are changed after configuration is done, you
must reconfigure and re-register all application servers and classes. See Reconfiguring
DSOM on page 28.

Selecting the Install Host

One machine in a multiple-system installation is the Install host; the others are the DSOM
hosts. The Security Service and the Global Root Naming Tree are stored at the Install host.
See Roots and Namespaces on page 23 in Programmer’s Guide for Object Services for a
discussion of Naming Concepts. During DSOM processing the DSOM hosts communicate
with the Install host for security authentication and for naming services. Therefore, your
Install host should be physically secure to protect your installation’s security information
and should have the capacity to handle the communications and storage required by your
applications.

Configuring the Install Host

Issue som_cfg -i for the Install host. som_cfg gives you progress messages.
The som_cfg tool performs the following tasks for som_cfg -i:

1. Verifies the environment; makes sure important variables are set.

24 programmer’s Guide for SOM and DSOM

Starts the DSOM daemon (somdd), if it is not already running.

Registers a naming server (a server to host the root Naming Context) into the (initially
empty) Implementation Repository, in the directory designated by the current
SOMDDIR setting. The default alias of the naming server is namingServer. After
configuration is complete, this server’s entry in the Implementation Repository can be
viewed using regimpl.

4. Creates and initializes the global root Naming Context and local root Naming Context
and the Factory Naming Context within the naming server. These Naming Context
objects (as well as others created later) are stored persistently in the directory
designated by the current SOMDDIR setting.

Creates the GLOBAL_OBJREF_FILE.
Binds the global root Naming Context to the local root Naming Context.

Updates the leftmost configuration file (specified by SOMENV) with information needed
by clients to connect to the Naming Service. Two settings are added to the [somnm]
stanza: HOSTKIND and SOMNMOBJREF. SOMNMOBJREEF is the string form of an
object reference (proxy) to the local root Naming Context. This information is used by
the DSOM runtime within client applications to establish the initial connection between
the client and the Naming Service. All other proxies can then be obtained from the
Naming Service.

8. Builds the global naming tree. See Naming Service Concepts on page 27 in this
section, and Roots and Namespaces on page 23 of Programmer’s Guide for Object
Services.

9. Configures the Security Service, which includes registering a security server in the
Implementation Repository, with the default alias securityServer, and initializing a
security database.

10. Configures the well-known services file for Java clients, if the
SERVICES_FILE_TARGET variable in the [SOM_JOE] stanza is non-null. This is
accomplished by copying and reformatting the information in the
GLOBAL_OBJREF_FILE that contains a reference to the global root naming context
object.

After Naming Service configuration is complete, somdd, the DSOM daemon remains
running.

If you plan to reconfigure the Naming Service see Reconfiguring DSOM on page 28.

Copying the GLOBAL_OBJREF_FILE

The GLOBAL_OBJREF_FILE setting in the [somnm] stanza of the configuration file
specifies the name of the file used by som_cfg to hold a reference to the global root
Naming Context object. In the case of an Install host, the object reference is written to this
file. In the case of a DSOM host, the object reference is read from this file. If unset, the
default is to place the file somnm.ref in the directory pointed to by the SOMDDIR
configuration variable of the [somd] stanza.

For a DSOM host this value must be set to a directory other than the default because
som_cfg does not run if there is anything in the default directory.

Do the following steps:

1. Locate the file specified in the GLOBAL_OBJREF_FILE setting of the [somnm] stanza
in the configuration file on the Install host.

Configuration and Startup 25

If GLOBAL_OBJREF_FILE is unset, as it is in the default configuration file, locate the
$SOMBASE/etc/dsom/somnm.ref file on AlX or the
%SOMBASE%\etc\dsom\somnm.ref file on OS/2 or Windows NT. SOMDDIR should
be set to the appropriate path in the [somd] stanza. If SOMDDIR is also unset, as it is in
the default configuration file, then locate the file %SOMBASE%\etc\dsom\somnm.ref
created when som_cfg -i was run on the Install host.

2. Make this file accessible to all DSOM hosts either by copying to all DSOM hosts or by
using a shared file system. This file must appear in a directory other than the one
specified by the SOMDDIR setting in the [somd] stanza of the configuration file at the
DSOM host.

3. Update the GLOBAL_OBJREF_FILE setting of the [somnm] stanza in each DSOM
host’s configuration file to refer to this file using its fully qualified file name.

Configuring DSOM Hosts

26

If you are configuring systems for multi-system DSOM applications, after you configure one
machine as Install host you then configure the others as DSOM hosts. Ensure that somdd,
the DSOM daemon, is running at the Install host.

Issue som_cfg -d for each DSOM host. som_cfg gives you progress messages.
The som_cfg tool performs the following tasks for som_cfg -d:

1. Verifies the environment; makes sure important variables are set.

2. Starts the DSOM daemon (somdd), if it is not already running.

3. Registers a naming server (a server to host the local root Naming Context) into the
(initially empty) Implementation Repository, in the directory designated by the current
SOMDDIR setting. The default alias of the naming server is namingServer. After
configuration is complete, this server’s entry in the Implementation Repository can be
viewed using regimpl.

4. Creates and initializes the local root Naming Context within the naming server. This
Naming Context object and others created later are stored persistently in the directory
designated by the current SOMDDIR setting.

Reads from the GLOBAL_OBJREF_FILE.
Binds the global root naming context on the Install host to the local root naming context.

7. Updates the leftmost configuration file (specified by SOMENV) with information needed
by clients to connect to the Naming Service. Two settings are added to the [somnm]
stanza: HOSTKIND and SOMNMOBJREF. SOMNMOBJREF is the string form of an
object reference (proxy) to the local root Naming Context. This information is used by
the DSOM runtime within client applications to establish the initial connection between
the client and the Naming Service. All other proxies can then be obtained from the
Naming Service.

After Naming Service configuration is complete, somdd, the DSOM daemon remains
running.The DSOM daemon can be stopped and restarted repeatedly without requiring
reconfiguration. Servers can also be started, stopped, and restarted without
reconfiguration. Servers need not be started manually; when a server is required by an
application (including the naming or security server), it is started automatically by somdd.

Be aware that if certain environment settings are changed after configuration is done, you
must reconfigure and re-register all application servers and classes. See Reconfiguring
DSOM on page 28.

Programmer’s Guide for SOM and DSOM

Naming Service Concepts

This is a quick overview of the Naming Service and its relation to DSOM.

The Naming Service is a general directory service that allows an object reference to be
associated with (bound to) a user-defined name, yielding a name binding. User-defined
properties can also be associated with the name binding, a mapping from a name to an
object reference. The Naming Service supports searching for the object reference, given its
name (called resolving the name) or given a constraint on its associated properties.

Properties associated with name bindings are simply name-value pairs, where the names
are unbounded strings and the values can be any CORBA type. The Naming Service
provides methods for searching for name bindings whose properties match a given
constraint expression. The constraint is a simple string, formed according to a constraint
grammar. The grammar supports simple and compound boolean, logical, mathematical,
and set expressions. Although property values can be any CORBA type, searches can only
be performed on simple types.

Factory Haming Coritext

name: 2hefedMe-13a11 edd-A-00-10005ac62 7 2aclasal
prop-name: class

prop-valua: classl

prop-name: allas

prop-valua: myServer

prop-name: serverld

prop-valua: 2befol2h-13a11600-7-00- 100008082725

QBJECT_NIL Legend

O ohjact

Aas——pg Ahas B

Figure 1. Naming Service entries made by DSOM when a server is associated with a class

For additional information, see The Naming Service and Registering Servers on page 40.

Structure

The Naming Service is composed of objects called naming contexts, organized in a tree
structure, analogous to a file directory structure. There is a root Naming Context, which can
refer to other Naming Contexts. The name-context objects at the leaves of the tree contain
name bindings to application objects (rather than other Naming Contexts). The name-
context objects that make up the Naming Service reside in one or more DSOM servers, so
that client applications can access the Naming Service from anywhere in the network.

Naming-service names are data structures, not simple strings. A simple name, called a
name component, is a structure consisting of two fields: an id and a kind. A name
component specifies a particular object reference relative to a particular Naming Context. A
compound name is a sequence of name components. It allows traversal of successive sub-
contexts within a name tree, analogous to how a compound pathname can specify a file in
a subdirectory of the current directory. Naming Service names are always specified relative
to some Naming Context. Unlike file directories, there are no absolute names in the Naming
Service.

Configuration and Startup 27

Factory Service

DSOM provides an extension to the Naming Service, called the Factory Service. The
Factory Service is implemented as a specialized and well-known Naming Context, known
as the Factory Naming Context. When DSOM servers are registered, and application
classes are associated with them, this information is stored in the Factory Naming Context
of the Naming Service. At runtime, when client applications need to create remote objects,
they can make remote invocations on the Factory Naming Context to request an
appropriate factory object (an object capable of creating another object). This is done via
the usual Naming Service interfaces for finding objects based on a well-known name or
based on a given constraint expression. The Factory Naming Context finds an appropriate
server, starts it dynamically, creates the requested factory object in the server, and returns
to the waiting client a proxy to it. The client application then invokes methods on the factory
proxy to create other objects as needed.

Reconfiguring DSOM

After the Naming and Security Service have been configured using som_cfg, the settings
of SOMDDIR and SOMNMOBJREF and the contents of the directory specified by
SOMDDIR collectively form a single DSOM environment. These settings should not be
subsequently changed independently without reconfiguring the Naming Service.

In addition, the SOMNMOBJREF setting created by som_cfg embeds the
SOMDPROTOCOLS, HOSTNAME, and SOMDPORT settings of the servers it registers
and their associated daemon, somdd. Therefore you must reconfigure if you change these
settings.

If it is necessary to change environment settings and reconfigure the Naming or Security
Service, do the following:

» Change the SOMDDIR setting, if necessary, then remove all files in the directory
indicated by SOMDDIR.

* Remove the HOSTKIND and SOMNMOBJREF settings from the configuration file.
* Rerunsom_cfg.
* Re-register all application servers using regimpl.

Alternative Configurations

28

This section describes an alternative DSOM network configuration, which involves less
configuration and runtime overhead than the default described previously. This alternative
is suitable only for environments in which the only use of the Naming Service is through the
DSOM Factory Service.

The default Naming Service network configuration, which results from configuring (using
som_cfg) one machine as install host and the remaining machines as DSOM hosts, yields a
network in which the DSOM daemon (somdd) and a Naming server run on all machines in
the network. In other words, there are no 'pure client' machines in the default network
configuration.

When a client application running on a DSOM host in such a network makes a request to
the DSOM Factory Service, first a remote method invocation will be made on the local root
Naming Context in that machine's Naming server, then a remote invocation is made on the
global root Naming Context on the install host because DSOM's Factory Naming Context
always resides in the global root Naming Context on the install host. The alternative

Programmer’s Guide for SOM and DSOM

configuration described below eliminates the first remote invocation and the client
application contacts the install host directly.

In the alternative configuration, rather than configuring an install host and several DSOM
hosts, one configures only the install host. One then transfers information from the install
host to the DSOM hosts to allow them to contact the install host's Naming server directly,
rather than via a local Naming server on the DSOM host. Such a configuration has the
advantage that only the install host incurs the overhead of a Naming server process. If no
other servers are to be run on a DSOM host, then the DSOM daemon (somdd) and the
Implementation Repository can also be omitted from that host. (The DSOM host then acts
as a client-only machine.) This configuration also has the advantage that accessing the
DSOM Factory Service is more efficient.

This configuration is suitable only for networks in which the Naming Service is only used
through the DSOM Factory Service. If any application to be run on the DSOM host uses the
Naming Service to name or find application objects, then the host must be configured using
som_cfg as described earlier.

Specifying an Alternative Configuration

To define an the alternative configuration, first configure the install host, as already
described. Then copy the SOMNMOBJREF setting from the [somnm] stanza of the
configuration file on the install host (stored in that file as a side-effect of running som_cfg)
to the [somnm] stanza of the configuration files to be used on all the DSOM hosts. This
setting requires several lines.

Every process running on a DSOM host must have SOMENV set to include some
configuration file whose SOMNMOBJREF setting was copied from the install host, and it
must appear in the [somnm] stanza. This is the information DSOM uses to contact the
Naming Service directly on the install host at run time.

If it later becomes necessary to change a DSOM network from the alternative configuration
to the default configuration, the following steps are required.

Note: The install host does not need to be reconfigured to perform this conversion.

1. Change the SOMDDIR setting on the DSOM host to refer to an empty directory.
(Reconfiguring the DSOM host requires that any server registrations on that machine
be redone.)

2. Copy the GLOBAL_OBJREF_FILE from the install host to the DSOM host, and set
GLOBAL_OBJREF_FILE on the DSOM host to point to the copy, as described earlier.

3. Run som_cfg -d as described earlier, to configure the DSOM host.
4. Re-register any servers to be run on the DSOM host, using regimpl.

This change can be done gradually, converting a few machines at a time to be full-fledged
DSOM hosts, as necessary.

Step 6. Configuring User Applications
The following sections tell how to configure DSOM applications. Configuring application
consists of the steps:

1. Customize settings in The Configuration File on page 15. Each application might
have different settings, so this step can be redone as needed.

Run somdchk. This step is optional.
Registering Class Interfaces.

Configuration and Startup 29

4. Register servers and classes in the Implementation Repository using regimpl. See The
regimpl Registration Utility on page 32

5. Migrate any 2.1 Implementation Repositories to the current level. See Migrating 2.x
Implementation Repositories to Current DSOM Format on page 44
Also, see Running DSOM Applications on page 308.

This step can be done as part of your configuration sequence if you have existing
applications. Or, you can repeat some or all of this step as often as you need once you
have created applications.

Registering Class Interfaces

30

The Interface Repository (IR) is a collection of files that make up a database of information
about the classes that a DSOM application uses. DSOM relies on the IR for the following:

e Dynamically loading classes (by obtaining the dliname modifier from the IR), including
application classes, user-defined subclasses of SOMDServer (for servers only),
user-defined subclasses of ImplementationDef, user-defined proxy-base classes and
classes to support vendor-supplied DSOM protocols.

» Retrieving the value of the factory modifier for a class with an application-specific
factory (used by servers only).

* Retrieving the value of the baseproxyclass modifier for classes with user-defined
proxy-base classes.

* Registering (with regimpl) a server using a user-defined subclass of
ImplementationDef. (The IR is used to determine the new attributes for which a value
should be solicited from the regimpl user.)

» Making requests using the Dynamic Invocation Interface.
* Responding to the get_interface method.

If a DSOM application relies on any of these services, the appropriate classes should be
registered in the IR prior to running the application. A class’s dliname modifier need not be
registered in the Interface Repository if any of the following holds:

» The class library (DLL) name is the same as the class name.

» The class is guaranteed to be used only after the DLL has been dynamically loaded for
some other class, and the DLL provides a SOMInitModule that causes the class object
to be created automatically when the DLL is loaded by the SOM Class Manager.

* The application client and server are each statically linked to the class library, and
either create the class object explicitly (by calling classNameNewClass or
classNameNew) or the DLL provides a _DLL_InitTerm routine that causes the class
object to be created automatically when the DLL is loaded (by calling a library-provided
SOMiInitModule routine). This requirement is not satisfied for applications using the
somdsvr or Somossvr server programs, because these server programs load all
application classes dynamically.

Note: DSOM 2.x used the IR to discover information about method signatures for remote
method invocations. The IR is no longer used in this way. For libraries built using
SOMobijects 2.x, method signature information must be compiled into the IR as
before.

Information that DSOM uses when making a remote method invocation is stored directly in
the class library (DLL), provided the library was built using the current ih or xih emitter. If
this information is not found, DSOM consults the IR. Class implementors can prevent

Programmer’s Guide for SOM and DSOM

method signature information, called a marshal plan, from being compiled into the DLL by
using the mplan SOM IDL method modifier or the nomplans class modifier.

To register a class in the Interface Repository, compile the IDL description of the class by
running the SOM Compiler and the ir emitter using the following command syntax:

sc -sir -u stack.idl

Before updating the IR, you should set the SOMIR environment variable or the
corresponding entry in the configuration-file [somir] stanza. See Interface Repository on
page 18.

When the ir emitter is run, only the last file specified by SOMIR is updated. At run-time,
however, the sequence of files is examined from left to right. The irdump tool can be used
to examine the contents of the IR. See Using the SOM Compiler to Build an Interface
Repository on page 337 and Managing Interface Repository Files on page 338 for more
information on the ir emitter and SOMIR.

Registering Servers and Classes

Before a server is used, it must be registered in the Implementation Repository. The
Implementation Repository is a persistent store of ImplementationDef objects residing on
a server machine in the directory indicated by the current SOMDDIR setting. The
ImplementationDef class defines attributes necessary for the DSOM daemon to start a
server and for the server to initialize itself.

Each ImplementationDef object in the Implementation Repository represents a single
logical server. At run-time, each logical server is implemented by some executable program
running as a server process, but the logical server exists regardless of whether that server
program is running.

Note: If you have been using the Implementation Repository provided by DSOM 2.x, see
Migration Relationship to the 2.x Implementation Repository on page 42 for
important information about how the Implementation Repository has changed for
DSOM 3.x.

Implementation Definitions

Details of the ImplementationDef object are not currently defined in the CORBA
specification. The attributes defined are required by DSOM and are listed below. You can
subclass ImplementationDef to add your own attributes, as described in Customizing
ImplementationDef Objects on page 41.

impl_id (string)
Contains the DSOM-generated identifier for a server implementation. This identifier is
unique throughout the network and can be used as a key into the Implementation
Repository.

impl_alias (string)
Contains the alias for a server implementation, specified by the system administrator
when registering the server. This alias must be unique within a particular
Implementation Repository database and can be used as a key. Unlike the impl_id
attribute, the alias does not need to uniquely identify the server throughout the network.

Configuration and Startup 31

impl_program (string)
Contains the name of the program or command file that will be executed when a
process for this server is started by somdd. If the full pathname is not specified, the
directories specified in PATH will be searched for the named program or command file.
The impl_program attribute need not be unique for different ImplementationDef
objects.

Many servers are registered to use the DSOM default server program, somdsvr, or the
object-services server, somossvr. The default server program name is somdsvr. If the
somossvr server program is used, the somOS::Server class must be used. See
impl_server_class (string) for additional information.)

Optionally, the server program can be run under control of a “shell” or debugger, by
specifying the shell or debugger name first, followed by the name of the server
program. (A space separates the two program names.) For example, on OS/2

icsdebug myserver

will start myserver under the control of the icsdebug debugger. Servers that are started
automatically by somdd always pass their impl_id as the first parameter.

impl_flags (Flags)
Contains a hit-vector of flags used to identify server options (for example, the
IMPLDEF_MULTI_THREAD flag indicates a multi-threaded server). Review the
impldef.idl file for the complete set of valid ImplementationDef flags. Unused flag bits
are reserved for future use by IBM.

impl_server_class (string)
Contains the name of the SOMDServer class or subclass to be instantiated by the
server process during initialization, to yield the server’s server object. The default is
SOMDServer. Note that when the somossvr server program is used, the
somOS::Server server class must also be used.

impldef_class
Contains the class name of the implementation definition. Class must inherit from
ImplementationDef, which is the default.

config_file (string)
Contains the name of the configuration file to be used by the server, if different from the
SOMENYV setting of the user/process that initiates the server process such as the
DSOM daemon. When the server invokes SOMOA::impl_is_ready, if the server’s
ImplementationDef::config_file attribute differs from the current SOMENYV setting and
is non-NULL, the contents of the configuration file named by
ImplementationDef::config_file will be read, any DSOM run-time initialization
performed during SOMD_Init will be refreshed, and for the duration of the server
process the setting of ImplementationDef::config_file will be prepended to the
current SOMENYV setting.

The regimpl Registration Utility

The regimpl utility is used to register servers and classes.

Registering Servers

To register a server in the Implementation Repository, the system administrator can use a
DSOM registration utility: regimpl. The regimpl has a command line interface. You can also
use the ImplRepository interface to do the same function in an application.

32 Programmer's Guide for SOM and DSOM

Servers may be registered only on the machine on which they will run and should not be
registered on another machine because the HOSTNAME and SOMDPORT entries in the
configuration file of the regimpl user are assumed to be those of the server. This
information is stored in the Naming Service when the server is registered, to be used by the
DSOM Factory Service to assist clients in locating servers.

The settings in the configuration file at the time a server is registered must be consistent
with those in effect when the DSOM daemon is started on the server machine. The
SOMDPROTOCOLS setting used by the daemon must have at least one entry in common
with the setting used when the server was registered, and for the common
SOMDPROTOCOLS entries, the HOSTNAME and SOMDPORT entries must match.

Note: The examples of registering servers in the following sections assume the use of the
generic DSOM server program, somdsvr.exe. A discussion on how to write a
specific server program is found in Basic Server Programming on page 286.

When using the SOM object services, the somossvr server program and the
somOS::Server server class must be used. This server program and server class
provide persistent object references and other services. After registering a server to
use somossvr and somOS::Server, run the server from the command line with the
-i option the first time it is executed, to allow the server to initialize its persistent
storage. Subsequently, the server can be started by somdd on demand, just as with
somdsvr. See Chapter 5, Object Services Server on page 35 of Programmer’s
Guide for Object Services for more information on the somossvr server program and
the somOS::Server server class.

Registering Classes

During the execution of regimpl, or when using the programmatic interface, DSOM updates
the Implementation Repository. In addition to updating the Implementation Repository,
regimpl and the programmatic interface allow you to designate which SOM classes a
server supports. Although the somdsvr and somossvr server programs can load any
accessible SOM class library using somFindClass, the DSOM Factory Service only
creates a factory for a requested class in a server that is registered to support that class.

When you use regimpl to associate a class with a server, DSOM stores this association in
the Naming Service. For more information on how DSOM updates the Naming Service as
servers are registered, see The Naming Service and Registering Servers on page 40.

Servers can be registered to support specific classes or the special class keyword “ ANY.”
DSOM Factory Service users can then request a server that supports a specific class name
or class _ANY. In addition to registering classes with specific servers, classes can be
registered using the server alias keyword “_LOCAL.” This indicates that clients should be
allowed to create local instances of that class using the DSOM Factory Service, provided
they have the same HOSTNAME setting as the one in effect at the time the class was
registered for _LOCAL creation. (The HOSTNAME setting used in this case is the one
found in the [somd] stanza of the SOMobjects configuration file.) For more information on
the DSOM Factory Service, see Creating Remote Objects on page 245.

Registration Steps Using regimpl

To register a server implementation and its classes using the regimpl utility, at the system
prompt enter:

regimpl

Configuration and Startup 33

34

This brings up the DSOM Implementation Registration Utility menu, shown below.

Adding Implementations

1. To begin registering the new implementation, select 1. add from the
IMPLEMENTATION OPERATIONS section: that is, at the Enter operation: prompt,
enter 1

DSOM IMPLEMENTATION REGISTRATION UTILITY
(C) Copyright IBM Corp. 1992, 1996. All rights reserved.

[IMPLEMENTATION OPERATIONS]
1.Add 2 .Delete 3.Change
4.Show one 5.Show all 6.List aliases

[CLASS OPERATIONS]
7.Add 8.Delete 9.Delete from all 10.List classes
11. Add to all

[SAVE & EXIT OPERATIONS]
12.SAVE and EXIT

Enter operation: 1
The regimpl utility then issues several prompts for information about the server
implementation. Typical responses are shown in bold as an example.

2. Enter a shorthand name for conveniently referencing the registered server
implementation while using regimpl. Avoid using names that being with an underscore.

Enter an alias for new implementation: myServer

3. Enter the name of the ImplementationDef class for regimpl to use for this entry (the
default is ImplementationDef). For details on providing user-written subclasses of
ImplementationDef, see Customizing ImplementationDef Objects on page 41.

Enter ImplDef Class name (default ImplementationDef): <return>

If a user-defined subclass of ImplementationDef was chosen for this server, regimpl
will then prompt for additional information as defined by the ImplementationDef
subclass.

4. Enter the name of the program that will execute as the server. This may be the name of
one of the SOMobjects server programs, somdsvr or somossvr (discussed in
Running DSOM Servers on page 309) or a user-written server program. If the
sSomossvr server program is used, the somOS::Server server class must also be
used (see Step 8 in this list). If the program is located in PATH, only the program name
needs to be specified. Otherwise, the pathname must be specified.

Enter server program name: (default: somdsvr) <return>

5. Specify whether the server expects the SOM Object Adapter (SOMOA) to run each
method in a separate thread. Note: You must ensure that methods executed by the
server are thread safe.

Allow multiple threads in the server? [y/n] (default: no) : n

6. Specify whether the server should accept requests from authenticated clients only.
Make server secure? [y/n] (default: no) : <return>

7. Specify whether the server should be managed.

Make server a managed one? [y/n] (default: no) : n

Programmer’s Guide for SOM and DSOM

8. Enter the name of the SOMDServer class or subclass that will manage the objects in
the server. If the somossvr server program was specified for this server, then the
somOS::Server server class must also be used.

Enter server class (default: SOMDServer) : <return>

9. Specify the configuration file to be used by the server, if different from the SOMENV
setting of the user/process that initiates the server process (for example, the DSOM
daemon).

Enter Config file name (default: none) : <return>

10. Each protocol listed in the SOMDPROTOCOLS setting will be presented; select those
protocols that this server will support. If SOMDPROTOCOLS is not set, or if no
protocols are selected, then SOMD_IPC is assumed.

Select protocol ’'SOMD_IPC’ [y/n] (default: yes) : y

The regimpl system next displays a summary of the information defined so far, and asks
for confirmation. Enter y to save the implementation information in the Implementation
Repository.

Implementation id.........: 2befc82b-13al1e00-7£-00-10005ac9272a
Implementation alias......: myServer

ImplDef Class name........: ImplementationDef

Program name..............: somdsvr

Multithreaded.............: No

Server secure.............: No

Server class..............: SOMDServer

Configuration file........:
Protocol information......:
Protocol: SOMD IPC; Hostname: sherman; Port: 3002;

The above implementation is about to be added. Add? [y/n] y

Implementation ’‘myServer’ successfully added

At this point, regimpl records information about the server in the Naming Service, for use
by the DSOM Factory Service. If the Naming Service has not been configured, or is not
available, an error is reported, but the server is still registered in the Implementation
Repository, and the next time the server’s registration is updated, DSOM attempts to
update the Naming Service. For information on how regimpl updates the Naming Service,
see The Naming Service and Registering Servers on page 40.

Adding classes

Once the server implementation is added, the complete menu reappears. The next series
of prompts and entries will identify the classes associated with this server.

1. To begin, registering new classes, select 7. Add from the CLASS OPERATIONS
section; that is, at the Enter operation: prompt, enter 7

[IMPLEMENTATION OPERATIONS]
1.Add 2 .Delete 3.Change
4.Show one 5.Show all 6.List aliases

[CLASS OPERATIONS]
7.Add 8.Delete 9.Delete from all 10.List classes
11. Add to all

[SAVE & EXIT OPERATIONS]
12. SAVE and EXIT

Enter operation: 7

Configuration and Startup 35

Enter the name of a class associated with the implementation alias. This can be a fully-
scoped class name (for example, ::M::l or M::I) or an unscoped class name (l),
provided that clients use the same form when requesting a factory for the class using
the DSOM Factory Service. The fully scoped form is recommended when the unscoped
form is ambiguous. To indicate that a server can create instances of any class whose
DLL can be loaded, use the keyword _ANY in place of an actual class name.

Enter name of class: classl

Enter the alias for the server that implements the new class (this should be the same
alias as given above). To indicate that DSOM clients running on this machine can
create instances of the class locally (within the same process) using the DSOM Factory
Service, use the keyword “_LOCAL” rather than an actual server alias.

Enter alias of implementation that implements class: myServer

regimpl also lets you associate your own user-defined properties with the name
bindings it creates when a class/server pair is registered. These additional properties
can then be used in queries to the DSOM Factory Service by client programs.
Additional properties are specified to regimpl as the property’s name, followed by a
space, followed by the property value. Signify no more additional properties by pressing
<returns>.

Enter additional property <name value> pairs: Version 3.0
Enter additional property <name value> pairs: Owner gardner

Enter additional property <name value> pairs: <return>
Implementation id.........: 307elc84-03bde08c-7f-00-08005a883a0b
Implementation alias......: myServer
Class names...............: classl

Property / Value.......: Version = 3.0

Property / Value.......: Owner = gardner

All class/server associations are registered in the Naming Service, for use by the
DSOM Factory Service. When a regimpl user associates a class with a server, as
above, regimpl creates a name binding in the Naming Service to reflect that
association. The server alias, server id, and class name are stored as properties of the
name binding. For more information on how regimpl updates the Naming Service, see
The Naming Service and Registering Servers on page 40.

The above class is about to be added. 2add? [y/n] y

Class ‘classl’ now associated with implementation ‘myServer’

The top-level menu will then reappear. Repeat the previous five steps until all classes have
been associated with the server. Finally, select 12. SAVE and EXIT to exit the regimpl
utility.

Command Line Interface to regimpl

36

The regimpl utility also has a command line interface. The command flags correspond to
the interactive commands described above. The syntax of the regimpl commands follow.

To enter interactive mode:
regimpl
To add an implementation:

Programmer’s Guide for SOM and DSOM

regimpl -A -i str str] [-v str]

[-p
[-e str {param...}]

[-k {on|off}] [-m {on|off}] [-z str]
[-s {on|off}] [-g str]

[-t str {param...} [-t ...]1]

* To update an implementation:

regimpl -U -i str str] [-v str]

[-p
[-e str {param...}]

[-k {on|off}] [-m {on|off}] [-z str]
[-s {on|off}] [-g str]

[-t str {param...} [-t ...]1]

* To delete one or more implementations:
regimpl -D -1 str [-1i ...]

* Tolist all, or selected, implementations:
regimpl -L [-i str [-i ...]]

e To list all implementation aliases:
regimpl -S

» To add class associations to one or more implementations:
regimpl -a -c str [-c ...] -i str [-1 ...]

* To delete class associations from all, or selected, implementations:
regimpl -d -c¢ str [-c¢ ...] [-1 str [-1 ...1]

» To list classes associated with all, or selected, implementation:
regimpl -1 [-1i str [-1 ...]1]

The following parameters are used in the previous commands:

-C str Class name (maximum of 16 -c names)

-e str ImplementationDef class name (optional; default
ImplementationDef)

param Values for additional attributes needed by ImplementationDef
subclass. Can be zero or more strings, delimited by spaces.

-g str Server configuration file name (optional)

-i str Implementation alias name (maximum of 16 -i names)
-m {on|off} Enable multi-threaded server (optional; default off)
-p str Server program name (optional; default: somdsvr)
-s {on]off} Allow server to be secure (optional; default off)

-t str Transport protocol

param Additional data needed by transport protocol. Can be zero or
more strings, delimited by spaces.

The -t option designates one (of possibly many) transport protocols
that the server supports. (regimpl intersects this list with those
protocols actually available on the machine.) The string following the -t
option is the name of a protocol as it appears in the configuration file
(in the SOMDPROTOCOLS setting and in its own stanza).

Following a particular -t protocol option can be zero or more strings,
delimited by spaces. (If there are spaces needed within a particular
string, then the string must be enclosed in quotes.) These strings are

Configuration and Startup 37

the information required by the specified protocol. Each protocol
provider specifies what strings are required or allowed for that protocol.
(The protocols shipped with DSOM do not support any.) If any of the
protocols specified generates an error due to the strings specified, then
regimpl rejects the entire command.

-V Str Server-class name (optional; default: SOMDServer)
-z str Implementation ID (optional; normally generated by DSOM)

As with the interactive regimpl commands, use the class name keyword _ANY to indicate
that a server can create instances of any class whose DLL can be loaded. Similarly, use
the server alias keyword _LOCAL to indicate that DSOM clients running on this machine
can create instances of the class locally (within the same process) using the DSOM Factory
Service.

Note: The regimpl command and any optional regimpl command flags can be entered at
a system prompt, and the command will execute as described below. For OS/2,
this text-based interface is particularly useful in batch files.

For information on how regimpl updates the Naming Service when servers or classes are
registered, see The Naming Service and Registering Servers on page 40.

Programmatic Interface to the Implementation Repository

38

The Implementation Repository can be accessed and updated dynamically using the
programmatic interface provided by the ImplRepository class (defined in implrep.idl).
With the ImplRepository programmatic interface, it is possible for an application to define
additional server implementations at run time. The global variable SOMD_ImplIRepObject
(in a server process) is initialized by SOMD _Init to point to the ImplRepository object that
represents the Implementation Repository stored in the directory indicated by the current
SOMDDIR setting. The following methods are defined on it:

» Add an implementation definition to the Implementation Repository. The value of the
impl_id attribute in the supplied ImplementationDef object is optional; a unique
Implld will be generated for the newly added ImplementationDef unless the
impl_flags attribute of the ImplementationDef specifies the IMPLDEF_IMPLID_SET
flag. All other attributes, except impl_alias, are optional. As with registering a server
using regimpl, the add_impldef method will attempt to record information about the
server in the Naming Service, in addition to updating the Implementation Repository. If
the Naming Service has not been configured or is not available (for example, when
somdd is not running), an exception will be returned but the server will still have been
registered in the Implementation Repository.

void add impldef (in ImplementationDef impldef) ;

« Delete an implementation definition from the Implementation Repository, given its

impl_id attribute.
void delete impldef (in ImplId implid);

» Update the implementation definition (defined by the impl_id attribute of the supplied

ImplementationDef) in the Implementation Repository. If the Naming Service has not
been configured or is not available (for example, when somdd is not running), an
exception will be returned but the server will still have been updated in the
Implementation Repository.

void wupdate impldef (in ImplementationDef impldef) ;

» Return a server implementation definition given its impl_id attribute value.

Programmer’s Guide for SOM and DSOM

ImplementationDef find impldef (in ImplId implid);
Return a server implementation definition, given its user-friendly alias (the impl_alias
attribute of the ImplementationDef).

ImplementationDef find impldef by alias (in string alias_name) ;

Return a sequence of ImplementationDefs for those servers that have an association
with the specified class. Typically, a server is associated with the classes it knows how
to implement by registering its known classes via the add_class_to_impldef method.

sequence<ImplementationDef> find impldef by class (
in string classname) ;

Retrieve all ImplementationDef objects in the Implementation Repository.

ORBStatus find all impldefs (
out sequence<ImplementationDef> outimpldefs) ;

Search the Implementation Repository and return a sequence of the impl_alias
attributes associated with each ImplementationDef object therein.

ORBStatus find all aliases (out sequence<string> impl aliases);

The following methods maintain an association between server implementations and the
names of the classes they implement. These methods effectively maintain a mapping of
className, Implid in the Naming Service. For more information, see The Naming Service
and Registering Servers on page 40.

Associate a class, identified by name, with a server, identified by the impl_id attribute
of its ImplementationDef. This type of association is used to look up server
implementations via the find_impldef_by_class method. The classname can be a fully
scoped class name (such as, ::M::l or M::l) or an unscoped class name (like I),
provided that clients use the same form when requesting a factory for the class using
the DSOM Factory Service. The fully scoped form is recommended when the unscoped
form is ambiguous. The class name keyword _ANY indicates that the server can create
instances of any class whose DLL can be loaded, and the Implld keyword _LOCAL
indicates that DSOM clients running on this machine can create instances of the class
locally (within the same process), using the DSOM Factory Service.

void add class to impldef (
in ImplId implid,
in string classname) ;

Remove the association of a particular class with a server.

void remove class from impldef (
in ImplId implid,
in string classname) ;

Remove the association of a particular class from all server implementations in the
Implementation Repository.

void remove_class_from all (in string classname) ;
Return a sequence of class nhames associated with a server.

sequence<string> find classes by impldef (in ImplId implid) ;
Associate the specified class with all servers currently registered in the Implementation
Repository.

ORBstatus add class to_all (in string classname) ;

Associate the specified class with the specified server. The optional PVList sequence
associates additional, user-defined property values with the name binding created in
the Naming Service.

Configuration and Startup 39

ORBstatus add_class_with properties (
in ImplId implid,
in string classname,
in PVList pvl) ;

The Naming Service and Registering Servers

40

Because the DSOM Factory Service relies on the Naming Service, the Naming Service
must be configured before DSOM servers can be registered. See Naming Service
Concepts on page 27.

When a regimpl user associates a particular server with a particular class, DSOM stores
this association in the Naming Service, as a hame binding. This information is recorded in a
specialized Naming Context (specialized for the DSOM factory-finding service), called the
Factory Naming Context.

The first time a process (such as, regimpl or an application using the ImplRepository
interface) attempts to add or update a class/server association, DSOM establishes a
connection to the root Naming Context of the Naming Service. DSOM then invokes a
method on the root Naming Context to obtain a proxy to the Factory Naming Context. The
Factory Naming Context is the Naming Context in which associations between servers and
classes are stored.

If the Naming Service is not available, then all operations that require an update to the
factory context will return a system exception.

For each server/class pair registered, DSOM generates a name of the form
<serverUUID><className> (the server’'s ImplementationDef::impl_id attribute
concatenated with the class name). DSOM associates this name, in the Naming Service,
with properties indicating the class hame (class), server ID (serverld), server alias (alias)
and information that allows DSOM clients to locate the server. Additional properties may be
associated with the name (for example, by using the add_class_with_properties method
of ImplRepository or via regimpl).

Although names and properties in the Naming Service are usually associated with, or
bound to, non-NULL object references, the names and properties that regimpl stores in the
Factory Naming Context are associated with NULL object references, indicating that the
factory object does not yet exist. (In fact, the server in which the factory object will reside is
probably not even running yet.) The DSOM Factory Service will generate these factory
objects on demand.

When a server is registered to create any class, DSOM uses the keyword _ANY as the
value of the class property.

When a class is registered for server _LOCAL (indicating that DSOM clients can create
local instances of a class using the DSOM Factory Service), the alias property is set to
_LOCAL. (_LOCAL should not be used as a real server alias.) DSOM then concatenates
the string _LOCAL with the current setting of HOSTNAME (from the [somd] stanza of the
configuration file) to construct the value of the serverld property. The Name bound in the
Naming Service is likewise constructed by concatenating _LOCAL, the current
HOSTNAME setting, and the class name.

When a server is registered, even if no classes are associated with it, DSOM attempts to
update the Naming Service to contain the information DSOM clients need to locate the
server. This is done primarily to provide continued support for the deprecated
SOMDObjectMgr methods and may be discontinued in a future release. If no classes are
registered for the server, NULL is used as the value of the class property in the Naming
Service, as a placeholder. If this update of the Naming Service cannot be performed (for

Programmer’s Guide for SOM and DSOM

example, if the Naming Service has not been configured or somdd is not running), the
server is still registered in the Implementation Repository, and the Naming Service will be
updated (if available) the next time the server’'s ImplementationDef is updated.

Each time an ImplementationDef is updated, the set of classes associated with the server
is updated in the Naming Service. A new name binding is created, if necessary. Properties
associated with the server in the Naming Service are also updated each time the server
registration is updated.

Because server aliases are not guaranteed to be unique throughout the network (but only
within a single Implementation Repository), multiple name bindings in the Naming Service
may have the same alias property value. If this occurs, then the result of the (now
deprecated) method somdFindServerByName will be nondeterministic. The first server
entry that is found will be returned.

Customizing ImplementationDef Objects

DSOM allows users to store, in the Implementation Repository, instances of user-defined
subclasses of ImplementationDef. This is useful when additional, user-defined attributes
need to be saved as part of a server definition. Each ImplementationDef object in an
Implementation Repository can potentially be an instance of a different subclass. The
regimpl tools let you indicate which class is to be used for each entry. For each new
attribute introduced by that class, regimpl prompts for a value as indicated in the IDL for
the class.

The following conventions must be followed when writing a subclass of ImplementationDef:

1. Methods externalize_to_stream and internalize_from_stream, which are inherited
from CosStream::Streamable, must be overridden.

This is necessary so that instances of the class can be externalized and stored in the
Implementation Repository database.

Within the overriding implementation, each method must first make a parent method
call, then store/retrieve the newly introduced attributes using the methods write_string
and read_string. (New attributes that do not need to be stored persistently need not be
stored/retrieved. Also, the new attributes and their values cannot exceed 255
characters.) The same order of attribute reading/writing should be used in both
methods. For example,

In externalize_to_stream:

_write string(...,attributel);
_write string(...,attribute2);

Ininternalize_from_stream:

attributel
attribute?2

2. ldentify attributes that require user input.

_read string(...);
_read string(...);

Newly introduced attributes for which regimpl should prompt must be identified by the
special SOM IDL modifier impldef_prompts in the implementation section of the
class’s IDL definition. The syntax is as follows:

impldef_prompts: attributel, attribute2, ...;

More than one occurrence of this modifier in the IDL is acceptable; in such a case the
following equivalence rule applies:

Configuration and Startup 41

impldef_prompts: attributel;
impldef_prompts: attribute2;

is equivalent to
impldef_prompts: attributel, attribute2;

The new attributes for which regimpl can prompt must be of type string. This is not as
strict a restriction as it appears, since servers that use this attribute can convert it to an
appropriate format. For example, a string representation of a numeric value could be
stored, and converted to an integer or float by a customized server.

The get and set methods for the new attributes must adhere to the caller-owned
memory-management policy (indicated by the IDL modifier memory_management=
corba or by using the caller_owns_result and caller_owns_parameters IDL
modifiers). Because these attributes are of type string, this means that the attributes
must be annotated with the noget and noset IDL modifiers. In your implementation of
the set methods, you must make a copy of the input string before storing it; in your
implementation of the get methods, you must make a copy of the string to be returned.

3. Package the class as a DLL so DSOM can dynamically load the class, using
somFindClass.

4. Compile the new subclass’s interface into the Interface Repository.

Ensure that the interface repository specified by SOMIR contains this interface. This is
required so that SOM can load the class (by getting the dliname modifier from the IR)
and so that regimpl can query the value of the impldef_prompts modifier.

Migration Relationship to the 2.x Implementation Repository

42

The Implementation Repository has been improved significantly in DSOM over earlier
releases. The first topic below discusses the main differences between 2.x Implementation
Repositories and the Implementation Repositories of the current release. The second topic
describes a tool, migimpl3, for converting 2.x Implementation Repositories to 3.x
Implementation Repositories. (This conversion must be done on any existing 2.x
Implementation Repositories before they can be used with the current release of DSOM.)

Differences between 2.x and 3.x

This section describes the major differences between DSOM 2.x Implementation
Repositories and DSOM 3.x Implementation Repositories.

» For increased scalability and manageability of the Implementation Repository, DSOM
no longer requires access to the Implementation Repository by client programs.
Instead, the information needed by clients that was previously stored in the
Implementation Repository is how stored in the Naming Service. Information no longer
stored in the Implementation Repository includes the associations between servers and
classes, and information needed for clients to locate servers.

e Inthe current DSOM, the Implementation Repository files stored in the SOMDDIR
directory contain only the information needed on the server machine. (This includes
information that the DSOM daemon needs to automatically activate the server, and
information that the server needs to initialize itself). Although the underlying
implementation is different, the interfaces for registering servers have been preserved
as much as possible.

Because server/class associations in DSOM are now stored in the Naming Service, the
Naming Service must be configured and the DSOM daemon running on the machines

Programmer’s Guide for SOM and DSOM

on which naming servers will run before updating or accessing this information (for
example, with regimpl or the ImplRepository programmatic interface). In addition,
servers must be registered by running regimpl on the machine on which the server will
run.

Because information that DSOM clients need to locate servers is now stored in the
Naming Service, the impl_hostname attribute of ImplementationDef objects is no
longer used by DSOM.

Because all server registrations throughout the network result in updates to the Naming
Service, it is possible for multiple server entries in the Naming Service to have the
same server alias. (Server aliases are required to be unique within a single
Implementation Repository, but not within the Naming Service.) This means that
somdFindServerByName (which is now deprecated) is no longer deterministic; it
returns the first entry in the Naming Service that matches the given server alias.

Because DSOM now supports communication over multiple protocols simultaneously,
and each protocol can have its own HOSTNAME and SOMDPORT setting, this
information is taken from the configuration file at the time the server is registered,
rather than being specified explicitly. This is another reason that the server must be
registered on the machine on which it will run.

For greater extensibility of the Implementation Repository, DSOM now supports
user-defined subclasses of the ImplementationDef class. A single Implementation
Repository can contain a heterogeneous mix of ImplementationDef objects. For more
information, see Customizing ImplementationDef Objects on page 41.

The current DSOM offers an improved storage mechanism for the Implementation
Repository, with improved performance and scalability. This includes the addition of
file-level locking of Implementation Repository files. As a result of these changes, the
regimpl tool no longer offers an abort operation after an operation has been confirmed.

The port number of the DSOM daemon that is used to contact a server (SOMDPORT)
is recorded when the server is registered, from the configuration file, rather than
requiring the server’s clients to have a matching setting for SOMDPORT. This means
that clients can simultaneously communicate with different DSOM daemons using
different port numbers.

The object reference file and backup file for servers that create object references using
the BOA::create method are now stored in the SOMDDIR directory and can be shared
among multiple servers. The object reference files are no longer specific to a single
server, and the impl_refdata_file and impl_refdata_bkup attributes of
ImplementationDef are no longer used. In addition, the storage mechanism of the
object reference file has been improved for performance and scalability. These
changes require that object reference files created by DSOM 2.x be invalidated when a
server system upgrades to DSOM 3.x.

New attributes have been added to ImplementationDef to support new features of
DSOM. For example, a config_file attribute allows a server’s run-time environment to
differ from the user or process that starts the server (for example, the DSOM daemon).
The interfaces to regimpl have been revised to support these new features.

Configuration and Startup 43

Migrating 2.x Implementation Repositories to Current DSOM

Format

44

Because the format of 2.x Implementation Repositories differs from the format of current
Implementation Repositories, a migration tool has been provided to assist in converting
from one format to the other. This tool is called migimpl3.

Use migimpl3 to migrate entries from a 2.x repository into a newer style repository. The
only 2.x ImplementationDef entries that can migrate into a current repository are those
that have their impl_hostName attribute set either to 1ocalhost or to the value of the
current HOSTNAME environment setting. This is necessary because DSOM now requires
that a server be registered only on the machine on which that server will run. Therefore,
server entries should only be converted from 2.x to current-level Implementation
Repositories on the machine on which the server will run.

In addition to converting server registrations to the current DSOM format, use migimpl3 to
register the server/class associations with the Naming Service. (These were previously
stored in the 2.x Implementation Repository.) This information is used by DSOM clients and
the DSOM Factory Service to locate the server.

For migimpl3 to update the Naming Service, the SOMDDIR setting in the [somd] stanza of
the SOMobijects configuration file should be set to the name of the Implementation
Repository directory for both DSOM 2.1 and the current version of DSOM. This means that
the DSOM 2.1 format files to be migrated should be copied into the SOMDDIR directory
that was in effect when som_cfg was run.

The Implementation Repository database for DSOM 2.x consists of the following files:

somdimpl.dat
somdimpl.toc
somdcls.toc
somdcls.dat

The current form of the DSOM Implementation Repository database consists of the
following files:

alias.db
aliasdat.db
impl.db

The migimpl3 utility also requires that Naming Service configuration be complete and that
the DSOM daemon, somdd, be running on the machines on which Naming Server server
processes are located. The Naming Servers need not be running, somdd activates them
as necessary.

The syntax of the migimpl3 command is as follows:
migimpl3 [-] [-U] [-istrl[-istr]...]
The -l option is a lower case “el”.

To convert all entries from the Implementation Repository Database of DSOM 2.x to that of
the current-level DSOM (provided that the impl_hostname attribute matches
HOSTNAME), simply enter the command:

migimpl3
Default execution for the migimpl3 operation is as follows:

» It does not replace any existing entry in the 3.x Implementation Repository. An error of
duplicate alias/implid entry is returned if a matching impl_alias or impl_id
is found in the Implementation Repository of the current-level DSOM.

Programmer’s Guide for SOM and DSOM

» It does not convert entries that have the HOSTNAME setting 1ocalhost unless the -|
option has been specified.

e The config_file attribute in the current-level ImplementationDef is not set.

« The SOMDPROTOCOLS setting determines which protocols are used when converted
entries are registered. See SOMDPROTOCOLS on page 19 for more details on the
SOMDPROTOCOLS setting.

» Although the ImplementationDef attributes impl_hostname, impl_refdata_file, and
impl_refdata_bkup are no longer used in this release, these attributes have been
retained for backward compatibility. The migration tool will retain any settings for these
attributes found in the 2.x Implementation Repository. These settings will not be
displayed, however, when viewing the implementation using regimpl. (They can still be
accessed programmatically using the ImplRepository and ImplementationDef
interfaces.)

The optional parameters to the migimpl3 command specify the following operations:

-l
Converts to an Implementation Repository of current-level DSOM if the DSOM
impl_hostname attribute matches the HOSTNAME setting or is set to localhost. If
the -l option is not specified, the migimpl3 tool does not convert entries that have
HOSTNAME=1ocalhost.

Updates any existing entry in the current-level Implementation Repository. No update is
performed if the corresponding impl_id of the impl_alias name does not exist in the
current Implementation Repository database; instead, an error of update failure is
returned. The -U option updates the current Implementation Repository for entries
whose hosthame field matches HOSTNAME or is set to 1ocalhost. (In other words,
the -U option implies the -l option.)

-i str
Specifies the Implementation alias names to be converted or updated (with a maximum
of 16 -i names). Only the specified entries are converted/updated.

Moving Servers

In DSOM, it is possible to move a server from one machine to another, for purposes of
system maintenance, system load balancing, and so on. To move a server:

* The server implementation (program and DLLs) must be moved to the new machine.
* Any data files associated with the server must be moved to the new machine.

e The server implementation definition must be removed from the Implementation
Repository on the original machine and added to the Implementation Repository on the
new machine. If the server program name has changed, the new name should be
entered in the new Implementation Repository entry.

Checking Configuration Values

At times, you need to know the setting of the values defined in the configuration file.
SOMobijects provides three function to perform this action: somutgetenv,
somutgetshellenv and somutresetenv.

Configuration and Startup 45

Using somutgetenv

The somutgetenv function lets a program determine the current setting of a value defined
in the configuration file. The configuration file settings are read only on the first call to this
function. Thereafter, calls to this function consult an in-memory version of the configuration
settings. To refresh the in-memory settings, first call somutresetenv and then
somutgetenv. The somutgetenv function has the syntax:

char * SOMLINK somutgetenv (char * name, char * stanza);

where name is the identifier whose value is requested and stanza is a stanza name. The
given name must represent an identifier within the specified stanza. The somutgetenv
function returns NULL if no value is found. The caller should not free the returned string
value.

As an example, the following function call could be made, based on the somenv.ini excerpt
shown previously:

value = somutgetenv (“CSFactoryClass”, “[SOMD TCPIP]”);

The string value SOMDCallStrmIIOP: :CallStreamFactoryIIOP would be returned
from this call.

Using somutgetshellenv

The somutgetshellenv function returns the value of a SOMobijects setting and is identical
to the somutgetenv function, except that it first checks the system environment to
determine whether a value for the specified identifier exists. This is equivalent to calling the
C library function getenv prior to calling somutgetenv. If the symbol is not defined in the
system environment, this function uses somutgetenv to locate the requested identifier. The
somutgetshellenv function has the syntax:

char * SOMLINK somutgetshellenv (char * name, char * stanza);

The somutgetshellenv function returns NULL if no value is found. Observe that the caller
should not free the returned value.

As an example, the following function call could be made, based on the somenv.ini excerpt
shown previously:

value = somutgetshellenv (“CSFactoryClass”, “[SOMD_ TCPIP]”) ;

This call would return the string value SOMDCallStrmIIOP: :CallStreamFactoryIIOP
provided that CSFactoryClass was not defined in the system environment.

Using somutresetenv

46

If any values have been changed in the configuration file while the current process is
running, the somutresetenv function can be called to refresh the in-memory representation
of the configuration file. The somutresetenv function has the syntax:

void SOMLINK somutresetenv (char * newenv);

where newenv is a new setting for the SOMENV environment variable. If newenv is
non-NULL, somutresetenv resets the SOMENYV environment variable, using the C library
function putenv with the specified value.

The putenv call made to update the system environment affects only the C run-time
environment used by functions somutresetenv, somutgetenv and somutgetshellenv.

Programmer’s Guide for SOM and DSOM

The somutresetenv function should not be called if another thread is currently accessing
the configuration file settings.

Configuration and Startup 47

48 Programmer's Guide for SOM and DSOM

Chapter 3. Tutorial for Implementing SOM Classes

This tutorial contains five examples showing how to implement SOM classes.

If you plan to implement classes, follow the steps in the tutorial to understand the steps,
processes, files, and the relationships of SOM classes

Even if you expect only to use SOM classes implemented by others, this tutorial can help
you understand the process of using SOM classes.

Basic Concepts of SOM

The SOM, provided by the SOMobjects Developer Toolkit, is a set of libraries, utilities, and
conventions used to create binary class libraries that can be used by application programs
written in various object-oriented programming languages, such as C++ and Smalltalk, or in
traditional procedural languages, such as C and COBOL. The following paragraphs
introduce some of the basic terminology used when creating classes in SOM:

e Anobject is an object-oriented programming entity that has behavior (its methods or
operations) and state (its data values). In SOM, an object is a run-time entity with a
specific set of methods and instance variables. The methods are used by a client
programmer to make the object exhibit behavior, that is, to do something, and the
instance variables are used by the object to store its state. The state of an object can
change over time, which allows the object’s behavior to change. When a method is
invoked on an object, the object is said to be the receiver or target of the method call.

» An object’'s implementation is determined by the procedures that execute its methods
and by the type and layout of its instance variables. The procedures and instance
variables that implement an object are normally encapsulated or hidden from the caller.
A program can use the object’'s methods without knowing how those methods are
implemented. Instead, a user is given access to the object’s methods through its
interface (a description of the methods in terms of the data elements required as input
and the type of value each method returns).

» An interface through which an object can be manipulated is represented by an object
type. By declaring a type for an object variable, a programmer specifies an interface
that can be used to access that object. The SOM Interface Definition Language (IDL)
defines object interfaces. The interface names used in these IDL definitions are also
the type names used by programmers when typing SOM object variables.

» A class defines the implementation of objects. The implementation of any SOM object
is defined by a specific SOM class. A class definition begins with an IDL specification of
the interface to its objects. The name of this interface is also used as the class name.
Each object of a given class may also or instantiation of the class.

» SOM classes provide external data structures and functions that aid in the efficient use
of objects whose interfaces are declared using SOM IDL. These low-level externals are
determined by a class’s IDL and are called the class’s Abstract Binary Interface (ABI).
Different ABI styles are with various efficiency implications. Specific details concerning
different ABI styles are hidden by language bindings.

* Inheritance, or class derivation, is a technique for developing new classes from existing
classes. The original class is called the base, parent, or the direct ancestor class. The
derived class is called a child class or a subclass. The primary advantage of
inheritance is that a derived class inherits all of its parent’'s methods and instance
variables. Through inheritance, a new class can override methods of its parent to
provide new or changed function. In addition, a derived class can introduce new
methods of its own. If a class results from several generations of successive class

Tutorial for Implementing SOM Classes 49

50

derivation, that class knows all of its ancestors’s methods whether overridden or not,
and an object or instance of that class can execute any of those methods.

SOM classes can also take advantage of multiple inheritance, which means that a new
class is jointly derived from two or more parent classes. In this case, the derived class
inherits methods from all of its parents and all of its ancestors, giving it expanded
capabilities. When different parents have methods of the same name that execute
differently, SOM provides ways for avoiding conflicts.

In the SOM run time, classes are themselves objects. Classes have their own methods
and interfaces, and are themselves defined by other classes. For this reason, a class is
often called a class object. The terms class methods and class variables are used to
distinguish between the methods and variables of a class object versus those of its
instances. The type of an object is not the same as the type of its class, which as a
class object has its own type.

A class that defines the implementation of class objects is called a metaclass. Just as
an instance of a class is an object, so an instance of a metaclass is a class object.
Moreover, just as an ordinary class defines methods that its objects respond to, so a
metaclass defines methods that a class object responds to. For example, such
methods might involve operations that execute when a class is creating an instance of
itself. Just as classes are derived from parent classes, so metaclasses can be derived
from parent metaclasses to define new functions for class objects.

The SOM system contains three primitive classes that are the basis for all subsequent
classes:

- SOMObject Class

- Root ancestor class for all SOM classes

- SOMClass Class

- Root ancestor class for all SOM metaclasses
- SOMClassMgr Class

- Class of the SOMClassMgrObject, an object created automatically during SOM
initialization to maintain a registry of existing classes and to assist in dynamic class
loading and unloading

SOMClass is defined as a subclass of SOMObject and inherits all generic object
methods; this is why instances of a metaclass are class objects rather than simply
classes in the SOM run time. Figure 2 illustrates typical relationships of classes,
metaclasses, and objects in the SOM run time. (This figure does not include the
SOMClassMgrObject.)

Programmer’s Guide for SOM and DSOM

Object "1*

Legand

rmetac|aes
@ class
O object

— inherits fram

—— iz an ingtancea of

Figure 2. Typical class, metaclass and object relationships

SOM classes are designed to be language neutral. SOM classes can be implemented in
one programming language and used in programs of another language. To achieve
language neutrality, the interface for a class of objects must be defined separately from its
implementation. That is, defining interface and implementation requires two completely
separate steps (plus an intervening compile), as follows:

An interface is the information that a program must know to use an object of a
particular class. This interface is described in an interface definition (which is also the
class definition), using a formal language whose syntax is independent of the
programming language used to implement the class’s methods. For SOM classes, this
is the SOM Interface Definition Language (SOM IDL). The interface is defined in a file
known as the IDL source file or, using its extension, the .idl file.

An interface definition is specified within the interface declaration (or interface
statement) of the .idl file, which includes:

- The interface name or class name and the names of the class’s parents,
- The names of the class’s attributes and the signatures of its new methods.

Each method signature includes the method name and the type and order of its
arguments, as well as the type of its return value if any. Attributes are instance
variables for which set and get methods are automatically defined for use by the
application program. Instance variables that are not attributes are hidden from the user.

After the IDL source file is complete, the SOM Compiler is used to analyze the .idl file
and create the implementation template file, within which the class implementation is
defined. Before invoking the SOM Compiler, the class implementor can set an
environment variable that determines which emitters (output-generating programs) the
SOM Compiler calls and, consequently, to which programming language and operating
system the resulting binding files relate.

Tutorial for Implementing SOM Classes 51

In addition to the implementation template file itself, the binding files include two
language-specific header files that are #included in the implementation template file
and in application program files. The header files define useful SOM macros, functions,
and procedures that can be invoked from the files that include the header files.

e The implementation of a class is done by the class implementor in the implementation
template file (often called just the implementation file or the template file). As produced
by the SOM Compiler, the template file contains stub procedures for each method of
the class. These are incomplete method procedures that the class implementor uses as
a basis for implementing the class by writing the corresponding code in the
programming language of choice.

In summary, the process of implementing a SOM class includes using the SOM IDL syntax
to create an IDL source file that specifies the interface to a class of objects: the methods
and attributes that a program can use to manipulate an object of that class. The SOM
Compiler is then run to produce an implementation template file and two binding (header)
files that are specific to the designated programming language and operating system.
Finally, the class implementor writes language-specific code in the template file to
implement the method procedures.

At this point, the next step is to write the application (or client) program that use the objects
and methods of the newly implemented class. (Observe that a programmer could write an
application program using a class implemented entirely by someone else.) If not done
previously, the SOM compiler is run to generate usage bindings for the new class, as
appropriate for the language used by the client program (which may be different from the
language in which the class was implemented). After the client program is finished, the
programmer compiles and links it using a language-specific compiler, and executes the
program.

Attributes versus Instance Variables

52

As an alternative to defining msg as an attribute, an instance variable message could be
introduced, with set_msg and get_msg methods defined for setting and retrieving its
value. Instance variables are declared in an implementation statement, as shown below:

interface Hello
{
string get msg() ;
void set msg(in string msg) ;
#ifdef SOMIDL
implementation
{
string message;
bi
#endif
bi
As demonstrated in this example, one disadvantage to using an instance variable is that the
get_msg and set_msg methods must be defined in the implementation file by the class

implementor. For attributes, by contrast, default implementations of the get and set
methods are generated automatically by the SOM Compiler in the .ih and .xih header files.

Programmer’s Guide for SOM and DSOM

Note: For some attributes the default implementation generated by the SOM Compiler for
the set method may not be suitable. This happens because the SOM Compiler only
performs a shallow copy, which typically is not useful for distributed objects with
these types of attributes. In such cases, it is possible to write your own
implementations, as you do for any other method, by specifying the noset/noget
modifiers for the attribute. (See Modifier Statements on page 133.)

Regardless of whether you let the SOM Compiler generate your implementations or not, if
access to instance data is required, either from a subclass or a client program, then this
access should be facilitated by using an attribute. Otherwise, instance data can be defined
in the implementation statement as above (using the same syntax as used to declare
variables in C or C++), with appropriate methods defined to access it. For more information
about “implementation” statements, see Implementation Statements on page 132.

As an example where instance variables would be used (rather than attributes), consider a
class Date that provides a method for returning the current date. Suppose the date is
represented by three instance variables: mm, dd and yy. Rather than making mm, dd, and
yy attributes (and allowing clients to access them directly), “Date” defines mm, dd, and yy
as instance variables in the implementation statement, and defines a method get_date that
converts mm, dd, and yy into a string of the form mm/dd/vyy:

interface Date
{
string get date() ;
#ifdef _ SOMIDL_
implementation
{
long mm,dd,yy;
Vi
#endif
Vi

To access instance variables that a class introduces from within the class implementation
file, two forms of notation are available:

somThis->variableName
or
_variableName
For example, the implementation for get_date would likely
access the “mm” instance variable as somThis->mm or _mm,
access “dd” as somThis->dd or _dd, and
access “yy” as somThis->yy or _yy.

In C++ programs, the _variableName form is available only if the programmer first defines
the macro VARIABLE_MACROS (that is, enter #define VARIABLE MACROS) in the
implementation file prior to including the .xih file for the class.

Basic Steps for Implementing SOM Classes

Implementing and using SOM classes in C or C++ involves the following steps, which are
explicitly illustrated in the examples of this tutorial:

1. Define the interface to objects of the new class (that is, the interface declaration) by
creating a .idl file.

Tutorial for Implementing SOM Classes 53

2. Run the SOM Compiler on the .idl file by issuing the sc command to produce the
following binding files:

- Template implementation file:

- .c file for C programs

- .Cfile (on AIX) or a .cpp file (on OS/2 or Windows NT) for C++ programs;
- Header file to be included in the implementation file:

- .ih file for C programs

- .xih file for C++ programmers

- Header file to be included in client programs that use the class:

- .hfile for C clients

- xh file for C++ clients.

To specify whether the SOM Compiler should produce C or C++ bindings, set the value
of the SMEMIT environment variable or use the -s option of the sc command as
described in Chapter 6, The SOM Compiler on page 155. By default, the SOM
Compiler produces C bindings.

Customize the implementation by adding code to the template implementation file.
Create a client program that uses the class.

Compile and link the client code with the class implementation, using a C or C++
compiler.

6. Execute the client program.

Using the Tutorial

The following examples show the syntax for defining interface declarations in a .idl file,
including designating the methods that the class’s instances will perform. In addition, the
example template implementation files contain typical code that the SOM Compiler
produces. Explanations accompanying each example discuss topics that are significant to
the particular example; full explanations of the SOM IDL syntax are contained in Chapter 5,
SOM Interface Definition Language on page 115. Customization of each implementation
file (step 3) is illustrated in both C and C++.

Work through the examples in order. If you do not do so, the code that the SOM Compiler
generates from your revised .idl file may vary slightly from what you see in the tutorial.

When the SOMobijects Toolkit is configured, a choice is made between somcorba and
somstars for the style of C bindings the SOM Compiler generates. The tutorial examples
use the somcorba style, where an interface name used as a type indicates a pointer to an
object, as required by strict CORBA bindings. In the examples, a “*” does not explicitly
appear for types that are pointers to objects. If your system is configured for somstars C
bindings, you can set the environment variable SMADDSTAR=1 or use the SOM Compiler
option -maddstar to request bindings that use explicit pointer stars. For more information,
see Declaring Object Variables on page 71 and Object Types on page 124.

Sequence of the Tutorial Examples

* Example 1. Implementing a Simple Class with One Method — Implementing a
simple class with one method. Prints a default message when the sayHello method is
invoked on an object of the Hello class.

54 programmer’s Guide for SOM and DSOM

Example 2. Adding an Attribute to the Hello Class — Adding an attribute to the
Hello class. Defines a msg attribute for the sayHello method to use. The client
program sets a message; then the sayHello method gets the message and prints it.
(There is no defined message when an object of the Hello class is first created.)

Example 3. Overriding an Inherited Method — Overriding an inherited method.
Overrides the SOMobjects method somPrintSelf so that invoking this method on an
object of the Hello class will not only display the class name and the object’s location,
but will also include the object’'s message attribute.

Example 4. Initializing a SOM Object — Initializing a SOM object. Overrides the
default initialization method, somDefaultlnit, to illustrate how an object’s instance
variables can be initialized when the object is created.

Example 5. Using Multiple Inheritance — Using multiple inheritance. Extends the
Hello class to provide it with multiple inheritance from the Disk and Printer classes.
The Hello interface defines an enum and an output attribute that takes its value from
the enum (either screen, printer or disk). The client program sets the form of output
before invoking the sayHello method to send a msg (as defined as in Example 4).

Example 1. Implementing a Simple Class with One Method

Example 1 defines a class Hello that introduces one new method, sayHello. When
invoked from a client program, the sayHel1lo method prints the fixed string Hello, World!
The example follows the steps described in Basic Steps for Implementing SOM Classes
on page 53.

1.

Define the interface to class Hello that inherits methods from the root class SOMObject
and introduces one new method sayHello. Define these IDL specifications in the file
hello.idl.

The interface statement introduces the name of a new class and any parents (base
classes) it might have (here, root class SOMObject). The body of the interface
declaration introduces the method sayHello. Method declarations in IDL have syntax
similar to C and C++ function prototypes:

#include <somobj.idl> //# Get the parent class definition.
interface Hello : SOMObject
/* This is a simple class that demonstrates how to define
* the interface to a new class of objects in SOM IDL.
*/
{
void sayHello() ;
// This method outputs the string ”"Hello, World!”.
* This method returns the string ”Hello, World!”. */

}i

The method sayHel1lo has no (explicit) arguments and returns no value. The characters “//
" start a line comment that finishes at the end of the line. The characters “/*” start a block
comment that finishes with “*/”. Block comments do not nest. The two comment styles can
be used interchangeably. The SOM Compiler ignores throw-away comments that start with
the characters “//#" and finish at the end of the line.

Tutorial for Implementing SOM Classes 55

56

Note: For simplicity, this IDL fragment does not include a releaseorder modifier; the SOM
Compiler issues a warning for the method sayHel1lo. For directions on using the
releaseorder modifier to remove this warning, see Modifier Statements on page
133. (The warning does not prohibit continued use of the .idl file.)

2. Run the SOM Compiler to produce binding files and an implementation template. That
is, issue the sc command, as follows:

> sc -s”c;h;ih” hello.idl (for C bindings)

> sc -s”"xc;xh;xih” hello.idl (for C++ bindings)
When set to generate C binding files, the SOM Compiler generates the following
template implementation file, named hello.c. The template implementation file

contains stub procedures for each new method; these are procedures to be filled in by
the implementor.

#include <hello.ih>

/*
* This method outputs the string ”"Hello, World!”. */
SOM_Scope void SOMLINK sayHello(Hello somSelf,

Environment *ev)

/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug ("Hello”, ”sayHello”);

}

The terms SOM_Scope and SOMLINK in the prototype for all stub procedures are defined
by SOM. In the method procedure for the sayHel1lo method, somSelf is a pointer to the
target object (here, an instance of the class Hello) that responds to the method. A somSelf
parameter appears in the procedure prototype for every method, because SOM requires
every method to act on some object.

The target object is always the first parameter of a method’s procedure, although it should
not be included in the method’s IDL specification. The second parameter, which also is not
included in the method’s IDL specification, is the parameter Environment *ev. The method
can use this parameter to return exception information if the method encounters an error.
(Contrast the prototype for the sayHello method in steps 1 and 2.)

The remaining lines of the preceding template are described in Chapter 7, Implementing
Classes in SOM on page 171. The file is now ready for customization with the C code
needed to implement method sayHello.

When set to generate C++ binding files, the SOM Compiler generates an implementation
template file, hello.C (on AIX) or hello. cpp, Ssimilar to the one above.

In addition to generating a template implementation file, the SOM Compiler generates
implementation bindings and usage bindings. These files are named hello.ih and
hello.h for C bindings, and they are named hello.xih and hello.xh for C++
bindings. The hello. c file shown includes the hello. ih implementation binding file.

3. Customize the implementation by adding code to the template implementation file.

Modify the body of the sayHel1lo method procedure in the hello.c (or, for C++,
hello.C or hello. cpp) implementation file so that the sayHel 1o method prints
“Hello, World!”:

SOM_Scope void SOMLINK sayHello (Hello somSelf,

Programmer’s Guide for SOM and DSOM

Environment *ev)

/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug ("Hello” , ”"sayHello”) ;
printf ("Hello, World!\n”);

}

4. Create a client program that uses the class.

Write a main program that creates an instance of the Hel1lo class and invokes the
method sayHel1lo on that object.

A C programmer would write the following program in main. ¢, that uses the bindings
defined in the hello.h header file:

#include <hello.h>

int main(int argc, char *argv([])
{
/* Declare a variable to point to an instance of Hello */
Hello obj;
/* Create an instance of the Hello class */
obj = HelloNew() ;
/* Execute the ”sayHello” method */
_sayHello(obj, somGetGlobalEnvironment ()) ;
/* Free the instance: */
__somFree (obj) ;
return (0);

}

In the statement obj = HelloNew () the hello.h header file automatically contains
the SOM-defined macro classNameNew(), that is used to create an instance of the
className class (here, the Hello class). In C a method is invoked on an object by
using the form:

_methodName(objectName, environment_arg, other_method_args)
as used in the statement:
_sayHello (obj, somGetGlobalEnvironment()) ;

As shown in this example, you can use the somGetGlobalEnvironment Function
supply the (Environment *) argument of the method.

The code uses somFree Method to free the object created by HelloNew (). somFree
does not require an (Environment *) argument.

A C++ programmer may write the following program in main.C or main.cpp, using the
bindings defined in the hello.xh header file:

#include <hello.xh>

int main(int argc, char *argvl([])

{

/* Declare a variable to point to an instance of Hello */
Hello *obj;

/* Create an instance of the Hello class */

Tutorial for Implementing SOM Classes 57

58

obj = new Hello;
/* Execute the ”sayHello” method */
obj->sayHello (somGetGlobalEnvironment ()) ;
obj->somFree () ;
return (0);

}

The only argument passed to the sayHello method by a C++ client program is the
Environment pointer. (Contrast this with the invocation of sayHello in the C client
program.)

5. Compile and link the client code with the class implementation.

Note: The environment variable SOMBASE represents the directory in which SOM has
been installed.

Under AlX, for C programs

> xlc -I. -I$SOMBASE/include -o hello main.c hello.c \
-LSSOMBASE/lib -lsomtk

Under AlX, for C++ programs

> xX1C -I. -I$SOMBASE/include -o hello main.C hello.C \
-LSSOMBASE/lib -lsomtk

Note: When building a multithreaded application, use the xlc_r (for C) or xXIC_r (for C++)
compiler instead of xlc or xIC.

Under OS/2 or Windows NT, for C programs
> set LIB=%SOMBASE%\1lib;3%LIBS%
> icc -I. -I%SOMBASE$\include -Fe hello main.c hello.c \
somtk.lib
Under OS/2 or Windows NT, for C++ programs
> set LIB=%SOMBASE%\lib;3%LIB%
> icc -I. -I%SOMBASE%\include -Fe hello main.cpp hello.cpp \
somtk.lib
6. Execute the client program.
> hello

Hello, World!

Example 2. Adding an Attribute to the Hello Class

Example 1 introduced a class Hello that has a method sayHel1o which prints the fixed
string Hello, World! Example 2 extends the Hello class so that clients can customize
the output from the method sayHello.

1. Modify the interface declaration for the class definition in hello.idl.

Class Hello is extended by adding an attribute called msg in this example. Declaring
an attribute is equivalent to defining get and set methods. For example, specifying:

attribute string msg;
is equivalent to defining the two methods:
string get msg();

void _set msg(in string msg) ;

Programmer’s Guide for SOM and DSOM

An attribute can be used instead of an instance variable to define get and set methods
without having to write their method procedures. The new interface specification for
Hello, that results from adding attribute msg to the Hello class, follows:
#include <somobj.idl>
interface Hello : SOMObject
{
void sayHello() ;
attribute string msg;
//# This is equivalent to defining the methods:
//# string get msg();
//# void _set msg(string msg) ;
bi
Re-run the SOM Compiler on the updated .idl file, as in Example 1. Implementing a
Simple Class with One Method to produce new header files and updates the existing

implementation file, if needed, to reflect changes made to the .idl file. In this example,
the implementation file is not modified by the SOM Compiler.

Customize the implementation file by modifying the print statement in the sayHello
method procedure. This example prints the contents of the msg attribute (which must
be initialized in the client program) by invoking the _get_msg method. Because the
_get_msg method name begins with an underscore, the method is invoked with two
leading underscores in C.

SOM_Scope void SOMLINK sayHello(Hello somSelf,

Environment *ev)

/* HelloData *somThis = HelloGetData (somSelf); */

HelloMethodDebug (”Hello”, "sayHello”);
printf (“%s\n”, _ get msg(somSelf, ev));
/* for C++, use somSelf-> get msg(ev); */

}

This implementation assumes that _set_msg has been invoked to initialize the msg
attribute before the _get_msg method is invoked by the sayHel1lo method. This
initialization can be done within the client program.

Update the client program to invoke the _set_msg method to initialize the msg attribute
before the sayHel1lo method is invoked. Because the _set_msg method name begins
with an underscore, the C client program invokes the method with two leading
underscores.

For C Programs

#include <hello.h>

int main(int argc, char *argv([])

{
Hello obj;
obj = HelloNew () ;
/* Set the msg text */
__set msg(obj, somGetGlobalEnvironment (),

"Hello World Again”) ;

Tutorial for Implementing SOM Classes 59

60

/* Execute the ”sayHello” method */
_sayHello(obj, somGetGlobalEnvironment ()) ;
__somFree (obj) ;
return (0);

}

For C++ Programs

#include <hello.xh>

int main(int argc, char *argv([])

{
Hello *obj;
obj = new Hello;
/* Set the msg text */
obj-> set msg(somGetGlobalEnvironment (),

"Hello World Again”) ;

/* Execute the ”“sayHello” method */
obj->sayHello (somGetGlobalEnvironment ()) ;
obj->somFree () ;
return (0);

}

Compile and link the client program,.
Execute the client program:

> hello
Hello World Again

Example 3. Overriding an Inherited Method

In object-oriented programming a subclass can replace an inherited method implementation
with a new implementation especially appropriate to its instances. This is called overriding a
method. Sometimes a class introduces methods that every descendant class is expected to
override. For example, SOMObject introduces the somPrintSelf Method; a SOM
programmer generally overrides this method when implementing a new class.

somPrintSelf prints a brief description of an object. The method is useful when debugging
an application that deals with a number of same class objects, if the class designer has
overridden somPrintSelf with a message that distinguishes different objects of the class.
For example, the implementation of somPrintSelf provided by SOMObject prints the class
of the object and its address in memory. SOMClass overrides this method, when
somPrintSelf is invoked on a class object, the name of the class will print.

This example illustrates how to override somPrintSelf for the Hel1lo class. An important
identifying characteristic of Hel1lo objects is the message they hold. The following steps
show how to override somPrintSelf in Hel1lo to provide this information.

1. Modify the interface declaration in hello.id1 to override the somPrintSelf method in
Hello, in hello.idl in the form of an implementation statement, that gives information
about the class, its methods and attributes, and any instance variables. In this example,
the implementation statement introduces the modifiers for the Hel1lo class:

#include <somobj.idl>

interface Hello : SOMObject

Programmer’s Guide for SOM and DSOM

void sayHello() ;
attribute string msg;
#ifdef SOMIDL
implementation
{
//# Method Modifiers:
somPrintSelf: override;
// Override the inherited implementation of somPrintSelf.
}i
#endif
Vi
somPrintSelf introduces a list of modifiers in the class Hello. Modifiers are like C or
C++ #pragma commands and give specific implementation details to the compiler. This
example uses only the override modifier. Because of the override modifier, when
somPrintSelf is invoked on an instance of class Hello, Hello’s implementation of

somPrintSelf (defined in the implementation file) is called, instead of the
implementation inherited from the parent class, SOMODbject.

The #ifdef __ SOMIDL___ and #endif are standard C and C++ preprocessor commands
that cause the implementation statement to be read only when using the SOM IDL
compiler (and not some other IDL compiler).

Re-run the SOM Compiler on the updated .idl file as before. The SOM Compiler
extends the existing implementation file from Example 2. Adding an Attribute to the
Hello Class to include new stub procedures as needed (in this case, for
somPrintSelf). Here is a shortened version of the C language implementation file as
updated by the SOM Compiler; C++ implementation files are similarly revised. Notice
that the code previously added to the sayHello method is not disturbed when the SOM
Compiler updates the implementation file.

#include <hello.ih>
SOM_Scope void SOMLINK sayHello(Hello somSelf,

Environment *ev)

/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug (”Hello” , ”"sayHello”) ;
printf (“$s\n”, _ get msg(somSelf, ev));
}
SOM_Scope void SOMLINK somPrintSelf (Hello somSelf)
{
HelloData *somThis = HelloGetData (somSelf) ;
HelloMethodDebug (“hello”, “somPrintSelf”) ;
Hello parent SOMObject somPrintSelf (somSelf) ;

}

The SOM Compiler adds code letting the Hello class redefine somPrintSelf and
provides a default implementation for overriding the somPrintSelf method. This default
implementation simply calls the parent method (the procedure that the parent class of
Hello uses to implement the somPrintSelf method). This parent method call is

Tutorial for Implementing SOM Classes 61

62

accomplished by the macro Hello_parent_SOMObject_somPrintSelf, defined in
hello.ih.

The stub procedure for overriding the somPrintSelf method does not include an
Environment parameter because somPrintSelf is introduced by SOMObject, which
does not include the Environment parameter in any of its methods (to ensure
backward compatibility). The signature for a method cannot change after it has been
introduced.

3. Customize the implementation.

Within the new somPrintSelf method procedure, display a brief description of the
object, appropriate to Hello objects. The unnecessary parent method call has been
deleted. Also, direct access to instance data introduced by the Hello class is not
required, so the assignment to somThis has been commented out in the first line of the
procedure.

SOM_Scope void SOMLINK somPrintSelf (Hello somSelf)
{
/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug ("Hello” , ”somPrintSelf”) ;
somPrintf (”-- a %$s object at location %X with msg: %s\n”,
_somGetClassName (somSelf) ,
somSelf,
__get msg(somSelf,0)) ;
}

4. Update the client program to illustrate the change. Notice the new message text. For C
programs:

#include <hello.h>

int main(int argc, char *argvl(])

{
Hello obj;
Environment *ev = somGetGlobalEnvironment () ;
obj = HelloNew() ;
/* Set the msg text */
__set _msg(obj, ev, "Hi There”);
/* Execute the ”"somPrintSelf” method */
_somPrintSelf (obj) ;
_somFree (obj) ;
return (0);

}

For C++ programs:

#include <hello.xh>

int main(int argc, char *argv([])

{
Hello *obj;
Environment *ev = somGetGlobalEnvironment () ;

obj = new Hello;

Programmer’s Guide for SOM and DSOM

/* Set the msg text */
__set msg(obj, ev, "Hi There”);
/* Execute the ”“somPrintSelf” method */

obj->somPrintSelf () ;

obj->somFree () ;
return (0);

}

Compile and link the client program.

Execute the client program, which now outputs the message:
> hello

-- a Hello object at location 20062838 with msg: Hi There

Example 4. Initializing a SOM Object

The previous example showed how to override the somPrintSelf Method, introduced by
SOMObject. As in that example, somPrintSelf should generally be overridden when
implementing a new class. Another method introduced by SOMObject that should
generally be overridden is somDefaultlnit which provides a default initializer for the
instance variables introduced by a class.

This example shows how to override somDefaultlnit to give each Hello object’'s message
an initial value when the object is first created. Initializers (including how to introduce new
initializers that take arbitrary arguments, and how to explicitly invoke initializers), are
described in Initializing and Uninitializing Objects on page 195.

The overall process of overriding somDefaultlnit is similar to the previous example. The
IDL for Hello is modified. In addition to an override modifier, an init modifier is used to
indicate that a stub procedure for an initialization method is desired. The stub procedures
for initializers are different from normal methods.

1. Modify the interface declaration in hello.idl.
#include <somobj.idls>
interface Hello : SOMObject
{
void sayHello() ;
attribute string msg;
#ifdef _ SOMIDL
implementation
{
//# Method Modifiers:
somPrintSelf: override;
somDefaultInit: override, init;
Vi
#endif

}i

Tutorial for Implementing SOM Classes 63

64

2. Re-run the SOM Compiler on the updated hello. id1 file. The SOM Compiler extends
the existing implementation file. The following example shows the initializer stub
procedure the SOM Compiler adds to the C language implementation file; C++
implementation files would be similarly revised:

SOM_Scope void SOMLINK

somDefaultInit (Hello somSelf, somInitCtrl *ctrl)

HelloData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;
somBooleanVector myMask;
HelloMethodDebug (”"Hello”, ”somDefaultInit”);
Hello BeginInitializer somDefaultInit;
Hello Init SOMObject somDefaultInit (somSelf, ctrl);
/*
* local Hello initialization code added by programmer
*/
}
3. Customize the implementation.
The msg instance variable is set in the implementation template rather than in the client
program. Therefore, the msg is defined as part of the Hello object’s initialization.
SOM_Scope void SOMLINK

somDefaultInit (Hello somSelf, somInitCtrl *ctrl)

HelloData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;
somBooleanVector myMask;
HelloMethodDebug ("Hello”, “somDefaultInit”);
Hello BeginInitializer somDefaultInit;
Hello Init SOMObject somDefaultInit (somSelf, ctrl);
/*
* local Hello initialization code added by programmer
*/
__set msg(somSelf, ev, ”“Initial Message”);
}
4. Update the client program to illustrate default initialization.
#include <hello.h>
main ()
{
Hello h = HelloNew() ;
/* Execute the ”"somPrintSelf” method */
_somPrintSelf (h) ;
}

5. Compile and link the client program.

Programmer’s Guide for SOM and DSOM

6. Execute the client program:
> hello
-- a Hello object at 200633A8 with msg: Initial Message

Example 5. Using Multiple Inheritance

The Hello class is useful for writing messages to the screen. Clients also can write
messages to printers and disk files. This example references two additional classes: Printer
and Disk. The Printer class manages messages to a printer, and the Disk class manages
messages sent to files. Define these classes as follows:

#include <somobj.idls>
interface Printer : SOMObject
{
void stringToPrinter (in string s) ;
// This method writes a string to a printer.
Vi
#include <somobj.idls>
interface Disk : SOMObject
{
void stringToDisk(in string s) ;
// This method writes a string to disk.
Vi
This example assumes the Printer and Disk classes are defined separately (in print.idl and
disk.idl, for example), are implemented in separate files, and are linked with the other

example code. Given the implementations of the Printer and Disk interfaces, the Hello class
can use them by inheriting from them, as illustrated below.

1. Modify the interface declaration in hello. idl.
#include <disk.idl>
#include <printer.idls>
interface Hello : Disk, Printer
{
void sayHello() ;
attribute string msg;
enum outputTypes {screen, printer, disk};
// Declare an enumeration for the different forms of output
attribute outputTypes output;
// The current form of output
#ifdef _ SOMIDL
implementation {
somDefaultInit: override, init;
bi
#endif //# _ SOMIDL__
bi

Notice that SOMObiject is not listed as a parent of He11o. SOMObject is a parent of
Disk and Printer.

Tutorial for Implementing SOM Classes 65

The IDL specification declares an enumeration outputTypes for the different forms of
output and an attribute output whose value depends on where the client wants the
output of the sayHello method to go.

OM IDL allows the use of structures, unions, enumerations, constants and typedefs,
both inside and outside the body of an interface statement. Declarations that appear
inside an interface body are emitted in the header file hello.h or hello.xh.
Declarations that appear outside of an interface body do not appear in the header file
(unless required by a special #pragma directive, see Running the SOM Compiler on
page 161).

SOM IDL also supports all of the C and C++ preprocessor directives, including
conditional compilation, macro processing, and file inclusion.
2. Re-run the SOM Compiler on the updated .idl file.

The implementation for the somDefaultinit Method does not reflect the addition of two
new parents to Hello because the implementation-file emitter never changes the bodies
of existing method procedures. As a result, method procedures for initializer methods
are not given new parent calls when the parents of a class are changed. One way to
deal with this (when the parents of a class are changed) is to temporarily rename the
method procedures for initializer methods and run the implementation emitter. Once
this is done, the code in the renamed methods can be merged into the new templates,
which include all the appropriate parent method calls. When this is done here, the new
implementation for somDefaultinit appears:

SOM_Scope void SOMLINK

somDefaultInit (Hello somSelf, somInitCtrl *ctrl)

HelloData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;

HelloMethodDebug (”"Hello”, ”somDefaultInit”);

Hello BeginInitializer somDefaultInit;

Hello_Init_Disk_somDefaultInit (somSelf, ctrl);
Hello Init Printer somDefaultInit (somSelf, ctrl);
/*
* local Hello initialization code added by programmer
*/
__set _msg(somSelf, ev, ”“Initial Message”);
}

3. Continue to customize the implementation file, hello.c. The sayHello method
discussed in Example 2 now allows alternate ways of outputting a msg.

SOM_Scope void SOMLINK sayHello(Hello somSelf,

Environment *ev)

/* HelloData *somThis = HelloGetData (somSelf) ; */
HelloMethodDebug (”"Hello”, ”"sayHello”)
switch (_ get output (somSelf, ev)) {

/* for C++, use: somSelf-> get output(ev) */

66 Programmer's Guide for SOM and DSOM

case Hello_ screen:

printf (“%s\n”, _ get msg(somSelf, ev));
/* for C++, use: somSelf-> get msg(ev) */
break;

case Hello printer:
_stringToPrinter (somSelf, ev, _ get msg(somSelf, ev));
/* for C++, use:
* somSelf->stringToPrinter (ev, somSelf-> get msg(ev));*/
break;
case Hello disk:

_stringToDisk (somSelf, ev, _ get msg(somSelf, ev));

/* for C++, use:
* gomSelf->stringToDisk (ev, somSelf-> get msg(ev));*/

break;

}
}

The switch statement invokes the appropriate method depending on the value of the
output attribute. The case statements use the enumeration values of outputTypes
declared in hello. idl by prefacing the enumeration names with the class name
(Hello_ screen, Hello printer and Hello disk).

Update the client program, as illustrated.
#include <hello.h>
/* for C++, use "hello.xh” and <stdio.h> */

int main(int argc, char *argv([])

{
Hello a = HelloNew () ;
Environment *ev = somGetGlobalEnvironment () ;
/* Invoke ”"sayHello” on an object and use each output
__set output(a, ev, Hello screen) ;
_sayHello(a, ev) ; /* for C++, use: a->sayHello(ev); */
___set output(a, ev, Hello printer) ;
/* Ca+: a->_set output (ev, Hello printer); */
_sayHello(a, ev) ;
___set output(a, ev, Hello disk) ;
/* C++: a-> set output(ev, Hello disk); */
_sayHello(a, ev) ;
_somFree(a) ; /* for C++, use: a->somFree(); */
return (0);
}

Compile and link the client program. Include the implementation files for the Printer and
Disk classes.

Execute the client program. The message that prints is the msg defined in Example 4
as part of the somDefaultlnit initialization of the Hello object.

Tutorial for Implementing SOM Classes 67

Initial Message
Initial Message — goes to a Printer

Initial Message — goes to Disk

Continuation of SOM

This chapter described features of SOM IDL that are be useful to C and C++ programmers.

SOM IDL provides features such as full type checking, constructs for declaring private
methods, and constructs for defining methods that receive and return pointers to structures.
Chapter 5, SOM Interface Definition Language on page 115 gives a complete description
of the SOM IDL syntax. Chapter 6, The SOM Compiler on page 155 describes how to use
the SOM Compiler. Chapter 7, Implementing Classes in SOM on page 171 provides
helpful information for completing the implementation template, for using initializers
(somDefaultlnit or user-defined initialization methods), for defining SOM class libraries,
and for customizing various aspects of SOMobjects execution.

68 Programmer's Guide for SOM and DSOM

Chapter 4. Using SOM Classes in Client Programs

This chapter discusses the use of fully implemented SOM classes. Read this chapter if you
are using SOM classes created by someone else. This chapter tells how to instantiate an
object and invoke methods from within an application program. If you are creating classes,
read this and Chapter 5, SOM Interface Definition Language on page 115, Chapter 6,
The SOM Compiler on page 155 and Chapter 7, Implementing Classes in SOM on page
171 for information about the SOM Interface Definition Language (SOM IDL) syntax and
other details of class implementation.

Programs that use a class are client programs. A client program can be written in C, C++ or
another language. This chapter describes how client programs can use SOM classes Using
a SOM class involves creating instances of a class, invoking methods on objects and so
forth. All methods, functions and macros described can be used by class implementors
within the implementation file for a class.

Note: Using a SOM class does not include subclassing the class in a client program. In
particular, the C++ compatible SOM classes made available in the .xh binding file
cannot be subclassed in C++ to create new C++ or SOM classes.

Some of the macros and functions described here are supplied as part of SOM’s C and C++
usage bindings. These bindings are functions and macros defined in header files to be
included in client programs. The usage bindings make it more convenient for C and C++
programmers to create and use instances of SOM classes. SOM classes can be used
without the C or C++ bindings. For example, users of other programming languages can
use SOM classes; C and C++ programmers can use a SOM class without using its
language bindings. The language bindings offer a more convenient programmer’s interface
to SOM. Vendors of other languages may offer SOM bindings; check with your language
vendor for possible SOM support.

To use C or C++ bindings for a class, a client program must use the #include preprocessor
directive to include a header file for the class. For a C language client program, the file
classFileStem.h must be included. For a C++ language client program, the file
classFileStem.xh must be included.

The SOM Compiler generates these header files from an IDL interface definition. The
header files contain definitions of the macros and functions that make up the C or C++
bindings for the class. Whether the header files include bindings for the class’s private
methods and attributes depends on the IDL interface definition available and on how the
SOM Compiler was invoked when generating bindings.

Usage binding headers automatically include any other bindings upon which they may rely.
Client programs not using the C or C++ bindings for any particular class of SOM object (a
client program that does not know at compile time what classes it will be using) should
include the SOM-supplied bindings for SOMObject, provided in the header file somobj.h
(for C programs) or somobj.xh (for C++ programs).

This chapter shows how to do each SOM task:

e With C, using C bindings

e With C++, using C++ bindings

* Not using SOM’s C or C++ language bindings.

If neither of the first two approaches is applicable, use the third approach.

Using SOM Classes in Client Programs 69

Contents

Example Client Program Using A SOM Class
SOM Classes: The Basics
Declaring Object Variables
Creating Instances of a Class
Invoking Methods on Objects
Using Class Objects
Compiling and Linking
Language-Neutral Methods and Functions
Generating Output
Getting Information about a Class
Getting Information about an Object
Debugging
Checking the Validity of Method Calls
Exceptions and Error Handling
The Error Log Facility
Configuring the Error Log
Using The Error Log
Locating the Correct Log File
Memory Management
Using SOM Equivalents to ANSI C Functions
Clearing Memory for Objects
Clearing Memory for the Environment
SOM Manipulations Using somld

Example Client Program Using A SOM Class

This C program uses the class Hello as defined in the Tutorial. The Hello class provides
one attribute, msg, of type string, and one method, sayHello. The sayHello method
displays the value of the msg attribute of the object on which the method is invoked.

#include <hello.h> /* include the header file for Hello */
int main(int argc, char *argv([])
{
/* declare a variable (obj) that is a
* pointer to an instance of the Hello class: */
Hello obj;
/* create an instance of the Hello class
* and store a pointer to it in obj: */
obj = HelloNew () ;
/* invoke method set msg on obj with the argument
* “Hello World Again”. This method sets the value
* of obj’s 'msg’ attribute to the specified string.*/

__set msg(obj, somGetGlobalEnvironment (),

70 Programmer's Guide for SOM and DSOM

“Hello World Again”);
/* invoke method sayHello on obj. This method prints
* the value of obj’s ’‘msg’ attribute. */
_sayHello(obj, somGetGlobalEnvironment ()) ;
__somFree (obj) ;
return(0) ;
}
This example is the C++ version:
#include <hello.xh> /* include the header file for Hello */
int main(int argc, char *argv([])
{
/* declare a variable (obj) that is a
* pointer to an instance of the Hello class: */
Hello *obj;
/* create an instance of the Hello class
* and store a pointer to it in obj: */
obj = new Hello;
/* invoke method _set msg on obj with the argument
* “Hello World Again”. This method sets the value

* of obj’s ’'msg’ attribute to the specified string. */

obj-> set msg(somGetGlobalEnvironment (),
“Hello World Again”) ;
/* invoke method sayHello on obj. This method

* prints the value of obj’s ’'msg’ attribute. */

obj->sayHello (somGetGlobalEnvironment ()) ;
obj->somFree () ;
return(0) ;
}
Both client programs produce the output:

Hello World Again

SOM Classes: The Basics

This section describes the basic information needed to use SOM classes in a client
program.

Declaring Object Variables

To declare an object variable, the name of an object interface defined in IDL is used as the
type of the variable. To declare obj to be a pointer to an object that has type interfaceName,
code:

interfaceName obj ; in C programs

Using SOM Classes in Client Programs 71

interfaceName *obj ; in C++ programs

In SOM, objects of this type are instances of the SOM class named interfaceName, or of
any SOM class derived from this class. Thus, for example,

Animal obj; in C programs
Animal *obj; in C++ programs

declares obj as pointer to an object of type Animal that can be used to reference an
instance of the SOM class Animal or any SOM class derived from Animal. The type of an
object need not be the same as its class; an object of type Animal might not be an
instance of the animal class, it might be an instance of some subclass of Animal;
perhaps, the Ccat class.

All SOM obijects are of type SOMObject, even though they may not be instances of the
SOMObject class. If you do not know, at compile time, what type of object the variable will
point to, the following declaration can be used:

SOMObject obj; in C programs
SOMObject *obj; in C++ programs

Because the sizes of SOM objects are not known at compile time, instances of SOM
classes must always be dynamically allocated. Thus, a variable declaration must always
define a pointer to an object.

Note: Inthe C usage bindings, as within an IDL specification, an interface name used as
a type implicitly indicates a pointer to an object that has that interface; this is
required by the CORBA specification. The C usage bindings for SOM classes
therefore hide the pointer with a C typedef for interfaceName. This is not
appropriate in the C++ usage bindings, which define a C++ class for interfaceName.
Thus, it is not correct in C++ to use a declaration of the form:

interfaceName obj; notvalidin C++ programs

If a C programmer prefers to use explicit pointers to interfaceName types, then the SOM
Compiler option -maddstar can be used when C binding files are generated. The
explicit “*” will then be required in declarations of object variables. This option is required
for compatibility with existing SOM OIDL code. For information on using the -maddstar
option, see Running the SOM Compiler on page 161.

Users of other programming languages must define object variables to be pointers to the
data structure representing SOM objects; this is programming-language dependent. The
header file somtypes.h defines the structure of SOM objects for the C language.

Creating Instances of a Class

72

For C programmers with usage bindings, SOM provides the classNameNew and the
classNameRenew macros for creating instances of a class.

Note: Do not end a class name with the letter “C.” The class name that is used with a
method name is generated as classNameClassData. If a class name ending in “C,”
such as myprogC, is used, the name generated would be myprogCClassData.
Since ClassData and CClassData are different, the compiler would generate the
wrong type of export.

These macros are illustrated with the following examples, each of which creates a single
instance of class Hello:

obj = HelloNew() ;
obj = HelloRenew (buffer);

Programmer’s Guide for SOM and DSOM

Using classNameNew: After verifying that the className class object exists, the
classNameNew macro invokes the somNew method on the class object. This allocates
enough space for a new instance of className, creates a new instance of the class,
initializes this new object by invoking

on it, and then returns a pointer to it. The classNameNew macro automatically creates the
class object for className, as well as its ancestor classes and metaclass, if these objects
have not already been created.

After a client program has finished using an object created using the classNameNew
macro, invoke somFree Method to free it:

_somFree (obj) ;

After uninitializing the object by invoking somDestruct Method on it, somFree calls the
class object for storage deallocation. Storage for an object created using the
classNameNew macro is allocated by the class of the object. Thus, only the class of the
object can know how to reclaim the object’s storage.

Using classNameRenew: After verifying that the className class object exists, the
classNameRenew macro invokes the somRenew method on the class object.
classNameRenew is used only when the space for the object has been allocated
previously. (Perhaps the space holds an old, no longer needed, uninitialized object.) This
macro converts the given space into a new, initialized instance of className and returns a
pointer to it. You must ensure that the argument of classNameRenew points to a block of
storage large enough to hold an instance of class className. You can invoke the
somGetinstanceSize Method on the class to determine the amount of memory required.
Like classNameNew, the classNameRenew macro automatically creates any required
class objects that have not already been created.

When creating a large number of class instances, it may be more efficient to allocate at
once enough memory to hold all the instances, and then invoke classNameRenew once for
each object to be created, rather than allocating memory separately.

Using classNameNewClass: The C and C++ usage bindings for a SOM class also
provide static linkage to a classNameNewClass procedure that can be used to create the
class object. This can be useful if the class object is needed before its instances are
created.

The following C code uses the function HelloNewClass to create the Hello class object.
The arguments to this function are defined by the usage bindings, and indicate the version
of the class implementation that is assumed by the bindings. See Creating a Class Object
on page 91. Once the class object has been created, the example invokes the
somGetinstanceSize Method on this class to determine the size of a Hel1lo object, uses
SOMMalloc Function to allocate storage, and then uses the Hel1oRenew macro to create
ten instances of the Hello class:

#include <hello.h>

main ()

{

SOMClass helloCls; /* A pointer for the Hello class object */
Hello objA[10]; /* an array of Hello instances */

unsigned char *buffer;

int 1i;

int size;

/* create the Hello class object: */

helloCls = HelloNewClass (Hello MajorVersion, Hello MinorVersion) ;

Using SOM Classes in Client Programs 73

74

/* get the amount of space needed for a Hello instance:

* (somGetInstanceSize is a method provided by SOM.) */

size = somGetInstanceSize (helloCls) ;
size = ((size+3)/4)*4; /* round up to doubleword multiple */
/* allocate the total space needed for ten instances: */

buffer = SOMMalloc (10*size) ;

/* convert the space into ten separate Hello instances: */
for (i=0; 1<10; 1i++)

objA[i] = HelloRenew (buffer+i*size) ;

/* Uninitialize the objects and free them */
for (i=0; 1i<10; 1i++)

_somDestruct (objA[i],0,0);
SOMFree (buffer) ;

}

When an object created with the classNameRenew macro is no longer needed, its storage
must be freed using the dual to the method used to allocate the storage. The typical
method pairs are:

» If an object was originally initialized using the classNameNew macro, the client should
use the somFree Method on it.

» If the program uses the SOMMalloc function to allocate memory, as illustrated in the
example above, then the SOMFree function must be called to free the objects’ storage
because SOMFree is the dual to SOMMalloc. However, first invoke somDestruct
Method to deinitialize the objects in the region to be freed. This allows each object to
free any memory that may have been allocated without the programmer’s knowledge.

Note: In the somDestruct method call above, the first zero indicates that memory should
not be freed by the class of the object; you must do it explicitly. The second zero
indicates that the class of the object is responsible for overall control of object
uninitialization. See Initializing and Uninitializing Objects on page 195.

For C++ programmers with usage bindings

instances of a class className can be created with a new operator provided by the usage
bindings of each SOM class. The new operator automatically creates the class object for
className, as well as its ancestor classes and metaclass, if they do not yet exist. After
verifying the existence of the desired class object, the new operator then invokes the
somNewNolnit method on the class. This allocates memory and creates a new instance of
the class, but it does not initialize the new object.

Initialization of the new object is then performed using one of the C++ constructors defined
by the usage bindings. See Initializing and Uninitializing Objects on page 195. Two
variations of the new operator require no arguments. When either is used, the C++ usage
bindings provide a default constructor that invokes the somDefaultinit Method on the new
object. Thus, a new object initialized by somDefaultinit would be created using either of
the forms:

Programmer’s Guide for SOM and DSOM

new className
new className ()
For example:
obj = new Hello;
objl = new Hello();
For convenience, pointers to SOM objects created using the new operator can be freed
using the delete operator. You can also use the somFree Method on page 154:
delete obj;
objl->somFree;

When previously allocated space will be used to hold a new object, C++ programmers
should use the somRenew method, described below. C++ bindings do not provide a macro
for this purpose.

somNew and somRenew: C and C++ programmers, as well as programmers using other
languages, can create instances of a class using the SOM methods somNew and
somRenew, invoked on the class object. As described for the C bindings, first create the
class object using the classNameNewClass procedure or the somFindClass Method. See
Using Class Objects on page 90.

The somNew method invoked on the class object creates a new instance of the class,
initializes the object using somDefaultinit Method, and then returns a pointer to the new
object. The C example below creates a new object of the Hel1lo class.

#include <hello.h>
main ()
{
SOMClass helloCls; /* a pointer to the Hello class */
Hello obj; /* a pointer to a Hello instance */
/* create the Hello class */
helloCls = HelloNewClass (Hello MajorVersion,
Hello MinorVersion) ;
obj = somNew (helloCls); /* create the Hello instance */

}

Free an object created using the somNew method by invoking the somFree method on it
after the client program is finished using the object.

The somRenew method invoked on the class object creates a new instance of a class
using the given space, rather than allocating new space for the object. The method
converts the given space into an instance of the class, initializes the new object using
somDefaultlnit, and then returns a pointer to the new object. The argument to somRenew
must point to a block of storage large enough to hold the new instance. You can use
somGetinstanceSize Method to determine the amount of memory required. The following
C++ code creates ten instances of the Hello class:

#include <hello.xh>

#include <somcls.xh>

main ()

{

SOMClass *helloCls; // a pointer to the Hello class

Hello *objA[10]; // an array of Hello instance pointers

Using SOM Classes in Client Programs 75

unsigned char *buffer;
int 1i;
int size;
// create the Hello class object
helloCls = HelloNewClass (Hello MajorVersion,

Hello MinorVersion) ;

// get the amount of space needed for a Hello instance:
size = helloCls->somGetInstanceSize() ;

size = ((size+3)/4)*4; // round up to doubleword multiple

// allocate the total space needed for ten instances
buffer = SOMMalloc (10*size) ;

// convert the space into ten separate Hello objects
for (i=0; i<10; i++)

objA[i] = helloCls->somRenew (buffer+i*size) ;

// Uninitialize the objects and free them
for (i=0; i<10; i++)

objA[i] ->somDestruct (0, 0) ;
SOMFree (buffer) ;

}

The somNew and somRenew methods are useful for creating instances of a class when
the header file for the class is not included in the client program at compile time. For
example, when the name of the class is specified by user input. However, the
classNameNew macro (for C) and the new operator (for C++) can be used only for classes
whose header file is included in the client program at compile time.

An object created using the somRenew method should be freed by the client program that
allocated its memory, using the dual to whatever allocation approach was initially used. If
the somFree method is not appropriate (because the somNew method was not initially
used), then, before memory is freed, the object should be explicitly deinitialized by invoking
the somDestruct Method on it. The somFree method also calls the somDestruct method.
Refer to the previous C example for Renew for an explanation of the arguments to
somDestruct.

Invoking Methods on Objects

76

This topic describes the general way to invoke methods in C or C++ and other languages
and then describes more specialized situations.

Making Typical Method Calls

For C programs with usage bindings: To invoke a method in C, use the macro:

_methodName (receiver, args)

Programmer’s Guide for SOM and DSOM

The method name is preceded by an underscore (_). Arguments to the macro are the
receiver of the method followed by all of the arguments to the method. For example:

_foo(obj, somGetGlobalEnvironment (), x, y);

This invokes method foo on obj; the remaining arguments are other arguments to the
method. You can use this expression where a standard function call can be used in C.

Required arguments: In C, calls to methods defined using IDL require at least two
arguments: a pointer to the receiving object and a value of type (environment *). The
environment data structure, specified by CORBA, passes environmental information
between a caller and a called method. For example, it returns exceptions. For more
information, see Exceptions and Error Handling on page 100.)

In the IDL definition of a method, by contrast, the receiver and the Environment pointer are
not listed as parameters to the method. Unlike the receiver, the Environment pointer is
considered a method parameter, even though it is never explicitly specified in IDL. For this
reason, it is called an implicit method parameter. If a method is defined in a .idl file with two
parameters, as in:

int foo (in char ¢, in float f);
then, with the C usage bindings, the method would be invoked with four arguments, as in:
intvar = foo(obj, somGetGlobalEnvironment(), x, y);

where obj is the object responding to the method and x and y are the arguments
corresponding to ¢ and f, above.

If the IDL specification of the method includes a context specification, then the method has
an additional (implicit) context parameter. When invoking the method, this argument must
immediately follow immediately the Environment pointer argument. None of the
SOM-supplied methods require context arguments. The Environment and context method
parameters are prescribed by the CORBA standard.

If the IDL specification of the class that introduces the method includes the callstyle=oid|
modifier, then do not supply the (Environment *) and context arguments when invoking
the method. The receiver of the method call is followed immediately by any arguments to
the method. Some of the classes supplied in the SOMobjects Developers Toolkit, including
SOMObject, SOMClass and SOMClassMgr, are defined in this way to ensure
compatibility with previous releases of SOM. Programmer’s Reference for SOM and DSOM
specifies when to use these arguments for each method.

If you use a C expression to compute the first argument to a method call (the receiver), you
must use an expression without side effects, because the first argument is evaluated twice
by the _methodName macro expansion. Do not use a somNew method call or a macro call
of classNameNew as the first argument to a C method call because it creates two new
class instances rather than one.

Enter any additional arguments required by a method, as specified in IDL following the
initial, required arguments to a method (the receiving object, the Environment, if any, and
the context, if any), as specified in IDL. For a discussion of how IDL in, out or inout
argument types map to C/C++ data types, see Parameter List on page 130.

Short form versus long form: If a client program uses the bindings for two different classes
that introduce or inherit two different methods of the same name, then the _methodName
macro described above (called the short form) is not provided by the bindings, because the
macro is ambiguous. The following long form macro, however, is always provided by the
usage bindings for each class that supports the method:

className _methodName (receiver, args)

For example, method foo supported by class Bar can be invoked as:

Using SOM Classes in Client Programs 77

78

Bar foo (obj, somGetGlobalEnvironment (), x, y)(in C)
where obj has type Bar and x and y are the arguments to method foo.

In most cases (where there is no ambiguity, and where the method is not a va_list method,
as described in Using va_list Methods on page 80), a you can use either the short or the
long form of a method invocation macro interchangeably. However, only the long form
complies with the CORBA standard for C usage bindings. Use only the long form to write
code that can be easily ported to other vendor platforms that support the CORBA standard.
The long form is always available for every method that a class supports. The short form is
provided both as a programming convenience and for source code compatibility with
Release 1 of SOM.

In order to use the long form, you usually know what type an object is expected to have. If
you do not know, but the different methods have the same signature, invoke the method
using name-lookup resolution, as described in this section.

For C++ programmers with usage bindings: To invoke a method, use the standard C++
form shown below:

obj->methodName (args)

where args are the arguments to the method. For instance, the following example invokes
method foo on obj:

obj->foo (somGetGlobalEnvironment (), X, y)

Required arguments: All methods introduced by classes declared using IDL, except those
having the SOM IDL callstyle=oidl modifier, have at least one parameter: a value of type
(Environment *). The Environment data structure is used to pass environmental
information such as exceptions between a caller and a called method. See Exceptions
and Error Handling on page 100.

The Environment pointer is an implicit parameter. That is, in the IDL definition of a method,
the Environment pointer is not explicitly listed as a parameter to the method. For example, if
a method is defined in IDL with two explicit parameters, as in:

int foo (in char ¢, in float f);
then the method would be invoked from C++ bindings with three arguments, as in:
intvar = obj->foo(somGetGlobalEnvironment (), X, y);

where obj is the object responding to the method and x and y are the arguments
corresponding to ¢ and f, above.

If the IDL specification of the method includes a context specification, then the method has
a second implicit parameter, of type context, and the method must be invoked with an
additional context argument. This argument must follow immediately after the Environment
pointer argument. (No SOM-supplied methods require context arguments.) The
Environment and context method parameters are prescribed by the CORBA standard.

If the IDL specification of the class that introduces the method includes the callstyle=oidl
modifier, then do not supply the (Environment *) and context arguments when the method
is invoked. Some of the classes supplied in the SOMobjects Developers Toolkit (including
SOMObject, SOMClass and SOMClassMgr) are defined in this way, to ensure
compatibility with the previous release of SOM. Programmer’s Reference for SOM and
DSOM specifies for each method whether these arguments are used.

Following the initial, required arguments to a method (the receiving object, the
Environment, if any, and the context, if any), you enter any additional arguments required
by that method, as specified in IDL. For a discussion of how IDL in/out/inout argument
types map to C/C++ data types, see Parameter List on page 130.

Programmer’s Guide for SOM and DSOM

For non-C or C++ programs: To invoke a static method (that is, a method declared when
defining an OIDL or IDL object interface) without using the C or C++ usage bindings, you
can use the somResolve procedure. The somResolve procedure takes as arguments a
pointer to the object on which the method is to be invoked and a method token for the
desired method. It returns a pointer to the method’s procedure (or raises a fatal error if the
object does not support the method). Depending on the language and system, it may be
necessary to cast this procedure pointer to the appropriate type; the way this is done is
language-specific.

The method is then invoked by calling the procedure returned by somResolve, passing the
method’s receiver, the Environment pointer and the context argument, if necessary, and
the remainder of the method’s arguments. The means for calling a procedure, given a
pointer returned by somResolve, is language-specific. See the section above for C
programs. The arguments to a method procedure are the same as the arguments passed
using the long form of the C language method-invocation macro for that method.

You must know where to find the method token to use somResolve for the desired
method. Method tokens are available from class objects that support the method (with the
somGetMemberToken Method), or from a global data structure, called the ClassData
structure, corresponding to the class that introduces the method. In C and C++ programs
with access to the definitions for ClassData structures provided by usage bindings you can
access the method token for method methodName introduced by class className with:

classNameClassData.methodName

For example, the method token for method sayHello introduced by class Hello is stored
at location HelloClassData.sayHello, for C and C++ programs. The way method
tokens are accessed in other languages is language-specific.

To use offset resolution to invoke methods from a programming language other than C or
C++, do the following to create an instance of a SOM Class X in Smalltalk:

1. Initialize the SOM run-time environment, if it has not previously been initialized, using
the somEnvironmentNew function.

2. If the class object for class X has not yet been created, use somResolve with
arguments SOMClassMgrObject (returned by somEnvironmentNew Function in
step 1) and the method token for the somFindClass Method, to obtain a method
procedure pointer for the somFindClass method. Use the method procedure for
somFindClass to create the class object for class X: Call the procedure with
arguments SOMClassMgrObject, the result of calling the somldFromString Function
with argument “X”, and the major and minor version numbers for class X (or zero). The
procedure returns the class object for class X.

3. Use somResolve with arguments representing the class object for X (returned by
somFindClass in step 2) and the method token for the somNew method, to obtain a
method procedure pointer for method somNew. (The somNew method is used to
create instances of class X.)

4. Call the method procedure for somNew (using the method procedure pointer obtained
in step 3) with the class object for X (returned by somFindClass in step 3) as the
argument. The procedure returns a new instance of class X.

In addition to somResolve, SOM also supplies the somClassResolve Function. Instead
of an object, the somClassResolve procedure takes a class as its first argument, and then
selects a method procedure from the instance method table of the passed class. (The
somResolve procedure, by contrast, selects a method procedure from the instance
method table of the class of which the passed object is an instance.) The
somClassResolve procedure therefore supports casted method resolution. See

Using SOM Classes in Client Programs 79

80

Programmer’s Reference for SOM and DSOM for more information on somResolve and
somClassResolve.

If you do not know at compile time which class introduces the method to be invoked, or if
you cannot directly access method tokens, then use the somResolveByName Function to
obtain a method procedure using name-lookup resolution, as described in the next section.

If the signature of the method to be invoked is not known at compile time, but can be
discovered at run time, use somResolve or somResolveByName to get a pointer to the
somDispatch method procedure, then use it to invoke the specific method, as described in
Method Name or Signature Unknown at Compile Time on page 90.

Accessing Attributes

In addition to methods, SOM objects can have attributes. An attribute is an IDL shorthand
for declaring methods. It does not necessarily indicate the presence of any particular
instance data in an object of that type. Attribute methods are called get and set methods.
For example, if a class Hel1lo declares an attribute called msg, then object variables of
type Hello will support the methods _get msg and _set_msg to access or set the value
of the msg attribute. Attributes that are declared as readonly have no set method.

The get and set methods are invoked in the same way as other methods. For example, in
C, given class Hello with attribute msg of type string, the following code segments set and
get the value of the msg attribute:

#include <hello.h>
Hello obj;

Environment *ev = somGetGlobalEnvironment () ;

obj = HelloNew() ;
__set_msg(obj, ev, “Good Morning”);/* note: two leading
underscores */
printf (“$s\n”, _ get msg(obj, ev));
For C++:
#include <hello.xh>
#include <stdio.h>
Hello *obj;

Environment *ev = somGetGlobalEnvironment () ;

obj = new Hello;
obj-> set msg(ev, “Good Morning”) ;
printf (“%s\n”, obj-> get msg(ev));

Attributes available with each class, are described in the documentation of each class in
Programmer’s Reference for SOM and DSOM.

Using va_list Methods

SOM supports methods whose final argument is a va_list. A va_list is a data type whose
representation depends on the operating system platform. To aid construction of portable
code, SOM supports a platform-neutral API for building and manipulating va_lists. Use of
this APl is recommended on all platforms because it is both compliant with the ANSI C
standard and portable.

Programmer’s Guide for SOM and DSOM

A function to create a va_list is not provided. Instead, you can declare local variables of
type somVaBuf and va_list.

Use the following sequence of calls to create and destroy a va_list:

somVaBuf_create

Creates a SOM buffer for variable arguments from which the va_list will be built.
somVaBuf_add

Adds an argument to the SOM buffer for variable arguments.
somVaBuf_get_valist

Copies the va_list from the SOM buffer.

somVaBuf_destroy

Releases the SOM buffer and its associated va_list.
somvalistSetTarget

Modifies the first scalar value on the va_list without other side effects.
somvalistGetTarget

Gets the first scalar value from the va_list without other side effects.

Detailed information on these functions is provided in Programmer’s Reference for SOM
and DSOM.

Examples of va_list usage: The following code segments pass a va_list to the
somDispatch method by using the SOMobjects functions that build the va_list.

The somDispatch method (introduced by SOMObject) is a useful method whose final
argument is a va_list. Use somDispatch to invoke some other method on an object when
usage bindings for the dispatched method are unavailable or the method to be dispatched
is unknown until run time. The va_list argument for somDispatch holds the arguments to
be passed to the dispatched method, including the target object for the dispatched method.

For C:

#include <somobj.h>
void f1(SOMObject obj, Environment *ev)
{
char *msg;
va_list start_val;
somVaBuf vb;
char *msgl = “Good Morning”;
vb = (somVaBuf)somVaBuf create (NULL, O0);
somVaBuf add(vb, (char *)&obj, tk pointer);
/* target for _set msg */
somVaBuf add(vb, (char *)&ev, tk pointer)
/* next argument */
somVaBuf add(vb, (char *)&msgl, tk pointer);
/* final argument */
somVaBuf get valist (vb, &start_val);
/* dispatch set msg on object */
SOMObject somDispatch (

Using SOM Classes in Client Programs

81

obj, /* target for somDispatch */
0, /* says ignore dispatched method result */
somIdFromString (“ set msg”),
/* the somId for _set msg */
start_val) ; /* target and args for set msg */
/* dispatch get msg on obj: */
/* Get a fresh copy of the va_ list */
somVaBuf get valist (vb, &start val);
SOMObject sombDispatch (
obj,
(somToken *)&msg,
/* address to store dispatched result */
somIdFromString (“ get msg”),
start_val); /* target and arguments for get msg */
printf (“%s\n”,msqg) ;
somVaBuf destroy (vb) ;

}
For C++:
#include <somobj.h>
void f1(SOMObject obj, Environment *ev)
{
char *msg;
va_list start_val;
somVaBuf vb;
char *msgl = “Good Morning”
vb = (somVaBuf)somVaBuf create (NULL, O0);
somVaBuf add(vb, (char *)&obj, tk pointer);
/* target for _set msg */
somVaBuf add(vb, (char *)&ev, tk pointer);
/* next argument */
somVaBuf add(vb, (char *)&msgl, tk pointer);
/* final argument */

somVaBuf get valist (vb, &start _val);

/* dispatch _set msg on obj: */
obj->SOMObject somDispatch (
0, /* says ignore the dispatched method result */
somIdFromString (“ set msg”),

/* the somId for _set msg */
start_val) ;

/* the target and arguments for _set msg */

/* dispatch _get msg on obj: */

82 Programmer's Guide for SOM and DSOM

/* Get a fresh copy of the va list */
somVaBuf get valist (vb, &start val);
obj->SOMObject somDispatch (
(somToken *)&msg,
/* address to hold dispatched method result */
somIdFromString (“* get msg”),
start _val) ;
/* the target and arguments for _get msg */
printf (“%s\n”, msg);
somVaBuf destroy (vb) ;
}

As a convenience, you can invoke methods whose final argument is a va_list from C and
C++ by using the short form of method invocation and specifying a variable number of
arguments in place of the va_list. That is, beginning at the syntax position where the
va_list argument is expected, SOMobijects interprets all subsequent arguments as being
the components of the va_list. This is illustrated below, using the somDispatch method.

As an example of using the variable-argument interface to somDispatch, the following
code segments illustrate how an example of attribute access (in Accessing Attributes on
page 80) could be recoded to operate without usage bindings for the Hel1lo class. These
code segments are expressed as functions that accept an argument of type SOMObject
under the assumption that bindings for Hel1lo are not available. This requires usage
bindings for SOMObject, which are also required for calling somDispatch.

For C:
#include <somobj.h>

void f1(SOMObject obj, Environment *ev)

{
char *msg;

/* dispatch _set msg on obj: */

__somDispatch (
obj, /* the target for somDispatch */
0, /* says ignore the dispatched method result */

somIdFromString (“ set msg”),

/* the somId for _set msg */
obj, /* the target for set msg */
ev, /* the other arguments for _set msg */
“Good Morning”) ;

/* dispatch _get msg on obj: */
_somDispatch (
obj,
(somToken *)&msg,
/* address to hold dispatched meth result */
somIdFromString (“ get msg”),
obj, /* the target for _get msg */
ev) ; /* the other argument for get msg */

printf (“*%s\n”, msg) ;

Using SOM Classes in Client Programs 83

84

}
For C++:
#include <somobj.xh>
void f1 (SOMObject *obj, Environment *ev)
{
char *msg;
/* dispatch _set msg on obj: */
obj->somDispatch (
0, /* says ignore the dispatched method result */
somIdFromString (“ set msg”),

/* dispatched method id */
obj, /* the target for _set msg */
ev, /* the other arguments for set msg */
“Good Morning”) ;

/* dispatch get msg on obj: */

obj->somDispatch (
(somToken *)&msg,

/* address to store dispatched result */

somIdFromString (“* get msg”),
obj,
ev) ;

printf (“%$s\n”, msg);

}

C programmers must be aware that the short form of the invocation macro that is used
above to pass a variable number of arguments to a va_list method is only available in the
absence of ambiguity. The long-form macro which is always available requires an explicit
va_list argument. See Short form versus long form on page 77.

Using Name-Lookup Method Resolution

C or C++ programs: Offset resolution is the most efficient way to select the method
procedure appropriate to a given method call. However, client programs can invoke a
method using name-lookup resolution instead of offset resolution. The C and C++ bindings
for method invocation use offset resolution, but methods defined with the namelookup
SOM IDL modifier result in C bindings where the short form invocation macro uses
name-lookup resolution. For C and C++ bindings, a special lookup_methodName macro is
defined.

Name-lookup resolution is appropriate when you know at compile time which arguments
will be expected by a method (that is, its signature), but do not know the type of the object
on which the method will be invoked. For example, use name-lookup resolution when two
different classes introduce different methods of the same name and signature, and you do
not know which method should be invoked because the type of the object is not known at
compile time.

Name-lookup resolution is also used to invoke dynamic methods (that is, methods that
have been added to a class’s interface at run time rather than being specified in the class’s
IDL specification). For more information on name-lookup method resolution, see Method
Resolution on page 183.

Programmer’s Guide for SOM and DSOM

C only: To invoke a method using name-lookup resolution, when using the C bindings for
a method that has been implemented with the namelookup modifier, use either of the
following macros:

_methodName (receiver, args)
lookup_methodName (receiver, args)

Thus, the short-form method invocation macro results in name-lookup resolution rather than
offset resolution, when the method has been defined as a namelookup method. The long
form of the macro for offset resolution is still available in the C usage bindings. If the
method takes a variable number of arguments, then use the first form shown above when
supplying a variable number of arguments. Use the second form when supplying a va_list
argument in place of the variable number of arguments.

C++ only: To invoke a method using name-lookup resolution, when using the C++
bindings for a method that has been defined with the namelookup modifier, use either of
the following macros:

lookup methodName (receiver, args)
className_lookup_methodName (receiver, args)

If the method takes a variable number of arguments, then the first form is used when
supplying a variable number of arguments. The second form is used when supplying a
va_list argument in place of the variable number of arguments. Note that the
offset-resolution forms for invoking methods using the C++ bindings are also still available,
even if the method has been defined as a namelookup method.

C/C++: To invoke a method using name-lookup resolution, when the method has not been
defined as a namelookup method:

1. Use the somResolveByName Function or any of the somLookupMethod Method,
somFindMethod or somFindMethodOk to obtain a pointer to the procedure that
implements the desired method.

2. Then, invoke the desired method by calling that procedure, passing the method’s
intended receiver, the Environment pointer and the context argument if needed, and
any method arguments.

The somLookupMethod, somMethodOK methods are invoked on a class object (the
class of the method receiver should be used), and take as an argument the somld for the
desired method (which can be obtained from the method’s name using the
somldFromString Function). For more information on these methods, see Programmer’s
Reference for SOM and DSOM.

Note: There are many ways to acquire a pointer to a method procedure. Once this is
done, you must make appropriate use of this procedure.

e The procedure should be used only on objects for which it is appropriate. Otherwise,
run-time errors are likely to result.

* When the procedure is used, you must give the compiler the correct information
concerning the signature of the method and the linkage required by the method. (On
many systems, there are different ways to pass method arguments, and linkage
information tells a compiler how to pass the arguments indicated by a method’s
signature).

SOM method procedures on OS/2 must be called with system linkage. On Windows NT,
SOM method procedures must be called with __stdcall linkage. On AlX, there is only one
linkage convention for procedure calls. While C and C++ provide standard ways to indicate
a method signature, the way to indicate linkage information depends on the specific
compiler and system. For each method declared using OIDL or IDL, the C and C++ usage

Using SOM Classes in Client Programs 85

bindings therefore use conditional macros and a typedef to name a type that has the
correct linkage convention. You can use this type name when you want to use a procedure
to invoke a method. However, you must have access to the usage bindings for the class
containing the method because that is where the type is defined. The type is named
somTD_className_methodName. This is illustrated in the following example, and further
details are provided in Obtaining a Method’s Procedure Pointer on page 88.

A Name-Lookup Example

The following example shows the use of name-lookup by a SOM client programmer.
Name-lookup resolution is appropriate when a programmer knows that an object will
respond to a method of some given name, but does not know enough about the type of the
object to use offset method resolution. How can this happen? It normally happens when a
programmer wants to write generic code, using methods of the same name and signature
that are applicable to different classes of objects, and yet these classes have ho common
ancestor that introduces the method. This can easily occur in single-inheritance systems
(such as Smalltalk and SOM release 1) and can also happen in multiple-inheritance
systems such as SOM release 2: when class hierarchies designed by different people are
brought together for clients’ use.

If multiple inheritance is available, you can always create a common class ancestor into
which methods of this kind can be migrated. A refactoring of this kind often implements a
semantically pleasing generalization that unifies common features of two previously
unrelated class hierarchies. This step is most practical, however, when it does not require
the redefinition or recompilation of current applications that use offset resolution. SOM is
unique in that it allows this.

However, such refactoring must redefine the classes that originally introduced the common
methods (so the methods can be inherited from the new unifying class instead). A client
programmer who simply wants to create an application may not control the implementations
of the classes. Thus, the use of name-lookup method resolution seems the best alternative
for programmers who do not want to define new classes, but simply to make use of
available ones.

For example, assume the existence of two different SOM classes, classX and classY,
whose only common ancestor is SOMODbject, and who both introduce a method named
reduce that accepts a string as an argument and returns a long. We assume that the
classes were not designed in conjunction with each other. As a result, it is unlikely that the
reduce method was defined with a namelookup modifier. The Figure 3 illustrates the class
hierarchy for this example.

Legend

clase
— Inharlts from

Figure 3. Name-Lookup Resolution

86 Programmer's Guide for SOM and DSOM

Following is a C++ generic procedure that uses name-lookup method resolution to invoke
the reduce method on its argument, that may be either classX or classY. There is no
reason to include classY’s usage bindings, since the typedef provided for the reduce
method procedure in classX is sufficient for invoking the method procedure, independently
of whether the target object is of type classX or classY.

#include classX.xh // use classX’'s method proc typedef

// this procedure can be invoked on a target of type

// classX or classY.

long generic_reducel (SOMObject *target, string arg)

{

somTD_classX reduce reduceProc = (somTD_classX_reduce)
somResolveByName (target, “reduce”) ;

return reduceProc (target, arg);

}

On the other hand, if the classes were designed in conjunction with each other, and the
class designer felt that programmers might want to write generic code appropriate to either
class of object, the namelookup modifier might have been used. This is a possibility, even
with multiple inheritance. However, it is much more likely that the class designer would use
multiple inheritance to introduce the reduce method in a separate class, and then use this
other class as a parent for both classX and classyY.

In any case, if the reduce method in classX were defined as a namelookup method, the
following code would be appropriate. The name-lookup support provided by classX usage
bindings is still appropriate for use on targets that do not have type classX. As a result,
the reduce method introduced by classY does not need to be defined as a namelookup
method.

#include classX.xh // use classX'’s name-lookup support

// this procedure can be invoked on a target of type

// classX or classY.

long generic_reduce2 (SOMObject *target, string arg)

{

return lookup reduce(target, arg);

}

For non-C/C++ programmers: Name-lookup resolution is useful for non-C/C++
programmers when the type of an object on which a method must be invoked is not known
at compile time or when method tokens cannot be directly accessed by the programmer. To
invoke a method using name-lookup resolution when not using the C or C++ usage
bindings, use the somResolveByName Function to acquire a procedure pointer. How the
programmer indicates the method arguments and the linkage convention in this case is
compiler specific.

The somResolveByName procedure takes as arguments a pointer to the object on which
the method is to be invoked and the name of the method, as a string. It returns a pointer to
the method’s procedure (or NULL if the method is not supported by the object). The method
can then be invoked by calling the method procedure, passing the method'’s receiver, the

Using SOM Classes in Client Programs 87

88

Environment pointer (if necessary), the context argument (if necessary), and the rest of
the method’s arguments, if any. (See the section above for C programmers; the arguments
to a method procedure are the same as the arguments passed to the long-form C language
method-invocation macro for that method.)

As an example of invoking methods using name-lookup resolution using the procedure
somResolveByName, the following steps are used to create an instance of a SOM
Class X in Smalltalk:

1. Initialize the SOM run-time environment (if it is not already initialized) using the
somEnvironmentNew Function.

2. If the class object for class X has not yet been created, use somResolveByName with
the arguments SOMClassMgrObject (returned by somEnvironmentNew in step 1)
and the string somFindClass, to obtain a method procedure pointer for the
somFindClass method. Use the method procedure for somFindClass to create the
class object for class X. Call the method procedure with these four arguments:
SOMClassMgrObject; the variable holding class X's somld (the result of calling the
somldFromString Function with argument X); and the major and minor version
numbers for class X (or zero). The result is the class object for class X.

3. Use somResolveByName with arguments the class object for X (returned by
somFindClass in step 2) and the string somNew, to obtain a method procedure pointer
for method somNew. (This somNew method is used to create instances of a class.)

4. Call the method procedure for somNew (using the method procedure pointer obtained
in step 3) with the class object for X (returned by somFindClass in step 3) as the
argument. The result is a new instance of class X. How the programmer indicates the
method arguments and the linkage convention is compiler-specific.

Obtaining a Method’s Procedure Pointer

Method resolution is the process of obtaining a pointer to the procedure that implements a
particular method for a particular object at run time. The method is then invoked
subsequently by calling that procedure, passing the method’s intended receiver, the
Environment pointer (if needed), the context argument (if needed), and the method’s other
arguments, if any. C and C++ programmers may wish to obtain a pointer to a method’s
procedure for efficient repeated invocations.

Obtaining a pointer to a method’s procedure is achieved in one of two ways, depending on
whether the method is to be resolved using offset resolution or name-lookup resolution.
Obtaining a method’s procedure pointer through offset resolution is faster, but it requires
that the name of the class that introduces the method and the name of the method be
known at compile time. It also requires that the method be defined as part of that class’s
interface in the IDL specification of the class. (See Method Resolution on page 183 for
more information on offset and name-lookup method resolution.)

Offset resolution: To obtain a pointer to a procedure using offset resolution, the C/C++
usage bindings provide the SOM_Resolve Macro and SOM_ResolveNoCheck Macro.
The usage bindings themselves use the first of these, SOM_Resolve, for offset-resolution
method calls. The difference in the two macros is that the SOM_Resolve macro performs
consistency checking on its arguments, but the macro SOM_ResolveNoCheck, which is
faster, does not. Both macros require the same arguments:

SOM_Resolve (receiver, className, methodName)
SOM_ResolveNoCheck (receiver, className, methodName)

where the arguments are as follows:

Programmer’s Guide for SOM and DSOM

receiver
The object to which the method will apply. It should be specified as an expression
without side effects.

className
The name of the class that introduces the method.

methodName
The name of the desired method.

These two names (className and methodName) must be given as tokens, rather than
strings or expressions. (For example, as Animal rather than Animal.) If the symbol
SOM_TestOn is defined and the symbol SOM_NoTest is not defined in the current
compilation unit, then SOM_Resolve verifies that receiver is an instance of className or
some class derived from className. If this test fails, an error message is output

and execution is terminated.

The SOM_Resolve and SOM_ResolveNoCheck macros use the procedure somResolve
to obtain the entry-point address of the desired method procedure (or raise a fatal error if
methodName is not introduced by className). This result can be directly applied to the
method arguments, or stored in a variable of generic procedure type (for example,
somMethodPtr) and retained for later method use. This second possibility would result in a
loss of information, however, for the reasons now given.

The SOM_Resolve or SOM_ResolveNoCheck macros are especially useful because they
cast the method procedure they obtain to the right type to allow the C or C++ compiler to
call this procedure with system linkage and with the appropriate arguments. This is why the
result of SOM_Resolve is immediately useful for calling the method procedure, and why
storing the result of SOM_Resolve in a variable of some “generic” procedure type results in
a loss of information. The correct type information can be regained, however, because the
type used by SOM_Resolve for casting the result of somResolve is available from C/C++
usage bindings using the typedef name somTD_className_methodName. This type name
describes a pointer to a method procedure for methodName introduced by class
className. If the final argument of the method is a va_list, then the method procedure
returned by SOM_Resolve or SOM_ResolveNoCheck must be called with a va_list
argument, and not a variable number of arguments.

The following C example uses SOM_Resolve to obtain a method procedure pointer for
method sayHello, introduced by class Hello, and using it to invoke the method on obj.
The only argument required by the sayHello method is the Environment pointer.)

somMethodProc *p;

SOMObject obj = HelloNew() ;

p = SOM _Resolve (obj, Hello, sayHello);

((somTD_Hello sayHello)p) (obj, somGetGlobalEnvironment()) ;

SOM_Resolve and SOM_ResolveNoCheck can only be used to obtain method
procedures for static methods (methods that have been declared in an IDL specification for
a class) and not methods that are added to a class at run time. See Programmer’s
Reference for SOM and DSOM for more information and examples on SOM_Resolve and
SOM_ResolveNoCheck.

Name-lookup method resolution: To obtain a pointer to a method’s procedure using
name-lookup resolution, use the somResolveByName Function (described in the
following section), or any of the somLookupMethod, somFindMethod and
somFindMethodOK methods. These methods are invoked on a class object that supports
the desired method, and they take an argument specifying the a somlId for the desired
method (which can be obtained from the method’s name using the somldFromString

Using SOM Classes in Client Programs 89

Function). For more information on these methods and for examples of their use, see
Programmer’s Reference for SOM and DSOM.

Method Name or Signature Unknown at Compile Time

If the programmer does not know a method’s name at compile time (for example, it might
be specified by user input), then the method can be invoked in one of two ways, depending
upon whether its signature is known:

» Suppose the signature of the method is known at compile time (even though the
method name is not). In that case, when the name of the method becomes available at
run time, the somLookupMethod, somFindMethod or somFindMethodOk methods
or the somResolveByName procedure can be used to obtain a pointer to the method’s
procedure using name-lookup method resolution, as described in the preceding topics.
That method procedure can then be invoked, passing the method’s intended receiver,
the Environment pointer (if needed), the context argument (if needed), and the
remainder of the method’s arguments.

» If the method’s signature is unknown until run time, then dispatch-function resolution is
indicated.

Dispatch-function method resolution: If the signature of the method is not known at
compile time (and hence the method’s argument list cannot be constructed until run time),
then the method can be invoked at run time by:

» placing the arguments in a variable of type va_list at run time

» using the somGetMethodData Method followed by use of the somApply Function or
invoking the somDispatch or somClassDispatch method.

Using somApply is more efficient, since this is what the somDispatch method does, but it
requires two steps instead of one. In either case, the result invokes a stub procedure called
an apply stub, whose purpose is to remove the method arguments from the va_list, and
then pass them to the appropriate method procedure in the way expected by that
procedure. For more information on these methods and for examples of their use, see the
somApply function, and the somGetMethodData, somDispatch and somClassDispatch
methods in Programmer’s Reference for SOM and DSOM.

Using Class Objects

90

Using a class object encompasses three aspects: getting the class of an object, creating a
new class object, or simply referring to a class object through the use of a pointer.

Getting the Class of an Object

To get the class that an object is an instance of, SOM provides the somGetClass Method.
The somGetClass method takes an object as its only argument and returns a pointer to the
class object of which it is an instance. For example, the following statements store in
myClass the class object of which obj is an instance.

myClass = _somGetClass (obj); (for C)
myClass = obj->somGetClass|() ; (for C++)

Getting the class of an object is useful for obtaining information about the object; in some
cases, such information cannot be obtained directly from the object, but only from its class.
Getting Information about a Class on page 96 describes the methods that can be
invoked on a class object after it is obtained using somGetClass.

Programmer’s Guide for SOM and DSOM

The somGetClass method can be overridden by a class to provide enhanced or alternative
semantics for its objects. Because it is usually important to respect the intended semantics
of a class of objects, the somGetClass method should normally be used to access the
class of an object.

In a few special cases, it is not possible to make a method call on an object in order to
determine its class. For such cases, SOM provides the SOM_GetClass Macro. In general,
the somGetClass method and the SOM_GetClass macro may have different behavior (if
somGetClass has been overridden). This difference may be limited to side effects, but it is
possible for their results to differ as well. The SOM_GetClass macro should only be used
when absolutely necessary.

Creating a Class Object

A class object is created automatically the first time the classNameNew macro (for C) or
the new operator (C++) is invoked to create an instance of that class. In other situations,
however, it may be necessary to create a class object explicitly, as this section describes.

Using classNameRenew or somRenew: It is sometimes necessary to create a class
object before creating any instances of the class. For example, creating instances using the
classNameRenew macro or somRenew requires knowing how large the created instance
will be, so that memory can be allocated for it. Getting this information requires creating the
class object (see Creating Instances of a Class on page 72). As another example, a class
object must be explicitly created when a program does not use the SOM bindings for a
class. Without SOM bindings for a class, its instances must be created using somNew or
somRenew, and these methods require that the class object be created in advance.

Use the classNameNewClass procedure to create a class object:
* When using the C/C++ language bindings for the class, and
* When the name of the class is known at compile time.

Using classNameNewClass: The classNameNewClass procedure initializes the SOM
run-time environment, if necessary, creates the class object (unless it already exists),
creates class objects for the ancestor classes and metaclass of the class, if necessary, and
returns a pointer to the newly created class object. After its creation, the class object can be
referenced in client code using the macro

_className (for C and C++ programs)
or the expression
classNameClassData.classObject (for C and C++ programs)

The classNameNewClass procedure takes two arguments, the major version number and
minor version number of the class. These numbers are checked against the version
numbers built into the class library to determine if the class is compatible with the client’s
expectations. The class is compatible if it has the same major version number and the
same or a higher minor version number. If the class is not compatible, an error is raised.
Major version numbers usually only change when a significant enhancement or
incompatible change is made to a class. Minor version numbers change when minor
enhancements or fixes are made. Downward compatibility is usually maintained across
changes in the minor version number. Zero can be used in place of version numbers to
bypass version number checking.

When using SOM bindings for a class, these bindings define constants representing the
major and minor version numbers of the class at the time the bindings were generated.
These constants are named className_MajorVersion and className_MinorVersion.
For example, the following procedure call:

Using SOM Classes in Client Programs 91

92

AnimalNewClass (Animal MajorVersion, Animal MinorVersion) ;

creates the class object for class Animal. Thereafter, Animal can be used to reference
the Animal class object.

The preceding technique for checking version numbers is not failsafe. For performance
reasons, the version numbers for a class are only checked when the class object is
created, and not when the class object or its instances are used. Thus, run-time errors may
result when usage bindings for a particular version of a class are used to invoke methods
on objects created by an earlier version of the class.

Using somFindClass or somFindClsInFile: To create a class object when not using the
C/C++ language bindings for the class, or when the class name is not known at compile
time:

» First, initialize the SOM run-time environment by calling the somEnvironmentNew
Function (unless it is known that the SOM run-time environment has already been
initialized).

* Then, use the somFindClass Method or somFindClsInFile Method to create the
class object. (The class must already be defined in a dynamically linked library, or DLL.)

The somEnvironmentNew function initializes the SOM run-time environment. It creates
the four primitive SOM objects (SOMClass, SOMObject, SOMClassMgr and the
SOMClassMgrObject), and it initializes SOM global variables. The function takes no
arguments and returns a pointer to the SOMClassMgrObject.

Note: Although somEnvironmentNew must be called before using other SOM functions
and methods, explicitly calling somEnvironmentNew is usually not necessary when using
the C/C++ bindings, because the macros for classNameNewClass, classNameNew and
classNameRenew call it automatically, as does the new operator for C++. Calling
somEnvironmentNew repeatedly does no harm.

After the SOM run-time environment has been initialized, the methods somFindClass and
somFindClsInFile can be used to create a class object. These methods must be invoked
on the class manager, which is pointed to by the global variable SOMClassMgrObiject. (It
is also returned as the result of somEnvironmentNew.)

The somFindClass method takes the following arguments:

classld
A somld identifying the name of the class to be created. The somldFromString
Function returns a classld given the name of the class.

major version number
The expected major version number of the class.

minor version number
The expected minor version number of the class.

The version numbers are checked against the version numbers built into the class library to
determine if the class is compatible with the client’s expectations.

The somFindClass method dynamically loads the DLL containing the class’s
implementation, if needed, creates the class object (unless it already exists) by invoking its
classNameNewClass procedure, and returns a pointer to it. If the class could not be
created, somFindClass returns NULL. For example, the following C code fragment creates
the class Hello and stores a pointer to it in myClass:

SOMClassMgr cm = somEnvironmentNew () ;
somId classId = somIdFromString(“Hello”) ;

SOMClass myClass = somFindClass (SOMClassMgrObject, classId,

Programmer’s Guide for SOM and DSOM

Hello MajorVersion,

Hello_ MinorVersion) ;

SOMFree (classId) ;

The somFindClass method uses somLocateClassFile Method to get the name of the
library file containing the class. If the class was defined with a dliname class modifier, then
somLocateClassFile returns that file name; otherwise, it assumes that the class name is
the name of the library file. The somFindClsInFile method is similar to somFindClass,
except that it takes an additional (final) argument: the name of the library file containing the
class. The somFindClsInFile method is useful when a class is packaged in a DLL along
with other classes and the dliname class modifier has not been given in the class’s IDL
specification.

On AIX and the somFindClass and somFindClsInFile methods should not be used to
create a class whose implementation is statically linked with the client program. Instead, the
class object should be created using the <className>NewClass procedure provided by
the class’s header file. Static linkage is not created by simply including usage bindings in a
program, but by use of the offset-resolution method-invocation macros.

Invoking methods without corresponding class usage bindings: This topic builds on
the preceding discussion, and illustrates how a client program can apply dynamic SOM
mechanisms to utilize classes and objects for which specific usage bindings are not
available. This process can be applied when a class implementor did not ship the C/C++
language bindings. Furthermore, the process allows more programming flexibility, because
it is not necessary to know the class and method names at compile time in order to access
them at run time. (At run time, however, you must be able to provide the method
arguments, either explicitly or with a va_list, and provide a generalized way to handle
return values.) As an example application, a programmer might create an online class
viewer that can access many classes without requiring usage bindings for all those classes,
and the person using the viewer can select class names at run time.

As another aspect of flexibility, a code sequence similar to the following C++ example could
be re-used to access any class or method. After getting the somlId for a class name, the
example uses the somFindClass method to create the class object. The somNew method
is then invoked to create an instance of the specified class, and the somDispatch method
is used to invoke a method on the object.

#include <stdio.h>
#include <somcls.xh>
int main()
{
SOMClass *classobj;
somId tempId;
somId methId;
SOMObject *s2;
Environment * main ev = somGetGlobalEnvironment () ;
tempId = SOM IdFromString (”myClassName”) ;
classobj = SOMClassMgrObject->somFindClass (tempId, 0,0) ;
SOMFree (tempId) ;
if (NULL==classobj)
{

printf (

Using SOM Classes in Client Programs 93

"somFindClass could not find the selected class\n”);

}

else

{

s2 = (SOMObject *) (classobj->somNew()) ;
methId = somIdFromString (”sayHello”) ;
if (s2->somDispatch((somToken *) 0, methId, s2, ev))

printf ("Method successfully called.\n”);

}

return O0;

}

Referring to Class Objects

Saving a pointer as the class object is created: The classNameNewClass macro and
the somFindClass Method, used to create class objects, both return a pointer to the newly
created class object. Hence, one way to obtain a pointer to a class object is to save the
value returned by classNameNewClass or somFindClass when the class object is created.

Getting a pointer after the class object is created: After a class object has been
created, client programs can also get a pointer to the class object from the class name.
When the class name is known at compile time and the client program is using the C or
C++ language bindings, the macro

_className

can be used to refer to the class object for className. Also, when the class name is known
at compile time and the client program is using the C or C++ language bindings, the
expression

classNameClassData.classObject

refers to the class object for className. For example, Hello refers to the class object for
class Hello in C or C++ programs, and HelloClassData.classObject refers to the
class object for class Hello in C or C++ programs.

Getting a pointer to the class object from an instance: If any instances of the class are
known to exist, a pointer to the class object can also be obtained by invoking the
somGetClass Method on such an instance. See Getting the Class of an Object on page
90.

Getting a pointer in other situations: If the class nhame is not known until run time, or if
the client program is not using the C or C++ language bindings, and no instances of the
class are known to exist, then the somClassFromld Method can be used to obtain a
pointer to a class object after the class object has been created. The somClassFromld
method should be invoked on the class manager, which is pointed to by the global variable
SOMClassMgrObject. The only argument to the method is a somld for the class name,
which can be obtained using the somldFromString Function. somClassFromld returns a
pointer to the class object of the specified class. For example, the following C code stores
in myClass a pointer to the class object for class Hello (or NULL, if the class cannot be

located):
SOMClassMgr cm = somEnvironmentNew () ;
somId classId = somIdFromString(“Hello”) ;
SOMClass myClass = somClassFromId (SOMClassMgrObject,

classId,

94 Programmer's Guide for SOM and DSOM

Hello MajorVersion,
Hello MinorVersion) ;

SOMFree (classId) ;

Compiling and Linking

This section describes how to compile and link C and C++ client programs. Compiling and
linking a client program with a SOM class is done in one of two ways, depending upon
whether or not the class is packaged as a library, as described below.

Note: If you are building an application that uses a combination of C and C++ compiled
object modules, then the C++ linker must be used to link them.

If the class is not packaged as a library (that is, the client program has the implementation
source code for the class, as in the examples given in the SOM IDL tutorial), then the client
program can be compiled together with the class implementation file as follows. (This
assumes that the client program and the class are both implemented in the same language,
C or C++. If this is not the case, then each module must be compiled separately to produce
an object file and the resulting object files linked together to form an executable.)

In the following examples, the environment variable SOMBASE refers to the directory in
which SOM has been installed. The examples also assume that the header files and the
import library for the Hel1lo class reside in the include and lib directories where SOM has
been installed. If this is not the case, additional path information should be supplied for
these files. For client program main and class Hello:

Under AlX, for C programmers: >

xlc -I. -ISSOMBASE/include main.c hello.c \
-LSSOMBASE/lib -lsomtk -o main

Under AlX, for C++ programmers:

> x1C -I. -I$SOMBASE/include main.C hello.C \
-LSSOMBASE/lib -lsomtk -o main

Under OS/2 or Windows NT, for C programmers

> set LIB=%SOMBASE%\1lib;3%LIBS%

> icc -I. -I%SOMBASE%\include main.c hello.c somtk.lib
Under OS/2 or Windows NT, for C++ programmers

> set LIB=%SOMBASE%\lib;3$LIBS%

> icc -I. -I%SOMBASE%\include main.cpp hello.cpp somtk.lib

If the class is packaged as a class library, then the client program, main, is compiled as
above, except that the class implementation file is not part of the compilation. Instead, the
import library provided with the class library is used to resolve the symbolic references that
appear in main. For example, to compile the C client program main.c that uses class
Hello:

Under AlX:

> xlc -I. -I$SOMBASE/include main.c -lc -L$SOMBASE/lib\
-lsomtk -lhello -o main

Under OS/2 or Windows NT:
> set LIB=%SOMBASE%\1lib;%LIB%
> icc -I. -I%SOMBASE$\include main.c somtk.lib hello.lib

Using SOM Classes in Client Programs 95

Language-Neutral Methods and Functions

This section describes methods, functions and macros that client programs can use
regardless of the programming language in which they are written. In other words, these
functions and methods are not part of the C or C++ bindings.

Generating Output

The following functions and methods are used to generate output, including descriptions of
SOM objects. They all produce their output using the character-output procedure held by
the global variable SOMOutCharRoutine. The default procedure for character output
simply writes the character to stdout, but it can be replaced to change the output
destination of the methods and functions below.

somDumpSelf Method
Writes a detailed description of an object, including its class, its location, and its
instance data. The receiver of the method is the object to be dumped. An additional
argument is the nesting level for the description. [All lines in the description will be
indented by (2 * level) spaces.]

somLPrintf Function
Combines somPrefixLevel Function and somPrintf Function. The first argument is
the level of the description (as for somPrefixLevel) and the remaining arguments are
as for somPrintf (or for the C printf function).

somPrefixLevel Function
Generates (by somPrintf) spaces to prefix a line at the indicated level. The return type
is void. The argument is an integer specifying the level. The number of spaces
generated is (2 * level).

somPrintSelf Method
Writes a brief description of an object, including its class and location in memory. The
receiver of the method is the object to be printed.

somPrintf Function
SOM’s version of the C printf function. It generates character stream output through
SOMOutCharRoutine. It has the same interface as the C printf function.

somVprintf Function
Represents the vprint form of somPrintf. Its arguments are a formatting string and a
va_list holding the remaining arguments.

See Programmer’s Reference for SOM and DSOM for more information on a specific
function or method.

Getting Information about a Class

The following methods are used to obtain information about a class or to locate a particular
class object:

somCheckVersion Method
Checks a class for compatibility with the specified major and minor version numbers.
The receiver of the method is the SOM class about which information is needed.
Additional arguments are values of the major and minor version numbers. The method
returns TRUE if the class is compatible, or FALSE otherwise.

96 Programmer's Guide for SOM and DSOM

somClassFromld Method
Finds the class object of an existing class when given its somld, but without loading
the class. The receiver of the method is the class manager (pointed to by the global
variable SOMClassMgrObject). The additional argument is the class’s somld. The
method returns a pointer to the class (or NULL if the class does not exist).

somDescendedFrom Method
Tests whether one class is derived from another. The receiver of the method is the
class to be tested, and the potential ancestor class is the argument. The method
returns TRUE if the relationships exists, or FALSE otherwise.

somFindClass Method
Finds or creates the class object for a class, given the class’s somld and its major and
minor version numbers. The receiver of the method is the class manager (pointed to by
the global variable SOMClassMgrObject). Additional arguments are the class’s somld
and the major and minor version humbers. The method returns a pointer to the class
object, or NULL if the class could not be created.

somFindClsinFile Method
Finds or creates the class object for a class. This method is similar to somFindClass,
except the user also provides the name of a file to be used for dynamic loading, if
needed. The receiver of the method is the class manager (pointed to by the global
variable SOMClassMgrObject). Additional arguments are the class’s somld, the major
and minor version humbers, and the file name. The method returns a pointer to the
class object, or NULL if the class could not be created.

somGetinstancePartSize Method
Obtains the size of the instance variables introduced by a class. The receiver of the
method is the class object. The method returns the amount of space, in bytes, needed
for the instance variables.

somGetinstanceSize Method
Obtains the total size requirements for an instance of a class. The receiver of the
method is the class object. The method returns the amount of space, in bytes,
required for the instance variables introduced by the class itself and by all of its
ancestor classes.

somGetName Method
Obtains the name of a class. The receiver of the method is the class object. The
method returns the class name.

somGetNumMethods Method
Obtains the number of methods available for a class. The receiver of the method is the
class object. The method returns the total number of currently available methods (static
or otherwise, including inherited methods).

somGetNumStaticMethods Method
Obtains the number of static methods available for a class. (A static method is one
declared in the class’s interface specification .idl file.) The receiver of the method is the
class object. The method returns the total number of available static methods, including
inherited ones.

somGetParents Method
Obtains a sequence of the parent (base) classes of a specified class. The receiver of
the method is the class object. The method returns a pointer to a linked list of the
parent (base) classes (unless the receiver is SOMObject, for which it returns NULL).

Using SOM Classes in Client Programs 97

somGetVersionNumbers Method
Obtains the major and minor version numbers of a class. The receiver of the method is
the class object. The return type is void, and the two arguments are pointers to
locations in memory where the method can store the major and minor version numbers
(of type long).

somSupportsMethod Method
Indicates whether instances of a given class support a given method. The receiver of
the somSupportsMethod method is the class object. The argument is the somld for
the method in question. The somSupportsMethod returns TRUE if the method is
supported, or FALSE otherwise.

See Programmer’s Reference for SOM and DSOM for more information on a specific
method.

Getting Information about an Object

The following methods and functions are used to obtain information about an object
(instance) or to determine whether a variable holds a valid SOM object.

somGetClass Method
Gets the class object of a specified object. The receiver of the method is the object
whose class is desired. The method returns a pointer to the object’s corresponding
class object.

somGetClassName Method
Obtains the class name of an object. The receiver of the method is the object whose
class name is desired. The method returns a pointer to the name of the class of which
the specified object is an instance.

somGetSize Method
Obtains the size of an object. The receiver of the method is the object. The method
returns the amount of contiguous space, in bytes, that is needed to hold the object itself
(not including any additional space that the object may be using or managing outside of
this area).

somlsA Method
Determines whether an object is an instance of a given class or of one of its
descendant classes. The receiver of the method is the object to be tested. An
additional argument is the name of the class to which the object will be compared. This
method returns TRUE if the object is an instance of the specified class or if (unlike
somlsinstanceOf) it is an instance of any descendant class of the given class;
otherwise, the method returns FALSE.

somlsinstanceOf Method
Determines whether an object is an instance of a specific class (but not of any
descendant class). The receiver of the method is the object. The argument is the name
of the class to which the object will be compared. The method returns TRUE if the
object is an instance of the specified class, or FALSE otherwise.

somlsObj Function
Takes as its only argument an address (which may not be valid). The function returns
TRUE (1) if the address contains a valid SOM object, or FALSE (0) otherwise. This
function is designed to be failsafe.

98 Programmer's Guide for SOM and DSOM

somRespondsTo Method
Determines whether an object supports a given method. The receiver of the method is
the object. The argument is the somld for the method in question. The
somRespondsTo method returns TRUE if the object supports the method, or FALSE
otherwise.

See Programmer’s Reference for SOM and DSOM for more information on a specific
method or function.

Debugging

The following macros are used to conditionally generate output for debugging. All output
generated by these macros is written using the replaceable character-output procedure
pointed to by the global variable SOMOutCharRoutine. The default procedure simply
writes the character to stdout, but it can be replaced to change the output destination of the
methods and functions below.

Debugging output is produced or suppressed based on the settings of three global
variables, SOM_TracelLevel, SOM_WarnLevel and SOM_AssertLevel:

« SOM_TraceLevel controls the behavior of the classNameMethodDebug macro

e SOM_WarnLevel controls the behavior of: SOM_WarnMsg Macro, SOM_TestC
Macro and SOM_Expect Macro

» SOM_AssertLevel controls the behavior of the SOM_Assert Macro.

Available macros for generating debugging output are as follows:
classNameMethodDebug

(macro for C and C++ programmers using the SOM language bindings for className) The
arguments to this macro are a class name and a method name. If the SOM_TraceLevel
global variable has a nonzero value, the classNameMethodDebug macro produces a
message each time the specified method (as defined by the specified class) is executed.
This macro is typically used within the procedure that implements the specified method.
(The SOM Compiler automatically generates calls to the classNameMethodDebug macro
within the implementation template files it produces.) To suppress method tracing for all
methods of a class, put the following statement in the implementation file after including the
header file for the class:

#define classNameMethodDebug (c,m)\
SOM_NoTrace (c,m)

This can yield a slight performance improvement. The SOMMTraced Metaclass provides a
more extensive tracing facility that includes method parameters and returned values.

SOM_TestC Macro
SOM_TestC takes as an argument a boolean expression. If the boolean expression is
TRUE (nonzero) and SOM_AssertLevel is greater than zero, then an informational
message is output. If the expression is FALSE (zero) and SOM_WarnLevel is greater
than zero, a warning message is produced.

SOM_WarnMsg Macro
SOM_WarnMsg takes as an argument a character string. If the value of
SOM_WarnLevel is greater than zero, the specified message is output.

Using SOM Classes in Client Programs 99

SOM_Assert Macro
SOM_Assert takes as arguments a boolean expression and an error code (an integer).
If the boolean expression is TRUE (nonzero) and SOM_AssertLevel is greater than
zero, then an informational message is output. If the expression is FALSE (zero), and
the error code indicates a warning-level error and SOM_WarnLevel is greater than
zero, then a warning message is output. If the expression is FALSE and the error code
indicates a fatal error, then an error message is produced and the process is
terminated.

SOM_Expect Macro
SOM_Expect takes as an argument a boolean expression. If the boolean expression is
FALSE (zero) and SOM_WarnLevel is set to be greater than zero, then a warning
message is output. If condition is TRUE and SOM_AssertLevel is set to be greater
than zero, then an informational message is output.

somDumpSelf Method and somPrintSelf Method can be useful in testing and debugging.
somPrintSelf produces a brief description of an object, and somDumpSelf produces a
more detailed description. See Programmer’s Reference for SOM and DSOM for more
information.

Checking the Validity of Method Calls

The C and C++ language bindings include code to check the validity of method calls at run
time. If a validity check fails, the SOM_Error Macro ends the process. To enable
method-call validity checking, place the following directive in the client program prior to any
#include directives for SOM header files:

#define SOM_ TestOn

Alternatively, the -DSOM_TestOn option can be used when compiling the client program to
enable method-call validity checking.

Exceptions and Error Handling

100

In the classes provided in the SOM run-time library (that is, SOMClass, SOMObject and
SOMClassMgr) error handling is performed by a user-replaceable procedure, pointed to by
the global variable SOMError, that produces an error message and an error code and, if
appropriate, ends the process where the error occurred.

Each error is assigned a unique integer error code. Errors are grouped into three
categories, based on the last digit of the error code:

SOM_Ignore
This category of error represents an informational event. The event is considered
normal and can be ignored or logged at the user’s discretion. Error codes ending in a
digit 2 belong to this category.

SOM_Warn
This category of error represents an unusual condition that is not a normal event, but is
not severe enough to require program termination. Error codes ending in a digit 1
belong to this category.

SOM_Fatal
This category of error represents a condition that should not occur or that would result
in loss of system integrity if processing were allowed to continue. In the default error
handling procedure, these errors cause the termination of the process in which they
occur. Error codes ending in a digit 9 belong to this category.

Programmer’s Guide for SOM and DSOM

The codes for errors detected by SOM are listed in Appendix A, Error Codes on page 397.

When errors are encountered in client programs or user defined-classes, the following two
macros can be used to invoke the error-handling procedure:

SOM_Error Macro
SOM_Error takes an error code as its only argument and invokes the SOM error
handling procedure (pointed to by the global variable SOMError) to handle the error.
The default error handling procedure prints a message that includes the error code, the
name of the source file, and the line number where the macro was invoked. If the last
digit of the error code indicates a serious error (of category SOM_Fatal), the process
causing the error is terminated.)

SOM_Test Macro
SOM_Test takes a boolean expression as an argument. If the expression is TRUE
(nonzero) and the SOM_AssertLevel is greater than zero, then an informational
message is output. If the expression is FALSE (zero), an error message is produced
and the program is terminated.

See Programmer’s Reference for SOM and DSOM for more information on a specific
macro.

Other classes provided by the SOMobjects Developer Toolkit (including those in DSOM,
the Interface Repository framework and the utility classes and metaclasses) handle errors
differently. Rather than invoking SOMError with an error code, their methods return
exceptions by the (Environment *) inout parameter required by these methods. The
following sections describe the exception declarations, the standard exceptions, and how to
set and get exception information in an Environment structure.

Introduction to Exceptions

SOMobijects follows the CORBA model for exception handling. In this model the method
caller receives error information back from the method invocation in a data structure called
the Environment. This is different from the catch/throw model where an exception is
implemented by a long jump or a signal.

CORBA defines two types of exceptions:

USER_EXCEPTION
Explicitly declared in IDL files. Every method that returns a user exception contains a
raises keyword listing the exceptions it may return.

SYSTEM_EXCEPTION
Implicitly defined. Any method may return these exceptions without listing them on a
raises keyword. System exceptions are sometimes called standard exceptions.

User Exceptions

In SOM Interface Definition Language, a method may be declared to return zero or more
exceptions. Each type of exception has a name and, optionally, a struct-like data structure
for holding error information. A method declares the types of exceptions it may return in a
raises expression.

Below is an example IDL declaration of a BAD FLAG exception, which may be raised by a
checkFlag method, as part of a MyObject interface:

interface MyObject ({

exception BAD FLAG {long ErrCode; char Reason[80]; };

void checkFlag(in unsigned long flag) raises(BAD FLAG) ;

Using SOM Classes in Client Programs 101

102

i
An exception structure contains information to help the caller understand the nature of the
error. The exception declaration can be treated like a struct definition: that is, whatever you
can access in an IDL struct, you can access in an exception declaration. Alternatively, the
structure can be empty, whereby the exception is just identified by its name.

The SOM Compiler will map the exception declaration in the above example to the
following C language constructs:
typedef struct BAD FLAG {
long ErrCode;
char Reason[80];

} BAD FLAG;

#define ex BAD FLAG “MyObject::BAD FLAG”

When an exception is detected, the checkFlag method must call the SOMMalloc
Function to allocate a BAD FLAG structure, initialize it with the appropriate error
information, and make a call to the somSetException Function to record the exception
value in the Environment structure passed in the method call. The caller, after invoking
checkFlag, can check the Environment structure that was passed to the method to see if
there was an exception and, if so, extract the exception value from the Environment.

System Exceptions

In addition to user-defined exceptions (those defined explicitly in an IDL file), there are
several predefined exceptions for system run-time errors. A system exception can be
returned on any method call. (That is, they are implicitly declared for every method whose
class uses IDL call style, and they do not appear in any raises expressions.) The standard
exceptions are listed in Exception Declarations on page 125. Most of the predefined
system exceptions pertain to Object Request Broker errors. Consequently, these types of
exceptions are most likely to occur in DSOM applications.

Each of the standard exceptions has the same structure: an error code (to designate the
subcategory of the exception) and a completion status code. For example, the NO MEMORY
standard exception has the following definition:

enum completion status {YES, NO, MAYBE};

exception NO MEMORY { unsigned long minor;

completion status completed; };

The completion status value indicates whether the method was never initiated (NO),
completed execution prior to the exception (YES), or the completion status is indeterminate
(MAYBE).

Because all the standard exceptions have the same structure, file somcorba.h included by
som.h defines a generic StExcep typedef which can be used instead of the specific
typedefs:

typedef struct StExcep {
unsigned long minor;
completion status completed;
} StExcep;

The standard exceptions are defined in an IDL module called StExcep, in the file named
stexcep.idl, and the C definitions can be found in stexcep.h.

Programmer’s Guide for SOM and DSOM

The Environment

The Environment is a data structure that contains environmental information that can be
passed between a caller and a called object when a method is executed. For example, it is
primarily used to return exception data to the client following a method call.

A pointer to an Environment variable is passed as an argument to method calls (unless the
method’s class has the callstyle=oidl SOM IDL modifier). The Environment typedef is
defined in som.h, and an instance of the structure is allocated by the caller in any
reasonable way: on the stack (by declaring a local variable and initializing it using the
SOM_InitEnvironment Macro), dynamically (using the SOM_CreateLocalEnvironment
Macro) or by calling the somGetGlobalEnvironment Function to allocate an
Environment structure to be shared by objects running in the same thread.

For class libraries that use callstyle=oidl, there is no explicit Environment parameter. For
these libraries, exception information may be passed using the per-thread Environment
structure returned by the somGetGlobalEnvironment procedure.

Setting an Exception Value

To set an exception value in the caller's Environment structure, a method implementation
makes a call to the somSetException procedure:

void somSetException (Environment *ev,
exception type major,
string exception name,

void *params) ;
where ev is a pointer to the Environment structure passed to the method, major is an
exception_type,

typedef enum exception type {

NO_EXCEPTION, USER_EXCEPTION, SYSTEM EXCEPTION,

exception type MAX=214783647

} exception type;
exception_name is the string name of the exception (usually the constant defined by the

IDL compiler, for example, ex BAD FLAG), and params is a pointer to an (initialized)
exception structure which must be allocated by SOMMalloc:

The somSetException Function expects the params argument to be a pointer to a
structure that was allocated using SOMMalloc Function. When somSetException is
called, the client passes ownership of the exception structure to the SOM run-time
environment. The SOM run-time environment will free the structure when the exception is
reset (that is, upon next call to somSetException), or when the somExceptionFree
Function is called.

somSetException simply sets the exception value; it performs no exit processing. If there
are multiple calls to somSetException before the method returns, the caller sees only the
last exception value.

Getting an Exception Value

After a method returns, the calling client program can look at the Environment structure to
see if there was an exception. The Environment struct is mostly opaque, except for an
exception type field named _major:

typedef struct Environment {

Using SOM Classes in Client Programs 103

104

exception type _major;

} Environment;

If ev._major != NO_EXCEPTION, there was an exception returned by the call. The caller
can retrieve the exception name and value (passed as parameters in the
somSetException Function call) from an Environment struct with the following functions:

string somExceptionId (Environment *ev);
somToken somExceptionValue (Environment *ev) ;

The somExceptionld Function returns the exception name, if any, as a string. The
somExceptionValue Function returns a pointer to the value of the exception, if any,
contained in the exception structure. If NULL is passed as the Environment pointer in either
of the above calls, an implicit call is made to the somGetGlobalEnvironment Function.

The somExceptionFree Function frees any memory in the Environment associated with
the last exception. This function does only a shallow SOMFree of the Environment’s
exception parameters. It does not walk the exception parameters, freeing any nested
memory blocks. For information on managing the memory, objects and exceptions used by
DSOM applications, see Memory-Management Functions on page 256.

void somExceptionFree (Environment *ev);

You can also use the CORBA exception_free API to free the memory in an Environment
structure.

File somcorba.h (included by som.h) provides the following aliases for strict compliance
with CORBA programming interfaces:

#ifdef CORBA FUNCTION NAMES

#define exception id somExceptionId
#define exception value somExceptionValue
#define exception free somExceptionFree

#endif /* CORBA FUNCTION NAMES */

Example Of Raising an Exception

The following IDL interface for a MyObject object in a file called myobject . idl declares
a BAD_ FLAG exception, which can be raised by the checkFlag method:

interface MyObject ({
exception BAD FLAG { long ErrCode; char Reason[80]; };

void checkFlag(in unsigned long flag) raises(BAD FLAG) ;

bi
The SOM IDL compiler maps the exception to the following C language constructs, in
myobject.h:

typedef struct BAD FLAG {
long ErrCode;
char Reason[80];

} BAD FLAG;

#define ex BAD FLAG “MyObject::BAD FLAG”

Programmer’s Guide for SOM and DSOM

A client program that invokes the checkFlag method might contain the following error

handling code.

Note:

The error checking code below lies in the user-written procedure, ErrorCheck, so
the code need not be replicated through the program.

#include “som.h”

#include “myobject.h”

boolean ErrorCheck (Environment *ev) ; /* prototype */

main ()

{

}

/* error checking procedure */

unsigned long flag;
Environment ev;
MyObject myobj;
char *exId;
BAD FLAG *badFlag;

StExcep *stExValue;

myobj = MyObjectNew() ;

flag 0x01L;

SOM_InitEnvironment (&ev) ;

/* invoke the checkFlag method, passing the Environment

parameter */

/* check for exception */

if (ErrorCheck (&ev))

{
/* %/

somExceptionFree (&ev) ;

VA

_checkFlag (myobj, &ev, flag);

/* free the exception memory */

boolean ErrorCheck (Environment *ev)

{

switch (ev._major)

{

case SYSTEM_EXCEPTION:

/* get system exception id and value */

Using SOM Classes in Client Programs

105

106

exId

somExceptionId (ev) ;
stExValue = somExceptionValue (ev) ;
/* ... %/

return (TRUE) ;

case USER_EXCEPTION:
/* get user-defined exception id and value */

exId = somExceptionId(ev) ;

if (strcmp(exId, ex BAD_FLAG) == 0)

{
badFlag = (BAD FLAG *) somExceptionValue (ev) ;
/* ... %/

}

VA

return (TRUE) ;

case NO_EXCEPTION:
return (FALSE) ;

}

The implementation of the checkFlag method may contain the following error-handling
code:

#include “som.h”
#include “myobject.h”
void checkFlag(MyObject somSelf, Environment *ev,

unsigned long flag)

BAD_FLAG *badFlag;
VAV

if (/* flag is invalid */)
{
badFlag = (BAD_FLAG *) SOMMalloc (sizeof (BAD FLAG)) ;
badFlag->ErrCode = /* bad flag code */;
strcpy (badFlag->Reason, “bad flag was passed”) ;
somSetException(ev, USER EXCEPTION,
ex BAD FLAG, (void *)badFlag) ;

return;

VA

Programmer’s Guide for SOM and DSOM

The Error Log Facility

SOMobijects supports an error log to record exceptions and error conditions that may occur
within the SOMobjects services. DSOM and all the Object Services use this facility.

Most of the data recorded in the error log is formatted to help you debug new applications.
The remaining data is not formatted and can be used by support personnel to help
diagnose more complicated problems.

The error log records only exceptions and errors that occur within code shipped with the
SOMobijects Developer Toolkit. If you wish to record error information from the frameworks
and applications that you develop, you must provide your own facility to do this.

The error log is implemented as a wrapping log file. Once it has filled up, the oldest entries
are destroyed as new entries are added. All processes on the same system should be set
up to share a single error log file for greater ease in solving any multi-process interaction
problems that might occur. If you are using DSOM at multiple locations, you have multiple
error logs. Error log files are located in the directory pointed to by the SOMDDIR
configuration variable, under the [somd] stanza, in the configuration file.

Configuring the Error Log

There are four variables in the configuration file, under the [somras] stanza, which you can
set to customize the operation of the error log.

Name of the Error Log File

The SOMETrrorLogFile variable controls the name of the error log file. The default setting of
SOMErrorLogFile is SOMERROR.LOG.

Size of the Error Log

The SOMErrorLogSize variable controls the maximum size of the error log file. The default
size is 128 which lets the error log file grow to 128 kilobytes before it begins to wrap. The
default size allows room for several hundred average log entries.

Type of Information To Record

The SOMErrorLogControl variable lets you filter the information to record in the Error Log.
The severity of errors logged, for example, INFO, WARNING, or ERROR can be
individually selected. You can use the MAPPED_EXCEPTION value to select whether to
record a message each time an object service maps an exception into a different exception.
This often occurs as an exception raised by an object service ripples back up through the
object system to the application.

The default setting of SOMErrorLogControl is WARNING ERROR MAPPED_EXCEPTION
which records errors with severities of WARNING and ERROR, as well as all mapped
exceptions. The default setting does not record errors with severity INFO. You may specify
any combination of the control values. To specify multiple values, as the default setting
does, separate each value by one or more blank spaces.

Display Error Messages

The SOMErrorLogDisplayMsgs variable controls whether to also display the error message
to the standard output device each time an Error Log entry is made. The displayed

Using SOM Classes in Client Programs 107

messages do not include any extended log data collected for service personnel. The default
setting of SOMErrorLogDisplayMsgs is YES. The default setting logs errors and displays
the optional messages. This setting is helpful while you are debugging new applications.

Using The Error Log

108

Much of the data in the Error Log is formatted. You can use a text editor to display the
contents of the error log file. The top lines of the file contain the name of the host system
that this error log file is from, the operating system, and the number of the last log entry
written in the file.

To find the last error log entry in the file look for the LASTENTRY: nnnn line in the
information at the top of the file. You can then use the search feature of your text editor to
locate this entry nnnn in the log file. Because the error log wraps around, this entry may be
anywhere in the file.

Understanding Error Log Entries

Each error log entry starts with a message area and may contain extended log data. The
message area contains the following free-form fields:

» The error log entry number enclosed in brackets. Error log entry numbers can range
from 0 to 9999. When the error log entry number reaches 9999 it wraps back to 0 and
starts over again.

e Adate and time stamp telling the system date and time when the error log entry was
made.

e PID: o0Xnnnnis the process identifier of the code that made the error log entry call.
e« TID: oxnnnn identifies the thread, within the process, that made the call.

e Request from clientX on hostY identifies the client name and host name where the
operation request originated. Normally this information is retrieved from the Principal
object that accompanies each DSOM request. If the Principal object is not available,
this portion of the message may say Request from unknown client on
unknown host. You can use this information to help debug servers where requests
are coming from different hosts and clients.

The second part of an error log entry is the optional extended log data. If included, this part
of the entry contains hexadecimal data followed by an ASCII translation of the data. Most of
this data is useful only to service personnel. However, some of the action lists in Appendix
A, Error Codes on page 397 may point out information in this data that will be useful to you.

A complete error log entry that contains both a message and extended log data may look
like the following.
{1234} Thur Oct 12 13:02:46 cst 1995 PID:0XFOA2 TID:0X000B
Raised SYSTEM EXCEPTION UNKNOWN with severity WARNING at
somutil.c:1254.
Request from clientX on hostY.
Error code is 20199 [SOMERROR BadArgument] .

e2 00 00 00 21 00 44 6f 67 43 6C cl 73 73 00 00 d2
[....!.DogClass...]

00 24 00 00 4d 79 46 61 63 74 6f 72 79 00 00 ff ff
[.$..MyFactory....]

Programmer’s Guide for SOM and DSOM

00 00 00 00 00 ed ed 00 00 ef fe 00 00 00 00 00 00

00 3e 00 00 40 00 00 2a 00 00 00 OO0 ff ff ff ff ed
[.>..@..%......... 1

If the extended log data is quite large, you may see continuation blocks that begin with
{+nnnn}, where nnnn is the same number used at the beginning of the log entry. The plus
symbol (+) indicates this is a coniuation block for the same long entry. A continuation block
for the above example would begin:

{+1234} Thur Cot 12 13?02:46 cst 1995 PID 0XFOA2 TID: 0X000B
It is possible for one log entry to have several continuation block.

The Standard Error Messages: The following list shows the four basic message types
that may be logged. The examples do not include the optional extended log data.

{1234} Thur Oct 12 13:02:46 cst 1995 PID:0X0512 TID:0X0837

Raised SYSTEM EXCEPTION UNKNOWN with severity WARNING at
somutil.c:1254.

Request from clientX on hostY.

Error code is 20199 [SOMERROR BadArgument] .

This type of message is logged by an object service when it raises a new exception (that is,
records an exceptional condition into the environment structure). This message includes an
error code. See Appendix A, Error Codes on page 397 to determine its meaning and
actions to take to correct the problem. This type of message also contains a level indicator.
See Level of Errors on page 110 for more information.

{4321} sat Oct 14 13:02:46 cst 1995 PID:0X9909 TID:0X0787

Mapped USER EXCEPTION WrongTransaction to SYSTEM EXCEPTION BAD PARAM

at somtr.c:231.
Request from clientX on hostY.

New Error code is 00001 [Exception Data Logged] .

This type of message indicates that an object service received an exception from a sub-
service method call and has mapped the original exception into a new exception. This
mapping is often required because services can raise only User Exceptions listed on their
interface descriptions or Standard CORBA Exceptions. You may follow the trail of mapped
exceptions to understand if the exception received by the application code has been re-
mapped from the object service exception that was originally raised. If re-mapping has
occurred, the action list for the original exception, that is, the one with message type (1)
above, may often contain more helpful information for resolving the problem.

{0089} Thur Oct 12 19:06:39 cst 1995 PID:0XFOA3 TID:0X001B
Process abnormally terminated at somutil.c:142.
Request from clientX on hostY.
This type of message indicates an error situation that prevented the object service from
operating reliably.
{1523} sat Oct 14 02:23:16 cst 1995 PID:0XF003 TID:0X0015
Service data collected with severity ERROR at somderr.c:523.
Request from clientX on hostY.

The action lists in Appendix A, Error Codes on page 397 might provide useful information.
This type of message might indicate that the object service logged data for use by service
personnel.

Using SOM Classes in Client Programs 109

Locating

Extended Error Messages: Each object service may also supply some unique extended
error messages. Object service extended error messages always begin with the text from
one of the four standard message types and then append service specific information to the
end of the message.

The object service extended message below illustrates an extension of message type 1.
{1425} Thur Oct 12 11:48:26 cst 1995 PID:0XF0A3 TID:0X001B
Raised SYSTEM EXCEPTION BAD PARAM with severity WARNING at

somp.c:1325.
Request from clientX on hostY.
Error code is 50123 [Bad Persistent ID].
Persistent ID received from client was CustomerPIDO00O05.
In this extended error message example Persistent Id received from client

was CustomerPID0005. is the object service unique extension that was added to a
standard message.

Level of Errors: Some error log entries contain an indication of the error level. The
following error levels are used.

» INFO indicates a problem which is usually handled within the SOMobjects code and
probably does not affect your application.

* WARNING indicates a problem that may cause your application to not function
properly. Warning messages cannot be ignored. You must resolve these errors for your
application to function properly.

 ERROR indicates a problem that most likely prevents your application from functioning
properly.

the Correct Log File

In order to use the Error Log effectively you must first determine which systems’ log file you
need to look at. If your application invokes methods on server processes running in remote
systems, you may have to examine the log files on the server systems to determine what
error occurred. It may be helpful to keep SOMErrorLogDisplayMsgs set to YES on each of
the server systems to display error messages while you are debugging your new
application. This lets you determine which system originally raised an exception. Once you
have identified the system which raised the exception, you can look up the error code in
Appendix A, Error Codes on page 397 and use the action list to help you resolve the
problem.

Memory Management

The SOMobjects Developer Toolkit provides several functions for memory management.

Using SOM Equivalents to ANSI C Functions

The memory management functions used by SOM are a subset of those supplied in the
ANSI C standard library. They have the same calling interface and the same return types
as their ANSI C equivalents, but include supplemental error checking. Errors detected by
these functions are passed to the SOMError Function. The correspondence between
SOM memory management functions and their ANSI C standard library equivalents is
shown below:

110 Programmer's Guide for SOM and DSOM

SOM Function Equivalent ANSI C Library Routine

SOMMalloc malloc
SOMCalloc calloc
SOMRealloc realloc
SOMFree free

SOMMalloc Function, SOMCalloc Function, SOMRealloc Function and SOMFree
Function are actually global variables that point to the SOM memory management
functions (rather than being the names of the functions themselves), so that users can
replace them with their own memory management functions if desired.

Clearing Memory for Objects

The memory associated with objects initialized by a client program must also be freed by
the client. The SOM-provided somFree Method is used to release the storage containing
the receiver object:

#include “origcls.h”

main ()
{
OrigCls myObject;
myObject = OrigClsNew () ;
/* Code to use myObject */

_somFree (myObject);

Clearing Memory for the Environment

Any memory associated with an exception in an Environment structure is typically freed
using the somExceptionFree Function. (Or, the CORBA exception_free API can be
used.) The somExceptionFree function takes the following form;

void somExceptionFree (Environment *ev);

For information on managing the memory, objects and exceptions used by DSOM
applications, see Memory-Management Functions on page 256.

SOM Manipulations Using somld

A somld is similar to a number that represents a zero-terminated string. A somld is used in
SOM to identify method names, class names and so forth. For example, many of the SOM
methods that take a method or class name as a parameter require a value of type somld
rather than string. All SOM manipulations using somlds are case insensitive, although the
original case of the string is preserved.

During its first use with any of the following functions, a somld is automatically converted to
an internal representation (registered). Because the representation of a somld changes, a
special SOM type (somld) is provided for this purpose. Names and the corresponding
somld can be declared at compile time, as follows:

string example = “exampleMethodName” ;

Using SOM Classes in Client Programs 111

112

somId exampleId = &example;
or a somld can be generated at run time, as follows:

somId myMethodId;

myMethodId = somIdFromString (“exampleMethodName”) ;
SOM provides the following functions that generate or use a somld:

somldFromString Function
Finds the somld that corresponds to a string. The method takes a string as its
argument, and returns a value of type somld that represents the string. The returned
somld must later be freed using the SOMFree Function.

somStringFromld Function
Obtains the string that corresponds to a somld. The function takes a somld as its
argument and returns the string that the somlId represents.

somComparelds Function
Determines whether two somld values are the same (that is, represent the same
string). This function takes two somld values as arguments. It returns TRUE (1) if the
two somld values represent the same string, or FALSE (0) otherwise.

somCheckld Function
Determines whether SOM already knows a somld. The function takes a somld as its
argument. It verifies whether the somld is registered and in normal form, registers it if
necessary, and returns the input somlid.

somRegisterld Function
The same as somCheckld, except it returns TRUE (1) if this is the first time the somId
has been registered, or FALSE (0) otherwise.

somUniqueKey Function
Finds the unique key for a somld. The function takes a somld identifier as its
argument, and returns the unique key for the somld — a number that uniquely
represents the string that the somld represents. This key is the same as the key for
another somld if and only if the other somld refers to the same string as the input
somld.

somTotalReglds Function
Finds the total number of somlds that have been registered, as an unsigned long. This
function is used to determine an appropriate argument to somSetExpectedlds, below,
in later executions of the program. The function takes no input arguments.

somSetException Function
Indicates how many unique somlds SOM can expect to use during program execution,
which, if accurate, can improve the space and time utilization of the program slightly.
This routine must be called before the SOM run-time environment is initialized (that is,
before the somEnvironmentNew Function is invoked and before any objects are
created). This is the only SOM function that can be invoked before the SOM run-time
environment is initialized. The input argument is an unsigned long. The function has no
return value.

somBeginPersistentlds Function
somEndPersistentlds Function
Delimit a time interval for the current thread during which it is guaranteed that:

« any new somld values that are created will refer only to static strings
» these strings will not be subsequently modified or freed.

These functions are useful because somlds that are registered within a persistent ID
interval can be handled more efficiently.

Programmer’s Guide for SOM and DSOM

See Programmer’s Reference for SOM and DSOM for more information on a specific
function.

Using SOM Classes in Client Programs 113

114 Programmer’s Guide for SOM and DSOM

Chapter 5. SOM Interface Definition Language

This chapter discusses how to define SOM classes. To allow a class of objects to be
implemented in one programming language and used in another (that is, to allow a SOM
class to be language neutral), the interface to objects of this class must be specified
separately from the objects’ implementation.

To summarize: As a first step, a file known as the .idl file is used to declare classes and
their methods, using SOM’s language-neutral Interface Definition Language (IDL). Next, the
SOM Compiler is run on the .idl file to produce a template implementation file that contains
stub method procedures for the new and overridden methods; this preliminary code
corresponds to the computer language that will implement the class. Then, the class
implementor fills in the stub procedures with code that implements the methods (or
redefines overridden methods) and sets instance data. (This implementation process is in
Chapter 7, Implementing Classes in SOM on page 171.) At this point, the implementation
file can be compiled and linked with a client program that uses it (as described in Chapter
4, Using SOM Classes in Client Programs on page 69).

Syntax for SOM IDL is presented in this chapter, along with helpful information for using
them correctly.

Interface versus Implementation

The interface to a class of objects contains the information that a client must know to use
an object: namely, the names of its attributes and the signatures of its methods. The
interface is described in a formal language independent of the programming language used
to implement the object’'s methods. In SOM, the formal language used to define object
interfaces is the Interface Definition Language (IDL), standardized by CORBA.

The implementation of a class of objects (that is, the procedures that implement methods
and the variables used to store an object’s state) is written in the implementor’s preferred
programming language. This language can be object-oriented (for instance, C++) or
procedural (for instance, C).

A completely implemented class definition, then, consists of two main files:

* An IDL specification of the interface to instances of the class: the interface definition file
(or .idl file)

* Method procedures written in the implementor’s language of choice: the
implementation file.

The interface definition file has a .idl extension, as noted. The implementation file,
however, has an extension specific to the language in which it is written. For example,
implementations written in C have a .c extension, and implementations written in C++ have
a .C (for AIX) or .cpp (for OS/2 or Windows NT) extension.

To assist users in implementing SOM classes, the SOMobjects Toolkit provides a SOM
Compiler. The SOM Compiler takes as input an object interface definition file (the .idl file)
and produces a set of binding files that make it convenient to implement and use a SOM
class whose instances are objects that support the defined interface. The binding files and
their purposes are as follows:

» Animplementation template that serves as a guide for how the implementation file for
the class should look. The class implementor fills in this template file with language-
specific code to implement the methods that are available on the class instances.

SOM Interface Definition Language 115

» Header files to be included:
- inthe class’s implementation file
- in client programs that use the class

These binding files produced by the SOM Compiler bridge the gap between SOM and the
object model used in object-oriented languages (such as C++), and they allow SOM to be
used with non-object-oriented languages (such as C). The SOM Compiler currently
produces binding files for the C and C++ programming languages. SOM can also be used
with other programming languages; the bindings simply offer a more convenient
programmer’s interface to SOM. Vendors of other languages may offer SOM bindings;
check with your language vendor for possible SOM support.

The subsequent sections of this chapter provide full syntax for SOM IDL and the SOM
Compiler.

SOM Interface Definition Language

116

This section describes the syntax of SOM’s Interface Definition Language (SOM IDL). SOM
IDL complies with CORBA'’s standard for IDL; it also adds constructs specific to SOM. (For
more information on the CORBA standard for IDL, see The Common Object Request
Broker: Architecture and Specification, published by Object Management Group and x/
Open.) The full grammar for SOM IDL is given in SOM IDL Language Grammar on page
421. Instructions for converting existing OIDL-syntax files to IDL are given in Converting
OIDL Files to IDL on page 417. The current section describes the syntax and semantics of
SOM IDL using the following conventions:

Literals (such as keywords) appear in bold.

User-supplied elements appear in italics.

{} Groups related items together as a single item.

[1 Encloses an optional item.

* |ndicates zero or more repetitions of the preceding item.

+ Indicates one or more repetitions of the preceding item.

| Separates alternatives.

__ Within a set of alternatives, an underscore indicates the default, if defined.

IDL is a formal language used to describe object interfaces. Because, in SOM, objects are
implemented as instances of classes, an IDL object interface definition specifies for a class
of objects what methods (operations) are available, their return types, and their parameter
types. For this reason, we often speak of an IDL specification for a class (as opposed to
simply an object interface). Constructs specific to SOM discussed below further strengthen
this connection between SOM classes, and the IDL language.

IDL generally follows the same lexical rules as C and C++, with some exceptions. In
particular:

» IDL uses the ISO Latin-1 (8859.1) character set (as per the CORBA standard).
* White space is ignored except as token delimiters.
* C and C++ comment styles are supported.

» |IDL supports standard C/C++ preprocessing, including macro substitution, conditional
compilation, and source file inclusion.

Programmer’s Guide for SOM and DSOM

Identifiers (user-defined names for methods, attributes, instance variables, and so on)
are composed of alphanumeric and underscore characters (with the first character
alphabetic) and can be of arbitrary length, up to an operating-system limit of about 250

characters.

Identifiers must be spelled consistently with respect to case throughout a specification.

Identifiers that differ only in case yield a compilation error.

There is a single name space for identifiers (thus, using the same identifier for a
constant and a class name within the same naming scope, for example, yields a

compilation error).

Integer, floating point, character, and string literals are defined as in C and C++.

The terms listed in Table 1 on the following page are reserved keywords and may not be
used otherwise. Keywords must be spelled using upper- and lower-case characters exactly
as shown in the table. For example, “void” is correct, but “Void” yields a compilation error.

any
attribute
boolean
case
char
class
const

context

FALSE

float
implementation
in

inout

interface

long

module

octet

readonly
sequence
short
string
struct
switch
TRUE
TypeCode

Table 1. Keywords for SOM IDL

A typical IDL specification for a single class, residing in a single .idl file, has the following
form. (See Defining Multiple Interfaces in a .idl File on page 150.) The order is
unimportant, except that names must be declared (or forward referenced) before they are
referenced. The subsequent topics of this section describe the requirements for these
specifications:

Include Directives (optional)

Type and Constant Declarations (optional)

Exception Declarations (optional)

Interface Declarations (optional)

Module declaration (optional)

Include Directives

The IDL specification for a class normally contains #include statements that tell the SOM
Compiler where to find the interface definitions (the .idl files) for:

SOM Interface Definition Language 117

» Each of the class’s parent (direct base) classes, and
e The class’s metaclass (if specified).

The #include statements must appear in the above order. For example, if class “C” has
parents foo and bar and metaclass meta, then file C.idl must begin with the following
#include statements:

#include <foo.idl>
#include <bar.idls>
#include <meta.idl>

As in C and C++, if a filename is enclosed in angle brackets (< >), the search for the file will
begin in system-specific locations. If the flename appears in double quotation marks (),
the search for the file will begin in the current working directory, then move to the system-
specific locations.

Type and Constant Declarations

118

IDL specifications may include type declarations and constant declarations as in C and C++,
with the restrictions/extensions described below. IDL supports the following basic types
(these basic types are also defined for C and C++ client and implementation programs,
using the SOM bindings):

Integral Types

IDL supports only the integral types short, long, unsigned short, and unsigned long,
which represent the following value ranges:

short -215 .. 2151
long -281 .. 2311
unsigned short 0 .. 216-1
unsigned long 0 .. 232-1

Floating Point Types

IDL supports the float and double floating-point types. The float type represents the IEEE
single-precision floating-point numbers; double represents the IEEE double-precision
floating-point numbers.

Character Type

IDL supports a char type, which represents an 8-bit quantity. The ISO Latin-1 (8859.1)
character set defines the meaning and representation of graphic characters. The meaning
and representation of null and formatting characters is the numerical value of the character
as defined in the ASCII (ISO 646) standard. Unlike C/C++, type char cannot be qualified as
signed or unsigned. (The octet type, below, can be used in place of unsigned char.)

Boolean Type
IDL supports a boolean type for data items that can take only the values TRUE and FALSE.

Programmer’s Guide for SOM and DSOM

Octet Type

IDL supports an octet type, an 8-bit quantity guaranteed not to undergo conversion when
transmitted by the communication system. The octet type can be used in place of the
unsigned char type.

Any Type

IDL supports an any type, which permits the specification of values of any IDL type. In the
SOM C and C++ bindings, the any type is mapped onto the following struct:

typedef struct any ({
TypeCode type;
void * value;
} any;
The _value member for an any type is a pointer to the actual value. The _type member is a
pointer to an instance of a TypeCode that represents the type of the value. The TypeCode
provides functions for obtaining information about an IDL type. Chapter 9, The Interface

Repository Framework on page 337 describes TypeCodes and their associated functions.
For extensive examples, see Using the IDL Basic Type any on page 351.

Constructed Types

In addition to the above basic types, IDL also supports three constructed types: struct,
union, and enum. The structure and enumeration types are specified in IDL just as they
are in C and C++, with the following restrictions:

Unlike C/C++, recursive type specifications are allowed only through the use of the
sequence template type (see below).

Unlike C/C++, structures, discriminated unions, and enumerations in IDL must be
tagged. For example, struct { int a; ... }isaninvalid type specification. The
tag introduces a new type name.

In IDL, constructed type definitions need not be part of a typedef statement;
furthermore, if they are part of a typedef statement, the tag of the struct must differ from
the type name being defined by the typedef. For example, the following are valid IDL
struct and enum definitions:

struct myStruct {

long x;

double y;
}i /* defines type name myStruct */
enum colors { red, white, blue }; /* defines type name colors */

By contrast, the following IDL definitions are not valid:

typedef struct myStruct { /* NOT VALID =/
long x; /* Tag myStruct is the same */
double y; /* as the type name below; */

} myStruct; /* myStruct has been redefined */

typedef enum colors { red, white, blue } colors; /* NOT VALID */

SOM Interface Definition Language 119

120

The valid IDL struct and enum definitions shown above are translated by the SOM
Compiler into the following definitions in the C and C++ bindings, assuming they were
declared within the scope of interface Hello:

typedef struct Hello myStruct { /* C/C++ bindings for
IDL struct */
long x;
double y;
} Hello myStruct;

typedef unsigned long Hello colors; /* C/C++ bindings for
IDL enum */

#define Hello red 1UL

#define Hello white 2UL

#define Hello blue 3UL

When an enumeration is defined within an interface statement for a class, then within C/

C++ programs, the enumeration names must be referenced by prefixing the class name.

For example, if the colors enum, above, were defined within the interface statement for
class Hello, then the enumeration names would be referenced as Hello_ red,

Hello white and Hello_blue. Notice the first identifier in an enumeration is assigned
the value 1.

All types and constants generated by the SOM Compiler are fully qualified. That is,
prepended to them is the fully qualified name of the interface or module in which they
appear. For example, consider the following fragment of IDL:

module M {
typedef long long t;
module N {
typedef long long t;
interface I : SOMObject({
typedef long long t;
Vi
Vi
}i
That specification would generate the following three types:
typedef long M long t;
typedef long M N long t;
typedef long M N I long t;

For programmer convenience, the SOM Compiler also generates shorter bindings, without
the interface qualification. Consider the next IDL fragment:

module M {
typedef long long t;
module N
typedef short short t;
interface I : SOMObject{

typedef char char_t;

Programmer’s Guide for SOM and DSOM

i
}i
i
In the C/C++ bindings of the preceding fragment, you can refer to:
M long_taslong t
M N short t as short_t
M N I char taschar t

However, these shorter forms are available only when their interpretation is not ambiguous.
Thus, in the first example the shorthand forM N I long_ t would not be allowed, since it
clashes withM _long t andM N long t. If these shorter forms are not required, they can
be ignored by setting #define SOM DONT USE SHORT NAMES before including the
public header files, or by using the SOM Compiler option -mnouseshort so that they are
not generated in the header files.

In the SOM documentation and samples, both long and short forms are illustrated, for both
type names and method calls. It is the responsibility of each user to adopt a style according
to personal preference. It should be noted, however, that CORBA specifies that only the
long forms must be present.

Union Type: IDL also supports a union type, which is a cross between the C union and
switch statements. The syntax of a union type declaration is as follows:

union identifier switch (switch-type) { case+ }

The identifier following the union keyword defines a new legal type. (Union types may also
be named using a typedef declaration.) The switch-type specifies an integral, character,
boolean, or enumeration type, or the name of a previously defined integral, boolean,
character or enumeration type. Each case of the union is specified with the following syntax:

case-label+ type-spec declarator ;

where type-spec is any valid type specification; declarator is an identifier, an array
declarator (such as, foo [3] [5]), or a pointer declarator (such as, *foo); and each
case-label has one of the following forms:

case const-expr:
default:

The const-expr is a constant expression that must match or be automatically castable to the
switch-type. A default case can appear no more than once.

Unions are mapped onto C/C++ structs. For example, the following IDL declaration:
union Foo switch (long) {
case 1: long Xx; /* Integer ’'1l’ can be converted */
case 2: float y; /* to the switch type long */
default: char z;
Vi
is mapped onto the following C struct:
typedef struct Hello Foo ({
long d;
union
long x;

float y;

SOM Interface Definition Language 121

char z;
yo_ui
} Hello Foo;

The discriminator is referred to as _d, and the union in the struct is referred to as _u.
Hence, elements of the union are referenced just as in C:

Hello Foo *v;

/* get a pointer to Foo in v: */

switch(v->_d) {
case 1: printf (“x = %$1d\n”, v-> u.x); break; /* long */
case 2: printf(”y = %$f\n”, v-> u.y); break; /* float */
default: printf(”z = %c\n”, v-> u.z); break; /* char */

}

Note: This example is from Common Object Request Broker: Architecture and
Specification.

Template Types (Sequences and Strings)

IDL defines two template types not found in C and C++: sequences and strings. A
sequence is a one-dimensional array with two characteristics: a maximum size (specified at
compile time) and a length (determined at run time). Sequences permit passing unbounded
arrays between objects. Sequences are specified as follows:

sequence < simple-type [, positive-integer-const] >

where “simple-type” specifies any valid IDL type, and the optional “positive-integer-const” is
a constant expression that specifies the maximum size of the sequence (as a positive
integer).

Note: The simple-type cannot have a ‘*’ directly in the sequence statement. Instead, a
typedef for the pointer type must be used. For example, instead of:
typedef sequence<long *> seq longptr;
// Error: ’'*’ not allowed.
use:
typedef long * longptr;
typedef sequence<longptr> seq longptr; // Ok.

In SOM’s C and C++ bindings, sequences are mapped onto structs with the following
members:

unsigned long _maximum;
unsigned long _length;
simple-type *_buffer;
where simple-type is the specified type of the sequence. For example, the IDL declaration
typedef sequence<long, 10> veclO;
results in the following C struct:
#ifndef IDL SEQUENCE long defined
#define IDL SEQUENCE long defined
typedef struct ({

unsigned long _maximum;

122 Programmer’s Guide for SOM and DSOM

unsigned long _length;
long * buffer;
} _IDL SEQUENCE long;
#endif /* _IDL_SEQUENCE_long defined */
typedef IDL SEQUENCE long veclO;
and an instance of this type is declared as follows:
vecl0 v = {10L, 0L, (long *)NULL};

The _maximum member designates the actual number of elements allocated for the
sequence, and the _length member designates the number of values contained in the
_buffer member. For bounded sequences, it is an error to set the _length or _maximum
member to a value larger than the specified bound of the sequence.

Before a sequence is passed as the value of an in or inout method parameter, the buffer
member must point to an array of elements of the appropriate type, and the _length
member must contain the number of elements to be passed. (If the parameter is inout and
the sequence is unbounded, the _maximum member must also be set to the actual size of
the array. Upon return, _length will contain the number of values copied into _buffer, which
must be less than _maximum.) When a sequence is passed as an out method parameter
or received as the return value, the method procedure allocates storage for _buffer as
needed, the _length member contains the number of elements returned, and the
__maximum member contains the number of elements allocated. (The client is responsible
for subsequently freeing the memory pointed to by _buffer.)

C and C++ programs using SOM'’s language bindings can refer to sequence types as:
_IDL_SEQUENCE_type

where type is the effective type of the sequence members. For example, the IDL type
sequence<long, 10> is referred to in a C/C++ program by the type name

_IDL SEQUENCE long. If longint is defined via a typedef to be type long, then the IDL
type sequence<longint, 10> is also referred to by the type name

_IDL SEQUENCE long.

If the typedef is for a pointer type, then the effective type is the name of the pointer type.
For example, the following statements define a C/C++ type IDL SEQUENCE longptr
and not IDL SEQUENCE long:

typedef long * longptr;
typedef sequence<longptr> seq longptr;

A string is similar to a sequence of type char. It can contain all possible 8-bit quantities
except NULL. Strings are specified as follows:

string [< positive-integer-const > |

where the optional “positive-integer-const” is a constant expression that specifies

the maximum size of the string (as a positive integer, which does not include the extra byte
to hold a NULL as required in C/C++). In SOM’s C and C++ bindings, strings are mapped
onto null-terminated character arrays. The length of the string is encoded by the position of
the null (zero-byte). For example, the following IDL declaration:

typedef string<l0> foo;

is converted to the following C/C++ typedef:
typedef char *foo;

A variable of this type is then declared as follows:

foo s = (char *) NULL;

SOM Interface Definition Language 123

124

C and C++ programs using SOM’s language bindings can refer to string types by the type
name string.

Arrays
Multidimensional, fixed-size arrays can be declared in IDL as follows:
identifier { [positive-integer-const] }+

where the “positive-integer-const” is a constant expression that specifies the array size, in
each dimension, as a positive integer. The array size is fixed at compile time.

Pointers

Although the CORBA standard for IDL does not include them, SOM IDL offers pointer
types. Declarators of a pointer type are specified as in C and C++:

type *declarator

where type is a valid IDL type specification and declarator is an identifier or an array
declarator.

Object Types

The name of the interface to a class of objects can be used as a type. For example, if an
IDL specification includes an interface declaration (described below) for a class (of objects)
C1, then C1 can be used as a type name within that IDL specification. When used as a
type, an interface name indicates a pointer to an object that supports that interface. An
interface name can be used as the type of a method argument, as a method return type, or
as the type of a member of a constructed type (a struct, union, or enum). In all cases, the
use of an interface name implicitly indicates a pointer to an object that supports that
interface.

SOM’s C usage bindings for SOM classes also follow this convention. However, within
SOM'’s C++ bindings, the pointer is made explicit, and the use of an interface name as a
type refers to a class instance itself, rather than a pointer to a class instance. (For more
explanation, see Declaring Object Variables on page 71.) For example, to declare a
variable myobj that is a pointer to an instance of class Foo in an IDL specification and in a
C program, the following declaration is required:

Foo myobj;
However, in a C++ program, the following declaration is required:
Foo *myobj;

If a C programmer uses the SOM Compiler option -maddstar, then the bindings generated
for C will also require an explicit ‘*’ in declarations. Thus,

Foo myobj ;in IDL requires

Foo *myobj; inboth C and C++ programs.
This style of bindings for C is permitted for two reasons:

» It more closely resembles the bindings for C++, thus making it easier to change to the
C++ bindings at a later date; and

* ltis required for compatibility with existing SOM OIDL code.

Note: The same C and C++ binding emitters should not be run in the same SOM
Compiler command. For example,

Programmer’s Guide for SOM and DSOM

sc ”"-gh;xh” cls.idl // Not wvalid.

If you wish to generate both C and C++ bindings, you should issue the commands
separately:

sc -sh cls.idl

sc -sxh cls.idl

Exception Declarations

IDL specifications may include exception declarations, which define data structures to be
returned when an exception occurs during the execution of a method. (IDL exceptions are
implemented by simply passing back error information after a method call, as opposed to
the “catch/throw” model where an exception is implemented by a long jump or signal.)
Associated with each type of exception is a name and, optionally, a struct-like data
structure for holding error information. Exceptions are declared as follows:

exception identifier { member* };
The identifier is the name of the exception, and each member has the following form:
type-spec declarators ;

where type-spec is a valid IDL type specification and declarators is a list of identifiers, array
declarators, or pointer declarators, delimited by commas. The members of an exception
structure should contain information to help the caller understand the nature of the error.
The exception declaration can be treated like a struct definition; that is, whatever you can
access in an IDL struct, you can access in an exception declaration. Alternatively, the
structure can be empty, whereby the exception is just identified by its name.

If an exception is returned as the outcome of a method, the exception identifier indicates
which exception occurred. The values of the members of the exception provide additional
information specific to the exception.Method Declarations on page 130 describes how to
indicate that a particular method may raise a particular exception, and Exceptions and
Error Handling on page 100 describes how exceptions are handled.

Following is an example declaration of a BAD FLAG exception:

exception BAD FLAG { long ErrCode; char Reason[80]; };

The SOM Compiler will map the above exception declaration to the following C language
constructs:

#define ex BAD FLAG “::BAD FLAG”
typedef struct BAD FLAG ({
long ErrCode;
char Reason[80];
} BAD FLAG;
Thus, the ex BAD FLAG symbol can be used as a shorthand for naming the exception.
An exception declaration within an interface Hello, such as this:
interface Hello {
exception LOCAL EXCEPTION { long ErrCode; };
Vi
would map onto:
#define ex Hello LOCAL EXCEPTION ”::Hello::LOCAL_EXCEPTION”
typedef struct Hello LOCAL EXCEPTION {

SOM Interface Definition Language 125

126

long ErrCode;
} Hello LOCAL_EXCEPTION;
#define ex LOCAL_EXCEPTION ex Hello LOCAL_ EXCEPTION

In addition to user-defined exceptions, there are several predefined exceptions for system
run-time errors. The standard exceptions as prescribed by CORBA are in Standard
Exceptions Prescribed by OMG on page 126. The exceptions correspond to standard run-
time errors that may occur during the execution of any method (regardless of the list of
exceptions listed in its IDL specification).

Each of the standard exceptions has the same structure: an error code (to designate the
subcategory of the exception) and a completion status code. For example, the NO_MEMORY
standard exception has the following definition:

enum completion status {YES, NO, MAYBE};
exception NO_MEMORY { unsigned long minor;
completion status completed; };

The “completion_status” value indicates whether the method was never initiated (NO),
completed its execution prior to the exception (YES), or the completion status is
indeterminate (MAYBE).

Since all the standard exceptions have the same structure, somcorba.h (included by
som.h) defines a generic StExcep typedef which can be used instead of the specific
typedefs:

typedef struct StExcep {
unsigned long minor;
completion status completed;
} StExcep;

The standard exceptions in Standard Exceptions Prescribed by OMG on page 126 are
defined in an IDL module called StExcep, in the file called stexcep.idl, and the C
definitions can be found in stexcep.h.

Standard Exceptions Prescribed by OMG

OMG publishes many standards, of which CORBA is only one. In version 3.0, we have
implemented the Transaction Service from OMG. Therefore, CORBA and Transaction
Service exceptions are proper subsets of OMG.

module StExcep {

#define ex body { unsigned long minor; completion status completed;

}

enum completion status { YES, NO, MAYBE };

enum exception type {NO EXCEPTION, USER EXCEPTION,
SYSTEM EXCEPTION} ;

//CORBA-defined standard exceptions

exception UNKNOWN ex body; // the unknown exception

exception BAD PARAM ex body; // an invalid parameter was passed
exception NO MEMORY ex body; // dynamic memory allocation failure

exception IMP_LIMIT ex body; // violated implementation limit

Programmer’s Guide for SOM and DSOM

exception
exception
exception
exception
exception
exception
exception
exception
exception

exception
request

exception
exception
exception
exception
exception

exception

COMM_FAILURE ex body; // communication failure
INV_OBJREF ex body; // invalid object reference
NO PERMISSION ex body;// no permission for attempted op.
INTERNAL ex body; // ORB internal error
MARSHAL ex body; // error marshalling param/result
// ORB initialization failure

// op.
BAD TYPECODE ex body; // bad typecode

INITIALIZE ex body;
NO_IMPLEMENT ex body; implementation unavailable
BAD OPERATION ex body; // invalid operation

NO_RESOURCES ex_body; // insufficient resources for

NO_RESPONSE ex_body; // response to req. not yet available
PERSIST STORE ex body; // persistent storage failure

BAD INV_ORDER ex_body; // routine invocations out of order
TRANSIENT ex body; // transient failure - reissue request
FREE_MEM ex body; // cannot free memory

INV_IDENT ex body; // invalid identifier syntax

exception INV_FLAG ex body; // invalid flag was specified

exception INTF_REPOS ex body; // error accessing interface
repository

exception CONTEXT ex body; // error processing context object
exception OBJ_ADAPTER ex body; // failure detected by object adapter

exception DATA CONVERSION ex body; // data conversion error

//Transction Service standard exceptions
exception TransactionRequired ex body;

//operation requires transaction
exception TransactionRolledBack ex body;

//current transaction has rolled
back

exception InvalidTransaction ex body;

//transaction invalid or invalid
state

exception WrongTransaction ex body;

//reply received for wrong
transaction

bi

Interface Declarations

The IDL specification for a class of objects must contain a declaration of the interface these
objects will support. Because, in SOM, objects are implemented using classes, the
interface name is always used as a class name as well. Therefore, an interface declaration
can be understood to specify a class name, and its parent (direct base) class names. This
is the approach used in the following description of an interface declaration. In addition to
the class name and its parents names, an interface indicates new methods (operations),

SOM Interface Definition Language 127

and any constants, type definitions, and exception structures that the interface exports. An
interface declaration has the following syntax:

interface <class-name [: parent-classl, parent-class2, ...]

{

constant declarations (optional)
type declarations (optional)
exception declarations (optional)
attribute declarations (optional)
method declarations (optional)

implementation statement (optional)

}:
Many class implementors distinguish a class-name by using an initial capital letter, but that
is optional. The parent-class (or base-class) names specify the interfaces from which the
interface of class-name instances is derived. Parent-class names are required only for the
immediate parent(s). Each parent class must have its own IDL specification (which must be
#included in the subclass’s .idl file). A parent class cannot be named more than once in the
interface statement header.

Note: In general, an interface <className> header must precede any subsequent
implementation that references <className>. For a discussion of multiple interface
statements, see Defining Multiple Interfaces in a .idl File on page 150.

The following topics describe the various declarations/statements that can be specified
within the body of an interface declaration. The order in which these declarations are
specified is usually optional, and declarations of different kinds can be intermixed. Although
all of the declarations/statements are listed above as optional, in some cases using one of
them may mandate another. For example, if a method raises an exception, the exception
structure must be defined beforehand. In general, types, constants, and exceptions, as
well as interface declarations, must be defined before they are referenced, as in C/C++.

Constant, Type and Exception Declarations

128

The form of a constant, type, or exception declaration within the body of an interface
declaration is the same as described previously in this chapter. Constants and types
defined within an interface for a class are transferred by the SOM Compiler to the binding
files it generates for that class, whereas constants and types defined outside of an interface
are not.

Global types (such as, those defined outside of an interface and module) can be emitted by
surrounding them with the following #pragmas:
#pragma somemittypes on
typedef sequence <long,10> veclO;
exception BAD FLAG { long ErrCode; char Reason[80]; };
typedef long long t;
#pragma somemittypes off

Types, constants, and exceptions defined in a parent class are also accessible to the child
class. References to them, however, must be unambiguous. Potential ambiguities can be
resolved by prefacing a name with the name of the class that defines it, separated by the
characters “::" as illustrated below:

MyParentClass: :myType

Programmer’s Guide for SOM and DSOM

Attribute

The child class can redefine any of the type, constant, and exception names that have
been inherited, although this is not advised. The derived class cannot, however, redefine
attributes or methods. It can only replace the implementation of methods through overriding
(as in example 3 of the Tutorial). To refer to a constant, type, or exception “name” defined
by a parent class and redefined by “class-name,” use the “parent-name::name” syntax as
before.

Note: A name reference such as MyParentClass: :myType required in IDL syntax is
equivalent to MyParentClass myType in C/C++. For a discussion of name
recognition in SOM, see Scoping and Name Resolution on page 151.

Declarations

Declaring an attribute as part of an interface is equivalent to declaring two accessor
methods: one to retrieve the value of the attribute (a get method, _get_attributeName) and
one to set the value of the attribute (a set method, _set_attributeName).

Attributes are declared as follows:
[readonly] attribute type-spec declarators ;

where type-spec specifies any valid IDL type and declarators is a list of identifiers or pointer
declarators, delimited by commas. (An array declarator cannot be used directly when
declaring an attribute, but the type of an attribute can be a user-defined type that is an
array.) The optional readonly keyword specifies that the value of the attribute can be
accessed but not modified by client programs. (In other words, a readonly attribute has no
set method.) Below are examples of attribute declarations, which are specified within the
body of an interface statement for a class:

interface Goodbye: Hello, SOMObject

{

void sayBye() ;

attribute short xpos;
attribute char cl, c2;
readonly attribute float xyz;
}i
The preceding attribute declarations are equivalent to defining the following methods:
short get xpos();
void _set xpos(in short xpos) ;
char _get cl();
void set cl(in char cl);
char _get c2();
void set c2(in char c2);
float get xyz();

Note: Although the preceding attribute declarations are equivalent to the explicit method
declarations above, these method declarations are not legal IDL, because the
method names begin with an ‘_". All IDL identifiers must begin with an alphabetic
character, not including *_".

Attributes are inherited from ancestor classes (indirect base classes). An inherited attribute
name cannot be redefined to be a different type.

SOM Interface Definition Language 129

Method Declarations

130

Method (operation) declarations define the interface of each method introduced by the
class. A method declaration is similar to a C/C++ function definition:

[oneway] type-spec identifier (parameter-list) [raises-expr] [context-expr] ;

where identifier is the name of the method and type-spec is any valid IDL type (or the
keyword void, indicating that the method returns no value). Unlike C and C++ procedures,
methods that do not return a result must specify void as their return type. The remaining
syntax of a method declaration is elaborated in the following subtopics.

Note: Although IDL does not allow methods to receive and return values whose type is a
pointer to a function, it does allow methods to receive and return method names
(as string values). Thus, rather than defining methods that pass pointers to
functions (and that subsequently invoke those functions), programmers should
instead define methods that pass method names (and subsequently invoke those
methods using one of the SOM-supplied method-dispatching or method-resolution
methods or functions, such as somDispatch).

Oneway Keyword

The optional oneway keyword specifies that when a client invokes the method, the
invocation semantics are best-effort, which does not guarantee delivery of the call. Best-
effort implies that the method will be invoked at most once. A oneway method should not
have any output parameters and should have a return type of void. A oneway method also
should not include a raises expression (see below), although it may raise a standard
exception.

If the oneway keyword is not specified, then the method has at-most-once invocation
semantics if an exception is raised, and it has exactly-once semantics if the method
succeeds. This means that a method that raises an exception has been executed zero or
one times, and a method that succeeds has been executed exactly once.

Note: Currently the “oneway” keyword, although accepted, has no effect on the C/C++
bindings that are generated.

Parameter List

The parameter-list contains zero or more parameter declarations for the method, delimited
by commas. (The target object for the method is not explicitly specified as a method
parameter in IDL, nor are the Environment or Context parameters.) If there are no explicit
parameters, the syntax “()” must be used, rather than “(void)”. A parameter declaration has
the following syntax:

{in|out|inout} type-spec declarator
where type-spec is any valid IDL type and declarator is an identifier, array declarator or
pointer declarator.

in, out, inout Parameters: The required in|out|inout directional attribute indicates
whether the parameter is to be passed from client to server (in), from server to client (out),
or in both directions (inout). The following are examples of valid method declarations in
SOM IDL:

short methl (in char ¢, out float f);

oneway void meth2 (in char c);

float meth3 () ;

Programmer’s Guide for SOM and DSOM

A method should not modify an in parameter. This is important, because any changes may
be visible to clients and are unexpected, given the in designation. If a change must be
made, the parameter should first be copied and only the copy modified. The

pass_by copy_parameters modifier can be used for this, so that SOMobjects will make a
copy automatically. See Passing Parameters by Copying on page 146.

If a method raises an exception, the values of the return result and the values of the out
and inout parameters (if any) are undefined.

Classes derived from SOMObject can declare methods that take a pointer to a block of
memory containing a variable number of arguments, using a final parameter of type va_list.
(See Using va_list Methods on page 80.) The va_list must use the parameter name ap,
as in the following example:

void MyMethod (in short numArgs, in va list ap);

For in parameters of type array, C and C++ clients must pass the address of the first
element of the array. For in parameters of type struct, union, sequence or any, C/C++
clients must pass the address of a variable of that type, rather than the variable itself.

For all IDL types except arrays, if a parameter of a method is out or inout, then C/C++
clients must pass the address of a variable of that type (or the value of a pointer to that
variable) rather than the variable itself. (For example, to invoke method “meth1” above, a
pointer to a variable of type float must be passed in place of parameter “".) For arrays, C/
C++ clients must pass the address of the first element of the array.

If the return type of a method is a struct, union, sequence, or any type, then for C/C++
clients, the method returns the value of the C/C++ struct representing the IDL struct, union,
sequence, or any. If the return type is string, then the method returns a pointer to the first
character of the string. If the return type is array, then the method returns a pointer to the
first element of the array.

The pointers implicit in the parameter types and return types for IDL method declarations
are made explicit in SOM’s C and C++ bindings. Thus, the stub procedure that the SOM
Compiler generates for method “meth1”, above, has the following signature:

SOM_Scope short SOMLINK methl (char c, float *f)

For C and C++ clients, if a method has an out parameter of type string, sequence, or any,
then the method must allocate the storage for the string, for the _buffer member of the
struct that represents the sequence, or for the _value member of the struct that represents
the any. It is then the responsibility of the client program to free the storage when it is no
longer needed. Similarly, if the return type of a method is string, sequence, any, or array,
then storage must be allocated by the method, and the client program is responsible for
subsequently freeing it.

Note: The foregoing description also applies for the _get_attributeName method
associated with an attribute of type string, sequence, any or array. Hence, the
attribute should be specified with a noget modifier to override automatic
implementation of the attribute’s get method. Then, needed memory can be
allocated by the developer’'s get method implementation and subsequently
deallocated by the caller. (The noget modifier is described under Modifier
Statements on page 133.)

Raises Expression

The optional raises expression (raises-expr) in a method declaration indicates which
exceptions the method may raise. (IDL exceptions are implemented by simply passing back
error information after a method call, as opposed to the catch/throw model where an

SOM Interface Definition Language 131

exception is implemented by a long jump or signal.) A raises expression is specified as
follows:

raises (identifierl, identifier2, ...)

where each identifier is the name of a previously defined exception. In addition to the
exceptions listed in the raises expression, a method may also signal any of the standard
exceptions. Standard exceptions, however, should not appear in a raises expression. If no
raises expression is given, then a method can raise only the standard exceptions. (See
Exception Declarations on page 125 for information on defining exceptions and for the list
of standard exceptions. See Exceptions and Error Handling on page 100 for information
on using exceptions.)

Context Expression

The optional context expression (context-expr) in a method declaration indicates which
elements of the client’'s context the method may consult. A context expression is specified
as follows:

context (identifierl, identifier2, ...)

where each identifier is a string literal made up of alphanumeric characters, periods,
underscores and asterisks. (The first character must be alphabetic, and an asterisk can
only appear as the last character, where it serves as a wildcard matching any characters. If
convenient, identifiers may consist of period-separated valid identifier names, but that form
is optional.)

The Context is a special object that is specified by the CORBA standard. It contains a
property list: a set of property-name/string-value pairs that the client can use to store
information about its environment that methods may find useful. It is used in much the
same way as environment variables. It is passed as an additional (third) parameter to
CORBA-compliant methods that are defined as context-sensitive in IDL, along with the
CORBA-defined Environment structure.

The context expression of a method declaration in IDL specifies which property names
the method uses. If these properties are present in the Context object supplied by the
client, they will be passed to the object implementation, which can access them via the
get_values Method of the Context object. However, the argument that is passed to the
method having a context expression is a Context object, not the names of the properties.
The client program must either create a Context object and use the set_values Method or
set_one_value Method of the Context class to set the context properties, or use the
get_default_context Method. The client program then passes the Context object in the
method invocation. The CORBA standard allows properties in addition to those in the
context expression to be passed in the Context object.

Invoking Methods on Objects on page 76 describes the placement of a context
parameter in a method call.

Implementation Statements

132

A SOM IDL interface statement for a class may contain an implementation statement,
which specifies information about how the class will be implemented (version numbers for
the class, overriding of inherited methods, what resolution mechanisms the bindings for a
particular method will support, and so forth). If the implementation statement is omitted,
default information is assumed.

Programmer’s Guide for SOM and DSOM

Because the implementation statement is specific to SOM IDL, the implementation
statement should be preceded by an #ifdef _ SOMIDL___ directive and followed by an
#endif directive. (See Example 3. Overriding an Inherited Method on page 60.)

The syntax for the implementation statement is as follows:
#ifdef _ SOMIDL
implementation
implementation*
#endif

where each implementation can be a modifier statement, a passthru statement or a
declaring instance, terminated by a semicolon. These constructs are described below. An
interface statement may not contain multiple implementation statements.

Modifier Statements

A modifier statement gives additional implementation information about IDL definitions,
such as interfaces, attributes, methods, and types. Modifiers can be unqualified or qualified:
An SOM Compiler Unqualified Modifiers is associated with the interface it is defined in.
An unqualified modifier statement has the following two syntactic forms:

modifier
modifier = value

where modifier is either a SOM Compiler-defined identifier or a user-defined identifier, and
where value is an identifier, a string enclosed in double quotes (* "), or a number. For
example:

filestem = foo;

nodata;

persistent;

dllname = "E:/som/dlls”;

A SOM Compiler Qualified Modifiers is associated with a qualifier (by connecting them
with a colon). The qualified modifier has the following syntax:

qualifier : modifier

qualifier ¢ modifier = value

#pragma modifier qualifier : modifier

#pragma modifier qualifier : modifier = value

where qualifier is the identifier of an IDL definition or is a user-defined term. If the qualifier
denotes an IDL definition introduced in the current interface, module, or global scope, then
the modifier is attached to that definition. Otherwise, if the qualifier is user defined, the
modifier is attached to the interface it occurs in. If a user-defined modifier is defined outside
of an interface body (by using #pragma modifier), then it is ignored.

For example, consider the following IDL file. Qualified modifiers can be defined with the
qualifier and the modifier[=value] definition on either side of the colon. Additional modifiers
can be included by separating them with commas.

#include <somobj.idls>

#include <somcls.idl>

SOM Interface Definition Language 133

134

typedef long newlInt;

#pragma somemittypes on

#pragma modifier newInt

#pragma somemittypes off

module M {
typedef long long t;
module N {

typedef short short t;

interface M I
implementation {

somDefaultInit

Vi

}i

interface I
void op ();
#pragma modifier op
typedef char char t;

implementation {

releaseorder op;
metaclass = M I;
callstyle = oidl;

mymod : a, b;
mymod : ¢, d;
e : mymod;
f : mymod;

op : persistent;

Vi

SOMClass {

SOMObject {

nonportable;

override;

persistent;

From the preceding IDL file, modifiers are associated with the following definitions:

TypeDef ”::newlInt” 1
InterfaceDef ”::M::N::M I” 1
InterfaceDef ”::M::N::I” 9

mymod = a,b,c,d,e,f

a = mymod
b = mymod
c = mymod
d = mymod
e = mymod

Programmer’s Guide for SOM and DSOM

modifier: nonportable
modifier: override = somDefaultInit
modifiers: metaclass = M I,

releaseorder = op

callstyle = oidl

f = mymod
OperationDef ”::M::N::I::0p” 1 modifier: persistent
Notice how the modifiers for the user-defined qualifier “mymod”:
mymod : a, b;
mymod : ¢, d;
e : mymod;
: mymod;
map onto:

mymod = a,b,c,d, e, f

= mymod
b = mymod
c = mymod
d = mymod
e = mymod
£ = mymod

This lets users look up the modifiers with mymod, either by looking for mymod or by using
each individual value that uses mymod. These user-defined modifiers are available for
Emitter writers (see Programmer’s Reference for SOM Emitter Framework) and from the
Interface Repository (see Chapter 9, The Interface Repository Framework on page 337).

SOM Compiler Unqualified Modifiers: Unqualified modifiers include the SOM Compiler-
defined identifiers:

abstract
Specifies that the class is intended for use as a parent for subclass derivations, but not
for creating instances.

abstractparents =" parentName, ..."
Specifies that no implementation will be inherited from the indicated parent class into
the new subclass being defined, for all the interfaces inherited from the parent class.
The implementations not inherited are instance variables and method implementations.
The subclass being defined may inherit these implementations from some other non-
abstract parent, but, otherwise, the subclass is responsible for providing
implementations for the inherited methods by overriding these methods and providing
an appropriate implementation.

At run time, when a class is constructed, abstract inheritance from a parent is
requested using the first argument to somBuildClass, which is a bit mask with bit n set
to 0 only if parent n is abstract. The implementation bindings generate this argument
based on the IDL for a class, and indicate abstract inheritance when the IDL includes
an abstractparents modifier statement.

The parentName can be one or a comma-separated series of simple hames or
C_Scoped names. To verify that the implementation bindings emitter correctly
recognized the modifier and the parentNames, you can inspect the call to
somBuildClass in the generated implementation bindings file.

baseproxyclass = class
Specifies the base proxy class to be used by DSOM when dynamically creating a proxy
class for the current class. The base proxy class must be derived from the class
SOMDClientProxy. The SOMDCIlientProxy class will be used if the baseproxyclass
modifier is unspecified. (See Customizing the Default Base Proxy Class on page
322.))

SOM Interface Definition Language 135

136

Modifiers that name classes that DSOM loads using somFindClass (such as
baseproxyclass and factory) must be specified in a form that somFindClass can
accept. For classes that are defined within modules, the modifier value must include
the module name.

callstyle = oidlI

Specifies that the method stub procedures generated by SOM’s C/C++ bindings will not
include the CORBA-specified (Environment *ev)and (context *ctx) parameters.

classinit = procedure

Specifies a user-written procedure that will be executed to complete the initialization of
a class object after it is created. The classinit modifier is needed if something should
happen exactly once when a class is created. (That is, you want to define an action that
will not be inherited when subclasses are created. One example of this is for staticdata
variables.) When the classinit modifier is specified in the .idl file for a class, the
implementation file generated by the SOM Compiler provides a template for the
procedure, which includes a parameter that is a pointer to the class. The class
implementor can then fill in the body of this procedure template.

directinitclasses

directinitclasses = “ancestorl, ancestor2, ..."

Specifies the ancestor class whose initializers (and destructors) will be directly invoked
by this class’s initialization (and destruction) routines. If this modifier is not explicitly
specified, the default setting is the parents of the class. For further information, see
Initializing and Uninitializing Objects on page 195.

dllname

dliname=filename

Specifies the name of the library file that will contain the class’s implementation. If
filename contains special characters, then filename should be surrounded by double
guotes (*”). The filename specified can be either a full pathname, or an unqualified (or
partially qualified) filename. In the latter cases, the environment variable LIBPATH on
AIX or OS/2 or PATH on Windows NT is used to locate the file.

When the def, exp, or imod emitter is run, the dlilname maodifier is overridden by use of
the SOM Compiler’'s -m option dll, described under Running the SOM Compiler on
page 161.

factory = className

Specifies the name of the class’s factory. The specified factory will be used to create
instances of the target class in a DSOM server. If no factory is specified, the SOM class
object will be used. For more information, see Customizing Factory Creation on page
302.

filestem = stem

Specifies how the SOM Compiler will construct file names for the binding files it
generates (stem.h, stem.c, etc.). The default stem is the file stem of the .idl file for the
class.

functionprefix

functionprefix = prefix

Directs the SOM Compiler to construct method names by prefixing method names with
prefix. For example, functionprefix=xx; within an implementation statement
would result in a procedure name of xxfoo for method foo. The default for this
attribute is the empty string. If an interface is defined in a module, then the default
function prefix is the fully scoped interface name.

Programmer’s Guide for SOM and DSOM

Using a function prefix with the same name as the class makes it easier to remember
method-procedure names when debugging.

When an .idl file defines multiple interfaces not contained within a module, use of a
function prefix for each interface is essential to avoid name collisions. For example, if
one interface introduces a method and another interface in the same .idl file overrides
it, then the implementation file for the classes will contain two method procedures of the
same name (unless function prefixes are defined for one of the classes), resulting in a
name collision at compile time.

majorversion
majorversion = number

Specifies the major version number of the current class definition. The major version
number of a class definition usually changes only when a significant enhancement or
incompatible change is made to the class. The number must be a positive integer less
than 232-1. If a non-zero major version number is specified, SOM will verify that any
code that purports to implement the class has the same major version number. The
default major version number is zero.

memory_management = corba
Specifies that all methods introduced by the class follow the CORBA specification for
parameter memory management, except where a particular method has an explicit
modifier indicating otherwise (using either object_owns_result or
object_owns_parameter). See Memory-Management Functions on page 256 for a
discussion of the CORBA memory-management requirements.

metaclass = class
Specifies the class’s metaclass. The specified metaclass (or one automatically derived
from it at run time) will be used to create the class object for the class. If a metaclass is
specified, its .idl file (if separate) must be included in the include section of the class’s
.idl file. If no metaclass is specified, the metaclass will be defined automatically.

minorversion
minorversion = number

Specifies the minor version number of the current class definition. The minor version
number of a class definition changes whenever minor enhancements or fixes are made
to a class. Class implementors usually maintain backward compatibility across changes
in the minor version number. The “number” must be a positive integer less than 232-1. If
a non-zero minor version number is specified, SOM will verify that any code that
purports to implement the class has the same or a higher minor version number. The
default minor version number is zero.

somallocate = procedure
Specifies a user-written procedure that will be executed to allocate memory for class
instances when the somAllocate Method is invoked.

somdeallocate = procedure
Specifies a user-written procedure that will be executed to deallocate memory for class
instances when the somDeallocate Method is invoked.

The following example illustrates the specification of unqualified interface modifiers:

implementation

{

filestem = hello;
functionprefix = hel;

majorversion = 1;

SOM Interface Definition Language 137

138

minorversion = 2;
classinit = helloInit;

metaclass = M _Hello;

}i
SOM Compiler Qualified Modifiers: Qualified modifiers are categorized according to the
IDL component (class, attribute, method, or type) to which each modifier applies. Listed
below are the SOM Compiler-defined identifiers used as qualified modifiers, along with the
IDL component to which it applies. Descriptions of all qualified modifiers are then given in
alphabetical order. Recall that qualified modifiers are defined using the syntax qualifier:
modifier[=value].

Classes: releaseorder
Attributes: impldef_prompts, indirect, nodata, noget, noset, persistent

Method: caller_owns_parameters, caller_owns_result, const,
dual_owned_parameters, dual_owned_result, init, maybe_by value_parameters,
maybe_by_ value_result, method, migrate, mplan, namelookup, nocall, noenv,
nonstatic, nooverride, noself, object_owns_parameters, object_owns_result, offset,
override, pass_by_copy, procedure, reintroduce, select, suppress_inout_free

Variables: staticdata
Types: impctx, length, pointer, struct

caller_owns_parameters
caller_owns_parameters =p1, p2, ..., pn”

Specifies the names of the method’s parameters whose ownership is retained by (in
the case of in parameters) or transferred to (for inout or out parameters) the caller.
This modifier is only valid in the interface specification of the method'’s introducing
class. This modifier only makes sense for parameters whose IDL type is a data item
that can be freed (string, object, array, pointer, or TypeCode), or a data item containing
memory that can be freed (for example, a sequence or any), or a struct or union.

For parameters whose type is an object, ownership applies to the object reference
rather than to the object (that is, the caller should invoke the release Method on the
parameter, rather than the somFree Method).

caller_owns_result
Specifies that ownership of the return result of the method is transferred to the caller,
and that the caller is responsible for freeing the memory. This modifier is only valid in
the interface specification of the method’s introducing class. This modifier only makes
sense when the method’s return type is a data type that can be freed (string, object,
array, pointer, or TypeCode), or a data item containing memory that can be freed (for
example, a sequence or any). For methods that return an object, ownership applies to
the object reference rather than to the object (that is, the caller should invoke the
release Method on the result, rather than the somFree Method).

const
Indicates that implementations of the related method should not modify their target
argument. SOM provides no way to verify or guarantee that implementations do not
modify the targets of such methods, and the information provided by this modifier is not
currently of importance to any of the Toolkit emitters. However, the information may
prove useful in the future. For example, since modifiers are available in the Interface
Repository, there may be future uses of this information by DSOM.

dual_owned_parameters
dual_owned_parameters="p1, p2, ..., pn”

Programmer’s Guide for SOM and DSOM

When invoking the method remotely with DSOM, this modifier indicates that a copy of
the named parameters of the specified method is owned by each of the caller and the
object, and each is responsible for releasing its own copy, including introduced pointers
for inout and out parameters. When invoking the method on a local (same-process)
object, the result of the specified method is owned by the object and should not be
freed by the caller. See Advanced Memory-Management Options on page 257.

dual_owned_result
When invoking the method remotely with DSOM, this modifier indicates that the result
of the specified method is owned by each of the caller and the object, and each is
responsible for releasing its own copy. When invoking the method on a local
(same-process) object, the result of the specified method is owned by the object and
should not be freed by the caller. See Advanced Memory-Management Options on
page 257.

impctx
Supports types that cannot be fully defined using IDL. The information provided by this
modifier is built into the TypeCode constructed for the type. See Using tk_foreign
TypeCode on page 350.

One use of impctx is by DSOM to marshal SOMFOREIGN types. For information
regarding DSOM'’s use, see Passing Foreign Data Types on page 262

impldef_prompts
Indicates that the DSOM regimpl tools should prompt the user to supply a value for an
attribute. This modifier can only be used to modify attributes of type string. It is used in
the IDL for a subclass of the DSOM ImplementationDef. For more information, see
Customizing ImplementationDef Objects on page 41.

indirect
Directs the SOM Compiler to generate get and set methods for the attribute that take
and return a pointer to the attribute’s value, rather than the attribute value itself. For
example, if an attribute x of type float is declared to be an indirect attribute, then the
_get_x method will return a pointer to a float, and the input to the _set_x method must
be a pointer to a float. (This modifier is provided for OIDL compatibility only.)

init
Indicates that a method is an initializer method. For information concerning the use of
this modifier, see Initializing and Uninitializing Objects on page 195.

length
length=n

Specifies the size in bytes of the top-level contiguous storage of a foreign type. The
default is 4 bytes. The value of this modifier must be nonzero. This modifier is used by
DSOM to marshal SOMFOREIGN types. For more information, see Passing Foreign
Data Types on page 262.

maybe_by value_parameters
maybe_by value_parameters ="p1, p2, ..., pn”

Indicates that, for the named parameters of the specified method, objects passed as
parameters are to be passed to the remote site by copy (rather than by reference) if
this is possible. See Passing Objects by Copying on page 261.

maybe_by_value_result
Indicates that, for the specified method, its returned object is to be passed back to the
client by copy (rather than by reference) if this is possible. See Passing Objects by
Copying on page 261.

SOM Interface Definition Language 139

140

method
Indicates the category of method implementation. See Four kinds of SOM Methods
on page 184 for an explanation of the meanings of these different method modifiers. If
none of these modifiers is specified, the default is method. Methods with a procedure
modifier cannot be invoked remotely by DSOM.

migrate
migrate =ancestor

Indicates that a method originally introduced by this interface has been moved upward
to a specified ancestor interface. When this is done, the method introduction must be
removed from this interface (because the method is now inherited). However, the
original releaseorder entry for the method should be retained, and migrate should be
used to assure that clients compiled based on the original interface will not require
recompilation. The ancestor interface is specified using a C-scoped interface name. For
example, Module InterfaceName, not Module: :InterfaceName. See Name
Usage in Client Programs on page 151 for an explanation of C-scoped names.

mplan
mplan=none

Directs the SOM Compiler not to generate a marshal plan for the specified method in
any emitted .ih or .xih file. A marshal plan tells DSOM how to invoke the method
remotely. By default, the SOM Compiler attempts to generate marshal plans for all
methods. It silently abandons the attempt if the signature of the method makes it
impossible for the method to be invoked remotely. Specifying mplan=none can
marginally improve SOM compilation time and DLL size, if you are certain that a
method will never be invoked remotely. See Registering Class Interfaces on page 30

namelookup
See offset.

nocall
Specifies that the related method should not be invoked on an instance of this class
even though it is supported by the interface.

nodata
Directs the SOM Compiler not to define an instance variable corresponding to the
attribute. For example, a “time” attribute would not require an instance variable to
maintain its value, because the value can be obtained from the operating system. The
get and set methods for nodata must be defined by the class implementor; stub
method procedures for them are automatically generated in the implementation
template for the class by the SOM Compiler.

noenv
Indicates that a direct-call procedure does not receive an environment as an argument.

noget
Directs the SOM Compiler not to automatically generate a get method procedure for
the attribute in the .ih or .xih binding file for the class. Instead, the get method must be
implemented by the class implementor. A stub method procedure for the get method is
automatically generated in the implementation template for the class by the SOM
Compiler, to be filled in by the implementor.

nonstatic
See method.

nooverride
Indicates that the method should not be overridden by subclasses. The SOM Compiler
will generate an error if this method is overridden.

Programmer’s Guide for SOM and DSOM

noself
Indicates that a direct-call procedure does not receive a target object as an argument.

noset
Directs the SOM Compiler not to automatically generate a set method procedure for
the attribute in the .ih or .xih binding file for the class. Instead, the set method must be
implemented by the class implementor. A stub method procedure for the set method is
automatically generated in the implementation template for the class by the SOM
Compiler.

The set method procedure that the SOM Compiler generates by default for an attribute
in the .h or .xh binding file (when the noset modifier is not used) does a shallow copy
of the value that is passed to the attribute. For some attribute types, including strings
and pointers, this may not be appropriate. For instance, the set method for an attribute
of type string should perform a string copy, rather than a shallow copy, if the attribute’s
value may be needed after the client program has freed the memory occupied by the
string. In such situations, the class implementor should specify the noset attribute
modifier and implement the attribute’s set method manually, rather than having SOM
implement the set method automatically.

object_owns_parameter
object_owns_parameters =“pl, p2, ..., pn”

Specifies the names of the method’s parameters whose ownership will be transferred
to the target object, which takes responsibility for the parameter storage. The in
parameters must be allocated by the client with SOMMalloc; in a remote method call,
DSOM *“stands in” and frees them with SOMFree. For a remote target object, the inout
and out parameters in the client's address space are released when the proxy is
released. On the server side, the target object’'s implementation determines when the
associated memory will be freed after the method completes. Object ownership
sometimes applies to introduced pointers. For more information, see Advanced
Memory-Management Options on page 257.

object_owns_result
Specifies that the object retains ownership of the return result of the method, and that
the caller must not free the memory. The object is responsible for freeing the memory
of the result sometime before the object is destroyed. For more information, see
Advanced Memory-Management Options on page 257.

offset
Indicates whether the SOM Compiler should generate bindings for invoking the method
using offset resolution or name lookup. Offset resolution requires that the class of the
method’s target object be known at compile time. When different methods of the same
name are defined by several classes, namelookup is a more appropriate technique for
method resolution than is offset resolution. (See Invoking Methods on Objects on
page 76.) The default modifier is offset.

override
Indicates that the method is one introduced by an ancestor class and that this class will
re-implement the method. See also the related modifier, select.

pass_by_copy_parameters
pass_by copy_parameters =“p1l, p2, ..., pn”

Indicates that, for the named parameters of the specified method, each parameter will
be passed by copy (rather than by reference). See Passing Objects by Copying on
page 261.

SOM Interface Definition Language 141

142

pass_by copy_result
Indicates that, for the specified method, its returned object will be passed back to the
client by copy (rather than by reference). See Passing Objects by Copying on page
261.

procedure
See method.

pointer
Indicates that a SOMFOREIGN type has the same storage class as a pointer, which
influences when pointers are introduced by the mapping from IDL to C/C++. The default
is pointer unless struct is specified. For additional information, see Passing Foreign
Data Types on page 262. In the same chapter, see Introduced Pointers on page 255
showing, by data type, when pointers are introduced by the mapping from IDL to C/C++.

reintroduce
Indicates that this interface will hide a nonstatic or direct-call method introduced by
some ancestor interface, and will replace it with another implementation. Only methods
introduced as direct-call procedures or nonstatic methods can be reintroduced. Static
methods (the default implementation category for SOM methods) cannot be
reintroduced.

releaseorder
releaseorder: a, b, c, ...

Specifies the order in which the SOM Compiler will place methods or variables in the
data structures it builds to represent the class. Maintaining a consistent release order
for a class allows the implementation of a class to change without requiring client
programs to be recompiled.

The releaseorder statement should contain every method name introduced by the
class, but should not include any inherited methods. The get and set methods defined
automatically for each new attribute (_get_attributeName and _set_attributeName)
should also be included in the release order list. The order of the names on the list is
unimportant except that once a name is on the list and the class has client programs, it
should not be reordered or removed, even if the method is no longer supported by the
class, or the client programs will require recompilation. New methods should be added
only to the end of the list. If a method named on the list is to be moved up in the class
hierarchy, its name should remain on the current list, but it should also be added to the
release order list for the class that will now introduce it.

If not explicitly specified, the release order will be determined by the SOM Compiler,
and a warning will be issued for each missing method. If new methods or attributes are
subsequently added to the class, the default release order might change; programs
using the class would then require recompilation. Thus, it is advisable to explicitly give
a release order.

select
select = parent

Used in conjunction with the override modifier, this indicates that an inherited static
method will use the implementation inherited from the indicated parent class. Using
select guarantees inheritance of the selected parent’s method implementation, in case
some metaclass implementation may have overridden the default inheritance from the
left-most parent, or when inheritance from a parent further to the right is desired. The
parent is specified using the C-scoped name. For example, use

Module InterfaceName, and notModule: : InterfaceName. See Name Usage in
Client Programs on page 151 for an explanation of C-scoped names.

Programmer’s Guide for SOM and DSOM

staticdata

Indicates that a data variable is not instanced (that is, is not stored within objects), but,
instead, that it will be accessed through an external pointer to which client code can be
linked. This is similar in concept to C++ static data members, but with one level of
indirection. (The indirection is provided to allow SOM objects to be staticdata.)

A class implementor has responsibility for allocating the staticdata variable and for
loading the external pointer to the staticdata variable during class initialization. The
external pointer is located in the ClassData structure for the implementing class, in the
field: classNameClassData.variableName.

The implementor’s responsibility for loading the external pointer(s) can be facilitated by
writing a special class initialization function and indicating its name using the classinit
unqualified modifier (see Example 3 on page 144).

Attributes can be declared as staticdata. This is an important implementation
technique that allows classes to introduce attributes whose backing storage is neither
instanced nor inherited by subclasses. (See Example 1 on page 143 and Example 3
on page 144) staticdata attributes are valuable for other reasons as well: they hide the
pointer indirection required for their data access, and they are the only DSOM-safe
mechanism for accessing staticdata variables. For this reason, it is recommended that
the staticdata modifier be restricted to attributes.

struct

Indicates that a SOMFOREIGN type has the same storage class as a struct, which
influences when pointers are introduced by the mapping from IDL to C/C++. For
additional information, see Passing Foreign Data Types on page 262 and see
Introduced Pointers on page 255 showing, by data type, when pointers are introduced
by the mapping from IDL to C/C++.

suppress_inout_free

suppress_inout_free="p1, p2, ..., pn”

Directs DSOM to suppress (for the named parameters of the specified method) the
freeing of any part of an inout parameter in the caller’'s address space. This modifier is
meaningful only for remote method calls. See Advanced Memory-Management
Options on page 257.

Example 1: The following example illustrates the specification of qualified modifiers:

implementation
{
opl : persistent;
somDefaultInit : override, init;
op2: reintroduce, procedure;
op3: reintroduce, nonstatic;
op4: override, select = ModuleName parentInterfaceName;
op5: migrate = ModuleName ancestorInterfaceName;
op6: procedure, noself, noenv;
long x;
x: staticdata;
y: staticdata; // y and z are attributes
_set_z: object owns parameters = “name”;
_get_z: object owns result;

mymod: a, b;

SOM Interface Definition Language 143

144

releaseorder: opl,op3,o0p2,0p5,0p6,x,y, set z, get z,
_set_y, _get y;
Vi
As shown above for attribute z, separate modifiers can be declared for an attribute’s _set

and _get methods, using method modifiers. This capability may be useful for DSOM
applications. (See the DSOM sample program animal that ships with SOMobjects.)

Example 2: For this example, class B, which is derived from class 2, originally introduced
methods fool, foo2 and foo3. If method foo2 were migrated to class a, the modified
class B implementation would be as shown:

interface B : A {
void fool() ;
/* <<-- foo2() has been moved to class A */
void foo3 () ;
implementation {
releaseorder: fool, foo2, foo3;
majorversion = 1; minorversion = 2;
foo2: migrate = A;
Vi
bi
Example 3: This example for classes X and Y illustrates the use of a staticdata modifier,

along with its corresponding classinit modifier and the template procedure generated for
classinit by the SOM Compiler.

/* IDL for staticdata and classinit example: */
#include <somobj.idls>
interface X : SOMObject ({
attribute long staticAttribute;
attribute long normalAttribute;
implementation {
staticAttribute: staticdata;
classinit = Xinit;
releaseorder: staticAttribute,
_get_staticAttribute,
_set_staticAttribute,
_get _normalAttribute,
_set _normalAttribute;
bi
Vi

interface Y : X { };

/* Template procedure for classInit: */
#ifndef SOM Module classinit Source
#define SOM Module classinit Source
#endif

#define X Class_ Source

Programmer’s Guide for SOM and DSOM

#include ”"classInit.ih”
static long holdStaticAttribute = 1234;
void SOMLINK Xinit (SOMClass *cls)

{

XClassData.staticAttribute = &holdStaticAttribute;

main ()
{
X *x = XNew() ;
Y *y = YNew() ;
somPrintf (“initial staticAttribute = x(%d) = y(%d4)\n”,
__get staticAttribute(x,0),
__get staticAttribute(y,0));
___set staticAttribute(x,0,42);
___set staticAttribute(y,0,4321);

somPrintf (“changed staticAttribute = x(%d) = y(%d4)\n”,
__get staticAttribute(x,0),
__get staticAttribute(y,0));
__set normalAttribute(x,0,10);

___set normalAttribute(y,0,20);

somPrintf ("after setting normalAttribute, x(%d) != y(%d)\n”,
___get normalAttribute(x,0),
___get normalAttribute(y,0));

}

/* Program output:

initial staticAttribute = x(1234) = y(1234)
changed staticAttribute = x(4321) = y(4321)
after setting normalAttribute, x(10) != y(20)

*/

Declaring Instance Variables and Staticdata Variables

Declarators are used within the body of an implementation statement (described in
Implementation Statements on page 132) to specify the instance variables that are
introduced by a class, and the staticdata variables pointed to by the class’s ClassData
structure. These variables are declared using ANSI C syntax for variable declarations,
restricted to valid SOM IDL types (see Type and Constant Declarations on page 118).
For example, the following implementation statement declares two instance variables, x
and y, and a staticdata variable, z, for class Hel1lo™

implementation

SOM Interface Definition Language 145

146

short x;
long vy;
double z;

z: staticdata;
}i
Instance variables are normally intended to be accessed only by the class’s methods and
not by client programs or subclasses’ methods. For data to be accessed by client programs
or subclass methods, attributes should be used instead of instance variables. (Note,
however, that declaring an attribute has the effect of also declaring an instance variable of
the same name, unless the nodata attribute modifier is specified.)

Staticdata variables, by contrast, are publicly available and are associated specifically with
their introducing class. They are, however, very different in concept from class variables.
Class variables are really instance variables introduced by a metaclass, and are therefore
present in any class that is an instance of the introducing metaclass (or of any metaclass
derived from this metaclass). As a result, class variables present in any given class will also
be present in any class derived from this class (that is, class variables are inherited). In
contrast, staticdata variables are introduced by a class (not a metaclass) and are (only)
accessed from the class’s ClassData structure; they are not inherited.

Passing Parameters by Copying

Under normal circumstances, the in parameters to a method must not be modified by the
method. This is important because any changes made by the method’s implementation (or
callee) may be visible to callers of the method. Moreover, such changes would not be
expected, given the in designation of the parameter.

For situations where a method does need to modify an in parameter, however, the method
can receive a copy of the parameter. The IDL modifier pass_by_copy_parameters is used
to identify parameters that should be copied when passed from the caller of a method to the
method’s implementation. This parameter-passing style is similar to pass by value in C++,
and is generally used to ensure that changes made to parameters by the callee are not
visible to callers.

The following example demonstrates both parameter passing styles:
interface A;
interface B : SOMObject ({
void op(in A al, in A a2);
implementation {
op: pass_by copy parameters =a2;
}i
Vi
In this example, method op takes two in parameters, both of type A. The default parameter
passing semantics for objects is by reference, so a1 is passed to op by reference.

Parameter a2, however, is passed by copy, because modifier pass_by_copy_parameters
is used to override the default call semantics.

C and C++ usage bindings generated by the SOM compiler automatically make copies of
pass_by copy_parameters parameters; thus, callers that use these bindings need not
construct copies explicitly. However, if a method is called through the Dynamic Invocation
Interface or through a method procedure pointer (as returned by the somResolve

Programmer’s Guide for SOM and DSOM

Function, for example), then the caller is responsible for copying
pass_by_copy_parameters parameters.

The designation of pass_by copy_parameters for a method argument does not affect its
type in the corresponding C or C++ bindings. For example, clients of op should pass, for
each parameter, a pointer to an object of type A.

C and C++ usage bindings copy pass_by copy_parameters of an object type via the copy
constructor somDefaultCopylnit Method, as supported by the formal parameter class.
The copying of all other types is done via a shallow, top-level copy. For example, the top
level of a structure parameter is copied, but no copying is done of any objects that are
referenced from fields within the structure.

Modifier pass_by_copy_parameters can only be used only with in parameters, as it is
incompatible with the callee-to-caller passing of parameter values that takes place with out
and inout parameters.

Passthru Statements

A passthru statement (used within the body of an implementation statement, described
above) lets a class implementor specify blocks of code (for C/C++ programmers, usually
only #include directives) that the SOM compiler will pass into the header files it generates.

Passthru statements are included in SOM IDL primarily for backward compatibility with the
SOM OIDL language, and their use by C and C++ programmers should be limited to
#include directives. C and C++ programmers should use IDL type and constant declarations
rather than passthru statements when possible. (Users of other languages, however, may
require passthru statements for type and constant declarations.)

The SOM compiler ignores the contents of the passthru lines which can contain anything
that needs to be placed near the beginning of a header file for a class. Comments
contained in passthru lines are processed without modification. The syntax for specifying
passthru lines is one of the following forms:

passthru language suffix = literal+ ;
passthru language suffix before = literal+ ;
passthru language suffix after = literal+ ;

where language specifies the programming language and suffix indicates which header
files will be affected. The SOM Compiler supports suffixes h, ih, xh and xih. For both C and
C++, language is specified as C.

Each literal is a string literal (enclosed in double quotes) to be placed verbatim into the
specified header file. [Double quotes within the passthru literal should be preceded by a
backslash. No other characters escaped with a backslash will be interpreted, and formatting
characters (newlines, tab characters and so forth) are passed through without processing.]
The last literal for a passthru statement must not end in a backslash (put a space or other
character between a final backslash and the closing double quote).

When either of the first two forms is used, passthru lines are placed before the #include
statements in the header file. When the third form is used, passthru lines are placed just
after the #include statements in the header file.

For example, the following passthru statement

implementation

{

passthru C_h = "#include <foo.h>";

Vi

SOM Interface Definition Language 147

results in the directive #include <foo.h> being placed at the beginning of the .h C
binding file that the SOM Compiler generates.

For any given target file (as indicated by language_suffix), only one passthru statement
may be defined within each implementation section. You may, however, define multiple
#include statements in a single passthru. For legibility, each #include should begin on a
new line, optionally with a blank line to precede and follow the #include list.

Introducing non-IDL Data Types or Classes

You may want a new .idl file to reference some element that the SOM Compiler would not
recognize, such as a user-defined class or an instance variable or attribute with a user-
defined data type. You can reference such elements if they already exist in .h or .xh files
that the SOM Compiler can #include with your new .idl file, as follows:

* To introduce a non-IDL class, insert an interface statement that is a forward reference
to the existing user-defined class. It must precede the interface statement for the new
class in the .idl file.

* To declare an instance variable or attribute that is not a valid IDL type, declare a
dummy typedef preceding the interface declaration.

* In each case above, in the implementation section use a passthru statement to pass an
#include statement into the language-specific binding files of the new .idl file

- for the existing user-defined class
- for the real typedef

In the following example, the generic SOM type somToken is used in the .idl file for the
user’s types myRealType and myStructType. The passthru statement then causes an
appropriate #include statement to be emitted into the C/C++ binding file, so that the file
defining types myRealType and myStructType Will be included when the binding files
process. In addition, an interface declaration for myOtherClass is defined as a forward
reference, so that an instance of that class can be used within the definition of
myCurrentClass. The passthru statement also #includes the binding file for
myOtherClass:

typedef somToken myRealType;
typedef somToken myStructType;

interface myOtherClass;

interface myCurrentClass : SOMObject ({
implementation {

myRealType myInstVar;
attribute myStructType stl;
passthru C_h =

"#include <myTypes.h>”

"#include <myOtherClass.h>"

mu o,
I

148 Programmer’s Guide for SOM and DSOM

Vi
}i
See Using tk_foreign TypeCode on page 350.

Comments within a SOM IDL File

SOM IDL supports both C and C++ comment styles. The characters “//” start a line
comment, which finishes at the end of the current line. The characters “/*” start a block
comment that finishes with “*/”. Block comments do not nest. The two comment styles can
be used interchangeably.

Comments in a SOM IDL specification must be strictly associated with particular syntactic
elements, so that the SOM Compiler can put them at the appropriate place in the header
and implementation files it generates. Therefore, comments may appear only in these
locations (in general, following the syntactic unit being commented):

» At the beginning of the IDL specification
e After a semicolon

« Before or after the opening brace of a module, interface statement, implementation
statement, structure definition, or union definition

» After a comma that separates parameter declarations or enumeration members

» After the last parameter in a prototype (before the closing parenthesis)

» After the last enumeration name in an enumeration definition (before the closing brace)
» After the colon following a case label of a union definition

« After the closing brace of an interface statement

Numerous examples of the use of comments can be found in Chapter 3, Tutorial for
Implementing SOM Classes on page 49.

Because comments appearing in a SOM IDL specification are transferred to the files that
the SOM Compiler generates, and because these files are often used as input to a
programming language compiler, avoid using characters that are not generally allowed in
comments of most programming languages. For example, the C language does not allow */
to occur within a comment, so its use is to be avoided, even when using C++ style
comments in the .idl file.

SOM IDL also supports throw-away comments. They may appear anywhere in an IDL
specification, because they are ignored by the SOM Compiler and are not transferred to
any file it generates. Throw-away comments start with the string “//#" and end at the end of
the line. Use throw-away comments to comment out portions of an IDL specification.

To disable comment processing (that is, to prevent the SOM Compiler from transferring
comments from the IDL specification to the binding files it generates), use the -c option of
the sc command when running the SOM Compiler (See Chapter 6, The SOM Compiler on
page 155). When comment processing is disabled, comment placement is not restricted,
and comments can appear anywhere in the IDL specification.

Designating Private Methods and Attributes

To designate methods or attributes within an IDL specification as private, the declaration of
the method or attribute must be surrounded with the preprocessor commands
#ifdef PRIVATE _ (with two leading underscores and two following underscores) and

SOM Interface Definition Language 149

#endif. For example, to declare a method foo as a private method, place the following
declaration in the interface statement:

#ifdef _ PRIVATE
void foo() ;
#endif

Any number of methods and attributes can be designated as private, either within a single
#ifdef or in separate ones.

When compiling a .idl file, the SOM Compiler normally recognizes only public (nonprivate)
methods and attributes, as that is generally all that is needed. To generate header files for
client programs that do need to access private methods and attributes, or for use when
implementing a class library containing private methods, the -p option should be included
when running the SOM Compiler. The resulting header files will then include bindings for
private, as well as public, methods and attributes. Both the implementation bindings (.ih or
xih file) and the usage bindings to be #included in the implementation (.h or .xh file)
should be generated under the -p option. The -p option is described in Running the SOM
Compiler on page 161.

The SOMobjects Toolkit also provides a pdl (Public Definition Language) emitter that can
be used with the SOM Compiler to generate a copy of a .idl file which has the portions
designated as private removed. The next main section of this chapter describes how to
invoke the SOM Compiler and the various emitters.

Defining Multiple Interfaces in a .idl File

150

A single .idl file can define multiple interfaces. This allows, for example, a class and its
metaclass to be defined in the same file. When a file defines two or more interfaces that
reference one another, forward declarations can be used to declare the name of an
interface before it is defined. This is done as follows:

interface className ;
The actual definition of the interface for className must appear later in the same .idl file.

If multiple interfaces are defined in the same .idl file, and the classes are not a class-
metaclass pair, they can be grouped into modules, by using the following syntax:

module moduleName { definition+ };

where each definition is a type declaration, constant declaration, exception declaration,
interface statement or nested module statement. Modules are used to scope identifiers.

Alternatively, multiple interfaces can be defined in a single .idl file without using a module
to group the interfaces. Whether a module is used for grouping multiple interfaces, the
languages bindings produced from the .idl file will include support for all of the defined
interfaces.

When multiple interfaces are defined in a single .idl file and a module statement is not used
for grouping these interfaces, it is necessary to use the functionprefix modifier to assure
that different names exist for functions that provide different implementations for a method.
In general, it is a good idea to always use the functionprefix modifier, but in this case it is
essential.

Programmer’s Guide for SOM and DSOM

Scoping and Name Resolution

A .idl file forms a naming scope (or scope). Modules, interface statements, structures,
unions, methods, and exceptions form nested scopes. An identifier can only be defined
once in a particular scope. Identifiers can be redefined in nested scopes.

Names can be used in an unqualified form within a scope, and the name will be resolved by
successively searching the enclosing scopes. Once an unqualified name is defined in an
enclosing scope, that name cannot be redefined.

Fully qualified names are of the form:
scope-name: :identifier

For example, method name meth defined within interface Test of module M1 would have
the fully qualified name:

Ml::Test::meth

A qualified name is resolved by first resolving the scope-name to a particular scope, s, and
then locating the definition of identifier within that scope. Enclosing scopes of S are not
searched.

Qualified names can also take the form:
::identifier

These names are resolved by locating the definition of identifier within the smallest
enclosing module.

Every name defined in an IDL specification is given a global name, constructed as follows:

» Before the SOM Compiler scans a .idl file, the name of the current root and the name
of the current scope are empty. As each module is encountered, the string “::” and the
module name are appended to the name of the current root. At the end of the module,
they are removed.

* As each interface, struct, union, or exception definition is encountered, the string “::”
and the associated name are appended to the name of the current scope. At the end of
the definition, they are removed. While parameters of a method declaration are
processed, a new unnamed scope is entered so that parameter names can duplicate
other identifiers.

* The global name of an IDL definition is then the concatenation of the current root, the
current scope, a “::", and the local name for the definition.

The names of types, constants and exceptions defined by the parents of a class are
accessible in the child class. References to these names must be unambiguous.
Ambiguities can be resolved by using a scoped name (prefacing the name with the name of
the class that defines it and the characters “::”, as in parent-class::identifier). Scope names
can also be used to refer to a constant, type or exception name defined by a parent class
but redefined by the child class.

Name Usage in Client Programs

Within a C or C++ program, the global name for a type, constant or exception corresponding
to an IDL scoped name is derived by converting the string “::” to an underscore (*_") and
removing the leading underscore. Such names are referred to as C-scoped names. This
means that types, constants, and exceptions defined within the interface statement for a
class can be referenced in a C/C++ program by prepending the class name to the name of
the type, constant or exception. For example, consider the types defined in the following
IDL specification:

SOM Interface Definition Language 151

typedef sequence<long, 10> mySeq;
interface myClass : SOMObject
{

enum color {red, white, blue};

typedef string<l100> longString;

}
These types could be accessed within a C or C++ program with the following global names:

mySedq,

myClass_color,

myClass_red,

myClass white,

myClass_blue, and

myClass_ longString
Type, constant, and exception names defined within modules similarly have the module
name prepended. When using SOM’s C/C++ bindings, the short form of type, constant, and
exception names (such as, color, longString) can also be used where unambiguous,

except that enumeration names must be referred to using the long form (for example:
myClass_red and not simply red).

Because replacing “::” with an underscore to create global names can lead to ambiguity if
an IDL identifier contains underscores, it is best to avoid the use of underscores when
defining IDL identifiers.

Extensions to CORBA IDL permitted by SOM IDL

152

The following topics describe several SOM-unique extensions of the standard CORBA
syntax that are permitted by SOM IDL for convenience. These constructs can be used in a
.idl file without generating a SOM Compiler error.

If you want to verify that an IDL file contains only standard CORBA specifications, the SOM
Compiler option -mcorba turns off each of these extensions and produces compiler errors

wherever non-CORBA specifications are used. (The SOM Compiler command and options
are described in Running the SOM Compiler on page 161.)

Pointer ‘¥ Types

In addition to the base CORBA types, SOM IDL permits the use of pointer types (*). As
well as increasing the range of base types available to the SOM IDL programmer, using
pointer types also permits the construction of more complex data types, including
self-referential and mutually recursive structures and unions.

If self-referential structures and unions are required, then, instead of using the CORBA
approach for IDL sequences, such as the following:

struct X {

sequence <X> self;

Programmer’s Guide for SOM and DSOM

it is possible to use the more typical C/C++ approach. For example:

struct X {
X *gelf;

}i
SOM IDL does not permit an explicit *' in sequence declarations. If a sequence is required
for a pointer type, then it is necessary to typedef the pointer type before use. For example:

sequence <long *> long star_ seq; // error.
typedef long * long star;

sequence <long star> long star seq; // OK.

Unsigned Types

SOM IDL permits the syntax “unsigned type”, where type is a previously declared type
mapping onto short or long. (CORBA permits only unsigned short and unsigned long.

Implementation Section

SOM IDL permits an implementation section in an IDL interface specification to allow the
addition of instance variables, method overrides, metaclass information, passthru
information and pragma-like information, called modifiers, for the emitters. See
Implementation Statements on page 132.

Comment Processing

The SOM IDL Compiler by default does not remove comments in the input source; instead,
it attaches them to the nearest preceding IDL statement. This facility is useful, since it
allows comments to be emitted in header files, C template files, documentation files, and so
forth. However, if this capability is desired, this does mean that comments cannot be placed
with quite as much freedom as with an ordinary IDL compiler. To turn off comment
processing so that you can compile .idl files containing comments placed anywhere, you
can use the compiler option -c or use throw-away comments throughout the .idl file (that is,
comments preceded by //#); as a result, no comments will be included in the output files.

Generated Header Files

CORBA expects one header file, file.h, to be generated from file.idl. However, SOM IDL
permits use of a class modifier, filestem, that changes this default output file name. (See
Running the SOM Compiler on page 161.)

SOM Interface Definition Language 153

154 Programmer's Guide for SOM and DSOM

Chapter 6. The SOM Compiler

The SOM Compiler translates the IDL of a SOM class into a set of binding files for the
language that implement the class’s methods and the languages that use the class. These
bindings make it more convenient to implement and use SOM classes. The SOM Compiler
produces binding files for the C and C++ languages. However, C and C++ bindings cannot
both be generated during the same execution of the SOM compiler.

Generating Binding Files

The SOM Compiler operates in two phases:
* A precompile phase that analyzes an OIDL or IDL class definition.
* An emission phase where one or more emitter programs produce binding files.

An emitter program generates each binding file. Setting the SMEMIT environment variable
determines the emitters.

Note: In binding files, the filestem is determined by default from the name of the source
idl file with the “.idl” extension removed. Otherwise, a filestem modifier can be
defined in the .idl file to specify another file name (see Modifier Statements on
page 133).

When changes to definitions in the .idl file become necessary, rerun the SOM Compiler to
update the current implementation template file. The ¢ or xc emitter must be specified
either with the -s option or the SMEMIT environment variable. Additional information on
generating updates is in Running Incremental Updates of the Implementation Template
File on page 193.

Binding Files Created By The C Emitters

The emitters for the C language produce the following binding files:

filestem.c
(produced by the ¢ emitter)

This is a template for a C source program that implements a class’s methods. This will
become the primary source file for the class. (The other binding files can be generated
from the .idl file as needed.) This template implementation file contains stub
procedures for each method introduced or overridden by the class. The stub
procedures are empty of code except for required initialization and debugging
statements.

After the class implementor has supplied the code for the method procedures, running
the ¢ emitter again updates the implementation file to reflect changes made to the class
definition (in the .idl file). These updates include adding new stub procedures, adding
comments, and changing method prototypes to reflect changes made to the method
definitions in the IDL specification. Existing code within method procedures is not
disturbed. The .c file contains an #include directive for the .ih file, described below.

The content of the C source template is controlled by the Emitter Framework file
<SOMBASE>/include/ctm.efw. This file can be customized to change the template
produced. For information on changing the template file see Emitter Framework Guide
and Reference.

filestem.h
(produced by the h emitter)

The SOM Compiler 155

This is the header file to be included by C client programs (programs that use the
class). It contains the C usage bindings for the class, including macros for accessing
the class’s methods and a macro for creating new instances of the class. This header
file includes the header files for the class’s parent classes and its metaclass, as well as
the header file that defines SOM’s generic C bindings, som.h.

filestem.ih

(produced by the ih emitter)

This is the header file to be included in the implementation file (the file that implements
the class’s methods, the .c file). It contains the implementation bindings for the class,
including:

- astruct defining the class’s instance variables
- macros for accessing instance variables
- macros for invoking parent methods the class overrides

- the classNameGetData macro used by the method procedures in the filestem.c
file. See Stub Procedures for Methods on page 189.

- aclassNameNewClass procedure for constructing the class object at run time
- any IDL types and constants defined in the IDL interface

Binding Files Created By The C++ Emitters

156

The emitters for the C++ language produce the following binding files:
filestem.C (for AIX) or filestem.cpp (for OS/2 and Windows NT)

(produced by the xc emitter)

This is a template for a C++ source program that implements a class’s methods. This
becomes the primary source file for the class. (The other binding files can be generated
from the .idl file as needed.) This template implementation file contains stub
procedures for each method introduced or overridden by the class. (The stub
procedures are empty of code except for required initialization and debugging
statements.)

After the class implementor has supplied the code for the method procedures, running
the xc emitter again will update this file to reflect changes made to the class definition
(in the .idl file). These updates include adding new stub procedures, adding comments,
and changing method prototypes to reflect changes made to the method definitions in
the IDL specification. Existing code within method procedures is not disturbed.

The C++ implementation file contains an #include directive for the .xih file, described
below.

The content of the C++ source template is controlled by the Emitter Framework file
<SOMBASE>/include/ctm.efw. This file can be customized to change the template
produced. For detailed information on changing the template file see Emitter
Framework Guide and Reference.

filestem.xh

(produced by the xh emitter)

Programmer’s Guide for SOM and DSOM

This is the header file to be included by C++ client programs that use the class. It
contains the usage bindings for the class, including a C++ definition of the class,
macros for accessing the class’s methods, and the new operator for creating new
instances of the class. This header file includes the header files for the class’s parent
classes and its metaclass, as well as the header file that defines SOM’s generic C++
bindings, som.xh.

filestem.xih
(produced by the xih emitter)

This is the header file to be included in the implementation file. It contains the
implementation bindings for the class, including:

- astruct defining the class’s instance variables
- macros for accessing instance variables

- macros for invoking parent methods the class overrides, the classNameGetData
macro. See Stub Procedures for Methods on page 189.

- aclassNameNewClass procedure for constructing the class object at run time
- any IDL types and constants defined in the IDL interface

Other Files the SOM Compiler Generates

filestem.pdl
(produced by the pdl emitter)

This file is the same as the .idl file from which it is produced except that all items within
the .idl file that are marked as private are removed. (An item is marked as private by
surrounding it with #ifdef _ PRIVATE__ and #endif directives.) Thus, the Public
Definition Language (pdl) emitter can generate a “public” version of a .idl file. See The
pdl Facility on page 167 for information about the pdl emitter.

filestem.def
(produced by the def emitter) (for OS/2)

This file is used by the linker to package a class as a library. You can combine several
classes into a single .def file by running the def emitter for each of the .idl files that
contain classes in the library. Each interface in the .idl files should contain the same
dliname modifier in its implementation section. Or, you can specify the .def file’'s name
with the global dIl modifier on the SOM Compiler command line using the -m option.
See the dliname modifier under Modifier Statements on page 133. For additional
information of the dll modifier and the -m option, see Running the SOM Compiler on
page 161.

When packaging multiple classes in a single library, you must also have a C procedure
named SOMInitModule to initialize the class library. This procedure should call the
routine classNameNewClass for each class packaged in the library. The
SOMiInitModule procedure can be generated automatically with the imod emitter.
SOMiInitModule is called by the SOM Class Manager when the library is dynamically
loaded.

filestem.exp
(produced by the exp emitter) (for AlX)
This file is used by the linker to package a class as a library. You can combine several
classes into a single .exp file by running the exp emitter for each of the .idl files that
contain classes in the library. Each interface in the .idl files should contain the same
dliname modifier in its implementation section. Or, you can specify the .exp file’s name

The SOM Compiler 157

158

with the global dIl modifier on the SOM compiler command line using the -m option.
See the dliname modifier under Modifier Statements on page 133. For additional
information on the dIl modifer and the -m option, see Running the SOM Compiler on
page 161.

When packaging multiple classes in a single library, you must also have a C procedure
named SOMInitModule to initialize the class library. This procedure must be exported
and should call the routine classNameNewClass for each class packaged in the library.
The SOMInitModule procedure can be generated automatically with the imod emitter.
SOMiInitModule is called by the SOM Class Manager when the library is dynamically
loaded.

filestem.nid

(produced by the def emitter) (for Windows NT)

This file is used by the linker to package a class as a library. You can combine several
classes into a single .nid file by running the def emitter for each of the .idl files that
contain classes in the library. Each interface in the .idl files should contain the same
dliname modifier in its implementation section. Or, you can specify the .nid file’'s name
with the global dIl modifier on the SOM compiler command line using the -m option.
See the dliname modifier under Modifier Statements on page 133. For additional
information on the dIl modifer and the -m option, see Running the SOM Compiler on
page 161.

When packaging multiple classes in a single library, you must also have a C procedure
named SOMInitModule to initialize the class library. This procedure must be exported
and should call the routine classNameNewClass for each class packaged in the library.
The SOMInitModule procedure can be generated automatically with the imod emitter.
SOMInitModule is called by the SOM Class Manager when the library is dynamically
loaded.

filestemi.c

(produced by the imod emitter)

This is a C source program that implements a class library’s initialization and
termination function. This source file should be compiled and linked along with all the
class implementation source files. The contents of this file are described in more detail
in Specifying the Initialization and Termination Function on page 215.

The output source file is named based on the value of the dlilname modifier in the
implementation section of the .idl file. Otherwise, the output source file is the value of
the .idl file’s filestem by default. The global modifier dll specified with the SOM
Compiler’s -m option can also be used to set the output source file name. See the
dliname modifier under Modifier Statements on page 133. For additional information
on the dll modifier and the -m option, see Running the SOM Compiler on page 161.

When you run the imod emitter again for the same set of .idl files, any additional
classes that have been defined are added to the output source file. Any existing
information in the output source file is not disturbed.

The content of the C source program is controlled by the Emitter Framework file:
<SOMBASE>/include/imod.efw

This file can be customized to change the initialization and termination function
produced by the emitter. For detailed information on changing the .efw file, see Emitter
Framework Guide and Reference.

The Interface Repository

(produced by the ir emitter)

Programmer’s Guide for SOM and DSOM

See Chapter 9, The Interface Repository Framework on page 337 for a discussion
on the Interface Repository and the ir emitter.

The C/C++ bindings generated by the SOM Compiler have the following limitation: If
two classes named ClassName and ClassNameC are defined, the bindings for these
two classes will clash. That is, if a client program uses the C/C++ bindings (includes the
.h/.xh header file) for both classes, a name conflict will occur. Thus, class
implementors should keep this limitation in mind when naming their classes.

SOM users can extend the SOM Compiler to generate additional files by writing their
own emitters. To assist users in extending the SOM Compiler, SOM provides an
Emitter Framework: a collection of classes and methods useful for writing object-
oriented emitters that the SOM Compiler can invoke. For more information, see the
Programmer’s Reference for SOM and DSOM.

Porting SOM Classes

The header files (binding files) that the SOM Compiler generates will only work on the
platform (operating system) on which they were generated. Thus, when porting SOM
classes from the platform where they were developed to another platform, the header files
must be regenerated from the .idl file by the SOM Compiler on that target platform.

Environment Variables Affecting the SOM Compiler

To execute the SOM Compiler on one or more files that contain IDL specifications for one
or more classes, use the SOM Compiler command, as follows:

sc [-options] files

where files specifies one or more .idl files.

Available options for the command are detailed in the next topic. The operation of the SOM
Compiler (whether it produces C binding files or C++ binding files, for example) is also
controlled by certain environment variables that can be set before the sc command is
issued. The applicable environment variables are as follows:

SMEMIT

Determines which output files the SOM Compiler produces. Its value consists of a list of
items separated by semicolons for OS/2 and Windows NT, or by semicolons or colons
for AIX. Each item designates an emitter to execute. For example, the statement:

SET SMEMIT=c;h;ih (for 0S/2 and Windows NT)

export SMEMIT="c;h;ih” (for AIX)
directs the SOM Compiler to produce the C binding files hello.c, hello.h, and hello.ih
from the hello.idl input specification. By comparison,

SET SMEMIT=xc;xh;xih (for 0S/2 and Windows NT)

export SMEMIT="xc;xh;xih” (for AIX)
directs the SOM Compiler to produce C++ binding files hello. ¢ (for AIX) or

hello.cpp (for OS/2 and Windows NT), hello.xh and hello.xih from the
hello. id1l input specification.

By default, all output files are placed in the same directory as the input file. If the
SMEMIT environment variable is not set, then a default value of "h; ih" is assumed.

The SOM Compiler 159

160

SMINCLUDE
Specifies where the SOM Compiler should look for .idl files #included by the .idl file
being compiled. Its value should be one or more directory names separated by a
semicolon when using OS/2, or separated by a semicolon or colon when using AlX.
Directory names can be specified with absolute or relative pathnames. For example:

SET SMINCLUDE=. ;..\MYSCDIR;C:\TOOLKT20\C\INCLUDE;
(for OS/2 and Windows NT)

export SMINCLUDE=. :myscdir:/u/som/include
(for AIX)
The default value of the SMINCLUDE environment variable is the include
subdirectory of the directory into which SOM has been installed.

SMTMP
Specifies the directory that the SOM Compiler should use to hold intermediate output
files. This directory should not coincide with the directory of the input or output files. For
AlX, the default setting of SMTMP is /tmp; for OS/2 and Windows NT, the default setting
of SMTMP is the root directory of the current drive.

SET SMTMP=. .\MYSCDIR\GARBAGE
tells the SOM Compiler to place the temporary files in the GARBAGE directory.
SET SMTMP=%TMP% (0S/2 and Windows NT)

tells the SOM Compiler to use the same directory for temporary files as given by the
setting of the TMP environment variable (the default location for temporary system
files).

AIX examples:

export SMTMP=S$TMP
export SMTMP=../myscdir/garbage
SMKNOWNEXTS
Specifies additional emitters to which the SOM Compiler should add a header. For
example, if you were to write a new emitter for Pascal, called emitpas, then by default
the SOM Compiler would not add any header comments to it. However, by setting
SMKNOWNEXTS=pas, as shown:

set SMKNOWNEXTS=pas (for 0S/2 and Windows NT)

export SMKNOWNEXTS=pas (for AIX)
the SOM Compiler will add a header to files generated with the emitpas emitter. The
“header” added is a SOM Compiler-generated message plus any comments, such as
copyright statements, that appear at the head of your .idl input file. For details on
writing your own emitter, see the Emitter Framework Guide and Reference.

SOMIR
Specifies the name or list of names of the Interface Repository file. The ir emitter, if
run, creates the Interface Repository, or checks it for consistency if it already exists. If
the -u option is specified when invoking the SOM Compiler, the ir emitter also updates
an existing Interface Repository. For additional information on the -u option, see
Running the SOM Compiler on page 161.

SMADDSTAR
When defined, causes all interface references to have a “*” added to them for the C
bindings. The command line SOM Compiler options -maddstar and -mnoaddstar
supercede and override the SMADDSTAR setting, however.

Programmer’s Guide for SOM and DSOM

Environment variables that affect the SOM Compiler can be set for any -m options of
the SOM Compiler command. The -E option can be used to set an environment
variable. For additional information on the -maddstar and -mnomaddstar option and
the -m and -E options, see Running the SOM Compiler on page 161.

Running the SOM Compiler

The syntax of the command for running the SOM Compiler takes the forms:
sc [-options] files

The files specified in the sc command denote one or more files containing the IDL class
definitions to be compiled. If no extension is specified, .idl is assumed. By default, the
filestem of the .idl file determines the filestem of each emitted file. Otherwise, a filestem
modifier can be defined in the .idl file to specify another name. For additional information
on the filestem modifier, see Modifier Statements on page 133.

Selected -options can be specified individually, as a string of option characters, or as a
combination of both. Any option that takes an argument either must be specified individually
or must appear as the final option in a string of option characters. Available options and
their purposes are as follows:

-Cn
Sets the maximum allowable size for a simple comment in the .idl file (default: 32767).
This is only needed for very large single comments.

-D name[=def]
Same as in a #define directive. The default def is 1. This option is the same as the -D
option for the C compiler. Note: This option can be used to define _ PRIVATE__ so
that the SOM Compiler will also compile any methods and attributes that have been
defined as private using the directive #ifdef _ PRIVATE__; however, the -p option
does the same thing more easily. When a class contains private methods or attributes,
both the implementation bindings and the usage bindings to be #included in the
implementation should be generated using the -p or -D __ PRIVATE__ option.

-E variable=value
Sets an environment variable. For additional information on the environment variables:
SMEMIT, SMINCLUDE, SMTMP, SMKNOWNEXTS, SOMIR and SMADDSTAR, see
Environment Variables Affecting the SOM Compiler on page 159.

-1 dir
When looking for #included files, looks first in dir, then in the standard directories
(same as the C compiler -1 option).

-Sn
Sets the total allowable amount of unique string space used in the IDL specification for
names and passthru lines (default: 32767). This is only needed for very large .idl files.

-U name

Removes any initial definition (via a #define preprocessor directive) of symbol name.
-V

Displays version information about the SOM Compiler.

Turns off comment processing. This allows comments to appear anywhere within an
IDL specification (rather than in restricted places), and it causes comments not to be
transferred to the output files that the SOM Compiler produces.

The SOM Compiler 161

162

-d directory
Specifies a directory where all output files should be placed. If the -d option is not used,
all output files are placed in the same directory as the input file.

-h or -?
Produces a listing of this option list. This option is typically used in an sc or somc
command that does not include a .idl file name.

-i filename
Specifies the name of the class definition file. Use this option to override the built-in
assumption that the input file will have a .idl extension. Any filename supplied with the -
i option is used exactly as it is specified.

-m name[=value]
Adds a global modifier. (See also the following Note about the -m option, which
explains how to convert any “-m name” modifier to an environment variable.)

All command-line -m modifier options can be specified in the environment by changing
them to UPPERCASE and prepending “SM” to them. For example, if you want to always
set the option -maddstar, set corresponding environment variables as follows:

set SMADDSTAR=1
On AIX:

export SMNOTC=1
export SMADDSTAR=1

Currently Supported -m name[=value] modifier options:

addcmt This option directs the ir emitter to emit IDL comments into the
Interface Repository file. For example, a method in an IDL file may be
immediately followed by a comment that describes what the method
does. When the addcmt modifier is used, any IDL comments are
added as modifiers for the IR objects to which the comments are
related. The modifier name is comment, and the value of the modifier
is the comment string, including line breaks. For example, assume an
operation is defined in an IDL file as follows:

void testMethod (in string arg) ;
// This is a comment.

Specifying addcmt creates an OperationDef Class object in the
Interface Repository with a comment modifier equal to the string
This is a comment.

addprefixes Adds a functionprefix to the method procedure prototypes
during an incremental update of the implementation template file. This
option applies only when rerunning the ¢ or xc emitter on an IDL file
that previously did not specify a functionprefix modifier. A class
implementor who later decides to use prefixes should add a line in the
implementation section of the .idl file containing the specification:

functionprefix = prefix

and then rerun the ¢ or xc emitter using the -maddprefixes option.
The method procedure prototypes in the implementation file will then
be updated so that each method name includes the assigned prefix.
(This option does not support changes to existing prefix names, nor
does it apply for OIDL files.) For additional information onf the
functionprefix modifier, see Modifier Statements on page 133

Programmer’s Guide for SOM and DSOM

addstar This option causes all interface references to have a ‘*’ added to
them for the C bindings. See Object Types on page 124 for further
details.

comment=comment string

where comment string can be either of the designations: “/*" or “//".
This option indicates that comments marked in the designated manner
in the .idl file are to be completely ignored by the SOM Compiler and
will not be included in the output files. Comments on lines beginning
with “//#" are always ignored by the SOM Compiler.

corba This option directs the SOM Compiler to compile the input definition
according to strict CORBA-defined IDL syntax. This means, for
example, that comments may appear anywhere and that pointers are
not allowed. When the -mcorba option is used, parts of a .idl file
surrounded by #ifdef _ SOMIDL___ and #endif directives are ignored.
This option can be used to determine whether all nonstandard
constructs (those specific to SOM IDL) are properly protected by #ifdef
__SOMIDL___ and #endif directives.

csc This option forces the OIDL compiler to be run. This is required only if
you want to compile an OIDL file that does not have an extension of
.CSC or .sc.

dll=filestem

Warning: Do not use this modifier on the Windows NT

platform. Due to the pecularities of the Windows NT,

you must rely on the dliname modifier to be in the idl file

itself.
This option specifies the name of the class library DLL to the exp
emitter, the def emitter and the imod emitter. In each case, the
filestem value defines the filestem name of the output file. In addition,
for the imod emitter only, the C output file has an “i” appended to the
filestem. For example, consider the following SOM Compiler command,
which runs both the def and imod emitters:

sc -s”def;imod” -mdll=abc a.idl b.idl c.idl

The def emitter produces a .def file named abc . def that contains the
exports for the classes defined in the three IDL files a.id1l, b.idl and
c.idl. The imod emitter produces a C file named abci. c that
contains the class library initialization code for the classes in a.1d1,
b.idl and c¢.idl.

Under the exp, def or imod emitter, the dll modifier overrides the
value of any dliname modifier specified in the implementation section
of an IDL file. Thus, for example, if the a . 1d1 file contains an interface
specifying dl1lname="test .d11l”, the def emitter would still output
the exports of a class defined in a. 1d1 into file abc.def. (For
additional information on the dliname modifier, see Modifier
Statements on page 133.)

The DLL name specified with the dIl modifier is also used within the
source file that is generated by an imod emitter. (For full information
on the imod emitter, see Specifying the Initialization and
Termination Function on page 215. As described in Generating
Binding Files on page 155, the linker uses the def emitter on OS/2
and the exp emitter on AlX to package a class as a library.)

The SOM Compiler 163

164

emitappend This option causes emitted files to be appended at the end of

existing files of the same name.

imod This option specifies the name of the output C file that will contain

the class library initialization code produced by the imod emitter. For
example, the following SOM Compiler command directs the imod
emitter to produce a C file with the name initterm.c:

sc -simod -mimod=initterm a.idl b.idl c.idl

The file name given with the imod modifier is always used as the
output file name, even when the dll modifier is used at the same time.
For full information on the imod emitter, see Specifying the
Initialization and Termination Function on page 215.

noaccessors This option turns off the automatic creation of OperationDef

entries in the Interface Repository for attribute accessors (that is, for an
attribute’s _set and _get methods).

noaddstar This option ensures that interface references will not have a

“*" added to them for the C bindings. This is the default setting; it is the
opposite of the -m compiler option addstar.

noannot This option specifies to the ir emitter that no file, line and emit

modifiers should be added to the output Interface Repository file. This
option is used to save some space in the IR file.

By default, the ir emitter automatically generates several modifiers:
file, line and emit — for the objects contained in an Interface
Repository. For example, for any given InterfaceDef in an IR,
modifiers are automatically associated with it, to define the file
containing the interface and the line number on which the interface is
defined. The emit modifier indicates whether a globally defined
typedef, struct, exception, enum, union, or constant is to be emitted.
Including an emit modifier means that one of these data types has
been defined within a #pragma somemittypes section of the IDL file.

noimod This option specifies to the AIX exp emitter that the imod emitter

was not used to create the class library initialization function and exp
should therefore not export an initialization function named
dil_stem_nameSOMlInitTerm. By default, the exp emitter generates
the dIl_stem_nameSOMlInitTerm function name into the exports file.
For full information on the imod emitter, see Specifying the
Initialization and Termination Function on page 215.

noint This option directs the SOM Compiler not to warn about the

portability problems of using int’s in the source.

nolock This option causes the Interface Repository Emitter emitir to leave

the IR unlocked when updates are made that can improve performance
on networked file systems. By not locking the IR, however, there is the
risk of multiple processes attempting to write to the same IR, with
unpredictable results. This option should only be used when you know
that only one process is updating an IR at once. For additional
information, see Chapter 9, The Interface Repository Framework on
page 337.

nomplans Directs the SOM Compiler not to generate a marshal plan for

any method of the current class in any emitted .ih or .xih file.

sc -sh;ih -mnomplans xidl

Programmer’s Guide for SOM and DSOM

Note, somcsr.h is still included in x. ih, but no marshal plans are
emitted.

Specifying nomplans has the same effect as specifying mplan=none
as a method modifier on every method introduced by the class. For
more information, see the mplan modifier and see Registering Class
Interfaces on page 30.

nopp This option directs the SOM Compiler not to run the SOM
preprocessor on the .idl input file.

notc A value of 2 must be specified (that is, -mnotc=2) to direct the
compiler not to generate typecode information. This option is only used
when compiling converted .csc files (that is, OIDL files originally) that
have not had typing information added.

nouseshort This option directs the SOM Compiler not to generate short
forms for type names in the .h and .xh public header files. This can be
useful to save disk space.

pass This option directs the ir emitter to emit passthru statements into the
IR file. Passthrus are added to InterfaceDef objects in the IR as
modifiers whose value equals the passthru string, including line breaks.
The modifiers are:

passthruC.h, passthruC.ih
passthruC.xh, passthruC.xih
passthruC.h_after, passthruC.ih_after
passthruC.xh_after, passthruC.xih_after

pbl This option directs the SOM Compiler that, in declarations containing a
linkage specifier, the "*" will appear before the linkage specifier. This is
required when using any C++ compiler (Watcom is a known example)
that cannot handle declarations in the default format where the "*"
follows the linkage specifier. A default example is the declaration:

typedef void (SOMLINK * somTD_SOMObject somFree)
(SOMObject *somSelf) ;

Under the -mpbl option of the SOM Compiler command, the same
example would be declared as:

typedef void (* SOMLINK somTD_ SOMObject somFree)
(SOMObject *somSelf) ;

pp=preprocessor This option directs the SOM Compiler to use the
specified preprocessor as the SOM preprocessor, rather than the
default “somcpp”. Any standard C/C++ preprocessor can be used as a
preprocessor for IDL specifications.

tcconsts This option directs the SOM Compiler to generate TypeCode
constants in the .h and .xh public header files. See TypeCode
Constants on page 351 for additional information on TypeCode
constraints.

updateir[=filestem] This option specifies that the Interface Repository data
file will be updated when the ir emitter is run. The updateir modifier
can include a filestem value to designate the IR file that will be
updated. For example, the following command updates the IR file
test.ir in the current directory:

The SOM Compiler 165

166

P

sc -sir -mupdateir=test.ir a.idl

Using the -sir option and the updateir modifier without a value is
equivalent to using the -u flag on the SOM Compiler command. Thus,
there is no need to use both the -u flag and the -mupdateir flag
together; simply choose one or the other, as convenient.

Causes the private sections of the IDL file to be included in the compilation (that is,
sections preceded by #ifdef _ PRIVATE__ that contain private methods and
attributes). If -p is used, it must be applied for both the implementation bindings (.ih or
xih file) and the usage bindings (.h or .xh file) to be #included in the implementation.

Checks that all names specified in the release order statement are valid method names
(default: FALSE).

-s "string"

-u

-V

-W

Substitutes string in place of the contents of the SMEMIT environment variable for the
duration of the current SOM Compiler command. This determines which emitters will be
run and, hence, which output files will be produced.

The -s option is a convenient way to override the SMEMIT environment variable. In OS/
2 and Windows NT, for example, the command:

> SC -s"h;c" EXAMPLE
is equivalent to the following sequence of commands:

> SET OLDSMEMIT=%SMEMITS%

> SET SMEMIT=H;C

> SC EXAMPLE

> SET SMEMIT=%OLDSMEMIT$%
For additional information on the SMEMIT environment variable, see Environment
Variables Affecting the SOM Compiler on page 159.
Similarly, in AIX the command:

> sc -sh”;”c example
is equivalent to the following sequence of commands:

export OLDSMEMIT=$SMEMIT
export SMEMIT=h";”c

sc example

export SMEMIT=$OLDSMEMIT

vV V V V

Updates the Interface Repository (default: no update). With this option, the Interface
Repository will be updated even if the ir emitter is not explicitly requested in the
SMEMIT environment variable or the -s option. For additional information on SMEMIT,
see Environment Variables Affecting the SOM Compiler on page 159.

Uses verbose mode to display information messages (default: FALSE). This option is
primarily intended for debugging purposes and for writers of emitters.

Suppresses warning messages (default: FALSE).

The following sample commands illustrate various options for the SOM Compiler command:

sc -sc hello.idl Generates file hello.c.

sc -h

Programmer’s Guide for SOM and DSOM

Generates a help message and displays the version of the SOM
Compiler currently available.
sc -vsh”;”ih hello.idl
Generates hello.h and hello.ih with informational messages.
sc -sxc -doutdir hello.idl

Generates hello.xc in directory outdir.

The pdl Facility

The SOM Compiler provides a Public Definition Language pdl emitter that generates a file
equivalent to the .idl file from which it is produced, except that it removes all items within
the .idl file that are marked as private. To mark an item as private surround it with

#ifdef _ PRIVATE__ and #endif directives. You can use the pdl emitter to generate a
public version of a .idl file. Generally, client programs need only the public methods and
attributes of an interface.

The SOMobjects Toolkit also provides a stand-alone program, pdl, capable of generating
not just a public version of a .idl file, but also arbitrary, user-defined versions. For example,
pdl can generate release-specific versions of a .idl file, a version with legacy support, and
so on. Using pdl can simplify the management of .idl source files by generating multiple
versions of the file from a common source, rather than maintaining multiple copies.

Using pdl To Maintain Common Versions of an IDL File

For example, assume that the file window.idl contains the interface to a window class, and
that maintenance of the current version 1.1 of the class is to be overlapped with
development of extensions for the 2.0 version. To support these concurrent activities you
could maintain independent copies of window.idl, one with version 1.1, the other with 2.0.
This approach is error prone and you must make changes to common code in two separate
files.

Here’s how to use pdl to generate two versions from a common source file. If extensions
for version 2.0 of the window class are made in window.idl:

#if VERSION >= 200
//extensions specific to version 2.0 and higher
#endif
then you can generate the version you want by invoking:
pdl -DVERSION=num window.idl

where num is 110 for version 1.1 or 200 for version 2.0. Changes to common code are
made in only one file, minimizing the likelihood of error.

The pdl program is somewhat similar to somcpp, the preprocessor invoked by the SOM
compiler. pdl, however, preprocesses a .idl file only partially, resolving some preprocessor
directives, while deferring others to somcpp which completely resolves all preprocessor
directives.

pdl examines all #if, #ifdef, and #ifndef directives in an input .idl file and evaluates the
associated conditional expressions to determine if subsequent text up to the matching
#endif or #else should be emitted or skipped. For example:

#ifdef ABC

void op() ;

The SOM Compiler 167

#else
void op (in long arg) ;
#endif
pdl could produce the following results:
» If ABC were defined on the pdl command line with -DABC then void op () ; would be
emitted into the output file.

» If aBC were explicitly undefined with -UABC, then void op (in long arg) ; would
be emitted.

» If ABC were unknown by being neither explicitly defined or undefined on the command
line, then all five lines would be emitted. somcpp and standard C or C++ processors
would handle this case differently, emitting void op (in long arg) ; instead of all
five lines.

pdl Simplification of Conditional Expressions

If possible, pdl simplifies a conditional expression whose value is unknown before it is
emitted. Consider a variation of the previous example:
#1if defined (ABC) && defined (DEF)
void op() ;
#else
void op(in long arg) ;
#endif
If ABC were defined with -DABC and DEF is unknown by being neither explicitly defined or
undefined, then pdl would emit the following:
#if defined (DEF)
void op() ;
#telse
void op(in long arg) ;
#endif
because defined (ABC) && defined (DEF) can be simplified to
TRUE && defined (DEF) which can be further simplified to defined (DEF).

pdl resolves as many conditional compilation directives as possible, based on identifier
definitions and undefinitions specified on the command line with the -D and -U options. An
identifier can be defined or undefined only on the command line, and not by #define or
#undef directives in the .idl file. This gives you fine control over which conditional
compilation directives get resolved in a specific invocation of pdl, and which ones get
deferred to subsequent preprocessing.

Syntax of the pdl Command

168

The syntax for the pdl command is:
pdl [-c cmd] [-d dir] [-f] [-h] [-s smemit] [-D id [=val]] [-U id] [-/ id] files

The pdl command supports the following options. Options can be specified individually, as
a string of option characters, or as a combination of both. Any option that takes an
argument either must be specified individually or must appear as the final option in a string
of option characters.

Programmer’s Guide for SOM and DSOM

-c cmd
Specifies that the pdl program is to run the specified system command for each .idl
file. This command may contain a single occurrence of the string %s, which will be
replaced with the source file name before the command is executed. For example, the
option -c sc -sh %s has the same effect as issuing the sc command with the -sh
option.

-d dir
Specifies a directory in which the output files are to be placed. The output files are
given the same name as the input files. If no directory is specified, the output files are
named fileStem.pdl| where fileStem is the file stem of the input file and are placed in the
current working directory.

Displays this description of the pdl command syntax and options.

Specifies that output files are to replace existing files with the same name, even if the
existing files are read-only. By default, files are replaced only if they have write access.

-S smemit
Specifies that pdl is to invoke the SOM Compiler with the SMEMIT variable.

-/ id
See -U option.

files
Specifies one or more .idl files to be processed. Filenames must be completely
specified with the .idl extension.

-Did[=val]
Defines id to val, if specified, or 1 otherwise.

-Uid
Undefined id.
If no -/, -U or -D options are specified, then -U __ PRIVATE__ is assumed.
For example, to install public versions of the .idl files in the directory pubinclude, type:
pdl -d pubinclude *.idl

The SOM Compiler 169

170 Programmer’s Guide for SOM and DSOM

Chapter 7. Implementing Classes in SOM

This chapter is a more in-depth discussion of SOM concepts and the SOM run-time
environment than Chapter 3, Tutorial for Implementing SOM Classes on page 49.
Subsequent sections provide information about completing an implementation template file,
updating the template file, compiling and linking, packaging classes in libraries, and other
useful topics for class implementors. Refer to Chapter 5, SOM Interface Definition
Language on page 115 for reference information or the full syntax of topics discussed in
this chapter. This chapter also describes customizing SOMobjects.

SOM Run-Time Environment

The SOMobjects Developer Toolkit provides:
* The SOM Compiler, used when creating SOM class libraries.
 The SOM run-time library, for using SOM classes at execution time.

The SOM run-time library provides a set of functions used primarily for creating objects and
invoking methods on them. The data structures and objects that are created, maintained,
and used by the functions in the SOM run-time library constitute the SOM run-time
environment.

A distinguishing characteristic of the SOM run-time environment is that SOM classes are
represented by run-time objects; these objects are called class objects. By contrast, other
object-oriented languages such as C++ treat classes strictly as compile-time structures that
have no properties at run time. In SOM, however, each class has a corresponding run-time
object. This has the following advantages:

» Application programs can access information about a class at run time, including its
relationships with other classes, the methods it supports and the size of its instances.

* Much of the information about a class is established at run-time.

» Class objects can be instances of user-defined classes in SOM, users can adapt the
techniques for subclassing and inheritance in order to build object-oriented solutions to
problems that are otherwise not easily addressed within an OOP context.

Run-Time Environment Initialization

When the SOM run-time environment is initialized, four primitive SOM objects are
automatically created. Three of these are class objects (SOMObject, SOMClass and
SOMClassMgr), and one is an instance of SOMClassMgr, called the
SOMClassMgrObject. Once loaded, application programs can invoke methods on these
class objects to perform tasks such as creating other objects, printing the contents of an
object, freeing objects and the like.

In addition to creating the four primitive SOM objects, initialization of the SOM run-time
environment also involves initializing global variables to hold data structures that maintain
the state of the environment. Other functions in the SOM run-time library rely on these
global variables.

For application programs written in C or C++ that use the language-specific bindings
provided by SOM, the SOM run-time environment is automatically initialized the first time
any object is created. Programmers using other languages must initialize the run-time
environment explicitly by calling the somEnvironmentNew function provided by the SOM
run-time library before using any other SOM functions or methods.

Implementing Classes in SOM 171

172

SOMObject Class Object

SOMObject is the root class for all SOM classes. It defines the behavior common to all
SOM objects. All user-defined SOM classes are derived, directly or indirectly, from this
class. Every SOM class is a subclass or derived subclass of SOMObject and has no
instance variables. Objects that inherit from SOMObject incur no size increase. They do
inherit a suite of methods that provide the behavior required of all SOM objects.

SOMClass Class Object

Because SOM classes are run-time objects and all run-time objects are instances of some
class, it follows that a SOM class object must be an instance of some class. The class of a
class is called a metaclass. Hence, the instances of an ordinary class are individuals
(nonclasses), while the instances of a metaclass are class objects.

In the same way that the class of an object defines the instance methods that the object
can perform, the metaclass of a class defines the class methods that the class itself can
perform. Class methods, also called factory methods or constructors, are performed by
class objects. Class methods perform tasks such as creating new instances of a class,
maintaining a count of the number of instances of the class, and other supervisory
operations. Also, class methods facilitate inheritance of instance methods from parent
classes.

See Figure 4 for the distinction between instance methods and class methods, as well as
that between objects, classes, and metaclasses. For the distinction between parent classes
and metaclasses, see Parent Class versus Metaclass on page 174.

SOMCIlass._is the root class for all SOM metaclasses. All SOM metaclasses must be
subclasses or derived metaclasses of SOMClass that defines the essential behavior
common to all SOM class objects. SOMClass provides:

» Class methods for creating new class instances: somNew, somNewNolnit,
somRenew, somRenewNolnit, somRenewNoZero and somRenewNolnitNoZero.

» Class methods that dynamically obtain or update information about a class and its
methods at run time, including:

- somAddDynamicMethod Method to introduce new dynamic methods
- somGetinstanceSize Method to obtain the size of an instance of this class
- somDescendedFrom Method to test if a specified class is derived from this class

Programmer’s Guide for SOM and DSOM

Pl
Metaclass "M"
N

Class Methools
defined In tralaciass
‘M° are performed by
tlass "G to produca

instances.

Y

-
L

Class "C'

N
Irstanee Methods ™
defined in class -
'C* are parformesd by

0,0,

Legend

metaclass
@ cloes
O obiect

——+ |5 an Instance of

Dh]ﬂct "01" i

Figure 4. Class methods versus instance methods.

SOMClass is a subclass of SOMObject. Hence, SOM class objects can perform the same
set of basic instance methods common to all SOM objects. Instance methods allows SOM
classes to be real objects in the SOM run-time environment. SOMClass has the distinction
of being its own metaclass.

A user-defined class can designate as its metaclass either SOMClass or another
user-written metaclass descended from SOMClass. If a metaclass is not explicitly
specified, SOM determines one automatically.

SOMClassMgr Class Object and SOMClassMgrObject

The third primitive SOM class is SOMClassMgr. An instance of the SOMClassMgr class is
created during SOM initialization. This instance is the SOMClassMgrObject because it is
pointed to by that global variable. The object SOMClassMgrObject:

* Maintains a registry, or run-time directory, of all SOM classes within the current process

e Assists in the dynamic loading and unloading of class libraries

Implementing Classes in SOM 173

Primitive classes supplied with S0M {bjects created during SOM initialization
v

7N N
SO0MOb]ect SOMClass
class object

,

7N
S0OMObject SOMClassMgr

clazs object clazs abject

R4

SOMClazs Mgr Ohject
abject

{

Legsnd

mataciags
@ class
O objact

— Inherlks from

——=+ iz aninstance of

Figure 5. The SOM run-time environment provides four primitive objects, three of them class objects.

SOM classes can be defined locally within a program or can be packaged in a class library.
For a class located in a class library, SOMClassMgr provides a method, somFindClass
Method, for directing the SOMClassMgrObject to load the library file for the class and to
create its class object. However, programs that use the C/C++ language bindings to create
and invoke methods are linked so that the operating system will automatically load the
appropriate libraries when the program is loaded.

Relationships among the four primitive SOM run-time objects are illustrated in Figure 5.
The primitive classes supplied with SOM are SOMObject, SOMClass and SOMClassMgr
with the latter class generating an instance called SOMClassMgrObject. The left-hand side
of Figure 5 shows parent-class relationships among the built-in SOM classes, and the
right-hand side shows instance/class relationships. That is, on the left SOMODbject is the
parent class of SOMClass and SOMClassMgr. On the right, SOMClass is the metaclass
of itself, SOMObject and SOMClassMgr, which are all class objects at run time.
SOMClassMgr is the class of SOMClassMgrObject.

Parent Class versus Metaclass

There is a distinct difference between the notions of parent class and metaclass. Both
notions are related to the fact that a class defines the methods and variables of its
instances which become instance methods and instance variables.

A parent of a given class is a class from which the given class is derived. Thus, the given
class is the child or subclass of the parent. A parent class is a class from which instance
methods and instance variables are inherited. For example, the parent of class Dog might
be class Animal. Hence, the instance methods and variables introduced by Animal (such
as methods for breathing and eating, or a variable for storing an animal’s weight) would

174 Programmer’s Guide for SOM and DSOM

also apply to instances of Dog, because Dog inherits these from Animal. As a result, any
given Dog instance would be able to breath and eat and would have a weight.

A metaclass is a class whose instances are class objects and whose instance methods and
instance variables are the methods and variables of class objects. For this reason, a
metaclass defines class methods: the methods a class object performs. For example, the
metaclass Animal might be AnimalMClass which defines the methods that can be
invoked on class Animal (such as, to create Animal instances: objects that are not
classes, like an individual pig or cat or elephant or dog).

It is important to distinguish the methods of a class object from the methods that the class
defines for its instances.

To summarize, the parent of a class provides inherited methods that the class instances
can perform. The metaclass of a class provides class methods that the class itself can
perform. The distinctions between parent class and metaclass are illustrated in Figure 6.

7N 7N

Parent class "P" Mataclazs "M"

N4 &

Object "0," S

— Inharits fram

——+ igan instance of

Figure 6. Characteristics of Parent Class versus Metaclass.

To summarize Figure 6 any class C has both a metaclass and one or more parent classes.

» The parent classes of C provide the inherited instance methods that individual
instances (objects 01) of class C can perform. Instance methods that an instance 01
performs might include:

initializing itself

performing computations using its instance variables

printing its instance variables

returning its size

* The metaclass M defines the class methods that class C can perform. For example,
class methods defined by metaclass M include those that allow C to

- inherit its parents’s instance methods and instance variables
- tell its own name
- create new instances

- tell how many instance methods it supports

Implementing Classes in SOM 175

These methods are inherited from SOMClass. Additional methods supported by M
might allow C to count how many instances it creates.

» Each class C has one or more parent classes and exactly one metaclass. The single
exception is SOMObject, which has no parent class. Parent classes must be explicitly
identified in the IDL declaration of a class. SOMObiject is given as a parent if no
subsequently-derived class applies. If a metaclass is not explicitly listed, the SOM run
time will determine an applicable metaclass.

» Aninstance of a metaclass is always another class object. For example, class C is an
instance of metaclass M. SOMClass is the SOM-provided metaclass from which all
subsequent metaclasses are derived.

A metaclass has its own inheritance hierarchy through its parent classes that is
independent of its instances’ inheritance hierarchies. In Figure 7, a sequence of classes is
defined, stemming from SOMObject. The or subclass at the end of this line, c2 inherits
instance methods from all of its ancestor classes (here, SOMObject and C1). An instance
created by c2 can perform any of these instance methods.

N
S0MClass
N/
ot N
/ﬁ\ Legend

w @ metaclase

! @ class
/J\ () bt

— inherits fram
U U ——+ iz an instance of

Figure 7. Derivation of Parent Classes and Metaclasses

In an analogous manner, a line of metaclasses is defined, stemming from SOMClass. Just
as a new class is derived from an existing class, a new metaclass is derived from an
existing metaclass. In this example, both SOMObject and class c1 are instances of the
SOMClass metaclass, whereas class C2 is an instance of metaclass M2, which inherits
from SOMClass.

Inheritance

176

One of the defining aspects of an object model is its support for inheritance. This section
describes SOM’s model for inheritance and explains how this relates to subclassing.

A class in SOM defines an implementation for objects that support a specific interface:

» The interface defines the methods supported by objects of the class, and is specified
using SOM IDL.

« The implementation defines the instance variables that implement an object’s state and
the procedures that implement its methods.

Programmer’s Guide for SOM and DSOM

Techniques for Deriving Subclasses

New classes are derived (by subclassing) from previously existing classes through
inheritance, specialization (or overriding), and addition, as follows.

Deriving Classes through Inheritance

Subclasses always inherit interface from their parent classes: any method available on
instances of a class is also available on instances of any class derived from it (either
directly or indirectly). In addition, subclasses generally inherit implementation (that is,
method procedures that implement inherited methods, and instance data that supports
these procedures).

Deriving Classes through Specialization

Inherited method procedures can be overridden (or redefined). This is often characterized
as specializing the implementation of an inherited method so that it is appropriate for
objects of the new subclass. With this technique, the class implementor can either
completely replace the inherited implementation or (by using parent-method calls) invoke
the inherited implementation (method procedures) as part of the overall behavior of the new
implementation.

Deriving Classes through Addition

Finally, a subclass can introduce new methods and new instance variables. New instance
variables are generally introduced only when necessary to support the implementation of
newly introduced methods or of overridden inherited methods. These new additions will, in
turn, be inherited by any subclasses of the current class (along with methods and instance
data inherited from more distant parents).

Multiple Inheritance

SOM supports multiple inheritance. That is, a class may be derived from (and may inherit
interface and implementation from) multiple parent classes. Multiple inheritance is not
available in SOM’s earlier interface definition language, OIDL. See Appendix B,
Converting OIDL Files to IDL on page 417 for information on how to automatically convert
existing OIDL files to IDL.

Resolving Problems with Multiple Inheritance

It is possible under multiple inheritance to encounter potential conflicts or ambiguities. All
multiple inheritance models must face these issues and resolve them in some way. The
following topics discuss some of these problems and describe SOM's solutions.

Problem 1: Having alternative meanings for the same name:

One conflict that may arise with multiple inheritance occurs when two ancestors of a class
define different methods (in general, with different signatures) using the same name. For
example, consider Figure 8, “Multiple Inheritance can Create Naming Conflicts.” . Class X
defines a method bar with type T1, and class Y defines a method bar with type T2. Class
Z is derived from both X and Y and z does not override method bar.

This example illustrates a method name that is overloaded: that is, used to name two
entirely different methods (note that overloading is completely unrelated to overriding). This
is not necessarily a difficult problem to handle. Indeed, the run-time SOM API allows the

Implementing Classes in SOM 177

178

construction of a class that supports the two different bar methods illustrated in Figure 8.
(They are implemented using two different method-table entries, each of which is
associated with its introducing class.)

77N

clase™™

bar {of bypea T1} bar {of bype T2}

T bar ?

Legend

class
— inheritz from

Figure 8. Multiple Inheritance can Create Naming Conflicts.

However, the interface to instances of such classes cannot be defined using IDL. IDL
specifically forbids the definition of interfaces in which method names are overloaded.
Furthermore, within SOM itself, the use of such classes can lead to anomalous behavior
from name-lookup method resolution (discussed in Method Resolution on page 183),
since, in this case, a method name alone does not identify a unique method. For these
reasons, statically declared multiple-inheritance classes in SOM are restricted to those
whose interfaces can be defined using IDL. Thus, the preceding example cannot be
constructed with the aid of the SOM Compiler.

This kind of problem can be very irritating when it prevents programmers from using
multiple inheritance to combine the functionality from different classes. A good guideline for
preventing this problem is that, when introducing new methods in a class, you should try to
avoid using method names that other classes might use independently. For example, you
can use method names that have identifying prefixes not likely to be used by other classes.
All methods introduced by the SOM kernel classes have “som” as a prefix.

Problem 2: Using alternative implementations for the same inherited method:

When multiple inheritance is used to define a class, the class may inherit the same method
or instance variable from different parents (because each of these parents has some
common ancestor that introduces the method or instance variable). In this situation, a SOM
subclass inherits only one implementation of the method or instance variable. The
implementation of an instance variable is basically the location within an object where it is
stored. There is no ambiguity here, since classes cannot override the layout of inherited
instance data. But classes do override method procedures, so different parents might have
different implementations for the same method. The following illustration addresses the
guestion of which method procedure would be inherited when there is an ambiguity with
respect to an inherited method implementation.

Consider the situation in Figure 9. Class w defines a method foo, implemented by
procedure procl. Class W has two subclasses, X and Y. Subclass Y overrides the
implementation of foo with procedure proc2. Subclass X does not override “foo”. In
addition, classes x and Y share a common subclass, z. That is, the IDL interface statement
for class z lists its parents as X and Y in that order.

Programmer’s Guide for SOM and DSOM

foo {praet}

class™y"
N/

100 {prac2}

N/

foo {praci}

clags™Z" | foo {77}

Legend

class

— inherits from
A ig implemarted by (B}

Figure 9. Resolution of Multiple-Inheritance Ambiguities.

Which implementation of method foo does class z inherit: procedure proc1 defined by
class w, or procedure proc2 defined by class Y? The procedure for performing inheritance
that is defined by the SOMClass class resolves this ambiguity by using the left path
precedence rule: When the same method is inherited from multiple ancestors, the
procedure used to support the method is the one used by the leftmost ancestor from which
the method is inherited.

This ordering of parent classes is determined by the order in which the class implementor
lists the parents in the IDL specification for the class.

In Figure 9, then, class z inherits the implementation of method foo defined by class w
(procedure proc1), rather than the implementation defined by class Y (procedure proc?2),
because X is the leftmost ancestor of z from which the method foo is inherited. This rule
may be interpreted as giving priority to classes whose instance interfaces are mentioned
firstin IDL interface definitions.

If a class implementor decides that the default inherited implementation is not appropriate
(for example, procedure proc?2 is desired), then SOM IDL allows the class designer to
select the parent whose implementation is desired. For more information concerning this
approach. For additional information on the select modifier, see Modifier Statements on
page 133.

To summarize, defining a multiple-inheritance class requires a class designer to be aware
of the potential for alternative inherited implementations of a method. When this happens,
the class designer can explicitly choose the desired inherited implementation. The next
multiple-inheritance issue deals with problems that may arise when overriding a method
whose implementation is inherited from multiple parents.

Problem 3: Making multiple parent-method calls:
In a common OOP paradigm, subclasses override an inherited method with code that:
» provides specialized handling of the method invocation appropriate to the subclass

» performs parent-method calls to allow ancestor classes to participate in the execution
of the method. Whether this is appropriate depends on the method involved.

When documenting newly introduced methods, you should always indicate whether the
implementation of a method is intended to be shared among different classes. For such
shared methods, however, multiple inheritance can pose serious questions.

Implementing Classes in SOM 179

To illustrate, imagine that class z in the preceding example overrides the foo method to
provide a specialized implementation. When an overridden method such as foo is inherited
from multiple parents, the SOMobjects implementation bindings define multiple parent-call
macros: one for each (non-abstract) parent from which the method is inherited.
Unfortunately, however, calling more than one of these macros normally causes the
implementations at and above the “diamond top” (for example, class w in the previous
example) to be executed multiple times. Depending on the particular method involved, this
may or may not create a problem. But it should always be cause for concern.

Given the different ways that multiple inheritance can be used in SOM, there is no good,
overall solution to this problem. One way to handle it (assuming you have control over all
the classes involved), is to only make parent-method calls to the diamond top from one of
its subclasses. This may be possible in special cases, but it is not a general solution. In
other situations, it may be appropriate to make only one parent-method call from a
multiple-inheritance class, even though the method is inherited from more than one parent.

More fundamentally, however, you can avoid creating diamond tops in the first place. The
SOMObject class is often a diamond top above multiple inheritance classes, but this is not
a problem. Only a few of SOMObject’s methods are intended to be overridden with
implementations that make parent-method calls. The somlInit and somUninit methods
originally fell into this category, but these methods now execute under the overall control of
the somDefaultinit Method and somDestruct Method, which are specially designed to
avoid multiple executions at diamond tops. The only other SOMObject method that is
meant to be overridden with implementations that make parent-method calls to all parents
is somDumpSelfint Method. This method causes no problems because SOMObject
implementation of the method does nothing.

The best approach is to avoid multiple inheritance when it would create more than one
inheritance path to any class other than SOMObiject.

Multiple inheritance requires careful thought. If you create a multiple-inheritance class, and
if you override a method that is inherited from multiple parents, you should give careful
consideration before making parent-method calls to more than one of these parents, if they
have a common ancestor other than SOMODbject.

Although multiple inheritance can be problematic, it is nevertheless a valuable and
important part of SOM. Multiple inheritance is essential in order to provide reliable support
for explicit metaclasses.

SOM-Derived Metaclasses

180

As discussed in Parent Class versus Metaclass a class object can perform any of the
class methods that its metaclass defines. New metaclasses are typically created to modify
existing class methods or to introduce new class methods. Chapter 10, The Metaclass
Framework on page 357 discusses metaclass programming.

The following factors are essential for effective use of metaclasses in SOM:
* Every class in SOM is an object that is implemented by a metaclass.

* You can define and name new metaclasses and can use these metaclasses when
defining new SOM classes.

Metaclasses cannot interfere with the fundamental guarantee required of every OOP
system: specifically, any code that executes without method-resolution error on instances of
a given class also will execute without method-resolution errors on instances of any
subclass of this class.

Programmer’s Guide for SOM and DSOM

Surprisingly, SOM is currently the only OOP system that can make this final guarantee
while also allowing programmers to explicitly define and use named metaclasses. This is
possible because SOM automatically determines an appropriate metaclass that supports
this guarantee, automatically deriving new metaclasses by subclassing at run time when
this is necessary.

To better understand this concept, consider the situation in Figure 10. Here, class A is an
instance of metaclass AMeta. Assume that AMeta supports a method bar and that A
supports a method foo that uses the expression:

_bar(_somGetClass(somSelf))

That is, method foo invokes bar on the class of the object on which foo is invoked. For
example, when method foo is invoked on an instance of class A (say, object 01), this in
turn invokes bar on class A itself.

Afl;'l-;t\a b m interface B:A {

S, ... implamsntion {
|
- o
|

metaclass = BMeta:

};...
}:

Legend

mstaclass

@ olass
O abyject

— inhwerits from

——+ |5 an Instance of

Figure 10. Example of Metaclass Incompatibility

Now consider what happens when 2 is subclassed by B, a class that has the explicit
metaclass BMeta declared in its SOM IDL source file, as shown by the code in Figure 10.
If the class hierarchy were formed as in Figure 10, then an invocation of £oo on 02 would
fail, because metaclass BMeta does not support the bar method introduced by AMeta.

There is only one way that BMeta can support this specific method — by inheriting it from
AMeta (BMeta could introduce another method named bar, but this would be a different
method from the one introduced by AMeta). Therefore, in this example, because BMeta is
not a subclass of AMeta, BMeta cannot be allowed to be the metaclass of B. That is,
BMeta is not compatible with the requirements placed on B by the fundamental guarantee
of OOP referred to above. This situation is referred to as metaclass incompatibility.

SOM does not allow hierarchies with metaclass incompatibilities. Instead, SOM
automatically builds derived metaclasses when this is necessary. The resulting class
hierarchy in this example is depicted in Figure 11, where SOM has automatically built the
metaclass DerivedMetaclass. This ensures that the invocation of method foo on
instances of class B will not fail, and also ensures that the desired class methods provided
by BMeta will be available on class B.

Implementing Classes in SOM 181

182

Legend

metaclass

— inhwerits from

——+ |5 an Instance of

Figure 11. Example of a Derived Metaclass.

There are three important aspects of SOM'’s approach to derived metaclasses:

1. The creation of SOM-derived metaclasses is integrated with programmer-specified
metaclasses. If a programmer-specified metaclass already supports all the class
methods and variables needed by a new class, then the programmer-specified
metaclass will be used as is.

2. If SOM must derive a different metaclass than the one explicitly indicated by the
programmer (in order to support all the necessary class methods and variables), then
the SOM-derived metaclass inherits from the explicitly indicated metaclass first. As a
result, the method procedures defined by the specified metaclass take precedence
over other possibilities (see the following section on inheritance and the discussion of
resolution of ambiguity in the case of multiple inheritance).

3. The class methods defined by the derived metaclass invoke the appropriate
initialization methods of its parents to ensure that the class variables of its instances
are correctly initialized.

As further explanation for the automatic derivation of metaclasses, consider the following
multiple-inheritance example. In Figure 12, class C does not have an explicit metaclass
declaration in its SOM IDL, yet its parents do. As a result, class ¢ requires a derived
metaclass. If you still have trouble following the reasoning behind derived metaclasses, ask
yourself the following question: What class should ¢ be an instance of? After a bit of
reflection, you will conclude that if SOM did not build the derived metaclass, you would
have to do so yourself.

Programmer’s Guide for SOM and DSOM

Legend

retaciass
@ class
O chijoct

— inheriks from

——— Iz an Instance of

Figure 12. Multiple inheritance in SOM requires derived metaclasses.

In summary, SOM allows and encourages the definition and explicit use of named
metaclasses. With named metaclasses, programmers can not only affect the behavior of
class instances by choosing the parents of classes, but they can also affect the behavior of
the classes themselves by choosing their metaclasses. Because the behavior of classes in
SOM includes the implementation of inheritance itself, metaclasses in SOM provide an
extremely flexible and powerful capability allowing classes to package solutions to
problems that are otherwise very difficult to address within an OOP context.

At the same time, SOM is unique in that it relieves programmers of the responsibility for
avoiding metaclass incompatibility when defining a new class. At first glance, this might
seem to be merely a useful (though very important) convenience. But, in fact, it is
absolutely essential, because SOM is predicated on binary compatibility with respect to
changes in class implementations.

A programmer might know the metaclasses of all ancestor classes of a new subclass and
be able to explicitly derive an appropriate metaclass for the new class. Nevertheless, SOM
must guarantee that this new class will still execute and perform correctly when any of its
ancestor class implementations are changed. Derived metaclasses allow SOM to make this
guarantee. A SOM programmer doesn’t have to worry about metaclass incompatibility.
Instead, explicit metaclasses can be used to “add in” whatever behavior is desired for a
new class. SOM handles anything else that is needed. Chapter 10, The Metaclass
Framework on page 357 provides useful examples of metaclasses. A SOM programmer
can find uses for the techniques illustrated there.

Method Resolution

Method resolution is the step of determining which procedure to execute in response to a
method invocation. For example, consider this scenario:

* Class Dog introduces a method bark.
» A subclass of Dog, called Bigbog, overrides bark.

» Aclient program creates an instance of either Dog or Bighog (depending on some
run-time criteria) and invokes method bark on that instance.

Implementing Classes in SOM 183

Method resolution is the process of determining, at run time, which method procedure to
execute in response to the method invocation (either the method procedure for bark
defined by Dog, or the method procedure for bark defined by BigDog). This determination
depends on whether the receiver of the method is an instance of Dog or BigDog.

SOM allows class implementors and client programs considerable flexibility in deciding how
SOM performs method resolution. In particular, SOM supports three mechanisms for
method resolution, described in order of increased flexibility and increased computational
cost: offset resolution, name-lookup resolution, and dispatch-function resolution. These
different kinds of method resolution are described after first introducing the four different
kinds of methods in SOMobijects.

Four kinds of SOM Methods

184

SOM supports four different kinds of methods: static, nonstatic, dynamic and direct-call.
The following paragraphs explain these four method categories and the kinds of method
resolution available for each.

Static Methods

These are similar in concept to C++ virtual functions. Static methods are normally invoked
using offset resolution via a method table, as described in Offset Resolution on page 185,
but all three kinds of method resolution are applicable to static methods. Each different
static method available on an object is given a different slot in the object’s method table.
When SOMobijects Toolkit language bindings are used to implement a class, the SOM IDL
method modifier can be specified to indicate that a given method is static; however, this
modifier is rarely used since it is the default for SOM methods.

Static methods introduced by a class can be overridden (redefined) by any descendant
classes of the class. When SOMobjects language bindings are used to implement a class,
the SOM IDL override modifier is specified to indicate that a class overrides a given
inherited method. When a static method is resolved using offset resolution, it is not
important which interface is accessing the method: the actual class of the object on which
the method is invoked determines the method procedure that is selected.

Nonstatic Methods

These methods are similar in concept to C++ nonstatic member functions (that is, C++
functions that are not virtual member functions and are not static member functions).
Nonstatic methods are normally invoked using offset resolution, but all three kinds of
method resolution are applicable to nonstatic methods. When the SOMobjects language
bindings are used to implement a class, the SOM IDL nonstatic modifier is used to indicate
that a given method is nonstatic.

Like static methods, nonstatic methods are given individual positions in method tables.
However, nonstatic methods cannot be overridden. Instead, descendants of a class that
introduces a nonstatic method can use the SOM IDL reintroduce modifier to hide the
original nonstatic method with another (nonstatic or static) method of the same name.
When a nonstatic method is resolved, selection of the specific method procedure is
determined by the interface that is used to access the method.

Dynamic Methods

These methods are not declared when specifying an object interface using IDL. Instead,
they are registered with a class object at run time using somAddDynamicMethod Method.

Programmer’s Guide for SOM and DSOM

Because there is no way for SOM to know about dynamic methods before run time, offset
resolution is not available for dynamic methods. Only nhame-lookup or dispatch-function
resolution can be used to invoke dynamic methods.

Dynamic methods are not overridden in subclasses but are hidden by subclasses in which
a dynamic method of the same name is added. This provides much the same effect that
overriding provides for static methods. Specifically, method resolution for dynamic methods
typically begins with the class of the object on which the method is invoked, and works
upward in the class hierarchy searching for a class that supports the indicated method. See
Name-Lookup Resolution on page 186 for a description of the search order.

Direct-Call Procedures

These are similar in concept to C++ static member functions. Direct-call procedures are
not given positions in SOM method tables and are not known to SOM class objects.
Instead, language bindings are generated to call them directly without method resolution.

Strictly speaking, none of the previous method-resolution approaches (offset resolution,
name-lookup resolution, or dispatch-function resolution) applies for invoking a direct-call
procedure, although SOMobjects language bindings provide the same invocation syntax for
direct-call procedures as for static or nonstatic methods. Direct-call procedures cannot be
overridden, but they can be reintroduced. When SOMobjects language bindings are used to
implement a class, the SOM IDL procedure modifier is used to indicate that a given
method is a direct-call procedure.

Offset Resolution

When using SOM’s C and C++ language bindings, offset resolution is the default way of
resolving static and nonstatic methods, because it is the fastest. For those familiar with C++,
this is roughly equivalent to the C++ virtual function concept. Offset resolution cannot be
used to resolve dynamic methods or direct-call procedures.

Although offset resolution is the fastest technique for method resolution, it is also the most
constrained. Specifically, using offset resolution requires these constraints:

* The name of the method to be invoked must be known at compile time

» The name of the class that introduces the method must be known at compile time
although not necessarily by the programmer

* The method to be invoked must be part of the introducing class static interface definition

To perform offset method resolution, SOM first obtains a method token. The method token
is then used as an index into the receiver’'s method table, to access the appropriate method
procedure. Because it is known at compile time which class introduces the method and
where the method’s token is stored, offset resolution is quite efficient.

An object’s method table is a table of pointers to the procedures that implement the
methods that the object supports. This table is constructed by the object’s class and is
shared among the class instances. The method table built by class (for its instances) is
referred to as the class’s instance method table. This is useful terminology, since, in SOM,
a class is itself an object with a method table (created by its metaclass) used to support
method calls on the class.

Usually, offset method resolution is sufficient; however, in some cases, the more flexible
name-lookup resolution is required.

Implementing Classes in SOM 185

Name-Lookup Resolution

186

Name-lookup resolution is similar to the method resolution techniques employed by
Objective-C and Smalltalk, and it can be used for all but direct-call procedures. Name-
lookup resolution is considerably slower than offset resolution. It is more flexible, however.
In particular, name-lookup resolution, unlike offset resolution, can be used when:

 The name of the method to be invoked isn’t known until run time.
« The method is added to the class interface at run time.
* The name of the class introducing the method isn’'t known until run time.

For example, a client program may use two classes that define two different methods of the
same name, and it might not be known until run time which of the two methods should be
invoked (because, for example, it will not be known until run time which class’s instance the
method will be applied to).

Name-lookup resolution is performed by a class, so it requires a method call. (Offset
resolution, by contrast, requires no method calls.) To perform name-lookup method
resolution, the class of the intended receiver object obtains a method procedure pointer for
the desired method that is appropriate for its instances. In general, this will require a
name-based search through various data structures maintained by ancestor classes.
Figure 13 illustrates this search order.

Lagsnd

dass
— Inharits from

Figure 13. Search Order for Name-Lookup Resolution.

For static and nonstatic methods, offset and name-lookup resolution achieve the same net
effect (that is, they select the same method procedure); they just achieve it differently (via
different mechanisms for locating the method’s method token). Offset resolution is faster,
because it does not require searching for the method token, but name-lookup resolution is
more flexible.

When defining (in SOM IDL) the interface to a class of objects, the class implementor can
decide, for each method, whether the SOM Compiler will generate usage bindings that
support name-lookup resolution for invoking the method. Regardless of whether this is
done, however, application programs using the class can have SOM use either technique,

Programmer’s Guide for SOM and DSOM

on a per-method-call basis. Chapter 4, Using SOM Classes in Client Programs on page
69 describes how client programs invoke methods.

Dispatch-Function Resolution

Dispatch-function resolution is the slowest, but most flexible, of the three method-
resolution techniques. Dispatch functions permit method resolution to be based on arbitrary
rules associated with the class of which the receiving object is an instance. Thus, a class
implementor has complete freedom in determining how methods invoked on its instances
are resolved.

With both offset and name-lookup resolution, the net effect is the same: the method
procedure that is ultimately selected is the one supported by the class of which the receiver
is an instance. For example, if the receiver is an instance of class Dog, then Dog’s method
procedure will be selected; but if the receiver is an instance of class BigDog, then BigDog’s
method procedure will be selected.

By contrast, dispatch-function resolution allows a class of instances to be defined such that
the method procedure is selected using some other criteria. For example, the method
procedure could be selected on the basis of the arguments to the method call, rather than
on the receiver. The use of dispatch-function resolution requires customizing techniques.

Customizing Method Resolution

Customizing method resolution requires the use of metaclasses that override SOMClass
methods. This is not recommended without use of a Cooperation Framework that
guarantees correct operation of SOMobjects in conjunction with such metaclasses.
SOMobijects users who require this functionality should request access to the experimental
Cooperation Framework used to implement the SOMobjects Metaclass Framework.
Metaclasses implemented using the Cooperation Framework may have to be
reprogrammed in the future when SOMobijects introduces an officially supported
Cooperation Framework.

Implementing SOM Classes

The interface to a class of objects contains the information that a client must know to use
an object — namely, the signatures of its methods and the names of its attributes. The
interface is described in a formal language independent of the programming language used
to implement the object’s methods. In SOM, the formal language used to define object
interfaces is the Interface Definition Language.

The implementation of a class of objects (that is, the procedures that implement the
methods and the instance variables that store an object’s state) is written in the
implementor’s preferred programming language. This language can be object-oriented (for
instance, C++) or procedural (for instance, C).

A completely implemented class definition, then, consists of two main files:

* An IDL specification of the interface to instances of the class — the interface definition
file (or .idl file) and

» Method procedures written in the implementor’s language of choice: the
implementation file.

The SOM Compiler provides the link between those two files: To assist users in
implementing classes, the SOM Compiler produces a template implementation file: a

Implementing Classes in SOM 187

type-correct guide for how the implementation of a class should look. Then, the class
implementor modifies this template file to fully implement the class’s methods. That process
is the subject of the remainder of this chapter.

The SOM Compiler can also update the implementation file to reflect changes subsequently
made to a class’s interface definition file (the .idl file). These incremental updates include
adding new methods, adding comments, and changing method prototypes to reflect
changes made to the method declarations in the IDL specification. These updates to the
implementation file, however, do not disturb existing code in the method procedures. These
updates are discussed further in Running Incremental Updates of the Implementation
Template File on page 193.

For C programmers, the SOM Compiler generates a .c file. For C++ programmers, the SOM
Compiler generates a .C file (for AlX) or a .cpp file. To specify whether the SOM Compiler
should generate a C or C++ implementation template, set the value of the SMEMIT
environment variable, or use the -s option when running the SOM Compiler. (See Chapter
6, The SOM Compiler on page 155.) Be aware that bindings for both C and C++ cannot be
produced by the same compiler execution

As this chapter describes, a SOM class can be implemented by using C++ to define the
instance variables introduced by the class and to define the procedures that implement the
overridden and introduced methods of the class. Be aware, that the C++ class defined by
the C++ usage bindings for a SOM class cannot be subclassed in C++ to create new C++
or SOM classes.

Implementation Template

188

Consider the following IDL description of the Hel1lo class:

#include <somobj.idls>

interface Hello : SOMObject

{

void sayHello() ;
// This method outputs the string “Hello, World!”.

}i
From this IDL description, the SOM Compiler generates the following C implementation
template, hello. c (a C++ implementation template, hello.C or hello. cpp, is identical
except that the #included file is hello.xih rather than hello.ih):

#define Hello Class_Source

#include <hello.ih>

/*
* This method outputs the string “Hello, World!”.
*/

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)

{

Programmer’s Guide for SOM and DSOM

/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug (“*Hello”, “sayHello”) ;

}

The first line defines the Hello Class_Source symbol, which is used in the
SOM-generated implementation header files for C to determine when to define various
functions, such as HelloNewClass. For interfaces defined within a module, the directive
“#define className_Class_Source” is replaced by the directive

“#define SOM_Module_moduleName_Source”.

The second line (#include <hello.ih> for C,or #include <hello.xih> for C++)
includes the SOM-generated implementation header file. This file defines a struct holding
the class’s instance variables, macros for accessing instance variables, macros for
invoking parent methods, and so forth.

Stub Procedures for Methods

For each method introduced or overridden by the class, the implementation template

includes a stub procedure: a procedure that is empty except for an initialization statement,
a debugging statement, and possibly a return statement. The stub procedure for a method
is preceded by any comments that follow the method’s declaration in the IDL specification.

For method sayHello” above, the SOM Compiler generates the following prototype of the
stub procedure:

SOM_Scope void SOMLINK sayHello (Hello somSelf, Environment *ev)

Unless it is already defined, the “SOM_Scope” symbol is defined in the implementation
header file as static. The term “void” signifies the return type of method sayHello. The
SOMLINK symbol is defined by SOM; it represents the keyword needed to specify a
function-linkage convention to the C or C++ compiler, and its value is system-specific. Using
the “SOMLINK” symbol allows the code to work with a variety of compilers without
modification.

Following the SOMLINK symbol is the name of the procedure that implements the method.
If no functionprefix modifier has been specified for the class, then the procedure name is
the same as the method name. If a functionprefix modifier is in effect, then the procedure
name is generated by prepending the specified prefix to the method name. For example, if
the class definition contained the following statement:

functionprefix = xx_;
then the prototype of the stub procedure for method “sayHello” would be:

SOM_Scope void SOMLINK xx sayHello(Hello somSelf, Environment *ev)
The functionprefix cannot be

<classname>
since this is used in method invocation macros defined by the C usage bindings.
Following the procedure name is the formal parameter list for the method procedure.
Because each SOM method always receives at least one argument (a pointer to the SOM
object that responds to the method), the first parameter name in the prototype of each stub
procedure is called somSelf. (The macros defined in the implementation header file rely on

this convention.) The somSelf parameter is a pointer to an object that is an instance of the
class being implemented (here, class Hel1lo) or an instance of a class derived from it.

Unless the IDL specification of the class included the callstyle = oidl modifier, then the
formal parameter list will include one or two additional parameters before the parameters
declared in the IDL specification: an (Environment *ev) input/output parameter, which

Implementing Classes in SOM 189

190

permits the return of exception information, and, if the IDL specification of the method
includes a context specification, a (Context *ctx) input parameter. These parameters are
prescribed by the CORBA standard. For more information on using the Environment and
Context parameters, see Exceptions and Error Handling on page 100.

The first statement in the stub procedure for method “sayHello” is the statement:
/* HelloData *somThis = HelloGetData (somSelf); */

This statement is enclosed in comments only when the class does not introduce any
instance variables. The purpose of this statement, for classes that do introduce instance
variables, is to initialize a local variable (somThis) that points to a structure representing
the instance variables introduced by the class. The somThis pointer is used by the macros
defined in the He11lo implementation header file to access those instance variables. (These
macros are described below.) In this example, the Hel1lo class introduces no instance
variables, so the statement is commented out. If instance variables are later added to a
class that initially had none, then the comment characters can be removed by the
programmer if access to the variable is required.

The HelloData type and the HelloGetData macro used to initialize the somThis pointer
are defined in the implementation header file. Within a method procedure, class
implementors can use the somThis pointer to access instance data, or they can use the
convenience macros defined for accessing each instance variable, as described below.
These macros also use somThis.

To implement a method so that it can modify a local copy of an object’s instance data
without affecting the object’s real instance data, declare a variable of type classNameData
(for example, HelloData) and assign to it the structure that somThis points to; then make
the somThis pointer point to the copy. For example:

HelloData myCopy = *somThis;
somThis = &myCopy;

Next in the stub procedure for method “sayHello” is the statement:
HelloMethodDebug (“*Hello”, “sayHello”) ;

This statement facilitates debugging. The HelloMethodDebug macro is defined in the
implementation header file. It takes two arguments, a class name and a method name. If
debugging is turned on (that is, if global variable SOM_TraceLevel is set to 1 in the calling
program), the macro produces a message each time the method procedure is entered.
(See Chapter 4, Using SOM Classes in Client Programs on page 69 for information on
debugging with SOM.)

Debugging can be permanently disabled (regardless of the SOM_TraceLevel setting in the
calling program) by redefining the classNameMethodDebug macro following the #include
directive for the implementation header file, as illustrated below. (This can yield a slight
performance improvement.) For example, to permanently disable debugging for the Hello
class, insert the following lines in the hello. c implementation file following the line
#include hello.ih (or #include hello.xih, for classes implemented in C++):

#undef HelloMethodDebug
#define HelloMethodDebug (c,m)

Alternatively, using -DRETAIL as a C/C++ compiler option when compiling a class
implementation achieves the same effect.

The way in which the stub procedure ends is determined by whether the method is a new
or an overriding method:

» For non-overriding methods, the stub procedure ends with a return statement. The
class implementor should customize this return statement.

Programmer’s Guide for SOM and DSOM

» For overriding methods, the stub procedure ends by making a “parent method call” for
each of the class parent classes. If the method has a return type that is not void, the
last of these parent method calls is returned as the result of the method procedure. The
class implementor can customize this return statement. See Making Parent Method
Calls on page 192.

If a classinit modifier was specified to designate a user-defined procedure that will initialize
the Hello class object, as in the statement:

classinit = HInit;
then the implementation template file would include the following stub procedure for “HInit”,
in addition to the stub procedures for Hello’s methods:

SOM_Scope void SOMLINK HInit (SOMClass *cls)

{
}

For a direct-call procedure, the stub appears as follows:
SOMEXTERN <rettype> SOMLINK

somp_<className> <procedureName>(...);

{
}

This stub procedure is then filled in by the class implementor. If the class definition
specifies a functionprefix modifier, the classinit procedure name is generated by
prepending the specified prefix to the specified classinit name, as with other stub
procedures.

Extending the Implementation Template

To implement a method, add code to the body of the stub procedure. In addition to
standard C or C++ code, class implementors can also use any of the functions, methods
and macros SOM provides for manipulating classes and objects. Chapter 4, Using SOM
Classes in Client Programs on page 69 discusses these functions, methods and macros.

In addition to the functions, methods, and macros SOM provides for both class clients and
class implementors, SOM provides two facilities especially for class implementors. They
are for accessing instance variables of the object responding to the method and making
parent method calls.

Accessing Internal Instance Variables

To access internal instance variables, class implementors can use either of the following
forms:

_variableName
somThis->variableName

To access internal instance variables “a”, “b”, and “c”, for example, the class implementor
could use either _a, b, and _c, or somThis->a, somThis->b, and somThis->c. These
expressions can appear on either side of an assignment statement. The somThis pointer
must be properly initialized in advance using the classNameGetData procedure, as shown
above.

Implementing Classes in SOM 191

192

Note: For C++ programmers, the _variableName form is available only if the macro
VARIABLE MACROS is defined (that is, #define VARIABLE MACROS) in the
implementation file prior to including the .xih file for the class.

Instance variables can be accessed only within the implementation file of the class that
introduces the instance variable, and not within the implementation of subclasses or within
client programs. (To allow access to instance data from a subclass or from client programs,
use an attribute rather than an instance variable to represent the instance data.)

Making Parent Method Calls

In addition to macros for accessing instance variables, the implementation header file
contains definitions of macros for making parent method calls. When a class overrides a
method defined by one or more of its parent classes, often the new implementation needs
to augment the functionality of the existing implementations. Rather than completely
re-implementing the method, the overriding method procedure can conveniently invoke the
procedure that one or more of the parent classes uses to implement that method, then
perform additional computation as needed. The parent method call can occur anywhere
within the overriding method. See Example 3. Overriding an Inherited Method on page
60.

The SOM-generated implementation header file defines the following two macros for
making parent-method calls from within an overriding method:

className_parent_parentClassName_methodName and
className_parents_methodName

A macro of the first kind is defined for each parent class of the class overriding the method.
For example, given class Hello with parents File and Printer and overriding method
sominit (the SOM method that initializes each object), the SOM Compiler defines the
following macros in the implementation header file for Hello:

Hello parent Printer somInit
Hello parent File somInit
Hello parents somInit

Each macro takes the same number and type of arguments as methodName. The
className_parent_parentClassName_methodName macro invokes the implementation of
methodName inherited from parentClassName. Hence, using the macro

Hello parent File somInit invokes File’s implementation of sominit.

The className_parents_methodName macro invokes the parent method for each parent
of the child class that supports methodName. That is, Hello parents_ somInit would
invoke File’s implementation of sominit, followed by Printer’'s implementation of sominit.
The className_parents_methodName macro is redefined in the binding file each time the
class interface is modified, so that if a parent class is added or removed from the class
definition, or if methodName is added to one of the existing parents, the macro
className_parents_methodName will be redefined appropriately.

Converting C++ Classes to SOM Classes

For C++ programmers implementing SOM classes, SOM provides a macro that simplifies
the process of converting C++ classes to SOM classes. This macro allows the
implementation of one method of a class to invoke another new or overriding method of the
same class on the same receiving object by using the following shorthand syntax:

_methodName (argl, arg2, ...)

Programmer’s Guide for SOM and DSOM

For example, if class X introduces or overrides methods m1 and m2, then the C++
implementation of method m1 can invoke method m2 on its somSelf argument using
_m2(argl, arg2, ...), rather than somSelf->m2(argl, arg2, ...), as would otherwise be
required. (The longer form is also available.) Before the shorthand form in the
implementation file is used, the macro METHOD MACROS must be defined (that is, use
#define METHOD MACROS) prior to including the .xih file for the class.

Running Incremental Updates of the Implementation
Template File

Refining the .idl file for a class is typically an iterative process. For example, after running
the IDL source file through the SOM Compiler and writing some code in the implementation
template file, the class implementor realizes that the IDL class interface needs another
method or attribute, a method needs a different parameter, or any such changes.

As mentioned earlier, the SOM Compiler (when run using the c or xc emitter) assists in this
development by reprocessing the .idl file and making incremental updates to the current
implementation file. This modify-and-update process may in fact be repeated several times
before the class declaration becomes final. Importantly, these updates do not disturb
existing code for the method procedures. Included in the incremental update are these
changes:

e Stub procedures are inserted into the implementation file for any new methods added
to the .idl file.

« New comments in the .idl file are transferred to the implementation file, reformatted
appropriately.

» If the interface to a method has changed, a new method procedure prototype is placed
in the implementation file. As a precaution, however, the old prototype is also
preserved within comments. The body of the method procedure is left untouched.

» Similarly left intact are preprocessor directives, data declarations, constant
declarations, non-method functions, and additional comments: in essence, everything
else in the implementation file.

Some changes to the .idl file are not reflected automatically in the implementation file after
an incremental update. The class implementor must manually edit the implementation file
after changes such as these in the .idl file:

* Changing the name of a class or a method.

« Changing the parents of a class (see If you change the parents of a class on page
194).

e Changing a functionprefix class modifier statement.

» Changing the content of a passthru statement directed to the implementation (.c, .C or
.cpp) file. As previously emphasized, however, passthru statements are primarily
recommended only for placing #include statements in a binding file (.ih, .xih, .h or .xh
file) used as a header file in the implementation file or in a client program.

» If the class implementor has placed forward declarations of the method procedures in
the implementation file, those are not updated. Updates occur only for method
prototypes that are part of the method procedures themselves.

Considerations to ensure that updates work: To ensure that the SOM Compiler
properly updates method procedure prototypes in the implementation file, class
implementors should avoid the following:

* A method procedure name should not be enclosed in parentheses in the prototype.

Implementing Classes in SOM 193

194

* A method procedure name must appear in the first line of the prototype, excluding
comments and whitespace.

Error messages occur while updating an existing implementation file if it contains non-ANSI
C syntax. For example, “old” method definitions below generate errors:

Invalid “old” syntax Required ANSI C

void foo (x) void foo (short x) {

short x;

{ }

}

Similarly, error messages occur if anything in the .idl file would produce an implementation
file that is not syntactically valid for C/C++. If update errors occur, either the .idl file or the
implementation file may be at fault. To track down the problem, run the implementation file
through the C/C++ compiler. Another option is to move the existing implementation file to
another directory, generate a new one from the .idl file, and then run it through the C/C++
compiler. One of these steps should pinpoint the error, if the compiler is strict ANSI.

Conditional compilation in the implementation file can be another source of errors. The
SOM Compiler does not invoke the preprocessor. The programmer should be careful when
using conditional compilation, such as in the situation below:

Invalid syntax Required matching braces
#ifdef FOOBAR #ifdef FOOBAR

{ {
#else 1

{ #else

{

#endif

} }

#endif

With two open braces and one closing brace, the emitter reports an unexpected end-of-file.

If you change the parents of a class: The implementation-file emitters never change
code in a generated implementation file, changing the parents of a class requires extremely
careful attention by the programmer. For example for overridden methods, changing a class
parents may invalidate previous parent-method calls provided by the template and require
new calls. Neither issue is addressed by the incremental update of previously generated
method-procedure templates.

The greatest danger from changing the parents of a class, however, concerns the ancestor-
initializer calls provided in the stub procedures. For details on ancestor initializer calls, see
Initializing and Uninitializing Objects on page 195. Unlike parent- method calls,
ancestor-initializer calls are not optional: they must be made to all classes specified in a
directinitclasses modifier, and these calls should always include the parents of the class.
When the parents of a class are changed, the ancestor-initializer calls are not updated.

The easiest way to deal with this problem is to change the method name of the previously
generated initializer stub procedure in the implementation template file. Then, the SOM
Compiler can correctly generate a completely new initializer stub procedure (while ignoring
the renamed procedure). Once this is done, your customization code from the renamed

Programmer’s Guide for SOM and DSOM

initializer procedure can be merged into the newly generated one, after which the renamed
initializer procedure can be deleted.

Compiling and Linking

After you fill in the method stub procedures, the implementation template file can be
compiled and linked with a client program as shown below. In these examples, the
environment variable SOMBASE represents the directory in which SOM has been installed.
Each example provides code where the client program and implementation file is in C and
C++.

Note: If you are building an application that uses a combination of C and C++ compiled
object modules, you must use the C++ linker.

AIXin C: > xlc -I. -IS$SOMBASE/include -o hello main.c hello.c \
-L$SOMBASE/lib -1lsomtk

AIXin C++: > x1C -I. -IS$SOMBASE/include -o hello main.C hello.C \
-L$SOMBASE/lib -1lsomtk

0S/2 and WIindows NT in C: > set LIB=%SOMBASE$\1lib;$LIBS%
> icc -I. -I%SOMBASE%\include -Fe hello \
main.c hello.c somtk.lib
0S/2 and Windows NT in C++: > set LIB=%SOMBASE%\lib;3%LIB%
> icc -I. -I%SOMBASE%\include -Fe hello \
main.cpp hello.cpp somtk.lib

If the class definition in the .idl file changes, re-run the SOM Compiler to generate new
header files and update the implementation file to include:

* New comments
e Stub procedures for any new methods

» Revised method procedure prototypes for methods whose signatures changed in the
.idl file

After rerunning the SOM Compiler, add to the implementation file the code for any newly
added method procedures, and recompile the implementation file with the client program.

Initializing and Uninitializing Objects

This section discusses the initialization and uninitialization of SOM objects. Subsequent
topics introduce the methods and capabilities that the SOMobjects Developer Toolkit
provides to facilitate this.

Object creation is the act that enables the execution of methods on an object. In SOM, this
means storing a pointer to a method table into a word of memory. This single act converts
raw memory into an (uninitialized) SOM object that starts at the location of the method table
pointer.

Object initialization, on the other hand, is a separate activity from object creation in SOM.
Initialization is a capability supported by certain methods available on an object. An object’s
class determines the implementation of the methods available on the object, and thus
determines its initialization behavior.

The instance variables encapsulated by a newly created object must be brought into
a consistent state before the object can be used. This is the purpose of initializer methods.

Implementing Classes in SOM 195

Because, in general, every ancestor of an object’s class contributes instance data to an
object, it is appropriate that each of these ancestors contribute to the initialization of the
object.

SOM thus recognizes initializers as a special kind of method. One advantage of this
approach is that special metaclasses are not required for defining constructors (class
methods) that take arguments. Furthermore, a class can define multiple initializer methods,
thus enabling its different objects to be initialized supporting different characteristics or
capabilities. This results in simpler designs and more efficient programs.

The SOMobjects Toolkit provides an overall framework that class designers can easily
exploit in order to implement default or customized initialization of SOM objects. This
framework is fully supported by the SOM Toolkit emitters that produce the implementation
template file. The following sections describe the declaration, implementation, and use of
initializer (and uninitializer) methods.

Note: All code written prior to SOMobjects Release 2.x using documented guidelines for
the earlier initialization approach based on the somInit method (as well as all
existing class binaries) continues to be fully supported and useful.

Initializer Methods

196

As noted above, in the SOMobjects Toolkit each ancestor of an object contributes to the
initialization of that object. Initialization of an object involves a chain of ancestor-method
calls that, by default, are automatically determined by the SOM Compiler emitters. The
SOMobijects framework for initialization of objects is based on the following approach:

1. SOMobijects recognizes initializers as a special kind of method, and supports a special
mechanism for ordering the execution of ancestor-initializer method procedures. The
SOMObject class introduces an initializer method, somDefaultlnit, that uses this
execution mechanism.

2. The SOM Compiler's emitters provide special support for methods that are declared as
initializers in the .idl file. To supplement the somDefaultinit method, SOM class
designers can also declare additional initializers in their own classes.

Two SOM IDL modifiers are provided for declaring initializer methods and controlling their
execution, init and directinitclasses:

* The init modifier is required in order to designate a given method is an initializer; that
is, to indicate that the method both uses and supports the object-initialization protocol
described here.

 The directinitclasses modifier can be used to control the order of execution of
initializer method procedures provided by the different ancestors of the class of an
object.

Every SOM class has a list that defines (in sequential order) the ancestor classes whose
initializer method procedures the class should invoke. If a class’s IDL does not specify an
explicit directinitclasses modifier, the default for this list is simply the class’s parents: in
left-to-right order.

Using the directinitclasses list and the actual run-time class hierarchy above itself, each
class inherits from SOMClass the ability to create a data structure of type somInitCtrl. This
structure is used to control the execution of initializers. Moreover, it represents a particular
visit-ordering that reaches each class in the transitive closure of the directinitclasses list
exactly once. To initialize a given object, this visit-ordering occurs as follows: while
recursively visiting each ancestor class whose initializer method procedure should be run,
SOMobijects first runs the initializer method procedures of all of that class’s

Programmer’s Guide for SOM and DSOM

directinitclasses if they have not already been run by another class initializers, with
ancestor classes always taken in left-to-right order.

The somInitCtrl structure solves a problem originally created by the addition of multiple
inheritance to SOMobjects 2.0. With multiple inheritance, any class can appear at the top of
a multiple inheritance diamond. Previously, whenever this happened, the class could easily
receive multiple initialization calls. In the current version of SOMobjects Developer Toolkit,
however, the somInitCtrl structure prevents this from happening.

For example, Figure 14 shows an inheritance hierarchy along with the ordering produced
when an instance of the class numbered 7 is initialized, assuming that each class simply
uses its parents as its directinitclasses. The class numbered 3 is at the top of a diamond.

Legend

@ class

— inherita from

Q
O
o

Figure 14. A Default Initializer Ordering of a Class’s Inheritance Hierarchy.

In this example, the somInitCtrl data structure for class 7 is what tells node 6 in Figure 14
not to invoke node 3's initializer code (because it has already been executed). The code
that deals with the somInitCtrl data structure is generated automatically within the
implementation bindings for a class, and need not concern a class implementor.

As illustrated by this example, when an instance of a given class (or some descendant
class) is initialized, only one of the given class’s initializers will be executed, and this will
happen exactly once (under control of the ordering determined by the class of the object
being initialized).

Declaring New Initializers in SOM IDL

When defining SOMobjects classes, programmers can declare and implement new
initializers. Classes can have as many initializers as desired and subclasses can invoke
whichever they want. When introducing new initializers, developers must adhere to the
following rules:

» Allinitializer methods take a somInitCtrl data structure as an initial inout parameter.
» Allinitializers return void.

Accordingly, the somDefaultlnit initializer introduced by SOMODbject takes a somInitCtrl
structure as its only argument. Following is the IDL syntax for this method:

void somDefaultInit (inout somInitCtrl ctrl);

Implementing Classes in SOM 197

198

When introducing a new initializer, it is necessary to specify the init modifier in the
implementation section. The modifier tells emitters the method is an initializer, so the
method can be supported from the language bindings. This support includes the generation
of special initializer stub procedures in the implementation template file and bindings
containing ancestor-initialization macros and object constructors that invoke the class
implementor’s new initializers.

You should begin the names of initializer methods with the name of the class. All initializers
available on a class must be newly introduced by that class. That is, you cannot override
initializers: except for somDefaultlnit. Using a class-unique name means that subclasses
will not be unnecessarily constrained in their choice of initializer names.

Here are two classes that introduce new initializers:
interface Examplel : SOMObject
{
void Examplel withName (inout somInitCtrl ctrl, in string name) ;
void Examplel withSize (inout somInitCtrl ctrl, in long size);
void Examplel withNandS (inout somInitCtrl ctrl, in string name,
in long size);
implementation {
releaseorder: Examplel withName,
Examplel withSize,
Examplel withNandS;
somDefaultInit: override, init;
somDestruct: override;
Examplel withName: init;
Examplel withSize: init;
Examplel withNandS: init;
}i
}i
interface Example2 : Examplel
{
void Example2 withName (inout somInitCtrl ctrl, in string name) ;
void Example2 withSize (inout somInitCtrl ctrl, in long size);
implementation {
releaseorder: Example2 withName,
Example2 withSize;
somDefaultInit: override, init;
somDestruct: override;
Example2 withName: init;
Example2 withSize: init;
Vi
Vi
Interface Examplel declares three new initializers. Notice the use of inout sominitCtrl as
the first argument of each initializer and that the init modifier. Both are mandatory to

declare initializers. A class can declare any number of initializers. Example2 declares two
initializers.

Programmer’s Guide for SOM and DSOM

Examplel and Example2 both override the somDefaultInit initializer. This initializer
method is introduced by SOMObject and is special for two reasons:

« sombDefaultlnit is the only initializer that you can override.
» SOMobjects arranges that this initializer will be available on any class.

Historically in SOMobjects Developer Toolkit, object-initialization methods by default have
invoked the somInit method, which class implementors could override to customize
initialization as appropriate. SOMobjects continues to support this approach, so that
existing code (and class binaries) will execute correctly. However, the somDefaultInit
method is the preferred form of initialization because it offers improved efficiency.

Even if no specialized initialization is requisite for a class, you should override the
somDefaultinit method for efficiency. If you do not override somDefaultlnit, then a generic
and less efficient somDefaultinit method procedure will be used for your class.

When you override somDefaultlnit, the emitter’s implementation template file will include a
stub procedure similar to those used for other initializers. You can fill it in as appropriate.
Default initialization for your class will run much faster than with the generic method
procedure. Examples of initializer stub procedures and customizations are below.

In summary, the initializers available for any class of objects are somDefaultInit, which you
should always override, plus any new initializers explicitly declared by the class designer.
Thus, “Examplel” objects may be initialized using any of four different initializers (the three
that are explicitly declared, plus somDefaultInit). Likewise, there are three initializers for
the “Example2” objects. Some examples of using initializers are provided below.

Considerations sominit Initialization from Earlier SOM
Releases

All code before SOMobjects Release 2.1 using documented guidelines for the earlier
initialization based on the sominit method and all class binaries are fully supported.

Prior to SOMobijects 2.1, initializer methods chained parent-method calls upward, thereby
allowing the execution of initializer method procedures contributed by all ancestors of an
object’s class. This chaining of initializer calls was not supported in any special way by the
SOM API. Parent-method calls are one of the idioms available to OOP users in SOM.

SOM did not constrain initialization any particular way or require the use of any particular
ordering of the method procedures of ancestor classes. SOM did provide an overall
framework that class designers could easily use to implement default initialization of SOM
objects. This framework is provided by the somInit object-initialization method introduced
by the SOMObject class and supported by the SOM Toolkit emitters. The emitters create
an implementation template file with stub procedures for overridden methods that chain
parent-method calls upward through parent classes. Many class methods that perform
object creation automatically called sominit.

Note: These will call somDefaultinit which call somInit for legacy code.

Because it takes no arguments, somlnit served the purpose of a default initializer. SOM
programmers had the option of introducing additional “non-default” initialization methods
that took arguments. By using metaclasses, they could introduce new class methods as
object constructors that first create an object, generally using somNewNolnit, and then
invoke some non-default initializer on the new object.

For a number of reasons, the somInit framework has been augmented by recognizing
initializers as a special kind of method in SOMobjects. One advantage of this approach is
that special metaclasses are no longer required for defining constructors that take

Implementing Classes in SOM 199

200

arguments. Because the init modifier identifies initializers, usage-binding emitters can now
provide these constructors resulting in simpler designs and more efficient programs.

Although somDefaultInit replaces sominit as the no-argument initializer used for SOM
objects, all previous use of sominit is still supported by the SOMobjects Developers
Toolkit. You can use somlInit on these systems, although this is less efficient than using
somDefaultInit.

However, you cannot use both methods. In particular, if a class overrides somDefaultInit
and somlnit, its somInit code will never be executed. You should always override
somDefaultlnit for object initialization. It is likely that when SOMobjects is ported to new
systems, somlnit and somUninit may not be supported on those systems. Code written
using these obsolete methods will be less portable.

Implementing Initializers

When new initializers are introduced by a class the implementation template file generated
by the SOM Toolkit C and C++ emitters contains an appropriate stub procedure for each
initializer method for the class implementor’s use. The body of an initializer stub procedure
consists of two main sections:

* The first section performs calls to ancestors of the class to invoke their initializers.

* The second section is used by the programmer to perform any “local” initializations
appropriate to the instance data of the class being defined.

In the first section the parents of the new class are the ancestors whose initializers are
called. When something else is desired, the ID directinitclasses modifier can be used to
explicitly designate the ancestors whose initializer methods should be invoked by a new
class’s initializers.

You should not change the number or the ordering of ancestor initializer calls in the first
section of an initializer stub procedure. The control masks used by initializers are based on
these orderings. (If you want to change the number or ordering of ancestor initializer calls,
you must use the directinitclasses modifier and re-emit the implementation template with
a new initializer stub.) The ancestor initializer calls can be modified.

Each call to an ancestor initializer is made using a special macro, much like a parent call,
that is defined for this purpose within the implementation bindings. These macros are
defined for all possible ancestor initialization calls. Initially, an initializer stub procedure
invokes the default ancestor initializers provided by somDefaultinit. However, a class
implementor can replace any of these calls with a different initializer call, as long as it calls
the same ancestor. Non-default initializer calls generally take other arguments in addition to
the control argument.

In the second section of an initializer stub procedure, the programmer provides any class-
specific code that may be needed for initialization. For example, the “Example2_withName”
stub procedure is shown below. As with all stub procedures produced by the SOMobjects
implementation-template emitters, this code requires no modification to run correctly.

SOM_Scope void SOMLINK Example2 withName (Example2 *somSelf,
Environment *ev,
somInitCtrl* ctrl,

string name)

Example2Data *somThis; /* set by BeginInitializer */

somInitCtrl globalCtrl;

Programmer’s Guide for SOM and DSOM

somBooleanVector myMask;
Example2MethodDebug (”Example2” , "withName”)
/*
* first section -- calls to ancestor initializers
*/
Example2 BeginInitializer Example2 withName;
Example2 Init Examplel somDefaultInit (somSelf, ctrl)
/*
* gecond section -- local Example2 initialization code
*/

In this example, notice that the “Example2_withName” initializer is an IDL callstyle method,
so it receives an Environment argument. In contrast, somDefaultInit is introduced by the
SOMObject class (so it has an OIDL callstyle initializer, without an environment).

If a class is defined where multiple initializers have exactly the same signature, then the
C++ usage bindings will not be able to differentiate among them. That is, if there are
multiple initializers defined with environment and long arguments, for example, then C++
clients would not be able to make a call using only the class name and arguments, such as:

new Example2 (env, 123);

Rather, C++ users would be forced to first invoke the somNewNolnit method on the class
to create an uninitialized object, and then separately invoke the desired initializer method
on the object. This call would pass a zero for the control argument, in addition to passing
values for the other arguments. For further discussion of client usage, see Using
Initializers when Creating New Objects on page 201.

Selecting non-Default Ancestor Initializer Calls

Often, it will be appropriate in the first section of an initializer stub procedure to change the
invocation of an ancestor's somDefaultInit initializer to some other initializer available on
the same class. The rule for making this change is simple; replace somDefaultInit with the
name of the desired ancestor initializer and add any new arguments required by the
replacement initializer. Under no circumstances should you change anything else in the first
section. If the parents or the directinitclasses are changed, then a new implementation
stub should be generated.

The example below shows how to change an ancestor-initializer call correctly. Since there
is a known “Examplel_withName” initializer, the following default ancestor-initializer call,
produced within the stub procedure for “Example2_withName”, can be changed from

Example2_ Init Examplel_ somDefaultInit (somSelf, ctrl);
to
Example2 Init Examplel Examplel withName (somSelf, ev, ctrl,name);

Notice that the revised ancestor-initializer call includes arguments for an Environment and
a name, as defined by the “Examplel_withname” initializer.

Using Initializers when Creating New Objects

There are several ways that client programs can take advantage of object initialization.
Clients can use the SOM API directly rather than using the usage bindings). The general

Implementing Classes in SOM 201

object constructor, somNew, can always be invoked on a class to create and initialize
objects. This call creates a new object and then invokes somDefaultInit on it.)

To use the SOM API directly, the client code should first invoke the somNewNolInit method
on the desired class object to create a new, uninitialized object. Then, the desired initializer
is invoked on the new object, passing a null (that is, 0) control argument in addition to
whatever other arguments may be required by the initializer. For example:

/* first make sure the Example2 class object exists */

Example2NewClass (Example2 MajorVersion, Example2 MinorVersion) ;

/* then create a new, uninitialized Example2 object */

myObject = somNewNoInit (_Example2) ;

/* then initialize it with the desired initializer */

Example2 withName (myObject, env, 0, “MyName”);
Usage bindings hide the details associated with initializer use in various ways and make
calls more convenient for the client. For example, the C usage bindings for any given class
already provide a convenience macro, classNameNew, that first assures existence of the

class object, and then calls somNew on it to create and initialize a new object. As
explained above, somNew will use somDefaultlnit to initialize the new object.

Also, the C usage bindings provide object-construction macros that use somNewNolnit
and then invoke non-default initializers. These macros are named using the form
classNameNew _initializerName. For example, the C usage bindings for Example2 allow
using the following expression to create, initialize, and return a new Example2 object:

Example2New Example2 withName (env, “AnyName”) ;

In the C++ bindings, initializers are represented as overloaded C++ constructors. As a result,
there is no need to specify the name of the initializer method. For example, using the C++
bindings, the following expressions could be used to create a new Example2 object:

new Example2; // will use somDefaultInit
new Example2 () ; // will use somDefaultInit
new Example2 (env, “A.B.Normal”); // will use Example2 withName
new Example2 (env,123); // will use Example2 withSize

Observe that if multiple initializers in a class have exactly the same signatures, the C++
usage bindings would be unable to differentiate among the calls, if made using the forms
illustrated above. In this case, a client could use somNewNolnit first, and then invoke the
specific initializer, as described in the preceding paragraphs.

Uninitialization

202

An object should always be uninitialized before its storage is freed. This is important
because it also allows releasing resources and freeing storage not contained within the
body of the object. SOMobjects handles uninitialization in much the same way as for
initializers: An uninitializer takes a control argument and is supported with stub procedures
in the implementation template file in a manner similar to initializers.

Only a single uninitialization method is needed, so SOMObject introduces the method that
provides this function, somDestruct. As with the default initializer method, a class designer
who requires nothing special in the way of uninitialization need not be concerned about
modifying the default somDestruct method procedure. However, your code will execute
faster if the .idl file overrides somDestruct so that a non-generic stub-procedure code can
be provided for the class. Note that somDestruct was overridden by Examplel and
Example2 above. No specific IDL modifiers other than override are required for this.

Programmer’s Guide for SOM and DSOM

Like an initializer template, the stub procedure for somDestruct consists of two sections:
The first section is used by the programmer for performing any “local” uninitialization that
may be required. The second section (which consists of a single EndDestructor macro
invocation) invokes somDestruct on ancestors. The second section must not be modified
or removed by the programmer. It must be the final statement executed in the destructor.

Using somDestruct

It is rarely necessary to invoke the somDestruct method explicitly. This is because object
uninitialization is normally done just before freeing an object’s storage, and the
mechanisms provided by SOMobijects for this purpose will automatically invoke
somDestruct. For example, if an object were created using somNew or somNewNolnit,
or by using a convenience macro provided by the C language bindings, then the somFree
method can be invoked on the object to delete the object. This automatically calls
somDestruct before freeing storage.

C++ users can simply use the delete operator provided by the C++ bindings. This destructor
calls somDestruct before the C++ delete operator frees the object’s storage.

On the other hand, if an object is initially created by allocating memory in some special way
and subsequently some somRenew methods are used, somFree (or C++ delete) is
probably not appropriate. Thus, the somDestruct method should be explicitly called to
uninitialize the object before freeing memory.

A Complete Example

The following example illustrates the implementation and use of initializers and destructors
from the C++ bindings. The first part shows the IDL for three classes with initializers. For
variety, some of the classes use callstyle OIDL and others use callstyle IDL.

#include <somobj.idls>
interface A : SOMObject ({
readonly attribute long a;
implementation {
releaseorder: get a;
functionprefix = A;
somDefaultInit: override, init;
somDestruct: override;
somPrintSelf: override;
Vi
bi
interface B : SOMObject ({
readonly attribute long b;
void BwithInitialValue (inout somInitCtrl ctrl,
in long initialValue) ;
implementation {
callstyle = oidl;
releaseorder: _get b, BwithInitialValue;
functionprefix = B;

BwithInitialValue: init;

Implementing Classes in SOM 203

204

somDefaultInit: override, init;

somDestruct: override;

somPrintSelf: override;

}i

Vi

interface C : A, B {

readonly attribute long c;

void CwithInitialValue (inout somInitCtrl ctrl,

in long initialvValue) ;
void CwithInitialString(inout somInitCtrl ctrl,
in string initialString) ;

implementation {

releaseorder: _get c, CwithInitialString,
CwithInitialValue;

functionprefix = C;

CwithInitialString: init;

CwithInitialvalue: init;

somDefaultInit: override;

somDestruct: override;

somPrintSelf: override;

Vi

Vi

Implementation Code

Based on the foregoing class definitions, the next example illustrates several important
aspects of initializers. The following code is a completed implementation template and an
example client program for the preceding classes. Code added to the original template is
given in bold.
/*
* This file generated by the SOM Compiler and Emitter Framework
* Generated using:
* SOM Emitter emitxtm.dll: 2.22
*/
#define SOM Module ctorfullexample Source
#define VARIABLE MACROS
#define METHOD MACROS
#include <ctorFullExample.xih>
#include <stdio.hs>
SOM_Scope void SOMLINK AsomDefaultInit (A *somSelf,somInitCtrl* ctrl)
{
AData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;
somBooleanVector myMask;

AMethodDebug ("A” , "somDefaultInit”) ;

Programmer’s Guide for SOM and DSOM

A BeginInitializer somDefaultInit;
A Init SOMObject somDefaultInit (somSelf, ctrl);
/*

* local A initialization code added by programmer

*/

SOM_Scope void SOMLINK AsomDestruct (A *somSelf, octet doFree,

}

somDestructCtrl* ctrl)

AData *somThis; /* set by BeginDestructor */
somDestructCtrl globalCtrl;

somBooleanVector myMask;
AMethodDebug ("A” , "somDestruct”) ;

A BeginDestructor;

/*

* local A deinitialization code added by programmer

*/

A EndDestructor;

SOM_Scope SOMObject* SOMLINK AsomPrintSelf (A *somSelf)

{

}

AData *somThis = AGetData (somSelf) ;
AMethodDebug ("A” , "somPrintSelf”) ;

somPrintf (“{an instance of %s at location %X with (a=%d)}\n”,

__somGetClassName () , somSelf,
__get_a((Environment*)0));

return (SOMObject*) ((void*)somSelf) ;

SOM_Scope void SOMLINK BBwithInitialvValue (B *somSelf,

somInitCtrl* ctrl,

long initialValue)

BData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;
somBooleanVector myMask;
BMethodDebug (”B” , "BwithInitialvalue”) ;
B BeginInitializer withInitialvalue;
B Init SOMObject somDefaultInit (somSelf, ctrl);
/*
* local B initialization code added by programmer
*/

_b = initialValue;

Implementing Classes in SOM

205

}

SOM_Scope void SOMLINK BsomDefaultInit (B *somSelf,
somInitCtrl* ctrl)

BData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;
BMethodDebug (”B”, ”somDefaultInit”) ;

B BeginInitializer somDefaultInit;

B Init SOMObject somDefaultInit (somSelf, ctrl);

/*

* local B initialization code added by programmer
*/

b = 2;

SOM_Scope void SOMLINK BsomDestruct (B *somSelf, octet doFree,

somDestructCtrl* ctrl)

BData *somThis; /* set by BeginDestructor */
somDestructCtrl globalCtrl;
somBooleanVector myMask;
BMethodDebug (”B” , "somDestruct”) ;
B BeginDestructor;
/*

* Jocal B deinitialization code added by programmer

*/

B _EndDestructor;

}

SOM_Scope SOMObject* SOMLINK BsomPrintSelf (B *somSelf)
{
BData *somThis = BGetData (somSelf) ;
BMethodDebug (”B”, ”somPrintSelf”) ;
printf (”{an instance of %s at location %X with (b=%d) }\n”,
__somGetClassName () , somSelf, get b());
return (SOMObject*) ((void*)somSelf) ;
}

The following initializer for a C object accepts a string as an argument, converts this to an
integer, and uses this for ancestor initialization of B. This illustrates how a default ancestor
initializer call is replaced with a non-default ancestor initializer call.

SOM_Scope void SOMLINK CCwithInitialString(

C *somSelf,

206 Programmer’s Guide for SOM and DSOM

Environment *ev,
somInitCtrl* ctrl,

string initialString)

Chata *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;

CMethodDebug (”C”,”CwithInitialString”) ;
C_BeginInitializer withInitialString;

C Init A somDefaultInit (somSelf, ctrl);

C Init B BwithInitialValue(somSelf, ctrl,

atoi(initialString)-11);

/*
* local C initialization code added by programmer

*/

¢ = atoi(initialString);
SOM_Scope void SOMLINK CsomDefaultInit (C *somSelf,

somInitCtrl* ctrl)

Chata *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;
CMethodDebug (”C”, ”somDefaultInit”) ;
C_BeginInitializer somDefaultInit;

C Init A somDefaultInit (somSelf, ctrl);

C Init B somDefaultInit (somSelf, ctrl);

/*

* local C initialization code added by programmer
*/

c = 3;

SOM_Scope void SOMLINK CsomDestruct (C *somSelf, octet doFree,

somDestructCtrl* ctrl)

CDhata *somThis; /* set by BeginDestructor */
somDestructCtrl globalCtrl;
somBooleanVector myMask;

CMethodDebug (”C” , "somDestruct”) ;

Implementing Classes in SOM 207

C_BeginDestructor;

/*
* local C deinitialization code added by programmer

*/

C_EndDestructor;

}

SOM_Scope SOMObject* SOMLINK CsomPrintSelf (C *somSelf)
{
Chata *somThis = CGetData (somSelf) ;
CMethodDebug (”C” , ”somPrintSelf”) ;

printf (”{an instance of %s at location %X with”
7 (a=%d, b=%d, c=%d) }\n”,
__somGetClassName () , somSelf,
__get_a((Environment¥*)0),
__get b(),
__get_c((Environment*)0));
return (SOMObject*) ((void*)somSelf) ;
}
SOM_Scope void SOMLINK CCwithInitialvValue(C *somSelf,
Environment *ev,
somInitCtrl* ctrl,
long initialvalue)
{
Chata *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;
somBooleanVector myMask;
CMethodDebug (”C” ,”CwithInitialValue”) ;
C_BeginInitializer withInitialValue;
C Init A somDefaultInit (somSelf, ctrl);
C Init B BwithInitialValue(somSelf, ctrl, initialValue-11);

/*
* lJocal C initialization code added by programmer
*/

¢ = initialvValue;

}

A C++ program that creates instances of 2, B and C using the initializers defined above.

main ()

{

SOM_TraceLevel = 1;

208 Programmer’s Guide for SOM and DSOM

A *a = new A;
a->somPrintSelf () ;
delete a;

printf ("\n") ;

B *b = new B();

b->somPrintSelf () ;

delete Db;
printf (“\n”) ;
b = new B(22);

b->somPrintSelf () ;
delete Db;

printf ("\n") ;

C *c = new C;
c->somPrintSelf () ;
delete c;

printf ("\n") ;

¢ = new C((Environment*)O0,
c->somPrintSelf () ;

delete c;

printf ("\n") ;

¢ = new C((Environment*)O0,
c->somPrintSelf () ;

delete c;

}

"ctorFullExample.C”: 18

"ctorFullExample.C”: 48:

" ./ctorFullExample.xih”: 292:

{an instance of A at location
"ctorFullExample.C”: 35:
"ctorFullExample.C”: 79:
"ctorFullExample.C”: 110:
" ./ctorFullExample.xih”: 655:
{an instance of B at location
"ctorFullExample.C”: 97:
"ctorFullExample.C”: 62:
"ctorFullExample.C”: 110:

" ./ctorFullExample.xih”: 655:

{an instance of B at location
"ctorFullExample.C”: 97:
"ctorFullExample.C”: 150:
"ctorFullExample.C”: 18:

44) ;

"66") ;

The output from the preceding program is as follows:

In A:somDefaultInit
In A:somPrintSelf
In A:A get_a
20063C38 with (a=1)}
In A:sombDestruct
In B:somDefaultInit
In B:somPrintSelf
In B:B get b
20064578 with (b=2)}
In B:somDestruct
In B:BwithInitialValue
In B:somPrintSelf
In B:B get b
20064578 with (b=22)}
In B:somDestruct
In C:somDefaultInit

In A:somDefaultInit

Implementing Classes in SOM

209

"ctorFullExample.C”: 79: In B:somDefaultInit
"ctorFullExample.C”: 182: In C:somPrintSelf

" ./ctorFullExample.xih”: 292: 1In A:A get_a

" ./ctorFullExample.xih”: 655: 1In B:B get b

" ./ctorFullExample.xih”: 1104: In C:C_get c

{an instance of C at location 20065448 with (a=1, b=2, c=3)}

"ctorFullExample.C”: 169: In C:somDestruct
"ctorFullExample.C”: 35: In A:somDestruct
"ctorFullExample.C”: 97: In B:somDestruct
"ctorFullExample.C”: 196: In C:CwithInitialValue
"ctorFullExample.C”: 18: In A:somDefaultInit
"ctorFullExample.C”: 62: In B:BwithInitialValue
"ctorFullExample.C”: 182: In C:somPrintSelf

" ./ctorFullExample.xih”: 292: 1In A:A get a

" ./ctorFullExample.xih”: 655: 1In B:B get b
"./ctorFullExample.xih”: 1104: In C:C_get c
{an instance of C at location 20065448 with (a=1, b=33, c=44)}

"ctorFullExample.C”: 169: In C:somDestruct
"ctorFullExample.C”: 35: In A:somDestruct
"ctorFullExample.C”: 97: In B:somDestruct
"ctorFullExample.C”: 132: In C:CwithInitialString
"ctorFullExample.C”: 18: In A:somDefaultInit
"ctorFullExample.C”: 62: In B:BwithInitialValue
"ctorFullExample.C”: 182: In C:somPrintSelf

" ./ctorFullExample.xih”: 292: 1In A:A get a

"./ctorFullExample.xih”: 655: 1In B:B get b
" ./ctorFullExample.xih”: 1104: In C:C _get c
{an instance of C at location 20065448 with (a=1, b=55, c=66)}

"ctorFullExample.C”: 169: In C:somDestruct
"ctorFullExample.C”: 35: In A:somDestruct
"ctorFullExample.C”: 97: In B:somDestruct

Customizing the Initialization of Class Objects

As described previously, the somDefaultinit method can be overridden to customize the
initialization of objects. Because classes are objects, somDefaultlnit is also invoked on
classes when they are first created (generally by invoking the somNew method on a
metaclass). So, somDefaultlnit can be overridden by metaclasses to initialize class
variables.

Creating SOM Class Libraries

One of the principal advantages of SOM is that it makes “black box” or binary reusability
possible. Consequently, SOM classes are frequently packaged and distributed as class
libraries. A class library holds the actual implementation of one or more classes and can be

210 Programmer's Guide for SOM and DSOM

dynamically loaded and unloaded as needed by applications. Importantly, class libraries
can also be replaced independently of the applications that use them and, provided that the
class implementor observes simple SOM guidelines for preserving binary compatibility, can
evolve and expand over time.

General Guidelines for Class Library Designers

One of the most important features of SOM is that it allows you to build and distribute class
libraries in binary form. Because there is no fragile base class problem in SOM, client
programs that use your libraries (by subclassing your classes or by invoking the methods in
your classes) will not need to be recompiled if you later produce a subsequent version of
the library, provided you adhere to some simple restrictions.

1. You should always maintain the syntax and the semantics of your existing interfaces.
This means that you cannot take away any exposed capabilities, nor add or remove
arguments for any of your public methods.

2. Always maintain the releaseorder list, so that it never changes except for additions to
the end. The releaseorder should contain all of your public methods, the one or two
methods that correspond to each public attribute, and a placeholder for each private
method (or private attribute method).

3. Assign a higher minorversion number for each subsequent release of a class that
adds new interfaces, so that client programmers can determine whether a new feature
is present or not. Change the majorversion number only when you deliberately wish to
break binary compatibility. (See Modifier Statements on page 133 for explanations of
the releaseorder, minorversion and majorversion modifiers.)

4. With each new release of your class library, you have significant degrees of freedom to
change much of the implementation detail. You can add to or reorganize your instance
variables, add new public or private methods, inject new base classes into your class
hierarchies, change metaclasses to more derived ones, and relocate the
implementation of methods upward in your class hierarchies. Provided you always
retain the same capabilities and semantics that were present in your first release, none
of these changes will break the client programs that use your libraries.

Types of Class Libraries

Since class libraries are not programs, users cannot execute them directly. To enable users
to make direct use of your classes, you must also provide one or more programs that
create the classes and objects that the user will need. This section describes how to
package your classes in a SOM class library and what you must do to make the contents of
the library accessible to other programs.

On AlX, class libraries are actually produced as AIX shared libraries, where on Windows
they appear as dynamically-linked libraries (or DLLS). The term “DLL” is sometimes used to
refer to any form of class library, and (by convention only) the file suffix .dll is used for SOM
class libraries on all platforms.

A program can use a class library containing a given class or classes in one of two ways:

1. If the programmer employs the SOM bindings to instantiate the class and invoke its
methods, the resulting client program contains static references to the class. The
operating system will automatically resolve those references when the program is
loaded, by also loading the appropriate class library.

Implementing Classes in SOM 211

2. If the programmer uses only the dynamic SOM mechanisms for finding the class and
invoking its methods (for example, by invoking somFindClass, somFindMethod,
somLookupMethod, somDispatch, somResolveByName and so forth), the resulting
client program does not contain any static references to the class library. Thus, SOM
will load the class library dynamically during execution of the program. Note: For SOM
to be able to load the class library, the dliname modifier must be set in the .idl file.
(See Modifier Statements on page 133.)

It is also important to note that, whereas a client program may have been written to use
only the static SOM bindings, it may in fact use SOM frameworks like DSOM which employ
dynamic SOM mechanisms for finding classes and invoking methods.

Because the provider of a class library cannot predict which of these ways a class will be
used, SOM class libraries must be built such that either usage is possible. The first case
above requires the class library to export the entry points needed by the SOM bindings,
whereas the second case requires the library to provide an initialization/termination function
to create and destroy the classes it contains. The following topics discuss each case.

Building Export Files

212

The SOM Compiler provides an exp emitter for AIX and a def emitter for OS/2 and
Windows NT to produce the necessary exported symbols for each class. For example, to
generate the necessary exports for a class “A”, issue the sc command with one of the
following -s options. (For a discussion of the sc command and options, see Running the
SOM Compiler on page 161.)

For AIX, this command generates an “a.exp” file:
sc -sexp a.idl

For OS/2, this command generates an “a.def” file:
sc -sdef a.idl

For Windows NT, this command generates an “a.nid” file:
sc -sdef a.idl

Typically, a class library contains multiple classes. To produce an appropriate export file for
all the classes that the library will contain, you should set the dliname modifier of each
class equal to the name of the loadable library file (.dll file), and then run the SOM
Compiler with the -s option, as shown above, for each IDL file containing a class in the
class library. The exp and def emitters will update the export file with the same filestem
name as the given dliname. These emitters can sense whether an export file already
exists, and, if one does exist, the classes in the given IDL file are added to the existing
export file.

To illustrate, assume that the SOM Compiler command shown above invokes the exp and
def emitters on the following IDL file:

#include <somobj.idls>
interface A : SOMObject
{
void methodA() ;
#ifdef SOMIDL
implementation {

dllname = “abc.dll”;

Vi

Programmer’s Guide for SOM and DSOM

#endif /* _ SOMIDL__ */
Vi
The SOM Compiler command creates the following output files:
AlX abc. exp file:

#! abc.dll
ACClassDhata
AClassData
ANewClass
abcSOMInitTerm

0S/2 abc. def file:
LIBRARY abc INITINSTANCE
DESCRIPTION 'A Class Library’
PROTMODE
DATA MULTIPLE NONSHARED LOADONCALL
SEGMENTS
SOMCONST CLASS ‘DATA’ SHARED READONLY
EXPORTS
AClassData
ACClassData
ANewClass
Windows NT adc.nid file:
LIBRARY abc
EXPORTS
_AClassDhata
_ACClassData
_ANewClass@8

The name of the output file that is created or modified by the exp and def emitters is
determined by the dliname modifier specified in the implementation section of the IDL file.
Therefore, in the example above, the output file name is abe . exp (on AlX). If the dliname
is not specified for a class, the output file created by the emitter is the same as the IDL
filestem. So, if the dliname had not been specified in the preceding example, the resulting
file would have been a.exp (on AIX).

To add additional classes to the class library export file, run the SOM Compiler with the exp
or def emitter for the IDL files containing the additional classes. For example, to add the
following classes B and C to the class library, first make sure each additional class specifies
the same dliname modifier as shown:

#include <somobj.idls>

interface B : SOMObject

{
void methodB() ;

#ifdef SOMIDL
implementation {

dllname = “abc.dll”;

Vi

#endif /* _ SOMIDL__ */

Implementing Classes in SOM 213

i
#include <somobj.idl>
interface C : SOMObject
{
void methodcC() ;
#ifdef SOMIDL
implementation {
dllname = “abc.dll”;
i
#endif /* SOMIDL _ */
i
Then, run the SOM Compiler and emitter again, specifying the additional IDL files:
For AlX, this command updates the abc . exp file:
sc -sexp b.idl c.idl
For OS/2, this command updates the abc . def file:
sc -sdef b.idl c.idl
For Windows NT, this command updates the abc.nid file:
sc -sdef b.idl c.idl
The modified output file now appears as follows:
AlX abc . exp file:

#! abc.dll
ACClassDhata
AClassData
ANewClass
abcSOMInitTerm
BClassData
BCClassData
BNewClass
CClassData
CCClassDhata
CNewClass

0S/2 abc . def file:

LIBRARY abc INITINSTANCE
DESCRIPTION 'A Class Library’
PROTMODE
DATA MULTIPLE NONSHARED LOADONCALL
SEGMENTS

SOMCONST CLASS ‘DATA’ SHARED READONLY
EXPORTS

AClassData

ACClassbData

ANewClass

BClassData

BCClassData

BNewClass

CClassData

214 Programmer's Guide for SOM and DSOM

CCClassbhata
CNewClass
Windows NT abc.nid file:
LIBRARY abc
EXPORTS
_AClassData
_ACClassData
_ANewClass@8
_BClassData
_BCClassData
_BNewClass@8
_CClassbhata
_CCClassData
_CNewClass@8

The recommended way to name the export file is to specify the dliname modifier in IDL
files. There is, however, an optional mechanism that forces a file name to be used. The exp
and def emitters support a command-line modifier, dll. This modifier is specified with the
-m option of the SOM Compiler command, as shown in the example below:

For AIX:

sc -sexp -mdll=abc2 a.idl b.idl c.idl
For OS/2 and NT:

sc -sdef -mdll=abc2 a.idl b.idl c.idl

In the example above, the file abc2.def (or abc2.exp on AlX) is created and the
loadable library named within the file is also abc2. (If the dIl command-line modifier is used
when running the def emitter, it overrides any settings of the dliname modifier within an
IDL file. For more information on global modifiers, see the -m option in Running the SOM
Compiler on page 161.) Do not use the -mdll modifier on the Windows NT platform.

The data structures and entry points added to the exports file by the exp or def emitter are
required for the correct operation of the SOM run time. On AlX, the emitter also exports the
initialization function of the class library. Other symbols in addition to those generated by
the emitters can be included if needed, but this is not required by SOM. One convenient
feature of SOMobijects is that a class library requires no more than three exports per class.
(By contrast, many OOP systems require externals for every method as well.)

Specifying the Initialization and Termination Function

An initialization and termination function for a class library must be provided to support
dynamic loading of the library by the SOM Class Manager. The SOM Class Manager
expects that, whenever it loads or unloads a class library, the initialization/termination
function will register or unregister all of the classes contained in the library. These classes
are managed as a group (called an affinity group).

One class in the affinity group has a privileged position — namely, the class that was
specifically requested when the library was loaded. If that class (that is, the class that
caused loading to occur) is subsequently unregistered, the SOM Class Manager will
automatically unregister all of the other classes in the affinity group as well, and will unload
the class library. Similarly, if the SOM Class Manager is explicitly asked to unload the class
library, it will also automatically unregister and free all of the classes in the affinity group.

Implementing Classes in SOM 215

216

The SOM initialization and termination functions for a class library must be called when the
class library is loaded and unloaded. How initialization and termination is handled for SOM
libraries is platform specific, because dynamic library loading is unique to an operating
system. On OS/2, an init/term function must be called from the class library DLL’s general
purpose init/term function. When the VisualAge C++ compiler is used, the general DLL init/
term function is named _DLL_InitTerm. On AlX, the initialization function must be specified
as the entry point for the library when the library is linked.

It is the responsibility of the class-library creator to supply the initialization and termination
function. There is, however, an imod emitter provided with the SOM Compiler to construct
a C source file with an appropriate initialization/termination function for your class library. It
is recommended that you use the imod emitter to create the init/term function for your
library rather than constructing one manually.

For AIX: SOMInitModule gets called provided that the SOMInitModule function has been
specified as the entry point when the shared library is linked.

Running the imod Emitter

This topic describes how to run the imod emitter to generate an init/term function for a
class library. This topic also provides a detailed explanation of the contents of the source
file generated by the imod emitter. To illustrate the construction of an init/term function for a
class library, consider the following classes A, B, and C in files a.1d1, b.idl and c. id1.
Notice that each class contains a dliname modifier to specify the name of the library file
that will contain the class’s implementation.

a.idl:
#include <somobj.idls>
interface A : SOMObject
{
void methodA () ;
#ifdef SOMIDL
implementation {
dllname = “abc.dll”;
Vi
#endif /* _ SOMIDL _ */
Vi
b.idl:
#include <somobj.idls>
interface B : SOMObject
{
void methodB() ;
#ifdef _ SOMIDL
implementation {
dllname = “abc.dll”;
}i
#endif /* _ SOMIDL__ */
}i
c.idl:

#include <somobj.idls>

Programmer’s Guide for SOM and DSOM

interface C : SOMObject

{
void methodcC() ;
#ifdef SOMIDL
implementation {
dllname = “abc.dll”;
i
#endif /* SOMIDL__ */
i
A SOM class library init/term function can be constructed by running the SOM Compiler for
the IDL files that define the classes in the library. Specify the imod emitter with the -s flag

of the SOM Compiler command. For example, to run the imod emitter for the classes
above, issue the following command:

sc -simod a.idl b.idl c.idl

This command creates (or updates) a source file named dllname_stemi.c. This .c file is
used for a SOM class library programmed either in C or C++. Therefore, in this example the
output source file is abci . ¢, because the dliname modifier is abc.d11. On OS/2 and
Windows NT, the filename stem of the generated source file is limited to 8 characters.
Consequently, if a specified dliname filename stem is 8 characters or more, it will be
truncated to 7 characters to accommodate the “i” that must be appended. Also, if the
generated file name would conflict with another source file name, you should use the imod
global modifier described in the next paragraph.

As an alternative way to run the imod emitter, the SOM Compiler can be run using a
command-line -m global-modifier imod option that explicitly names the output source file
for the initialization routine. For example, running the following command creates (or
updates) a source file named initterm.c. This is useful to consistently name a SOM
class library init/term source file for every class library you build.

sc -simod -mimod=initterm a.idl b.idl c.idl

Creating the Class Library

Here is an example illustrating all of the steps required to create a class library (abc.d11)
that contains the three classes 2, B, and C:

1. Produce an init/term source file for the class library.
For AlX:
sc -simod -mimod=initfunc a.idl b.idl c.idl
For OS/2 and Windows NT:
sc -simod -mimod=initfunc a.idl b.idl c.idl

2. Compile all of the implementation files for the classes that will be included in the library.
Include the initialization source file generated by the imod emitter also.

For AIX written in C:

xlc -I. -ISSOMBASE/include -c a.
xlc -I. -ISSOMBASE/include -c b.
xlc -I. -ISSOMBASE/include -c c.c

xlc -I. -ISSOMBASE/include -c initfunc.c

For AIX written in C++:

C
C

Implementing Classes in SOM 217

x1C -I. -ISSOMBASE/include -c a.C
x1C -I. -ISSOMBASE/include -c b.C
x1C -I. -ISSOMBASE/include -c c.C
x1C -I. -ISSOMBASE/include -c initfunc.c

For OS/2 written in C:
ice -I. -I%SOMBASE%\include -Ge- -c a.c
ice -I. -I%SOMBASE%\include -Ge- -c¢ b.c
icec -I. -I%SOMBASE%\include -Ge- -c c.c
ice -I. -I%SOMBASE%\include -Ge- -c¢ initfunc.c
For OS/2 written in C++:
icc -I. -I%SOMBASE%\include -Ge- -c a.cpp
icc -I. -I%SOMBASE%\include -Ge- -c b.cpp
icc -I. -I%SOMBASE%\include -Ge- -c c.cpp
ice -I. -I%SOMBASE%\include -Ge- -c¢ initfunc.c
For Windows NT written in C:
icc -DSOM DLL abc -I. -I%SOMBASE%\include -Ge- -Gd+ -Gm+ -c a.c
icc -DSOM DLL abc -I. -I%$SOMBASE%\include -Ge- -Gd+ -Gm+ -c b.c
icc -DSOM DLL abc -I. -I%SOMBASE%\include -Ge- -Gd+ -Gm+ -c c.cC
icc -DSOM DLL abc -I. -I%SOMBASE%\include -Ge- -Gd+ -Gm+ -c initfunc.c
For Windows NT written in C++:
icc -DSOM DLL abc -I. -I%SOMBASE%\include -Ge- -Gd+ -Gm+ -c a.cpp
icc -DSOM DLL abc -I. -I%$SOMBASE%\include -Ge- -Gd+ -Gm+ -c b.cpp
icc -DSOM DLL abc -I. -I%SOMBASE%\include -Ge- -Gd+ -Gm+ -c c.cpp
icc -DSOM DLL abc -I. -I%SOMBASE%\include -Ge- -Gd+ -Gm+ -c initfunc.c

Note: For OS/2 and NT, the “-Ge” option is used only with the IBM compiler. It
indicates that the object files will go into a DLL.

Note: When compiling the file produced by the imod emitter on Windows NT, also use
the -IC:\IBMCPPW\SDK\WINH option, where C:\IBMCPPW is the root directory of
the VisualAge compiler.

3. Produce an export file for each class.
For AlX:
sc -sexp a.idl b.idl c.idl
For OS/2 and Windows NT:
sc -sdef a.idl b.idl c.idl

Provided the IDL files all include the dliname="abc.d11” modifier in their
implementation section, the above command will generate abc.def on OS/2 and
abc.nid on Windows NT.

If the IDL files do not include the dliname modifier, you can force all the exported
names into the same output file by specifying the -mdll=dIl_filestem option along with
the def emitter on the SOM Compiler command line. Do not use the -mdll modifier on
the Windows NT platform.

4. Create an import library that corresponds to the class library, so that programs and
other class libraries can use (import) your classes.

For AIX:

218 Programmer's Guide for SOM and DSOM

ar ruv libabc.a abc.exp < Note the use of the . exp file,
not a .o file
The first filename (1ibabc . a) specifies the name to give to the import library. It should
be of the form lib<x>.a, where <x> represents your class library. The second filename
(abc . exp) specifies the exported symbols to include in the import library. The
SOMiInitModule procedure should not be exported. Instead, the function
<class_library_dllname_stem>SOMInitTerm must be exported.

Caution: Although AIX shared libraries can be placed directly into an archive file
(lib<x>.a), this is not recommended! A SOM class library should have a corresponding
import library constructed directly from the combined export file.

For OS/2:
implib /noi abc.lib abc.def

The first filename (abc . 1ib) specifies the name for the import library and should
always have a suffix of .lib. The second filename (abc . def) specifies the exported
symbols to include in the import library.

For Windows NT:
ilib /geni:abc.lib /DEF:abc.nid

The first filename (abc . 1ib) specifies the name for the import library and should
always have a suffix of .lib. The second filename (abc.nid) specifies the exported
symbols to include in the import library.

5. Using the object files and the export file, produce a binary class library.
For AIX:

1d -o abc.dll -bE:abc.exp -e SOMInitModule -H512 -T512 \
a.o b.o c.o initfunc.o -lc -L$SOMBASE/lib -lsomtk
The -0 option assigns a name to the class library (abc.d11). The -bE: option
designates the file with the appropriate export list. The -e option designates
SOMiInitModule as the initialization function.

Note: SOMInitModule is specified as the initialization function with the -e option, even
though the imod emitter is used to generate a <dllname_stem>SOMInitTerm
function. This is done because the <dllname_stem>SOMInitTerm function requires
an initialization flag as input, but the SOM run time — for compatibility with existing
class libraries — calls the class library entry point with two version numbers and a
className string.

The -H and -T options must be supplied as shown; they specify the necessary
alignment information for the text and data portions of your code. The -I options name
the specific libraries needed by your classes. If your classes make use of classes in
other class libraries, include a -I option for each of these also. The Id command looks
for a library named lib<x>.a, where <x> is the name provided with each -I option. The -
L option specifies the directory where the somtk library resides.

For OS/2:

set LIB=%SOMBASE%\1lib;$%LIB%
ilink /dll /noe a.obj b.obj c.obj initfunc.obj \
/OUT:abc.dll somtk.lib abc.def

If your classes make use of classes in other class libraries, also include the names of
their import libraries immediately after somtk (before the next comma).

Implementing Classes in SOM 219

Note: If your class library uses dynamically linked C/C++ runtime libraries, you may
receive a linker error message saying that _CRT _term is undefined. Should this
occur, you need to add the option -DDYNA_LINK_C to the compilation of the
initialization source file, recompile and relink. Do not use the -DDYNA_LINK_C
option if your class library uses statically linked C/C++ runtime libraries because
this will cause your class library to operate incorrectly.

For Windows NT:

set LIB=%SOMBASE%\lib;3LIB%
ilink /dll /noe a.obj b.obj c.obj initfunc.obj \
/OUT:abc.dll somtk.lib abc.exp
If your classes make use of classes in other class libraries, also include the names of
their import libraries immediately after somtk (before the next comma).

Note: If your class library uses dynamically linked C/C++ runtime libraries, you may
receive a linker error message saying that _CRT _term is undefined. Should this
occur, you need to add the option -DDYNA_LINK_C to the compilation of the
initialization source file, recompile and relink. Do not use the -DDYNA_LINK_C
option if your class library uses statically linked C/C++ runtime libraries because
this will cause your class library to operate incorrectly.

Building a SOM Library Implemented with C++ on AIX

On AlX, if you use the somFindClass or somFindClsInFile method or the AIX “load”
system call on shared libraries (that is, on SOM DLLSs) that have been implemented using
C++, this may result in a program crash. (This problem does not appear when the shared
library is linked to the application at compile time.)

If this problem occurs, you can use the command makeC++SharedLib, provided by the AIX
XL C++ Compiler/6000, to correctly build a shared library implemented in C++ on AlX. This
command must be used instead of the |d command when you build a SOM library.

Note: When building a multithreaded shared library, use makeC++SharedLib_r instead
of makeC++SharedLib.

Do the following to build and initialize dynamically loaded SOM libraries that are
implemented using XL C++:

Use the makeC++SharedLib command (a shell script) to create the DLL, as shown in the
sample Makefile commands in the next example. Be aware of the following considerations
when creating a Makefile:

- makeC++SharedLib expects $BIN and $LIB to be set to the “bin” and “lib”
directories for the xIC product. (Or, if BIN and LIB are unset, default paths of /usr/
lpp/x1C/binand /usr/lpp/x1C/1ib are used.) The following Makefile
example shows how to explicitly set BIN and LIB before you call
makeC++SharedLib.

- make on AlX requires a <tab> in front of each line of the makeC++SharedLib
command in the Makefile stanza.

- makeC++SharedLib is sensitive to the order of its parameters. The parameter
order in the sample below is appropriate for xIC Version 3.1.4.

- See the makeC++SharedLib documentation in the AIX XL C++ documentation.

When you use the following sample commands in your Makefile, the values of DLL, EXP,
OBJS, LIBDIRLIST and LIBLIST should be tailored for your application:

220 Programmer's Guide for SOM and DSOM

DLL = foo.dll # DLL file name

EXP = foo.exp # export file name
OBJS = foo.o fooinit.o # object (.o) files
LDFLAGS = -H512 -T512 # 1d flags

LIBDIRLIST = -L. -L$(SOMBASE)/lib # list of library dirs
LIBLIST = -lsomtk # list of libraries
<etc.>

$(DLL) : $(EXP) $(OBJS)

BIN=/usr/lpp/x1C/bin

LIB=/usr/lpp/x1C/1lib

makeC++SharedLib -o $@ \

-n SOMInitModule \
-bhalt:4 \

$ (LIBDIRLIST) $(LIBLIST) \

-p 1024 \

-E $(EXP) -bM:SRE $(OBJS)

During the link in step 2, you may receive some warnings from the nm command, similar to

those below. These warnings can be ignored.

nm: libsomtk.a[somc.exp]: 0654-203 Specify an XCOFF object module.

Exporting Variables on Windows NT

To export a variable outside of the DLL, instead of declaring it as:
SOMEXTERN int SOMLINK varl;
You need to declare it as:

SOMEXTERN int
#if defined(_WIN32) && !defined(SOM_DLL myLib)
SOMDLLIMPORT
#endif
varl;

Note that SOM_DLL_myLib contains the name of the DLL as the suffix. If you have too

many variables to export, you can save some typing and make your code look more legible

as follows:

#if !defined(SOM_IMPORTEXPORT myLib)

#if defined(_WIN32) && !defined(SOM_DLL myLib)
#define SOM_IMPORTEXPORT_myLib SOMDLLIMPORT

#else

#define SOM_IMPORTEXPORT myLib

#endif

#endif

SOMEXTERN int SOM IMPORTEXPORT myLib SOMLINK varl;
SOMEXTERN int SOM_IMPORTEXPORT_myLib SOMLINK var2;

Here, SOM_IMPORTEXPORT_myLib is a unique symbol that you introduce. You should

make up one that fits the nature of your .h file. Because the emitters also generate their

own unique symbols, use a unique symbol of the form “SOM_IMPORTEXPORT _dllname”,

where dliname is the name of your DLL.

The same technique also applies if you want to export a variable within a “Passthru”

modifier. For example, if you started with the following OS/2 IDL file:

interface foo ({
implementation {
dllname = “myLib.dll”;
passthru c¢_h after = “"
“SOMEXTERN int SOMLINK var3;”;

Implementing Classes in SOM

221

“SOMEXTERN int SOMLINK var4;”;

}
}i

You would provide the following IDL file for NT:

interface foo
implementation {

dllname = “myLib.d1l1”;

passthru c¢_h after = ““
“#if !defined (SOM_IMPORTEXPORT myLib)”;
“#if defined(WIN32) && !defined(SOM_DLL_myLib)”;
“#define SOM_ IMPORTEXPORT myLIb SOMDLLIMPORT” ;
“f#else”;
“#define SOM_ IMPORTEXPORT myLib”;
“#endif”;
“#endif”;
“SOMEXTERN int SOM IMPORTEXPORT myLib SOMLINK var3;”;
“SOMEXTERN int SOM IMPORTEXPORT myLib SOMLINK var4;”;

}
}i

Other Considerations

Do not set the byte alignment to anything other than 8 bytes.

Customizing Memory Management

SOM is designed to be policy free and highly adaptable. Most of the SOM behavior can be
customized by subclassing the built-in classes and overriding their methods, or by replacing
selected functions in the SOM run-time library with application code. This section and
subsequent ones contain advanced topics describing how to customize the various aspects
of SOM behavior. For information on DSOM customization, see Chapter 8, Distributed
SOM on page 229.

The memory management functions used by the SOM run-time environment are a subset
of those supplied in the ANSI C standard library. They have the same calling interface and
return the equivalent types of results as their ANSI C counterparts, but include some
supplemental error checking. Errors detected in these functions result in the invocation of
the error-handling function to which SOMError points.

The correspondence between the SOM memory-management function variables and their
ANSI standard library equivalents is given in Table 2.

SOM Function ANSI Standard C

Variable Library Function Return type Argument types
SOMCalloc calloc() somToken size t, size_t
SOMFree free() void somToken
SOMMalloc malloc() somToken size_t
SOMRealloc realloc() somToken somToken, size_t

Table 2. Memory-Management Functions.

An application program can replace SOM’s memory management functions with its own
memory management functions to change the way SOM allocates memory. This

222 Programmer's Guide for SOM and DSOM

replacement is possible because SOMCalloc, SOMMalloc, SOMRealloc and SOMFree
are actually global variables that point to SOM’s default memory management functions,
rather than being the names of the functions themselves. Thus, an application program can
replace SOM’s default memory management functions by assigning the entry-point address
of the user-defined memory management function to the appropriate global variable. For
example, to replace the default free procedure with the user-defined function myFree
(which must have the same signature as the ANSI C free function), an application program
would require the following code:

#include <som.h>

/* Define a replacement routine: */

#ifdef 0S2
#pragma linkage (myFree, system)

#endif

void SOMLINK myFree (somToken memPtr)

{

(Customized code goes here)

SOMFree = myFree;

In general, all of these routines should be replaced as a group. For instance, if an
application supplies a customized version of SOMMalloc, it should also supply
corresponding SOMCalloc, SOMFree and SOMRealloc functions that conform to this
same style of memory management.

Customizing Class Loading and Unloading

SOM uses three routines that manage the loading and unloading of class libraries (referred
to here as DLLs). These routines are called by the SOMClassMgrObject as it dynamically
loads and registers classes. If appropriate, the rules that govern the loading and unloading
of DLLs can be modified, by replacing these functions with alternative implementations.

Customizing Class Initialization

The SOMClassInitFuncName Function has the following signature:
string (*SOMClassInitFuncName) ();

This function returns the name of the function that will initialize (create class objects for) all
of the classes that are packaged together in a single class library. (This function name
applies to all class libraries loaded by the SOMClassMgrObject.) The SOM-supplied
version of SOMClasslInitFuncName returns the string “SOMInitModule”. The interface
to the library initialization function is described under Creating SOM Class Libraries.

Implementing Classes in SOM 223

Customizing DLL Loading

224

To dynamically load a SOM class, the SOMClassMgrObject calls the function pointed to
by the global variable SOMLoadModule to load the DLL containing the class. The reason
for making public the SOMLoadModule Function (and the following SOMDeleteModule
Function) is to reveal the boundary where SOM touches the operating system. Explicit
invocation of these functions is never required. However, they are provided to allow class
implementors to insert their own code between the operating system and SOM, if desired.
The SOMLoadModule function has the following signature:

long (*SOMLoadModule) (string className,
string fileName,
string functionName,
long majorVersion,
long minorVersion,
somToken *modHandle) ;

This function is responsible for loading the DLL containing the SOM class className and
returning either the value zero (for success) or a nonzero system-specific error code. The
output argument modHandle is used to return a token that can subsequently be used by
the DLL-unloading routine (described below) to unload the DLL. The default DLL-loading
routine returns the DLL’s module handle in this argument. The remaining arguments are
used as follows:

fileName

The file name of the DLL to be loaded, which can be either a simple name or a full path
name.

functionName
The name of the routine to be called after the DLL is successfully loaded by the
SOMClassMgrObject. This routine is responsible for creating the class objects for the
classes contained in the DLL. Typically, this argument has the value
“SOMInitModule”, which is obtained from the function SOMClassInitFuncName
described above. If no SOMInitModule entry exists in the DLL, the default DLL-loading
routine looks in the DLL for a procedure with the name classNameNewClass instead. If
neither entry point can be found, the default DLL-loading routine relies on the library’s
automatic initialization routine to perform the appropriate class construction/registration
function, as described in Specifying the Initialization and Termination Function on
page 215.

majorVersion
The major version number to be passed to the class initialization function in the DLL
(specified by the functionName argument).

minorVersion
The minor version number to be passed to the class initialization function in the DLL
(specified by the functionName argument).

An application program can replace the default DLL-loading routine by assigning the entry
point address of the new DLL-loading function (such as MyLoadModule) to the global
variable SOMLoadModule, as follows:

#include <som.h>
/* Define a replacement routine: */
long myLoadModule (string className, string fileName,

string functionName, long majorVersion,

Programmer’s Guide for SOM and DSOM

long minorVersion, somToken *modHandle)

(Customized code goes here)

SOMLoadModule = MyLoadModule;

Customizing DLL Unloading

To unload a SOM class, the SOMClassMgrObiject calls the function pointed to by the
global variable SOMDeleteModule. The SOMDeleteModule Function on page 49 has the
following signature:

long (*SOMDeleteModule) (in somToken modHandle) ;

This function is responsible for unloading the DLL designated by the modHandle parameter
and returning either zero (for success) or a nonzero system-specific error code. The
parameter modHandle contains the value returned by the DLL loading routine when the
DLL was loaded.

An application program can replace the default DLL-unloading routine by assigning the
entry point address of the new DLL-unloading function (such as, MyDeleteModule) to the
global variable SOMDeleteModule, as follows:

#include <som.h>
/* Define a replacement routine: */

long myDeleteModule (somToken modHandle)

{

(Customized code goes here)

SOMDeleteModule = MyDeleteModule;

Customizing Character Output

The SOM character-output function is invoked by all of the SOM error-handling and
debugging macros whenever a character must be generated (see Debugging on page 99
and Exceptions and Error Handling on page 100). The default character-output routine,
pointed to by the global variable SOMOutCharRoutine, simply writes the character to
“stdout,” then returns “1” if successful, or “0” otherwise.

For convenience, SOMOutCharRoutine is supplemented by the somSetOutChar
Function. The somSetOutChar function enables each task to have a customized
character output routine, thus it is often preferred for changing the output routine called by
somPrintf Function (because SOMOutCharRoutine would remain in effect for
subsequent tasks).

An application programmer might wish to supply a customized replacement routine to:
» Direct the output to stderr

* Record the output in a log file

* Collect characters and handle them in larger chunks

e Send the output to a window to display it

Implementing Classes in SOM 225

* Place the output in a clipboard
* Some combination of these

With SOMOutCharRoutine, an application program would use code similar to the following
to install the replacement routine:

#include <som.h>

#pragma linkage (myCharacterOutputRoutine, system)
/* Define a replacement routine: */

int SOMLINK myCharacterOutputRoutine (char c)

{

(Customized code goes here)

/* After the next stmt all output */
/* will be sent to the new routine */
SOMOutCharRoutine = myCharacterOutputRoutine;

With somSetOutChar, an application program would use code similar to the following to
install the replacement routine:

#include <som.h>
static int irOutChar (char c);
static int irOutChar (char c)

(Customized code goes here)

main (...)

somSetOutChar ((somTD_SOMOutCharRoutine *) irOutChar) ;

Customizing Error Handling

When an error occurs within any of the SOM-supplied methods or functions, an error-
handling procedure is invoked. The default error-handling procedure supplied by SOM,
pointed to by the global variable SOMError, has the following signature:

void (*SOMError) (int errorCode, string fileName, int lineNum) ;

The default error-handling procedure inspects the errorCode argument and takes
appropriate action, depending on the last decimal digit of errorCode (see Exceptions and
Error Handling on page 100 for a discussion of error classifications). In the default error
handler, fatal errors terminate the current process. The remaining two arguments (fileName
and lineNum), which indicate the name of the file and the line number within the file where
the error occurred, are used to produce an error message.

An application programmer might wish to replace the default error handler with a
customized error-handling routine to:

* Record errors in a way appropriate to the particular application
» Inform the user through the application’s user interface

226 Programmer's Guide for SOM and DSOM

» Attempt application-level recovery by restarting at a known point
» Shut down the application
An application program would use code similar to the following to install the replacement
routine:
#include <som.h>
/* Define a replacement routine: */
void myErrorHandler (int errorCode, string fileName,

int lineNum)

(Customized code goes here)

/* After the next stmt all errors */
/* will be handled by the new routine */
SOMError = myErrorHandler;

When any error condition originates within the classes supplied with SOM, SOM is left in an
internally consistent state. If appropriate, an application program can trap errors with a
customized error-handling procedure and then resume with other processing. Application
programmers should be aware, however, that all methods within the SOM run-time library
behave atomically. That is, they either succeed or fail; but if they fail, partial effects are
undone wherever possible. This is done so that all SOM methods remain usable and can
be re-executed following an error.

The actual mutex service function prototypes and global variable declarations are found in
file somthrd.h.

Implementing Classes in SOM 227

228 Programmer's Guide for SOM and DSOM

Chapter 8. Distributed SOM

This chapter describes the Distributed SOMobjects framework, called DSOM, that enables
SOMobijects applications to execute across distributed processes or across a network of
machines. The following sections tell how to use DSOM.

DSOM Definition

Whereas the power of SOMobjects technology derives from the fact that SOM insulates the
client of an object from the object’s implementation, the power of DSOM lies in the fact that
DSOM insulates the client of an object from the object’s location.

Distributed SOM (or DSOM) provides a framework that allows application programs to
access objects across address spaces. That is, application programs can access objects in
other processes, even on different machines. Both the location and implementation of an
object are hidden from a client, and the client accesses the object (via method calls) in the
same manner regardless of its location.

DSOM provides support for TCP/IP on AIX and Windows NT. In addition to TCP/IP, DSOM
on OS/2 supports NetBIOS through AnyNet.

DSOM can be viewed as:

* An extension to SOM that allows a program to invoke methods on SOM objects in other
processes

* An Object Request Broker (ORB), a standardized transport for distributed object
interaction. In this respect, DSOM complies with the Common Object Request Broker
Architecture (CORBA) 1.1 specification, published by the Object Management Group
(OMG) and X/Open™

This chapter describes DSOM from both perspectives.

DSOM Features

The following is a quick summary of some of important features of DSOM:

» Uses the standard SOM Compiler, Interface Repository, language bindings, and class
libraries. DSOM provides a growth path for non-distributed SOM applications.

» Allows an application program to access a mix of local and remote objects. The fact
that an object is remote is transparent to the program.

* Provides run-time services for creating, destroying, identifying, locating and dispatching
methods on remote objects. These services can be overridden or augmented to suit the
application.

e Uses existing interprocess communication (IPC) facilities for workstation
communication, and common LAN transport facilities for workgroup communications.

» Provides support for writing multi-threaded servers and event-driven programs.

» Provides a default object server program, which can be easily used to create SOM
objects and make those objects accessible to one or more client programs. If the
default server program is used, SOM class libraries are loaded upon demand, so no
server programming or compiling is necessary.

* Complies with the CORBA 1.1 specification, which is important for portability of
applications to other CORBA-compliant ORBs.

Distributed SOM 229

Complies with the CORBA Internet Inter-ORB Protocol 1.0 specification, which allows
interoperability with other CORBA-compliant ORBs.

DSOM Usage

DSOM is for applications that require sharing of objects among multiple programs. The
object actually exists in only one process; this process is known as the object’s server. The
other processes, the clients, access the object via remote method invocations, made
transparently by DSOM.

DSOM should be used for applications that require objects to be isolated from the main
program. This is done where reliability is a concern; either to protect the object from failures
in other parts of the application or to protect the application from an object.

Chapter Outline

230

This chapter is divided into logical and functional sections.

DSOM Tutorial
DSOM Tutorial on page 233 shows a complete example of how an existing SOM class
implementation can be used, without modification, with DSOM to create a distributed
application. Using a SOM class implementation as a backdrop, the basic DSOM
interfaces are introduced.

Programming DSOM Applications
All DSOM applications involve three kinds of programming:

- Client programming: writing code that uses objects
- Server programming: writing code that manages objects
- Implementing classes: writing code that implements objects

Basic Client Programming on page 243, Basic Server Programming on page 286
and Implementing Classes on page 304 describe how to create DSOM applications
from these three points of view. In turn, the structure and services of the relevant
DSOM run-time environment are explained. Additional examples are provided in these
sections to illustrate DSOM services.

Running DSOM Applications
Running DSOM Applications on page 308 explains what is necessary to run a DSOM
application, once it has been built and configured.

Advanced Topics
Advanced Topics on page 310 covers:

- Peer versus Client-Server Processes on page 310 demonstrates how
peer-to-peer object interactions are supported in DSOM.

- Dynamic Invocation Interface on page 311 details DSOM support for the CORBA
dynamic invocation interface to dynamically build and invoke methods on local or
remote objects.

- Building a Client-Only stub DLL on page 318 shows how a programmer can
build a stub DLL for a remote object so that the DSOM runtime can build a proxy
without having access to the remote object’'s complete DLL.

- Creating User-Supplied Proxies on page 319 describes how to override proxy
generation by the DSOM run time and, instead, install a proxy object supplied by
the user.

Programmer’s Guide for SOM and DSOM

- Customizing the Default Base Proxy Class on page 322 discusses how the
SOMDClientProxy class can be subclassed to define a customized base class that
DSOM will use during dynamic proxy-class generation.

Error Reporting and Troubleshooting
Error Reporting and Troubleshooting Hints on page 323 discusses facilities to aid in
problem diagnosis.

DSOM and CORBA
Those readers interested in using DSOM as a CORBA-compliant ORB should read
DSOM as a CORBA-Compliant Object Request Broker on page 327. This section
answers the question: How are CORBA concepts implemented in DSOM?

Deprecated DSOM Methods
DSOM generally provides backward compatibility for objects and methods supported in
DSOM 2.x or before. However, the programming model evolved to incorporate new
standards and provide greater flexibility and extensibility. See Deprecated DSOM
Objects and Methods on page 335 for details on deprecated methods.

DSOM Overview

A DSOM application typically consists of at least four processes running on a single
machine or across multiple machines:

e The client program, written by the application developer.

» The server program, which may be the default server program provided by DSOM, or a
customized server program written by the application developer. The default server
program simply runs in a loop, listening for and servicing client requests. It hosts a well-
known server object, which responds to generic methods for loading and instantiating
application-specific class libraries, and it hosts the application objects created in it.

 The DSOM location-service daemon, somdd, running on the same machine as the
servers. The daemon establishes the initial connection between client and server, and
starts the server program dynamically on the client’s behalf, if necessary.

» The name server providing a Naming Service used by DSOM applications directly and
used by DSOM to provide a Factory Service. The DSOM Factory Service is used by
client programs to create remote objects.

The DSOM application uses the following files at run-time:

 The SOMobjects configuration file that defines run-time environment settings for
DSOM. Each of the above DSOM processes can have unique configuration-file
settings, or they can share a common configuration file. SOMobjects provides a default
configuration file, which can be customized using any text editor.

* The Interface Repository files that primarily load class libraries dynamically in both
client and server processes. These files are created and updated using the SOM
Compiler. See Registering Class Interfaces on page 30 for more information.

* Implementation Repository files that contain information required only on the server
used by the daemon to start servers and by servers to initialize themselves. This
repository is created and updated by registering servers using regimpl. See The
regimpl Registration Utility on page 32 for additional information.

» Naming Service files that store information from the Naming Service and the DSOM
Factory Service persistently on disk. This includes information about which application

Distributed SOM 231

classes are supported on each registered server, collected when the servers are
registered. See Naming Service Concepts on page 27 for more information.

The typical sequence of events that occurs when configuring and running a DSOM
application is as follows:

» Customize environment settings by editing the default configuration file.

» Configure the Naming Service and Security Service using the som_cfg utility. This is a
one-time step.

» Update the Interface Repository to include application IDL.

» Start somdd on the server machines.

» Register application servers and classes, using the regimpl tool.
* Run the client application.

At runtime, DSOM clients and servers communicate via proxy objects, a kind of object
reference. A proxy object is a local representative for a remote target object. A proxy
inherits the target object’s interface, so it responds to the same methods. Operations
invoked on the proxy do not execute locally, but are forwarded to the “real” target object for
execution. The client program always has a proxy for each remote target object on which it
operates.

For the most part, a client program treats a proxy object exactly as it would treat a local
object. The proxy takes responsibility for forwarding requests to and yielding results from
the remote object.

Limitations

232

The following list indicates known limitations of DSOM at the time of this release.

1. Objects cannot be moved from one server to another without changing the object
references (that is, deleting the object and creating it anew in another server). This
yields all copies of the previous reference invalid.

2. The change_implementation method is not supported. This method, defined by the
BOA interface, allows an application to change the implementation definition
associated with an object.However, in DSOM, changing the server implementation
definition may render existing object references (which contain the old server id) invalid.

3. DSOM has a single server activation policy, that corresponds to CORBA's shared
activation policy for dynamic activation, and persistent activation policy for manual
activation. Other activation policies, such as server-per-method and unshared are not
directly supported, and must be implemented by the application.

Since the unshared server policy is not directly supported, the obj_is_ready and
deactivate_object methods, defined in the BOA interface, have null implementations.

4. If a server program terminates without calling deactivate_impl, subsequent attempts to
start that server may fail. The DSOM daemon, somdd, believes the server is still
running until it is told it has stopped. Attempts to start a server that is believed to exist
results in an error (SOMDERROR _ServerAlreadyEXxists).

5. The OUT_LIST_MEMORY, IN_COPY_VALUE and DEPENDENT_LIST flags used with
the Dynamic Invocation Interface are not supported.

Programmer’s Guide for SOM and DSOM

Other important notes concerning DSOM are documented in the product README file.

DSOM Tutorial

The DSOM tutorial presents a sample stack application as an introduction to DSOM. This
tutorial demonstrates that for simple examples, like stack, the class can be used to
implement remotely accessed distributed objects. The tutorial presents the DSOM
information in these units:

* The application components
» The implementor steps before running the application
* The run-time activity

The source code for this example is provided with the DSOM samples in the SOMobjects
Developer Toolkit.

Application Components

The application components used to illustrate DSOM basics consist of the stack IDL
interface provided by the SOMobjects Developer Toolkit, client coding examples of SOM to
DSOM stack changes, stack server implementation and application compiling.

The Stack Interface

The DSOM example assumes that the class implementor built a SOM class library DLL,
called stack.dl1, in the manner described in Creating SOM Class Libraries on page
210. The DLL implements the following IDL interface.

#include <somobj.idls>
interface Stack: SOMObject
{
const long stackSize = 10;
exception STACK OVERFLOW{};
exception STACK UNDERFLOW{};
boolean full() ;
boolean empty () ;
long top() raises (STACK_UNDERFLOW) ;
long pop () raises (STACK UNDERFLOW) ;
void push(in long element) raises (STACK OVERFLOW) ;
#ifdef SOMIDL
implementation
{
releaseorder: full, empty, top, pop, push;

somDefaultInit: override;

long stackTop; // top of stack index
long stackValues [stackSize] ; // stack elements
dllname = “stack.dll”;

Distributed SOM 233

¥
#endif
¥
The class implementor could have built this DLL without knowing it would be accessed
remotely. Some DLLs require changes in the way their classes pass arguments and

manage memory for remote clients. (See Implementation Constraints on page 305 for
additional information.)

The stack class example assumes that all implementation was performed in a reasonable
manner.

Changing a Client Program from a Local to a Remote Stack

The following program uses DSOM to create and access a stack object somewhere in the
system. The location of the object does not matter to the client program; it just wants a
stack object. System configuration determines the location of the object.

In local and remote stacks, the stack operations are identical. The main differences lie in
program initialization and stack creation. The pertinent portions of the program are the
additions and changes required to modify a client program from using a local stack to using
a remote stack. Following the program is an explanation of those portions.

#include <somd.h>
#include <stack.h>
boolean OperationOK (Environment *ev) ;
int main(int argc, char *argv([])
{
Environment ev;
Stack stk;
long num = 100;
SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;
stk = somdCreate (&ev, “Stack”, TRUE) ;
/* Verify successful object creation */
if (OperationOK(&ev))
{
while (! full(stk, &ev))
{
_push(stk, &ev, num);
somPrintf (“Top: %d\n”, _top(stk, &ev));
num += 100;
}
/* Test stack overflow exception */
_push(stk, &ev, num);
OperationOK (&ev) ;
while (! empty(stk, &ev))
{

somPrintf (“Pop: %d\n”, pop(stk, &ev));

234 Programmer’s Guide for SOM and DSOM

}

}

}

/* Test stack underflow exception */

somPrintf (“Top Underflow: %d\n”, top(stk, &ev));

OperationOK (&ev) ;

somPrintf (“Pop Underflow: %d\n”, pop(stk, &ev));

OperationOK (&ev) ;

_push(stk, &ev, -10000);

somPrintf (“Top: %d\n”, _top(stk, &ev));
somPrintf (“Pop: %d\n”, top(stk, &ev));
if (OperationOK(&ev))

{

somPrintf (“Stack test successfully completed.\n”) ;

_somFree (stk) ;
SOMD_Uninit (&ev) ;
SOM_UninitEnvironment (&ev) ;

return(0) ;

boolean OperationOK (Environment *ev)

{

char *exID;

switch (ev-> major

case SYSTEM EXCEPTION:

exID = somExceptionId(ev) ;

somPrintf (“*System Exception: %$s\n”, exID);

somdExceptionFree (ev) ;

return (FALSE) ;

case USER_EXCEPTION:

exID = somExceptionId(ev) ;

somPrintf (“User Exception: %$s\n”, exID);

somdExceptionFree (ev) ;

return (FALSE) ;

case NO_EXCEPTION:
return (TRUE) ;

default:

somPrintf (“Invalid exception type in Environment.\n”);

somdExceptionFree (ev) ;

return (FALSE) ;

Distributed SOM 235

236

}

See Memory-Management Functions on page 256 for more information on allocating and
freeing memory. Stack Example Run-Time Scenario on page 241 describes the run time
operations of the previous application.

Code Differences and Similarities:

e Every DSOM program must #include the file somd.h for C, or somd.xh for C++. This
file defines constants, global variables and run-time interfaces used by DSOM. This file
is sufficient to establish all necessary DSOM definitions.

« DSOM requires its own initialization call.
SOMD_Init (&ev) ;

The call to SOMD_Init initializes the DSOM run-time environment, including allocation
of global objects. SOMD_Init must be called before any DSOM run-time calls are made.

e The local stack creation statement,
stk = StackNew () ;
is replaced by the remote stack creation statement,
stk = somdCreate (&ev, “Stack”, TRUE) ;

» The somdCreate function creates a remote Stack object in an unspecified server that
implements that class. If no object could be created, NULL is returned and an
exception is raised. Otherwise, the object returned is a Stack proxy. From this point on,
the client program treats the Stack proxy exactly as it would treat a local Stack. The
Stack proxy takes responsibility for forwarding requests to and yielding results from the
remote Stack. For example,

_push(stk, &ev,num) ;

causes a message representing the method call to be sent to the server process
containing the remote object. The DSOM run time in the server process decodes the
message and invokes the method on the target object. The result is then returned to
the client process in a message. The DSOM run time in the client process decodes the
result message and returns any result data to the caller.

At the end of the original client program, the local Stack was destroyed by the
statement,

__somFree (stk) ;

This same call is made in the client program above, but is invoked on a Stack proxy.
When invoked on a proxy, somFree will destroy both the proxy object and the remote
target object. If the client only wants to release its use of the remote object, freeing the
proxy, without destroying the remote object, it can call the release method instead of
somFree.

e The client must shut down DSOM, so that any operating system resources acquired by
DSOM for communications or process management can be returned. The
SOMD_Uninit (&ev) ; call must be made at the end of every DSOM program.

Locate and Create Method: Creating a remote object is a two-step process. First, the
client must locate a suitable factory. Once an appropriate factory has been found, the client
must ask the factory to create an instance of the desired class. In the preceding example,
the somdCreate function performed both steps.

somdCreate Function: The somdCreate function places no constraints on how or where
the remote Stack object should be created. Applications can exercise more control over

Programmer’s Guide for SOM and DSOM

the criteria by which a factory is chosen by explicitly selecting the factory and then invoking
an object-creation method, such as somNew.

Naming Service: The Naming Service is a general directory service that allows an object,
along with optional properties, to be bound to a name. The Naming Service supports
searching for an object based on either the name or specific properties. DSOM provides an
extension of the Naming Service, a factory service, for selecting factories by specifying the
selection criteria as property values. When server implementations are registered with
DSOM, information about which classes are associated with each server alias is stored in
the Naming Service.

When the somdCreate function is used, the only property specified to the factory service is
a class name. In general, the client may specify any number of other properties to
determine what kind of factory to use. The preceding client program can be modified to
create a remote Stack object in a specific server whose name, or alias, is StackServer.
The lines below show the changes that were made:

#include <somd.h>

#include <stack.h>

int main(int argc, char *argvl(]) {
Stack stk;
Environment e;
ExtendedNaming ExtendedNamingContext enc;

SOMObject factory;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

enc = (ExtendedNaming ExtendedNamingContext)

_resolve initial references (SOMD_ORBObject, &ev,

“FactoryService”) ;
factory = find any(enc, &ev,

“class == ’'Stack’ and alias == ’'StackServer’”, 0);
stk = _somNew(factory) ;

_push(stk, &ev,100) ;

_push(stk, &ev,200) ;

_pop (stk, &ev) ;

if (! empty(stk, &ev)) somPrintf (“Top: %d\n”, _top(stk,&ev));

_somFree (stk) ;

_release (factory, &ev);
_release(enc, &ev);
SOMD_Uninit (&ev) ;

SOM_UninitEnvironment (&ev) ;

return (0) ;

Distributed SOM 237

238

}

This version of the program replaces the somdCreate operation with calls to the methods
resolve_initial_references, find_any, somNew and release. The
resolve_initial_references method is invoked on a global DSOM object created as a side-
effect of calling SOMD_Init. SOMD_ORBObject contains an instance of class ORB that
provides run-time support for both the client and server. The string “FactoryService”
instructs the method resolve_initial_references to return a proxy to the Naming Context
where information about object factories is stored. A context is a node in the Naming
Service graph, which resides on a DSOM server.

The find_any method queries the Naming Service for a factory that meets the input criteria.
In the preceding example, find_any will return a proxy to a factory that creates stack
objects and resides on the DSOM server whose name is StackServer.

Once the client has the factory proxy, it can create objects of the desired class. Since there
is no standard interface for a factory, this example assumes that the factory for the stack
class is the Stack class object and simply invokes somNew to instantiate the remote
object. The somNew call creates an object of class Stack in the same server as the
selected factory.

Calls to the release method have been added to destroy the proxies to the factory context
and factory object.

Finding Existing Objects: The previous examples show how a remote object can be
created by a client for its exclusive use. It is likely that clients will want to find and use
objects that already exist. The Naming Service can be used for this purpose. For example,
the find_any method could be invoked on a well-known Naming Context that contains
objects advertised by a collection of servers. The basic mechanisms that DSOM provides
for identifying and locating remote objects are discussed in Basic Client Programming on
page 243.

Stack Server Implementation

The process that manages a remote object is called the object’s server. A server consists
of four parts:

A main program, when run, provides an address space for the objects it manages and
one or more process threads that can execute method calls on behalf of its clients.

* A server object, derived from the SOMDServer class, provides methods used to
manage objects in the server process.

» One or more class libraries provide implementations for the objects the server
manages. Usually these libraries are constructed as dynamically linked libraries (DLLS),
so they can be loaded and linked by a server program dynamically.

 The DSOM run time provides the ability for the server to receive incoming messages,
demarshal the messages, marshal the responses and send return messages to clients.

This simple example uses the default DSOM server program that is already compiled and
linked. The default server behaves as a simple server, in that it continually receives
requests and executes them. The default server creates its server object from the default
class SOMDServer. The default server loads any class libraries it needs upon demand. By
using the default server program, the default server object and the existing Stack class
library, a simple stack server can be provided without any additional programming.

The stack class library, stack.d11, can be used without modification in the distributed
application; there are no methods that implicitly assume the client and object are in the

Programmer’s Guide for SOM and DSOM

same address space. See Implementing Classes on page 304 for a discussion of how to
build class libraries that are readily distributed.

An application may require more functionality in the server program or in the server object
than the default implementations provide. A discussion on how to implement customized
server programs and server objects is in Basic Server Programming on page 286.

Compiling the Application

DSOM programs and class libraries are compiled and linked like any SOM program or
library. The header file somd.h for C, or somd.xh for C++ should be included in any source
program that uses DSOM services. DSOM run-time calls can be resolved by linking with
the SOMobijects Toolkit library: libsomtk.a on AIX and somtk.lib on OS/2 and Windows
NT.

For more information, see Compiling and Linking on page 95 and Compiling and
Linking on page 195.

Preparing to Run an Application

Before running an application, the environment must be prepared, the stack class
registered in the Interface Repository, the DSOM daemon started, and the server registered
in the Implementation Repository. Once this is done, the application can be run.

Preparing the Environment

DSOM uses several environment settings from the SOMobjects configuration file. Most of
these settings appear in the [somd] stanza. When not set explicitly, DSOM assumes default
values for all settings except SOMIR, which are usually sufficient for workstation
applications. The environment variable SOMENYV should be set to the files containing the
current environment settings. For complete information about the configuration file, see
Chapter 2, Configuration and Startup on page 11.

DSOM provides a tool, somdchk, for checking current environment settings. The somdchk
tool is described in Step 4. Issue somdchk on page 23.

Registering the Stack Class in the Interface Repository

Before the application can be run, the contents of the stack.idl file must be registered in
the SOM Interface Repository on the server machine. The Interface Repository (IR) is a
collection of files that collectively make up a database of information about the classes that
a DSOM application uses. DSOM servers typically consult the IR to find the name of the
DLL for a dynamically loaded class. This is why the DLL name for the Stack class must be
specified using the d11name="stack.d11” modifier in the implementation statement of
the stack IDL.

If the client application is not statically linked to the class library, then the IR on the client
machine should be updated. The primary use of the IR in DSOM is for loading class
libraries dynamically via the dliname modifier. For a description of other ways in which
DSOM relies on the IR, see Registering Class Interfaces on page 30.

Note: DSOM 2.x relied heavily on the IR to obtain method signature information when
making remote calls. In the current release, DSOM no longer uses the IR to make
remote method calls, if the class implementation (.ih or .xih file) was compiled with
the latest SOM Compiler. If a class implementation was last compiled with a 2.x
SOM Compiler and has not been compiled into the IR, DSOM will generate a

Distributed SOM 239

240

run-time error when an attempt is made to invoke a method from that class. When
this happens, it is usually sufficient to rebuild the class’s DLL and its stub, if any,
using the latest SOM Compiler. Rebuilding causes the necessary information to be
included with the class implementation. The class can be registered in the IR as an
alternative, though less efficient, way of accomplishing the same result.

The interface to the Stack class is registered in the Interface Repository by running the
SOM Compiler and the ir emitter against the stack.idl file:

sc -u -sir stack.idl

Before updating the IR, you should set the SOMIR environment variable or the
corresponding entry in the configuration file. SOMIR specifies a list of files that together
constitute the IR. For DSOM,, it is preferable to use full pathnames in the list of IR files,
since the IR will be shared by several programs that may not all reside in the same
directory. For example,

On AIX: export SOMIR=$SOMBASE/etc/som.ir:/u/shared/my.ir

On 0S/2 and Windows NT: set SOMIR=C:\SOM\ETC\SOM.IR;SOM.IR
On OS/2, When the ir emitter is run, only the last file specified by SOMIR is updated. At run
time, however, the sequence of files is examined from left to right. See Using the SOM
Compiler to Build an Interface Repository on page 337 and Managing Interface
Repository Files on page 338 for more information on the ir emitter and SOMIR.

Starting the DSOM Daemon

The DSOM daemon, somdd, must be started on each server machine, including the
machine on which any Naming Service servers reside, if not already running. Client-only
machines do not require an active DSOM daemon. The somdd daemon is responsible for
establishing a binding between a client process and a server. It will activate the desired
server automatically.

The daemon can be started manually from the command line, or it can be started
automatically from a start-up script run at boot time. It may be run in the background with
the commands somdd& on AIX and start somdd on OS/2 and Windows NT. You need not
issue any parameters, but you can use the -q option to suppress messages.

Registering the Server in the Implementation Repository

It is necessary to register a description of a server implementation in the DSOM
Implementation Repository on the server machine, but not on the client machine. The
Implementation Repository contains information, such as the name of the program, that the
server will execute and how to communicate with the server. DSOM uses this information to
activate server processes on demand and to initialize servers.

Registering a server involves specifying which classes the server will support. This
information is stored in the Naming Service and is used by DSOM client processes to
create remote objects.

The SOMDDIR setting in the configuration file gives the name of a directory on the server
machine used to store the files that make up the DSOM Implementation Repository and
other DSOM-related files. SOMDDIR should be set before you register the server.

If SOMDDIR is not set, then the default directory is used: On AlX, the default directory is
$SOMBASE/etc/dsom. On OS/2 and Windows NT, the default directory is

$SOMBASES% \etc\dsom. Before you register the server, the Naming Service and Security
Service should be configured, and the DSOM daemon must be running. For workgroup
configurations, somdd must also be running on the machine on which the global root of the
Naming Service resides and the machine on which the security server resides. For more

Programmer’s Guide for SOM and DSOM

information on configuring the Naming Service and Security Service using the som_cfg
tool, see Naming Service Concepts on page 27.

For this example, where the default server program and the default communications
protocol are used, it is only necessary to choose a name (alias) for the server and the
classes that this server will support. This is accomplished using the regimpl utility. The
following commands define a default server, named StackServer, which supports the
Stack class:

regimpl -A -i StackServer
regimpl -a -1 StackServer -c Stack

These commands, executed on the server machine, update the Implementation Repository
stored in the directory identified by SOMDDIR. They also register with the Naming Service
the information that client processes need to create remote objects in the server.

Running the Application

Once the DSOM daemon is running on each server machine and the repositories have
been updated, the application can be started by running the client program. If the
StackServer is not running, it will be started automatically by the DSOM daemon when
the client attempts to use it. After the client program ends, the server and daemon continue
to run, accepting connections from new clients.

Stack Example Run-Time Scenario

The run-time scenario introduces several of the key architectural components of DSOM.
The following scenario steps through the actions taken by the DSOM run time in response
to each line of code in the Stack client program presented previously.

e Initialize an environment for error passing:
SOM_InitEnvironment (&ev) ;

* Initialize DSOM:
SOMD_Init (&ev) ;

The ORB object, referred to by the global variable SOMD_ORBODbject is created as a
side effect of this call. This global variable provides run-time support for both clients

and server.
* Find the Factory Naming Context in the Naming Service and assign its proxy to the
variable enc:
enc = _resolve_initial_ references (SOMD_ORBObject, &ev,
“FactoryService”) ;

In response to this call, DSOM uses information in the configuration file SOMNMOBJREF
to construct a proxy to the root of the Naming Service; the server in which this object
resides need not be running at this point, because name-context objects are persistent.
DSOM then gets the name of the factory naming context and resolves this name on the
root Naming Context to get a proxy to the Factory Naming Context. This causes the
server in which the root Naming Context resides to be started automatically by the
DSOM daemon residing on that machine. It also causes the necessary Naming Context
objects to be activated. The proxy to the Factory Naming Context is returned to the
client program.

DSOM locates and activates servers automatically using a combination of the
information in a proxy, the somdd daemon, and the Implementation Repository.

Distributed SOM 241

- The proxy tells the client DSOM run time in which server the remote object resides,
the location, host and port, of the daemon for that server, and the communications
protocols that can be used to contact it.

- DSOM sends a message to that daemon requesting the location of the server.

- The daemon examines its Implementation Repository to find the name of the
executable program that implements the requested server and starts that program.

- After initialization, the server notifies the daemon of its port. The daemon then
relays this information to the client program.

Thereafter, the client and server communicate directly. Once the server is running, the
proxies returned to clients contain all the information needed for clients to contact the
server directly instead of using the DSOM daemon.

» Search the Factory Naming Context for an appropriate factory and assign its proxy to

the variable factory:
factory = find any(enc, &ev,
“class == ’'Stack’ and alias == ’'StackServer’”, 0);

In response to the find_any method, the Factory Naming Context searches the name
bindings it contains, including those added when the server was registered via regimpl,
for one whose properties match those specified. For name bindings established by
regimpl, the name is bound to a NULL object, indicating that the factory object does not
yet exist. An additional property associated with the name binding gives the information
necessary to construct a proxy to the server object in the server where that factory
resides or will reside, when created.

The Factory Naming Context invokes a method on this server object to create a factory
for the specified class, in this case, the Stack class object. The server loads the
Stack DLL dynamically, creates the Stack class object and returns its proxy to the
Factory Naming Context. The Factory Naming Context returns this proxy to the client
program.

» Ask the remote factory to create a Stack and assign its proxy to the variable stk:

stk = somNew(factory) ;
Invoking the somNew method on the factory proxy causes a message representing the
method call to be marshaled and sent to the server process. In the server process,
DSOM demarshals the message and locates the target object on which it invokes the
somNew method. The result is passed back to the client process in a message. In this
case, the result is an object. DSOM automatically creates a new proxy in the client
process.
« Invoke methods on the remote Stack object, via the proxy:
_push(stk, &ev,100) ;
_push(stk, &ev,200) ;
_pop (stk, &ev) ;
if (! empty(stk,&ev)) t = _top(stk, &ev);
» Destroy the proxies and the remote Stack object:
__somFree (stk) ;
_release(factory, &ev);
_release(enc, &ev);

The factory and the Factory Naming Context objects should not be deleted, since they
may be used by other client processes.

242 Programmer's Guide for SOM and DSOM

e Uninitialize DSOM:
SOMD_Uninit (&ev) ;

The ORB object stored in SOMD_ORBObiject will be destroyed as a side effect of this
call.

» Free the error-passing environment:

SOM_UninitEnvironment (&ev) ;

Summary

This example introduced the key concepts of building, installing and running a DSOM
application. It also introduced some key components that comprise the DSOM application
run-time environment, see Figure 15.

" NAME SERVER)

SERYER

SCMOServer
(servar chlact)
Ty e

Interface Asposilony
Implemientation Repastany

"real" xtack

I acs: A ps oy
Implemenlalicon Repomsilory
DEOM daemen [somdd)

Intarfeca Rapasitany

Lagend
@ class
O chjsct

---F g prgxy for

Figure 15. DSOM run-time environment

Basic Client Programming

Client programming in DSOM is generally the same as client programming in SOM, since
DSOM transparently hides the fact that an object is remote when the client accesses the
object. However, a client application writer needs to know how to create, locate, save and
destroy remote objects. This is not necessarily done using the usual SOM bindings.

The DSOM run-time environment provides these services to client programs primarily
through the DSOM Object Request Broker (ORB) object. These run-time services are
described in detail in this section. Examples of how an application developer uses these
services are provided throughout the section.

Distributed SOM 243

Initializing a Client Program

244

This topic introduces the ORB object, describes how it is initialized by the SOMD_Init
procedure and presents two ORB methods that are useful for listing initial object services
and for obtaining a reference to a service.

The ORB Object

DSOM provides a CORBA-compliant implementation of the ORB interface. DSOM creates
an instance of an ORB object during initialization. The ORB class provides several basic
run-time services for both clients and servers; specifically, it defines methods for:

» listing and obtaining initial object references for basic object services
« obtaining object identifiers (string IDs)
e Finding objects, given their identifiers

e creating argument lists to use with the Dynamic Invocation Interface on page 311.

The SOMD _Init Function

Calling SOMD_Init Function causes various DSOM run-time objects to be created and
initialized. Client programs should include the main DSOM header file (somd.h for C,
somd.xh for C++) to define the DSOM run-time interfaces. Since Environment parameters
are used for passing error results between method and caller, an Environment variable
must be declared and initialized for this purpose.

Finding Initial Object References

An object reference is a handle to a remote object in method calls. The ORB class provides
methods to list and to obtain initial object references for essential DSOM run-time objects.
The IDL prototypes for these two operations are:

typedef ObjectId string;

typedef sequence<ObjectId> ObjectIdList;

ObjectIdList list initial services ();

SOMObject resolve initial references (in ObjectId Identifier);
The list_initial_services Method can be called to list the run-time objects that are
available by calling the resolve_initial_references Method. This list is returned as a

sequence of well-known strings that each specify a basic object service. Each string can be
referred to as an Objectld.

resolve_initial_references takes a single Objectld and returns an appropriate object
reference for the requested object service. Since resolve_initial_references returns
different types of objects, it is prototyped to simply return a SOMObject. The caller of the
method resolve_initial_references may need to cast the return value to the actual object
class.

Three object identifiers are available: InterfaceRepository, NameService and
FactoryService. Calling resolve_initial_references with Objectld passed as:

» InterfaceRepository returns an object reference of type Repository: a local instance of
the Interface Repository.

» NameService returns an object reference of type
ExtendedNaming::ExtendedNamingContext: the root context of the local name tree.

Programmer’s Guide for SOM and DSOM

» FactoryService returns an object of type
ExtendedNaming::ExtendedNamingContext: the naming context where references
to SOM object factories are stored.

For example, client code to get a reference to the Interface Repository might look like this:
Repository repo;
repo = (Repository) _resolve initial references(

SOMD_ORBObject, &ev, “InterfaceRepository”);

Creating Remote Objects

The two basic steps in creating a remote object are:
» finding a suitable remote factory object

» invoking an object-creation method on the proxy to the factory object that returns a
proxy to the newly created remote object

This section describes these two steps and the somdCreate Function that DSOM
provides to combine these steps into a single function call.

Advantages of the DSOM Factory Service include:

* The DSOM Factory Service requires less configuration and administration. All
configuration is done using the DSOM regimpl tools.

e The DSOM Factory Service allows pure-client, non-server, processes to use the same
interfaces to create both local, in process, objects and remote objects.

« The DSOM Factory Service generally requires fewer processes to be running and
provides better performance.

Finding a SOM Object Factory

The first step in basic object creation is finding a SOM object factory, any object that
creates a new object. Instances of class SOMClass that support methods somNew and
somNewNolnit are examples of SOM object factories. Applications may provide their own
classes, with creation methods, to serve as SOM object factories.

Factory Well-Known: SOM object factories can be advertised in the Naming Service and
can be retrieved using standard Naming Service methods. If the name of the factory is
well-known, the client can use a method defined by CosNaming::NamingContext with the
IDL prototype:

SOMODbject resolve (in Name n);
The resolve Method returns the object bound to the input name.

Factory not Well-Known: If the factory is not well-known, the client can query the Naming
Service for an appropriate factory by specifying various properties of the desired factory.
When server implementations are registered with DSOM using the regimpl tool,
information about the classes associated with each server is stored in the Naming Service
as properties. Server registration creates an entry in the Naming Service with the following
three default properties to help identify factories:

class
specifies the class hame of the object to be created, as specified when the class/server
association was registered

Distributed SOM 245

246

alias
specifies the server alias where the factory is located

serverld
specifies the Implementation Id of the server where the factory is located

Using these three properties, and others added by the system administrator, clients can
guery the Naming Service. Clients can perform this query using a method defined by
ExtendedNaming::ExtendedNamingContext with the IDL prototype:

SOMObject find_any (in Constraint c, in unsigned long distance);

The find_any method returns the first object found whose properties satisfy the input
constraint. The type Constraint is a string that consists of an expression, including
operators, that involves properties and desired values. The distance parameter specifies
the search depth. When searching for entries created by the DSOM server registration
code, a value of 0 is sufficient for the distance parameter. See BNF for Naming
Constraint Language on page 31 of Programmer’s Guide for Object Services for a
complete description of the naming service constraint language.

For example, client code to find a factory to create an instance of class Car looks like this:
factory = find any(enc, &ev, “class == ‘Car’”, 0);

When a server is registered to create any class, DSOM uses the keyword _ANY as the
value of class. If you want to find a factory to create a specific class or any class, you must
explicitly request this. For example:

factory = find any(enc, &ev, “class=='Car’ or class=='_ANY'”, 0);
Client code to find a factory on server myCarServer looks like this:

factory = find any(enc, &ev,

“class=='Car’ and alias=='myCarServer’”, 0);

The find_any or resolve method can return a local or remote factory object. The Stack
example in DSOM Tutorial on page 233 assumed that the factory object and the object to
be created were remote. However, the object returned from either method can be a local or
a remote factory. The location of the factory object is determined by the information
registered in the Naming Service and is transparent to the client. Client programs can
explicitly request a local factory object, if necessary, by calling method find_any with a

constraint where alias or serverld is set to keyword LOCAL. For example, client code to
find a local factory to create an instance of class Car looks like this:

factory = find any(enc, &ev,
“class == ‘Car’ and alias == ' LOCAL’'”, 0);

If your client is also a server, besides requesting alias as _LOCAL, you should request
alias or serverld as the value of the particular server. For example, client code to find a
local car factory, executed from a server with alias myCarServer might look like this:

factory = find any(enc, &ev,
“class == ’‘Car’ and
(alias == ’ LOCAL’ or alias == ’'myCarServer’)"“, 0);

The DSOM Factory Service performs special processing for naming bindings having the
property class= _ANY, indicating that the server can create instances of any class. If a
server is registered in the Factory Naming Context with the property class=_ANY, then
when a resolve is performed on that name binding, DSOM will return the server object, an
instance of SOMDServer or a subclass thereof, in the registered server. Usually, DSOM
returns a factory for the class specified by the class property, but since _ANY is not a real
class name, DSOM instead returns the server’s server object, to act as a default factory.

Programmer’s Guide for SOM and DSOM

Similarly, when a find_any is performed on the Factory Naming Context and the found
name binding has the property class=_aANY, DSOM will attempt to find a valid class name
in the user-supplied constraint and create a factory for that class in the server. For
example, if class=='Car’ or class=='_ANY' and the find_any search find a name
binding for which class==_aNY, then DSOM will create a Car factory in the server. If no
valid class name is found in the user-supplied constraint, then DSOM will return the server
object. DSOM does not analyze the user-supplied constraint when looking for a valid class
name; it simply selects the first class== clause found in the constraint. In some situations,
this may not be appropriate. For example if the constraint is class=='Car’ or
((class=='Dog’ or class=’_ ANY’) and alias=='myServer’) and the found
server has properties alias==myServer and class='_ANY’ then DSOM will attempt to
create a Car factory in myServer rather than a Dog factory.

Factory Naming Context: When DSOM servers are registered, information about which
classes are associated with each server is stored in the Naming Service as properties. This
information is recorded in a specialized Naming Context called the Factory Naming Context.

For each server/class pair registered, regimpl generates a name of the form
<serverUUID><className> and associates properties class, alias and serverld with that
name stored in the Factory Naming Context. Although names and properties in the Naming
Service are usually bound to non-NULL object references, the names and properties that
regimpl store in the Factory Naming Context are associated with NULL object references.
NULL object references indicate that the factory object does not exist. In fact, the server
where the factory object will reside is probably not running.

The Factory Naming Context provides specialized implementations of some methods.
When resolve or find_any is invoked on the Factory Naming Context, and the specified
name or property is associated with a NULL object reference, the Factory Naming Context
dynamically starts the server process, creates the factory object in the server and returns a
proxy to that factory object. See Customizing Factory Creation on page 302 for more
information on how factories are created within servers.

The find_all method, when invoked on a Factory Naming Context, does not perform a
recursive search, regardless of the depth specified in the request. This is done so find_all
will not result in servers being automatically activated. Other Naming Context methods are
also supported but are not customized beyond the default Naming Service functionality.

Creating an Object from a Factory

Once the client finds a SOM object factory, it can ask the factory to create instances of the
desired class. In compliance with the OMG COSS Life Cycle Service Specification, there is
no standard interface for a SOM object factory. The signature of the creation method
depends on the factory instance. The factory instance will be either a SOM class object or
an application-specific factory. The SOM IDL factory modifier designates if a class
provides an application-specific factory class. In either case, it is the application writer’s
responsibility to know what object-creation method to invoke on it.

For example, when the client receives a factory that is a SOM class object, an instance of
SOMClass or one of its subclasses, the client will need to know if somNew is appropriate
for creating instances of that class, or if it should invoke somNewNolInit followed by the
appropriate initializer.

Here is an example of a how a Car object might be created. This example assumes that
the factory is the class object and that a valid instance of the Car class can be created
using somNew.

#include <somd.h>

#include <Car.h>

Distributed SOM 247

main ()
{
Environment ev;
ExtendedNaming ExtendedNamingContext enc;
SOMObject factory;
Car car;
SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

/* get the context where factory objects are stored */
enc = (ExtendedNaming ExtendedNamingContext)
resolve initial references (SOMD_ORBObject, &ev,
“FactoryService”) ;
/* find a factory that creates “Car” objects */

factory = find any(enc, &ev, “class == ‘Car’”, 0);

/* create a “Car” object */

car = _somNew (factory) ;

__somFree (car) ;

}

Classes that define non-default initializer methods might have corresponding factory
classes that have corresponding create methods with parameters to be passed to the
non-default initializer.

Here is an example of a how a Car object might be created using an application-specific
factory:

#include <somd.h>

#include <Car.h>

main ()
Environment ev;
ExtendedNaming ExtendedNamingContext enc;
SOMObject factory;

Car car;

SOM_InitEnvironment (&ev) ;
SOMD_1Init (&ev) ;
/* get the context where factory objects are stored */
enc = (ExtendedNaming ExtendedNamingContext)
_resolve initial references (SOMD ORBObject, &ev,

“FactoryService”) ;

248 Programmer's Guide for SOM and DSOM

/* find a factory that creates “Car” objects */

factory = _find any(enc, &ev, “class == ’'Car’/ef”, 0);

/* create a “Car” object */

car = makeCar (factory, &ev, “Toyota”, “red”, “2-door”);

_somFree (car) ;

Using the somdCreate Function

The somdCreate function is provided to simplify object creation. The function prototype is
as follows. The className parameter must match the class name as specified when the
class was associated with some server, for example, via regimpl.

For applications using C “somstars” or C++ bindings:
SOMObject * somdCreate (Environment *ev,
Identifier className,
boolean init) ;
For applications using C “somcorba” bindings:
SOMObject somdCreate (Environment *ev,
Identifier className,
boolean init) ;

The somdCreate function calls find_any requesting that property class be set to the input
className. If the init parameter is TRUE, method somNew is called to create the new
target object. If the init parameter is FALSE, method somNewNolnit is called to create the
object. This function is useful for simple applications that use only the somNew or
somNewNolnit object-creation methods and use only the class property when searching
for factories.

Client code to create an instance of class Car, using somNew, might look like this:

#include <somd.h>

#include <Car.h>

main ()
Environment ev;
Car car;
SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

/* create a “Car” object */

car = somdCreate (&ev, “Car”, TRUE) ;

Distributed SOM 249

Finding Existing Objects

In addition to creating new objects, it is likely that clients will want to find and use previously
created objects. The Naming Service advertises any type of object. For example, DSOM
servers use the Naming Service to advertise factories they support. A print service might
use the Naming Service to advertise print queues. See Naming Service Concepts on
page 27 for a description of the Naming Service.

Making Remote Method Calls

250

As far as the client program is concerned, when a remote object is created, a pointer to the
object is returned. What is returned is a pointer to a proxy object, a local representative for
the remote target object.

A proxy is responsible for ensuring that operations invoked get forwarded to the target
object it represents. The DSOM run-time creates proxy objects automatically, wherever an
object is returned from some remote operation. The client program will have at least one
proxy for each remote target object on which it operates. Proxies are described further in
DSOM as a CORBA-Compliant Object Request Broker on page 327 and Advanced
Topics on page 310.

In the previous example, assuming a remote factory is returned from the Naming Service
query, a pointer to a Car proxy is returned and put in the variable car. Subsequent
methods invoked on car will be forwarded and executed on the corresponding remote Car
object.

Remote Object Invocation Methods

DSOM proxies are local representatives of remote objects and can be treated like the target
objects. Method invocation on remote objects is in the same manner as if the object is local.
This is true for method calls using static bindings or for dynamic dispatching calls. In
dynamic dispatching calls, SOM facilities, such as the somDispatch method, construct
method calls at runtime. CORBA defines a Dynamic Invocation Interface (DII) that is
implemented by DSOM as described in Dynamic Invocation Interface on page 311.

Note: The NamedValues used in DIl calls use the any fields for argument values. When
transmitting the any argument to a method call, ensure that the _value field is a
pointer to a value whose type is described by the _type field. To have DSOM
transmit an any whose _value is NULL, set the _type field of the any to tk_null.

The DSOM run-time is responsible for transporting the input method argument values
supplied by the caller to the target object in a remote call. Likewise, the DSOM run-time
transports the return value and any output argument values back to the caller following the
method call, unless an exception occurs. If the target object raises an exception or a
system exception occurs, no return values or out parameters will be returned to the caller.
DSOM returns to the client only a USER_EXCEPTION declared in an IDL raises
expression for the method being invoked. If a method attempts to return a
USER_EXCEPTION not declared in the method’s raises expression, DSOM returns a
system exception.

DSOM can make remote invocations of methods whose parameter types are any
completely defined SOM IDL type. A type is completely defined if it contains no void* or
somToken types, including SOMFOREIGN types. To be transmitted completely,
SOMFOREIGN types may need to be declared with an associated user-defined marshaling
function, as described in Passing Foreign Data Types on page 262.

Programmer’s Guide for SOM and DSOM

When a method parameter is an object, a client program making a remote invocation of that
method must pass a proxy for that parameter rather than passing a local SOMObiject. If the
client program is also a DSOM server program, DSOM automatically generates a proxy for
the object in the receiver’s address space. See Object Reference Passing in Method
Calls on page 251 for additional information.

Most methods invoked on a default proxy are forwarded and invoked on the remote object.
All methods introduced by the target class are forwarded, but some other methods have
special behavior. These methods are not forwarded to the remote object because their
definition makes better sense in the local context. Examples of non-forwarded methods are:

e debugging methods, such as somDumpSelf
» methods that inquire about class properties, such as somGetSize
* methods that are specific to proxies, such as release

Methods having the SOM IDL procedure modifier cannot be invoked remotely using
DSOM. These methods are directly called functions and are not sensitive to target object
location.

Local Proxy Methods: A complete list of methods executed on the local proxy:

create_request, create_request_args, duplicate, is_proxy, release, somGetSize,
somClassDispatch, somDumpSelf, somDumpSelfint, somIsA, somisinstanceOf,
somPrintSelf, somRespondsTo, somdProxyGetClass, somdProxyGetClassName,
somdReleaseResources,

Remote Object Methods: SOMDCIlientProxy introduces methods that forward methods
to the remote object:

e somdTargetFree invokes somFree on the target object.
 somdTargetGetClass invokes somGetClass on the target object.
* somdTargetGetClassName invokes somGetClassName on the target object.

Local Proxy and Remote Object Methods: A small number of methods execute on the
proxy and on the remote object. Most of these methods deal with proxy destruction:

» sombDefaultlnit: If the proxy has not been initialized, somDefaultlnit initializes the
proxy. If the proxy is initialized, somDefaultinit is forwarded to the target object. Proxy
objects that DSOM creates will automatically be initialized.

» sombDestruct: If the proxy is initialized, somDestruct is forwarded to the target object.
and then the proxy is uninitialized and destroyed. If the proxy is not initialized,
somDestruct destroys the proxy.

* somkFree: Invokes somFree on the target object then calls release to uninitialize and
destroy the proxy.

Object Reference Passing in Method Calls

When pointers to objects are returned as method output values, DSOM converts the object
pointers in the server to object proxies in the client. Likewise, when a client passes
proxy-object pointers as input arguments to a method, DSOM converts the proxy argument
in the client to an appropriate object reference in the server. If the proxy being passed from
client to server is for an object in that server, DSOM, as part of demarshaling the request in
the server, gives the object reference to the server’s server object for resolution to a local
SOMObiject pointer.Otherwise, DSOM leaves the proxy alone, since the proxy must refer to
an object in some process other than the target’s server.

Distributed SOM 251

252

Local objects, objects that are not proxies, can only be passed as arguments in a remote
method call if the process making the call is a server; client-only processes cannot pass
local objects as parameters in remote method calls. Servers can make remote calls
provided they have executed their impl_is_ready initialization call.

In the server, DSOM will not do anything to your object. DSOM creates a SOMDObiject to
reference your object, marshals that SOMDObject, then releases it. This is equivalent to
what happens in the client process: client code is expected to release the proxy when it is
finished with it, but this does not necessarily perform a somFree on the remote object on
the server. There is no need to copy an object before returning it. However, if you return a
proxy to an object in another server, you should duplicate it before returning it if your
method uses corba memory management (“caller owns”). When DSOM releases the object
after marshaling, the copy of the proxy remains.

Memory Allocation and Ownership

When making remote method invocations, you must understand the memory allocation
responsibilities of:

* the client program
* the target object in the server
» the DSOM runtime within the client and server process

When using the default memory-ownership policy, the DSOM runtime within the client
process “stands in” for the target object: performing all the memory allocation and
deallocation that the target object would do during a local call. Likewise, the DSOM runtime
within the server process “stands in” for the caller: allocating and deallocating all memory
as the caller would do during a local call. If an application adheres to the default
memory-management policy, the target object behaves the same way for local and remote
clients.

The default memory-ownership policy specifies that the caller is responsible for freeing all
parameters and the return result after the call is complete. The default policy states that
parameters are uniformly caller-owned for local or remote invocation and for caller or target
object memory allocation.

The default attribute-accessor, get or set, method implementations generated by the SOM
Compiler do not adhere to the default memory-ownership policy. The default get method
code does not return storage that the caller can free, and the default set method does not
make a copy of the input storage. Instead, they do simple assignments and fetches of the
object’s own instance data. As a result, these implementations, for attributes of non-scalar
types, will not work properly when invoked remotely with DSOM, for DSOM assumes all
methods are implemented according to the caller-owned policy unless the IDL designates
otherwise. Class implementors should therefore either:

» provide their own implementations of get and set for attributes of non-scalar types
using the noget and noset SOM IDL modifiers in which the set method implementation
makes a copy of the input storage and the get method implementation returns a copy
of the object’s instance data

» use the object_owns_result and object_owns_parameters SOM IDL modifiers to
designate that the default memory-ownership policy should not be assumed by DSOM
when these methods are invoked remotely.

Programmer’s Guide for SOM and DSOM

Note: The default memory-ownership policy differs from the default policy used in DSOM
2.x. The new policy takes effect when the class library is recompiled with the
current release of SOM Complier. See The DSOM 2.x Memory-Management
Policy on page 260 for information on how the current default policy differs from
the DSOM 2.x policy and how to retain the DSOM 2.x behavior.

The referenced SOM IDL modifiers and other available memory-ownership policies are
discussed in Advanced Memory-Management Options on page 257.

Default Memory Allocation Responsibilities: Whether the parameter or return result
should be allocated by the caller or target object depends on the type of the parameter and
its mode (in, inout, out or return).

* Inlocal and remote calls, the client program is responsible for providing storage for in
and inout parameters and for initializing pointers used to return out parameters.

» The target object is responsible for allocating any other storage necessary to hold the
out parameters and all storage for return results. For a remote call, DSOM allocates
corresponding storage in the client's address space.

* The storage DSOM allocates for out parameters and return results from a remote call
is the responsibility of the caller and may need to be freed with ORBfree or SOMFree.

Ownership of memory allocated in the above cases is the responsibility of the client
program. For remote method calls, when a remote object allocates memory for a parameter
or return value, DSOM allocates memory in the client’s address space for the parameter or
result. For a parameter or result that is an object, DSOM creates a proxy object in the
client’s address space. In each case, the memory or the proxy object becomes the
responsibility of the client program and should later be freed by the client. See
Memory-Management Functions on page 256 for additional information.

On the server side of a remote call, DSOM allocates and initializes the in and inout
parameters and the top-level pointers for out parameters before invoking the method on
the target object. The target object is responsible for allocating, with SOMMalloc, any other
storage necessary for out parameters and all the storage for the return value.

The target object is responsible for allocating storage as follows:

» strings and _buffer field of sequences, when used as out arguments or as return
results or, in some cases, when used as inout arguments

* pointer types, objects, TypeCodes, or the _value field of anys, when used as inout or
out arguments or return results

» arrays when used as return results

If the target object changes any storage within an inout parameter, it is the object’s
responsibility to free, with SOMFree, the original orphaned storage. After the method
completes, DSOM frees the storage associated with all parameters and return value.

The sequence of memory-management events that occurs during a single remote method
invocation, using the default memory-management policy, is:

1. The client application allocates and initializes all in and inout parameter and return
result memory and initializes the pointers used to return out parameters. The client
then makes the remote method invocation.

2. After sending the method request to the server, the DSOM run-time in the client
process releases any inout parameter storage that will not be reused.

3. When the method request is received by the server, the DSOM run-time allocates and
initializes memory in the server process corresponding to the memory allocated and
initialized in the client process by the client.

Distributed SOM 253

254

4. The target object in the server allocates memory as needed for out parameters and
return results and frees any inout parameter and return result memory not reused.

5. As part of returning the response to the client, the DSOM run time in the server process
deallocates all parameter and return result memory, including all introduced pointers for
inout and out parameters. See Introduced Pointers on page 255 for a discussion of
which inout and out parameters have additional pointers.).

6. When the response is received in the client, the DSOM run-time allocates memory in
the client process corresponding to the memory allocated in the server process by the
target object. It then returns control to the client application.

7. The client application then has the responsibility to deallocate all parameter and return
result memory, including the introduced pointers for inout and out parameters.

This sequence holds for the default memory-management policy with all data types, but
there are slight variations in parameter-memory management for different data types. The
main differences in handling different data types are:

* Whether pointers are introduced by the mapping from IDL to C or C++.
* Whether the storage for inout parameters is reused or freed and reallocated.
e The function or method that deallocates parameter and return result memory.

» What portions of the storage are to be allocated by the caller and by the target object,
for out parameters and return results,. The general rule is the caller provides top-level
storage, the target object allocates the rest. For example, an out struct whose
members are strings, the caller allocates the struct but the target object allocates the
strings. More specifically, the client allocates storage for the following portions of out
parameters and return results:

- scalar - all storage

- object reference and TypeCode - the pointer but not the reference itself; for out,
the introduced pointer.

- string and pointer - a pointer; for out, the introduced pointer.
- structs and unions - the top-level storage only, for out, the introduced pointer

- sequence - the sequence storage but not the _buffer storage, for out, the
introduced pointer

- any - the any storage but not the _value or _type, for out , the introduced pointer
- out array - the top-level array storage and the introduced pointer

- return array - the introduced pointer

It remains the responsibility of the client to free all parameter storage returned.

For details on inout memory, see Reusing Memory for inout Parameters on page 255; for
details on deallocating parameter and return result memory, see Memory-Management
Functions on page 256.

Although the client or DSOM run-time in the server process is responsible for allocating the
above portions of out parameters and return results, the client or DSOM run-time is not
responsible for initializing the allocated memory. The target object should assume that all
out parameter and return-result memory provided by the client or by DSOM are
uninitialized when received. The target object is responsible for insuring that all out
parameter and return-result memory contains valid values before returning.

Programmer’s Guide for SOM and DSOM

Introduced Pointers : When passed as parameters, some data types in some directions
have a required pointer introduced by the mapping from IDL to C or C++. The following
table shows when these pointers are introduced:

In Out Inout Return Value
scalar types no yes yes no
pointer types no yes yes no
struct types yes yes yes no
arrays yes yes yes yes

Table 3. Introduced pointers by data types

The categories of data types shown in the table are:

e Scalar types: short, ushort, long, ulong, enum, float, double, octet, boolean, char
» Pointer types: string, object reference, TypeCode and pointer

e Struct types: struct, union, sequence, any, Environment

Note: An array is the contiguous block of memory holding the data, not including the
pointer to the first element.

Reusing Memory for inout Parameters: For inout parameters, where the value provided
by the client can differ from the value returned by the target object, the question arises as to
when storage is reused or freed and reallocated. This section describes DSOM’s default
conventions for reusing inout parameter storage. For local/remote transparent applications,
object implementations should adhere to the same conventions.

For inout arguments, DSOM reuses the provided storage, when possible, to hold the
returned value in the out direction. Specifically, DSOM reuses storage for inout scalars,
pointers, bounded strings, the _buffer member of bounded sequences, arrays, and the
top-level storage for inout struct, union, sequence and any. Embedded storage is treated
according to the rules for its own type.

For inout unbounded strings, DSOM reuses the provided storage if the returned string is
not longer than the original string. For inout unbounded sequence, DSOM reuses the
provided _buffer storage if the _length of the returned sequence is not greater than the
__maximum of the original sequence. For either inout string or inout sequence, if DSOM
cannot reuse the provided storage, it deallocates, using SOMFree, the original storage and
reallocates, using SOMMalloc, new storage of the right size. See suppress_inout_free
IDL modifier for additional information.

DSOM supports the transmission of a NULL pointer or string. If an inout pointer or string
is NULL on return, DSOM deallocates the original value before making the value NULL, to
avoid memory leakage. Similarly, for inout sequence, either bounded or unbounded, if the
_length of the returned sequence is less than the _length of the orginal, and the sequence
element type contains storage, then DSOM deallocates the sequence elements between
the new _length and the old _length to avoid memory leakage of these orphaned elements.

For inout parameters of all other types (any, object reference, TypeCode, SOMFOREIGN),
the original storage is deallocated and new storage allocated to hold the returned value.

Any new storage allocated by the DSOM run-time becomes the responsibility of the caller.
This inout storage is allocated with SOMMalloc, so the caller can uniformly use SOMFree

Distributed SOM 255

256

to deallocate it; ORBfree never applies to inout storage. Client programs should allocate
memory for inout parameters, using SOMMalloc, rather than using static storage or
storage on the stack, for parameter and return result memory DSOM may free.

Memory-Management Functions

DSOM programs manage four kinds of memory resources: blocks of memory, Environment
structures, objects and object references. Each resource has different allocation and
release functions.

Blocks of Memory: SOM provides the SOMMalloc and SOMFree functions for allocating
and releasing blocks of memory. Memory allocated by DSOM for inout parameters and
some return values is allocated using SOMMalloc and should be freed with SOMFree.

For out parameters and certain types of return values, CORBA specifies the use of
ORBfree to free DSOM-allocated storage, for DSOM may use special memory-
management techniques to allocate memory. Storage so allocated must be treated
specially by the user; specifically, pointers within it may not be modified, nor can they be
freed using SOMFree and must be freed using ORBfree.

On remote method calls, all out parameters, except object references and TypeCodes, and
the return values for strings, pointers, arrays and sequences are subject to special
allocation and must be freed by the client with ORBfree. All other result types and all in and
inout parameters except object references and TypeCodes are allocated by DSOM using
SOMMalloc and should be freed with SOMFree.

The major distinction between SOMFree and ORBfree is that ORBfree applies to a whole
parameter and recursively frees all embedded memory within a data structure allocated by
DSOM. Therefore, the argument to ORBfree is the top-level pointer used to return the
parameter as required by CORBA 1.1, section 5.16.

For all out parameters, the argument to ORBfree is the pointer used to return the out
parameter. Although the caller allocated the top-level storage for the parameter, this is true.
Nevertheless, ORBfree frees only the portions of the data structure allocated by DSOM.
For return value sequences, except sequence, the argument to ORBfree is the returned
pointer or object reference. For return value sequence, the argument to ORBfree should
be _buffer of the sequence.

If you want to use a single function to free blocks of memory whether allocated by the
application or by DSOM, you can call SOMD_NoORBfree just after calling SOMD_Init in
the client program. SOMD_NoORBfree requires no arguments and returns no value.
SOMD_NoORBfree disables the special allocation for out parameters as well as the result
types listed above and specifies that the client program will free all memory blocks using
SOMFree, rather than ORBfree. In response to this call, DSOM does not keep track of the
memory it allocates for the client. Instead, it assumes that the client program will be
responsible for walking all data structures returned from remote method calls, calling
SOMFree for each block of memory within. The SOMD_FreeType utility function may be
useful for this task, if a TypeCode for the data structure is available or can be obtained
from the Interface Repository.

Environment Structures: When a client invokes a method and the method returns an
exception in the Environment structure, it is the client’s responsibility to free the exception.
Exceptions returned from remote calls are similar to method results or out parameters and
have similar memory-management issues. The caller provides the Environment structure,
and the target object allocates the exception name and exception parameters when an
exception is raised.

Programmer’s Guide for SOM and DSOM

By default, exceptions resulting from a remote call are subject to special allocation, and
must be freed by calling exception_free or somdExceptionFree on the Environment
structure where the exception was returned. Both functions are equivalent, but
exception_free is a CORBA mandate. somdExceptionFree performs a deep free of
exceptions that resulted from remote calls, but only performs a shallow free on local calls. If
the exception parameters contain nested blocks of memory, these must be explicitly freed
by the application (if using somExceptionFree). DSOM programmers must be aware if the
exceptions were received from local or remote calls to know how to free them.

Programmers may want to use a single technique for freeing exceptions regardless of call
location. Similar to ORBfree, the programmer can disable the special allocation of
exceptions from remote calls, and the deep-freeing behavior of somdExceptionFree, by
using SOMD_NoORBfree. While SOMD_NoORBfree is in effect, remote exceptions are
allocated with SOMMalloc, and somdExceptionFree behaves the same on all exceptions.
By using SOMD_NoORBfree, you can use a single mechanism to free all exceptions. For
complex data structures, you must walk the structure, explicitly freeing each memory block.

Exceptions raised by the Interface Repository contain memory taken from a single allocated
block of memory rather than having exception parameters individually allocated. You
should not walk these exceptions nor free them with somdExceptionFree when returned
from remote method calls. Rather you should free them using somExceptionFree.

Objects and Object References: Creating and destroying remote objects was discussed
in Creating Remote Objects on page 245 and Destroying Remote Objects on page 265;
local objects in SOM Classes: The Basics on page 71. Object references or proxies are
typically created by DSOM for the client program. They are released in the client program
by using the release method or as a side-effect of destroying a remote object using
somFree or somDestruct.

Object references embedded within a larger data structure freed using ORBfree should not
be released by the application; ORBfree will release the embedded object references,
rendering them invalid.

TypeCode pseudo-objects should be freed using TypeCode_free.

Advanced Memory-Management Options

The default memory-ownership convention provided by DSOM corresponds to the CORBA
standard that all parameters and return results are caller owned. This policy is sufficient for
most applications. To give programmers more flexibility, DSOM provides three options that
allow them to specify when the caller or the object owns parameter storage, and when
DSOM will free storage. These options do not affect the allocation of parameter and return
result memory, only the freeing of it.

The three types of options are object-owned, dual-owned and suppress_inout_free. Each
option is specified using SOM IDL modifiers on a method-by-method basis. The memory-
management policy for a particular parameter applies to the parameter and its embedded
memory. For example, if a struct is owned by the caller, then so are all its members. For
more information on the SOM IDL modifiers, see Implementation Statements on page
132.

The SOM Compiler does not perform error checking for memory-management modifiers.
To insure correct behavior in your DSOM application, you should insure that these
modifiers are used correctly. Be sure the modifier names are spelled correctly and annotate
the correct method and parameter name.

Distributed SOM 257

258

Object-Owned Policy: Object-owned policy is the opposite of caller-owned policy. The
target object takes responsibility for the parameter storage, and the caller cannot free or
modify it.

Object-owned in parameters are logically transferred from the caller to the target object.
During remote invocation, DSOM acts for the target object in the client’s address space,
and frees, with SOMFree, the storage for in parameters as part of marshaling. These
parameters must be allocated by the client using SOMMalloc. Object-owned inout
parameters are reused, or freed and reallocated, as in the caller-owned case.
Object-owned out parameters, inout parameters or results are not owned by the client.
The client must not free their storage after the method completes. This storage remains
logically owned by the target object. If the object is remote, this storage is managed by the
proxy and is released when the proxy is released. See The somdReleaseResources
method and object-owned parameters on page 259 for additional information.

On the server side of a remote call, DSOM acts for the caller and allocates and initializes
object-owned parameters as in caller-owned parameters. After the method completes, the
DSOM run-time within the server process does not free the storage for any object-owned
parameters. Just as for local calls, the target object’'s implementation determines when the
memory associated with object-owned parameters and results are freed.

The sequence of events during a remote invocation of an object-owned parameter is:

1. The client application allocates and initializes all in and inout parameter and return
result memory and initializes the pointers used to return out parameters by providing
the top-level storage. The client then makes the remote method invocation.

2. After sending the method request to the server, the DSOM run time in the client
process releases the storage associated with object-owned in parameters and for
inout parameter storage that will not be reused.

3. When the method request is received by the server, the DSOM runtime allocates and
initializes memory in the server process corresponding to the memory allocated and
initialized in the client process by the client.

4. The target object in the server allocates memory for out parameters and return results.
Unlike memory for caller-owned parameters, the memory for object-owned parameters
can be static memory rather than memory allocated from the heap, for the target object
assumes responsibility for deallocating this storage and for releasing the storage
associated with object-owned in and inout parameters.

5. When the client receives the response, the DSOM runtime allocates memory in the
client process corresponding to the memory allocated in the server process by the
target object. It returns this storage to the client application. The responsibility for
deallocating it rests with the proxy object on which the remote method was invoked.
The memory is released when the proxy is destroyed. The proxy assumes ownership of
the storage associated with object-owned inout parameters.

For parameters whose IDL-to-C or -C++ mapping introduces a pointer, object-ownership
sometimes applies to the introduced pointer and the data item. For scalar types and types
whose representation is a pointer, the introduced pointer for an out or inout is not subject
to object-ownership. This pointer should be freed by the client, and it will be freed by the
DSOM run-time in the server process after the method completes. For all other types, the
introduced pointer for an in, out or inout is subject to storage ownership, and remains the
responsibility of the target object and of the proxy object, in the client’'s address space.

If the client calls a method having an object-owned out struct and an object-owned out
string as parameters, the client must pass a pointer to heap-allocated storage for the
struct. It may pass a pointer to static storage for the pointer implicit in the string type, but

Programmer’s Guide for SOM and DSOM

not for the characters within the string. The struct pointer becomes object-owned, but the
string pointer does not.

To designate that the result of a particular method is object-owned, use the SOM IDL
modifier object_owns_result. To designate particular parameters of a method as
object-owned, use the object_owns_parameters modifier. To designate the result and
parameters abc and def of method newmethod as object-owned in the implementation
section of SOM IDL, use the following statements:

newmethod : object owns_ result;
newmethod : object owns_parameters = "abc, def";

To designate an attribute’s set and get methods as object-owned, annotate the methods as:

_get _myattrib : object owns result;parameter memory

_set_myattrib : object_owns_parameters = "myattrib";

The somdReleaseResources method and object-owned parameters: when a DSOM
client program makes a remote method invocation, via a proxy, on a method having an
object-owned parameter or return result, the client-side memory associated with the
parameter or result is owned by the caller’'s proxy; the server-side, the remote object. The
memory owned by the caller’s proxy is freed when the client program releases the proxy.

A DSOM client can instruct a proxy object to free all its memory for the client without
releasing the proxy, by invoking the somdReleaseResources method on the proxy object.
Calling somdReleaseResources prevents unused memory from accumulating in a proxy.

Consider a client program repeatedly invoking a remote method that returns a string
designated as object-owned. The proxy stores the memory associated with all returned
strings, even non-unique strings , until the proxy is released. If the client program only uses
the last result returned, then unused memory accumulates in the proxy. The client program
can prevent memory accumulation by invoking somdReleaseResources on the proxy
object periodically.

Dual-owned policy: The dual-owned policy is a combination of the default, caller-owned,
policy and object-owned policy, but is only meaningful for remote calls. In the dual-owned
policy, the caller and the object are each responsible for the release of its own copy of the
parameter. In a remote call, at least two copies of a parameter always exist, since there
must be a copy in the local and remote address spaces. It is reasonable to think of each
side owning its copy. In a local call there is usually only one copy of the parameter, so there
is no need for dual ownership.

For a dual-owned parameter, DSOM frees certain storage for inout parameters but does
not free any other storage in the caller. The caller is responsible for all out, inout and result
storage. To the caller, dual-owned looks no different than the default behavior. On the
server side, dual-owned looks like object-owned; DSOM allocates and initializes the
parameters, but frees nothing after method completion, except certain introduced pointers.

The sequence of events during a remote invocation of a dual-owned parameter is:

1. The client application allocates and initializes all in and inout parameter and return
result memory and initializes the pointers used to return out parameters. The client
then makes the remote method invocation.

2. After sending the method request to the server, the DSOM run-time in the client
process releases any inout parameter storage that will not be reused.

3. When the server receives the method request, the DSOM run-time allocates and
initializes memory in the server process corresponding to the memory allocated and
initialized in the client process by the client.

Distributed SOM 259

260

4. The target object in the server allocates memory for out parameters and return results
and frees any inout parameter and return result memory not reused.

5. As part of sending the response back to the client, the DSOM run-time in the server
process deallocates only those introduced pointers that it allocated that are not subject
to object ownership. All other parameter or result storage is not deallocated. The target
object retains ownership of this storage.

6. When the client receives the response, the DSOM run-time allocates memory in the
client process corresponding to the memory allocated in the server process by the
target object. It returns this storage to the client application.

7. The client application then has the responsibility to deallocate all parameter and return
result memory, including the introduced pointers for inout and out parameters.

To designate that the result of a particular method is dual-owned, use the SOM IDL
modifier dual_owned_result. To designate particular parameters of a method as
dual-owned, use the dual_owned_parameters modifier. To designate the result and
parameters abc and def of method newmethod as dual-owned in the implementation
section of SOM IDL, use the following statements:

newmethod : dual owned result;
newmethod : dual owned parameters = “abc, def”;
To designate an attribute’s set and get methods as dual-owned, annotate the methods as
_get _myattrib : dual owned result;
_set _myattrib : dual owned parameters = “myattrib”;

suppress_inout_free: The suppress_inout_free SOM IDL modifier suppresses the
freeing by DSOM of any part of an inout parameter in the caller’s address space. The
caller assumes responsibility for the storage that DSOM would have freed by default. This
modifier is useful if the original storage for the inout was static storage and should not be
freed by DSOM. When using suppress_inout_free, avoid orphaning the original storage
and creating a memory leak.

To designate that DSOM should not free any part of a particular inout parameter of a
method, use the suppress_inout_free SOM IDL modifier on the method, giving the
parameter name as the modifier value. For parameter abc of method newmethod in the
implementation section of SOM IDL, use the following statement:

newmethod : suppress inout free = abc;
If multiple parameters require annotation, all the parameter names should be listed:
newmethod : suppress_inout free = "abc, def, xyz";

The DSOM 2.x Memory-Management Policy: DSOM'’s current default memory-
management policy is caller-owned. In contrast, the default policy in DSOM 2.x was a
combination of caller-owned for in and inout parameters, dual-owned for out parameters
and return results, and suppress_inout_free for inout parameters.

DSOM 2.x applications that depend on the previous default should have the appropriate
modifiers added to their IDL when the application is recompiled for use with the current
release of DSOM. For methods having an inout parameter of type any, TypeCode or an
object type, the implementation section of the IDL should be annotated with the modifier:

<method-name> : suppress inout free = <parameter-names>;

For methods having a return value that is a non-scalar type, such as string, and the
application depends on the DSOM 2.x behavior, the implementation section of the IDL
should be annotated with the modifier:

<method-name> : dual owned result;

Programmer’s Guide for SOM and DSOM

An attribute’s get method annotation is:
_get <attribute-name> : dual owned result;

For any methods returning an out parameter of a non-scalar type, to preserve the DSOM
2.x runtime behavior, use the following IDL modifier:

<method-name> : dual owned parameters = <parameter-name>;

Note: The new default memory-management policy does not take effect for a class library
until it is rebuilt using the latest ih or xih emitter. Until it is rebuilt, the DSOM 2.x
policies still apply, and the above IDL modifiers need not be used.

Passing Objects by Copying

In most cases, objects passed as method parameters in remote calls are passed by
reference. This is inappropriate for some objects, such as when the object is not a server or
window object but rather encapsulates a data structure. DSOM provides a means of having

these objects passed by copy. A copy of the object appears at the remote site: a by-copy in
parameter is copied onto the server; a by-copy return-result; onto the client.

To pass an object parameter by-copy in a remote call, the implementor must ensure:

» The object’s class is derived from CosStream::Streamable and overrides the
internalize_from_stream and externalize_to_stream methods. The object
implements methods to externalize it and to initialize it by reading from a stream.

» The client and server both load the actual DLL that contains the class implementation
and not a stub DLL.

The first condition is checked by DSOM at run-time; the second, assumed but not checked.
DSOM requires that the object to be passed by-copy be a local object; otherwise, a
run-time exception occurs.

Consider that a class C is to be passed by-copy to a method foo and then returned from a
method bar. The methods are defined as usual:

void foo(in C x);

C bar();
The following modifiers must be added to the implementation section of the SOM IDL:

foo : pass_by copy parameters = x;

bar : pass by copy result;

A programmer may want by-copy argument-passing, but is uncertain that the objects are
descended from CosStream::Streamable and are local objects. In this case, use the
maybe_by_ value_parameters and maybe_by_value_result SOM IDL modifiers in place
of the pass_by copy_parameters and pass_by copy_result modifiers:

foo : maybe by value parameters = x;

bar : maybe by value result;
If the object is not a Streamable object, or the object is a proxy, an object-reference will be
sent instead.

The pass_by copy_parameters and maybe_by_value_parameters modifiers take a
value that is a comma-separated list of parameter names. The pass_by_copy_result and
maybe_by_value_result modifiers take no value. For more information on using SOM IDL
modifiers, see Implementation Statements on page 132.

The default memory-management policy for by-value object parameters is similar to the
policy for object references, except that somFree is used instead of release to release
storage for a by-value object parameter. For an in parameter passed by-value, DSOM

Distributed SOM 261

262

creates the object in the server’s address space and then frees it in the server, using
somFree, after the call has completed. The client retains ownership of the input object in
the client address space. Similarly, an out or returned by-value parameter is freed by
DSOM in the server as part of sending the response to the client. To allow the object in the
server to retain ownership of a by-value parameter or return result, use the IDL modifiers
object_owns_result or object_owns_parameters.

When an inout parameter is passed maybe_by value_parameters maodifier, in the
client’s address space DSOM uses somFree to free the input object and then allocates a
new output object. In the server’'s address space, DSOM creates the input object and frees
the output object, assuming that the target object has freed the input object. For example,
DSOM allocates obj1, then the target object allocates obj2, frees obj1, and returns obj2,
then DSOM frees obj2. For out parameters and objects returned by-value, DSOM frees the
object in the server’s address space. The client retains ownership of the object in the client
address space.

Note: You cannot use pass by copy when the client program uses dynamic invocation,
using SOMObject::somDispatch or the Dynamic Invocation Interface; static
bindings are required to assist in copying the object parameter.

Passing Foreign Data Types

DSOM supports the marshaling for foreign data types, SOMFOREIGN types, but the object
implementor must provide support. DSOM provides the following support techniques:

* opague marshaler that marshals the binary representation of the foreign data

» dynamic foreign marshaling methods

« static foreign marshaling functions

In each case, the implementor of a module or interface must declare a type as foreign
typedef SOMFOREIGN a_ foreign;

Consider a method foo that takes this foreign type as an argument, and a method bar that
returns this foreign data type as result:

void foo(in a_ foreign x);

a_foreign bar() ;
For the marshaler to manipulate a foreign data type, the following details about the type
must be specified via SOM IDL modifiers:

 The length IDL modifier, the size in bytes, of the top-level, contiguous storage of the
type. The default is 4 bytes, and the value must be non-zero.

» The storage class of the type, either pointer or struct, that indicates when pointers are
introduced for parameters of that data type. The default is pointer. See Introduced
Pointers on page 255 for additional information.

» The function or method DSOM can call to marshal, demarshal or free parameters of the
data type. Use the impctx SOM IDL modifier to specifier either:

- astatic, C-callable marshaling function that DSOM calls for marshaling

- the name of a class descended from SOMDForeignMarshaler, defined in
formarsh.idl, that overrides the marshal method that DSOM invokes for
marshaling.

Example: The provider of the a_foreign type above would provide, in the IDL, the
following modifiers. Assume the storage class for the type is struct and the length of the
top-level, contiguous storage is 4 bytes:

Programmer’s Guide for SOM and DSOM

a_foreign : length = 4

a_foreign : struct;

/* and either */

a_foreign : impctx = “C,struct,opaque”;

/* or */
a_foreign : impctx

/* or */

“C,struct,dynamic (A Foreign Marshaler, foobar)”;

a_foreign : impctx = “C,struct,static(static_foreign marshaler,0)”;

The struct modifier indicates that the data type has the storage behavior of a struct. When
a parameter of a_foreign type is passed, the caller passes a pointer to the data rather
than the data itself.

The “C” in the impctx value refers to the language of the foreign data type.

The struct part of the impctx modifier value must be present if and only if the struct
modifier was used, so the storage class of the foreign data type will be reflected by the
TypeCode generated by the SOM compiler.

The opaque, dynamic or static part of the impctx modifier value tells DSOM how to
marshal the foreign type. See each marshaling support technique, in the following
paragraphs, for information on coding that specific marshaling technique.

Generic IDL for impctx: The impctx SOM IDL modifier tells DSOM the function or
method to call to marshal, demarshal or free foreign data types.
foreign-type-name : impctx = “language, optional-sclass, marshaler-spec”
language
the language of the foreign data type. For C or C++, the value “C” suffices.
optional-sclass

the storage class of the foreign data type. The represented value can be either struct
or pointer. pointer is the default value.

marshaler-spec
the specification of the marshaling support technique. This value can be the opaque
marshaler, dynamic marshaling methods or static marshaling functions. The generic
syntax for these support techniques is:

opagque
dynamic (class-name, latent-param-name)
static (function-name,C-initializer-statement)

The description for the dynamic parameters class-name and latent-param-name and
for the static parameters function-name and C-initializer-statement is with dynamic and
static support methods respectively.

impctx Modifier with Opaque: The opaque part of the impctx modifier value specifies
that DSOM should use a generic opaque-octet marshaler. DSOM copies the number of
bytes specified by the length IDL modifier in messages between client and server.

a_foreign : impctx = “C,struct,opaque”
a_foreign : impctx =“C,opaque”

impctx Modifier with Dynamic: The dynamic part of the impctx modifier value tells
DSOM to support marshaling with a dynamic foreign marshaling method.

a_foreign : impctx = “C,struct,dynamic(class-name,latent-param-name)”

Distributed SOM 263

a_foreign : impctx = “C,dynamic(class-name,latent-param-name)”

class-name
the name of a class descended from SOMDForeignMarshaler, defined in
formarsh.idl, that overrides the marshal method. In the example,
A Foreign Marshaler

latent-param-name
the value to be passed as the latent_param parameter value when DSOM invokes the
marshal method. This value allows you to implement foreign marshaling for a variety of
foreign data types using the same class. In the example, the string foobar.

impctx Modifier with Static: The static part of the impctx modifier value tells DSOM to
support marshaling with static foreign marshaling functions.
a_foreign: impctx = “C,struct,static(function-name,C-initializer-statement)”
a_foreign: impctx = “C,static(function-name,C-initializer-statement)”
function-name

the name of the function that marshals, demarshals or frees the foreign data types. See
function-name Parameters for the signature and descriptions of parameters.

C-initializer-statement
A C-expression that evaluates to a word-sized value, such as scalar or pointer. This
value is passed as the first argument to the marshaling function designated by
function-name, the latent-param parameter.

function-name Parameters: This function, static foreign marshaler inthe
Example on page 262, marshals, demarshals or frees foreign data types, similar to the
SOMDForeignMarshaler::marshal method. This function has the signature:

void SOMLINK static foreign marshaler

(
void * latent param,
char * foreign addr,
som_marshaling direction t direction,
som_marshaling op_t function,
CosStream StreamIO * stream,
Environment *ev
)i

latent_param

is the value specified by C-initializer-statement in impctx for the foreign data to be

marshaled. This value allows you to implement foreign marshaling for a variety of
foreign data types using the same function.

foreign_addr
is the address of the data to be marshaled.

direction
tell the marshaler the direction of the marshaling. It has IDL type:

enum som marshaling direction t {SOMD DirCall, SOMD DirReply};

function
tells the marshaler whether to marshal, demarshal or free the data’s non-contiguous
storage. It has IDL type:

enum som_marshaling op_t

264 Programmer’s Guide for SOM and DSOM

{soMD_OpMarshal, SOMD OpDemarshal, SOMD OpFreeStorage};

When called with SOMD_OpFreeStorage, the marshaling function should not free the
top-level storage.

stream
the stream the marshaler uses to read or write the wire representation of the data

Using #pragma with Foreign Data Types: Itis essential that the modifiers describing the
SOMFOREIGN data types be declared before using the data type in a method declaration.
This may require using a #pragma modifier rather than a modifier statement in the SOM
IDL implementation section.

For example, the following IDL would not result in the correct C or C++ bindings for the foo
method because the struct modifier of a_foreign follows the declaration of foo:
typedef SOMFOREIGN a_ foreign;
void foo (in a_ foreign x);
implementation {

a_ foreign : struct;

}i
The correct bindings will be generated if this IDL is used:
typedef SOMFOREIGN a_ foreign;
#pragma modifier a foreign : struct;
void foo (in a_ foreign x);
The #pragma modifier is useful for associating modifiers with foreign types declared

outside the scope of any interface. IDL modifiers are within the interface statement; if there
is no interface statement, you must use a #pragma modifier.

Destroying Remote Objects

When somFree is invoked on a proxy object, the proxy forwards the method to the target
object and then destroys itself. somFree destroys the target and proxy object. When the
C++ delete operator or the somDestruct method is used on a proxy, the operation is
forwarded to the remote object and then executed on itself.

To state if the proxy or remote object is being deleted, the methods somdTargetFree and
release should be used.

_somdTargetFree (car, &ev);
frees the remote Car, but not the proxy.

_release(car, &ev);
frees the proxy, but not the remote Car.
The release method implementation allows invocation not only on proxy objects but on any
SOM obiject. This implementation gives applications local/remote transparency in

destroying or releasing references to their objects. When release is invoked on a local
object pointer, instead of a proxy object, the local object is unaffected.

Note: In DSOM 2.x, invoking somFree on a proxy object caused the remote object to be
destroyed, but not the proxy. Application binaries compiled with DSOM 2.x will
operate as before, but applications recompiled with DSOM 3.0 will destroy the
proxy and the target object.

Distributed SOM 265

Inquiring

Some applications may require a different semantics for object destruction, in which some
operation frees the object if it is local, but releases the proxy object only if the object is
remote. The application designer has the responsibility of implementing such a destruction
operation if one is required.

about a Remote Object Interface or Implementation

A client may wish to inquire about the server implementation of a remote object. All objects
in a server share the same implementation definition, described by an object of type
ImplementationDef. When a proxy is obtained by a client, the client can inquire about the
server implementation by obtaining its corresponding ImplementationDef. To get the
implementation definition associated with a remote object, invoke the get_implementation
method. If a program has a proxy for a remote Car object, it can get a proxy to the
ImplementationDef object for the server with the method call:

ImplementationDef implDef;

Car car;

implDef = get implementation(car, &ev);

Once the ImplementationDef is obtained, the application can access its attributes using
the corresponding get methods. Additional information about the ImplementationDef class
is in Implementation Definitions on page 31.

When invoked on an object that does not reside in a server, an object local to a pure-client
process, get_implementation returns NULL.

An application can query an object for its interface. get_interface invocation on a proxy
returns a proxy to a remote InterfaceDef object that describes the interface supported by
that object. If SOMIR is set, a get_Interface invocation on a local object returns a local
InterfaceDef object; otherwise, NULL is returned. The InterfaceDef class is discussed in
Programming with the Interface Repository Objects on page 340.

Working with Object References

There are three methods that can be used to work with object references (for example,
proxy objects). Although these methods are defined in SOMDObiject, they have been
implemented so that they can be invoked on any SOMObiject.

» The duplicate method is used to duplicate an object reference. If duplicate is invoked
on a SOMDObject, then a new object is returned. The new object refers to the same
remote object as the original. If duplicate is invoked on a local object, the same object
is returned. The result of duplicate should be destroyed using the release method.
When release is invoked on a SOMDObiject, the SOMDODbject, but not the object it
refers to, is destroyed. When release is invoked on a local object, no action is taken
(since duplicate invoked on a local object does not return a true copy).

» Theis_proxy method can be used to determine whether an object is an instance of
SOMDClientProxy or some subclass of SOMDClientProxy. If is_proxy is invoked on
a local object, FALSE is returned.

* Theis_nil method can be used to distinguish a NIL object reference from a valid object
reference. A NIL object reference is one that does not refer to any local or remote
object. Since is_nil is defined as a procedure method, it can be invoked on any object
or on a NULL pointer. The constant OBJECT_NIL represents a NIL object reference.

266 Programmer’s Guide for SOM and DSOM

Saving and Restoring References to Objects

Both proxy objects and pointers to local objects are a kind of “object reference”. An object
reference contains information that is used to identify a target object. To illustrate, a pointer
to a local object contains the actual physical address of the object. Similarly, a proxy object

contains information needed to locate the target server and then the target object within
that server.

In many applications, it is useful to convert object references to a string form (for example,
to save references in a file system or to exchange object references with other application
processes). DSOM defines a method for converting object references (both local object
pointers and proxy objects) to an external form. This external form is a string that can be
used by any process to identify the target object. DSOM also supports the translation of
these strings back into the original local objects or equivalent proxies.

The ORB class defines two methods for converting between object references and their
string representations. The IDL prototypes are as follows:

string object to string (in SOMObject obj) ;

SOMObject string to object (in string str);

The next example assumes that the target object is remote (objref is a proxy). The client
program creates a Car object, generates a string corresponding to the proxy, and saves
the string to a file for later use.

#include <stdio.h>
#include <somd.h>
#include <Car.h>
main()
{
Environment ev;
Car car;
string objref;
FILE* file;
SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

/* create a Car object */

car = somdCreate (&ev, “Car”, TRUE) ;

/* save the reference to the object */
objref = object to string(SOMD ORBObject, &ev, car);
file = fopen(“/u/joe/mycar”, “w");

fprintf (file, “%s”, objref);

Next is an example client program that retrieves the string and regenerates a valid proxy for
the original, remote Car object (assuming the original, remote Car object still exists in the
server or is a persistent object that can be reactivated).

Environment ev;

Distributed SOM 267

Car car;
char buffer[256];
string objref;

FILE* file;

/* restore proxy from its string form */

file = fopen(“/u/joe/mycar”, “r”);

objref = (string) buffer;

fscanf (file, “%s”, objref);

car = _string to_object (SOMD_ORBObject, &ev, objref);

Once the proxy has been regenerated, methods can be invoked on the proxy and they will
be forwarded to the remote target object, as always.

When a string refers to a remote object, the string_to_object method always returns a
new proxy object for that string. The returned proxy is not the same as the proxy passed to
object_to_string, and repeated invocations of string_to_object each return different
proxy objects. These duplicate proxies can be destroyed using the release method,
described earlier.

When a string refers to a local object, the string_to_object method returns a pointer to the
local object. If the object no longer exists, and is not a persistent object that can be
re-activated, an exception is returned. Note that, if object_to_string is invoked on a local
object within a client-only process (a process that is not a server), the resulting string has
validity only as long as the process is active, and only within that process. When
object_to_string is invoked on a local object within a server process, however, the
resulting string can be distributed to other DSOM processes, which can then call
string_to_object with the string to generate a proxy to the original object.

Note: In DSOM 2.x, the string_to_object method, when invoked within the server
process in which the object resides, returned a SOMDObject (an object reference
for the object) rather than the object itself. Similarly, object_to_string in DSOM 2.x
required an input SOMDObject rather than a SOMObject. In the current release, for
increased local/remote transparency for DSOM applications, the string_to_object
and object_to_string methods map between a SOMObiject (either a local object or
a proxy object) and the string form of a reference to that object. (The intermediate
transformation from a local SOMObject to/from a SOMDODbject is done by DSOM.)
Hence, server code need no longer invoke SOMDServer::somdRefFromSOMODbj
before invoking object_to_string and need no longer invoke
SOMDServer::somdSOMODbjFromRef after invoking string_to_object. Although
these invocations are no longer necessary, however, they are harmless.

As with all object references, the lifetime of a string reference to an object in a server
depends on the implementation of the server; if the server supports persistent objects, then
the reference is valid even after the server process terminates. (The next time the reference
is used by a client, the DSOM daemon will restart it, and the server can re-activate the
referenced object.) The default server program, using the default server object, supports
only transient objects (so that references are only valid for the lifetime of the server
process). The main section “Basic Server Programming” describes how to implement
servers that support persistent objects.

Note that the string form of an object reference (the result of calling object_to_string)
should be considered opaque to application programmers. The only assumption that can be

268 Programmer’s Guide for SOM and DSOM

made about such a string is that it can be passed to string_to_object to locate the original
object. It is possible for two different strings to refer to the same object; therefore it is not, in
general, safe for an application to use the strings as unique object identifiers.

Exiting a Client Program

At the end of a client program, the SOMD_Uninit procedure must be called to free DSOM
run-time objects, and to release system resources such as semaphores, shared memory
segments, and so on. SOMD_Uninit frees the ORB object stored in SOMD_ORBObject.
SOMD_Uninit should be called even if the client program terminates unsuccessfully;
otherwise, system resources will not be released.

For example, the exit code in the client program might look like this:

SOMD_Uninit (&ev) ;

SOM_UninitEnvironment (&ev) ;

}

Observe also the SOM_UninitEnvironment call, which frees any memory associated with
the specified Environment structure.

Maintaining Thread Safety

The SOMDCIlientProxy class, which is used to generate client proxies, is thread-safe.
Client applications can simultaneously invoke methods on the same proxy object from
multiple threads. However, one thread should not change the state of the proxy (for
example, by calling somdReleaseResources or somdProxyFree) while other threads are
still using the proxy.

Although DSOM allows multiple invocations on the same proxy, the implementation of the
target class must also be thread-safe. Class implementors are responsible for
implementing thread-safe classes. If a target class is not thread-safe, then clients should
treat proxies to that class as if they are not thread-safe.

In addition, although DSOM-generated proxy classes are thread-safe, user-written proxy
classes aren’t necessarily thread safe. It is up to the provider of an application-specific
proxy class to provide thread safety for any data that is introduced by that proxy class.

Invoking SOMD _Init and SOMD_Uninit simultaneously from different threads is not
supported. It is recommended that these functions be called from the main thread.

Writing Clients that are also Servers

In many applications, processes may need to play both client and server roles. That is,
objects in the process may make requests of remote objects on other servers, but may also
implement and export objects, requiring that it be able to respond to incoming requests.
Details of how to write programs in this peer-to-peer style are explained in Advanced
Topics on page 310.

Distributed SOM 269

Writing Distributed Workplace Shell Applications

The Workplace Shell provided with the current release of the OS/2 Toolkit is enabled as a
DSOM server. This means that Workplace Shell applications can be written as DSOM client
programs that manipulate the OS/2 desktop from a separate process.

The Workplace Shell provides a utility, wpdsinit, for starting and stopping the DSOM
daemon used by the Workplace Shell and the Workplace Shell’s server thread. (The server
thread is initially disabled, to improve performance and footprint of the Workplace Shell
when the server thread is not in use.) The Workplace Shell server thread uses a
specialized SOMDServer subclass, called wpdServer. The Workplace Shell also provides
its own Interface Repository and Implementation Repository, with the Workplace Shell
classes and its server thread registered therein. The Workplace Shell Interface Repository
is typically found in \TOOLKIT\SOM\COMMON\ETC\SOM. IR, and the Workplace Shell
Implementation Repository files are typically found in \OS2\ETC\DSOM.

The Workplace Shell Implementation Repository has the DSOM 2.x format and must be
converted to the DSOM 3.0 format with the migimpl3 tool before you can use it with DSOM
3.0. This should be done after Naming/Security Service configuration (using the som_cfg
tool). See Migrating DSOM 2.x Implementation Repositories to the current DSOM format for
more information on the migimpl3 utility. Be sure to use the -l option to migimpl3 when
converting the Workplace Shell Implementation Repository.

Workplace Shell DSOM client programs require special initialization. In particular, the
application must merge the SOM Class Manager with the Workplace Shell Class Manager
and initialize all application classes used by the program.

The Workplace Shell Programming Guide provided by the OS/2 Toolkit includes a sample
application. It also includes more information on customizing the Workplace Shell server
thread and on starting the Workplace Shell’s server thread either automatically at boot time
or programmatically.

The Workplace Shell uses the environment settings in effect at boot time. Therefore, if you
are using the Workplace Shell as a DSOM server, you must set all DSOM-related
environment variables in the config.sys file. The variables include SOMENYV, PATH,
LIBPATH and DPATH. In the configuration file, set the SOMDDIR setting that the
Workplace Shell uses; the setting is indicated by the config.sys setting of SOMENYV. You
can set the SOMIR setting in either the config.sys file or in the configuration file indicated
by the config.sys setting of SOMENV. (If set in both, the config.sys SOMIR setting takes
precedence.)

All SOMobijects 3.0 libraries (DLLs) that DSOM requires must appear in a directory
indicated by the boot-time setting of LIBPATH. The directory that contains the SOMobjects
3.0 libraries must appear (in LIBPATH) prior to any directory containing SOM/DSOM 2.1 or
Warp’'s SOM/DSOM libraries. Similarly, all executables (including somdd) that DSOM 3.0
requires must appear in a directory indicated by the boot-time setting of PATH, which must
precede any directory that contains SOM/DSOM 2.1 (or Warp’s SOM/DSOM) executables.

Compiling and Linking Clients

270

All client programs must include the main DSOM header file (somd.h for C or somd.xh for
C++) in addition to any header files they require from application classes. This DSOM
header file will #include all other DSOM header files that are needed. Before compiling the
DSOM application, be sure to run the appropriate header-generation script (for example,
somcorba, somstars, or somxh).

Programmer’s Guide for SOM and DSOM

All DSOM client programs must link to the SOMobjects Toolkit library: libsomtk.a on AIX
and somtk.lib on OS/2 and Windows NT. For more information, see Compiling and
Linking on page 95.

Designing Local/Remote Transparent Programs

You want to write a program that runs successfully whether it is working with local or with
remote objects. This section gives guidelines to follow that will help you design programs
with local/remote transparency. The goal of local/remote transparency is to let most of a
program'’s code and design be independent of the location of objects. You should have
local/remote transparency in mind when you design the program. The following are the
overall principles for local/remote transparency; the rest of this section describes more
specific ways to achieve transparency.

« SOM and DSOM also provide non-transparent interfaces for efficiency or convenience.

* To be transparent, programs must adhere to good object-oriented programming
practices, in particular encapsulation and polymorphism.

* Any SOM/DSOM interfaces that reveal implementation information will not be
transparent (for example, somGetinstanceSize). Exceptions to the above rule are
made only to preserve binary compatibility with existing interfaces.

The following sections of this chapter describe various issues of local/remote transparency
and provide guidelines for writing transparent code.

Class Objects

Class objects are one of the primary areas where SOM does not support local/remote
transparency. A class object can be accessed remotely but it will not be local/remote
transparent. Given a reference to a remote class, you can invoke the somNew method and
create an instance object of the remote class in the remote location of the class, much as
you can do with a local class. However, the object creation methods that require a pointer
to the memory to be used for a new object do not work because there is no meaningful way
to pass a memory pointer to a remote object. Although directly interacting with the class
object this way is not transparent, you can wrap a class object in a local factory object and
have the factory offer a set of creation methods that are transparent. See factory discussion
below.

Class objects anchor the implementation of an object. For example:
* They must respond to questions about the object’'s memory requirements.

» They must participate in class hierarchies to achieve an object’s implementation. Many
of the methods that go between class objects in a class hierarchy cannot be distributed
because they involve parameters that are difficult to marshal, such as procedure
pointers.

» They must be different for two objects that have different implementations, even when
the objects are largely or completely type compatible.

Guideline

Because it is neither possible nor desirable to make class objects completely transparent,
class objects should be used rarely and with great care in code that you want to be
transparent. To access the class of an object, use the SOM_GetClass macro instead of the
somGetClass method because, somGetClass is forwarded to the remote object for
backward compatibility reasons and it provides a handle to the remote class rather than the
local class of the proxy object.

Distributed SOM 271

Object Creation

Although class objects are not fully local/remote transparent, it is reasonable to use a
reference to a remote class object to create instances of the class at the remote site.

Remote class objects cannot be declared statically like a local class object; you must use
explicit calls to create the instances. For example:

Foo* makeFooInstance (SOMClass *aFooClass, long arg)

{

Foo *obj = (Foo *) _somNewNoInit (aFooClass) ;
aFooInitMethod (obj, NULL, arg);
return obj;

The above procedure assumes that Foo has an initializer method, aFooInitMethod, that
needs to be called on all new instances, and that it takes one argument, a long, that is
passed in on the call to makeFooInstance. This procedure works equally well for creating
a local or a remote object; it depends on which kind of class instance is passed in.

The class of the object created is not the same as the remote class object. It is the proxy
class of the proxy object that represents the remote instance object. Use a method like
somdGetTargetClass to enquire about the class of a remote object.

Using Factories to Create Objects

Use factory objects to create objects that are local/remote transparent. Factory objects are
not class objects but are objects that have methods that create object instances. It is easy
to design code that uses factory objects to create transparent object instances.

The following example, corresponding to the class-based example, shows the use of a
factory object:

void aProcedure (environment *ev,

FooFactory *aFooFactory)

{

Foo *obj = newFool (aFooFactory, ev, 45);
if (ev-> major != NO_EXCEPTION) ({
/* handle error */

}
/* do something with obj */

__somDestruct (obj) ;

}

The procedure above is not concerned with where the object instance is created. In fact,
the same procedure could be called with many different instances of FooFactory each of
which creates instances at different locations, including one that creates local instances.

It is easy to implement a factory object that just wraps a particular class object.
SOMObijects Release 3.0 has two types of factories; a user-defined factory, and a class
object that masquerades as a factory. When a client tries to find a factory that creates a
given type of object, for example, Foo, either an instance of a user-defined factory specified
in the idl, for example, MyFooFactory, is returned, or the Foo class object is returned. To
create an instance, use a method like somNew when the factory is a class object. Use a
factory-specific creation method when the factory is user-defined. The client is aware which
type of factory is returned because of the IDL interface. Typically, the factory classes are

272 Programmer's Guide for SOM and DSOM

not related; a factory for a class will have no class hierarchy relationship to a factory for one
of its subclasses.

Using Factories While Controlling Memory Allocation

Factory objects can also be used even when the client code needs to control memory
allocation. However, this requires the factory to provide transparent versions for all creation
methods such as somNew, somRenew or somRenewNolnit The following pseudocode
illustrates how to encapsulate a class object in a factory object and how to create instances
even while controlling memory allocation.

interface SOMFactory : SOMObject {

SOMFactory introduces factory methods for creating instances of a single class. You can
provide storage for these instances. SOMFactories will only create objects of a single class.
Once such a factory is created, the class of objects that it creates cannot be changed.
SOMFactory is an abstract class.

long somFactoryGetInstanceSize() ;

long somFactoryGetAlignment () ;

SOMObject somFactoryRenewNoInit (in void* memory) ;
SOMObject somFactoryRenew (in void* memory) ;
SOMObject somFactoryNewNoInit () ;

SOMObject somFactoryNew () ;

Vi

interface SOMFactoryFromClass : SOMFactory {
void somFactoryInitializeWithClass (
inout somInitCtrl ctrl,in SOMClass clsObj) ;

The example above is an initializer method that takes a class object or a proxy to a
class object as an input parameter. Note: usually class objects and proxies for class
objects cannot be interchanged, but this factory takes the necessary steps to allow this.
Objects created by SOMFactoryFromClass instances are guaranteed to respond to
all the methods that c1s0bj instances respond to.

Vi
Assuming that SOMFactoryFromClass has three instance variables:

long instanceSize;

boolean isLocal;

SOMClass *clsObj;

The implementation of some of the methods may look like this:

void somFactoryInitializeWithClass (SOMFactoryFromClass *somSelf,
Environment *ev,
somInitCtrl* ctrl,

SOMClass* classObj)
SOMFactoryFromClassData *somThis; /* set in BeginInitializer */

somInitCtrl globalCtrl;

somBooleanVector myMask;

Distributed SOM 273

SOMFactoryFromClass_BeginInitializer

somFactoryInitializeWithClass;
SOMFactoryFromClass Init SOMFactory somDefaultInit (somSelf, ctrl);

_clsObj = classObj;

if (!classObj)
_instanceSize = 0; _isLocal = FALSE;
return;

}

if (_somIsA(classObj, _SOMDClientProxy)) {

/* proxy to remote class object */

SOMClass *proxyClass;

string classname;

classname = _somGetName (classObj) ;
proxyClass = somdCreateDynProxyClass (ev, classname, 0, O0);
ORBfree (classname) ;
if (proxyClass)
_instanceSize = _somGetInstanceSize (proxyClass) ;
_isLocal = FALSE;
}
else { /* could not create proxy class */
_clsObj = (SOMClass *)NULL;
_instanceSize = 0;
_isLocal = FALSE;
}
} else { /* not a proxy */ _isLocal = TRUE;

_instanceSize = somGetInstanceSize(clsObj) ;

/* The following creates an initialized object using the memory */

/*provided. */

SOMObject* somFactoryRenew (SOMFactoryFromClass *somSelf,
Environment *ev,

void* memory)
SOMFactoryFromClassData *somThis=

SOMFactoryFromClassGetData (somSelf) ;
if (! clsObj || !memory)

274 Programmer's Guide for SOM and DSOM

return ((SOMObject *)NULL) ;
if (_isLocal) ({

return _somRenew(clsObj, memory) ;

} else {
/* create a remote, initialized object and copy the proxy */
SOMObject *newObj = somNew(clsObj) ;
memcpy (memory, newObj, _instanceSize);
SOMFree (newObj); /* don't _release or _somFree! */

return memory;

}

Guideline

In summary, there are two ways to create objects: Class-based and Factory-based. Of
these, only the latter is suitable for local/remote transparent programming.

Gaining Access to Existing Objects

Existing objects are accessed through various object services. Generally these services are
local/remote transparent if the client does not depend on the implementation class of the
objects it accesses. Typically, a client searches the name space (talks to a name server) to
find an object that has all the desired properties.

Guideline

The client code should make no assumptions about an object’s implementation beyond the
properties it specifies as parameters to the name service’s search.

Proxy versus Object Destruction

When a destruction method is called on a proxy object, does it destroy the proxy, the target
or both? SOM has methods for each: release, somdTargetFree and somDestruct
respectively. somFree, although ambiguous, can be resolved by the object; the object
knows what to do. Call somDestruct when you want to be sure that both the proxy and the
remote object are destroyed for sure and you have no other intentions. In a client/server
environment, the object implementor may choose to assign different meanings to somFree
(for example to implement reference count-based freeing). While you could do this by
overriding either somDestruct or somFree, it is better to use somFree and keep the sure
fire semantics of somDestruct intact. Also note that while somDestruct is a true
deinitializer (it can walk up the multiple inheritance hierarchy correctly), somFree is really
only a deallocator.

The CORBA release method is available on local objects and object references. (The
method is introduced by SOMDObject, but has been implemented in such a way that it can
be invoked on any object.) release performs no operations on a local object, as there are
no resources associated with local object references. To be transparent, release should be
called on each object reference.

somdTargetFree forwards the somFree method call to the remote object, but the proxy
object is not destroyed.

somDestruct on a proxy gets forwarded, and it destroys both the remote object and the
local proxy if its parameter requires.

Distributed SOM 275

276

somFree has an ambiguity that is resolved by the object. somFree releases any resources
associated with the object reference, and is forwarded to the remote object when a proxy
object is involved. Factories create objects that assign the same meaning to somFree.
However, object and factory designers can use other means of determining the meaning of
somFree. Class factories produced by the SOMClass metaclass assign somFree the
somDestruct meaning. somFree applies uniformly to class and non-class objects.

Guideline

Use somFree uniformly. You can override somFree and implement some kind of reference-
counting before destroying the object. Use somFree on local and remote objects and
classes. Security and integrity considerations might require disallowing somFree on remote
classes.

Memory Management of Parameters

SOMODbjects 2.1 introduced new modifiers in IDL to make memory management of
parameters explicit. They default to the SOMobjects 2.0 policies, for backward
compatibility. There is a memory_management=corba modifier to specify CORBA 1.1
parameter and return result memory management. In SOMObjects 3.0 the default memory
management policy is corba. All parameter and return result memory is uniformly caller-
owned, and the caller is eventually responsible for freeing it.

Parameters for which the object owns memory are inherently problematic for local-remote
transparency. In the local case, the clients typically get pointers into the data structures
owned by the object. This breaks encapsulation in addition to being an integrity concern.

Guideline

The following are the guidelines for local/remote transparent programming with respect to
parameter and return result memory management:

e Don't use object-owned parameters. If you must, limit yourself to object-owned IN
parameters.

» Don't retain a reference or alias to memory whose ownership you have given away.

» Don't give away ownership of memory unless it is allocated with SOMMalloc so the
receiver can assume the use of SOMFree to free it.

- This simplifies life for the ownership receiver, and also the ownership can be
transferred several times.

- This applies to all object-owned IN parameters and all the caller-owned parameters
that the ORB is supposed to free.

* Use SOMFree rather than ORBfree for parameter cleanup, after initializing your
program with SOMD_NoORBfree.

» Use somExcetpionFree to free exception structures from both local and remote calls,
after initializing your program with SOMD_NoORBfree.

A corollary of these guidelines is that all object-owned IN parameters must be created and

freed using SOMMalloc and SOMFree respectively. Object-owned is a SOM feature, not a
CORBA feature. Another corollary is that because SOMFree and somExceptionFree do a
shallow free, you must walk the structures and free any embedded objects. The typecode-

based free function, SOMD_FreeType, eases this task.

Conclusion: The simplest rule for transparent programming is: Stick to CORBA rules and
use SOMMalloc and SOMFree to manage your parameter and return result memory.

Programmer’s Guide for SOM and DSOM

Distribution Related Errors

Working with a proxy object introduces error possibilities that don’t exist when working with
the object directly, especially if the proxy is for an object running in another process or on
another machine. For example, the real object may go away (because of an error or
because it was explicitly destroyed) while the client still has a proxy for it. Or, the real object
may become unreachable because of transport failures.

Check for error conditions by examining the Environment (ev) parameter. Distribution-
related errors are reflected through the same parameter.

Guideline

To be local/remote transparent, the client code should handle whatever errors it can cope
with and handle the rest (distribution-related errors) gracefully using a default error handler.

Generating and Resolving Object References

All CORBA objects are accessed through object references. The ORB fabricates
externalizable object references and resolves them. In DSOM, the ORB object uses the
SOMOA (SOM Object Adapter) and SOMDServer to generate and resolve object
references.

Passing an object as a parameter to a remote object automatically causes a reference to
be created for the object by the object adapter. This works as long as the program passing
the object reference has an object adapter (has server capability). A process that does not
have an object adapter cannot pass a reference for one of its local objects to a remote
object. Such processes are pure clients.

Guideline

From a pure-client process, don’t write out stringified object references. They are good only
as long as the ORB object that created them lives.

Support for CORBA Specified Interfaces to Local Objects

All CORBA specified interfaces that apply to objects work on local SOM objects. These are
the methods defined on Object in the CORBA documentation. For local objects these
methods are defined as follows:

* get_implementation returns NULL, if the object is in a pure client process. If the object
is in a server process, it returns the ImplementationDef object for the server.

« get_interface works as defined if object is registered in the IR; otherwise, returns
NULL.

e is_nil is a procedure method. It return true if the pointer is NULL, and false, otherwise.
» duplicate copies the pointer to the object.

* release does nothing.

» create_request works as defined; the DIl interface works with local objects.
Guideline

OBJECT _NIL is defined by CORBA as an object reference that does not refer to any
object. To maintain local/remote transparency, do not assume that OBJECT_NIL is mapped

to a null pointer.The code if (!objref) ... isnottransparent. Instead, use the form
if is nil(objref)Also,in generalitis nota good idea to do checks like if
(objref == OBJECT NIL) ..., because the inequality among two object references is

not a guarantee that they are referring to two different objects (according to CORBA). Of

Distributed SOM 277

278

course, if they are equal then they do refer to the same object. You should test for null
object reference by calling the _is_nil function. Do not call release on a null object
reference. For example, you can guard the release call as in

if (! is nil(objref)) release(objref);

Data Types not Supported In Distributed Interfaces

There are types not fully defined in IDL or that cannot be marshaled by DSOM. Therefore,
you can provide custom marshalling support for any such types. These types must be
declared as SOMFOREIGN in the IDL. Also, there must be IDL modifiers indicating the
length in bytes of the type, its storage class (mainly to know if there is an introduced
pointer), and the name of the custom marshaling function. The custom marshaling can be
done either through a static function, a dynamic method, or a DSOM default. The DSOM
default marshaling strategy for SOMFOREIGN types is to simply marshal the binary
representation of the type, using the specified length or a default size.

When SOMFOREIGN types are passed by copy, you control the implementation of
externalization methods and copy constructors. Therefore, you must ensure that either
method produces semantically equivalent object copies.

SOM Objects That Do not Have IDL Interfaces
SOMobijects does not support distribution of these objects unless their interfaces are either
in the Interface Repository or the marshaling plan is compiled into the .dll.

Procedure Methods

SOMobijects does not support remote access to procedure methods.

Global Variables

SOMobijects does not support remote access to global variables, or any way of linking
global variables across address spaces.

Class Data

SOMobijects does not do anything special for class data to support local-remote
transparency.

Class Methods

The class of a proxy object is a local proxy-class object. Any class methods will be
executed locally and, therefore, will not generally be transparent. Also, to reach the class
object use the SOM_GetClass macro instead of somGetClass method.

Direct Instance Data Access

SOM does not support remote access to data, only to remote method calls.

Passing Objects by Value

SOMObijects supports IDL interface declarations that specify that an object is to be passed
by value. This must work in the local case as well as the remote case. With SOMObjects
2.1, SOM supports pass by value to local targets as part of the DTS extensions based on
copy initializers (which may be defaulted). SOMODbjects 3.0 extends this capability to calls

Programmer’s Guide for SOM and DSOM

to remote targets through the externalization framework. Different results may be produced
in the local versus the remote case because of the difference between a copy initializer and
the externalization framework. This is under the control of the object designer. For
transparency you must ensure that they produce semantically equivalent copies.

Objects passed by value in C++ have somewhat strange semantics. For example, if a
formal parameter expects an object of type Animal and the actual argument happens to be
of type Dog, then C++ makes a copy of Dog and truncates the copy after the Animal
portion of data. Technically speaking, it has all the state data for an Animal and thus it
should behave like an animal. However this breaks polymorphism because the overriding
behavior of Dog is not seen in the callee. It is seen when passed by reference.

In general, when a class is subclassed, the subclass programmer might implement a
superclass’s abstractions in terms of its own data and may not keep the superclass’s data
up-to-date. Truncating an object (to match a formal parameter that is of the superclass
type) in such cases breaks the object. Respecting polymorphic behavior means ensuring
that polymorphic methods operate on the right data. Any direct access to data members in
C++ does not respect encapsulation and it also does not respect polymorphic behavior: that
is breaking encapsulation implies breaking polymorphic behavior. Of course, the converse
is not true: breaking polymorphic behavior does not imply breaking encapsulation. For
example, not keeping the parent class’s data up-to-date and trying to truncate the object to
make it an instance of the parent class does not break encapsulation, but it does break
polymorphic behavior.

Guideline
The following are the guidelines for passing objects by value with local/remote transparency.

» Use pass_by_copy_parameters modifier in the IDL, if you want C++ By-Value
semantics.

 Use maybe_by value_parameters modifier, if you primarily want efficiency (both local
and remote).

e Anobject can be passed by value only if the object supports COSS Streamable
interface. Make sure that externalize and internalize produce a semantically equivalent
copy to a copy constructor on the object.

» Make sure that the code does not break polymorphism (implies encapsulation as well).

Object Invocation: Synchronous, Oneway, Deferred
Synchronous and Asynchronous

The method invocation syntax for synchronous, deferred synchronous (through CORBA
DIl), and one way calls are exactly the same for both local and remote objects, and
therefore SOM is local/remote transparent in these cases.

Guideline

For using deferred synchronous invocations, use CORBA request objects. These work for
local and remote objects. Use the returned values only after calling get _response
method.

Summary of Local/Remote Guidelines

The following is a quick summary of the guidelines for designing transparent local/remote
programs:

Distributed SOM 279

General

Specific

Methods with externally visible side effects, for example, calling printf from inside a
method, can't be transparent.

For transparency with respect to parameters passed by value, all ways of creating
copies, including copy constructors, externalization, and custom marshaling must
produce semantically equivalent data as in the local case.

In general, any communication between an object and outside (other objects included)
that is not through methods is not guaranteed to be transparent. Some examples are:

- Aliasing: Caller and Callee sharing pointers.

- Global variables access

- Instances communicating via common class data members.

- Direct instance data access from outside the object

Procedure methods are not forwarded to remote objects.

Methods added dynamically to a SOM class object are not forwarded.

Non-polymorphic code is not guaranteed to be local/remote transparent. (for example,
copy constructors, assignment operators and externalization methods should all
respect polymorphism.)

Classes are implementation means for objects. In local/remote transparent programs,
use them rarely and with great care, and use only those operations on them that are
transparent.

Use factories to create objects.

An existing object’s access through various object services is transparent. No other
assumptions (besides supporting the object services) about their implementation
should be made by clients.

To destroy objects use somFree uniformly on both instances and classes. Use
release uniformly on local and remote object references.

To check if an object reference is null, use _is_nil function. Do not make assumptions
on the representation for OBJECT _NIL.

For memory management of parameters, stick to CORBA rules (that is, Caller-Owned)
and use SOMFree uniformly. Free exception structures using somExceptionFree
uniformly.

Anticipate distribution-related error returns and handle them gracefully.

If in a pure client process, don't externalize stringified object references and don't pass
object references in remote calls. Passing objects by value is allowed.

To pass an object by value or copy, make sure that its class supports the COSS
Streamable interface and it produces semantically equivalent copy through the copy
constructors and externalization.

For using deferred synchronous invocations, use CORBA request objects. The
returned values should be used only after calling the get_response method.

For writing transparent assignment operator methods make sure that they do not break
the polymorphism of the from object. That is, make all accesses to the from object’s
state either method calls or attribute access calls.

280 Programmer’s Guide for SOM and DSOM

Method Classification for Local/Remote Transparency

This section lists and classifies the SOM kernel and DSOM methods and tells how they
relate to local/remote transparency. This section defines the terms used to classify
methods, tells how the terms can be combined, then lists the methods. Methods that are
local only or are deprecated are not listed.

Terms Used in Method Classification

The following terms are used to classify or explain methods:

Forward
When a method is applied to a local proxy object, it is said to be forwarded if it is sent
on to the server object that the proxy object is representing. If the method is not special
it causes the same method to be invoked on the server object. If it is special, then one
or more different methods may be invoked on the server object. If a method is not
forwarded, then it is handled locally and no message is sent to the server object

Transparent
A method is transparent if the caller does not need to know that the method’s target
object is a proxy. When a method is transparent, it should be practical to invoke it on a
collection of objects, some of which are local and some of which are remote
(represented by proxies) without concern for local versus remote.

Special
A method is special if it must be implemented by the proxy and possibly converted into
other method calls.

A method can be classified into one or more of the above groups as follows:

Forwarded, Transparent: T his is the default for all developer-defined methods. Almost all
methods are just forwarded to the remote object, and neither the client nor the server
programmer needs to make any special provision for these methods. However, many of the
SOMObiject base class methods do not fall into this category because of their special
nature of being part of the runtime.

Not Forwarded, Transparent: A small number of methods are not forwarded to remote
objects because their definition makes more sense in the local context. The best examples
of this category are certain debugging methods (such as somPrintSelf) and methods
that inquire about an object’s class or class properties. Class inquiries must be handled by
the proxy object’s class because they are supposed to reveal information about the
implementation or type of the actual object they are applied to (abstraction cannot be used
for these methods). For example, a client might ask for an object’s class and then ask the
class object about its instances’ size. In this case the client must be given the size of the
proxy object, as anything else could lead to memory errors. Even though these methods
are not forwarded, they are still transparent (except for some of the debugging methods for
which transparency is poorly defined). In fact, to forward them would make them non-
transparent.

Forwarded, Non-Transparent: Some methods are forwarded to remote objects and they
work equally for local and proxy objects. However there may be observable side effects
(needing special care to free parameter and return result memory) depending on whether
the target is local or remote. These cases typically arise with older SOMObjects methods
that are preserved for backward binary compatibility.

Forwarded, Transparent, Special: A few methods must be processed locally and then
sent on, possibly as different methods.

Distributed SOM 281

Not Forwarded, Transparent, Special: An advanced developer may place some methods
in this category in the definition of an caching proxy class. That is, the developer might
actually execute some method locally while preserving the exact semantics of remote
execution.

Variable, Transparent, Special: A few methods have a variable definition: sometimes
they are forwarded and sometimes they are not. This may depend on the proxy object or it
may depend on the arguments passed to the method.

The following tables list the functions and their classifications.

Table 4. SOM Kernel Functions Classification

282

Method Name

Classification

somApply

Variable, Transparent, Special

somClassResolve

Not Forwarded, Transparent

somlsObj

Not Forwarded, Transparent

is_nil

Not Forwarded, Transparent

somParentNumResolve

Not Forwarded, Transparent

somParentResolve

Not Forwarded, Transparent

somResolve

Not Forwarded, Transparent

somResolveByName

Not Forwarded, Transparent

Table 5. SOMObject Methods Classification

Method Name

Classification

create_request

Not Forwarded, Transparent

create_request_args

Not Forwarded, Transparent

duplicate

Not Forwarded, Transparent

get_implementation

Forwarded, Transparent

get_interface

Forwarded, Transparent

is_proxy Not Forwarded, Transparent
release Not Forwarded, Transparent
somCastObj Forwarded, Transparent

somDefaultAssign

Forwarded, Transparent

somDefaultConstAssig

Forwarded, Transparent

somDefaultConstCopylnit

Forwarded, Transparent

somDefaultConstVAssig

Forwarded, Transparent

somDefaultConstVCopylnit

Forwarded, Transparent

Programmer’s Guide for SOM and DSOM

Table 5. SOMObject Methods Classification

Method Name

Classification

somDefaultlnit

Forwarded, Transparent, Special

somDefaultCopylnit

Forwarded, Transparent

somDefaultVAssign

Forwarded, Transparent

somDefaultVCopylInit

Forwarded, Transparent

somDestruct

Forwarded, Transparent, Special

somDispatch

Variable, Transparent, Special

somClassDispatch

Not Forwarded, Transparent

somDumpSelf

Not Forwarded, Transparent

somDumpSelfint

Not Forwarded, Transparent

somFree

Variable, Transparent, Special

somGetClass

Forwarded, Transparent

somGetClassName

Forwarded, Non-Transparent

somGetSize Not Forwarded, Transparent
sominit Forwarded, Transparent
somlisA Not Forwarded, Transparent

somlsinstanceOf

Not Forwarded, Transparent

somPrintSelf

Not Forwarded, Transparent

somResetObj Forwarded, Transparent
somRespondsTo Not Forwarded, Transparent
somuUninit Forwarded, Transparent

Table 6. SOMClass Methods

Method

Classification

somCheckVersion

Forwarded, Transparent

somDescendedFrom

Forwarded, Transparent

somGetInstanceSize

Forwarded, Transparent

somGetName

Forwarded, Non-Transparent

somGetNumMethods

Forwarded, Transparent

somGetNumStaticMethods

Forwarded, Transparent

somGetParents

Forwarded, Transparent

Distributed SOM 283

Table 6. SOMClass Methods

Method

Classification

somGetVersionNumbers

Forwarded, Transparent

somNew

Forwarded, Transparent

somNewNolnit

Forwarded, Transparent

Table 7. SomClassMgr Methods

Method Name

Classification

somClassFromld

Forwarded, Transparent

somFindClass

Forwarded, Transparent

somFindClsInFile

Forwarded, Transparent

somGetlnitFunction

Forwarded, Non-Transparent

_get_somlinterfaceRepository

Forwarded, Transparent

_set_sominterfaceRepository

Forwarded, Transparent

_get_somRegisteredClasses

Forwarded, Transparent

somLocateClassFile

Forwarded, Non-Transparent

somRegisterClass

Forwarded, Transparent

somSubstituteClass

Forwarded, Transparent

somUnloadClassFile

Forwarded, Transparent

somUnregisterClass

Forwarded, Transparent

somClassFromld

Forwarded, Transparent

somFindClass

Forwarded, Transparent

somFindClsInFile

Forwarded, Transparent

Table 8. DSOM Functions

Method Name

Classification

send_multiple_requests

Forwarded, Transparent, Special

somdCreate

Not-Forwarded, Transparent

Table 9. ImplementationDef Methods

Method Name

Classification

_get_config_file

Forwarded, Transparent

Programmer’s Guide for SOM and DSOM

Table 9. ImplementationDef Methods

Method Name

Classification

_get_impl_id

Forwarded, Transparent

_get_impl_alias

Forwarded, Transparent

_get_impl_def_class

Forwarded, Transparent

_get_impl_def_struct

Forwarded, Transparent

_get_impl_program

Forwarded, Transparent

_get_impl_flags

Forwarded, Transparent

_get_impl_server_class

Forwarded, Transparent

_get_protocols

Forwarded, Transparent

_get_svr_objref

Forwarded, Transparent

Table 10. ImplIRepository Methods

Method Name

Classification

add_class_to_impldef

Forwarded, Transparent

add_impldef

Forwarded, Transparent

delete_impldef

Forwarded, Transparent

find_all_aliases

Forwarded, Transparent

find_all_impldefs

Forwarded, Transparent

find_classes_by impldef

Forwarded, Transparent

find_impldef

Forwarded, Transparent

find_impldef_by_alias

Forwarded, Transparent

find_impldef_by class

Forwarded, Transparent

remove_class_from_all

Forwarded, Transparent

remove_class_from_impldef

Forwarded, Transparent

update_impldef

Forwarded, Transparent

Table 11. ORB Methods Classification

Method Name

Classification

object_to_string

Not-Forwarded, Transparent

string_to_object

Not-Forwarded, Transparent

Distributed SOM 285

Table 12. Principal Methods Classification

Method Name

Classification

userName

Forwarded, Transparent

hostName

Forwarded, Transparent

Table 13. Contained Methods Classification

Method Name

Classification

describe

Forwarded, Non-Transparent

within

Forwarded, Non-Transparent

Table 14. Container Methods Classification

Method Name

Classification

contents

Forwarded, Transparent

describe_contents

Forwarded, Non-Transparent

Table 15. InterfaceDef Method Classification

Method Name

Classification

describe_interface

Forwarded, Non-Transparent

Table 16. Repository Methods Classification

Method Name

Classification

lookup_id

Forwarded, Transparent

lookup_modifier

Forwarded, Transparent

release_cache

Forwarded, Transparent

Basic Server Programming

Server programs execute and manage object implementations. That is, they are

responsible for:

* Notifying the DSOM daemon that they are ready to begin processing requests

» Accepting client requests

286 Programmer’s Guide for SOM and DSOM

* Loading class library DLLs when required

e Creating/locating/destroying local objects

» Demarshaling client requests into method invocations on their local objects
* Marshaling method invocation results into responses to clients

» Sending responses back to clients

As mentioned previously, DSOM provides a simple, “generic” server program that performs
all of these tasks. All the server programmer needs to provide are the application class
libraries (DLLs) that the implementor wants to distribute. Optionally, the programmer can
customize the behavior of the default server program by supplying an application-specific
server class, derived from SOMDServer, to alter the behavior of the server’s server object.
(By default, the class of the server object is SOMDServer.) The server program does the
rest automatically.

The “generic” server program is called somdsvr and can be found in /usr/lpp/som/
bin/somdsvr on AlX and in $SOMBASES\bin\somdsvr.exe on OS/2 and Windwos NT.

Note: When using iostream in servers, the stream library is just written and linked in C. It
does not perform the iostream initialization usually done behind the scenes in a
C++ main () program. To avoid this, write your own server program in C++,

A second server program, Somossvr, is also provided, to be used with the SOMobjects
object services. See Chapter 5, Object Services Server on page 35 of Programmer’s
Guide for Object Services for more information on the somossvr server program.

Some applications may require additional flexibility or functionality than what is provided by
the SOMobijects server programs. In that case, application-specific server programs can be
developed. This section discusses the steps involved in writing such a server program.

To create a server program, a server writer needs to know what services the DSOM
run-time environment will provide and how to use those services to perform the duties
(listed above) of a server. The DSOM run-time environment provides several key objects
that can be used to perform server tasks. These objects and the services they provide will
be discussed in this section. Examples showing how to use the run-time objects to write a
server are also shown.

Server Run-Time Objects

There are three DSOM run-time objects that are important in a server:
* The server's implementation definition (ImplementationDef)
* The SOM Object Adapter (SOMOA), derived from the abstract BOA interface

» The application-specific server object (an instance of either SOMDServer or a class
derived from SOMDServer)

Server Implementation Definition

When a server is registered with DSOM (for example, via the regimpl utility), the
administrator specifies various run-time characteristics of the server. These characteristics
make up the server’s implementation definition. An implementation definition is represented
by an object of class ImplementationDef, whose attributes describe a server’s ID,
user-assigned alias, program pathname, the class of its server object, whether or not it is

Distributed SOM 287

288

multi-threaded, and so forth. Implementation definitions are stored in the Implementation
Repository, a database that is represented by an object of class ImplRepository.

Implementation IDs uniquely identify servers (implementation definitions) within the
network, and are used as keys into the Implementation Repository when retrieving the
ImplementationDef for a particular server. The server’'s user-assigned alias is unique
within a particular Implementation Repository, and can also be used as a key for retrieving
a particular server’'s implementation definition. ImplementationDef objects can be retrieved
from the Implementation Repository by invoking methods on the ImplRepository object.

An implementation ID identifies a logical server, and the associated ImplementationDef
object describes the current implementation of that logical server. It is possible to change
the implementation characteristics of a (logical) server, even to the point of using a
completely different server program, by simply changing the attributes of the server’'s
ImplementationDef object in the Implementation Repository. The location of the logical
server can be changed by moving the server's ImplementationDef object from one
Implementation Repository to another (on a different host).

When a server is initialized, it must retrieve a copy of its ImplementationDef object from
the Implementation Repository (by invoking a method on the global ImplRepository object,
SOMD_ImplRepObject), and keep it in a global variable, SOMD_ImplDefObject. (See the
example server program later in this section.) Client-only programs can leave the
SOMD_ImplDefObject variable set to NULL. This variable is used by the DSOM run time
within a server process (for example, to know whether the server should be multi-threaded).
Because the sever’'s ImplementationDef object represents the server’s identity to DSOM,
and because this object is stored in a variable global to the a process, it is currently not
possible for a single DSOM process to have multiple server identities.

By referring to the ImplementationDef object, DSOM allows users to customize many
aspects of the behavior of a server without writing any server code.

See Registering Servers and Classes on page 31 for details on server registration. Two
registration methods are described: manual (via the regimpl command line utility), and
programmatic, via ImplRepository methods.

SOM Object Adapter

The SOM Object Adapter (SOMOA) is the main interface between the server application
and the DSOM run time. The SOMOA is responsible for most of the server duties listed at
the beginning of this section. In particular, the SOMOA object handles all communications
and interpretation of inbound requests and outbound results. When clients send requests to
a server, the requests are received and processed by the SOMOA.

The SOMOA works together with the server object (described below) to create and resolve
DSOM references to local objects, and to dispatch methods on objects.

There is one SOMOA object per server process. (The SOMOA class is implemented as a
single instance class.) This object must be explicitly created by the server program and
stored in the global variable SOMD_SOMOAODbject.

Server object (SOMDServer)

Each server process contains a single server object. By default, the server object is an
instance of class SOMDServer. The purpose of the server object is to allow applications to
customize the way the default server program generates/resolves object references,
creates factories, and dispatches methods, with a minimal amount of new code.

The server object has the following responsibilities for managing objects in the server:

Programmer’s Guide for SOM and DSOM

* Provides an interface to the DSOM run time for dynamic factory creation. Factories are
necessary for basic object creation.

e Provides an interface to the DSOM run time for creating and resolving object
references (which are used to identify an object in the server).

» Provides an interface to the DSOM run time for dispatching requests.

The class of the server object to be used with a server is contained in the server’s
ImplementationDef. The SOMDServer class defines the base interface that must be
supported by any server object. In addition, SOMDServer provides a default
implementation that is suited to managing transient SOM objects in a server. This section
will show how an application might override the basic SOMDServer methods in order to
tailor the server object functionality to a particular application. Also see Chapter 5, Object
Services Server on page 35 of Programmer’s Guide for Object Services for a discussion of
a subclass of SOMDServer, somOS::Server, provided by SOMobjects for use with the
object services.

The server object is created by the SOMOA object in response to the impl_is_ready
method invocation, which must be made explicitly by the server program. The SOMOA
object examines the ImplementationDef object (which must have been previously stored
in the SOMD_ImplDefObject global variable by the server program) to determine what
type of server object to create. (The default is SOMDServer.) The SOMOA object then
stores the server object in the global variable SOMD_ServerObject.

Server Activation

Most server programs can be activated either
* Automatically by the DSOM daemon, somdd

* Manually via command line invocation, or under application control

When a server is activated automatically by somdd, it will be passed a single argument (in
argv[1]) that is the implementation ID assigned to the server implementation when it was
registered into the Implementation Repository. This is useful when the server program
cannot know until activation which “logical” server it is implementing. (This is true for the
generic server provided with DSOM.) The implementation ID is used by the server to
retrieve its ImplementationDef from the Implementation Repository.

For example, suppose that the server program myserver was designed so that it could be
activated either automatically or manually. This requires that it be written to expect the
implementation ID as its first argument, and to use that argument to retrieve its
ImplementationDef from the Implementation Repository. If an application defines a server
in the Implementation Repository whose implementation ID is 2bcdc4£f2-0£62£780-7f-
00-10005aa8afdc, then myserver could be run as that server by invoking the following
command:

myserver 2bcdc4f2-0£62£780-7f-00-10005aa8afdc

The example server shown in Example Server Program on page 290 illustrates how the
server program can use the implementation ID to retrieve its ImplementationDef from the
Implementation Repository. A server that was not activated by somdd may obtain its
ImplementationDef from the Implementation Repository in any manner that is convenient:
by ID, by alias, and so forth.

Distributed SOM 289

AlX users should be aware that, unless the SetUserID mode bit is set on the file containing
the server program, the UID for the server process will be inherited from the somdd
process. To set the SetUserID mode bit from the AIX command line, type one of the
following commands:

chmod 4000 <filename> - or -
chmod u+s <filename>

where filename denotes the name of the file containing the server program. For additional
details, see the chmod command in InfoExplorer or consult the man pages.

Rather than being registered (for example, via regimpl) before being run, a server may
choose to register itself dynamically, as part of its initialization. To do so, the server would
use the programmatic interface to the Implementation Repository as described in DSOM
Configuration on page 18.

Example Server Program

290

Shown below are the key statements of a simple DSOM server program. Actual server
programs would contain additional code for error handling and application-specific
processing. (See Chapter 5, Object Services Server on page 35 of Programmer’s Guide
for Object Services for an example server program designed to work with the SOMobjects
object services.) Each portion of the sample program is discussed in the topics following
the example code.

#include <somd.h> /* needed by all servers */
main (int argc, char **argv)
{

Environment ev;

SOM_InitEnvironment (&ev) ;

/* Initialize the DSOM run-time environment: */
SOMD_Init (&ev) ;
/* Retrieve its ImplementationDef from the Implementation
* Repository by passing its implementation ID as a key: */
SOMD_ImplDefObject =
find impldef (SOMD ImplRepObject, &ev, argv[1l]);

/* Create the server’s Object Adapter: */
SOMD_SOMOAObject = SOMOANew () ;

/* Notify the DSOM daemon that the server is ready

* to process requests from clients: */
_impl is ready (SOMD SOMOAObject, &ev, SOMD ImplDefObject) ;
/* Go into an infinite loop of processing requests: */

__execute request loop (SOMD_SOMOAObject, &ev, SOMD WAIT) ;

/* Server cleanup code: */

/* tell DSOM (via SOMOAZA) that server is now terminating */

Programmer’s Guide for SOM and DSOM

_deactivate impl (SOMD_SOMOAObject, &ev, SOMD ImplDefObject) ;

SOMD_Uninit (&ev) ;

SOM_UninitEnvironment (&ev) ;

Initializing a Server Program

The following topics discuss the initialization steps for a DSOM server program that are
illustrated in the preceding example.

Initializing the DSOM Run-Time Environment

The first thing the server program should do is to initialize the DSOM run time by calling the
SOMD_Init function. This causes the various DSOM run-time objects to be created and
initialized, including the Implementation Repository (accessible via the global variable
SOMD_ImplIRepObject), which is used in the next initialization step.

Initializing the Server’s ImplementationDef

Next, the server program is responsible for initializing its ImplementationDef, referred to
by the global variable SOMD_ImplDefObject. It is initialized to NULL by SOMD _Init. (For
client programs it should be left as NULL.) If the server implementation was registered with
the Implementation Repository before the server program was activated (as will be the case
for all servers that are activated automatically by somdd), then the ImplementationDef
can be retrieved from the Implementation Repository. Otherwise, the server program can
register its own implementation with the Implementation Repository dynamically (as shown
in DSOM Configuration on page 18).

The server can retrieve its ImplementationDef from the Implementation Repository by
invoking the find_impldef method on SOMD_ImpIRepObject. It supplies, as a key, the
implementation ID of the desired ImplementationDef.

The following code shows how a server program might initialize the DSOM run-time
environment and retrieve its ImplementationDef from the Implementation Repository.

#include <somd.h> /* needed by all servers */
main (int argc, char **argv)
{

Environment ev;

SOM_InitEnvironment (&ev) ;

/* Initialize the DSOM run-time environment */

SOMD_Init (&ev) ;

/* Retrieve its ImplementationDef from the Implementation
Repository by passing its implementation ID as a key */
SOMD_ImplDefObject =

find impldef (SOMD ImplRepObject, &ev, argv[1l]);

Distributed SOM 291

292

A server can also use its alias to get its ImplementationDef from the Implementation
Repository, using the find_impldef_by alias method. See the DSOM animal sample
program for a sample server program that can be started either by the DSOM daemon or
from the command line (with a -a option to designate the server’s alias).

Initializing the SOM Object Adapter

The next step the server must take before it is ready to accept and process requests from
clients is to create a SOMOA object and initialize the global variable
SOMD_SOMOAODbject to point to it. This is accomplished by the assignment:

SOMD_SOMOAObject = SOMOANew () ;

Note: The SOMOA object is not created automatically by SOMD_Init because it is only
required by server processes.

After the global variables have been initialized, the server can do any application-specific
initialization required before processing requests from clients. Finally, when the server is
ready to process requests, it must call the impl_is_ready method on the SOMOA:

_impl is ready (SOMD SOMOAObject, &ev, SOMD ImplDefObject) ;

The SOMOA then sets up the necessary communications resources for receiving incoming
messages, which it registers with the DSOM daemon. Once the DSOM daemon has been
notified of the server’s ports, it assists client applications in binding (that is, establishing a
connection) to that server.

The impl_is_ready method also causes the server object to be created. The server
object’s class (for example, SOMDServer) is specified by the impl_server_class attribute
of the server’'s ImplementationDef. The server object can be referenced through the global
variable SOMD_ServerObject.

When the server invokes SOMOA::impl_is_ready, if the server’s
ImplementationDef::config_file attribute differs from the current SOMENYV setting, the
contents of the configuration file named by ImplementationDef::config_file will be read,
any DSOM run-time initialization performed during SOMD_Init will be refreshed, and for the
duration of the server process the setting of ImplementationDef::config_file will be
prepended to the current SOMENYV setting.

As part of SOMOA::impl_is_ready, if the server has been registered as a secure server,
the server will contact the security server to initialize the security service run-time within the
server to enable the server to reject requests from unauthenticated clients. For additional
information.

Note: A server program should not attempt to export object references or use any other
Object Adapter services until it has invoked impl_is_ready, as some crucial server
initialization steps are performed at that time. The only exception is the
activate_impl_failed method.

When Initialization Fails

It is possible that a server will encounter some error when initializing itself. Servers must
attempt to notify DSOM that their activation failed, using the activate_impl_failed method.
This method is called as follows:

/* tell the daemon (via SOMOA) that activation failed */
_activate impl failed(SOMD SOMOAObject, &ev,
SOMD_ImplDefObject, rc);

Programmer’s Guide for SOM and DSOM

Server writers should be aware, however, that until the server's SOMD_ImplDefObject has
been initialized, it is not possible to call the _activate_impl_failed method on the DSOM
daemon.

Note: A server program should not call activate_impl_failed once it has called
impl_is_ready.

Processing Requests

The SOMOA is the object in the DSOM run-time environment that receives client requests
and transforms them into method calls on local server objects. In order for SOMOA to listen
for a request, the server program must invoke one of two methods on
SOMD_SOMOAODbject. If the server program wishes to turn control over to
SOMD_SOMOAODbject completely (that is, effectively have SOMD_SOMOAObject go into
an infinite request-processing loop), then it invokes the execute_request_loop method on
SOMD_SOMOAODbject as follows:

execute request loop (SOMD SOMOAObject, &ev, SOMD WAIT) ;

Note: This is the way the DSOM-provided generic server program interacts with
SOMD_SOMOAODbject.

The execute_request_loop method takes an input parameter of type Flags. The value of
this parameter should be either SOMD_WAIT or SOMD_NO_WAIT. If SOMD_WAIT is
passed as argument, execute_request_loop will return only when an error occurs or when
the server is terminated using the SOMDServerMgr::somdShutdownServer method. If
SOMD_NO_WAIT is passed, it will return when there are no more outstanding messages to
be processed.

If the server wishes to incorporate additional processing between request executions, it can
invoke the execute_next_request method to receive and execute requests one at a time:

for(;;) {
rc = execute next request (SOMD SOMOAObject,
&ev, SOMD_NO WAIT) ;
/* perform app-specific code between messages here, e.g., */

if (!rc) numMessagesProcessed++;

}

Just like execute_request_loop, execute_next_request has a Flags argument that can
take one of two values: SOMD_WAIT or SOMD_NO_WAIT. If execute_next_request is
invoked with the SOMD_NO_WAIT flag and no message is available, the method returns
immediately with a return code of SOMDERROR_NoMessages. If a request is present, it
will execute it. Thus, it is possible to poll for incoming requests using the SOMD_NO_WAIT
flag.

Exiting a Server Program

When a server program exits, it should notify the DSOM run time that it is no longer
accepting requests. This should be done whether the program exits normally, or as the
result of an error. If this is not done, somdd will continue to think that the server program is
active, allowing clients to attempt to connect to it, as well as preventing a new copy of that
server from being activated.

To notify DSOM when the server program is exiting, the deactivate_impl method defined
on SOMOA should be called. For example,

Distributed SOM 293

/* tell DSOM (via SOMOA) that server is now terminating */
deactivate impl (SOMD SOMOAObject, &ev, SOMD ImplDefObject) ;

Note: For robustness, it would be worthwhile to add appropriate exit handlers to your
application servers that call the deactivate_impl method upon normal or abnormal
program termination. This ensures that the DSOM daemon is made aware of the
server’s termination, so that client connections are no longer allowed.

Finally, at the end of a server program, the SOMD_Uninit procedure must be called to free
DSOM run-time objects, and to release semaphores, shared memory segments and any
other system resources.

For example, the exit code in the server program might look like this:

SOMD_Uninit (&ev) ;
SOM_UninitEnvironment (&ev) ;

}

Observe the SOM_UninitEnvironment call, which frees any memory associated with the
specified Environment structure.

Managing Objects in the Server

294

The following topics discuss the appropriate classes and their methods that can be used to
manage various kinds of objects in the server.

Object References (SOMDODbjects)

Within the execute_next_request method (and hence, within execute_request_loop), the
DSOM SOMOA obiject receives client requests, transforms them into method calls on local
objects, and then returns the results to the client. When a dispatched method returns an
object as a result or an out parameter, the server must return to the client process a proxy
to the actual object, not merely a pointer to the object in the server (because the pointer will
be meaningless in the client’s address space).

Recall that class libraries need not be designed to be distributed (that is, the code that
implements the classes need not be aware of the existence of proxy objects at all). Thus, it
is the responsibility of the DSOM run-time environment to ensure that proxies, rather than
simply object pointers, are returned to clients.

The SOMOA object (SOMD_SOMOAODbject) and the server object (SOMD_ServerObject,
an instance of SOMDServer or a subclass) work together to perform this service. Whenever
a result from a remote method call includes a SOMObject, the SOMOA object invokes a
method (somdRefFromSOMODbj) on the SOMD_ServerObject, asking it to create an
object reference (SOMDODbject) from the SOMObject. Similarly, when an object reference is
detected within an incoming request from a remote client, the SOMOA is responsible for
converting it back into a pointer to the local object to which it refers. It does this with the
help of the SOMD_ServerObject, by invoking a method (somdSOMObjFromRef) that
performs the inverse of the somdRefFromSOMODbj method.

An object reference is an exportable handle to an object. DSOM implements object
references as separate objects, of class SOMDObject. Proxy objects (objects of class
SOMDClientProxy) are also examples of object references. Hence, SOMDClientProxy is
a subclass of SOMDODbject. The difference between SOMDClientProxy and SOMDObiject
is as follows:

Programmer’s Guide for SOM and DSOM

* Aninstance of SOMDClientProxy resides in a client process, representing a remote
object, and the client can invoke methods on the remote object by invoking them on the
proxy.

« Aninstance of SOMDObject, by contrast (referring to the same target object), resides
only in the server process (where the target object resides). Unlike a proxy object, it
does not support the same interface as the target object. It is simply an object in the
server that the DSOM run time uses to create the corresponding proxy object in the
client process.

The way in which objects are mapped to object references, and vice versa, can be
customized by an application by subclassing SOMDServer and providing new
implementations of the somdRefFromSOMObj and somdSOMObjFromRef methods. For
example, to support persistent objects (objects whose state persists between activations of
the server process), the generic server program could use a subclass of SOMDServer
written to map from persistent objects to references (SOMDObjects) that contain some kind
of persistent object identifier, and vice versa.

Shown below are the IDL declarations of the SOMDServer methods that map between local
SOMObijects and object references (SOMDObijects):

SOMDObject somdRefFromSOMObj (in SOMObject somobj) ;
SOMObject somdSOMObjFromRef (in SOMDObject objref) ;

The SOMOA object invokes somdRefFromSOMODbj on the SOMD_ServerObject each
time a local object is to be returned as the result (or out parameter) of a remote method call
that the server has dispatched. The SOMOA object invokes somdSOMObjFromRef on the
SOMD_ServerObject for each object reference found as a parameter in an incoming
request. (If the input object to somdRefFromSOMODj is already an object reference, either
a SOMDObiject or a SOMDClientProxy, the default implementation does no conversion. If
the input object to somdSOMObjFromRef is a SOMDClientProxy rather than a
SOMDObject, signifying that the target object is not local to the server, then no
transformation is done.)

SOMobijects provides a special subclass of SOMDServer, called somOS::Server, to be
used with all the SOMobijects object services (Naming, Security, Persistent Object Service,
LifeCycle and Transactions). The somOS::Server provides persistent object references
and other services.

ReferenceData

The data contained in an object reference (whether a SOMDODbject or SOMDClientProxy)
is used in two ways:

e to assist a client process in locating the server process where the target object resides
» to assist the server process in locating or activating the target object

The information used for the first task is generated by DSOM when any object reference is
created. The information used for the second task is called ReferenceData:

» ReferenceData is the information a server uses to identify the target of a remote call.

ReferenceData is represented in an IDL sequence of up to 1024 bytes of information about
the object. This sequence may contain the object’s location, state, or any other information
that the application server needs to locate or activate a target object in the server.

When a subclass of SOMDServer is written to override somdRefFromSOMODbj and
somdSOMObjFromRef, the new implementation can change the way that ReferenceData
is generated during the construction of new object references (and, inversely, the way in
which the ReferenceData in existing object references is interpreted).

Distributed SOM 295

* An application-specific implementation of the somdRefFromSOMObj method will
typically
- generate application-specific ReferenceData, containing information necessary to
identify the local object (such as a persistent object identifier)

- invoke the create method on SOMOA, passing the constructed ReferenceData, to
complete the task of constructing a new object reference (SOMDObject).

» Similarly, an application-specific implementation of the somdSOMObjFromRef method
typically
- invokes the get_id method on SOMOA to get the ReferenceData associated with
an object reference (SOMDObject)

- map the ReferenceData to a local SOMObiject, in an application-specific way.

The SOMOA interface supports two operations for creating object references: create and
create_ SOM_ref. (DSOM 2.x also provided a third method, SOMOA::create_constant.
This method is deprecated in the current release.) An application-specific implementation of
the method SOMDServer::somdRefFromSOMODbj would use one or more of these
methods to create a new object reference (SOMDODbject).

Creating Simple SOM Object References

The default implementation (SOMDServer’s implementation) for somdRefFromSOMObj
uses the SOMOA::create_ SOM_ref method to return a simple reference for the
SOMObiject. The create_ SOM_ref method creates a simple DSOM reference
(SOMDObiject) for a local SOM object. The reference is “simple” in that, unlike a reference
created by the create method, there is no user-supplied ReferenceData associated with
the object and because the reference is only valid while the SOM object exists in memory.
The SOMObiject to which it refers can be retrieved via the SOMOA::get_ SOM_object
method.

The SOMOA::is_ SOM_ref method can be used to tell if the object reference passed to
somdSOMObjFromRef was created (in somdRefFromSOMODbj) using create_ SOM_ref
or not (and hence, whether get SOM_object can be used to retrieve the original
SOMObiject).

The IDL declarations for create_ SOM_ref, get SOM_object, and is_SOM _ref are
displayed below:

/* from SOMOA’s interface */
SOMDObject create SOM ref (in SOMObject somobj,
in ImplementationDef impl) ;

SOMObject get SOM object (in SOMDObject somref) ;

/* from SOMDObject’s interface */

boolean is SOM ref () ;

Creating Application-Specific Object References

Application-specific server objects (instances of a subclass of SOMDServer), within the
implementation of somdRefFromSOMObj, may elect to use create, rather than
create_ SOM_ref, to construct an object reference if the application requires
ReferenceData to be stored in the object reference.

296 Programmer’s Guide for SOM and DSOM

For example, a server object for a server of persistent objects might elect to store persistent
object identifiers in the ReferenceData of a reference to a persistent object, so that when
the object reference is converted back to a local object pointer (by
somdSOMObjFromRef), the persistent identifier can be extracted from the
ReferenceData of the object reference and used to reactivate the persistent object.

The ReferenceData associated with a SOMDObject created using create can be retrieved
by invoking the get_id method on the SOMOA object.

The IDL SOMOA interface declarations of create and get_id are presented below.

/* From the SOMOA interface */

sequence <octet,1024> Referencedata;
SOMDObject create(in ReferenceData id,
in InterfaceDef intf,

in ImplementationDef impl) ;

ReferenceData get id(in SOMDObject objref) ;

Note: DSOM 2.x provided another method, SOMOA::create_constant, for creating
object references. This method is deprecated in the current release. In DSOM 2.x,
the create and create_constant methods served different purposes. In the current
release, however, the methods are equivalent, except for servers whose
ImplementationDef object (from the Implementation Repository) specifies an
object reference table filename. (To retain the DSOM 2.x semantics for the create
method, simply specify a reference table filename for the server using regimpl’s -f
filename argument. Otherwise, SOMOA's implementation of the create method will
simply invoke SOMOA::create_constant.) In addition, the DSOM 2.x methods
SOMOA::change_id and SOMOA::create_constant, and the use of the Object
Reference Table, have been deprecated. (They are still supported in this release,
but may be eliminated in a future release.) Eventually, the non-CORBA-compliant
SOMOA::create_constant will be eliminated in favor of the CORBA-compliant
create method. Servers that need persistent storage of object-reference data, such
as that previously provided by the Object Reference Table, should implement this
functionality in an application-specific subclass of SOMDServer, or use the
somOS::Server class for this purpose.

DSOM 2.x semantics for the create and create_constant methods: Servers whose
ImplementationDef objects specify an object reference table filename will continue to
receive the DSOM 2.x semantics for the create method. To specify an object reference
table filename for a server, use the regimpl option -ffilename when registering or updating
the server. Note that the filename specified is otherwise ignored; object reference table
data will be stored in the directory designated by SOMDDIR. The filename specified to
regimpl is simply used as a flag to indicate that the server needs to use the DSOM 2.x
semantics for the create method.

When using DSOM 2.x semantics, the create method differs from the create_constant
method in the following way: ReferenceData associated with an object reference
constructed by create_constant is immutable, whereas the ReferenceData associated
with an object reference created by create can be changed (via the change_id method).
This is because the create_constant method stores the ReferenceData directly in the
object reference (SOMDODbject), while the create method stores the ReferenceData in a
ReferenceData table associated with the server (and stores a key into the ReferenceData
table in the object reference).

Distributed SOM 297

298

When using the DSOM 2.x semantics, references created with create_constant can be
distinguished from references created with create by using the SOMDObject::is_constant
method. Hence, a server can use the is_constant method to determine whether the
ReferenceData associated with a given object reference can be changed using change_id.

Because object references constructed with create (when using DSOM 2.x semantics)
support changeable ReferenceData, but object references constructed with
create_constant do not, one might wonder when it would advantageous to use
create_constant versus create with the DSOM 2.x semantics. Recall that, to allow a
server to change the ReferenceData associated with an object reference after the
reference has been distributed to clients, invocations of create add entries to a table called
the ReferenceData Table. (The ReferenceData goes into the table, while a key into the
table is stored in the object reference.) The ReferenceData table is persistent; that is,
ReferenceData saved in it persists between server activations.

Two calls to create with the same arguments do not return the same SOMDObject (per
CORBA 1.1 specifications). That is, if create is called twice with the same arguments, two
different SOMDObjects are created. Each of these must have its own entry in the
ReferenceData table, so that their ReferenceData can be changed independently. If a
server using create wishes to avoid cluttering up the ReferenceData table with multiple
ReferenceData entries for the same object, it must maintain a table of its own to keep track
of the SOMDObjects it has already created, to avoid calling create twice with the same
arguments. In addition, the application must devise some mechanism for removing obsolete
entries from the table.

The create_constant method stores the ReferenceData as part of the SOMDObiject’s
state; that is, it does not add entries to the ReferenceData table. The create_constant
method, then, might be used by a server that is willing to give up changeable
ReferenceData so that it does not have to maintain its own table of SOMDObjects, nor pay
the penalty of cluttering up the ReferenceData table with multiple entries for the same
object. A server using create_constant also avoids the overhead of updating a persistent
table (which requires a disk access) each time an object reference is created.

To summarize the different uses for create_ SOM_ref, create, and create_constant:

» use create_SOM_ref to create transient object references that are valid only for the
lifetime of the in-memory object.

e USe create or create_constant to create persistent object references to either transient
or persistent objects. (Remember that create_constant is deprecated.)

e use create in a server whose ImplementationDef specifies an object reference table
filename to create persistent object references to either transient or persistent objects,
with the ability to change the ReferenceData associated with the object without
invalidating outstanding object references

Example: Writing a Persistent Object Server

This section shows an example of how to provide a server class implementation for
persistent SOM objects. The example shows how a server class might use and manage
ReferenceData in object references to find and activate persistent objects. All of the
persistent object management is contained in the server class; this class can be used with
the DSOM generic server program, somdsvr.

The following example describes a user-supplied server class SOMPServer that is derived
from SOMDServer. The sOMPServer class overrides the two SOMDServer methods
somdRefFromSOMObj and somdSOMObjFromRef.

The IDL specification for soMPServer follows:

Programmer’s Guide for SOM and DSOM

interface SOMPServer : SOMDServer {
#ifdef SOMIDL
implementation {
somdRefFromSOMObj : override;
somdSOMObjFromRef : override:
}i
#tendif
Vi
The following two procedures override SOMDServer’s implementations of the methods
somdRefFromSOMODbj and somdSOMObjFromRef:

SOM_Scope SOMDObject SOMLINK
somdRefFromSOMObj (SOMPServer somSelf,
Environment *ev,

SOMObject obj)

SOMDObject objref;
Repository repo;
/* 1s obj persistent */
if (object is persistent (obj, ev)) {
/* Create an object reference based on persistent ID. */

ReferenceData rd = create refdata from object (ev, obj);
repo = SOM InterfaceRepository;

InterfaceDef intf =
_lookup id(repo,ev,
somGetClassName (obj)) ;
objref = create (SOMD_SOMOAObject, ev, &rd,
intf, SOMD ImplDefObject) ;

_somFree (intf) ;

__somFree (repo) ;

SOMFree (rd. buffer) ;
} else /* obj is not persistent, so get Ref in usual way */

objref = parent somdRefFromSOMObj (somSelf, ev, obj);

return (objref) ;

}

Method somdRefFromSOMODbj is responsible for producing a SOMDObiject (the “Ref” in
somdRefFromSOMObj) from a SOMObject. This implementation invokes SOMOA::create
to create a SOMDObject. The prerequisites for asking SOMOA to create a SOMDObject
are:

» Some ReferenceData to be associated with the SOMDObject. The application must
define a function (such as the function create refdata from object above)to
retrieve the persistent object identifier (PID) from the object and coerce it into the
datatype ReferenceData.

Distributed SOM 299

300

* An InterfaceDef that describes the interface of the object. The InterfaceDef is retrieved
from the SOM Interface Repository using the object’s class name as key.

« An ImplementationDef that describes the server containing the object. The
ImplementationDef is held in the variable SOMD_ImplDefObject that is set when the
server process is initialized.

With these three arguments, SOMOA's create is called to create the SOMDODbiject.

The preceding example assumes that there is some method or function available to the
server, such as object _is persistent above, to determine whether an object is
persistent and hence has a persistent object identifier.

The next example overrides SOMDServer’s implementation of somdSOMObjFromRef:
SOM_Scope SOMObject SOMLINK
somdSOMObjFromRef (SOMPServer somSelf,
Environment *ev,
SOMDObject objref)
{ soMObject obj;
if (_is nil(objref, ev))
return (SOMObject *) NULL;
/* Make sure this isn’t a local object or proxy: */
if (! somIsA(objref, SOMDObject) || _is proxy(objref, ev))

return objref;

/* test if objref is mine */
if (! is SOM ref (objref, ev)) ({
/* objref was mine, activate persistent object myself */
ReferenceData rd = _get id(SOMD_SOMOAObject, ev, objref);
obj = get object from refdata(ev, &rd);
SOMFree (rd._ buffer) ;
} else
/* it’s not one of mine, let parent activate object */
obj = parent somdSOMObjFromRef (somSelf, ev, objref);
return obj;

}

SOMPServer's implementation of somdSOMODbjFromRef must determine whether the
SOMDObiject (objref) is one that it created (that is, one that represents a persistent object),
or is one that was created by the SOMDServer code (its parent), via the parent-method call
in somdRefFromSOMODbj, above. This determination is done via the is_SOM_ref method.
If the is_SOM_ref method fails, then the soMPServer can safely assume that the
SOMDObject represents a persistent object that it created.

If the SOMDODbject is determined to represent a persistent object, then its ReferenceData
is used to locate/activate the object it represents, via an application-provided function such
as get _object from refdata. The implementation of a get _object from refdata
function might convert the ReferenceData to a persistent object identifier (PID) and use the
PID to locate (and activate, if necessary) the persistent object.

Observe that, if a server class is not directly subclassed from SOMDServer (but from some
other subclass of SOMDServer), then is_SOM_ref may not be sufficient for determining

Programmer’s Guide for SOM and DSOM

whether to make a parent-method call within somdSOMObjFromRef. In general, some
application-specific technique may be required for distinguishing between the object
references created by different subclasses of SOMDServer (such as using special “flags”
embedded within the ReferenceData).

To summarize, the following guidelines apply when implementing overrides of
SOMDServer::somdSOMObjFromRef:

» Insure that local objects, proxy objects, NULL pointers, and OBJECT_NIL are all
handled appropriately. (NULL pointers and OBJECT _NIL can be detected using the
is_nil method.)

* Do not attempt to invoke SOMOA::get_id on a local object, proxy object, NULL pointer,
or OBJECT_NIL.

* Do not attempt to interpret the ReferenceData of a SOMDODbject that was not created
by your corresponding override of SOMDServer::somdRefFromSOMODbj (that is, one
that was created by a parent implementation via a parent-method call).

Validity Checking in somdSOMObjFromRef

The default implementation for somdSOMObjFromRef returns the address of the
SOMObiject for which the specified object reference was created (using the
somdRefFromSOMObj method). If the object reference was not created by the same
server process, then an exception (BadObjref) is raised. The default implementation does
not, however, verify that the original object (for which the object reference was created) still
exists. If the original object has been deleted (for example, by another client program), then
the address returned will not represent a valid object, and any methods invoked on that
object pointer will result in server failure.

Note: The default implementation of somdSOMObjFromRef does not check that the
original object address is still valid because the check is very expensive and
seriously degrades server performance.

To have a server verify that all results from somdSOMObjFromRef represent valid objects,
server programmers can subclass SOMDServer and override the somdSOMObjFromRef
method to perform a validity check on the result (using the somlIsObj function). For
example, a subclass MysoMDServer of SOMDServer could implement the
somdSOMObjFromRef method as follows:

SOM_Scope SOMObject SOMLINK
somdSOMObjFromRef (MySOMDServer somSelf,
Environment * ev,

SOMDObject objref)

SOMObject obj;
StExcep INV_OBJREF *ex;

/* MySOMDServerData *somThis = MySOMDServerGetData (somSelf); */
MySOMDServerMethodDebug (*“MySOMDServer” ,

“somdSOMObjFromRef”) ;

obj = MySOMDServer parent SOMDServer somdSOMObjFromRef (

somSelf, ev, objref);

Distributed SOM 301

if (somIsObj (obj))
return (obj);
else {
ex = (StExcep INV_OBJREF *)

SOMMalloc (sizeof (StExcep INV_OBJREF)) ;
ex->minor = SOMDERROR BadObjref;
ex->completed = NO;
somSetException(ev, USER EXCEPTION,

ex StExcep INV_OBJREF, ex);
return (NULL) ;

Customizing Factory Creation

302

The SOMDServer class defines a method for the creation of SOM object factories in a
server. The somdCreateFactory method is invoked by the DSOM run time when a client
requests that a factory be dynamically created in the server:

SOMObject somdCreateFactory(in string className, in
ExtendedNaming: : PropertyList props) ;

The purpose of this method is to allow applications to subclass SOMDServer to customize
the way in which factories are associated with classes or the way factories are created. See
Finding a SOM Object Factory on page 245 for more information about factories.

The somdCreateFactory method creates a factory object that can create objects of the
specified class. Two kinds of factories can be created and returned by the default
implementation of somdCreateFactory: an application-specific factory or a SOM class
object. The default implementation of somdCreateFactory uses the IDL modifier factory to
map from the given class name to an application-specific factory class name. For example,
if instances of class Car are created by class CarFactory, the IDL for the interface Car
could include the modifier:

factory=CarFactory;

When the factory modifier is specified in the IDL for the specified class,
somdCreateFactory will create an instance of the factory class using somNew. No
initializers will be called by SOMDServer, although the client is free to invoke any method
on the returned factory object (including an initializer). Because the default implementation
of somdCreateFactory invokes somNew on each invocation, there is potential for factory
objects to accumulate in the server. To avoid this accumulation, the factory class can be
given the SOMMSinglelnstance metaclass.

If the factory modifier is not specified in the IDL for the specified class, the default
implementation of somdCreateFactory returns the SOM class object (such as, the Car
class object) as the default factory.

Applications may choose to override somdCreateFactory to take advantage of the props
parameter. This parameter is a complete list of the properties associated with the factory
entry in the Naming Service. The somdCreateFactory method may also be overridden to
support factory classes that require application-specific initializers.

Programmer’s Guide for SOM and DSOM

Customizing Method Dispatching

After SOMOA (with the help of the local server object) has resolved all the SOMDObjects
present in a request received from a client, it is ready to invoke the specified method on the
target. Rather than invoking somDispatch directly on the target, it calls the method
somdDispatchMethod on the server object. The parameters to somdDispatchMethod
are the same as the parameters for SOMObject::somDispatch. (See Programmer’s
Reference for SOM and DSOM for a complete description.)
void somdDispatchMethod (in SOMObject somobj,

out somToken retValue,

in somId methodId,

in va_list ap);
The default implementation for somdDispatchMethod in SOMDServer simply invokes
SOMODbject::somDispatch on the specified target object with the supplied arguments. The
reason for this indirection through the server object is to give the server object a chance to

intercept method calls coming into the server process, so that the server object can perform
application-specific computations before or after the method is dispatched.

For example, the following override of somdDispatchMethod simply displays a message
just before and just after dispatching each application method in the server:
SOM_Scope void SOMLINK somdDispatchMethod (MySOMDServer somSelf,
Environment *ev, SOMObject somobj,

somToken *retValue, somId methodId, va list
ap)

somPrintf ("About to invoke method %s\n",
somStringFromId (methodId)) ;

MySOMDServer parent SOMDServer somdDispatchMethod (somSelf,
ev, somobj, retValue, methodId, ap);

somPrintf ("Method dispatch complete.\n");

Identifying the Source of a Request

CORBA specifies that a Basic Object Adapter should provide a facility for identifying the
principal (or user) on whose behalf a request is being performed. The get_principal
method, defined by BOA and implemented by SOMOA, returns a Principal object, which
identifies the caller of a particular method. From this information, an application can perform
access control checking.

In CORBA, the interface to Principal is not defined, and is left up to the ORB
implementation. In the current release of DSOM, a Principal object is defined to have two
attributes:

userName (string)
identifies the name of the user who invoked a request.

hostName (string)
Identifies the name of the host from which the request originated.

The value of the userName attribute is the user name with which the client logged in on the
client’'s machine. If the user has not logged in (or if LOGIN_INFO_SOURCE is set to a null

Distributed SOM 303

(blank) in the SOMobjects configuration file), the user is treated as an unauthenticated user
and the userName attribute will be an empty string (*”).The hostName attribute is obtained
(by DSOM) from the HOSTNAME environment variable (or the HOSTNAME setting in the
[somd] stanza of the configuration file), if the user is authenticated. If the user is not
authenticated, then the hostName attribute will be an empty string (*”).

The IDL prototype for the get_principal method, defined on BOA (SOMOA), is as follows:
Principal get principal (in SOMDObject obj,
in Environment *reqg_ev);

This call is typically made either by the target object or by the server object, when a method
call is received.

Note: CORBA defines a TypeCode of tk_Principal, which is used to identify the type of
Principal object arguments in requests, in case special handling is needed when
building the request. Currently, DSOM does not provide any special handling of
objects of type tk_Principal; they are treated like any other object.

A more extensive client-authentication service is provided by the SOMobjects Security
Service. The Security Service allows a server to be registered (via regimpl) as a secure
server. A secure server will automatically reject all requests from users that are not
authenticated.

Compiling and Linking Servers

The server program must include the somd.h header file (for C) or somd.xh (for C++).
Server programs must link to the SOMobjects Toolkit library: libsomtk.a on AlX, and
somtk.lib on OS/2 and Windows NT.

For more information, see Compiling and Linking on page 195.

Implementing Classes

DSOM has been designed to work with a wide range of object implementations, including
SOM class libraries as well as non-SOM object implementations. This section describes the
necessary steps in using SOM classes or non-SOM object implementations with DSOM.

Using SOM Class Libraries

304

It is easy to use SOM classes in DSOM-based applications. In fact, many existing SOM
class libraries may be used in DSOM applications without any special coding or recoding
for distribution. DSOM uses a generic server program (somdsvr) that uses SOM and
SOMOA to load SOM class libraries when an object of a particular class is created or
activated.

Registering Servers and Classes on page 31 discusses how to register a server
implementation comprised of a DSOM generic server process and at least one SOM class
libraries.

Role of somdsvr

somdsvr provides basic server functionality. This program constantly receives and
executes requests, via an invocation of the SOMOA::execute_request_loop method, until
the server is stopped. Some requests result in the creation of SOM objects. somdsvr finds
and loads the DLL for the object’s class, if it is not loaded.

Programmer’s Guide for SOM and DSOM

When somdsvr functionality is insufficient for a particular application, application-specific
server programs can be developed. For example, one application may want to interact with
a user or 1/O device between requests.

Role of SOMOA

SOMOA is DSOM'’s standard object adapter. It provides basic support for receiving and
dispatching requests on objects. As an added feature, the SOMOA and the server
process’s server object collaborate to automate the task of converting SOM object pointers
into DSOM object references, and vice versa. That is, whenever an object pointer is passed
as an argument to a method, the SOMOA and the server object convert the pointer to a
DSOM object reference (since a simple pointer to an object is meaningless outside the
object’s address space).

Role of SOMDServer

:The server process’s server object, whose default class is SOMDServer, is responsible for

» Creating factory objects via somdCreateFactory. This method is called by the DSOM
run time when a client requests a SOM object factory that must be created dynamically.

* Mapping between SOMDODbjects and SOMObjects via somdRefFromSOMODbj and
somdSOMObjFromRef. These methods are invoked on the server object by the
SOMOA when:

- Objects are to be returned to clients
- Incoming requests contain object references

» Dispatching remote requests to server process objects via somdDispatchMethod
when the method is ready to be dispatched, respectively

By partitioning out these functions into the server object, the application can customize
them without building object adapter subclasses. SOMDServer can be subclassed by
applications that want to manage object location, object activation and method dispatching.

These features of SOMOA and SOMDServer enable existing SOM classes, that were
written for a single-address space environment, to be used unchanged in a DSOM
application.

Implementation Constraints

somdsvr, SOMOA and SOMDServer make it easy to use SOM classes with DSOM. If any
part of the class implementation was written expecting a single-process environment, the
class may have to be modified to behave properly in a client-server environment. Some
common implementation practices to avoid are:

* Printing to Standard Output. Any text printed by a method will appear at the server,
not the client. The server may not be attached to a text display device or window, so
the text may be lost. Any textual output generated by a method should be returned as
an output string.

* Creating and Deleting Objects. Methods that create or delete objects may have to be
modified if the created objects are intended to be remote.

e Using procedure Methods. Methods having the procedure SOM IDL modifier cannot
be invoked remotely using DSOM, for these methods are called directly rather than via
SOM'’s normal method resolution mechanisms.

Distributed SOM 305

In addition to the coding practices that do not port to a distributed environment, there are
other restrictions DSOM imposes:

e Using void* Types. DSOM can make remote invocations only on methods whose
parameter types are completely defined SOM IDL types. A type is completely defined if
it contains no void* or somToken types.

» Packing of Structures used as Method Arguments. When building a SOM class
library to be distributed using DSOM, avoid using compiler options that pack or
optimize structs, including reordering of struct members, or unions. For data
structures that require nonstandard alignment, it is preferable to declare the types as
SOMFOREIGN and to provide custom marshaling support for those types.

Some applications may need to associate specific identification information with an object,
to support application-specific object location or activation. In this case, an application
server should create object references explicitly by using the SOMOA::create method.
These calls should be placed in a subclass of SOMDServer.

Using Other Object Implementations

306

As an ORB, DSOM must support a wide range of object implementations, including
non-SOM implementations, for example, a print spooler application where the
implementation may be provided by the operating system. The methods on the print queue
may be executable programs or system commands. In this example, the application may
need to participate in object identification, activation or request dispatching.The server can
supply a customized server object that works with SOMOA for this purpose.

Wrapping a Printer API

Below is an example showing how an API could be wrapped as SOM objects. Although this
API is simple, readers should understand this process to create more sophisticated
applications.

The API wrapped consists of two system calls; the first asks for a file to be printed on a
specific printer, the second, to cancel the file currently being printed on device
printername.

print /D:printerName filename
print /D:printerName /C

An IDL interface Printer is declared in the module PrinterModule. The Printer
interface wraps the two system calls.

module PrinterModule
interface Printer : SOMObject
attribute string printerName;
void print (in string fname) ;
void cancel() ;
#ifdef _ SOMIDL

implementation {

printerName: noset; // memory to be allocated
releaseorder : _get printerName, set printerName,print,cancel;
bi
#endif

Programmer’s Guide for SOM and DSOM

i
Vi
The printer interface defines an attribute, printerName, that identifies the printer and is

set when it is created. The operations, print and cancel, correspond to the system
commands the interface encapsulates.

The next three method procedures show how the interface is implemented for
_set printerName, print and cancel. set printerName is implemented to make
a copy of the input string passed by the client.

SOM_Scope void SOMLINK PrinterModule Printer set printerName (
PrinterModule Printer somSelf,
Environment *ev,
string printerName) {
PrinterModule PrinterData *somThis =
PrinterModule_ PrinterGetData (somSelf) ;
if (printerName) SOMFree(printerName) ;
_printerName = (string)SOMMalloc (strlen(printerName) + 1);
strcpy (_printerName, printerName); }
SOM_Scope void SOMLINK PrinterModule Printerprint (
PrinterModule Printer somSelf,
Environment *ev,
string fname) {
long rc;
PrinterModule PrinterData *somThis =
PrinterModule PrinterGetData (somSelf) ;
string printCommand = (string) SOMMalloc (
strlen(_printerName) + strlen(fname) + 10 + 1);
sprintf (printCommand, “print /D:%s %s”, printerName, fname) ;
rc = system(printCommand) ;
if (rc) raiseException(ev,rc); }
SOM_Scope void SOMLINK PrinterModule_ Printercancel (
PrinterModule Printer somSelf,
Environment *ev) {
long rc;
PrinterModule_ PrinterData *somThis =
PrinterModule PrinterGetData (somSelf) ;
string printCommand =
(string) SOMMalloc (strlen(printerName) + 12 + 1);
sprintf (printCommand, “*print /D:%s /C”, printerName) ;
rc = system(printCommand) ;
if (rc) raiseExeception(ev,rc); }

Note: The implementation of the raiseException procedure shown in this example
must be provided by the application, but it is not defined in the example.

Distributed SOM 307

Building and Registering Class Libraries

The generic server uses SOM's run-time facilities to load class libraries dynamically. DLLs
should be created for the classes. During development of the DLL, remember the following:

* Export a routine called SOMInitModule in the DLL, which will be called by SOM to
initialize all the class objects implemented in that library. For more information, see
Specifying the Initialization and Termination Function on page 215. There is a
special emitter to generate the SOMInitModule function.

» For each class in the DLL, specify the DLL name in the class’s IDL file. The DLL name
is specified using the dliname=name modifier in the implementation statement of the
interface definition. If not specified, the DLL filename is assumed to be the same as the
class name. The dliname modifier is used by the SOM run time for dynamically finding
and loading the library containing the implementation of a SOM class.

» For each class in the DLL, compile the IDL description of the class into the Interface
Repository. This is accomplished by invoking the following command syntax:

sc -sir -u stack.idl

Note: If the classes are not compiled into the Interface Repository, DSOM may still be
able to invoke methods of the class remotely. However, the SOM class manager
will be unable to dynamically load a class’s library unless the DLL name is the
same as the class name, because SOM will be unable to dynamically discover the
value of the dliname modifier of the class to be loaded. For other situations in
which DSOM requires a class interface to be compiled into the Interface
Repository, see Registering Class Interfaces on page 30.

e Putthe DLL in one of the directories listed in LIBPATH for AIX or OS/2 or PATH for
Windows NT.

Running DSOM Applications

Before any DSOM processes are started, the DSOM environment should be configured
appropriately, as discussed in Step 6. Configuring User Applications on page 29. Of
particular importance are the SOMENV and SOMIR environment variables. For workgroup
(cross-machine) applications, SOMDPROTOCOLS must be set appropriately in the
configuration file, and the HOSTNAME settings must also be set appropriately, for each
protocol specified by SOMDPROTOCOLS. The Naming Service and Security Service must
have been configured, using the som_cfg tool. All server programs to be used by the
application must be registered in the Implementation Repository, using the regimpl tool.

Running the DSOM Daemon

308

To run a DSOM application, the DSOM daemon, somdd, must be started on each server
machine. Client machines do not require an active DSOM daemon.

The daemon can be started manually from the command line, or could be started
automatically from a start-up script run at boot time. It may be run in the background with
the commands somdd& on AlX, and start somdd on OS/2 and Windows NT. The somdd
command has the following syntax:

somdd [-q]

where the optional -q flag signifies quiet mode. By default, somdd produces a ready
message when the DSOM daemon is ready to process requests,. In quiet mode the ready
message does not appear.

Programmer’s Guide for SOM and DSOM

The somdd daemon is responsible for binding a client process to a server process and will
activate the desired server if necessary. The DSOM run time on behalf of client programs
contacts the DSOM daemon on the server’'s machine to retrieve the server’'s
communications address (a port). The daemon activates servers dynamically as separate
processes.

On AlX, when running somdd under a different identity than client programs, insure that
the files created in the /tmp directory are writable by client programs, by setting the umask
appropriately before starting somdd.

The DSOM daemon should not be terminated unless all other DSOM processes are
stopped. The daemon can be restarted without reconfiguration of the Naming Service.

DSOM provides the somdDaemonReady function for determining programmatically
whether the DSOM daemon is running and ready to process requests.

Running DSOM Servers

Once the somdd daemon is running, application programs can be started. If the application
uses the generic SOM server, somdsvr, the server can be started either from the
command line or the application can allow the server to be started automatically (by
somdd) on demand. When starting somdsvr from the command line, the server’s
implementation ID or alias must be supplied as an argument. The command syntax for
starting a generic SOM server is:

somdsvr impl_id | -a alias
For example, the command
S somdsvr 2ad2688fb-00389c00-7£-00-10005ac900d8
would start a somdsvr for an implementation with the specified ID. Likewise, the command
S somdsvr -a myServer
would start a somdsvr that represents an implementation of myServer.

SOMobjects Developer Toolkit provides another server program, somossvr, which is
required by all SOM object services. This server program can also be started from the
command line (using the same command-line arguments as somdsvr) or automatically by
somdd. The only exception is that the first time somossvr is run using a particular server
ID/alias, it must be started from the command line and passed the -i argument. The -i
argument instructs the server to initialize its persistent storage. If somossvr is not given the
-i argument the first time it is run, it will terminate with an error. See Chapter 5, Object
Services Server on page 35 of Programmer’s Guide for Object Services for more
information on the somossvr server program.

The naming server and security server (registered by the som_cfg tool) require the
somossvr server program. However, these servers need not be initialized manually; the
som_cfg utility initializes them.

After a server program has been terminated, it can be restarted without restarting the
DSOM daemon, provided that the server unregistered itself with the daemon during
termination. This unregistration occurs in the default server program (somdsvr) and in the
object services server (somossvr), unless the server terminated due to a system trap or
(on AIX) a "kill -9" command. Application-specific server programs should insure that
unregistration occurs by invoking the deactivate_impl method on the SOMOA object as
part of an exit handler.

Distributed SOM 309

Running the Client Program

Once the DSOM daemon is running on the server machines, the client program can be
started. If the server to be used by the client is not already running, it will be started
automatically by the DSOM daemon when the client attempts to use it. After the client
program ends, the server and daemon will continue to run, accepting connections from new
clients, until they are explicitly terminated.

Running Workgroup Applications

Before running a workgroup (cross-machine) application, insure that the following
configuration steps have been taken:

e The SOMDPROTOCOLS setting of both client and server contain a common entry, and
that common protocol supports cross-machine communication (the SOMD_IPC
protocol does not).

» The server has been registered (using regimpl) on the machine on which it will run. A
server cannot be registered from a different machine. The HOSTNAME and
SOMDPORT settings in effect at the time the server was registered must be the same
as those in effect when the server (and its associated daemon) are executed.

Freeing Interprocess Communication Resources on AlX

DSOM allocates interprocess communication (IPC) resources during execution. Normally,
these resources are freed and returned to the system when SOMD_Uninit is called. On
AIX, however, if a DSOM process terminates without calling SOMD_Uninit, the resources
often remain allocated.

The cleanipc script can be used to free the IPC resources allocated to a particular AIX
user, as follows:

cleanipc [userld] - Frees resources for the specified user

If the userld parameter is not specified, cleanipc by default uses the environment variable
USER.

The cleanipc script should be run only after all DSOM processes have ended. A limitation of
cleanipc is that it is not able to distinguish between resources that were created by DSOM
and resources created by other products. As a result, cleanipc may affect other
applications.

Advanced Topics

Applications that have unusual requirements may benefit from some of the following
advanced capabilities.

Peer versus Client-Server Processes

310

The client-server model of distributed computing is appropriate when it is convenient (or
necessary) to centralize the implementation and management of a set of shared objects in
one or more servers. However, some applications require more flexibility in the distribution
of objects among processes. Specifically, it is often useful to allow processes to manage
and export some of their objects, as well as access remote objects owned by other

Programmer’s Guide for SOM and DSOM

Dynamic

processes. In these cases, the application processes do not adhere to a strict client-server
relationship: instead, they cooperate as peers, behaving both as clients and as servers.

Peer applications must be written to respond to incoming asynchronous requests, in
addition to performing their normal processing. In a multi-threaded system, this is best
accomplished by dedicating a separate process thread that handles DSOM
communications and dispatching.

Multi-Threaded DSOM Programs

In a system that supports multi-threading, the easiest way to write a peer DSOM program is
to dedicate a separate thread to perform the usual server processing. This body of this
thread would contain the same code as the simple servers described in Basic Server
Programming on page 286.

DSOM_thread (void *params)
Environment ev;

SOM_InitEnvironment (&ev) ;

/* Initialize the DSOM run-time environment */
SOMD_Init (&ev) ;

/* Retrieve its ImplementationDef from the Implementation
Repository by passing its implementation ID as a key */
SOMD_ImplDefObject =

find impldef (SOMD ImplRepObject, &ev, *(ImplId *)params) ;

/* Create SOM Object Adapter and begin executing requests */
SOMD_SOMOAObject = SOMOANew () ;
_impl is ready (SOMD SOMOAObject, &ev, SOMD ImplDefObject) ;
execute request_ loop (SOMD_SOMOAObject, &ev, SOMD_WAIT) ;

/* tell DSOM (via SOMOA) that server is now terminating */
deactivate impl (SOMD SOMOAObject, &ev, SOMD ImplDefObject) ;

}

The DSOM run time is thread safe; that is, DSOM protects its own data structures and
objects from race conditions and update conflicts. However, it is the application’s
responsibility to implement its own concurrency control for concurrent thread access to
local shared application objects.

Invocation Interface

DSOM supports the CORBA Dynamic Invocation Interface (DII), which clients can use to
dynamically build and invoke requests on objects. This section describes how to use the
DSOM DIl. DSOM supports dynamic request invocation on both local objects and objects
outside the address space of the request initiator, via proxies. The (non-CORBA)
somDispatch method can also be used to invoke methods dynamically on either local or
remote objects.

Distributed SOM 311

To invoke a request on an object using the DII, the client must explicitly construct and
initiate the request. A request is comprised of an object reference, an operation, a list of
arguments for the operation, and a return value from the operation. A key to proper
construction of the request is the correct usage of the NamedValue structure and the
NVList object. The return value for an operation is supplied to the request in the form of a
NamedValue structure. In addition, it is usually most convenient to supply the arguments
for a request in the form of an NVList object, which is an ordered set of NamedValues.
This section begins with a description of NamedValues and NVLists and then details the
procedure for building and initiating requests.

The NamedValue Structure

The NamedValue structure is defined in C as shown here:

typedef unsigned long Flags;

struct Namedvalue {

Identifier name; // argument name

any argument ; // argument

long len; // length/count of arg value
Flags arg modes; // argument mode flags

}i
where:

name
an Identifier string as defined in the CORBA specification

argument
an any structure with the following declaration:

struct any {
TypeCode _type;
void* _value;
bi

_type
a TypeCode, which has an opaque representation with operations defined on it to
allow access to its constituent parts. Essentially the Typecode is composed of a field
specifying the CORBA type represented and possibly additional fields needed to fully
describe the type. See Chapter 9, The Interface Repository Framework on page 337
for a complete explanation of TypeCodes.

value
a pointer to the value of the any structure. The contents of _value should always be a
pointer to the value, regardless of whether the value is a primitive, a structure, or is
itself a pointer (as in the case of object references, strings and arrays). For object
references, strings and arrays, _value should contain a pointer to the pointer that
references the value. For example:
string testString;

any testAny;

testAny. value = &testString;

312 Programmer's Guide for SOM and DSOM

len

the number of bytes that the argument value occupies. The following table gives the
length of data values for the C language bindings. The value of len must be consistent

with the TypeCode.

Data Type

Length

short

sizeof (short)

unsigned short

sizeof (unsigned short)

long

sizeof (long)

unsigned long

sizeof (unsigned long)

float sizeof (float)

double sizeof (double)

char sizeof (char)

boolean sizeof (boolean)

octet sizeof (octet)

string sizeof (string) - does not include \O’ byte
enum E{} sizeof (unsigned long)

union U sizeof (U)

struct S {} sizeof (S)

Object 1

Array N of type T1

Length (T1) * N

sequence V of type T2

Length (T2) * V -V is the actual number of

elements

Table 17. Data Types for C Bindings

arg_modes

a bitmask (unsigned long) field and may contain the following flag values:

ARG_IN the associated value is an input-only argument

ARG_OUT the associated value is an output-only argument

ARG_INOUT the associated argument is an in/out argument

These flag values identify the parameter passing mode when the NamedValue represents
a method parameter. Additional flag values have specific meanings for Request and
NVList methods and are listed with their associated methods.

Distributed SOM 313

314

The NVList Class

An NVList contains an ordered set of NamedValues. The CORBA specification defines
several operations that the NVList supports. The IDL prototypes for these methods are as
follows:

// get the number of elements in the NVList
ORBStatus get count (

out long count) ;

// add an element to an NVList
ORBStatus add item(

in Identifier item name,

in TypeCode item_type,

in void* value,

in Flags item flags) ;

// free the NVList and any associated memory
ORBStatus free() ;
// free dynamically allocated memory associated with the list
ORBStatus free memory () ;

In DSOM, the NVList is a full-fledged object with methods for getting and setting elements:
//set the contents of an element in an NVList

ORBStatus set item(

in 1long item number, /* element # to set */
in Identifier item name,

in TypeCode item type,

in wvoid* item value,

in long value len,

in Flags item flags);

// get the contents of an element in an NVList
ORBStatus get item(
in 1long item number, /* element # to get */
out Identifier item name,

out TypeCode item type,

out void* item value,
out long value len,
out Flags item flags);

See the Programmer’s Reference for SOM and DSOM for a detailed description of the
methods defined on the NVList object.

Creating Argument Lists

A very important use of the NVList is to pass the argument list for an operation when
creating a request. CORBA specifies two methods, defined in the ORB class, to build an

Programmer’s Guide for SOM and DSOM

argument list: create_list and create_operation_list. The IDL prototypes for these
methods are as follows:

ORBStatus create list(
in long count, /* # of items */

out NVList new list);

ORBStatus create operation list(
in OperationDef oper,
out NVList new list);

The create_list method returns an NVList with the specified number of elements. Each of
the elements is empty. It is the client’s responsibility to fill the elements in the list with the
correct information using the set_item method. Elements in the NVList must contain the
arguments in the same order as they were defined for the operation. Elements are
numbered from 0 to count-1.

The create_operation_list method returns an NVList initialized with the argument
descriptions for a given operation (specified by the OperationDef). The arguments are
returned in the same order as they were defined for the operation. The client only needs to
fill in the item_value and value_len in the elements of the NVList.

In addition to these CORBA-defined methods, DSOM provides a third version, defined in
the SOMDObject class. The IDL prototype for this method is as follows:
ORBStatus create request args (

in Identifier operation,

out NVList arg list,

out NamedValue result);
Although the create_request_args method is introduced by SOMDObiject, it can be
invoked on any local or remote SOMObiject.

Like create_operation_list, the create_request_args method creates the appropriate
NVList for the specified operation. In addition, create_request_args initializes the
NamedValue that will hold the result with the expected return type. The
create_request_args method is defined as a companion to the create_request method,
and has the advantage that the InterfaceDef for the operation does not have to be
retrieved from the Interface Repository.

The create_request_args method is not defined in CORBA. Hence, the method
create_operation_list, defined on the ORB class, should be used instead when writing
CORBA-compliant programs.

Building a Request

There are two ways to build a Request object. Both begin by calling the create_request
method on the object on which the method is to be invoked. The IDL prototype for
create_request is as follows:

ORBStatus create request (
in Context ctx,
in Identifier operation,
in NVList arg list,
inout NamedValue result,

out Request request,

Distributed SOM 315

316

in Flags req flags);

The arg_list can be constructed using the procedures described above and is passed to the
Request object in the create_request call. Alternatively, arg_list can be specified as NULL
and repetitive calls to add_arg can be used to specify the argument list. The add_arg
method, defined by the Request class, has the following IDL prototype:

ORBStatus add arg(

in Identifier name,

in TypeCode arg type,

in wvoid* value,

in 1long len,

in Flags arg_flags);

The arg_modes field of the result NamedValue parameter to create_request is ignored.

Initiating a Request

There are two ways to initiate a request, using either the invoke or send method defined
by the Request class. The IDL prototype for invoke is as follows:
ORBStatus invoke (
in Flags invoke flags);
There are currently no flags defined for the invoke method. When the target object of the
dynamic method is local, invoke simply dispatches the local method. When the target

object is remote, invoke calls the ORB, which handles the method invocation and returns
the result. This method will block while awaiting return of the result.

The IDL prototype for send is as follows:
ORBStatus send(
in Flags invoke flags);
The following flag is defined for send:

INV_NO_RESPONSE
Means that the caller does not want to wait for a response.

When the target object is local, the send method has slightly different semantics depending
on whether the INV_NO_RESPONSE flag is set. If this flag is set, send dispatches the local
method and any output arguments will be updated.

When the object is local but this flag is not set, send has no effect and the client must call
get_response to dispatch the method. When called with a remote target object, the send
method calls the ORB but does not wait for the operation to complete before returning. To
determine when the operation is complete, the client must call the get_response method
(also defined by the Request class), which has this IDL prototype:

ORBStatus get response (
in Flags response flags);

The following flag is defined for get_response:

RESP_NO_WAIT
Means that the caller does not want to wait for a response.

If send is called with INV_NO_RESPONSE for a local target object, get_response has no
effect, since the method has already been dispatched. Otherwise, get_response called for
a local object dispatches the method and any output arguments will be updated.

Programmer’s Guide for SOM and DSOM

For a remote target object, get_response determines whether a request has completed. If
the RESP_NO_WAIT flag is set, get_response returns immediately even if the request is

still in progress. If RESP_NO_WAIT is not set, get_response waits until the request is

done before returning.

Example Code

Given below is an incomplete example showing how to use the DIl to invoke a request

having the following method procedure prototype:

string testMethod(testObject obj,

)i

Environment *ev,

long input value,

main ()

{

/*
/*

/*

/*

/*

ORBStatus rc;

Environment ev;

SOMDObject obj;

NVList arglist;

NamedValue result;

Context ctx;

Request reqObj;

OperationDef opdef;

Description desc;

Repository repo = SOM InterfaceRepository;
OperationDescription opdesc;

static long input value = 999;
SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

create the argument list */

get the operation description from the interface
repository */

opdef = lookup_ id(repo, *ev,

“testObject: :testMethod”) ;

__somFree (repo) ;

desc = describe (opdef, &ev);
opdesc = (OperationDescription *) desc.value. value;
fill in the TypeCode field for the result */

result.argument. type = opdesc->result;
Initialize the argument list */
rc = create operation list (SOMD ORBObject, &ev,

opdef, &arglist);

get default context */

Distributed SOM

317

rc = get default context (SOMD ORBObject, &ev, &ctx);
/* put value and length into the NVList */
_get_item(arglist, &ev, 0, &name, &tc, &dummy,

&dummylen, &flags);

_set _item(arglist, &ev, 0, name, tc, &input value,

sizeof (input_ value), flags) ;

/* create the request -- assume the object reference
* came from somewhere -- from a file or returned by
* a previous request */
rc = create request(obj, &ev, ctx, “testMethod”,
arglist, &result, &reqObj, (Flags)O);
/* invoke request */
rc = invoke (reqObj, &ev, (Flags)O0);
/* print result */
printf (“result: %s\n”,
* (string*) (result.argument. value)) ;

return(0) ;

Building a Client-Only stub DLL

318

When developing a DSOM client program that invokes methods on a remote object without
having a local copy of the DLL for the object’s class, the developer must create a local
“stub” DLL for the remote object. This DLL is needed because it contains the class data
structure for the object’s class, and that data structure is needed in order to create the local
proxy object for the remote object, and to use the static language bindings.

Instead of complete method functions, stub DLLs contain only stub method functions. Stub
DLLs, unlike the full-implementation DLLs, can be generated automatically by a developer
having only the IDL specification of a class. Only the server of the remote object needs to
have the object’s full implementation.

Client-side stub DLLs can be constructed by performing the following steps:

* Run the SOM Compiler on the (public) IDL class interface specification, using the h
emitter, the ih emitter, the c emitter and the imod emitter. (Alternatively, the xh, xih
and xc emitters can be used.) For more information, see Chapter 6, The SOM
Compiler on page 155 or see the DSOM sample programs.

» Compile these files together to yield a client-side stub DLL, in the same way that
regular class DLLs are compiled.

A stub DLL cannot be used to invoke methods on a local object. It is sufficient, however, for
the creation of a local proxy for a remote object, and provides the necessary support to
allow methods to be invoked on the remote object via the proxy.

Programmer’s Guide for SOM and DSOM

Creating User-Supplied Proxies

DSOM uses a proxy object in the client’s address space to represent the remote object. As
mentioned earlier in this chapter, the proxy object encapsulates the operations necessary
to forward and invoke methods on the remote object and return the results. By default,
proxy generation is done automatically by the DSOM run time. However, if desired, the
programmer can cause a user-supplied proxy class to be loaded instead of letting the run
time dynamically generate a default proxy class. User-supplied proxies can be useful in
specialized circumstances when local processing or data caching is desired.

To build a user-supplied proxy class, it is necessary to understand a bit about how dynamic
proxy classes are constructed by DSOM. DSOM constructs a proxy class by creating a
class that inherits the interface and implementation of SOMDClientProxy, and inherits the
interface (but not the implementation) of the target class (the class of which the remote
object is an instance).

SOMDClientProxy inherits from SOMMProxyForObject, which is a base class for creating
proxies. Every proxy contains the sommProxyDispatch method, inherited from
SOMMProxyForObject. This method is used to dynamically dispatch a method on an
object, and it can also be overridden with application-specific dispatching mechanisms. In
SOMDClientProxy, the sommProxyDispatch method is overridden to forward method
calls to the corresponding remote target object. For more information, refer to the
SOMMProxyForObject class in the Metaclass Framework section of the Programmer’s
Reference for SOM and DSOM or see Chapter 10, The Metaclass Framework on page
357.

Almost all methods invoked on a default proxy are simply forwarded and invoked on the
remote object. This is true for all methods introduced by the target class. However, some
methods introduced by SOMDCIlientProxy (or an ancestor class) have special behavior
and actually forward other methods to the remote object. A number of methods are not
forwarded to the remote object because their definition makes more sense in the local
context. For a list of methods in each category, see Making Remote Method Calls on
page 250.

Shown next is a simple example of a user-supplied proxy class. In this particular example,
the proxy object maintains a local, unshared copy of an attribute (attribute long)
defined in the remote object (Foo), while forwarding method invocations (method1) on to
the remote object. The result is that, when multiple clients are talking to the same remote
Foo object, each client has a local copy of the attribute but all clients share the Foo object’s
implementation of method1.

Simply setting the attribute in one client’s proxy does not affect the value of the attribute in
other proxies. Maintaining consistency of the cached data values, if desired, is the
responsibility of the user-supplied proxy class.

Following is the IDL file for the Foo class:
// foo.idl
#include <somdtype.idls>

#include <somobj.idls>

interface Foo : SOMObject

{

string methodl (out string a, inout long b,
in ReferenceData c¢);

attribute long attribute long;

Distributed SOM 319

implementation

{
releaseorder: methodl, _set_ attribute long,

_get_attribute long;

dllname="“foo.dl1l”;
somDefaultInit: override;

}i

}i
The user-supplied proxy class is created by using multiple inheritance between the

SOMDClientProxy and the target class (in this case Foo). Thus, the IDL file for the
user-supplied proxy class Foo _Proxy (note the two underscores) is as follows:

// fooproxy.idl
#include <somdcprx.idls>

#include <foo.idls>

interface Foo Proxy : SOMDClientProxy, Foo

{

implementation
{
dllname=“fooproxy.dll”;
_get_attribute long: override;
_set_attribute long: override;
Vi
bi
Normally one would use the abstractparents IDL modifier to indicate that abstract
inheritance should be used for the target class of the user-defined proxy class, for example,

Foo. In this example, however, abstract inheritance is not desired, because the proxy class
should inherit the instance data of the Foo class to permit the caching of instance data.

When you build a user-supplied proxy, you only need to override methods introduced by
the target interface which you do not want forwarded or that require special processing. In
the implementation section of the fooproxy.idl file, methods set attribute long
and get attribute long are overridden to prevent the methods from being forwarded.

/* fooproxy.c */

#include <fooproxy.ih>

SOM_Scope long SOMLINK get attribute long(Foo Proxy somSelf,

Environment *ev)

Foo_ProxyData *somThis = Foo__ ProxyGetData (somSelf) ;

Foo ProxyMethodDebug (“Foo Proxy”,“ get attribute long”);
return Foo Proxy parent Foo get attribute long(somSelf, ev);

}

SOM_Scope void SOMLINK _set attribute long(Foo Proxy somSelf,

320 Programmer’s Guide for SOM and DSOM

Environment *ev,

long attribute long)

Foo ProxyData *somThis = Foo ProxyGetData (somSelf) ;

Foo__ ProxyMethodDebug (“Foo Proxy”,“ set_attribute long”) ;

Foo Proxy parent Foo set attribute long(somSelf, ev,
attribute long) ;

}

If you need to override a method to perform special, local processing, but still want to
invoke a method on the remote object, you will need to explicitly call sommProxyDispatch.

SOM_Scope string SOMLINK methodl (Foo Proxy somSelf,
Environment *ev,
string* a,
long* b,

ReferenceData* c)

string methodName = “methodl";

somId temp_id = &methodName;

SOMMProxyForObject sommProxyDispatchInfo dispatchInfo;
string ret_str;

Foo ProxyData *somThis = Foo_ ProxyGetData (somSelf) ;

Foo ProxyMethodDebug (“Foo Proxy”, “methodl") ;

/* perform special processing here */

/* redispatch method, remotely */

__somGetMethodData (Foo, temp id, &dispatchInfo.md);

_sommProxyDispatch (somSelf, (void **)&ret str,
&dispatchInfo,
somSelf, ev, a, b, c);

return ret_str;

}
In summary, to build a user-supplied proxy class:

» Create the .idl file with the proxy class inheriting from both SOMDClientProxy and
from the target class.

The user-supplied proxy class must be named “targetClassName__Proxy” (with two
underscores in the name) and SOMDClientProxy must be the first class in the list of
parent classes; for example,

interface Foo_ Proxy : SOMDClientProxy, Foo

In the implementation section of the .idl file, override all methods that you do not want
forwarded and methods that require special processing. Be sure to include a dllname
modifier and an abstractparents modifier in the implementation section if abstract
inheritance is desired for the target class.

» Compile the .idl file. Be sure the Interface Repository gets updated with the .idl file.
Complete any overridden methods. If the proxy class provides an implementation for

Distributed SOM 321

the somInit or somDefaultinit method, then it is important to ensure that calling that
method more than once on the same proxy object has no negative effect.

« Build the DLL and place it in one of the directories listed in LIBPATH for AIX and OS/2
or PATH for Windows NT. Before creating the default proxy, the DSOM run time
checks for a DLL containing the class named “targetClassName__ Proxy”, as indicated
by the SOM IDL modifier dliname. If such a DLL is found, DSOM loads it instead of
dynamically generating a proxy class.

Customizing the Default Base Proxy Class

Continuing the example from the previous topic, imagine that an application derives 100
subclasses from the Foo class. If the application wishes to cache the
Foo::attribute_ long attribute in the proxies for all remote Foo-based objects, the
application could supply 100 user-supplied proxy classes, developed in the manner
described above. However, this would become a very tedious and repetitive task.

Alternatively, it is possible to provide a customized base proxy class for use in the dynamic
generation of DSOM proxy classes. This allows an application to provide a customized
base proxy class, from which other dynamic DSOM proxy classes can be derived. This is
particularly useful in situations where an application would like to enhance many or all
dynamically generated proxy classes with a common feature.

As described in the previous topic, proxy classes are derived from the SOMDClientProxy
class by default. It is the SOMDClientProxy class that overrides sommProxyDispatch in
order to forward method calls to remote objects.

The SOMDCIlientProxy class can be customized by deriving a subclass in the usual way
(being careful not to replace sommProxyDispatch or other methods that are fundamental
to implementing the proxy’s behavior). To extend the above example further, the application
might define a base proxy class called MyClientProxy that defines a long attribute called
attribute long, which will be inherited by Foo-based proxy classes.

The SOM IDL modifier baseproxyclass can be used to specify which base proxy class
DSOM should use during dynamic proxy-class generation. To continue the example, if the
class MyClientProxy were used to construct the proxy class for a class Xyz, then the
baseproxyclass modifier would be specified as follows:

// xyz.idl

#include <somdtype.idls>
#include <foo.idl>

interface XYZ : Foo

{

implementation

{

baseproxyclass = MyClientProxy;
Vi
}i
It should be noted that:
» Base proxy classes must be derived from SOMDClientProxy.

322 Programmer's Guide for SOM and DSOM

» If aclass XYz specifies a custom base-proxy class, as in the preceding example,
subclasses of XYz do not inherit the value of the baseproxyclass modifier. If needed,
the SOM IDL modifier baseproxyclass must be specified explicitly in each class.

e The IDL files containing the baseproxyclass modifier must be compiled into the
Interface Repository so that the modifier will be accessible to DSOM at run time.

Error Reporting and Troubleshooting Hints

This section describes the format of DSOM error messages and provides numerous
troubleshooting hints that can help you verify the DSOM setup and analyze problem
conditions.

Error Reporting

When the DSOM run-time environment encounters an error during execution of a method
or procedure, a SYSTEM_EXCEPTION is raised. The standard system exceptions are
discussed in Exceptions and Error Handling on page 100. The minor field of the returned
exception value contains a DSOM error code.

Although a returned exception value can indicate that a DSOM run-time error occurred, it
may be difficult to determine what caused the error. Consequently, DSOM has been
enabled to report run-time error information.

DSOM Error Codes

The error codes that may be encountered when using DSOM are listed in Error Codes on
page 397 which contains the codes for the entire SOMobjects Developer Toolkit.

Fatal Errors

In DSOM 2.x, certain categories of errors were deemed to be fatal. If a fatal error occurred,
the DSOM process would be immediately terminated by the DSOM run-time. DSOM 3.0 no
longer raises fatal error; instead, all error conditions are reported to the caller and the
process is never terminated by DSOM. As a result of this change, DSOM applications must
ensure that they properly check for exceptions in the Environment structure following
every DSOM operation to prevent subsequent problems. DSOM applications should no
longer rely on DSOM to terminate the process when an error occurs.

Note: When the DSOM daemon, somdd, is terminated, all servers are also terminated.

Troubleshooting Hints

The following hints may prove helpful as you develop and test your DSOM application.

Checking the DSOM Setup

This checklist will help you ensure that the DSOM environment is set up correctly.

e If you are using DSOM for cross-machine communication, ensure that your networking
hardware and software are properly installed.The hosts file must contain an entry for
both the client and server machines. The ETC environment variable must be set on
OS2 for all supported protocols.

Distributed SOM 323

324

Verify the networking setup for your particular networking product as follows:

- For AnyNet:
On OS/2, There should not be an $ETC%\resolv file, unless TCP/IP is running
and it is configured to resolve host names with a domain name server. Host name
resolution can take several seconds when there is a resolve file present and the
domain name server it references is not running or is not accessible. Make sure
there are no errors in running sxstart.cmd by opening the task window for sx.exe.
Make sure the basic networking is operating properly by using AnyNet's ping
command to ping the other machine (client or server).

- For TCP/IP:
Ensure that TCP/IP is loaded and operational.

For more information on your network’s hardware/software setup, see
- The documentation provided with your networking software

The SOMDPROTOCOLS setting of both client and server contain a common entry, and
that common protocol supports cross-machine communication (the SOMD_IPC
protocol does not).

Use the somdchk tool to verify DSOM environment configuration (particularly the
SOMIR, SOMENYV and SOMDDIR settings). If SOMIR contains relative pathnames, the
client programs, server programs and somdd daemon must be started from the same
directory. (Instead, it is recommended that SOMIR contain full pathnames.) All files
indicated by SOMIR should exist and be readable. The directory indicated by
SOMDDIR should exist and be readable and writable.

For all application class libraries to be loaded dynamically, IDL containing dliname
modifiers must be compiled into the Interface Repository designated by SOMIR. (This
includes any application-specific subclasses of SOMDServer and SOMDClientProxy.)
You can verify that a class exists in the Interface Repository by executing irdump
className. See Registering Class Interfaces on page 30 for more information.

An implementation must be registered with DSOM by running the regimpl utility. See
Registering Servers and Classes on page 31 for more information. The server must
be registered on the machine on which it will run. (A server cannot be registered from a
different machine.) The SOMDDIR, SOMDPROTOCOLS, HOSTNAME and
SOMDPORT settings in effect at the time the server was registered must be the same
as those in effect when the server (and its associated daemon) are executed. Before a
server can be registered the Naming Service and Security Service must be configured,
using the som_cfg tool, and the daemon must be running. For workgroup
configurations, somdd must be running on the machine on which the global root of the
Naming Service resides and the machine on which the Security Service resides.

Verify that all class libraries and networking libraries are in directories specified in
LIBPATH. Both the client and server machines need a DLL for each class. For machines
that will run only client programs (and not servers), a stub DLL may be used instead.
See Building a Client-Only stub DLL on page 318 for more information.

Ensure that memory-management IDL modifiers correctly reflect the memory-
management policy executed by the application, and that they have been correctly
expressed in IDL. (The SOM Compiler currently does not check the correctness of
these modifiers.) See Memory Allocation and Ownership for more information.)

Ensure that the contents of the SOMDDIR directory and the SOMNMOBJREF setting
are consistent with one another (that is, they were all produced from the same run of
the som_cfg tool). Further, the SOMDPROTOCOLS, HOSTNAME and SOMDPORT

Programmer’s Guide for SOM and DSOM

settings of the name server and its associated daemon should match those in effect
when som_cfg was run.

Analyzing Problem Symptoms

Check any DSOM error codes returned. If none of the error codes apply to your situation,
check the following suggestions for possible solutions.

On 0OS/2, an operating system error occurs indicating a “stack overflow” condition
soon after a the first call to a class DLL. Rebuilding the DLL with a larger stack size
does not help. Use the imod emitter to build the DLL; it takes care of the details.

A SOMDERROR_ClassNotFound error is returned by a server when creating a
remote object. This error may result if the DLL for the class cannot be found. Verify that:

» the interface of the object can be found in the IR

» the class name is spelled correctly and is appropriately scoped (for example, the
Printer class in the PrintServer module must have the identifier PrintServer::Printer)

This error can also result if the DLL for the class does not provide a SOMInitModule that
initializes all the classes it contains.

This error may result when the class libraries used to build the proxy class are statically
linked to the program, but the classNameNewClass procedures have not been called to
initialize the classes in the library’s SOMInitModule function.

A DLL built with the imod emitter provides a proper SOMInitModule.

Following a method call, the SOM run-time error message, “A target object failed
basic validity checks during method resolution” is displayed. Usually this means that
the method call was invoked using a bad object pointer, or the object has been corrupted.

A remote object has an attribute or instance variable that is, or contains, a pointer to
a value in memory (for example, a string, a sequence, an any). The attribute or
instance variable value is set by the client with one method call. When the attribute
or instance variable is queried in a subsequent method call, the value referenced by
the pointer is “garbage.”: This may occur because DSOM makes a copy of argument
values in a client call, for use in the remote call. The argument values are valid for the
duration of that call. When the remote call is completed, the copies of the argument values
are freed.

In a DSOM application, a class should not assume ownership of memory passed to it in a
method parameter unless the IDL description of the method includes the SOM IDL modifier
object_owns_parameters. Otherwise, if a parameter value is meant to persist between
method invocations, then the object is responsible for making a copy of the parameter
value.

A method defines a char * parameter that is used to pass a string input value to an
object. The object attempts to print the string value, but it appears to be “garbage.”:
DSOM will support method arguments that are pointers (pointer types are a SOM
extension), by dereferencing the pointer in the call, and copying the base value. The value
and the related pointer are reconstructed on the server before the actual method call is
made.

While (char *) is commonly used to refer to NULL-terminated strings in C programs, (char *)
could also be a pointer to a single character or to an array of characters. Thus, DSOM
interprets the argument type literally as a pointer-to-one-character.

To correctly pass strings or array arguments, the appropriate CORBA type should be used
(for example, string or char foo[4]).

Distributed SOM 325

326

A segmentation violation occurs when passing an any argument to a method call,
where the any value is a string, array, or object reference. The NamedValues used in
DIl calls use any fields for the argument values. This error may occur because the
_value field of the any structure does not contain the address of a pointer to the target
string, array, or object reference, as it should. (A common mistake is to set the _value field
to the address of the string, array, or object reference itself. To have DSOM transmit an any
whose _value field is NULL, set the _type field of the any to tk_null.)

When a server program or a server object makes a call to get_id or to
get_SOM_object on a SOMDODbject, a BAD_OPERATION exception is returned with an
error code of SOMDERROR_WrongRefType. This error may occur when the operation
get_id is called on a SOMDObject that does not have any user-supplied ReferenceData
(that is, the SOMDODbject is a proxy, is nil, or is a simple “SOM ref” created by
create_SOM_ref). Likewise, this error may occur when the operation get_ SOM_object is
called on a SOMDODbject that was not created by the create_ SOM_ref method.

A segmentation fault occurs when a SOMD_Uninit call is executed. This error could
occur if the application has already freed any of the DSOM run-time objects that were
allocated by the SOMD_Init call, such as SOMD_ImplRepObject or SOMD_ORBODbject.

Unexplained Program Crashes

Verify that the DSOM environment is configured properly, as described in DSOM
Configuration on page 18. Verify that all class libraries are in directories specified in
LIBPATH for AIX and OS/2. Verify that the contents of the Interface Repository, specified
by SOMIR, are correct. Verify that the contents of the Implementation Repository, specified
by SOMDDIR, are correct. Verify that somdd is running on all participating server
machines.

A trap is occurring when a method is invoked on a proxy, and the SMNOTC
environment variable is set. The SMNOTC environment variable should never be set
when using DSOM. Installation of the OS/2 Developer Toolkit may update your config.sys
to set SMNOTC=1. This setting should be removed from config.sys. If the SMNOTC
environment variable was set when the class’s .ih or .xih file was generated, you will need
to regenerate that file.

Problems occur after changing the setting of SOMDPROTOCOLS, HOSTNAME, or
SOMDPORT. After a change to SOMDPROTOCOLS, or to the HOSTNAME or
SOMDPORT setting within a protocol stanza, the Naming Service must be reconfigured
(using som_cfg), and all application servers must be re-registered using regimpl.

The somossvr server program terminates immediately after starting. This will occur if
the somossvr server program has not been initialized the first time it is run. Unlike the
generic somdsvr server program, the somossvr server program must be run manually at
least once before it can be started on demand by the DSOM daemon. For this initial run, it
must be given the -i command-line argument.

A server program using a SOMobjects object services terminates. This will occur if
the server program was not registered (using regimp) to use both the somossvr
executable and the somOS::Server server class. This is required by all the SOMobjects
object services.

A method can be invoked successfully on a server the first time, but subsequent
invocations return garbage data to the caller. This occurs if the target object’s
implementation does not adhere to the caller-owned policy for parameter memory
management, but the object’s IDL does not contain the proper memory-management
modifiers (for example, object_owns_result, object_owns_parameters). As a result, the

Programmer’s Guide for SOM and DSOM

DSOM runtime in the server process is freeing memory that the target object still holds a
pointer to. See Memory Allocation and Ownership on page 252.

The server traps just after an application method (invoked remotely) returns. This
can occur if the application method being invoked in the server does not properly initialize
the inout/out parameters and the return value data structures according their declared IDL
types. As part of marshalling results back to the caller, DSOM traverses all returned data
structures according to their declared IDL types, copying the data therein to an interprocess
message. If any values in those data structures are invalid (for example, if one contains an
invalid pointer), this will cause DSOM to trap.

A client application traps just after invoking a method remotely, and the remote
method is never executed in the server. This can occur if the client does not properly
initialize the in and inout parameters according to their declared IDL traverses all in/inout
parameters according to their declared IDL types, copying the data therein to an
interprocess message. If any values in those data structures are invalid (for example, if one
contains an invalid pointer), this will cause DSOM to trap.

A client application traps while making a remote method call, just after the remote
method has been executed in the server, but before control returns to the client
application. This can occur if the client does not provide storage for out parameters and
return values according to their declared IDL types. The client is responsible for allocating
(but not necessarily initializing) the top-level storage for all out and return values. If this
storage is not allocated, then DSOM may trap when attempting to store the out/return
values from the remote call in the storage it thinks has been provided. See Memory
Allocation and Ownership on page 252.

DSOM as a CORBA-Compliant Object Request Broker

The Object Management Group (OMG) consortium defines the notion of an Object Request
Broker (ORB) that supports access to remote objects in a distributed environment. Thus,
Distributed SOM is an ORB. SOM and DSOM together comply with the OMG’s specification
of the Common Object Request Broker Architecture (CORBA 1.1).

Since the interfaces of SOM and DSOM are largely determined by the CORBA
specification, the CORBA components and interfaces are highlighted in this section. The
CORBA specification defines the components and interfaces that must be present in an
ORB, that include the:

* Interface Definition Language (IDL) for defining classes (discussed in Chapter 5, SOM
Interface Definition Language on page 115)

» C usage bindings (procedure-call formats) for invoking methods on remote objects

* Dynamic Invocation Interface and an Interface Repository, that support the construction
of requests at run time

e Object Request Broker run-time programming interfaces

SOM and DSOM were developed to comply with these specifications along with only minor
extensions to take advantage of SOM services. Although the capabilities of SOM are
integral to the implementation of DSOM, the application programmer does not need to be
aware of SOM as the implementation technology for the ORB.

This section assumes familiarity with CORBA 1.1. The specification is published jointly by
the OMG and X/Open‘. The mapping of some CORBA terms and concepts to DSOM terms
and concepts is described in the remainder of this section.

Distributed SOM 327

Object Request Broker Run-Time Interfaces

328

CORBA defines the interfaces to the ORB components in IDL. In DSOM, the ORB
components are implemented as SOM classes whose interfaces are expressed using the
same CORBA 1.1 IDL. Thus, an application can make calls to the DSOM run-time using the
SOM language bindings of its choice.

Interfaces for the following ORB run-time components are defined in CORBA and are
implemented in DSOM. They are introduced briefly here, and discussed in more detail
throughout this chapter. See Programmer’s Reference for SOM and DSOM for the
complete interface definitions.

Object
The Object interface defines operations on an object reference: the information needed
to specify an object within the ORB.

In DSOM, the SOMDObject class implements the CORBA 1.1 Object interface. The
“SOMD” prefix was added to distinguish this class from SOMObject. The subclass
SOMDClientProxy extends SOMDODbject with support for proxy objects.

ORB
The ORB interface defines utility routines for building requests and saving references to
distributed objects. The global variable SOMD_ORBObject is initialized by SOMD _Init
and provides the reference to the ORB object.

ImplementationDef
An ImplementationDef object is used to describe an object’s implementation. Typically,
the ImplementationDef describes the program that implements an object’s server, how
the program is activated and so on. CORBA introduces ImplementationDef as the
name of the interface, but leaves the remainder of the IDL specification to the particular
ORB. DSOM defines an interface for ImplementationDef.

ImplementationDef objects are stored in the Implementation Repository, defined in
DSOM by the ImplRepository class.

InterfaceDef
An InterfaceDef object is used to describe an IDL interface in a manner that can be
queried and manipulated at run time when building requests dynamically, for example.

InterfaceDef objects are stored in the Interface Repository, described in Chapter 9,
The Interface Repository Framework on page 337.

Request
A Request object represents a specific request on an object, constructed at run time.
The Request object contains the target object reference, operation (method) name and
a list of input and output arguments. A Request can be invoked synchronously,
asynchronously or as a oneway call. See Dynamic Invocation Interface on page 311
for more information on Request objects.

NVList
An NVList is a list of NamedValue structures used primarily in building Request objects.

A NamedValue structure consists of a name, typed value and some flags indicating
how to interpret the value, how to allocate and free the value’s memory and so on.

Programmer’s Guide for SOM and DSOM

Context
A Context object contains a list of properties that represent information about an
application process environment. Each property consists of a name,string_value pair,
and is used by application programs or methods much like the environment variables
found in operating systems like AIX and OS/2. IDL method interfaces can explicitly list
which properties are queried by a method, and the ORB will pass those property values
to a remote target object when making a request.

Principal
A Principal object identifies the user, the principal, on whose behalf a request is being
performed. CORBA introduces the name of the interface, Principal, but leaves the
remainder of the IDL specification to the particular ORB. DSOM defines an interface for
Principal.

BOA
An Object Adapter (OA) provides the primary interface between an implementation and
the ORB core. An ORB may have a number of OAs, with interfaces that are appropriate
for specific kinds of objects. The Basic Object Adapter (BOA) is intended to be a
general-purpose OA available on all CORBA-compliant ORBs. The BOA interface
provides support for the generation of object references, identification of the principal
making a call, activation and deactivation of objects and implementations and method
invocation on objects.

In DSOM, BOA is defined as an abstract class. The SOM Object Adapter (SOMOA)
class, derived from BOA, is DSOM'’s primary OA implementation. The SOMOA
interface extends the BOA interface with several methods not defined by CORBA.

Object References and Proxy Objects

CORBA defines the notion of object references. An object reference is the information that
specifies an object in the ORB. An object is defined by the ImplementationDef of its
server, its InterfaceDef and application-specific ReferenceData used to identify or
describe the object. An object reference is used as a handle to a remote object in method
calls. When a server wants to export a reference to an object it implements, it supplies the
object’s ImplementationDef, InterfaceDef and ReferenceData to the OA. The OA returns
the reference. In DSOM, the creation of object references is typically done within the
SOMDServer::somdRefFromSOMObj Method.

The structure of an object reference is opaque to the application, leaving its representation
up to the ORB. In DSOM, an object reference is represented as an object that can be used
to identify the object on that server. The DSOM class that implements simple object
references is called SOMDObject. However, in a client's address space, DSOM represents
the remote object with a proxy object. When an object reference is passed from server to
client, DSOM dynamically creates a proxy in the client for the remote object.

Proxies are specialized forms of SOMDObject. Accordingly, the base proxy class in DSOM,
SOMDClientProxy, is derived from SOMDObiject. To create a proxy object, DSOM builds a
proxy class using the SOM facilities for building classes at run-time. The proxy class is
constructed using multiple inheritance. The functionality of the proxy object is inherited from
SOMDClientProxy, and only the interface of the target class is inherited. See Figure 16.

Distributed SOM 329

330

SOMDOb)ect SOMMProxyForObject |

N/

SOMDCHentProy

\\“_—j Legend
@ ¢l pee

— Inherits from

—=— gbstract inheritanca
tinberface anly)

Figure 16. Construction of a Proxy Class

In the newly derived proxy class, DSOM overrides each method inherited from the target
class with a remote dispatch method that forwards an invocation request to the remote
object. Consequently, the proxy object provides location transparency, and the client code
invokes operations on the remote object using the same language bindings.

Recall the stack class used in the DSOM Tutorial example. When a server returns to the
client a reference to a remote Stack, DSOM builds a stack _ Proxy class (note the two
underscores in the name), derived from SOMDClientProxy and Stack, and creates a proxy
object from that class. When the client invokes the push method on the proxy,

_push(stk, &ev, 100);

the method is redispatched using the remote-dispatch method of the SOMDClientProxy
class, and the method is forwarded to the target object.

CORBA defines several special operations on object references that operate on the local
references themselves rather than on the remote objects. These operations are defined by
the SOMOA, SOMDODbject and ORB classes. Examples of these operations are listed
below, expressed in terms of their IDL definitions.

SOMOA methods
Create and return an object reference.

sequence <octet,1024> ReferenceData;
SOMDObject create (in ReferenceData id, in InterfaceDef intf,

in ImplementationDef impl) ;

SOMDObject methods
Create and return a duplicate object reference.

SOMObject duplicate ();
Destroy an object reference.

void release ();
Test to see if the object reference is NULL.

boolean is nil ();

Programmer’s Guide for SOM and DSOM

Interface

ORB methods
Convert an object reference to a (storable) string form.

string object to string (in SOMObject obj);
Convert a string form back to the original object reference.

SOMObject string to_object (in string str);

Definition Language

The CORBA specification defines an Interface Definition Language (IDL) for defining object
interfaces. The SOM Compiler compiles standard IDL interface specifications, but it also
allows the class implementor to include implementation information that will be used in the
implementation bindings for a particular language.

Note: Before IDL, SOM (version 1.0) had its own Obiject Interface Definition Language
(OIDL). SOM classes specified using OIDL must be converted to IDL before they
can be used with DSOM. The SOMobjects Developer Toolkit provides a migration
tool for this purpose. (See Appendix B, Converting OIDL Files to IDL on page
417.)

C Language Mapping

Dynamic

The CORBA specification defines the mapping of method interface definitions to C language
procedure prototypes, hence SOM defines the same mapping. This mapping requires
passing a reference to the target object and a reference to an implementation-specific
Environment structure as the first and second parameters, respectively, in any method call.

The Environment structure is primarily used for passing error information from a method
back to its caller. See Exceptions and Error Handling on page 100 for a description of
how to get and set error information in the Environment structure.

Invocation Interface

The CORBA specification defines a Dynamic Invocation Interface (DII) that can be used to
dynamically build requests on remote objects. In DSOM, method invocations on proxy
objects are forwarded to the remote target object. SOMobjects applications can use the
SOM method somDispatch for dynamic method calls on local or remote objects. The
DSOM implementation of the DIl is described in Dynamic Invocation Interface on page
311.

Implementations

The CORBA specification defines implementation as the code that implements an object.
The implementation usually consists of a program and class libraries.

An ImplementationDef object, as defined by the CORBA specification, describes the
characteristics of a particular implementation. In DSOM, an ImplementationDef identifies
an implementation’s unique ID, program name, location and so forth. The objects are
stored in an Implementation Repository. The Implementation Repository is represented by
an ImplRepository object.

A CORBA-compliant ORB must provide the mechanisms for a server program to register
itself with the ORB. Self registration with an ORB tells enough information about the server

Distributed SOM 331

Servers

process so the ORB will be able to locate, activate, deactivate and dispatch methods to the
server process. DSOM supports these mechanisms, so server programs written in arbitrary
languages can be used with DSOM. See Object Adapters on page 332 for additional
information.

Besides the generic registration mechanisms provided by all CORBA-compliant ORBSs,
DSOM provides support for SOM-class libraries. DSOM provides a generic server program
that registers itself with DSOM, loads SOM-class libraries on demand, and dispatches
incoming requests on SOM objects. By using the generic server program, a user may be
able to avoid writing any server program code.

Servers are processes that execute object implementations. CORBA defines four activation
policies for server implementations as follows.

» A shared server implements multiple objects at the same time and allows multiple
methods to be invoked simultaneously.

* Anunshared server implements only a single object and handles one request at a time.

e The server-per-method policy requires a separate process to be created for each
request on an object and, usually, a separate program implements each method.

» A persistent server is a shared server that is activated “by hand” instead of being
activated automatically when the first method is dispatched to it.

The term “persistent server” refers to the relative lifetime of the server. CORBA implies that
persistent servers are started at ORB boot time. However, it should not be assumed that a
persistent server implements persistent objects that persist between ORB reboots.

Note: The current release of DSOM supports a simple server activation policy equivalent
to the shared and persistent policies defined by CORBA. DSOM does not explicitly
support the unshared or server-per-method server activation policies. Policies other
than the basic activation scheme must be implemented by the application.

In DSOM, specific process models are implemented by the server program. That is, DSOM
simply starts a specified program when a client attempts to connect to a server. The four
CORBA activation policies, or any other policies, can be implemented by the application as
required. For example:

« An object that requires a server-per-method implementation could spawn a process at
the beginning of each method execution. Alternatively, the server object in the “main”
server can spawn a process before each method dispatch.

» A dedicated server could be registered for each object that requires an unshared server
implementation. This may be done dynamically, see Programmatic Interface to the
Implementation Repository on page 38.

Object Adapters

An Object Adapter (OA) provides the mechanisms a server process uses to interact with
DSOM. An Object Adapter is responsible for:

e server activation and deactivation

e dispatching methods

332 Programmer’s Guide for SOM and DSOM

e activation and deactivation of individual objects

« providing the interface for authentication of the principal making a call

DSOM defines a BOA interface as an abstract class. The BOA interface represents generic
OA methods that a server written in an arbitrary language can use to register itself and its
objects with the ORB. Because it is an abstract class having no implementation, however,
the BOA class should not be directly instantiated.

DSOM provides a SOMOA that uses the SOM compiler and runtime support to accomplish
dispatching of methods. The SOMOA works in conjunction with the application-defined
server object to map between objects and object references and to dispatch methods on
objects. By partitioning out these mapping and dispatching functions into the server object,
the application can customize them without having to build object adapter subclasses.

SOMOA introduces two methods to handle execution of requests received by the server:
execute_request_loop
execute_next_request

Typically, execute_request_loop is used to receive and execute requests, continuously, in
the server’'s main thread. The execute_next_request method allows a single request to be
executed. Both methods have a non-blocking option where if no messages are pending, the
method call will return instead of wait. The generic server program provided by DSOM uses
execute_request_loop to receive and execute requests on SOM objects.

If the server implementation has been registered as multi-threaded by using the
IMPLDEF_MULTI_THREAD flag in the ImplementationDef, SOMOA automatically runs each
request in a separate thread. If the multi-thread flag is not set, the server implementation
can still choose to manage its own threads.

ORB-t0-ORB Interoperability

Interoperability between CORBA implementations is first addressed by OMG in the CORBA
2.0 specification. CORBA 2.0 interoperability is based on ORB-to-ORB communication. The
objective is to enable objects in one ORB to invoke methods on objects in a different ORB
implementation transparently. That is the client-object need not do any thing special to
invoke a method on the object in the different ORB. The ORB implementations are
responsible for forwarding method requests to the other ORB if the object is resident in the
other ORB. This kind of support has to be provided independent of, and inspite of,
differences such as platform, protocol, format, and so forth that might exist between the two
ORBs. This is possible if the two ORBs have a standardized way of invoking method and
receiving responses, that enables them to translate the messages to data that can be
interpreted by each ORB.

CORBA 2.0 interoperability specifies the standardized message protocol and formats for
ORB-to-ORB communication. There are two broad specifications of interoperability in
CORBA 2.0. The general interoperability protocol is called General Inter-ORB Protocol
GIOP). This specifies the Common Data Representation and seven GIOP message
formats. The GIOP protocol can be implemented on any reliable transport. The mandatory
transport is TCP/IP. The GIOP implementation using TCP/IP is called Internet Inter-ORB
Protocol or IIOP. It is mandatory for all interoperating ORBs to support IIOP.

SOMobijects 3.0 supports IIOP. That is, a SOMobijects client can invoke methods on
objects in any ORB that support IIOP, and also a client in any ORB can invoke methods on

Distributed SOM 333

objects in a SOMobjects server. SOMobjects does not require any special compiler options
for IIOP.

The other part of the interoperability specification is the Environment-Specific Inter-ORB
Protocol or ESIOP. Support for ESIOP is not mandatory. OMG has defined one ESIOP
protocol based on DCE. This is officially designated by OMG as DCE-Common Inter-ORB
Protocol (DCE-CIOP). SOMobjects 3.0 does not provide support for DCE-CIOP.

Besides the Inter-ORB protocols, the object reference has to be standardized so that it can
be interpreted by any ORB. The standardized object reference format is called the
Interoperable Object Reference (IOR). The IOR specification adopted by OMG in the
CORBA 2.0 standard has a type ID, which is the same as in the Interface Repository for
that interface. Additionally the IOR has one or more tagged profiles, one each for a protocol
that the object (or more correctly the server containing the object) supports. Only part of the
profile information such as the protocol and the hostname and (listening) port can be
deciphered from the profile. The rest of the profile information (the object key) has some
server-specific information and can only be interpreted by the server.

Note: While SOMobjects 3.0 supports IIOP 1.0, which is defined in the CORBA 2.0
specification, SOMobjects 3.0 does not claim full support for CORBA 2.0. New
features defined in CORBA 1.2 and 2.0 are not generally supported by SOMobjects
3.0.

DSOM Limitations

DSOM implementation has the following limitations in implementing CORBA specification:

« DSOM provides null implementations for the obj_is_ready or deactivate_obj
methods, defined by the BOA interface for the unshared server activation policy.

 DSOM does not support the change_implementation method, defined by the BOA
interface to allow an application to change the implementation definition associated
with an object. In DSOM, the ImplementationDef identifies the server which
implements an object. In these terms, changing an object’'s ImplementationDef would
result in a change in the object’'s server ID. Any existing object references that have the
old server ID would be rendered invalid.

It is possible, however, to change the program which implements an object’s server, or
change the class library which implements an object’s class. To modify the program
associated with an ImplementationDef, use the update_impldef method defined on
ImplRepository. To change the implementation of an object’s class, replace the
corresponding class library with a new (upward-compatible) one.

e The OUT_LIST_MEMORY, IN_COPY_VALUE and DEPENDENT_LIST flags, used
with the Dynamic Invocation Interface, are not yet supported.

» DSOM supports a simple server activation policy, equivalent to the shared and
persistent policies defined by CORBA. DSOM does not explicitly support the unshared
or server-per-method server activation policies. Policies other than the basic activation
scheme must be implemented by the application.

DSOM Extensions

DSOM implementation extends its implementation of the CORBA specification in the
following ways:

334 Programmer’s Guide for SOM and DSOM

The SOMOA provides some specialized object reference types which, in certain
situations, are more efficient or easier to use than standard object references.

DSOM supports passing objects by copy (C++ semantics) or by value.

DSOM allows non-standard types to be expressed in IDL and marshalled using DSOM.
For example, pointers and SOMFOREIGN types are supported. (SOMFOREIGN types
require a user-supplied marshalling function or method.)

DSOM allows different dispositions for parameter memory in addition to the standard
caller owned.

Deprecated DSOM Objects and Methods

Although the current release of DSOM generally provides backward compatibility for all
objects and methods supported in DSOM 2.x or before, the programming model has
evolved to incorporate new standards and provide greater flexibility and extensibility.

The ObjectMgr and SOMDObjectMgr interfaces are deprecated. In DSOM 2.x,
methods somdNewObject, somdFindServer, somdFindServerByName,
somdFindServersByClass and somdFindAnyServerByClass were used as part of
object creation. For information on creating objects in the current release of DSOM, see
Finding a SOM Object Factory on page 245 and Creating an Object from a Factory
on page 247.

Method somdReleaseObject was used to destroy a proxy object (but not the target
object). Method SOMDObject::release or SOMDClientProxy::somdProxyFree can
be used for this purpose.

Method somdDestroyObject was used to destroy both the proxy object and the target
object. Method SOMObject::somFree can be used for this purpose. Note that the
default behavior of somFree, when invoked on a proxy object, is different in the current
release of DSOM. In 2.x, SOMDObjectMgr attribute somd21somFree needed to be
explicitly set for somFree to destroy both the proxy object and target object. Destroying
both objects is the default behavior in the current release of DSOM.

Methods somdGetldFromObject and somdGetObjectFromld were used to convert
between a proxy object and its externalized, string form. ORB methods
object_to_string and string_to_object can be used for this purpose.

The SOMDODbject methods is_SOM_ref and is_constant should only be called from a
server. If these methods are invoked on a client proxy object, an exception will be
raised.

The SOMDServer methods somdCreateObj, somdDeleteObj and
somdGetClassObj are deprecated.

In DSOM 2.x, methods somdCreateObj and somdGetClassObj were used as part of
object creation. For information on creating objects in the current release of DSOM, see
Finding a SOM Object Factory on page 245 and Creating an Object from a Factory
on page 247.

Method somdDeleteObj was used to delete a remote, target object. To accomplish this
same purpose now, you should use the SOMDClientProxy::somdTargetFree method.

The SOMDServerMgr methods somdDisableServer, somdEnableMethod and
somdIsServerEnabled methods are deprecated. These methods can still be called,
but the somdDisableServer and somdEnableServer methods will have no effect, and
the somdIsServerEnabled method will always return TRUE.

Distributed SOM 335

e The SOMOA::change_id and the SOMDODbiject::is_constant methods are
deprecated, as is the use of the Object Reference Table file for persistent storage of
ReferenceData associated with object references exported by a server. Unless a
server’'s ImplementationDef object (from the Implementation Repository) specifies an
object reference table filename, SOMOA'’s implementation of the create method simply
invokes the SOMOA::create_constant method. Eventually, the non-CORBA-compliant
SOMOA::create_constant will be eliminated in favor of the CORBA-compliant create
method. Servers that need persistent storage of object-reference data, such as that
previously provided by the Object Reference Table, should implement this functionality
in an application-specific subclass of SOMDServer, or use the somOS::Server class
for this purpose.

336 Programmer’s Guide for SOM and DSOM

Chapter 9. The Interface Repository Framework

The SOM Interface Repository (IR) is a database that the SOM Compiler optionally creates
and maintains from the information supplied in IDL source files. The Interface Repository
contains persistent objects that correspond to the major elements in IDL descriptions. The
SOM Interface Repository Framework is a set of classes that provide methods whereby
executing programs can access these objects to discover everything known about the
programming interfaces of SOM classes.

The programming interfaces used to interact with Interface Repository objects, as well as
the format and contents of the information they return, are architected and defined as part
of the Object Management Group’s CORBA standard. The classes composing the SOM
Interface Repository Framework implement the programming interface to the CORBA
Interface Repository. Accordingly, the SOM Interface Repository Framework supports all of
the interfaces described in The Common Object Request Broker: Architecture and
Specification (OMG Document Number 91.12.1, Revision 1.1, chapter 7).

As an extension to the CORBA standard, the SOM Interface Repository Framework permits
storage in the Interface Repository of arbitrary information in the form of SOM IDL
modifiers. Within the SOM-unique implementation section of an IDL source file or through
the use of the #pragma modifier statement, user-defined modifiers can be associated with
any element of an IDL specification. See SOM Interface Definition Language on page
116. When the SOM Compiler creates the Interface Repository from an IDL specification,
these potentially arbitrary modifiers are stored in the IR and can then be accessed using
the methods provided by the Interface Repository Framework.

This chapter describes how to build and manage interface repositories and the
programming interfaces embodied in the SOM Interface Repository Framework.

Using the SOM Compiler to Build an Interface Repository

The SOMobjects Toolkit includes an Interface Repository emitter, the ir emitter, invoked
whenever the SOM Compiler is run with the -u option to update the interface repository.
The IR emitter can create or update an Interface Repository file. The IR emitter expects that
an environment variable, SOMIR, was first set to designate a file name for the Interface
Repository. For example, to compile an IDL source file named newcls.idl and create an
Interface Repository named newcls.ir, use a command sequence similar to the following:

For OS/2 and Windows NT:
set SOMIR=c:\myfiles\newicls.ir
sc -u newcls

For AIX:

export SOMIR=~/newcls.ir
sc -u newcls

Note: Ensure that no spaces separate the environment variable SOMIR, the equals sign
(=) and the value being set.

If the SOMIR environment variable is not set, the Interface Repository emitter creates a file
named som.ir in the current directory.

The SOM Compiler command runs the Interface Repository emitter plus any other emitters
indicated by the environment variable SMEMIT. To run the Interface Repository emitter by
itself, run the SOM Compiler with the -s option (which overrides SMEMIT) setto ir. For
example:

sc -u -sir newcls

The Interface Repository Framework 337

or equivalently,
sc -usir newcls

The Interface Repository emitter uses the SOMIR environment variable to locate the
designated IR file:

» If the file does not exist, the IR emitter creates it.

» If the named interface repository already exists, the IR emitter checks all of the type
information in the IDL source file being compiled for internal consistency, and then
changes the contents of the interface repository file to agree with the new IDL definition.

For this reason, the use of the -u compiler flag requires that all of the types mentioned in
the IDL source file must be fully defined within the scope of the compilation. Warning
messages from the SOM Compiler about undefined types result in actual error messages
when using the -u flag.

The additional type checking and file updating activity implied by the -u flag increases the
time it takes to run the SOM Compiler. Thus, when developing an IDL class description
from scratch, where iterative changes are to be expected, it may be preferable not to use
the -u compiler option until the class definition has stabilized.

For additional information on the SMEMIT and SOMIR environment variables, see
Environment Variables Affecting the SOM Compiler on page 159. For additional
information on the -u and -s compiler options, see Running the SOM Compiler on page
161.

Managing Interface Repository Files

Just as the number of interface definitions contained in a single IDL source file is optional,
similarly, the number of IDL files compiled into one interface repository file is also at the
programmer’s discretion. Commonly, however, all interfaces needed for a single project or
class framework are kept in one interface repository.

The SOM IR File som.ir

338

The SOMobjects Developer Toolkit includes an Interface Repository file, som.ir, that
contains objects describing all of the types, classes, and methods provided by the various
frameworks of the Toolkit. Since all new classes will ultimately be derived from these
predefined SOM classes, some of this information also needs to be included in a
programmer’s own interface repository files.

For example, suppose a new class, called MyClass, is derived from SOMObject. When
the SOM Compiler builds an IR for MyClass, that IR will also include all of the information
associated with the SOMObiject class. This happens because the SOMObject class
definition is inherited by each new class; thus, all of the SOMObject methods and typedefs
are implicitly contained in the new class as well.

Eventually, the process of deriving new classes from existing ones would lead to a great
deal of duplication of information in separate interface repository files. This would be
inefficient, wasteful of space, and extremely difficult to manage. For example, to make an
evolutionary change to some class interface, a programmer would need to know about and
subsequently update all of the interface repository files where information about that
interface occurred.

Programmer’s Guide for SOM and DSOM

One way to avoid this dilemma would be to keep all interface definitions in a single interface
repository, such as som.ir. This is not recommended. A single IR would soon grow to be
unwieldy in size and become a source of frequent access contention. Everyone involved in
developing class definitions would need update access to this one file, and simultaneous
uses might result in longer compile times.

Managing IRs With the SOMIR Environment Variable

The SOMobjects Developer Toolkit offers a more flexible approach to managing interface
repositories. The SOMIR environment variable can reference an ordered list of separate IR
files, which process from left to right. Taken as a whole, however, this gives the
appearance of a single, logical interface repository. A programmer accessing the contents
of the interface repository through the SOM IR framework would not be aware of the
division of information across separate files. It would seem as though all of the objects
resided in a single interface repository file.

A typical way to utilize this capability is as follows:

* The first (leftmost) IR in the SOMIR list would be som.ir. This file contains the basic
interfaces and types needed in all SOM classes.

» The second file in the list might contain interface definitions that are used globally
across a particular enterprise.

« Athird interface repository file would contain definitions that are unique to a particular
department, and so on.

» The final interface repository in the list should be set aside to hold the interfaces
needed for the project currently under development.

Developers working on different projects would each set their SOMIR environment
variables to hold slightly different lists. For the most part, the leftmost portions of these lists
would be the same, but the rightmost interface repositories would differ. When any given
developer is ready to share interface definitions with other people outside of the immediate
work group, that person’s interface repository can be promoted to inclusion in the master
list.

With this arrangement of IR files, the more stable repositories are found at the left end of
the list. For example, a developer should never need to make any significant changes to
som.ir, because these interfaces are defined by IBM and would only change with a new
release of the SOMobjects Developer Toolkit.

The IR Framework only permits updates in the rightmost file of the SOMIR interface
repository list. That is, when the SOM Compiler -u flag is used to update the Interface
Repository, only the final file on the IR list will be affected. The information in all preceding
interface repository files is treated as read only. Therefore, to change the definition of an
interface in one of the more global interface repository files, a developer must overtly
construct a special SOMIR list that omits all subsequent IR files, or else petition the owner
of that interface to make the change.

Here is an example that illustrates the use of multiple IR files with the SOMIR environment
variable. In this example, the SOMBASE environment variable represents the directory in
which the SOMobjects Developer Toolkit files have been installed. Only the myown . ir
interface repository file will be updated with the interfaces found in files myclass1.id1l,
myclass2.1idl and myclass3.idl. (Some of the following code lines wrap.)

For OS/2 and Windows NT:

The Interface Repository Framework 339

set BASE IRLIST=%SOMBASE%\IR\SOM.IR;C:\IR\COMPANY.IR;C:\IR\DEPT10.I
set SOMIR=%BASE_ IRLIST%;D:\MYOWN.IR
set SMINCLUDE=.; $SOMBASES\INCLUDE;C:\COMPANY\INCLUDE; \
C:\DEPT10\ INCLUDE
sc -usir myclassl
sc -usir myclass2
sc -usir myclass3

For AIX:

export BASE IRLIST=$SOMBASE/ir/som.ir: \
/usr/local/ir/company.ir:/usr/local/ir/deptl0.ir

export SOMIR=$BASE_ IRLIST:~/myown.ir

export SMINCLUDE=. :S$SOMBASE/INCLUDE: \
/usr/local/company/include: /usr/local/deptl10/include

sc -usir myclassl

sc -usir myclass2

sc -usir myclass3

Placing private Information in the Interface Repository

When the SOM Compiler updates the Interface Repository in response to the -u flag, it
uses all of the information available from the IDL source file. However, if the _ PRIVATE
preprocessor variable is used to designate certain portions of the IDL file as private, the
preprocessor actually removes that information before the SOM Compiler sees it.
Consequently, private information will not appear in the Interface Repository unless the -p
compiler option is also used in conjunction with -u. For example:

sc -up myclassl
This command will place all of the information in the myclass1.idl file, including the

private portions, in the Interface Repository. For additional information on the -p and -u
compiler options, see Running the SOM Compiler on page 161.

If you are using tools that understand SOM and rely on the Interface Repository to describe
the types and instance data in your classes, you may need to include the private sections
from your IDL source files when building the Interface Repository.

Programming with the Interface Repository Objects

340

The SOM Interface Repository Framework provides an object-oriented programming
interface to the IDL information processed by the SOM Compiler. Unlike many frameworks
that require you to inherit their behavior in order to use it, the IR Framework is useful in its
own right as a set of predefined objects that you can access to obtain information. Of
course, if you need to subclass a class to modify its behavior, you can certainly do so; but
typically this is not necessary.

The SOM Interface Repository contains the fully-analyzed (compiled) contents of all
information in an IDL source file. This information takes the form of persistent objects that
can be accessed from a running program. There are ten classes of objects in the Interface
Repository that correspond directly to the major elements in IDL source files; in addition,
one instance of another class exists outside of the IR itself, as follows:

Contained
All objects in the Interface Repository are instances of classes derived from this class
and exhibit the common behavior defined in this interface.

Programmer’s Guide for SOM and DSOM

Container
Some objects in the Interface Repository hold (or contain) other objects. For example,
a module (ModuleDef) can contain an interface (InterfaceDef). All Interface Repository
objects that hold other objects are instances of classes derived from this class and
exhibit the common behavior defined by this class.

ModuleDef
An instance of this class exists for each module defined in an IDL source file.
ModuleDefs are Containers, and they can hold ConstantDefs, TypeDefs,
ExceptionDefs, InterfaceDefs and other ModuleDefs.

InterfaceDef
An instance of this class exists for each interface named in an IDL source file. (One
InterfaceDef corresponds to one SOM class.) InterfaceDefs are Containers, and they
can hold ConstantDefs, TypeDefs, ExceptionDefs, AttributeDefs and
OperationDefs.

AttributeDef
An instance of this class exists for each attribute defined in an IDL source file.
AttributeDefs are found only inside of (contained by) InterfaceDefs.

OperationDef
An instance of this class exists for each operation (method, _set method, and
_get method) in an IDL source file. OperationDefs are Containers that can hold
ParameterDefs. OperationDefs are found only inside of (contained by) InterfaceDefs.

ParameterDef
An instance of this class exists for each parameter of each operation (method) defined
in an IDL source file. ParameterDefs are found only inside of (contained by)
OperationDefs.

TypeDef
An instance of this class exists for each typedef, struct, union, or enum defined in an
IDL source file. TypeDefs may be found inside of (contained by) any Interface
Repository Container except an OperationDef.

ConstantDef
An instance of this class exists for each constant defined in an IDL source file.
ConstantDefs may be found inside (contained by) of any Interface Repository
Container except an OperationDef.

ExceptionDef
An instance of this class exists for each exception defined in an IDL source file.
ExceptionDefs may be found inside of (contained by) any Interface Repository
Container except an OperationDef.

Repository
One instance of this class exists for the entire SOM Interface Repository, to hold IDL
elements that are global in scope. The instance of this class does not, however, reside
within the IR itself.

For additional information on each Interface Repository Class, see Chapter 3, Interface
Repository Framework Classes on page 311 of Programmer’s Reference for SOM and
DSOM

Methods Introduced by Interface Repository Classes

The Interface Repository classes introduce several new methods that are briefly described
below. Many of the classes simply override methods to customize them for the

The Interface Repository Framework 341

342

corresponding IDL element; this is particularly true for classes representing IDL elements
that are only contained within another syntactic element. Full descriptions of each method
are found in Chapter 3, Interface Repository Framework Classes on page 311 of
Programmer’s Reference for SOM and DSOM.

Contained Class
All IR objects are instances of this class and exhibit this behavior.

describe
Returns a structure of type Description containing all information defined in the IDL
specification of the syntactic element corresponding to the target Contained object. For
example, for a target InterfaceDef object, the describe method returns information
about the IDL interface declaration. The Description structure contains a name field
with an identifier that categorizes the description and a value field holding an any
structure that points to another structure containing the IDL information for that
particular element.

within
Returns a sequence designating the objects of the IR within which the target
Contained object is contained. For example, for a target TypeDef object, it might be
contained within any other IR objects except an OperationDef object.

Container Class

Some IR objects contain other objects and exhibit this behavior.

contents
Returns a sequence of pointers to the objects of the IR that the target Container object
contains. (For example, for a target InterfaceDef object, the contents method returns
a pointer to each IR object that corresponds to a part of the IDL interface declaration.)
The method provides options for excluding inherited objects or for limiting the search to
only a specified kind of object.

describe_contents
Combines the describe and contents methods; returns a sequence of
ContainerDescription structures, one for each object contained by the target
Container object. Each structure has a pointer to the related object, as well as name
and value fields resulting from the describe method.

lookup_name
Returns a sequence of pointers to objects of a given name contained within a specified
Container object, or within (sub)objects contained in the specified Container object.

ModuleDef Class

ModuleDef
Override describe and within.

InterfaceDef Class

describe_interface
Returns a description of all methods and attributes of a given interface definition object
that are held in the Interface Repository. Overrides describe and within.

Programmer’s Guide for SOM and DSOM

AttributeDef Class

AttributeDef
Overrides describe.

OperationDef Class

OperationDef
Overrides describe.

ParameterDef Class

ParameterDef
Overrides describe.

TypeDef Class

TypeDef
Overrides describe.

ConstantDef Class

ConstantDef
Overrides describe.

ExceptionDef Class

ExceptionDef
Overrides describe.

Repository Class

lookup_id
Returns the Contained object that has a specified Repositoryld.

lookup_modifier
Returns the string value held by a SOM or user-defined modifier, given the name and
type of the modifier, and the name of the object that contains the modifier.

release _cache
Releases, from the internal object cache, the storage used by all currently
unreferenced Interface Repository objects.

Accessing Objects in the Interface Repository

One instance of the Repository class exists for the entire SOM Interface Repository. This
object does not reside in the Interface Repository (hence it does not exhibit any of the
behavior defined by the Contained class). It is, however, a Container, and it holds all
ConstantDef, TypeDef, ExceptionDef, InterfaceDef and ModuleDef class objects that
are global in scope (that is, not contained inside of any other Containers).

When any method provided by the Repository class is used to locate other objects in the
Interface Repository, those objects are automatically instantiated and activated.
Consequently, when the program is finished using an object from the Interface Repository,
the client code should release the object using the somFree method.

The Interface Repository Framework 343

344

All objects contained in the Interface Repository have both a name and a Repository id
associated with them. The name is not guaranteed to be unique, but it does uniquely
identify an object within the context of the object that contains it. The Repository id of each
object is guaranteed to uniquely identify that object, regardless of its context.

For example, two TypeDef objects may have the same name, provided they occur in
separate name scopes (ModuleDef or InterfaceDef objects). In this case, asking the
Interface Repository to locate the TypeDef object based on its name would result in both
TypeDef objects being returned. On the other hand, if the name is looked up from a
particular ModuleDef or InterfaceDef object, only the TypeDef object within the scope of
that ModuleDef or InterfaceDef would be returned. By contrast, once the Repository ID of
an object is known, that object can always be directly obtained from the Repository object
via its Repository ID.

C or C++ programmers can obtain an instance of the Repository class using the
RepositoryNew macro. Programmers using other languages (and C/C++ programmers
without static linkage to the Repository class) should invoke the method
_get_somlinterfaceRepository on the SOMClassMgrObject. For example,

For C or C++ (static linkage):
#include <repostry.hs>

Repository repo;

repo = RepositoryNew() ;
From other languages (and for dynamic linkage in C/C++):
1. Use the somEnvironmentNew Function to obtain a pointer to the

SOMClassMgrObject, as described under Invoking Methods on Objects on page 76
for non-C/C++ programmers.

2. Use the somResolve or somResolveByName Function to obtain a pointer to the
_get_somlinterfaceRepository method procedure.

3. Invoke the method procedure on the SOMClassMgrObject, with no additional
arguments, to obtain a pointer to the Repository object.

After obtaining a pointer to the Repository object, use the methods it inherits from
Container Class or its own lookup_id Method to instantiate objects in the Interface
Repository. As an example, the contents Method shown in the C fragment below activates
every object with global scope in the Interface Repository and returns a sequence
containing a pointer to every global object:

#include <containd.h> /* Behavior common to all IR objects */
Environment *ev;
int 1i;
sequence (Contained) everyGlobalObject;
ev = SOM CreateLocalEnvironment (); /* Get environment to use */
printf (”"Every global object in the Interface Repository:\n”);
everyGlobalObject = Container contents (repo, ev, ”"all”, TRUE);
for (i=0; i < everyGlobalObject. length; i++) ({
Contained aContained;
aContained = (Contained) everyGlobalObject. buffer([i];
printf (”"Name: %s, Id: %s\n”,

Contained get name (aContained, ev),

Programmer’s Guide for SOM and DSOM

Contained get id (aContained, ev));
SOMObject somFree (aContained) ;

}
Taking this example one step further, here is a complete program that accesses every
object in the entire Interface Repository. It uses the contents method, but also recursively
calls the contents method until every object in every container has been found:

#include <stdio.h>

#include <containd.h>

#include <repostry.hs>

void showContainer (Container c, int *next);
main ()
{
int count = 0;
Repository repo;
repo = RepositoryNew () ;
printf ("Every object in the Interface Repository:\n\n");
showContainer ((Container) repo, &count) ;
SOMObject somFree (repo) ;
printf ("%d objects found\n", count) ;
exit (0);
}
void showContainer (Container ¢, int *next)
{
Environment *ev;
int i;
sequence (Contained) everyObject;
ev = SOM_CreateLocalEnvironment (); /* Get an environment */
everyObject = Container contents (c, ev, ”"all”, TRUE);
for (i=0; i<everyObject. length; i++) ({
Contained aContained;
(*next) ++;
aContained = (Contained) everyObject. buffer[i];
printf (”%6d. Type: %-12s id: %s\n”, *next,
SOMObject somGetClassName (aContained),
Contained get id (aContained, ev));
if (SOMObject somIsA (aContained, _Container))
showContainer ((Container) aContained, next) ;

SOMObject somFree (aContained) ;

}

Once an object has been retrieved, the methods and attributes appropriate for that
particular object can then be used to access the information contained in the object. The

The Interface Repository Framework 345

methods supported by each class of object in the Interface Repository, as well as the
classes themselves, are documented in Programmer’s Reference for SOM and DSOM.

A Word about Memory Management

Several conventions are built into the SOM Interface Repository with regard to

memory management. You will need to understand these conventions to know when it is
safe and appropriate to free memory references and also when it is your responsibility to do
Sso.

All methods that access attributes (such as, the _get_attribute methods) always return
either simple values or direct references to data within the target object. This is necessary
because these methods are heavily used and must be fast and efficient. Consequently, you
should never free any of the memory references obtained through attributes. This memory
will be released automatically when the object that contains it is freed.

There are five methods that give out object references: contents Method,
describe_contents Method, lookup_id Method, lookup_name Method and within
Method. When finished with the object, you are expected to release the object reference by
invoking the_somFree Method. Do not release the object reference until you have either
copied or finished using all of the information obtained from the object.

The describe Method, describe_contents Method and describe_interface Method
return structures and sequences that contain information. The actual structures returned by
these methods are passed by value (and hence should only be freed if you have allocated
the memory used to receive them). However, you may be required to free some of the
information contained in the returned structures when you are finished.

During execution of the describe and lookup methods, sometimes intermediate objects
are activated automatically. These objects are kept in an internal cache of objects that are
in use, but for which no explicit object references have been returned as results.
Consequently, there is no way to identify or free these objects individually. However,
whenever your program is finished using all of the information obtained thus far from the
Interface Repository, invoking the release_cache Method causes the Interface Repository
to purge its internal cache of these implicitly referenced objects. This cache will replenish
itself automatically if the need to do so subsequently arises.

For all SOM Interface Repository framework methods that raise user exceptions, the
exception parameters for those exceptions are allocated from a single block of memory and
are not allocated piecemeal. Therefore, when freeing an exception such as irOpenError,
do not treat the exception parameter data structure as an opaque entity. If the exception is
received from a remote call, do not use the somdExceptionFree function to free it.
Instead, use either the somExceptionFree Function or the SOMFree Function.

Using TypeCode Pseudo-Objects

346

Much of the detailed information contained in Interface Repository objects is represented in
the form of TypeCodes. TypeCodes are complex data structures whose actual
representation is hidden. A TypeCode is an architected way of describing in complete detail
everything that is known about a particular data type in the IDL language, regardless of
whether it is a built-in basic type or a user-defined aggregate type.

Conceptually, every TypeCode contains a kind field that classifies it, and one or more
parameters that carry descriptive information appropriate for that particular category of
TypeCode. For example, if the data type is long, its TypeCode would contain a kind field

Programmer’s Guide for SOM and DSOM

with the value tk_long. No additional parameters are needed to completely describe this
particular data type, since long is a basic type in the IDL language.

By contrast, if the TypeCode describes an IDL struct, its kind field would contain the value
tk_struct, and it would possess the following parameters: a string giving the name of the
struct, and two additional parameters for each member of the struct: a string giving the
member name and another (inner) TypeCode representing the member’s type. This
example illustrates the fact that TypeCodes can be nested and arbitrarily complex, as
appropriate to express the type of data they describe. Thus, a structure that has N
members will have a TypeCode of tk_struct with 2N+1 parameters (a name and TypeCode
parameter for each member, plus a name for the struct itself).

A tk_union TypeCode representing a union with N members has 3N+2 parameters: the
type name of the union, the switch TypeCode, and a label value, member name and
associated TypeCode for each member. (The label values all have the same type as the
switch, except that the default member, if present, has a label value of zero octet.)

A tk_enum TypeCode (which represents an enum) has N+1 parameters: the name of the
enum followed by a string for each enumeration identifier. A tk_string TypeCode has a
single parameter: the maximum string length, as an integer. (A maximum length of zero
signifies an unbounded string.)

A tk_sequence TypeCode has two parameters: a TypeCode for the sequence elements,
and the maximum size, as an integer. (Again, zero signifies unbounded.)

A tk_array TypeCode has two parameters: a TypeCode for the array elements, and the
array length, as an integer. (Arrays must be bounded.)

A tk_objref TypeCode represents an object reference; its parameter is a repository 1D that
identifies its interface.

See Table 2 on page 350 of Programmer’s Reference for SOM and DSOM for a complete
table showing the parameters of all possible TypeCodes.

TypeCodes are not actually objects in the formal sense. TypeCodes are referred to in the
CORBA standard as pseudo-objects and described as opaque. This means that, in reality,
TypeCodes are special data structures whose precise definition is not fully exposed. Their
implementation can vary from one platform to another, but all implementations must exhibit
a minimal set of architected behavior. SOM TypeCodes support the architected behavior
and have additional capability as well.

Although TypeCodes are not objects, the programming interfaces that support them adhere
to the same conventions used for IDL method invocations in SOM. That is, the first
argument is always a TypeCode pseudo-object, and the second argument is a pointer to an
Environment structure. Similarly, the names of the TypeCode functions are constructed
like SOM’s C-language method-invocation macros. All functions that operate on
TypeCodes are named TypeCode_function-name. Because of this similarity to an IDL
class, the TypeCode programming interfaces can be conveniently defined in IDL as shown
below.

interface TypeCode ({
enum TCKind
tk_null, tk_void,
tk short, tk long, tk ushort, tk ulong,
tk float, tk double, tk boolean, tk char,
tk_octet, tk any, tk TypeCode, tk Principal, tk objref,
tk_struct, tk union, tk_enum, tk string,

tk sequence, tk_array,

The Interface Repository Framework 347

348

// The remaining enumerators are SOM-unique extensions
// to the CORBA standard.
//
tk _pointer, tk self, tk foreign
Vi
exception Bounds {};
// This exception is returned if an attempt is made
// by the parameter () operation (described below) to
// access more parameters than exist in the receiving
// TypeCode.
boolean equal (in TypeCode tc);
// Compares the argument with the receiver and returns
// TRUE if both TypeCodes are equivalent. This is NOT
// a test for identity.
TCKind kind () ;
// Returns the type of the receiver as a TCKind.
long param count () ;
// Returns the number of parameters that make up the
// receiving TypeCode.
any parameter (in long index) raises (Bounds) ;
// Returns indexed parameter from the receiving TypeCode.
// Parameters are indexed from 0 to param count ()-1.
// The remaining operations are SOM-unique extensions.
//
short alignment () ;
// This operation returns the alignment required for an instance
// of the type described by the receiving TypeCode.
TypeCode copy (in TypeCode tc) ;
// This operation returns a copy of the receiving TypeCode.
void free (in TypeCode tc);
// This operation frees the memory associated with the
// receiving TypeCode.Subsequently, no further use can be
// made of the receiver, which, in effect, ceases to exist.
void print (in TypeCode tc);
// This operation writes a readable representation of the
// receiving TypeCode to stdout. Useful for examining
// TypeCodes when debugging.
void setAlignment (in short align) ;
// This operation overrides the required alignment for an
// instance of the type described by the receiving TypeCode.
long size (in TypeCode tc);

Programmer’s Guide for SOM and DSOM

// This operation returns the size of an instance of the

// type represented by the receiving TypeCode.

Vi

Providing alignment Information

In addition to the parameters in the TypeCodes that describe each type, a SOM-unique
extension to the TypeCode functionality allows each TypeCode to carry alignment
information as a hidden parameter. Use the TypeCode_alignment Function to access the
alignment value. The alignment value is a short integer that should evenly divide any
memory address where an instance of the type will occur.

If no alignment information is provided in your IDL source files, all TypeCodes carry default
alignment information. The default alignment for a type is the natural boundary for the type,
based on the natural boundary for the basic types of which it may be composed. This
information can vary from one hardware platform to another. The TypeCode will contain the
default alignment information appropriate to the platform where it was defined.

To provide alignment information for the types and instances of types in your IDL source
file, use the align=N modifier, where N is your specified alignment. Use standard modifier
syntax of the SOM Compiler to attach the alignment information to a particular element in
the IDL source file. In the following example, align=1 is attached to the struct abc and to
one particular instance of struct def (the instance data item y).

interface i {
struct abc {
long a;
char b;
long c;
}i
struct def ({
char 1;
long m;
i
void foo ();
implementation {
//# instance data
abc x;
def vy;
def z;
//# alignment modifiers
abc: align=1;
y: align=1;
}i
Vi
Be aware that assigning the required alignment information to a type does not guarantee
that instances of that type will actually be aligned as indicated. To ensure that, you must
find a way to instruct your compiler to provide the desired alignment. In practice, this can be

difficult except in simple cases. Most compilers can be instructed to treat all data as aligned
or as unaligned, by using a compile-time option or #pragma.

The Interface Repository Framework 349

The more important consideration is to make certain that the TypeCodes going into the
Interface Repository actually reflect the alignment that your compiler provides. This way,
when programs need to interpret the layout of data during their execution, they will be able
to accurately map your data structures. This happens automatically when using the normal
default alignment.

If you wish to use unaligned instance data when implementing a class, place the align=1
modifier in the implementation section. An unattached align=N modifier is presumed to
pertain to the class’s instance data structure, and will by implication be attached to all of the
instance data items.

When designing your own public types, be aware that the best practice of all, and the one
that offers the best opportunity for language neutrality, is to lay out your types carefully so
that it will make no difference whether they are compiled as aligned or unaligned.

Using tk_foreign TypeCode

TypeCodes can be used to partially describe types that cannot be described in IDL (for
example, a FILE type in C, or a specific class type in C++). The SOM-unique extension
tk_foreign is used for this purpose. A tk_foreign TypeCode contains three parameters:

* The name of the type
* Animplementation context string
« Alength

The implementation context string can be used to carry an arbitrarily long description that
identifies the context where the foreign type can be used and understood. If the length of
the type is also known, it can be provided with the length parameter. If the length is not
known or is not constant, it should be specified as zero. If the length is not specified, it will
default to the size of a pointer. A tk_foreign TypeCode can also have alignment
information specified, just like any other TypeCode.

Using the following steps causes the SOM Compiler to create a foreign TypeCode in the
Interface Repository:

» Define the foreign type as a typedef SOMFOREIGN in the IDL source file.

» Use the #pragma modifier statement to supply the additional information for the
TypeCode as modifiers. The implementation context information is supplied using the
impctx modifier. For additional information on the impctx modifier, see Modifier
Statements on page 133.

» Compile the IDL file using the -u option to place the information in the Interface
Repository. For additional information on the -u option, see Running the SOM
Compiler on page 161.

For example (note that the 2nd line wraps):
typedef SOMFOREIGN Point;
#pragma modifier Point: impctx="C++ Point class”,length=12,
align=4;

If a foreign type is used to define instance data, structs, unions, attributes or methods in an
IDL source file, it is your responsibility to ensure that the implementation and/or usage
bindings contain an appropriate definition of the type that will satisfy your compiler. You can

350 Programmer’s Guide for SOM and DSOM

use the passthru statement in your IDL file to supply this definition. For additional
information on passthru use, see Passthru Statements on page 147.

However, it is not recommended that you expose foreign data in attributes, methods, or any
of the public types, if this can be avoided, because there is no guarantee that appropriate
usage binding information can be provided for all languages. If you know that all users of
the class will be using the same implementation language that your class uses, you may be
able to disregard this recommendation.

TypeCode Constants

TypeCodes are actually available in two forms: In addition to the TypeCode information
provided by the methods of the Interface Repository, TypeCode constants can be
generated by the SOM Compiler in your C or C++ usage bindings upon request. A
TypeCode constant contains the same information found in the corresponding IR
TypeCode, but has the advantage that it can be used as a literal in a C or C++ program
anywhere a normal TypeCode would be acceptable.

TypeCode constants have the form TC_typename, where typename is the name of a type
(that is, a typedef, union, struct, or enum) that you have defined in an IDL source file. In
addition, all IDL basic types and certain types dictated by the OMG CORBA standard come
with pre-defined TypeCode constants (such as TC long, TC_short, TC_char and so
forth). A full list of the pre-defined TypeCode constants can be found in the file somtcnst.h.
You must explicitly include this file in your source program to use the pre-defined
TypeCode constants.

Since the generation of TypeCode constants can increase the time required by the SOM
Compiler to process your IDL files, you must explicitly request the production of TypeCode
constants if you need them. To do so, use the tcconsts modifier with the -m option of the
SOM Compiler command. For example, the command

sc -sh -mtcconsts myclass.idl

will cause the SOM Compiler to generate a myclass.h file that contains TypeCode
constants for the types defined in myclass.idl. For additional information on the
tcconsts modifier and the -m option, see Running the SOM Compiler on page 161.

Using the IDL Basic Type any

Some Interface Repository methods and TypeCode functions return information typed as
the IDL basic type any. Usually this is done when a wide variety of different types of data
may need to be returned through a common interface. The type any actually consists of a
structure with two fields: a _type field and a _value field. The _value field is a pointer to the
actual data that was returned, while the _type field holds a TypeCode that describes the
data.

In many cases, the context in which an operation occurs makes the type of the datum
apparent. If so, there is no need to examine the TypeCode unless it is simply as a
consistency check. For example, when accessing the first parameter of a tk_struct
TypeCode, the type of the result will always be the name of the structure (a string).
Because this is known ahead of time, there is no need to examine the returned TypeCode
in the any _type field to verify that it is a tk_string TypeCode. You can just rely on the fact
that it is a string; or, you can check the TypeCode in the _type field to verify it, if you so
choose.

An IDL any type can be used in an interface as a way of bypassing the strong type
checking that occurs in languages like ANSI C and C++. Your compiler can only check that
the interface returns the any structure; it has no way of knowing what type of data will be

The Interface Repository Framework 351

carried by the any during execution of the program. Consequently, in order to write C or
C++ code that accesses the contents of the any correctly, you must always cast the _value
field to reflect the actual type of the datum at the time of the access.

/* A C++ example that illustrates

* -- use of TypeCodes
* -- use of the "any" data type
*/

/* Here is the IDL:
#include <somobj.idls
interface X : SOMObject {
typedef long LongType;
struct StructType {
LongType a;
Vi
boolean showStructType (in StructType argl,
in any arg2) ;
// return TRUE if and only if arg2-> type is LongType
// and *(arg2-> value) == argl.a
implementation {
releaseorder: showStructType;
}i
bi
*/

/* To build example on AIX w. somstars bindings,

* sc -sh:ih -mtcconsts anyExample.idl

* cc anyExample.c -I. \

* -I$SOMBASE/include -L$SOMBASE/lib -lsomtk
*/

#ifndef SOM Module anyexample Source
#define SOM Module anyexample Source
#endif

#define X Class_ Source

#include ”anyExample.ih”

/* return TRUE if and only if arg2-> type is LongType
* and * (arg2-> value) == argl.a
*/
SOM_Scope boolean SOMLINK showStructType (X *somSelf,
Environment *ev,
X _StructType* argl,
any* arg2)

352 Programmer’s Guide for SOM and DSOM

/* XData *somThis = XGetData (somSelf); */
XMethodDebug (”X” , ”showStructType”) ;
somPrintf (”showStructType: argl = { a: %4 }; \n”, argl->a);
return (arg2->_ type == TC X LongType &&
* ((X_LongType *) (arg2-> value)) == argl-»>a);
}
main ()
{
X *x = XNew () ;
X LongType 1lt = 123;
X_StructType st = { 1t };
any a;
a. type = TC X StructType;
a. value = &st;
somPrintf ("main: showStructType returned %d\n”,
_showStructType(x, 0, &st, &a));
a. type = TC X LongType;
a. value = <
somPrintf ("main: showStructType returned %d\n”,
_showStructType(x, 0, &st, &a));
}
/* Example output: */
showStructType: argl = { a: 123 };
main: showStructType returned 0
showStructType: argl = { a: 123 };
main: showStructType returned 1

Here is an example of a code fragment written in C that illustrates how the casting must be
done to extract various values from an any:

#include <som.h> /* For ”"any” & ”Environment” typedefs */

#include <somtc.h> /* For TypeCode kind prototype */

any result;
Environment *ev;
printf (“result. value = ");
switch (TypeCode kind (result. type, ev)) {
case tk_string:
printf (”%s\n”, *((string *) result. value));
break;
case tk long:
printf (”%1d\n”, *((long *) result. value));
break;

case tk boolean:

The Interface Repository Framework 353

printf (”%d\n”, *((boolean *) result. value));
break;

case tk _float:
printf (”%$f\n”, *((float *) result. value));
break;

case tk double:

printf (”%f\n”, *((double *) result. value));
break;

default:
printf (”something else!\n”);

}

An any has no restriction on the type of data that it can carry. Frequently, however,
methods that return an any or that accept an any as an argument do place semantic
restrictions on the actual type of data they can accept or return. Always consult the
reference page for a method that uses an any to determine whether it limits the range of
types that may be acceptable.

Building an Index for the Interface Repository

354

The irindex command builds indexes for one or more Interface Repository files to improve
performance of the lookup_name method on a Repository object. An index is created in
the same directory as the specified Interface Repository file. A unique index file with a .ndx
name is created for each file specified. You can also find out the name of the index file
associated with an Interface Repository file, if an index exists.

Syntax
irindex [-f] [irFileNamel, irFileName2 ...]

irindex creates an index for each file specified in the command line. If no Interface
Repository file names are specified, indexes are built for the files listed in the SOMIR
environment variable.

If you specify the -f option as the first option, the index names of any IR files are listed. No
indexes are created. If no file names are specified with the -f option, the index name for
each file in the SOMIR environment variable is listed. If a specified file does not have an
index, irindex returns a message. Use the -f option when you are deleting or moving an
Interface Repository file. You can determine the name of the index before you move or
delete the file.

Successive invocation of irindex on an Interface Repository file does not recreate an index
if it is consistent. irindex automatically recreates an index if it finds that a specified index is
not consistent with the associated Interface Repository file.

Once you have created an index for an Interface Repository file, any updates to the
Interface Repository file result in automatic updates to the index file. If you are updating an
Interface Repository file often, consider not invoking irindex on that file until after you have
completed your updates.

Return Messages

No message is returned on successful completion. If irindex is unsuccessful, either
because of lack of access rights or because the file is in use, a message is returned

Programmer’s Guide for SOM and DSOM

indicating the file involved and the reason for the failure. The following list describes the
error messages and recovery information associated with the irindex command:

Open failed for IR file: filename

Explanation: A failure occurred while opening the file either because the file does not exist
or because the file is locked.

Programmer Response: Ensure that the file exists and is not locked by another process.

Read failed for IR file: filename

Explanation: A failure occurred while reading the file.

Programmer Response: Ensure that the file exists, that you have read permission for the
file, and that the file is not exclusively locked.

Not authorized to create index for IR file: filename

Explanation: A failure occurred while creating an index for the file.

Programmer Response: Obtain create/write permissions for the directory containing the
file and write access for updating the file:

Index creation failed for IR file: filename
Explanation: A failure occurred while creating the index.
Programmer Response: Delete the file listed in the associated message and try again.

Please delete file: flename

Explanation: This message is issued in conjunction with the preceding error code and
message. A failure occurred while creating the index.

Programmer Response: Delete the partially-created index, if one exists.

Environment variable SOMIR not set.

Explanation: The SOMIR environment variable is not initialized.

Programmer Response: Either set the SOMIR environment variable or specify the file
names as options on the irindex command line for the index you want to create.

Index is inconsistent. Please recreate index.

Explanation: The index is no longer consistent with the associated Interface Repository
file.

Programmer Response: Either delete the index or recreate it by issuing irindex filename
at the command prompt.

Index not present.

Explanation: An index for the file does not exist.
Programmer Response: To create an index for the Interface Repository file, issue irindex
filename at the command prompt.

If you see the message Index is inconsistent. Please recreate index, you
must delete the inconsistent index and rebuild it with irindex

Examples of IRINDEX Use

The following are examples of the irindex command:
1. To create an index for som.ir in the current directory:

irindex som.ir

2. To create indexes for files in the SOMIR environment variable, in the respective
directories:

irindex

The Interface Repository Framework 355

For example, on OS/2, if SOMIR is setto d:\som\test.ir and e:\som. ir, then
indexes are created in d:\som for test.ir and e: for som.ir.

3. To create indexesin d:somfor test.ir andin e: for som. ir:
irindex d:\som\test.ir e:\som.ir

4. To list the name of the index for som. ir in the current directory, if one exists.
irindex -f som.ir

5. To list the names of indexes for files in the SOMIR environment variable. A message is
issued for files in the SOMIR environment variable that do not have indexes:

irindex -f
6. To list the names of the index of each of the two ir files, if the indexes exist:

irindex -f d:\som\test.ir e:\som.ir

356 Programmer’s Guide for SOM and DSOM

Chapter 10. The Metaclass Framework

In SOM metaclasses are classes and thus are objects. Figure 17 depicts the relationship of
these sets of objects. Included are the three primitive class objects of the SOM run time:
SOMClass, SOMObject and SOMClassMgr:

Set of Ohjacts
Set of Clazses
Set of Metnclanses

SOMClaasMgr SOMOCh|ect

SOMClassMgrObject

Legend

@ metaclass
@ class
O oibyjaet

— Inherts from

——+ Iz anlinstance of

Figure 17. The primitive objects of the SOM run time.

The point to observe is any class that is a subclass of SOMClass is a metaclass. This
chapter describes the available metaclasses in the SOMobjects Developer Toolkit. The
metaclasses are:

Framework
metaclasses for building new metaclasses

Utility
metaclasses to help you write applications.

Framework Metaclasses

SOMMBeforeAfter Metaclass
Used to create a metaclass that has before and after methods for all methods (inherited
or introduced) invoked on instances of its classes.

SOMMSinglelnstance Metaclass
Used to create a class that may have at most one instance.

SOMMProxyFor Metaclass
The metaclass for proxies.

The Metaclass Framework 357

SOMMProxyForObject Class
Serves as a helper class for making proxies. That is, you subclass this class to make a
proxy (and do not use SOMMProxyFor directly).

Utility Metaclasses

SOMMTraced Metaclass
Provides tracing for every invocation of all methods on instances of its classes.

The diagram in Figure 18 depicts the relationship of these metaclasses to SOMClass (for
completeness, the figure includes the metaclasses that are derived). The following sections
describe each metaclass more fully. The ellipses indicate that there are additional
metaclasses being used that are not part of the public interface.

)

s
Q
=
O
o
o
7

)
)

SOM

BeforeAfter SOMMSInglelnstance SOMMProxyFor

)
(
P

%]
c
=
=
=
@

ed SEO0MMProsyFerObject

(@
(

Legend

— inherits from
----+ i3 aninstance of

Figure 18. Class organization of the Metaclass Framework.

A Note about Metaclass Programming

SOM metaclasses are carefully constructed so that they compose. If you need to create a
metaclass, you can introduce new class methods, and new class variables, but you should
not override any of the methods introduced by SOMClass. If you need more than this,
request access to the experimental Cooperation Framework used to implement the
Metaclass Framework metaclasses described in this chapter.

Framework Metaclasses for before/after Behavior

The before/after behavior of SOM metaclasses is inherited from the SOMMBeforeAfter
Metaclass, as described in this section.

358 Programmer’s Guide for SOM and DSOM

SOMMBeforeAfter Metaclass

SOMMBeforeAfter is a metaclass that allows the user to create a class for which a
particular method is invoked before each invocation of every method, and for which a
second method is invoked after each invocation. SOMMBeforeAfter defines the
sommBeforeMethod Method and sommAfterMethod Method. These two methods are
intended to be overridden in the child of SOMMBeforeAfter to define the particular before
and after methods needed for the client application.

In Figure 19, the Barking metaclass overrides the methods sommBeforeMethod and
sommAfterMethod with a method that emits one bark when invoked. Thus, one can create
the BarkingDog class, whose instances (such as Lassie) bark twice when disturbed by a
method invocation.

i
SOMMEBeforeAfter
o

.
/F-\ Legend

"BarkingDoy"

M\ metaciass
> © class

"Laaale” O abyjsct

— inhwarits fram

——+ |5 an Instance of

Figure 19. A hierarchy of metaclasses

The SOMMBeforeAfter metaclass is designed to be subclassed: a subclass (or child) of
SOMMBeforeAfter is also a metaclass. The subclass overrides both sommBeforeMethod
and sommAfterMethod or neither. These (redefined) methods are invoked before and
after any method supported by instances of the subclass (these methods are called primary
methods). That is, sommBeforeMethod and sommAfterMethod are invoked before and
after methods invoked on the ordinary objects that are instances of the class objects that
are instances of the subclass of SOMMBeforeAfter.

The sommBeforeMethod returns a boolean value. This allows the “before” method to
control whether the after method and the primary method get invoked. If
sommBeforeMethod returns TRUE, normal processing occurs. If FALSE is returned,
neither the primary method nor the corresponding sommAfterMethod is invoked. In
addition, no more deeply nested before/after methods are invoked. This facility can be
used, for example, to allow a before/after metaclass to provide secure access to an object.
The implication of this convention is that, if sommBeforeMethod is going to return FALSE,
it must do any post-processing that might otherwise be done in the after method. Note that
CORBA specifies TRUE is 1.

The Metaclass Framework 359

360

Note:

somlnit and somFree are among the methods that get before/after behavior. This
implies the following two obligations are imposed on the programmer of a
SOMMBeforeAfter class: First, the implementation must guard against
sommBeforeMethod using the object being called before sominit has executed,
and the object is not yet fully initialized. Second, the implementation must guard
against sommAfterMethod using the object being called after somFree, at which
time the object no longer exists.

The following example shows the IDL needed to create a Barking metaclass. Just run the
appropriate emitter to get an implementation binding, and then provide the appropriate
before behavior and after behavior.

SOM IDL for ‘Barking’ metaclass

#ifndef Barking idl
#define Barking idl

#include <sombacls.idls>
interface Barking : SOMMBeforeAfter
{
#ifdef SOMIDL
implementation
{
//# Class Modifiers
filestem = barking;

callstyle = idl;

//# Method Modifiers
sommBeforeMethod : override;
sommAfterMethod : override;
bi
#endif /* SOMIDL _ */
bi

#endif /* Barking idl */

The next example shows an implementation of the Barking metaclass in which no barking
occurs when somFree is invoked.

C implementation for ‘Barking’ metaclass

#define Barking Class_Source

#include <barking.ih>

static char *somMN_ somFree = ”somFree”;

static somId somId somFree = &somMN somFree;

SOM_Scope boolean SOMLINK sommBeforeMethod (Barking somSelf,
Environment *ev,

SOMObject object,

Programmer’s Guide for SOM and DSOM

somId methodId,

va_list ap)

if (!somCompareIds(methodId, somId somFree)
printf ("Woof”);

}

SOM_Scope void SOMLINK sommAfterMethod (Barking somSelf,
Environment *ev,
SOMObject object,
somId methodId,
somId descriptor,
somToken returnedvalue,

va_list ap)

if (!somCompareIds(methodId, somId somFree)

printf ("Woof”);

}

Since Barking is a subclass of SOMMBeforeAfter, it is not necessary to make the parent
method calls in sommBeforeMethod Method and sommAfterMethod Method. Printing
Woof does not use the object; so the guards are unnecessary. The guards are simply an
example of doing so.

Composition of before/after Metaclasses

Figure 20 contains two before/after metaclasses: Barking and Fierce, which has a
sommBeforeMethod Method and sommAfterMethod Method that both growl (that is,
both methods make a grrrr sound when executed). The preceding discussion
demonstrated how to create a FierceDog or a BarkingDog, but has not yet addressed
the question of how to compose these properties of fierce and barking. Composability
means having the ability to easily create either a FierceBarkingDog that goes grrr
woof woof grrr when it responds to a method call or a BarkingFierceDog that goes
woof grrr grrr woof when it responds to a method call.

The Metaclass Framework 361

362

Z)
SOMMBeforeAfter

Legend

metaclass

© class
O atsjset

— Inherits from

——+ i3 an instance of

Figure 20. Example for composition of before/after metaclasses

There are several ways to express such compositions. The following list depicts SOM IDL
fragments for three techniques in which composition can be indicated by a programmer.
These are denoted as Technique 1, Technique 2 and Technique 3, each of which creates a
FierceBarkingDog class as follows:

e In Technique 1, a new metaclass (“FierceBarking”) is created with both the
Fierce and Barking metaclasses as parents. An instance of this new metaclass.
That is FB-1 is a FierceBarkingDog (assuming Dog is a parent).

interface FB-1 : Dog

{

implementation
metaclass =

FierceBarking;

}i
Vi
* In Technique 2, a new class is created which has parents that are instances of Fierce

and Barking respectively. That is, FB-2 is a FierceBarkingDog also (assuming
FierceDog and BarkingDog do not further specialize Dog).

interface FB-2 : FierceDog,

BarkingDog

implementation

{

Programmer’s Guide for SOM and DSOM

Vi
}i
* In Technique 3, FB-3, which also is a FierceBarkingDog, is created by declaring

that its parent is a BarkingDog and that its explicit (syntactically declared) metaclass
is Fierce.

interface FB-3 : BarkingDog

{

implementation

{

metaclass = Fierce;

}i
i
Figure 21 combines the diagrams for these techniques and shows the actual class
relationships. Note that the explicit metaclass in the SOM IDL of FB-1 is its derived class,
FierceBarking. The derived metaclass of FB-2 is also FierceBarking. Lastly, the
derived metaclass of FB-3 is not the metaclass explicitly specified in the SOM IDL; rather,
it too is FierceBarking.

)
SOMMEBeforeAfter

N,
7))

Pl
FiercaBarki

— Inherits from

——+ i3 an instance of

Figure 21. Relationships of the three techniques for "FierceBarkingDog"

The Metaclass Framework 363

Notes and Advantages of before/after

Notes on the dispatching of before/after methods:
* A before or after method is invoked just once per primary method invocation.

» The dispatching of before/after methods is thread-safe. That is, multiple threads can be
dispatching before/after methods concurrently. (However, it is your responsibility to
ensure that what those methods do is thread-safe.

» The dispatching of before/after methods is fast. The time overhead for dispatching a
primary method is on the order of N times the time to invoke a before/after method as a
procedure, where N is the total number of before/after methods to be applied.

In conclusion, consider an example that clearly demonstrates the power of the composition
of before/after metaclasses. Suppose you are creating a class library that will have n
classes. Further suppose there are p properties that must be included in all combinations
for all classes. Potentially, the library must have n2p classes. Let us hypothesize that
(fortunately) all these properties can be captured by before/after metaclasses. In this case,
the size of the library is n+p.

The user of such a library need only produce those combinations necessary for a given
application. In addition, note that there is none of the usual programming. Given the IDL for
a combination of before/after metaclasses, the SOM compiler generates the
implementation of the combination (in either C or C++) with no further manual intervention.

SOMMSinglelnstance Metaclass

364

Sometimes it is necessary to define a class for which only one instance can be created.
This is easily accomplished with the SOMMSinglelnstance Metaclass.

Suppose the class Collie is an instance of SOMMSinglelnstance. The first call to
CollieNew creates the one possible instance of “Collie”; hence, subsequent calls to
CollieNew return the first (and only) instance.

Any class whose metaclass is SOMMSinglelnstance gets this requisite behavior; nothing
further needs to be done. The first instance created is always returned by the
classNameNew macro.

Alternatively, the method sommGetSinglelnstance does the same thing as the
classNameNew macro. This method invoked on a class object (for example, Collie)is
useful because the call site explicitly shows that something special is occurring and that a
new object is not necessarily being created. For this reason, one might prefer the second
form of creating a single-instance object to the first.

Instances of SOMMSinglelnstance keep a count of the number of times somNew and
sommGetSinglelnstance are invoked. Each invocation of somFree decrements this
count. An invocation of somFree does not actually free the single instance until the count
reaches zero.

SOMMSinglelnstance overrides the four methods somRenew, somRenewNolnit,
somRenewNolInitNoZero and somRenewNoZero so that a proxy is created in the space
indicated in the somRenew?* call. This proxy redispatches all methods to the single
instance, which is always allocated in heap storage. Note that all of these methods
(somRenew?*) increment the reference count; therefore, somFree should be called on
these objects, too. In this case, somFree decrements the reference and frees the single
instance when the reference count is zero (and, takes no action with respect to the storage
indicated in the original somRenew* call).

Programmer’s Guide for SOM and DSOM

If a class is an instance of SOMMSinglelnstance, all of its subclasses are also instances of
SOMMSinglelnstance. Be aware that this also means that each subclass is allowed to
have only a single instance. (This may seem obvious. However, it is a common mistake to
create a framework class that must have a single instance, while at the same time
expecting users of the framework to subclass the single instance class. The result is that
two single-instance objects are created: one for the framework class and one for the
subclass. One technigue that can mitigate this scenario is based on the use of the
somSubstituteClass Method. In this case, the creator of the subclass must substitute the
subclass for the framework class: before the instance of the framework class is created.)

SOMMTraced Metaclass

SOMMTraced is a metaclass that facilitates tracing of method invocations (note: select this
link to jump to the reference page for the metaclass).

If class Collie is an instance of SOMMTraced (if SOMMTraced is the metaclass of
Collie), any method invoked on an instance of Collie is traced. That is, before the
method begins execution, a message prints (to standard output) giving the actual
parameters. Then, after the method completes execution, a second message prints giving
the returned value. This behavior is attained merely by being an instance of the
SOMMTraced Metaclass.

If the class being traced is contained in the Interface Repository, actual parameters are
printed as part of the trace. If the class is not contained in the Interface Repository, an
ellipsis is printed.

To be more concrete, consider Figure 22. Here, the class Collie is a child of Dog and is
an instance of SOMMTraced. Because SOMMTraced is the metaclass of Collie, any
method invoked on Lassie (an instance of Collie) is traced.

7N

SOMMEBeforeAfter

=/

7N
S0OMMTraced

=4

M
b

Legend

metaclass
© class

"Laaale” O abyjsct

— inhwarits fram

——+ |5 an Instance of

Figure 22. All methods (inherited or introduced) invoked on "Collie" are traced

It is easy to use SOMMTraced: Just make a class an instance of SOMMTraced to get
tracing.

There is one more step for using SOMMTraced: Nothing prints unless the environment
variable SOMM_TRACED is set. If it is set to the empty string, all traced classes print. (The
string that contains only two double-quotes can be used to indicate an empty string.) If

The Metaclass Framework 365

SOMM_TRACED is not the empty string, it should be set to the list of names of classes that
should be traced. For example, the following command turns on printing of the trace for
Collie, but not for any other traced class:

export SOMM TRACED=Collie (on AIX)
SET SOMM_TRACED=COllie

The example below shows the IDL needed to create a traced dog class: Just run the
appropriate emitter to get an implementation binding.

SOM IDL for TracedDog class

#include "dog.idl”
#include <somtrcls.idl>
interface TracedDog : Dog
{
#ifdef __ SOMIDL
implementation
{
//# Class Modifiers
filestem = trdog;
metaclass = SOMMTraced;
Vi
#endif /* _ SOMIDL _ */

}i

SOMMProxyFor Metaclass

366

Creating a proxy for an object is common technique in object oriented programming. The
main job of a proxy is to forward method invocations to the target object. The Metaclass
Framework supports this technique by allowing you to create a class for proxies. In the
figure below, ProxyForDog is the class of any proxy for instances of Dog. Any method
invoked on proxyForLassie is forwarded to Lassie.

Proxy classes are built appropriately by the metaclass SOMMProxyFor, but the metaclass
SOMMProxyFor is never used directly. Instead, proxy classes are created by subclassing
SOMMProxyForObject. (Note that SOMMProxyFor may seem like an odd name.
However, in naming metaclasses, SOMobjects uses prefix phrases that impart properties to
classes that impart properties to ordinary objects. Thus, the base class is named
SOMMProxyForObject, because SOMMProxyFor is combined with the SOMObject
class. This convention becomes very useful when composing proxy classes with other
metaclasses.)

Programmer’s Guide for SOM and DSOM

I
I
SOMMFroxyForQbj 1
I
I

basa class of prong target object

7N
"ProxyForDog" "Lagsle"
NAi

tlase of prosey ™

“ProxyForLagsie"

prey for target oblect _/ Legend
metaclass
@ Glos
O ohjact

— inhagritg fram

—— - isan instance of
—= abstract Inheritance

Figure 23. Example of a proxy for the "Dog" class

If a method in the class of a proxy is overridden, the method is not forwarded from the
target to the proxy. If the method should be forwarded, in the override implementation a call
is made to sommProxyDispatch to forward it. (You must be careful, however, as this
interface is not quite the same as that of somDispatch).

Static Creation of Proxy Classes

Dynamic

A specialized proxy class can be defined by subclassing SOMMProxyForObject. In doing
this, there is one primary rule that must be obeyed: A user-created proxy has at most two
parents, and the first parent must be a descendant of SOMMProxyForObject.

Creation of Proxy Classes

A proxy class can be created dynamically with sommMakeProxyClass, which is a method
introduced by the class SOMMProxyFor. Thus, given that P is a pointer to a descendant of
SOMMProxyForObject (which is a SOMMProxyFor), then a proxy class for the class Dog
can be created with the command:

ProxyForDog = sommMakeProxyClass(P, Dog) ;

Keep in mind that the preceding command creates the class object for proxies for the
instances of class Dog. To create a proxy, you must create an instance of the proxy class
and then set the target of the proxy with _set_sommProxyTarget.

The Metaclass Framework 367

Implementation Revealing Methods

A proxy forwards all methods except those that reveal implementation information. There
are six such methods: somGetClass, somGetClassName, somlIsA, somlsinstanceOf,
somRespondsTo and somGetSize. These methods return the information associated with
the proxy. For example, for Figure 23, the following method could be invoked:

_somGetClassName (proxyForLassie)

This method returns ProxyForDog rather than Dog, which would be the returned value if
the method were forwarded from the proxy to the target.

Proxies and the Composition of Metaclasses

368

The metaclass constraints of a target do not propagate to a proxy. Consider the class
TracedDog, which is a subclass of Dog, whose metaclass is SOMMTraced. When a proxy
is created for this class, its name should be ProxyForTracedDog, which implies that the
tracing occurs at the site of the target when the method is forwarded to the target.

On the other hand, suppose a subclass for SOMMProxyForObject and Dog is created with
a class whose metaclass is SOMMTraced. In this case, the result is a
TracedProxyForDog class, which implies that the tracing occurs at the proxy object. This
may not seem like a large difference when both the proxy and the target are in the same
address space, but consider the situation when the proxy is used to forward a method to
another address space (as occurs with DSOM applications). With respect to distributed
systems, the distinction is between actions that occur on the server versus actions that
occur on the client.

Programmer’s Guide for SOM and DSOM

Chapter 11. Emitter Framework

The SOM Compiler translates an IDL into other useful forms. An interface definition can be
translated into a programming language binding file, an implementation template file, a
documentation file, a description that can drive a class browser or a pretty-printed interface
specification. Given the number of programming languages with which SOM can be used
and the many development-support tools that can leverage object interface definitions, the
SOM Compiler needs to produce a large number of output forms. Therefore, an important
structural feature of the SOM Compiler is that it minimizes the effort involved in developing
and maintaining new compiler back-ends.

The following figure shows how the SOM Compiler is structured to use emitters. Each
emitter produces a different output file. As shown in the figure, the only part of the SOM
Compiler that varies with different output targets is the emitter. A new emitter must be
developed and maintained for each output target, but the IDL parser remains unchanged.

Abstract .
P Emitter 1 f— Output 1
Graph
SO
[— Emitter 2 f— Output 2
Parser

Emitter 3 f— CLitput 3

Figure 24. Structure of the SOM Compiler

To make it easier to develop new emitters for use with the SOM Compiler, the SOMobjects
Toolkit provides a collection of classes called the Emitter Framework. The Emitter
Framework consists of several support classes and a general emitter class that can be
subclassed to produce a specific emitter. The SOMobjects Developer Toolkit provides The
newemit Facility on page 381 for automatically generating new emitters. This
automatically generated emitter is then easily customized as needed for a particular output
format.

The goals of the emitter classes are to provide an object-oriented framework for emitter
development that:

* Insulates new emitter code from changes to SOM’s interface definition language.

» Separates design concerns, to improve the ease of development and maintenance of
emitters. The designers of a new emitter should not have to understand the full emitter
process. Rather, they simply override methods from one of the Emitter Framework
classes. The logic of the Emitter Framework causes the methods to be invoked at the
correct time.

* Supports a template facility that allows developers to specify the form of an output file
in a highly readable and maintainable manner.

e Breaks up the control logic for output-file construction into small, easily maintained
units.

Emitter Framework 369

Structure of the Emitter Framework

The Emitter Framework is structured as depicted below.

Abstract
Symigx Qbjest
Graph Graph

Template
| Faclig [Cuteut

Tamplate
Definitions

Figure 25. Structure of the SOM Emitter Framework

The Object Graph Builder

370

The input to the Emitter Framework is an abstract syntax graph of data structures. As
shown in Figure 24, Structure of the SOM Compiler on page 369, the abstract syntax
graph is produced by the SOM Compiler. The SOM Compiler’s IDL parser reads the input
.idl file and converts the interface descriptions that are included in it (either directly or
indirectly) into the abstract syntax graph. Each node of the abstract syntax graph
represents a syntactic unit of the interface definition.

Once the abstract syntax graph has been constructed by the SOM Compiler, the object
graph builder, the front-end of the Emitter Framework, traverses the abstract syntax graph,
building an isomorphic graph of entry objects. An entry object represents a syntactic unit of
the interface definition. For example, a SOMTClassEntryC object represents an entire
interface definition, SOMTMethodEntryC objects represent method declarations,
SOMTParameterEntryC objects represent method parameter declarations, and so on.

Both the IDL parser and the object graph builder are closed parts of the Emitter Framework;
they cannot be extended or modified by programmers using the Emitter Framework. Two
important forms of flexibility are provided:

« SOM IDL syntax provides for an open-ended set of modifiers that can be associated
with most syntactic elements in an interface definition. Modifiers specified in an .idl file
are accessible to emitters written using the Emitter Framework.

» Before the object graph builder is run, an emitter can cause some or all of the Emitter
Framework classes to be shadowed effectively replaced by user-defined subclasses.
When the programmer shadows a particular entry class, the object graph builder uses
instances of the programmer’s subclass of that entry class, rather than instances of the
original entry class. Thus, the programmer can modify the object graph even though
the object graph builder creates all the entry class instances in code that is not open to
the programmer.

Programmer’s Guide for SOM and DSOM

The Entry Classes

The entry classes are used to construct the object graph produced by the object graph
builder described above. Each node of the object graph is an instance of one of the entry
classes. Each instance of an entry class represents one syntactic unit of an IDL interface
definition. One piece or one entry from the complete IDL interface definition. An entry object
serves two important functions:

» Holding information about the corresponding syntactic element of an IDL specification.
» Defining symbols that can be used as placeholders in an emitter’s output template.

Emitter Framework Classes describes the entry classes and the use of symbols in more
detail.

The Emitter Class

The emitter class, SOMTEmItC Class, is the class that drives the process of producing an
output file. Constructing a new emitter requires creating a new subclass of SOMTEmitC
and overriding one or more of its methods so that it produces the desired output. The new
emitter is run by creating an instance of the new subclass of SOMTEmIitC and invoking the
somtGenerateSections Method on it.

The Template Class and Template Definitions

The template class, SOMTTemplateOutputC Class, is used by an emitter to produce
output. It recognizes template descriptions of the output, so that most of the information
about how the output file should look can be placed in a template definition and does not
need to be embedded in the emitter code.

The template definitions describe the content and format of various sections of the output
file, and the emitter controls which of these sections are output and in what order. The
emitter calls on an instance of the SOMTTemplateOutputC class to have a particular
section produced from that section’s template definition.

The following section describes the components of the Emitter Framework and shows the
recommended procedure for producing a new emitter.

Emitter Framework Classes

The Emitter Framework consists almost entirely of classes.

» The emitter class, SOMTEmIitC Class, manages the overall activity of an emitter,
obtaining information from the entry objects and directing the template object to
produce specific sections.

» The template class, SOMTTemplateOutputC Class, manages the output of specific
sections to the target file. It provides a template facility to make the specification of the
output file simple.

* Most of the classes are the entry classes, SOMTEntryC Class and its subclasses,
each of which represents some syntactic unit of an IDL definition.

The Emitter Framework classes you will explicitly instantiate (create instances of) are your
own subclasses of SOMTEmItC. The remaining classes are instantiated automatically by
the Emitter Framework.

Emitter Framework 371

The remainder of this section describes each of these classes. For more information, the
Reference portion of this book provides detailed information on all of the attributes and
methods supported by each class in the Emitter Framework.

SOMTEmItC

372

SOMTEmMItC is the primary class of the Emitter Framework. It provides overall control for

the emitting process. An emitter writer will always need to subclass this class or one of its
subclasses, override some of its methods, and perhaps add a few new methods. The next
section describes this process in more detail.

An instance of SOMTEmItC (an emitter) has as attributes a target file, a target class or
target module, a template object, and a name, as follows:

» The target file is the file to which output will be directed.

» The target class (the class that information will be emitted) is represented by a
SOMTClassEntryC object. This object is the root of the object graph built by the object
graph builder when the emitter is invoked on a class definition. See Figure 25,
Structure of the SOM Emitter Framework on page 370.

e The target module, the module that information will be emitted, is represented by a
SOMTModuleEntryC object. This object is the root of the object graph built by the
object graph builder when the emitter is invoked on a module definition. See Figure 25,
Structure of the SOM Emitter Framework on page 370.

» The template object of the emitter, an instance of SOMTTemplateOutputC Class,
maintains the symbol table and controls the format and content of the sections the
emitter produces. The emitter itself controls which sections are emitted and their order.
The template object is initialized from the output template file.

* The emitter name is the name by which the emitter is invoked via the -s option of the
sc command. The emitter name is used to determine which passthrus in the input .idl
file are directed to that emitter.

The SOMTEmItC Class provides methods for:
* Opening the output template file (somtOpenSymbolsFile Method).

» Getting the value of global modifiers those specified via the -m option of the sc
command).

e Setting standard symbols associated with the target class and its metaclass,
somtFileSymbols Method, as well as setting standard section-name symbols,
somtSetPredefinedSymbols Method).

» Generating the output file from the output template, somtGenerateSections Method.
somtGenerateSections is the primary method that a new emitter will override from
SOMTEmMItC. This method controls which sections will be emitted and in what order.

The SOMTEmItC class provides methods for emitting different standard sections of an
output file. The standard sections are as follows. The default name is in parentheses:

Prolog
Describes text to be emitted before any other sections (prologS).

Base Includes
Determines how base (parent) class #include statements are emitted (baselncludesS).

Meta Include
Determines how a metaclass #include statement is emitted (metalncludeS).

Programmer’s Guide for SOM and DSOM

Class
Determines what information about the class as a whole is emitted (classS).

Base
Determines what information about the base (parent) classes of a class is emitted
(baseS).

Meta
Determines what information about the class’s metaclass is emitted (metaS).

Constant

Determines what information about user-defined constants is emitted (constantS).
Typedef

Determines what information about user-defined types is emitted (typedefS).
Struct

Determines what information about user-defined structs is emitted (structS).
Union

Determines what information about user-defined unions is emitted (unionS).
Enum

Determines what information about user-defined enumerations is emitted (enumS).
Attribute

Determines what information about the class’s attributes is emitted (attributeS).
Methods

Determines what information about the methods of a class is emitted (methodsS).
More specialized method sections can be specified using inheritedMethodssS or
overrideMethodssS.

Release
Determines how information about the release order statement of a class definition is
emitted (releasesS).

Passthru
Determines what information about passthru statements is emitted (passthruS).

Data
Determines what information about internal instance variables of a class is emitted
(dataS).

Interface
Determines what information about the interfaces in a module is emitted (interfaceS).

Module
Determines what information about a module is emitted (moduleS).

Epilog
Describes text to be emitted after all other sections are emitted (epilogS).

Some sections apply to a variable number of items that must be dealt with iteratively. This
can be true of the base section (since a class can have more than one base class), as well
as the sections for base includes, data, passthru, attribute, constant, typedef, struct, union,
enum, interface, module, and method. These repeating sections can be preceded by a
prolog (information to be emitted prior to iterating through the items), and followed by an
epilog (information to be emitted after iterating through the items). Names for the standard
prolog and epilog sections are as follows:

basePrologS, baseEpilogS, baselncludesPrologS, baselncludesEpilogS,
constantPrologS, constantEpilogS, typedefPrologS, typedefEpilogS, structPrologS,
structEpilogS, unionPrologS, unionEpilogS, enumPrologS, enumEpilogS,

Emitter Framework 373

374

passthruPrologS, passthruEpilogS, dataPrologS, dataEpilogS, attributePrologS,
attributeEpilogS, methodsPrologS, methodsEpilogS, interfacePrologS,
interfaceEpilogS, modulePrologS, and moduleEpilogS.

The SOMTEmItC class provides methods for emitting each of the sections described
above. For example, the somtEmit<Section> Methods emits the prologS section, the
somtEmitClass method emits the classS section, and so on. For repeating sections, the
SOMTEmMItC class provides scanning methods. These scanning methods first emit the
appropriate prolog section, then iterate through the appropriate items in the interface
definition, emitting the appropriate section for each item, then emit the appropriate epilog
section.

The following somtScan<Section> Methods are provided by SOMTEmitC:

somtScanBases
somtScanBasesF
somtScanConstants
somtScanTypedefs
somtScansStructs
somtScanUnions
somtScanEnums
somtScanAttributes
somtScanMethods
somtScanData
somtScanDataF
somtScanPassthru
somtScaninterfaces
somtScanModules.

The somtScanBasesF, somtScanDataF and somtScanMethods methods accept a filter
argument, for selective scanning. The Section-Name symbols on page 395 lists all the
section-emitting methods defined by SOMTEmItC and the sections that they output. The
Reference portion of this book describes each section-emitting method in more detail.

User-defined subclasses of SOMTEmIitC can override the section-emitting methods to
change the way that a particular section is emitted. They can also define new
section-emitting methods (see Customizing Section-Emitting Methods on page 387).

Finally, the SOMTEmItC class provides several filter methods. These methods return
TRUE or FALSE depending on some characteristic of a specified entry object. For
example, somtNew determines whether the specified method is introduced by the emitter’s
target class. These filter methods can be used as arguments to the somtScan<Section>
Methods to control which methods are processed in a repeating section.

Filter methods provided by SOMTEmitC include:

somtNew Method
somtimplemented Method
somtOverridden Method
somtinherited Method
somtAll Method
somtNewProc Method
somtNewNoProc Method
somtVA Method

The reference portion of this book describes each of these methods in more detail.

Programmer’s Guide for SOM and DSOM

SOMTTemplateOutputC

The SOMTTemplateOutputC Class handles as much as possible of the formatting part of
emitter writing, largely by using symbol-based output templates. A symbol is a name used
to represent a corresponding value. For example, the symbol (or symbol name)
className is recognized by the Emitter Framework as representing the name of the
target class.

An emitter writer uses symbol names as placeholders in a text template that patterns the
desired output. The template object (of class SOMTTemplateOutputC) takes a text
template containing symbol names and produces output by substituting data for the
symbols that occur in the text template. The values that replace the symbol names come
from a symbol table maintained by the template object.

The template file is divided into sections that specify the desired output for each syntactic
unit of the input IDL specification. To generate a particular section of an output file, an
emitter first sets the values of appropriate symbols in its template-object’'s symbol table,
and then specifies to the template object the name of a section to be output. This design
results a good separation between decision logic and format specification. Also, because
the format specification is isolated, its readability and maintainability are greatly enhanced.

Following is an example fragment of a text template containing two template sections,
classS and metaS. The text template is stored in a template file associated with the emitter.
(The subsequent paragraphs provide further explanation for preparing the text template.)

:classS

class: <className><, classMods, ...>;
?<-- classComment>

:metas

metaclass: <metaNames>

New sections are denoted by lines that begin with a colon. The above fragment contains
two sections, classS and metaS. (By convention, section names end in capital “S”.) An
emitter uses the section name to specify to the template object which part of the output file
to emit. Lines that begin with a question mark are emitted only if at least one symbol
appearing on the line is defined with a nonblank value. Other lines are emitted
unconditionally.

Symbols are specified in a template file in angle brackets. Thus, the template above
contains the symbols className, classMods, classComment, and metaName. (A
backslash can be used to escape an angle bracket when it is not intended to indicate a
symbol.) When a template section is emitted, symbols are replaced with their values. If the
symbol has no value, then the symbol is replaced by the string symbol <...> is not
defined, but no error is raised.

In addition to simple symbol substitution, two forms of complex symbol substitution are
supported: list substitution and comment substitution. Each of these involves special
syntax, as follows.

Comment substitution is specified with two dashes preceding the symbol name (for
example, <-- symbolName>). When comment substitution is used to emit a symbol, the
symbol’s value is emitted in comment form. The emitter controls the format for comments
by setting the values of its template object's somtCommentStyle and
somtCommentNewline attributes:

 The somtCommentStyle attribute determines whether comments are emitted with “- -
at the start of each line, with “//” at the start of each line, in simple C style with each line
wrapped in “/*" and “*/”, or in block C style with a leading “/*”, then a “*” on each line
and a final *“*/".

Emitter Framework 375

« The somtCommentNewline attribute is a boolean that determines whether the
comment starts on a new line.

List substitution replaces a symbol with its value expressed in list form, using specified
delimiters. The symbol’s value must consist of a sequence of items, separated by newline
characters. The list substitution specification consists of two pieces of information in
addition to the symbol name: the prefix to put in front of non-empty lists, and the delimiter to
put between list items.

All characters before the symbol name are taken as the prefix, and all characters after the
symbol name and before the required “...” (which indicates that list substitution is to be
used) are taken as the separator characters. Thus <: symbolName, ...> specifies a prefix of
“."and a separator of “, ”. The prefix and separator characters must consist of blanks,
commas, colons, and semicolons. The value of the template object’'s somtLineLength

attribute controls how many list items are emitted on each line.

Within an output template, tabbing can be specified by @dd, where dd is a valid positive
integer representing a column number. After a @dd is encountered in the output template,
the next character emitted will appear in the specified column.

To emit the “classS” and “metaS” sections from the above template, the following IDL
specification could be used as input:

#include <somobj.idl>
#include <mhello.idl>

interface Hello : SOMObject /* This is the Hello interface. */

{

implementation {

metaclass = M _Hello;
functionprefix = “hello ”;
filestem = hello;

-}
}i
The preceding IDL specification would produce the following output:

class: Hello, functionprefix = hello , filestem = hello;

// This is the Hello interface.
metaclass: M Hello

The formatting of comments varies, depending on the attributes of the emitter’s template.
The SOMTTemplateOutputC Class provides methods that:

* Set and get the value of symbols in a template object’s symbol table.

e Emit a particular section of the output template (somtOutputSection Method).

e Emit a comment, somtOutputComment Method.

* Read the output template file (somtReadSectionDefinitions Method), and others.

Defining New Symbols on page 385 describes how to use the symbol-setting methods to
define new symbols.

SOMTEnNtryC and SOMTClassEntryC

The purpose of these classes is to hide the syntax of the .idl file. They return information
about an IDL interface definition in a way that is neutral to the source syntax of the IDL
definition and to the nature of the emitter in which the information will be used.

376 Programmer’s Guide for SOM and DSOM

The entry classes are arranged into the class hierarchy shown below.

7N

SOMTEntryC

7N 7" N

S0OMTC lagaEntryC SOMTMetaClassEntryC
Nt 7N N\t
SOMTBaseClassEntryC - SOMTCommonEntryC
N\ _/
/.--..\ /--.\
SOMTUserDsifl nu‘l‘rpuEntryG SOMTMethod Entryc
OMTData Entr:,rﬂ SGMTParamatarEntryc

(
(

Legend

@ class

— inherils frem

Figure 26. Entry Class Hierarchy

With the exception of SOMTEntryC and SOMTCommonEntryC, all of the entry classes
correspond to a specific unit of information in an IDL interface definition. This
correspondence is summarized in the following topics.

SOMTENtryC

The SOMTEnNtryC Class provides attributes for accessing the name of an entry, its entry
type, its comment, the line number in the .idl file where the entry is defined, its type code
and whether the entry represents a reference to an entry rather than its definition.

The SOMTENtryC class also provides methods for accessing the SOM IDL modifiers
specified in the implementation section of an interface statement. Included are:

 somtGetModifierValue Method
 somtGetFirstModifier Method
 somtGetNextModifier Method
 somtFormatModifier Method
 somtGetModifierList Method

When invoked on an instance of SOMTClassEntryC SOMTClassEntryC, these methods
pertain to the class’s modifiers; when invoked on an instance of SOMTMethodEntryC, they
pertain to the method’s modifiers, and so on.

The SOMTENtryC class provides the somtSetSymbolsOnEntry Method you can use to
create symbols and define their corresponding values for use in the output template. For
example, SOMTClassEntryC class’s implementation of somtSetSymbolsOnEntry
establishes the symbol className containing the name of the current class,
SOMTMethodEntryC’s implementation of somtSetSymbolsOnEntry defines the
methodName symbol and so on.

Emitter Framework 377

378

SOMTCommonEntryC

Entry objects that an emitter uses are instances of one of SOMTCommonEntryC Class
subclasses, rather than of SOMTCommonEntryC itself. These subclasses are:

* SOMTMethodEntryC Class
 SOMTDataEntryC Class

» SOMTUserDefinedTypeEntryC Class
 SOMTParameterEntryC Class

The SOMTCommonEntryC class provides attributes and methods for obtaining
information about the type of a method, parameter, user-defined type, attribute declarator,
struct member declarator, or instance variable. For example, it provides the attribute whose
value is a pointer to a SOMTENtryC object representing the type, the attribute somtType
that gives a string representation of the type, the attribute somtArrayDimsString that
indicates array dimensions, and the attribute somtPtrs that gives the number of stars
associated with a pointer type.

The SOMTCommonEntryC class also provides methods for accessing type information.

SOMTClassEntryC

A SOMTClassEntryC object anchors the entire interface definition for a class. All the parts
of a class’s interface definition are reachable from the SOMTClassEntryC object entry.
When an emitter is run on a class’s interface definition, the emitter has a distinct class entry
called the target class entry which represents that class.

The SOMTClassEntryC class provides attributes corresponding to the following
characteristics of an IDL interface specification:

» lIts source file name

* Its metaclass

* The class this class is a metaclass for, if any

* Whether the entry represents a forward declaration of the class, rather than its definition
e The module that contains the class, if any

* The number of methods the class introduces or overrides

* The number of static methods the class introduces

* The number of procedure methods the class introduces

* The number of variable argument methods the class introduces

» The number of parent (base) classes

The class also provides methods for accessing each of a class’s: parent classes, release
order names, data items, passthrus, methods, constants, attributes, typedefs, structs,
unions, enumerations and sequences

SOMTClassEntryC provides methods for accessing all type and constant definitions in the
order in which they were defined, including structs, unions, enumerations. These methods
are somtGetFirstPubdef and somtGetNextPubdef. Finally, the SOMTClassEntryC class
provides filter methods for determining whether a method is new or overridden.

SOMTBaseClassEntryC

Every class entry holds a pointer to a base class entry (SOMTBaseClassEntryC object) for
each of the class’s direct base (parent) classes. The base class entry is not the class entry

Programmer’s Guide for SOM and DSOM

for a base class but is an object that has an attribute (somtBaseClassDef) whose value is
the class entry for the base class.

SOMTMetaClassEntryC

Every class entry holds a pointer to its metaclass entry (SOMTMetaClassEntryC object) if
the class #includes the .idl file for its metaclass. A metaclass entry is like a base class
entry in that it is not the class entry for the metaclass. Rather, it is an object that has an
attribute (somtMetaClassDef) whose value is the class entry for the metaclass. The
metaclass entry also has an attribute (somtMetaFile) that specifies the file in which the
metaclass’s interface is defined.

SOMTModuleEntryC

A SOMTModuleEntryC object represents a module within an IDL specification. It provides
methods for accessing each of the module’s: interfaces, nested modules, constants,
typedefs, structs, unions, enumerations and sequences.

SOMTModuleEntryC provides methods for accessing the definitions in the order in which
they were defined.

SOMTPassthrugntryC

Every class entry holds a pointer to a passthru entry (SOMTPassthruEntryC object) for
each passthru specification in the implementation section of the class’s SOM IDL interface
specification. Each passthru entry has attributes representing the target, the target
language, and the passthru’s contents, and a method to determine whether the passthru is
a before or a after passthru.

SOMTTypedefEntryC

Every class entry holds a pointer to a typedef entry (SOMTTypedefEntryC object) for each
typedef introduced within the class’s interface specification and for each member of a
user-defined struct. Each typedef entry provides an attribute representing the base type of
the typedef and methods for accessing each of the declarator names of the typedef.
Because a single typedef may have several declarators, the somtTypedefType attribute of
a typedef gives only the base type of the user-defined types; to get the full type, users
should access each declarator in turn and get its somtType attribute.

SOMTDataEntryC

Every class entry holds a pointer to a data entry (SOMTClassEntryC object) for each of the
data members (internal instance variables) specified in the implementation section of the
class’s interface definition, and for each attribute declarator or struct member declarator.
The SOMTDataEntryC class provides an attribute that indicates whether a struct member
declarator is self-referential (pointing to the same type of structure for which it is a
declarator).

SOMTAttributeEntryC

Every class entry holds a pointer to an attribute entry (SOMTAttributeEntryC object) for
each of the attribute definition statements within the class’s interface specification. Each
attribute entry has attributes representing the base type and whether the attribute is
readonly. It also provides methods for accessing the attribute declarators and their get/set
methods.

Emitter Framework 379

380

Because a single attribute definition statement may have several declarators (that introduce
several attributes), the somtAttribType attribute gives only the base type of the attributes
being defined; to get the full type, users should access each declarator in turn and get its
somtType attribute.

SOMTMethodEntryC

A class entry holds a pointer to a method entry (SOMTMethodEntryC object) for each of
the methods the class supports (both new and inherited methods). Each method entry has
attributes representing:

* The C/C++ form of the method’s return type (somtCReturnType)
* Whether the method has a va_list parameter (somtlsVarargs)

* For overriding methods, the class whose implementation is being overridden
(somtOriginalClass) and the method being overridden (somtOriginalMethod)

* Whether the method is oneway (somtilsOneway)

e The number of arguments to the method (somtArgCount)

e The context string literals of the method (somtContextArray)

The SOMTMethodEntryC class also provides methods for getting the parameters.

SOMTParameterEntryC

Method entries contain a reference to a parameter entry (SOMTParameterEntryC object)
for each of the explicit parameters to the method. (The receiver of the method does not
have a corresponding parameter entry; neither do the Environment and Context
parameters, if any.) Each parameter entry has an attribute that indicates whether it is an in,
out, or inout parameter, and attributes that give the parameter’s declaration within a
prototype.

SOMTConstEntryC

Every class entry holds a pointer to a constant entry (SOMTConstEntryC object) for each
constant defined within the class’s interface specification. Each constant entry has
attributes that represent the type and the value of the constant.

SOMTEnumEnNtryC

Every class entry holds a pointer to an enum entry (SOMTEnumEntryC object) for each
enumeration defined within the class’s interface specification. Each enum entry provides
methods for getting the enumerator names for the enumeration.

SOMTSequenceEntryC

Every class entry holds a pointer to a sequence entry (SOMTSequenceEntryC object) for
each sequence defined within the class’s interface specification. Each sequence entry has
attributes representing the sequence’s length and type.

SOMTStringEntryC

Every class entry holds a pointer to a string entry (SOMTStringEntryC object) for each
string defined within the class’s interface specification. Each string entry has an attribute
representing the string’s length.

Programmer’s Guide for SOM and DSOM

SOMTUnionEntryC

Every class entry holds a pointer to a union entry (SOMTUnionEntryC object) for each
union defined within the class’s interface specification. Each union entry provides an
attribute representing the union’s switch type and methods for accessing each of its cases.

SOMTEnumNameEntryC

Every enumeration entry (of type SOMTEnumNameEntryC) holds a pointer to a
SOMTEnumNameEntryC object for each enumerator name defined within it. Each
SOMTEnumNameEntryC entry has attributes representing the enumerator name’s value
and a pointer to the enumeration that defines the enumerator name.

SOMTStructEntryC

Every class entry holds a pointer to a struct entry (SOMTStructEntryC object) for each
struct defined within the class’s interface specification and for each exception the class
defines. Each struct entry provides attributes that represent the class in which the struct
was defined and whether the struct actually represents an exception, and methods for
accessing each of the struct members.

SOMTUserDefinedTypeEntryC

Every class entry holds a pointer to a user-defined type entry
(SOMTUserDefinedTypeEntryC object) for each type defined within the class’s interface
specification via a typedef statement. Each user-defined type entry provides attributes
representing the typedef statement that defined the type and the base type of the
user-defined type. The somtBaseTypeObj attribute gives the primitive IDL type that
underlies a user-defined type, skipping over any intermediate user-defined types.

Writing an Emitter: the Basics

This section describes writing an emitter using the newemit program.

The newemit Facility

The newemit emitter generator is a program, written using the Emitter Framework, that
generates a complete, working emitter. This emitter is easily customized as needed.

The following steps outline the recommended approach to writing an emitter.

Running the newemit Program

The command to execute the newemit program takes the following syntax:
newemit [-C | -C++] className filestem

Required arguments are the name for a new subclass of SOMTEmitC Class to be created
and a file stem for the subclass. The optional - or -C++ specifies the language in which
the emitter will be written; the default is C. The program produces the following files:

filestem.idl
An IDL definition of the subclass of SOMTEmItC with the specified name. This IDL
definition specifies that the somtGenerateSections Method will be overridden by the
new subclass.

Emitter Framework 381

filestem.c
The C or C++ implementation file for the new subclass of SOMTEmitC. Initially, this
implementation file has the same code for somtGenerateSections as defined by
SOMTEmMItC. (The C++ extension is .C on AlX or .cpp on OS/2.)

emitfilestem.c or emitfilestem.C or emitfilestem.cpp
A C or C++ emitter driver program. The driver-program name is always “emit” followed
by the specified file stem. (The C++ extension is .C or on AlX or .cpp on OS/2.)

Makefile
A Makefile for creating a DLL for the new emitter.

filestem.efw
A sample output template file.

The filestem.c (or .C or .cpp) and filestem.efw files will be customized to produce a
particular output format. For example, to create a documentation emitter class called
DocEmitter whose related files (written in C by default) have a file stem of doc, we would
execute the following command:

newemit DocEmitter doc

The result would be files doc.idl, doc.c, emitdoc.c, Makefile, and doc.efw. The remaining
steps involve customizing the doc.c and doc.efw files.

Note: For AlX, the <filestem> argument to the newemit program should consist of only
lowercase characters.

Designing the Output File

Look at a typical IDL interface definition, and hand-construct the desired output file for that
interface. For example, suppose we want our DocEmitter to construct a documentation
file that simply lists the class name and the return types for the methods it introduces or
overrides. Thus, given the following IDL specification,

#include <somobj.idls>
interface Animal: SOMObject ({
void setSound(in string sound) ;
void makeSound() ;

}i

we would want the output file to look like this:

The following methods:
setSound, of type void
makeSound of type void

are implemented by class Animal.

Constructing an Output Template

382

The next step is to construct an output template, based on the sample output file. Separate
the sample output file into different sections, based on the aspect of the IDL specification to
which they most closely correspond. For example, the first three lines of the output file
above correspond to method declarations, and the last line corresponds to the class
interface definition as a whole.

Although the first three lines all correspond to method declarations, they should be further
divided into the portion that constitutes the prolog (to be emitted only once, regardless of
how many methods are to be described), the repeating portion (which should be emitted
once per method), and the portion that constitutes the epilog (also emitted only once). The

Programmer’s Guide for SOM and DSOM

first line in the sample output above constitutes the prolog for the method-describing
section, and the second two lines are representative of the repeating method-describing
section. There is no epilog section used in this example, although the last line of the output
shown could be made part of the methods epilog section, rather than the class section.

Next, assign the section names. By convention, section names end in uppercase “S”. Each
section name is given on a separate line, preceded by a colon and followed by the text lines
that make up the section.

The most appropriate section names for the DocEmitter output template are
methodsPrologS, methodsS and classS.

Then, generalize the text lines within each section into a generic template. That is replace
strings that are specific to a particular interface definition with symbols that represent the
syntactic unit of the interface definition from which the string was taken. For example, string
Animal in the current example can be replaced by the standard symbol className.

In sum, the output file shown above could be generalized to the following output template:

:methodsPrologS
The following methods:
:methodsS
<methodName>, of type <methodType>
:classS
are implemented by class <classNames>.

Output templates are typically stored in files having a .efw extension. The newemit
program creates a generic template file, filestem.efw. It contains all the standard sections,
and each section contains sample template text that exercises all the standard symbols
available within that section. This generic template can be edited to contain only those
sections needed by the new emitter, with appropriate text. For the current example, file
doc.efw would be edited to contain the generalized output template shown above.

Note: Each of the entry classes defines a set of standard symbols based on the kind of
entry they represent. These symbols are discussed in Standard Symbols on page
390. The Section-Name symbols on page 395 lists all standard section names,
along with the method that emits the section having that section name. New
symbols (and new section names) can also be defined, if needed, as described in
Defining New Symbols on page 385.

Customizing Emitter Control Flow

The newemit program creates a subclass of SOMTEmItC Class (in this example,
DocEmitter) that overrides the somtGenerateSections Method. The newemit program
also provides a default implementation of somtGenerateSections for DocEmitter in the
doc.c file. This implementation should be customized.

The somtGenerateSections method determines which sections of the output template are
emitted and in what order. The output template only specifies which sections are available
to the emitter and their contents; it does not control which sections are actually emitted or
their order.

For the current example, we want our emitter to first emit the methodsPrologS section of
the output template, then the methodsS section, once for each method introduced by the
class, followed by the classS section. However, the default implementation of
somtGenerateSections, provided by newemit, emits the classS section first; thus, we
must switch the order in which the sections are emitted.

Emitter Framework 383

The default implementation of somtGenerateSections also emits other sections; however,
because those sections are not defined in our example output template, those portions of
code should be removed.

The crucial portions of DocEmitter’s implementation of somtGenerateSections (in
doc.c, and after the class and methods section order has been switched) are shown below:

SOM_Scope boolean SOMLINK somtGenerateSections (DocEmitC
somSelf)

/* Define symbols available in all sections of the
* output template.
*/

_somtFileSymbols (somSelf) ;

if (cls != (SOMTClassEntryC *) NULL) {

/* Emit “methods” section for each method of the class.
* Tf a “methodsProlog” section is defined it precedes
* the first method; if a “methodsEpilog” section is
* defined it will follow the last method.

*

/

__somtScanMethods (somSelf, ”somtImplemented”,
"somtEmitMethodsProlog”, “somtEmitMethod”,
"somtEmitMethodsEpilog”, 0);

_somtEmitClass (somSelf); /* emit “class” section */

}

return (TRUE) ;

}
Use of the somtScan<Section> Methods to iterate through the class’s methods and emit
the methodssS section for each method. SOMTEmItC defines scanning methods for data
items, base classes, passthrus, attributes, constants, typedefs, struct, enums, union,
interfaces and nested modules.

Compiling and Running the New Emitter

Compile the driver program provided by newemit and the implementation of your emitter
together to create a dynamically linked library (a DLL) for a new emitter. The newemit
program provides a Makefile to perform this step (simply enter “make”).

The new emitter can now be invoked by the SOM Compiler via the -s option (which
overrides the SMEMIT variable, for the current sc command, with the specified emitter). For
example, DocEmitter, packaged in emitdoc.dll, can be invoked by running the SOM
Compiler with the -sdoc option. (The value of the -s option is the file stem specified earlier
to newemit.) Invoking the following sc command will produce an animal.doc file just like the
one shown at the beginning of this section:

sc -sdoc animal.idl

Debugging an Emitter

384

To debug an emitter, run the SOM Compiler as always, but include the -v option. This flag
causes the SOM Compiler to tell you how it runs the various programs that make up the
SOM Compiler. The first program run is the preprocessor, usually somcpp, which you can
ignore. The second program is the compiler front end, somipc. The front end loads and
runs the individual emitter DLLs that you request via the -s flag. To debug an emitter, you
must debug somipc. You can run the programs the SOM Compiler ran by copying the
information supplied by the -v option into an executable file. Modify the line that runs the
somipc program so that the debugger is used to run somipc.

Programmer’s Guide for SOM and DSOM

OS/2 example:
Here is the command to run the def emitter with the -v option included:
sc -v -sdef foo.idl
Here are the results obtained on one OS/2 system (Some of the lines have wrapped):

Running shell command:
somcpp -D__0S2 -I. -C foo.idl > C:\tmp\4150000000.CTN
somipc -mppfile=C:\tmp\4150000000.CTN -v -e emitdef
-o foo foo.idl
Loading emitdef.
"foo”
Unloading emitdef.
Removed ”C:\tmp\4150000000.CTN”

Most debuggers require the full path to the program you will debug, so this example

includes the path to somipc on the system where the command was run. Here is the .cmd
file created to run IBM’s ipmd debugger:
somcpp -D_0S2 -I. -C foo.idl > C:\tmp\4150000000.CTN
ipmd r:\bin\somipc -mppfile=C:\tmp\4150000000.CTN -v
-e emitdef -o foo foo.idl
All emitters begin with a function named emit. You should set a breakpoint there using the
debugger.

Writing an Emitter: Advanced Topics

Defining New Symbols

The Emitter Framework defines a number of symbols that can be used in output templates.
(See Standard Symbols on page 390.) Programmers can define additional symbols as
needed. This is usually done within an overriding implementation of the
somtGenerateSections method or some other method of a user’s subclass of
SOMTEmitC.

Symbol names defined by the Emitter Framework have been chosen to maintain the
readability of the template file. There is very little cost associated with the length of a
symbol name, nor is there any practical limit on the length of a symbol name. To maintain
the readability of template files, it is suggested that emitter writers follow the pattern of the
standard symbol names. Symbol names may not consist of double-byte characters.

The value of a defined symbol can be obtained from a template object using the
somtGetSymbol method. For example, in a C program,

_somtGetSymbol (£, ”“className”) ;

returns the value of the “className” symbol, assuming that t points to a template object for
an emitter. The somtTemplate attribute of an emitter refers to its template object. The
somtCheckSymbol method can be used to determine whether or not a given symbol is
defined.

New symbols are defined using one of the following methods, invoked on a template object:

 somtSetSymbol Method

» somtSetSymbolCopyValue Method
» somtSetSymbolCopyName Method
 somtSetSymbolCopyBoth Method

Arguments for each method are the name of the symbol and its value. The differences
among the four symbol-setting methods are if they make a copy of the name/value to store

Emitter Framework 385

in the symbol table, or if the passed strings are stored. If no copy is made, the string must
not be subsequently freed by the calling program. The somtSetSymbolCopyValue method
is useful for redefining a symbol that already has a value in the symbol table. The
somtSetSymbolCopyName method is useful when passing a string value that has been
allocated and will not be freed. The somtSetSymbol method is useful when both situations
co-occur. Typically, however, the somtSetSymbolCopyBoth method is used. For
example, to set the value of the NewSym symbol to value Hello!, use the following C
method call:

_somtSetSymbolCopyBoth(t, “newSym”, ”Hello!”);
where t is the template object for an emitter.

Another method that can be used to define symbols is somtExpandSymbol. This method
can be used to set a symbol to a value specified within the output template. Given a symbol
representing the name of a section in the output template, the somtExpandSymbol
method expands that section into a buffer by substituting symbol values for symbol names
in the template. The result can then be assigned as the value of a symbol, using one of the
symbol-setting methods above. In this way, the values of emitter symbols can be defined
declaratively in the template file, rather than procedurally within the emitter's code. For
example, if the template (.efw) file for an emitter contains the following section definition:

:methodPrefixS

<functionprefixs>
then the following C code within the implementation of an emitter's method will set symbol
“methodPrefix” to be the expansion of the “methodPrefixS” section in the template file (that
is, the value of symbol “functionprefix,” if defined by the emitter, followed by an underscore).

SOMTTemplateOutputC t = get somtTemplate (somSelf) ;
char buf [MAX BUF_SIZE];

__somtSetSymbolCopyBoth (t, “methodPrefix”,
__somtExpandSymbol (t, “methodPrefixS”, buf));

In addition to defining new symbols within a programmer’s subclass of SOMTEmitC, new
symbols can also be defined within user-defined subclasses of an entry class. In this way,
the new symbols will be defined at the same time the standard symbols are defined. This
technique is helpful when the symbols will be useful to multiple emitters. Each of the
emitters can use the new entry class rather than defining the symbols.

To define new symbols within a user-defined subclass of an entry class, override the
somtSetSymbolsOnEntry method. For example, to define some new symbols to be used
in the “classS” section, and to have these symbols automatically defined for every class
entry (rather than requiring every emitter to define them), create a subclass of
SOMTClassEntryC that overrides the somtSetSymbolsOnEntry method. Within the
overriding method, invoke the parent method, then use one of the symbol-setting methods
to define the new symbols.

For instance, a user-defined subclass sMPClassEntryC of SOMTClassEntryC might
override somtSetSymbolsOnEntry as follows:

SOM_Scope long SOMLINK somtSetSymbolsOnEntry (
SMPClassEntryC somSelf,
SOMTEmitC emitter, string prefix)

SOMTTemplateOutputC t = get somtTemplate (emitter) ;
long status;
status = parent SOMTClassEntryC somtSetSymbolsOnEntry
(somSelf, emitter, prefix);
_somtSetSymbolCopyBoth(t, somtNewSymbol (prefix,
"ExtPrefix”),
_somtGetModifierValue (somSelf, ”externalprefix”);

386 Programmer’s Guide for SOM and DSOM

return (status) ;
}
The parent method is invoked first to define the standard symbols, then a new symbol is
defined whose value is the externalprefix modifier for the class.

The prefix parameter of the somtSetSymbolsOnEntry method is prefixed to each of the
standard symbol names that the method defines. The prefix is set by the emitter framework
to match the role of that entry in the class interface definition. For example, the standard
symbols defined by a class entry that corresponds to the target class of the emitter will be
prefixed with “class”, the standard symbols set by the metaclass entry of the target class
will be prefixed with “meta”, and so on. The somtNewSymbol function is provided for users
to create new symbols from the prefix passed to somtSetSymbolsOnEntry in overriding
implementations of somtSetSymbolsOnEntry.

It is important that overriding implementations of somtSetSymbolsOnEntry in subclasses
of SOMTClassEntryC in particular use somtNewSymbol and the prefix parameter to
define new symbols because that method will be invoked not only to define symbols for the
target class, but also to define symbols for its base classes and metaclass (for which
“prefix” will be “base” or “meta”).

When subclassing one of the entry classes, it is necessary to use shadowing to have the
object graph builder use the new subclass when constructing the object graph, rather than
the original entry class. Otherwise, subclassing the entry class will have no effect. See
Shadowing on page 388.

Customizing Section-Emitting Methods

The somtGenerateSections method invokes section-emitting methods. To specialize the
behavior of one of these methods, we could override them. This would allow us, for
instance, to set symbols differently before emitting the methodsS section, depending on the
characteristics of the method.

An emitter can define new section-emitting methods. For example, an emitter could
introduce a new section-emitting method, somtEmitMethod2. The new section-emitting
method can be passed by somtGenerateSections as an argument to somtScanMethods,
so that for each of the target class’s methods, somtEmitMethod2 is invoked. User-defined
sections can also be emitted by changing the value of one of the predefined section-name
symbols, as described under Changing Section Names on page 387.

Section-emitting methods take as an argument the entry object about which information is
to be emitted. For example, an argument to somtEmitMethod is a method entry object.
Each such entry object supports methods for obtaining information about the portion of the
IDL interface specification it represents. For example, a method entry object has an
attribute, somtArgCount, that gives the number of parameters the method has, and every
entry also supports the somtGetModifierList and somtGetModifierValue methods for
obtaining specific information about SOM IDL madifiers. This information can be used to
guide the behavior of the section-emitting methods.

User-defined implementations of section-emitting methods typically define new symbols as
needed, as described above, and then invoke the somtOutputSection method to produce
output from the appropriate template section.

Changing Section Names

Each predefined section-emitting method in the Emitter Framework determines which
section of the output template to emit based on the value of a predefined section-name

Emitter Framework 387

symbol. For example, the somtEmitProlog method emits the section whose name is
specified by the prologsN symbol. The default value of the prologsN symbol is
prologs. Thus, somtEmitProlog emits the prologs section of the output template by
default. The table at the end of the next section lists the default values of all predefined
section-name symbols and indicates which section emitting methods use them.

To change the section that a section-emitting method emits, simply change the value of the
appropriate section-name symbol. For example, to have somtEmitProlog emit section
myPrologs instead of section prologs, invoke the somtSetSymbol method as follows
from within the somtGenerateSections method of your emitter, prior to invoking
somtEmitProlog:

_somtSetSymbolCopyValue (t, ”"prologSN”, "myPrologS”) ;

This technique allows an emitter to use the same section-emitting method to emit multiple
sections of the output file. For example, we could have both a prologs section and a
myPrologs section in the output template. The first time somtGenerateSections invokes
somtEmitProlog, it will emit the prologS section. Prior to invoking somtEmitProlog a
second time, the emitter changes the value of the prologSN symbol, as above, to
myPrologs. Thus, the second time the emitter invokes somtEmitProlog, it will emit the
myPrologsS section.

Note: User-defined section names may not contain double-byte characters.

Shadowing

388

Some emitters may require subclassing one or more of the entry classes to add new
methods or override existing methods. For example, changing the behavior of the
somtGetNextParameter method would require subclassing the SOMTMethodEntryC
class. As another example, if an emitter needs symbols that are not predefined by the
Emitter Framework, and these symbols would be useful to multiple emitters, then, rather
than defining these symbols in somtGenerateSections for every emitter, it may be
advantageous to subclass one or more of the entry classes and to override the
somtSetSymbolsOnEntry method in that subclass.

When an emitter subclasses one or more of the entry classes, the driver program that
instantiates the emitter must be modified to use shadowing. Shadowing instructs the object
graph builder to create instances of the new subclass as it builds the object graph to
represent the input.

Shadowing allows an emitter to substitute a subclass of an entry class for the parent class
without having to recompile the library routines that use the original class. The library
routines will automatically pick up all of the changes made in the new subclass when
shadowing is used.

Shadowing is accomplished using the SOM_SubstituteClass macro. For each user-
defined subclass of an entry class, modify the emit function in the driver program to include
the following instruction, just after the call to somtopenEmitFile:

SOM_SubstituteClass (<existing entry class name>,
<new subclass name>) ;
For example, to shadow entry class SOMTClassEntryC with user-defined subclass
SMPClassEntryC, add the following instruction to the emit function, just after the call to
somtopenEmitFile:

SOM_SubstituteClass (SOMTClassEntryC, SMPClassEntryC) ;

Programmer’s Guide for SOM and DSOM

When shadowing an entry class, the header file for the class being shadowed must be
included in the driver program. For example, shadowing SOMTClassEntryC would require
adding the directive

#include <scclass.h>

in the driver program (contained in emitfilestem.c).

Handling Modules

When an emitter is run on a .idl file that contains a module, the cls argument to the emit
function in the emitter’s driver program will be a structure (cls->type== SOMTModulekE),
rather than (cls->type == SOMTCLassE). The default implementation of the driver
program, provided by newemit, creates an emitter having a target module, rather than a
target class, then invokes somtGenerateSections on that emitter as usual. The default
implementation of somtGenerateSections method, in turn, invokes different section-
emitting methods depending on whether the emitter has a target module or a target class.

When an emitter is invoked on a module, the emitter should emit only the information
pertaining to the module as a whole and any typedef and constant definitions within it.
Information pertaining to each of the interface specifications contained in the module will be
emitted subsequently, on a separate invocation of the emitter.

In other words, when the SOM Compiler processes a .idl file containing a module that
includes multiple interface statements, it first runs the requested emitters, passing a
structure representing the module. It then runs the same emitters again, passing a structure
representing the first interface in the module. It then runs the same emitters again, passing
a structure representing the next interface in the module, and so on.

All output goes to the same output file, even though the output is produced by multiple
invocations of the emitter. This is controlled by a global variable, set by the SOM Compiler,
that indicates to the somtopenEmitFile function whether the output file should be opened
for writing or for appending. Thus, the first time the emitter is invoked on a particular input
file, a new output file is created, but subsequent invocations of the emitter on the same
input file simply append to the same output file.

Because an emitter that is handling a module has no target class, users should avoid
invoking any method of SOMTEmItC that requires a target class if the emitter is handling a
module.

Error Handling

The Emitter Framework provides a set of functions to facilitate error handling within user-
written emitters. The following functions can be used to issue informational or error
messages of differing levels of severity: somtmsg, somtwarn, somterror, somtfatal and
somtinternal. These functions optionally take the file name and line number where the
error occurred and a format string and arguments to be passed to the printf C library
function. The functions increment the relevant error count and print a message that
contains the file name and line number (if specified), an indication of the severity of the
message, and the message itself. In addition, the somtfatal and somtinternal functions
remove the output file being constructed and terminate the process. Below is an example of
producing an error message using the somterror function:

somterror (_ get somtSourceFileName (cls),

get_ somtSourceLineNumber (entry) ,

"I don’t understand the entry named %s.\n”,
___get somtEntryName (entry)) ;

Emitter Framework 389

When the somtfatal or somtinternal function is invoked, the output file being constructed
is removed and the process is terminated. These actions are also taken if the SOM
Compiler detects an internal error within the emitter or if a user-generated interrupt occurs.
It may be necessary to prevent these signals from being detected in certain sections of an
emitter’s code. The Emitter Framework provides two functions, somtunsetEmitSignals
and somtresetEmitSignals, to protect such critical portions of emitter code. These
functions take no arguments and return no value. An example is shown below of using
these functions to protect a portion of code from signal processing:

somtunsetEmitSignals () ;
/* do some protected processing */
somtresetEmitSignals() ;

Standard Symbols

The following lists of standard symbols are organized in two ways:

» The first category groups the symbols by what sections of the output template may
reference them. These are the lists to reference when writing an output template.

* The second category groups the symbols by which entry class defines them. These are
the lists to reference when changing the value of a predefined symbol through
shadowing as this list indicates which entry class to subclass.

Each symbol is described in more detail in the second part of this section.

Symbols by Section Validity

Validinall outputtemplate sections, when an emitter has atarget class, and inthe interfaceS
section when an emitter has a target module:

className
classIDLScopedName
classCScopedName
classComment
classInclude
classLineNumber
classMods
classMajorVersion
classMinorVersion
classSourceFile
classSourceFileStem
classReleaseOrder
timeStamp (the date and time the emitter was run)

If a metaclass is explicitly defined for the class, the following symbols are defined:

metaName
metaIDLScopedName
metaCScopedName
metaComment
metalInclude
metalLineNumber
metaMajorVersion
metaMinorVersion
metaMods
metaReleaseOrder
metaSourceFile
metaSourceFileStem

Valid within the baselncludesS and baseS sections:

baseName

390 Programmer’s Guide for SOM and DSOM

baseIDLScopedName
baseCScopedName
baseComment
baseInclude
baseLineNumber
baseMajorVersion
baseMinorVersion
baseMods
baseReleaseOrder
baseSourceFile
baseSourceFileStem

Valid in the methodsS, overrideMethodsS and inheritedMethodsS sections:

methodName
methodIDLScopedName
methodCScopedName
methodComment
methodLineNumber
methodMods

methodType
methodCReturnType
methodContext
methodRaises
methodClassName
methodCParamList
methodCParamListVA
methodIDLParamList
methodShortParamNameList
methodFullParamNameList

Valid in the dataS section:

dataName
dataIDLScopedName
dataCScopedName
dataComment
dataLineNumber
dataMods

dataType
dataArrayDimensions
dataPointers

Valid in the passthruS section:

passthruName
passthruComment
passthruLineNumber
passthruMods
passthrulanguage
passthruTarget
passthruBody

Valid in the constantS section:

constantName

constant IDLScopedName
constantCScopedName
constantComment
constantLineNumber
constantMods
constantType
constantValueUnevaluated
constantValueEvaluated

Valid in the typedefS section:

typedefDeclarators

Emitter Framework 391

typedefBaseType
typedefComment
typedefLineNumber
typedefMods

Valid in the structS section:

structName
structIDLScopedName
structCScopedName
structcomment
structLineNumber
structMods

Valid in the unionS section:

unionName
unionIDLScopedName
unionCScopedName
unionComment
unionLineNumber
unionMods

Valid in the enumS section:

enumName
enumIDLScopedName
enumCScopedName
enumComment
enumLineNumber
enumMods
enumNames

Valid in the attributeS section:

attributeDeclarators
attributeBaseType
attributeComment
attributeLineNumber
attributeMods

Valid in the moduleS section:

moduleName
moduleIDLScopedName
moduleCScopedName
moduleComment
moduleLineNumber
moduleMods

Symbols by Entry Class Availability

The following symbols are established and defined for each object of the indicated entry
class when the somtSetSymbolsOnEntry Method is invoked on that object.

For SOMTEnNtryC Class

prefixName
The unscoped name of the entry.

prefixIDLScopedName
The scoped name of the entry, using “::” as delimiters.

prefixCScopedName
The scoped name of the entry, using “_" as delimiters.

392 Programmer’s Guide for SOM and DSOM

prefixComment
The comment that follows the entry in the IDL specification.

prefixLineNumber
The line number where the IDL specification of the entry ends.

prefixMods
The SOM IDL modifiers of the entry.

where prefix is replaced by the corresponding IDL syntactic unit being defined, as module,
attribute, constant, typedef, struct, enum, union, class, base, meta, method, data,
passthru or a user-specified prefix.

For SOMTCommonEntryC Class

prefixType
The type of the entry. For methods, the return type.

prefixArrayDimensions
The array dimensions of the entry, if it is an array.

prefixPointers
The pointer stars for the entry, if it is a pointer type.

where prefix is replaced by either method, data or a user-specified prefix.

For SOMTAttributeEntryC Class

attributeDeclarators
The list of attribute declarators.

attributeBaseType
The base type of the attributes, not including pointer stars or array dimensions, if any.

For SOMTEnumEntryC Class

enumNames
The list of enumerator names of the enumeration.

For SOMTClassEntryC Class

classMajorVersion
The class’s major version number.

classMinorVersion
The class’s minor version number.

classSourceFile
The name of the IDL source file.

classSourceFileStem
The file stem of the binding files to be produced from the input IDL file. If the input IDL
has a has a filestem maodifier, then its value defines the symbol. Otherwise, the symbol
will be the filestem of the input IDL file.

classReleaseOrder
The release order list for the class.

classinclude
The expression to be used in include statements to access the appropriate file for this
class such as somobij.idl.

Emitter Framework 393

394

For SOMTConstEntryC Class

constantType
The type of the constant.

constantValueEvaluated
The evaluated value of the constant. For constants of type string or char, this value
includes the quotes.

constantValueUnevaluated
The unevaluated value of the constant. Constants within the expression are, however,
replaced with their values. For constants type string or char, this value does not include
the quotes.

For SOMTMethodEntryC Class

methodCReturnType
The C or C++ return type of the method.

methodClassName
For an overriding method, the class whose method is overridden. For new methods, the
introducing class.

methodIDLParamList
The formal parameter list (including types) for the method, in IDL form (includes only
explicit parameters).

methodCParamList
The formal parameter list (including types) for the method’s procedure, in C or C++
form (including all parameters).

methodCParamListVA
The formal parameter list (including types) for the method’s procedure, in C or C++
form (including all parameters), with any va_list parameter replaced by “...".

methodShortParamNameList
A list consisting of the names of the method’s explicit parameters (excluding somSelf,
ev, and ctx).

methodFullParamNamelList
A list consisting of the names of all of the method procedure’s formal parameters
(including implicit method parameters and somSelf).

methodRaises
A list of the exceptions the method may raise.

methodContext
A list of the context string literals for the method.

For SOMTParameterEntryC Class

parameterDirection
Whether the parameter is an in, out, or inout parameter.

parameterIDLDeclaration
The declaration of the parameter, including type, in IDL form.

parameterCDeclaration
The declaration of the parameter, including type, in C or C++ form. This may differ from
the IDL declaration, particularly when the parameter is an out or inout parameter.

Programmer’s Guide for SOM and DSOM

For SOMTPassthruEntryC Class

passthruLanguage
The target language of the passthru, in upper case. For example .C.

passthruTarget
The file type for this passthru; for example, .h or .ih

passthruBody
The full contents of the passthru entry, including newlines.

For SOMTSequenceEntryC Class

sequencelLength
The maximum length of the sequence, as declared in IDL, or zero if unspecified.

For SOMTStringEntryC Class

stringLength
The maximum length of the string, as declared in IDL, or zero if unspecified.

For SOMTTypedefEntryC Class

typedefDeclarators
The list of declarators.

typedefBaseType
The base type of the new user-defined type(s), not including pointer stars or array
dimensions, if any.

The Section-Name symbols

The Emitter Framework recognizes a set of special symbols known as section-name
symbols, which correspond to the various sections that can be emitted from an output
template. The value of each section-name symbol is the name of a section to be emitted.

Each predefined section-emitting method in the Emitter Framework determines which
section of the output template to emit based on the value of a predefined section-name
symbol. For example, somtEmitProlog emits the section whose name is specified by the
prologSN symbol. The default value of the prologSN symbol is prologs. Thus,
somtEmitProlog emits the prologs section of the output template by default.

The value of a section-name symbol can be changed to cause the corresponding section-
emitting method to emit a section of a different name. For example, to have the
somtEmitProlog method emit a section named myPrologs rather than prologs, set the
value of the prologSN symbol to myPrologs, using the somtSetSymbolCopyValue
method as described in Defining New Symbols on page 385, before invoking
somtEmitProlog.

Emitter Framework 395

The following table lists all symbol names, their initial value, and the method that uses them.

Symbol Name
attributesSN
attributeEpilogSN
attributePrologSN
baseSN
baseEpilogSN
baseIncludesSN

baseIncludesEpilogSN
baseIncludesPrologSN

basePrologSN
classSN
constantSN
constantPrologSN
constantEpilogSN
datasN
dataEpilogSN
dataPrologSN
enumSN
enumEpilogSN
enumPrologSN
epilogSN

inheritedMethodsSN

interfaceSN
interfaceEpilogSN
interfacePrologSN
metaSN
metaIncludeS
methodsSN
methodsSN
methodsEpilogSN
methodsPrologSN
moduleSN
moduleEpilogSN
modulePrologSN
overrideMethodsSN
passthruSN
passthruEpilogSN
passthruPrologSN
prologSN
releaseSN
structSN
structEpilogSN
structPrologSN
typedefSN
typedefEpilogSN
typedefPrologsSN
unionEpilogSN
unionSN
unionPrologsN

Programmer’s Guide for SOM and DSOM

Initial Value
(Section Name)
attributes
attributeEpilogs
attributePrologS
basesS
baseEpilogs
baseIncludessS

baseIncludesEpilogS
baseIncludesPrologs

basePrologs
classS

constantsS
constantPrologs
constantEpilogS
datas
dataEpilogs
dataProlog$S
enumS
enumEpilogs
enumPrologsS
epilogs
inheritedMethodssS
interfacesS
interfaceEpilog$S
interfacePrologS
meta$S
metaIncludeS
methodssS
methodss
methodsEpilogS
methodsPrologS
modulesS
moduleEpilog$S
modulePrologS
overrideMethodsS
passthrus
passthruEpilogs
passthruPrologS
prologs

releaseS

structsS
structEpilogS
structPrologSsS
typedefs
typedefEpilogsS
typedefPrologs
unionEpilogs
unionS
unionPrologs

Used by Method
somtEmitAttribute
somtEmitAttributeEpilog
somtEmitAttributeProlog
somtEmitBase
somtEmitBaseEpilog
somtEmitBaseIncludes

somtEmitBaseIncludesEpilog
somtEmitBaseIncludesProlog

somtEmitBaseProlog
somtEmitClass
somtEmitConstant
somtEmitConstantProlog
somtEmitConstantEpilog
somtEmitData
somtEmitDataEpilog
somtEmitDataProlog
somtEmitEnum
somtEmitEnumEpilog
somtEmitEnumProlog
somtEmitEpilog
somtEmitMethod
somtEmitInterface
somtEmitInterfaceEpilog
somtEmitInterfaceProlog
somtEmitMeta
somtEmitMetaIncludes
somtEmitMethod
somtEmitMethods
somtEmitMethodsEpilog
somtEmitMethodsProlog
somtEmitModule
somtEmitModuleEpilog
somtEmitModuleProlog
somtEmitMethod
somtEmitPassthru
somtEmitPassthruEpilog
somtEmitPassthruProlog
somtEmitProlog
somtEmitRelease
somtEmitStruct
somtEmitStructEpilog
somtEmitStructProlog
somtEmitTypedef
somtEmitTypedefEpilog
somtEmitTypedefProlog
somtEmitUnionEpilog
somtEmitUnion
somtEmitUnionProlog

Appendix A. Error Codes

This appendix provides information about error codes generated from the SOMobjects
Developer Toolkit. These error codes pertain to SOM and DSOM as well as Object
Services. Informational-only messages (as opposed to error messages) are not
documented.

00000 Special Error Codes

20000 SOM Kernel Error Codes

30000 DSOM Error Codes

54000 Externalization Service Error Codes
55000 Naming Service Error Codes

56000 Security Service Error Codes

57000 Object Services (OS) Server Error Codes
60000 Metaclass Framework Error Codes

Special Error Codes

00000

00001

The following error messages can be used by any Object Service:

UNDEFINED

Explanation: This error code has no specific meaning. Any object service can use this
error code if there is not a service-specific error code that would provide additional
information. If an object service makes an error log entry to save data for service personnel,
but none of the data is likely to be useful, you can choose this error code.

Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

EXCEPTION_MAPPED

Explanation: An object service received a user-exception from a sub-service method call.
When the receiving object service does not list this exception on its own raises keyword, it
must either map the received exception into the user-exception that is listed on its raises
keyword, or a system exception. The object service can then raise the new, mapped
exception to its caller.

Programmer Response: Determine the original exception that was raised. Review the
error log entries or messages for a corresponding message that contains the text . . .
Raised USER_EXCEPTION... Once you locate this message, follow the action list in this
appendix for the error code it contains. This error code is usually the best place to look to
find information for resolving the problem.

SOM Kernel Error Codes

20011

20029

20039

You might encounter the following error codes from the SOM kernel and the various
frameworks of the SOMobjects Developers Toolkit while an application is running.

SOMERROR_CCNullClass
Explanation: A null class argument is being passed to a somDescendedFrom Method.

SOMERROR_SompntOverflow
Explanation: The internal buffer used in the somPrintf Function is overflowing.

SOMERROR_MethodNotFound
Explanation: somFindMethod(Ok) Methods is failing to find the indicated method.

Error Codes 397

20049

20059

20069

20079

20089

20099

20109

20119

20121

20131

20149

20159

20169

20179

20189

20199

20219

20229

SOMERROR_StaticMethodTableOverflow
Explanation: A method-table overflow is occurring in somAddStaticMethod.

SOMERROR_DefaultMethod
Explanation: A defined method was not added before calling the somDefaultMethod.

SOMERROR_MissingMethod
Explanation: The specified method is not defined on the target object.

SOMERROR_BadVersion
Explanation: An attempt is being made to load, create, or use a version of a class-object
implementation that is incompatible with the program.

SOMERROR_Nullid
Explanation: The som_Checkld is being given a NULL ID to check.

SOMERROR_OutOfMemory
Explanation: Memory is exhausted.

SOMERROR_TestObjectFailure
Explanation: The somObjectTest is finding problems with the object it is testing.

SOMERROR_FailedTest
Explanation: The somTest is detecting a failure.

SOMERROR_ClassNotFound
Explanation: The somFindClass Method cannot find the requested class.

SOMERROR_OIldMethod
Explanation: An old-style method name is being used.
Programmer Response: Change the method to the appropriate name.

SOMERROR_CouldNotStartup
Explanation: The somEnvironmentNew Function is failing to complete.

SOMERROR_NotRegistered
Explanation: The somUnloadClassFile Method argument is not a registered class.

SOMERROR_BadOverride
Explanation: The somOverrideSMethod is being invoked for a method that is not defined
in a parent class.

SOMERROR_NotimplementedYet
Explanation: The method raising the error message is not implemented.

SOMERROR_MustOverride
Explanation: The method raising the error message should be overridden.

SOMERROR_BadArgument
Explanation: An argument to a core SOM method is failing a validity test.

SOMERROR_NoParentClass
Explanation: While creating a class object, the parent class cannot be found.

SOMERROR_NoMetaClass
Explanation: While creating a class object, the metaclass object cannot be found.

DSOM Error Codes

398

You might encounter the following error codes from DSOM while an application is running.
Obsolete messages have been removed, so message numbers are not in sequential order.

Programmer’s Guide for SOM and DSOM

30001

30002

30003

30004

30006

30007

30008

30009

30015

30016

SOMDERROR_NoMemory
Explanation: DSOM run time is failing to allocate the necessary memory.
Programmer Response: Bring down the DSOM application and free system resources.

SOMDERROR_NotIlmplemented
Explanation: The function or method is not yet supported.
Programmer Response: Do not call the function or method in the application.

SOMDERROR _InvalidProtocolinformation

Explanation: Invalid protocol information is being specified in the configuration file.
Programmer Response: See Chapter 2, Configuration and Startup for a description of
SOMDPROTOCOLS and stanza definitions for each protocol.

SOMDERROR_SOMDDAIreadyRunning

Explanation: The DSOM daemon is already started. That is, an instance of somdd is
already running.

Programmer Response: If the current instance of somdd is not responding properly,
delete all instances of somdd and restart a new copy.

SOMDERROR_InvalidConfigSetting

Explanation: The configuration variable setting is not valid.

Programmer Response: See Chapter 2, Configuration and Startup for a description of
the environment variable and set it to a valid value. Use the somdchk command to display
the current environment.

SOMDERROR_BadEnvironment

Explanation: One of the following applies:

» An environment is being passed to a DSOM function or method and the major field is
not set to NO_EXCEPTION.

* Aninvalid environment structure is being returned for a user exception.

Programmer Response: If the first scenario in the Explanation applies, verify that a valid
environment is being passed to DSOM. A valid environment has the major field set to
NO_EXCEPTION. If the second scenario in the Explanation applies, use
somSetException to set the exception value in the Environment structure.

SOMDERROR_HostAddress

Explanation: DSOM run time is encountering an invalid host address.

Programmer Response: Verify the network setup. Verify that the network database that
associates host names and addresses contains the correct entries for client and server
machines.

SOMDERROR_CouldNotStartProcess

Explanation: The DSOM daemon cannot start a new process to execute the server
program. Server programs are specified in the Implementation Repository.
Programmer Response: Ensure that a fully-qualified path name is specified or that the
server program resides in the directory specified in the path.

SOMDERROR_BadTypeCode
Explanation: An invalid type code is being encountered while processing the request.
Programmer Response: Use a valid type codes.

SOMDERROR_BadDescriptor

Explanation: The DSOM run time is encountering bad or missing information in the
Interface Repository.

Programmer Response: Follow these steps:

1. Runthe IR emitter to update the Interface Repository with the specified identifier.
2. Use the irdump utility to verify that the Interface Repository has been correctly updated.

Error Codes 399

30017

30018

30019

30020

30021

30022

30023

30024

30025

400

SOMDERROR_InvalidBaseProxyClass

Explanation: Aninvalid class is specified for a user-defined proxy.
Programmer Response: Modify the user-defined proxy so that it is derived from
SOMDClientProxy.

SOMDERROR_CouldNotStartThread
Explanation: The DSOM run time cannot create a thread.
Programmer Response: Bring down the DSOM application and free system resources.

SOMDERROR_NoMessages

Explanation: SOMOA:.execute_next_request, Request::get_response, or
Request::get_next_response is calling, indicating not to wait but no requests or
responses are pending. This might not be an error.

Programmer Response: Ignore the exception or change the method invocation to request
a block until the message is available.

SOMDERROR_UndeclaredException

Explanation: The application is raising an exception that is not specified in the method
definition.

Programmer Response: Modify the method IDL to contain a raises expression for the
exception.

SOMDERROR_Marshaling Error

Explanation: The data passed to the DSOM marshaler is not valid or did not match the
expected data type.

Programmer Response: Follow these steps:

1. Ensure that the data passed to the DSOM marshaler (for example, the parameters
passed to a remote method invocation or the results returned from a remote invocation)
are correctly initialized.

2. Ensure that all data structures are constructed according to the data type definitions in
IDL for the method being invoked.

SOMDERROR_Serverinterrupt

Explanation: The SOMOA::interrupt_server method is being invoked on the SOMOA
object.

Programmer Response: Do not invoke interrupt_server on the SOMOA object.

SOMDERROR_CommTimeOQut

Explanation: Client and server processes are not communicating properly, which can
happen if the somdd processes are not started on all participating server machines prior to
starting the application processes.

Programmer Response: Follow these steps:

1. Check the network setup and verify that your networking software is running.
2. Increase the values of SOMDRECVWAIT and SOMDSENDWAIT.

SOMDERROR_CannotConnect

Explanation: There is no protocol over which the client can connect to the server.
Programmer Response: Ensure that the SOMDPROTOCOLS setting of the client has at
least one entry in common with the SOMDPROTOCOLS setting under which the server
was registered. Use the regimpl command to view the HOSTNAME setting for the server.

SOMDERROR_BadConnection

Explanation: A previous connection with a server is being terminated because of a
communications error. The request might not be successful.

Programmer Response: Check the network setup and verify that your networking
software is running.

Programmer’s Guide for SOM and DSOM

30034

30043

30044

30045

30046

30047

SOMDERROR_BadObjref
Explanation: The function or method is calling on an invalid object reference.
Programmer Response: Use or generate another reference to the target object.

SOMDERROR_NoSOMDInit

Explanation: The application is attempting to create or access remote objects before
DSOM initializes.

Programmer Response: Modify the application to call function SOMD _Init before making
any run-time calls.

SOMDERROR_CommunicationsError

Explanation: A communications error is occurring, which can happen if the somdd
processes are not started on all participating server machines prior to starting the
application processes.

Programmer Response: Check the network setup and verify that your networking
software is running.

SOMDERROR_ImpIReplO

Explanation: An error is occurring while accessing Implementation Repository files. The
files might be corrupted. This might indicate that the Implementation Repository files cannot
be found or cannot be accessed.

Programmer Response: Follow these steps:

1. Verify that the SOMDDIR environment variable is set to a directory that grants read and
write permissions to the DSOM user. (It is best if the directory hame is fully qualified.)

2. If the SOMDDIR environment variable is not set, verify that the default directory,
($SOMBASE/etc/dsom on AlX, and $SOMBASE%\etc\dsom, on OS/2 or Windows NT
is set with the correct permissions.

3. Ensure that the files contained in the directory all have read and write permissions
granted to the DSOM user.

4. |If the preceding steps did not work, restore a backup version of the files, if available. If
a backup version of the files is not available, rebuild the Implementation Repository.

SOMDERROR_EntryNotFound

Explanation: The requested entry in the Implementation Repository cannot be found.
Programmer Response: Use the regimpl command to examine the contents. Reissue
the command with the correct implementation ID, alias, or class.

SOMDERROR_ClassNotFound

Explanation: One of the following applies:

 DSOM run time is failing to load the specified class, which can occur if the class name
specified in calls to somdCreate or find_any is not associated with any server that is
registered.

» The class libraries (DLLS) used to build the proxy class are statically linked to the
program, but the DLL's SOMInitModule function is not properly initializing the class
object, or has no SOMInitModule.

e A process cannot load the DLL associated with a particular class.

Programmer Response: Follow these steps:

1. Ensure that the class name is associated with at least one of the server
implementations.

2. Ensure that the DLL resides in the directory specified in LIBPATH or PATH and that the
class has an entry in the Interface Repository.

3. Verify that the DLL contains the SOMInitModule initialization function.

Error Codes 401

30048

30049

30061

30066

30070

30072

30080

402

4. Ensure that the IDL for the class contains the dliname modifier, that this IDL has been
compiled into the Interface Repository, and that the DLL name given by the dliname
modifier can be loaded. (Use the irdump utility to determine whether a particular class
appears in the IR.)

SOMDERROR_ServerNotFound

Explanation: The input server alias cannot be found, or the SOMDObjectMgr object is
raising an exception in response to a somdFindServer, somdFindServerByName,
somdFindServerByClass, or somdFindAnyServerByClass invocation to indicate that the
requested server cannot be found.

Programmer Response: Follow these steps:

1. Use the regimpl command to ensure that the requested server has been registered
with the appropriate classes (in the case of somdFindServerByClass or
somdFindAnyServerByClass).

2. Ensure that the application receiving the error can successfully contact the Naming
Server into which this information is registered.

SOMDERROR_ServerAlreadyExists

Explanation: A server process that is running has already registered itself with the DSOM
daemon (somdd) using the implementation ID of the desired server program.
Programmer Response: If another instance of the server is not actually running, restart
the DSOM daemon. (This exception can occur if a user-written server program terminates
without notifying the DSOM daemon via a call to deactivate_impl).

SOMDERROR_CtxNoPropFound

Explanation: The property being passed to get_values or delete_values is not in the
Context object.

Programmer Response: Modify the application to pass a valid property name.

SOMDERROR_BadParm

Explanation: An invalid parameter value is being passed to a function or method.
Programmer Response: See SOMobjects Developer Toolkit Programmer’'s Reference for
a description of the parameters to the specified function or method.

SOMDERROR_AuthnFail

Explanation: DSOM cannot initialize the security run time in a client or server.
Programmer Response: If you do not want to use any secure DSOM servers, disable
authentication by setting LOGIN INFO_ SOURCE= (with no setting specified) in the [somsec]
stanza of the somenv.ini file and restart your application. If you want to communicate with
secure DSOM servers, ensure that the Naming Server is running correctly and that you
have successfully configured SOMobjects on your machine. Restart your application.

SOMDERROR_SecurityFail

Explanation: The security initialization is failing.

Programmer Response: Ensure that the Security Server is running correctly and that you
are logged in. If the Security Server is running on an OS/2 platform, ensure that LAN Server
4.0 is configured properly. Also, make sure the client has been registered in the user
registry for the platform where the Security Server resides.

SOMDERROR_DuplicateEntry

Explanation: DSOM cannot update the Implementation Repository. If you are attempting
to add a new implementation definition, an alias already exists. If you are attempting to add
a new class to an existing entry, a class is already associated with entry.

Programmer Response: Reissue the command with a new alias or class name.

Programmer’s Guide for SOM and DSOM

30081

30082

30083

30084

30085

30086

30088

30089

30090

30109

SOMDERROR_ Internal

Explanation: An internal DSOM error is occurring.

Programmer Response: Retry the scenario. If the problem persists, gather information
about the problem and follow your local procedures for resolving problems.

SOMDERROR_BadUnionTag

Explanation: The union discriminant value does not match any of the defined cases and
no default case is defined.

Programmer Response: See Union Type on page 121 in SOMobjects Developer Toolkit
Programmer’s Guide for additional information on the union IDL type.

SOMDERROR_BadSequence

Explanation: An invalid sequence is being found while marshalling.

Programmer Response: See Template Types (Sequences and Strings) on page 122 in
SOMobijects Developer Toolkit Programmer’s Guide for a description of the sequence IDL
type. (It is an error for _length to be greater than _maximum. For bound sequences, it is an
error to set _length or _maximum to be larger than the specified bound.)

SOMDERROR_NotStreamable

Explanation: DSOM run time cannot marshal object as pass_by_copy. Processing will
continue. An object reference is being sent instead.

Programmer Response: Verify that the pass_by_copy object is derived from
CosStream::Streamble or that it is local (not a proxy).

SOMDERROR_BadForeign

Explanation: A static foreign type is being produced through run-time conversion. Static
foreign types should be used only in IDL.

Programmer Response: Do not use an any type that contains a static foreign type.

SOMDERROR_NotForeignMarshaler
Explanation: Aninvalid class is specified for the dynamic foreign type.
Programmer Response: Derive the class from SOMDDataMarshaler::ForeignMarshaler.

SOMDERROR_NamingNotActive

Explanation: The Naming Service is not active. Entries can be added to the
Implementation Repository without updating the Naming Service. However, entries with
information in both the Implementation Repository and the Naming Service must be kept
consistent. Such entries cannot be updated or deleted if the Naming Service is not active.
Programmer Response: Verify that som_cfg has been run by checking for INSTALL and
SOMNMOBJREF entries in the [somnm] stanza of the configuration file.

SOMDERROR_WrongRefType

Explanation: The function or method is being invoked on an incompatible object
reference. For example, SOMOA::get_id cannot be invoked on an object reference that is
NULL, generated by the create_ SOM_ref method, or a proxy.

Programmer Response: Modify the application to pass a compatible object reference.

SOMDERROR_AbstractClass
Explanation: The method is being invoked on an abstract class.
Programmer Response: Modify the application code to invoke the method on a subclass.

SOMDERROR_SOMDDNotRunning
Explanation: One of the following applies:
* The DSOM daemon is not started.

 The DSOM daemon is running, but is not using the same:
- SOMDPROTOCOLS setting
- HOSTNAME setting

Error Codes 403

35xxxX

4XXXX

- SOMDPORT setting

that was in use by the server that created the object reference that the client application
or protocols are trying to use.

* You are using IPC and using an invalid transient object to establish a connection with
the server.

Programmer Response:
» Ensure that the DSOM daemon, somdd, is running on the server machine. The
daemon prints a message when it is ready to accept incoming requests.

* Ensure that the SOMDPROTOCOLS, HOSTNAME, and SOMDPORT settings in the
somenv.ini file used by the DSOM daemon are consistent with those used by the
server that created the object reference that the client is trying to use. Be aware that
each SOMDPROTOCOLS setting has a corresponding stanza in the somenv.ini file,
each of which can have its own HOSTNAME and SOMDPORT settings.

» If you are using IPC and invoking on a transient object reference, verify that the
instance of the server that generated the reference is still active. Consider using a
persistent object reference.

SOMDERROR_SOCKET

Explanation: A socket error is occurring with a return code equal to xxx.

Programmer Response: Consult the technical reference for the implementor of the socket
protocol in use.

SOMDERROR_Operating System

Explanation: An operating system error is occurring with a return code equal to Xxxx.
Programmer Response: Consult the technical reference for the operating system being
used.

Externalization Service Error Codes

54000

54001

54002

404

You might encounter the following error codes from the Externalization Service while an
application is running.

somStream_GENERAL

Explanation: The method is raising a standard exception.

Programmer Response: Refer to the name of the standard exception to determine the
cause of the problem. Gather information about the problem and follow your local
procedures for resolving problems.

somStream_SEMAPHORE_CREATE
Explanation: An error is occurring while creating a semaphore.
Programmer Response: Follow these steps:

1. Ensure that your system is not exceeding the maximum number of semaphores it is
allowed to create.
2. Ensure that your system has threading support.

somStream_SEMAPHORE_REQUEST
Explanation: An error is occurring while requesting a semaphore.
Programmer Response: Follows these steps:

1. Check the global environment after you create each object to ensure that it creates and
initializes properly.

Ensure that your system has threading support

Check for other threads in the process that might have acquired the semaphore and
not released it.

Programmer’s Guide for SOM and DSOM

54003

54012

54018

54019

54020

54021

54026

54027

54028

54029

54030

somStream_SEMAPHORE_RELEASE

Explanation: An error is occurring while releasing a semaphore.

Programmer Response: Review the error log for any previous errors indicating a failure
when requesting a semaphore.

somStream_METHOD_IS_ABSTRACT
Explanation: The method is not implemented.
Programmer Response: Do not instantiate objects on abstract classes.

somStream_ALREADY_STREAMED_PARMS

Explanation: Parameters being passed to already_streamed are not valid.
Programmer Response: Ensure that you pass to the already_streamed method:
e apointer to an object, and

* apointer to a class object that is a parent of the object.

somStream_BAD_BUFFER_PARAMETER

Explanation: The parameter to set_buffer has an invalid length or the header is incorrect.
Programmer Response: Ensure that the buffer you are attempting to set was produced
by the _get_buffer method of the same type of StreamlO. Ensure that all of the fields of
the octet sequence are set correctly.

somStream_ICONV_FAILURE

Explanation: An error is occurring while converting the code page of the stream data.
Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

somStream_READ_PASSED_END_OF_STREAM

Explanation: You are attempting to read past the end of the data in the StreamlIO.
Programmer Response: Ensure that you are reading the same number and same type of
items from the stream as were written to the stream. To read the stream twice, you must
use the reset method.

somStream_UNABLE_TO_READ_SHORT

Explanation: The read_short method is failing.

Programmer Response: Ensure that you are reading the same number and same type of
items from the stream as were written to the stream.

somStream_UNABLE_TO_READ_LONG

Explanation: The read_long method is failing.

Programmer Response: Ensure that you are reading the same number and same type of
items from the stream as were written to the stream.

somStream_UNABLE_TO_READ_USHORT

Explanation: The read_unsigned_short method is failing.

Programmer Response: Ensure that you are reading the same number and same type of
items from the stream as were written to the stream.

somStream_UNABLE_TO_READ_ULONG

Explanation: The read_unsigned_long method is failing.

Programmer Response: Ensure that you are reading the same number and same type of
items from the stream as were written to the stream.

somStream_UNABLE_TO_READ_STRING

Explanation: The read_string method is failing.

Programmer Response: Ensure that you are reading the same number and same type of
items from the stream as were written to the stream.

Error Codes 405

54031

54032

54033

54034

54035

54037

somStream_UNABLE_TO_READ_CHAR

Explanation: The read_char method is failing.

Programmer Response: Ensure that you are reading the same number and same type of
items from the stream as were written to the stream.

somStream_UNABLE_TO_READ_FLOAT

Explanation: The read_float method is failing.

Programmer Response: Ensure that you are reading the same number and same type of
items from the stream as were written to the stream.

somStream_UNABLE_TO_READ_DOUBLE

Explanation: The read_double method is failing.

Programmer Response: Ensure that you are reading the same number and same type of
items from the stream as were written to the stream.

somStream_UNABLE_TO_READ_OCTET

Explanation: The read_octet method is failing.

Programmer Response: Ensure that you are reading the same number and same type of
items from the stream as were written to the stream.

somStream_UNABLE_TO_READ_BOOLEAN

Explanation: The read_boolean method is failing.

Programmer Response: Ensure that you are reading the same number and same type of
items from the stream as were written to the stream.

somStream_READ_FROM_EMPTY_STREAM

Explanation: You are trying to read data from a StreamIO that is empty.

Programmer Response: You must put data into the stream, by either writing to it or using
the set_buffer method, before you attempt to read from it.

Naming Service Error Codes

55001

55002

55003

55004

406

You might encounter the following error codes from the Naming Service while an
application is running.

SOMNM_AbstractClass

Explanation: The specified class is defined as an abstract class. No implementation is
provided for this class. You cannot invoke methods on an abstract class.

Programmer Response: Use the concrete class shipped with the product.

SOMNM_RandomFailed

Explanation: The file name generator is failing to generate a unique file name to be used
by the Naming Service, which can happen if the directory pointed to by the SOMDDIR
environment variable contains a large number of files (that is, the Naming Service has
approached its limits).

Programmer Response: Try deleting unnecessary naming contexts. If the problem
persists, gather information about the problem and follow your local procedures for
resolving problems.

SOMNM_DestroyFailed

Explanation: An error is occurring while destroying a naming context.

Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMNM_ImplLimit

Explanation: The implementation is reaching its internal limits.

Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

Programmer’s Guide for SOM and DSOM

55101

55102

55103

55104

55201

55202

55203

55301

55401

55402

SOMNM_DatabaseError

Explanation: An error is occurring while accessing a naming database. The SOMDDIR
environment variable in the somenv.ini file specifies the location of these databases.
Programmer Response: Ensure that the drive, path, and directory where the naming
database files are located are valid.

SOMNM_DataBaseOpenError

Explanation: An error is occurring while opening a naming database. The SOMDDIR
environment variable in the somenv.ini file specifies the location of these databases
Programmer Response: Ensure that the drive, path, and directory where the naming
database files are located are valid.

SOMNM_TypecodeError

Explanation: An error is occurring while manipulating a property value.
Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMNM_DatabaseCreateError

Explanation: An error is occurring while creating a naming database. The SOMDDIR
environment variable in the somenv.ini file specifies the location of these databases.
Programmer Response: Ensure that the drive, path, and directory where the naming
database files are located are valid. Ensure that the directory permissions allow files to be
created.

SOMNM _FilterinternalError

Explanation: An error is occurring in the Naming Service while processing a search
request.

Programmer Response: Try restarting the Naming Server. If that does not work, gather
information about the problem and follow your local procedures for resolving problems.

SOMNM_ConstraintError

Explanation: An error is occurring in one of the find methods while processing the
constraint.

Programmer Response: Ensure that the constraint string specified in the search satisfies
the grammar.

SOMNM_ConstraintTooLong

Explanation: The constraint that is specified for the find method is exceeding internal
limits.

Programmer Response: Invoke the find method using a smaller constraint. Try splitting
the query into sub-queries.

SOMNM_ANYInternalError

Explanation: An error is occurring while trying to use the any data type.
Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMNM_NoComponent

Explanation: The method is attempting to operate on a non-existent name component,
which can happen if you try to access a name component that is not defined in the LName
object.

Programmer Response: Ensure that the specified component was inserted using the
insert_component method.

SOMNM_OverFlow

Explanation: The method is attempting to insert a name component into a LName object
and is exceeding the maximum number of components in an LName object. The maximum
number of components allowed is 16.

Programmer Response: Reduce the number of name components in the LName object.

Error Codes 407

55404

55405

55407

55408

55412

55415

55416

SOMNM_NotSet

Explanation: The method is attempting to retrieve the id string or the kind string within a
name component. The id string or the kind string might not be set, which might be
acceptable.

Programmer Response: Do nothing if the calling client is using the Naming Service in
such a way that the id string or kind string does not need to be set; otherwise, check your
application logic and retry the operation.

SOMNM_NotFound

Explanation: The Naming Service cannot resolve the name, which can happen if the
name was never bound to the naming context or if the name was unbound from the context.
Programmer Response: If the name is a compound name, ensure that all the sub-
contexts in the compound name are accessible from the NamingContext object on which
the resolve operation was performed.

SOMNM_AlreadyBound

Explanation: The bind method (or its variations) is attempting to associate an object to a
name that was previously bound in the same context.

Programmer Response: Use the rebind method (or its variations) to replace an existing
binding or use the unbind method followed by the bind method to achieve the same result.

SOMNM_NotEmpty

Explanation: A destroy method is being invoked on a naming context that has bindings.
All bindings in the naming context must to be removed before the naming context can be
destroyed.

Programmer Response: Use the unbind method to unbind objects.

SOMNM_PropertyNotFound

Explanation: A method call to get the property cannot find the specified property. If the
method was a batch operation such as get_properties, then the last property in the list that
cannot be found results in this exception.

Programmer Response: Do nothing if the calling client is using the Naming Service in
such a way that the specified property does not need to be set; otherwise, check your
application logic and retry the operation.

SOMNM_lllegalConstraint

Explanation: The constraint specified for the find methods is not syntactically valid. The
BNF grammar for the search constraint is described in Appendix A, BNF for Naming
Constraint Language in Programmer’s Reference for Abstract Interface Definitions.
Programmer Response: Correct the syntax of the constraint.

SOMNM_BindingNotFound

Explanation: One of the find methods cannot find a binding that satisfies the specified
search constraint. This might be valid response that requires no further action.
Programmer Response: Ensure that the distance parameter that was specified for the
search is valid and reasonable.

Security Service Error Codes

56001

408

You might encounter the following error codes from the Security Service while an
application is running.

SOMSEC_ERRCODE_AuthnFail
Explanation: The principal making a remote method invocation is failing authentication.
Programmer Response: Follow these steps:

Programmer’s Guide for SOM and DSOM

56006

56007

56009

56010

56011

56013

56014

56015

1. Ensure that you are logged on to LAN Services. Alternatively, you can log off LAN
Server and run your application without authentication, bearing in mind that a secure
server will reject unauthenticated method invocations.

2. Restart your application.

SOMSEC_ERRCODE_NoRegistry

Explanation: The Security Server cannot create or open its database. Only one Security
Server can be running at a time.

Programmer Response: Ensure that a Security Server is not already running. Also,
ensure that you have set the SOMDDIR environment variable in your somenv.ini file to a
directory in which you have write access.

SOMSEC_ERRCODE_BadRegistry

Explanation: An error is occurring while opening the Registry database.
Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMSEC_ERRCODE_ObjectNotFound

Explanation: Initialization of Security Services is failing because needed resources cannot
be obtained from the Naming Services.

Programmer Response: Ensure that SOMobjects is properly configured.

SOMSEC_ERRCODE_AuthnRequired

Explanation: The application is making an unauthenticated remote method request to a
secure server.

Programmer Response: Log on to LAN Services and restart your application.
Alternatively, restart the application server in a non-secure mode using the regimpl
command.

SOMSEC_ERRCODE_InvalidSessld

Explanation: An error is occurring in SOMobjects.

Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMSEC_ERRCODE_CannotLoadDl|

Explanation: A LAN Services dynamic link library (DLL) cannot be loaded and used by
Security Services. The name of the DLL in question is logged in the message that
accompanies this error. The Security Services cannot perform authentication without this
DLL. Your application will continue running, unauthenticated.

Programmer Response: If your application requires authentication, as the case will be if it
needs services from a secure server, you need to stop your application and reinstall LAN
Services on your machine before restarting your application.

SOMSEC_ERRCODE_FunctionMissing

Explanation: A LAN Services dynamic link library (DLL) is available but is not the
appropriate DLL for authentication purposes. Your application will continue running,
unauthenticated.

Programmer Response: Upgrade or reinstall LAN Services if you need to use the
authentication facility provided by the Security Services.

SOMSEC_ERRCODE_NoLoginContext

Explanation: You did not log on to LAN Services before starting your application. Your
application will continue running, unauthenticated.

Programmer Response: If you need to use the authentication facility provided by the
Security Services, stop the application, log on, and restart the application.

Error Codes 409

56017

56018

56019

56020

56021

56022

SOMSEC_ERRCODE_UnknownError

Explanation: A subsystem used by the Security Service is giving an unrecognized return
code.

Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMSEC_ERRCODE_IOError

Explanation: The Security Server is encountering an error while using its database. There
can be only one Security Server running at a time.

Programmer Response: Check that a Security Server is not already running. Also,
ensure that you have set the SOMDDIR environment variable in your somenv.ini file to a
directory in which you have write access.

SOMSEC_ERRCODE_NotSecure

Explanation: The Security Service is attempting to authenticate your method requests to a
non-secure server.

Programmer Response: Do nothing if your application expects the server to be non-
secure. Otherwise, stop the server and restart it in a secure mode. Restart your application.

SOMSEC_ERRCODE_BadSequence

Explanation: An error is occurring in the Security Service.

Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMSEC_ERRCODE_UnrecognizedMsgNr

Explanation: An error is occurring in the Security Service.

Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMSEC_ERRCODE_UnrecognizedMsgFormat

Explanation: An error is occurring in the Security Service.

Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

Object Services (OS) Server Error Codes

57000

57001

57002

410

You might encounter the following error codes from the Object Services Server while an
application is running.

SOMOS_Server_Already_Running

Explanation: The initialization of the persistence database is failing because the OS
Server is already running. Only one instance of the OS Server associated with a particular
implementation ID or implementation alias can be running in a system at any given time.
Programmer Response: Either start the OS Server using a different implementation alias
or terminate the existing OS Server.

SOMOS_Database_Directory_Not_Accessible

Explanation: The OS Server cannot access the directory specified by the SOMDDIR
environment variable in the somenv.ini file.

Programmer Response: Verify that the path, drive, and directory are valid and accessible
and restart the OS Server process again.

SOMOS_Unable _To_Open_Master_Database

Explanation: The OS Server cannot open or create the master database somosdb.dat.
This database contains the references to the metadata database and the attribute
persistence database for each implementation of an OS Server. The SOMDDIR

Programmer’s Guide for SOM and DSOM

57003

57004

57005

57006

57007

57008

57009

57010

environment variable in the somenv.ini file specifies where the master database is located
on your system.
Programmer Response: Ensure that the database drive, path, and directory are available
and accessible.

SOMOS_Unable_To_Open_Metadata Database

Explanation: The OS Server cannot access the metadata database. This database
contains the persistence object information for the OS Server. The SOMDDIR environment
variable in the somenv.ini file specifies where the metadata database is located.
Programmer Response: Ensure that the database drive, path, and directory are available
and accessible.

SOMOS_Unable_To_Open_Attribute Persist_Database

Explanation: The OS Server cannot access the attribute persistence database. The
SOMDDIR environment variable in the somenv.ini file specifies where the attribute
persistence database is located.

Programmer Response: Ensure that the database drive, path, and directory are available
and accessible.

SOMOS_Unable_To_Find_Attribute_Persist_Database

Explanation: The OS Server cannot initialize because the attribute persists database
cannot be found. The SOMDDIR environment variable in the somenv.ini file specifies
where the attribute persistence database is located.

Programmer Response: Ensure that the database drive, path, and directory are available
and accessible.

SOMOS _Unable _To_Find_Metadata Database

Explanation: The OS Server cannot initialize because the metadata database cannot be
found. The SOMDDIR environment variable in the somenv.ini file specifies where the
metadata database is located.

Programmer Response: Ensure that the database drive, path, and directory are available
and accessible.

SOMOS_Usage Error

Explanation: An invalid command is being entered to start the OS Server. The following
parameters are valid: somossvr [-i] [-d] -a [impl_alias | impl_uuid], where -i is to initialize
the OS Server the first time it is started, -d is for debugging purposes, and -a is to specify
the implementation alias for the OS Server.

Programmer Response: Specify the correct parameters to start the OS Server.

SOMOS_Unable_To_Find_Implementation_Definition

Explanation: The OS Server cannot find the implementation definition as it is specified to
the OS Server.

Programmer Response: Correct the implementation definition as it is specified to the
somossvr program. If you start the OS Server manually, ensure that the -a option specifies
a valid implementation alias or that the implementation ID is valid, which is specified without
any parameters.

SOMOS_Impl_Is_Ready_ Failed

Explanation: The _impl_is_ready() call is failing within the OS Server.
Programmer Response: See DSOM Error Codes for this function for a further
description of possible error conditions.

SOMOS_SOMD _Init_Failed

Explanation: The SOMD_Init() function is failing within the OS Server.
Programmer Response: See DSOM Error Codes for this function for a further
description of possible error conditions.

Error Codes 411

57012

57100

57101

57102

57103

57104

57105

57106

57107

57108

412

SOMOS_Server_Exit_Abnormal.

Explanation: The OS Server process is exiting abnormally, which can be caused by an
unrecoverable error.

Programmer Response: Check previous error log messages for this server process for
an explanation of the abnormal exit. Correct the problem and restart the OS Server.

SOMOS_Class_Name_Error
Explanation: A method call to make_persistent_ref cannot find the class name specified.
Programmer Response: Pass a valid class name to this method and retry the operation.

SOMOS_UUID_Create_Error

Explanation: The make_persistent_ref method cannot create a UUID.

Programmer Response: See SOM Kernel Error Codes for a further description on why
the call somCreateUUID() failed and for possible solutions.

SOMOS_Not_In_Cache

Explanation: An attempt to find an object in the internal cache is unsuccessful.
Programmer Response: Ensure that the item is in the persistence database, which
makes use of the internal cache. The object reference might not be persistent, if that is the
case, ensure that a persistence reference is created for the object with a call to
make_persistent_ref().

SOMOS_Add_To_Cache_Error

Explanation: The make_persistent_ref method is attempting to add the object to the
internal cache but the object already exists in the cache. This method has already been
performed on the object.

Programmer Response: Do not use the make_persistent_ref method on the specified
object. Correct your program and retry the operation.

SOMOS_Add_Object_To_Database Error

Explanation: The make_persistent_ref method is attempting to add the object to the
persistence database but is encountering an error. The SOMDDIR environment variable in
the somenv.ini file specifies where the databases are located.

Programmer Response: Ensure that the drive, path, and directory containing the
persistence database are valid and accessible.

SOMOS_Database_Error

Explanation: The delete_ref method cannot delete the object reference from the
persistence database. The environment variable SOMDDIR in the somenv.ini file specifies
where the persistence database is located.

Programmer Response: Ensure that the persistence database is still accessible.

SOMOS_Add_ltem_To_Database Error

Explanation: The method is encountering an error while saving metadata to the
persistence database. The persistence database might not be available and accessible.
Programmer Response: Ensure that the drive, path, and directory containing the
persistence databases are valid and accessible.

SOMOS_Database_Synchronization_Error

Explanation: The method is encountering an error while synchronizing the persistence
database. The persistence database might not be available and accessible.
Programmer Response: Ensure that the drive, path, and directory containing the
persistence databases are valid and accessible.

SOMOS_Get_Item_From_Database_ Error.

Explanation: The method is encountering an error while retrieving an item from the
persistence database. The persistence database might not be available and accessible.
Programmer Response: Ensure that the drive, path, and directory containing the
persistence databases are valid and accessible.

Programmer’s Guide for SOM and DSOM

57109

57111

57112

57113

57114

57115

57116

57200

57201

SOMOS_Bad_Reference_Data.

Explanation: The reference data is not from a somOS::Server class, which can happen if
the SOMObjFromRef method is being used on the somOS::Server.

Programmer Response: Correct the reference data and try again.

SOMOS_Get_Object_From_Database Error

Explanation: The somOS::;Server class cannot retrieve an object from the persistence
database. This error can occur in the SOMObjFromRef method when the object reference
is not found in the persistence database.

Programmer Response: Ensure that the object has a persistent reference by using the
make_persist_ref method.

SOMOS_Passivate_Object_Not_Found

Explanation: The passivate_all_object method is being called and not all objects can be
found. Only one error message will be logged even though several objects might not be
found during this method call.

Programmer Response: Ensure that the object reference is valid and that the specified
object can be passivated.

SOMOS_Internal_Cache_Error.

Explanation: The method call is encountering an internal cache problem while attempting
to find an item in the cache.

Programmer Response: Use the make_persistent_ref method call to ensure that the
object has a persistent reference.

SOMOS_Database_Initializing_Error

Explanation: The somOS::Server class is encountering a problem while initializing the
persistent database. This problem can occur if the persistence database directory is not
valid and accessible.

Programmer Response: Ensure that the SOMDDIR environment variable in the
somenv.ini file that specifies the location of the persistence databases is valid and
accessible.

SOMOS_Database _Open_Error

Explanation: The somOS::Server class is encountering a problem opening the internal
persistence databases while initializing the class. This problem can occur if the persistence
database directory is not valid or accessible.

Programmer Response: Ensure that the the SOMDDIR environment variable in the
somenv.ini file that specifies the location of the persistence databases is valid and
accessible.

SOMOS_Cache_Setup_Error

Explanation: The somOS::Server class is encountering an error during initialization while
setting up the internal cache.

Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMOS_Locking_Failure

Explanation: The method is attempting to create a semaphore lock and is failing.
Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMOS_Cache_Error

Explanation: The method is attempting to initialize the internal cache and is failing.
Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

Error Codes 413

57202

57203

57204

57205

57206

57207

57208

57209

57210

57211

414

SOMOS_Database_Error
Explanation: The method is attempting to create the persistence database and is failing.
Programmer Response: Follow these steps:

1. Ensure that the drive, path, and directory are valid and accessible where the
persistence database is located.

2. Ensure that the SOMDDIR environment variable in the somenv.ini file that specifies
where the persistence databases are located is valid and accessible.

SOMOS_Not_In_Database_ Error

Explanation: The specified attribute cannot be found in the database.

Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMOS_Not_In_IR_Error

Explanation: The attribute definition cannot be found in the Implementation Repository.
Programmer Response: Ensure that the Implementation Repository path specified by the
SOMIR environment variable is still valid and accessible and that it contains the required
Implementation Repositories for your environment.

SOMOS_IR_Access_Error

Explanation: An error is occurring while accessing the Implementation Repository to
retrieve an attribute type.

Programmer Response: Ensure that the Implementation Repository path specified by the
SOMIR environment variable is still valid and accessible and that it contains the required
Implementation Repositories for your environment.

SOMOS_Decode_Error

Explanation: An error is occurring while decoding an attribute.

Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMOS_Encode_Error

Explanation: An error is occurring while encoding an attribute.

Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMOS_Parent_Error

Explanation: An error is occurring while calling the parent class of the object.
Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMOS_Persist_Manager_Error

Explanation: An error is occurring while initializing the Persistence Manager class.
Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMOS_No_Persist_Manager_Error

Explanation: An error is occurring while accessing the Persistence Manager class.
Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMOS_OS_Server_Error

Explanation: An error is occurring while calling the somQOS::Server class.
Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

Programmer’s Guide for SOM and DSOM

57212

57213

57214

57215

57216

57217

SOMOS_Mutex_Initialization_Error

Explanation: An error is occurring while initializing a semaphore.

Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMOS_Persistent_Reference_Error

Explanation: An error is occurring while creating or deleting a persistence reference.
Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMOS_No_Database Object_Error

Explanation: The Persistence Manager class cannot create a database object.
Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMOS_No_Cache_Object_Error

Explanation: The Persistence Manager class cannot create a cache object.
Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMOS_Persist_Manager_Already_Initialized_Error.

Explanation: An error is occurring while initializing the Persistence Manager because it is
already initialized.

Programmer Response: Gather information about the problem and follow your local
procedures for resolving problems.

SOMOS_Persist_Manager_Create_Error

Explanation: The Persistence Manager is failing to create a new process.
Programmer Response: Ensure that you have enough resources available in your
system.

Metaclass Framework Error Codes

60019

60029

60069

60079

You might encounter the following messages from the Metaclass Framework while an
application is running.

Explanation: An attempt is being made to construct a class with SOMMSinglelnstance
Metaclass as a metaclass constraint, which can occur indirectly because of the
construction of a derived metaclass. The initialization of the class is failing because
somiInitMIClass defined by SOMMSinglelnstance is in conflict with another metaclass
that is overriding somNew Method. That is, some other metaclass is already claiming the
right to return the value for somNew.

Explanation: An attempt is being made to construct a class with SOMMSinglelnstance
as a metaclass constraint. (This might occur indirectly because of the construction of a
derived metaclass). The initialization of the class is failing because sominitMIClass
defined by SOMMSinglelnstance is in conflict with another metaclass that is overriding
somFree Method. That is, some other metaclass is already claiming the right to override
somFree.

Explanation: A SOMMBeforeAfter metaclass must override both the
sommBeforeMethod and sommAfterMethod. An attempt is being made to create a
SOMMBeforeAfter metaclass where only one of the preceding methods is overridden.

Explanation: An attempt is being made to subclass a non-subclassable metaclass. Only
the SOM kernel is allowed to create subclasses of non-subclassable metaclasses when
building a derived metaclass.

Error Codes 415

60089 Explanation: An attempt is being made to create a proxy class with more than two
parents. A proxy class can have either two parents (a proxy class and the class of a target
object) or one parent (a proxy class: in this case, a special proxy class is being created).

60099 Explanation: An attempt is being made to create a proxy class for which the first parent
was not a descendant of SOMMProxyForObject Class. The first parent of all proxy
classes must be a descendant of SOMMProxyForObject.

416 Programmer's Guide for SOM and DSOM

Appendix B. Converting OIDL Files to IDL

This appendix describes how to convert OIDL class descriptions in .csc files to IDL class
descriptions in .idl files.

The conversion process involves two steps:

» Converting .csc files to .idl files. This step is largely automatic, and most classes can
be converted without intervention.

* Adding extra type information. The difficulty of this step depends largely on how much
passthrus are used to define types and constants.

To Convert or not to Convert

There are several reasons why OIDL users should convert to IDL class descriptions. Unlike
OIDL, IDL offers SOM users multiple inheritance, exception handling, type checking, and
automatic descriptor support. In addition, binaries generated from OIDL class descriptions
are significantly larger and run more slowly than binaries generated from IDL class
descriptions. If users choose not to convert their OIDL class descriptions to IDL, however,
they can continue to use the SOM Compiler to update their classes with a few minor
changes in protocol. These protocol changes are:

1. The SOM Compiler no longer generates a .ph (private) and .h (public) file, only a .h file
that includes bindings for both private and public methods. To generate a public version
of the .h file, first generate a .sc file by invoking the SOM Compiler on the .csc file with
the -ssc option; then generate a .h file from the .sc file by invoking the SOM Compiler
on the .sc file with the -sh option.

2. Because .ph files are no longer used, passthru statements directed toward .ph files
should be redirected toward .h files.

3. passthru statements directed toward .c files should be removed or redirected toward
.ih files.

4. Setthe environment variables SMADDSTAR=1 and SMNOTC=2:
For OS/2:

SET SMADDSTAR=1
SET SMNOTC=2

For AIX:

export SMADDSTAR=1
export SMNOTC=1
5. Any methods that return structures should have the modifier struct attached to them.
For example,

UserStruct getUserStruct (), struct;

Converting .csc Files to .idl Files

The SOM Toolkit supplies a program, ctoi, to assist users in converting .csc files to .idl
files. Before running ctoi, ensure that the directories containing files to convert have all the
necessary .sc and .psc files already created. The SOM Compiler can be run with the -ssc
and -spsc options to create .sc and .psc files from a .csc file.)

The conversion process requires a list of all the classes used in the files to be converted, so
that forward references to classes can be handled correctly. Store this list of class names in

Converting OIDL Filesto IDL 417

418

some file. The name of this file must be specified to the SOM Compiler by the
SMCLASSES environment variable:

For OS/2:
SET SMCLASSES=clsfile
For AIX:

export SMCLASSES=clsfile
The following command executes the ctoi conversion program:

ctoi [filel file2 ...]
The ctoi program generates a .idl file for each specified .csc file.

Once you have run ctoi, you should be able to install and run your application program as
usual. The following situations, however, may require attention:

» Be sure to change any of your installation batch files or makefiles that explicitly mention
.csc, .sc or .psc files so that they instead refer to .idl files.

* Set the environment variables SMADDSTAR=1 and SMNOTC=2:
For OS/2:

SET SMADDSTAR=1
SET SMNOTC=2

For AIX:

export SMADDSTAR=1
export SMNOTC=1
* Any methods that return structures should have the modifier struct attached to them.

For example,
UserStruct getUserStruct (), struct;

e If any of your classes use IDL reserved words as function or variable names, then
these names must be changed. Typical cases include string, context and interface.

» IDL does not permit the following notation for a struct type:

data:
struct stat fileStats;

Instead, you must add a typedef in the IDL interface statement that introduces the data
element:

interface: filemi
typedef struct stat stat;

#ifdef _ SOMIDL
implementation {
stat fileStats;

}i

#endif

}i
To have the typedef emitted into the .h header file, put the typedef within the interface
statement, as shown above. If you don’t want the typedef to be emitted in the .h header
file, then put it outside the interface statement or in a separate file to be #included.
Alternatively, if you #include a central header file, then the typedef can be put in that
header file.

If you cannot simply add a typedef, due to name conflicts in other standard header files,
then add a new type (such as stat_t, for the example above) and change your .idl
files to reflect the new type name.

Programmer’s Guide for SOM and DSOM

The use of unbounded arrays is not allowed in IDL. For example,
char *argvl[];

must be rewritten as:
char **argv;

or as:

#define MAX SIZE 32
char *argv[MAX SIZE];

The unsigned char type is not supported by IDL. To effectively use unsigned chars,
define the type uchar_t as follows:

typedef octet uchar t;
The SOM Compiler will map this onto an unsigned char type in the .h header file.

IDL does not permit structures to be passed by value. Instead, your methods must pass
a pointer to a structure. Methods can, however, return a structure.

Forward references are required in IDL. For all classes not in the ancestry of a class
that are used in the interface statement for the class, the following statement must
precede the class’s interface statement:

interface <className>;
Numeric and string macros that you want to appear in your output files must be
mapped onto string constants. For example,

#define FILE NAME MAX 256
#define FILE_NAME ”hello.c”

must be replaced by:

const long FILE NAME MAX = 256;
const string FILE NAME = "hello.c”;

Public or private instance variables are converted to IDL attributes. However, there are
some limitations, as follows: For instance variables that are explicit arrays (such as,
char x[10]; or short y[20] ;) the ctoi conversion will result in invalid IDL
attributes, because IDL attributes cannot include array declarators. Attributes can be of
a type that is an array, such as

typedef char myarraytype[10];
attribute myarraytype myarray;

but not an explicit array, as in
attribute char myarray[10]; /* not valid */

If a .csc file contains a public or private instance variable that is an array, such as
char myarray[10];

the ctoi conversion facility will produce the following in the .idl file it generates:
attribute char[10] myarray;

This is invalid IDL; it must be fixed manually before the SOM Compiler will accept the
.idl file. It is invalid not only because the array declarator is in the wrong place, but also
because attributes cannot include array declarators at all. To fix it, introduce a typedef
that defines an array type, and make that the type of the attribute, as shown:

typedef char myarraytype[10];
attribute myarraytype myarray;

This limitation does not affect internal instance variables, just public and private ones.
Internal instance variables are not converted to attributes.

Converting OIDL Filesto IDL 419

* Most information contained in passthru lines directed to the implementation header (.ih)
file should be moved to the implementation (.c) file. In addition, passthru statements
directed toward .c files must be removed.

e If after running ctoi, you discover that you inadvertently omitted a class name from the
file that the SMCLASSES environment variable refers to, it is best to update the class
name file, remove the new .idl files, and recreate them using ctoi.

» Unlike OIDL, IDL does not include a private modifier for data and methods. Instead,
private data and methods are surrounded by #ifdef = PRIVATE and #endif
directives. For example, to declare a method foo as a private method within an IDL
specification, the following declaration would appear within the interface statement:

#ifdef PRIVATE

void foo() ;

#endif
To include private data/methods in a compilation of a .idl file, the SOM Compiler must
be invoked with the -D__PRIVATE___ option. If any of the data or methods in your .csc
files are marked as private, then when using the SOM Compiler to generate binding
files from the .idl files that ctoi creates from these .csc files, use the -D__PRIVATE_
option to have the private data or methods included.

Adding Type Information

420

IDL, unlike OIDL, is strongly typed. This means that the SOM IDL compiler expects types
and constants to be declared before they are referenced. If they are not, the SOM Compiler
produces warning messages. Converting from OIDL to IDL does not require adding
additional typing information (for example, typedefs and constant definitions), because
these warning messages can be safely ignored. If this additional typing information

is added when converting from OIDL to IDL, however, SOM provides additional functionality
not available otherwise. For example, an Interface Repository can be created from a .idl file
and the IDL specification can by type-checked only if the file declares types and constants
before they are referenced.

In IDL, types (including typedefs, structs, unions and enums) are defined in a similar way to
C. These types can be emitted into header files if they are defined within the interface
statement for the class. Type definitions placed outside the interface statement are not
transferred to header files. See SOM Interface Definition Language on page 116 for a
complete discussion of defining types and constants in IDL.

passthru statements are not generally needed in IDL to define constants or types, although
they may still be used to pass #include directives to header files.

Programmer’s Guide for SOM and DSOM

Appendix C.

SOM IDL Language Grammar

specification
definition

module
interface
interface dcl

inheritance
export

scoped_name

const_dcl
const_type

const_expr
or_expr

XOr_expr
and_expr

shift expr

add expr

mult expr

unary expr

unary operator

primary expr

literal

type dcl

[comment] definition+

type dcl ; [comment]
const_dcl , [comment]
interface , [comment]
module , [comment]

pragma_stm

module identifier [comment]

{ [comment] definition+ }

: interface identifier

| interface dcl

: interface identifier [inheritancel]
[comment]{ [comment] export* } [comment]
scoped_name {, scoped name}*

type dcl ; [comment]
const_dcl , [comment]
attr dcl ; [comment]
op_dcl ; [comment]
implementation body , [comment]
pragma_ stm
identifier
identifer
scoped _name .. identifer

const const_type identifier = const_expr
integer type
char type
boolean type
floating pt type
string type
scoped_name
or expr
: XOor expr
| or expr | xor expr
and expr
| xor expr *
: shift expr
| and expr & shift expr
add expr
shift expr >> add_expr
shift_expr << add expr
mult expr
add expr + mult expr
add expr - mult expr
unary expr
mult expr * unary expr
mult expr / unary expr
mult expr % unary expr
: unary operator primary expr
| primary expr

and expr

+
scoped name

literal

(const_expr)

integer literal

string literal
character literal
floating pt literal
boolean literal

: typedef type declarator
| constr type spec

SOM IDL Language Grammar

421

type declarator : type spec declarator {, declarator}*

type spec : simple type spec
| constr type spec
simple type spec : base type spec

template type spec
scoped_name

base type spec : floating pt type
integer type

char type

boolean type

octet type

any type
voidptr type
template type spec : sequence type
| string type
constr type spec : struct_type

union type
enum_type

declarator : [stars] std declarator
std declarator : simple declarator
| complex declarator
simple declarator : Iidentifier
complex declarator : array declarator
array declarator : simple declarator fixed array size+
fixed array size : [const_expr]
floating pt type : float
| double
integer type : signed int
| unsigned int
signed int : long
| short
unsigned_int : unsigned signed int
char type : char
boolean type : boolean
octet type : octet
any type :any
voidptr type : void stars
struct type : (struct|exception) identifier

| (struct|exception) [comment]
{ [comment] member* }
member : type declarator , [comment]
union type : union identifier
| union identifier switch
(switch type spec) [comment]
{ [comment] case+ }
switch type spec : integer type
char type
boolean type
enum_type
scoped name

case : case label+ element spec , [comment]
case label : case const_expr . [comment]
| default . [comment]
element spec : type spec declarator
enum_type : enum identifier { identifier
{, identifier}* [comment] }
sequence_type : sequence < simple type spec , const expr >
| sequence < simple type spec >
string type : string < const expr >
| string
attr dcl : [readonly] attribute simple type spec
declarator {, declarator}*
op dcl : [oneway] op type spec [stars] identifier

parameter dcls [raises expr]

422 Programmer's Guide for SOM and DSOM

[context expr]

op type spec : simple type spec
| void

parameter dcls : (param dcl {, param dcl}* [comment])
[()

param dcl : param attribute simple type spec
| declarator

param attribute : in
| out
| inout

raises_expr : raises (scope name+)

context expr : context (context string

{, context string}*)
implementation body : implementation [comment]
{ [comment] implementation+ }

implementation : modifier stm
| pragma stm
| passthru
| member
pragma_stm : #pragma modifier modifier stm

| #pragma somtemittypes on
| #pragma somtemittypes off

modifier stm : smidentifier . [modifier {, modifier}*]
| ; [comment] modifier ; [comment]
modifier : smidentifier
| smidentifier = modifier value
modifier value : smidentifier
string literal
integer literal
keyword
passthru : passthru identifier = string literal+
| [comment]
smidentifier : identifer
identifier
stars 5

SOM IDL Language Grammar 423

424 programmer's Guide for SOM and DSOM

Glossary

A

abstract class. A class that serves as a base class
for the definition of subclasses. Regardless
of whether an abstract class inherits
instance data and methods from parent
classes, it always introduces methods that
must be overridden in a subclass.

affinity group. An array of class objects that were
all registered with the SOMClassMgr object
during the dynamic loading of a class. Any
class is a member of at most one affinity
group.

aggregate type. A user-defined data type that
combines basic types (such as, char, short,
float, and so on) into a more complex type
(such as structs, arrays, strings, sequences,
unions, or enums).

apply stub. A procedure corresponding to a
method that extracts the arguments from
the va_list, invokes the method, and stores
its result. Also are registered with class
objects when instance methods are defined.
Invoked using the somApply function.

B

base class. See parent class.

Basic Object Adapter (BOA). A type of object
adapter defined by CORBA to support a
wide variety of common object
implementations.

behavior (of an object). The methods that an
object responds to. These methods are
those either introduced or inherited by the
class of the object. See also state.

BOA (basic object adapter) class. A CORBA
interface, which defines generic object-
adapter (OA) methods that a server can use
to register itself and its objects with an ORB
(object request broker).

BOA. See Basic Object Adapter.

C

casted dispatching. A form of method dispatching
that uses casted method resolution.

class object. The run-time object representing a
SOM class. In SOM, a class object can
perform the same behavior common to all
objects, inherited from SOMObiject.

class variable. Instance data found within an
object that is a class.

client code. An application program, written in the
programmer’s preferred language, which
invokes methods on objects that are
instances of SOM classes. In DSOM, this
could be a program that invokes a method
on a remote object.

compound name. In the Naming Service, a name
that has multiple components. Name
components are IDL structures.

constraint. In the Naming Service, an expression
used to describe the characteristics of a
bound object being searched for.
Constraints are expressed in Constraint
Language.

CORBA. The Common Object Request Broker
Architecture established by the Object
Management Group. The SOM Interface
Definition Language used to describe the
interface for SOM classes is fully compliant
with CORBA standards.

D

data token. A value that identifies a specific
instance variable within an object whose
class inherits the instance variable derived
class See subclass and subclassing.

descriptor. An ID representing the identifier of a
method definition or an attribute definition
in the Interface Repository. The IR
definition contains information about the
method’s return type and the type of its
arguments.

Glossary 425

dispatch method. A method invoked in order to
determine the appropriate method
procedure to execute.Using dispatch
methods facilitates dispatch-function
resolution in SOM applications and enables
method invocation on remote objects in
DSOM applications.

DLL. dynamic link library.

dynamic dispatching. Method dispatching using
dispatch-function resolution

Dynamic Invocation Interface (DIl). The CORBA-
specified interface, that is used to
dynamically build requests on remote
objects. DSOM applications can also use
the somDispatch method for dynamic
method calls when the object is remote.

dynamic link library. A piece of code that can be
loaded (activated) dynamically. This code is
physically separate from its callers. DLLs
can be loaded at load time or at run time.
Widely used term on OS/2 and other
operating systems.

E

emitter. Generically, a program that takes the
output from one system and converts the
information into a different form. Using the
Emitter Framework, selected output from
the SOM Compiler is transformed and
formatted according to a user-defined
template.

encapsulation. An object-oriented programming
feature whereby the implementation details
of a class are hidden from client programs,
which are required to know the only
interface of a class in order to use the
class’s methods and attributes.

entry class. In the Emitter Framework, a class that
represents some syntactic unit of an
interface definition in the IDL source file.

Environment parameter. A CORBA-required
parameter in all method procedures, it
represents a memory location where
exception information can be returned by
the object of a method invocation.

F

factory. An object that is capable of creating
another object.

426 Programmer's Guide for SOM and DSOM

ID. See somld.

Implementation Repository. A database used by
DSOM to store the implementation
definitions of DSOM servers.

implementation. The specification of what
instance variables implement an object’s
state and what procedures implement its
methods (or behaviors). In DSOM, a
remote object’s implementation is also
characterized by its server implementation
(a program).

index. In the Naming Service, an index that the
user can create on specific properties in a
naming context. It improves the
performance of searches that involve a
property.

inheritance hierarchy. The sequential relationship
from a root class to a subclass, through
which the subclass inherits instance
methods, attributes, and instance variables
from all of its ancestors, either directly or
indirectly.

in-memory object. An object instantiated in
memory. Differs from an object whose
state can be stored in a persistent
database for which no in-memory object
has been instantiated.

instance method. A method valid for an object
instance (versus a class method, which is
valid for a class object). An instance
method that an object responds to is
defined by its class or inherited from an
ancestor class.

instance token. A data token that identifies the
first instance variable among those
introduced by a given class. The
somGetinstanceToken method invoked on
a class object returns that class’s instance
token.

instance. (Or object instance or just object.) A
specific object, as distinguished from a
class of objects. See also object.

Interface Repository (IR). The database that SOM
optionally creates, providing persistent
storage of objects representing the major
elements of interface definitions.Creation
and maintenance of the IR is based on
information supplied in the IDL source file.

Interface Repository Framework. A set of classes
that provide methods whereby executing
programs can access the persistent objects
of the Interface Repository to discover
everything known about the programming
interfaces of SOM classes.

IR. Interface Repository.

L

location services daemon. A process whose
primary purpose is to give DSOM clients the
communications information they need to
connect with an implementation server.

M

macro. An alias for executing a sequence of hidden
instructions. In SOM, typically the means of
executing a command known within a
binding file created by the SOM Compiler.

managed object. An object subject to any of the
SOMobjects object services.

metaclass. A class whose instances are classes. In
SOM, any class descended from SOMClass
is a metaclass. The methods a class
inherits from its metaclass are sometimes
called class methods (in Smalltalk) or
factory methods (in Objective-C) or
constructors.

metastate. The state introduced to an object and
used by an object service framework.

method descriptor. See descriptor.

method ID. A number representing a zero-
terminated string by which SOM uniquely

represents a method name. See also somld.

method pointer. A pointer type that identifies one
method on a single class. Method pointers
are not ensured to be persistent among
multiple processes.

method procedure. A function or procedure,
written in an arbitrary programming
language, that implements a method of a
class. A method procedure is defined by the
class implementor within the
implementation template file generated by
the SOM Compiler.

method table. A table of pointers to the method
procedures that implement the methods
that an object supports. See also method
token.

method token. A value that identifies a specific
method introduced by a class. A method
token is used during method resolution to
locate the method procedure that
implements the identified method.

module. The organizational structure required
within an IDL source file that contains
interface declarations for two (or more)
classes that are not a class-metaclass pair.
Such interfaces must be grouped within a
module declaration.

multiple inheritance. The situation in which a
class is derived from (and inherits interface
and implementation from) multiple parent
classes.

N

name binding. In the Naming Service, a name-to-
object association. Different names can be
bound to an object in the same or different
naming contexts at the same time.

name. In the Naming Service, an ordered
sequence of name components, which are
IDL structures composed of id and kind
strings. A simple name has a single
component.

names library. In the Naming Service, a library of
names from that and other services. It
allows names to evolve without affecting
existing clients. Names are implemented
as pseudo-objects, which are converted to
and from structures.

naming context. In the Naming Service, an object
that contains hame-object associations
(bindings).

naming scope. See scope.

Naming Service. A service that provides the ability
to refer to objects by name. It organizes
computing resources so that they easily
can be located, identified, and categorized
either in context or by explicit
characterization.

nonstatic method. A special kind of SOM method.

O

object adapter. Defined by CORBA as being
responsible for object reference, activation,
and state-related services to an object
implementation.

object definition. See class.

Glossary 427

object implementation. See implementation.

object instance. See instance and object.

object passivation. The process of deleting the in-
memory instantiation of an object,
especially an object with persistent state
even after being passivated.

object reactivation. The process of re-instantiating
an object in-memory, especially when the
object exists in persistent form even before
being reactivated.

object reference. A CORBA term denoting the
information needed to reliably identify a
particular object. This concept is
implemented in DSOM with a proxy object
in a client process, or a SOMDObject in a
server process. See also proxy object and
SOMDObiject.

object request broker (ORB). See ORB.

object services base class. The base class for
object services mix-in classes.

object services mix-in class. Any mix-in class
introduced by an object service that is
intended to be mixed-in to a managed
object.

Object Services Server. A server that, with the
DSOM object adapter, exports and imports
object references. Aa a specialization of the
DSOM framework, supports SOMobjects
Object Services, handling such tasks as
metastate and persistent object references.

object services server-object. The Object
Services Server specialization (somOS
Server) of the default DSOM framework
server-object (SOMDServer).

objref. An abbreviation for object reference,
specified by CORBA to be a value that
unambiguously references an object.

OIDL. The original language used for declaring
SOM classes. The acronym stands for
Object Interface Definition Language. OIDL
is still supported by SOM, but it does not
include the ability to specify multiple
inheritance classes.

OOP. object-oriented programming.

operation. See method.

ORB. (object request broker). A CORBA term
designating the means by which objects
tranparently make requests (that is, invoke
methods) and receive responses from
objects, whether they are local or remote.

428 Programmer's Guide for SOM and DSOM

overridden method. A method defined by a parent
class and reimplemented (redefined or
overridden) in the current class.

override. The technique by which a class replaces
(redefines) the implementation of a method
that it inherits from one of its parent
classes. An overriding method can elect to
call the parent class’s method procedure
as part of its own implementation.

P

parent class. A class from which another class
inherits instance methods, attributes, and
instance variables. A parent class is
sometimes called a base class or
superclass.

parent method call. A technique where an
overriding method calls the method
procedure of its parent class as part of its
own implementation.

persistent object. An object whose state can be
preserved beyond the termination of the
process that created it. Typically, such
objects are stored in files.

persistent reference. An object reference that can
survive the process or thread that created it.

principal. The user on whose behalf a particular
(remote) method call is being performed.

procedure. A small section of code that executes a
limited, well-understood task when called
from another program. In SOM, a method
procedure is often referred to as a
procedure. See method procedure.

process. A series of instructions (a program or part
of a program) that a computer executes in
a multitasking environment.

pragma. A compiler directive, usually specified in
code by #pragma.

property. A name-value pair associated with a
name binding. The name can be any
CORBA String and the value is a CORBA
any.

R

readers and writers. A reader is a process that
does not intend to update the object, but
wants to watch as other processes update
it. A writer is a process that wants to
update the object as well as continually
watch the updates performed by others.

receiver. See target object.

run-time environment. The data structures,
objects, and global variables that are
created, maintained, and used by the
functions, procedures, and methods in the
SOM run-time library.

S

scope. That portion of a program within which an
identifier name has visibility and denotes a
unique variable. An IDL source file forms a
scope. An identifier can only be defined
once within a scope.

server object. An artifact in the DSOM framework
to assist in the mapping of object
references to in-memory objects, and in-
memory objects to object references. The
mapping is used in the exportation and
importation of object references.

shadowing. A technique that is required when any
of the entry classes are subclassed.
Shadowing causes instances of the new
subclasses to be used as input for building
the object graph, without requiring a
recompile of emitter framework code.

signature. The collection of types associated with a
method (the type of its return value, if any,
as well as the number, order, and type of
each of its arguments).

simple name. In the Naming Service, a name that
has a single component. Name components
are IDL structures.

SOM Compiler. A tool provided by the SOM Toolkit
that takes as input the interface definition
file for a class (the .idl file) and produces a
set of binding files that make it more
convenient to implement and use SOM
classes.

SOMClass. One of the three primitive class objects
of the SOM run-time environment.
SOMClass is the root (meta)class from
which all subsequent metaclasses are
derived. SOMClass defines the essential
behavior common to all SOM class objects.

SOM-derived metaclass. See derived metaclass.

SOMDObject. The class that implements the
notion of a CORBA object reference in
DSOM. An instance of SOMDObject
contains information about an object’s
server implementation and interface, as
well as a user-supplied identifier.

SOMDServer. The default implementation of a
server-object provided by the DSOM
framework.

somld. A pointer to a number that uniquely
represents a zero-terminated string. Such
pointers are declared as type somld. In
SOM, somlds are used to represent
method names, class names, and so forth.

SOMOA. The DSOM implementation of a CORBA
object adapter.

SOMObject. One of the three primitive class
objects of the SOM run-time environment.
SOMObiject is the root class for all SOM
(sub)classes. SOMObject defines the
essential behavior common to all SOM
objects.

somOSServiceBase. The module and interface
name for the managed object base class.

somSelf. Within method procedures in the
implementation file for a class, a parameter
pointing to the target object that is an
instance of the class being implemented. It
is local to the method procedure.

state (of an object). The data (attributes, instance
variables and their values) associated with
an object. See also behavior.

static linkage. Occurs when a program uses data
or functions that are defined elsewhere.
Simply declaring the existence of external
data or functions does not create this
linkage, actual usage of external data or
functions is required.

static method. Any method you can access
through offset method resolution. Any
method declared in the IDL specification of
a class is a static method. See also method
and dynamic method.

stub procedures. Method procedures in the
implementation template generated by the
SOM Compiler. They are procedures
whose bodies are largely vacuous, to be
filled in by the implementor.

superclass. See parent class.

Glossary 429

symbol. Any of a set of names that are used as
placeholders when building a text template
to pattern the desired emitter output. When
a template is emitted, the symbols are
replaced with their corresponding values
from the emitter's symbol table.

T

target object. The object responding to a method
call. The target object is always the first
formal parameter of a method procedure.
For SOM’s C-language bindings, the target
object is the first argument provided to the
method invocation macro, _methodName.

transient object. In CORBA, an object whose
existence is limited by the lifetime of the
process or thread that created it. In
SOMobjects, more accurately an object with
a transient state.

transient reference. An object reference whose
existence is limited by the lifetime of the
process or thread that created it.

U

usage bindings. The language-specific binding
files for a class that are generated by the
SOM Compiler for inclusion in client
programs using the class.

W

writers. See readers and writers.

430 Programmer’s Guide for SOM and DSOM

Index

“newemitfacility’ 381

A

Abstract syntax graph 370
activate_impl_failed method 292
Activation policies
DSOM servers 331
add_arg method 315
add_class_to_all method 39
add_class_to_impldef method 39
add_class_with_properties method 39
addcmt compiler option 162
add_impldef method 38
add_item method 314
‘addprefixes’ compiler option 162
‘addstar’ compiler option 72, 163
After methods 359
Aggregate type 346
alignment method 348
Ancestor class 97
Ancestor initialization with somDefault method 196
‘any' IDL type 326
‘any’ IDL type 119
any IDL type
use in Interface Repository 351
DSOM method arguments
‘any' values 326
ARG_IN flag value 313
ARG_INOUT flag value 313
ARG_OUT flag value 313
Array declarations in IDL 124
Atomic type 346
Attribute declarator entry 379
Attribute entry 379
AttributeDef class 340
Attributes
“set” and “get” methods for 80
accessing from client programs 80
private attributes 149
readonly attributes 80
syntax for declarations 129

tutorial example 52
Attributes vs instance variables 52
Authentication

of servers in DSOM 303

B

backslash use in configuration file 19
Base class 174

Base class entry 378

Base proxy classes 322
baseproxyclass modifier 322

Basic Object Adapter 332

Basic Object Adapter class 329
Before methods 359

Binary compatibility of SOM classes 1
Binding files for client programs 69

Binding files for SOM classes 1to 2, 53, 115,
155
porting to another platform 159
bindings 13
BOA class 329, 332

Boolean IDL type 118
Bounds exception 348

C

C++ classes converted to SOM classes 192
METHOD_MACROS for 192
C/C++ binding files for SOM classes
to 156
C/C++ usage bindings 69
CALL_POOL_SIZE environment setting 22
callstyle = oidl modifier 77to 78
Casted method resolution 79
change_id method 296
DSOM method arguments
(char *) values 325
char IDL type 325
Character output
customizing 225
from SOM methods/functions 96
Child class 174

2, 115, 155

Index 431

Class categories

base class 174

child class 174

metclass 172

parent class 174

parent class vs metaclass 174

root class 172

subclass 174
Class data structure 79, 185
Class entry 378
Class libraries

creating 210

guidelines for 210

loading 92

packaging, for DSOM 308
Class name, getting 97
Class names as types 124
Class objects 90

creating from a client program 91

customizing initialization 223

getting information about

methods for 96

getting the class of an object 90

size of, getting 97

using 90
Class shadowing 370, 388
Class variables 145
<className>NewClass procedure 224
<className>New macro 57
<className>ClassData.classObject 94
<className>_Class_Source symbol 189
<className>_MajorVersion constant 91
<className>MethodDebug macro 99
<className>_<methodName> macro 77
<className>_MinorVersion constant 91
<className>New macro 72, 76to 77
<className>NewClass procedure 91

<className>New_<initializerName> macro 201

<className>Renew macro 72
“cleanipc' command 310
Distributed SOM (DSOM)
“cleanipc' command 310
DSOM applications, running
“cleanipc' command 310
Client programming in DSOM
client initialization 244

432 Programmer’s Guide for SOM and DSOM

client termination 269
clients that are also servers 269
compiling and linking 239
finding an object factory 245
finding existing objects 250
memory allocation and ownership 252
advanced options 257
default allocation responsibilities 253
functions used for 256
inout parameters 255
introduced pointers 255
out parameters and return results 253
method invocation 250
object creation from a factory 247
object references 244
as a CORBA concept 329
differences versus DSOM 2.x 267
duplicating or testing 266
initial 244
passing in method calls 251
saving/restoring 267
remote method calls 250
remote objects
creation of 245
destruction of 265
implementation of, getting 266
method calls on 250
somdCreate usage 249
somNew vs somNewNolnit 247
Client programs 69
compiling and linking 58, 95
creating objects in 72, 201
executing (Tutorial example) 58
header files 69, 115
initializer methods in 201
method invocations 57, 130
testing and debugging 99
‘comment’ compiler option 163
Comment substitution in emitter template 375
Comments in IDL files 55
syntax of 149
Compiling and linking 58, 95, 195, 217
DSOM client programs 239
DSOM servers 304
compound name 27
configuration 11

DSOM host 26

install host 26

naming service 27

new installation 12

quick guide 11

som_cfg command 24, 26

steps 12
configuration file 14

processing 15

verify settings 23
configuration file syntax 15
configuration settings

SOMIR 18
Constant declarations in IDL 118, 128
Constant entry 380
ConstantDef class 340
Constructed IDL types

enum 119

struct 119
Contained class 340
Container class 340
Context class 329
Context expression in method declarations 77 to

78, 132

context parameter in method calls
Name service

“context' of 238
copy method 348
CORBA compliance of SOM system 1, 116, 327,

337

create method 295
create_constant method 295, 298
create_factory method 302
create_list method 314
create_operation_list method 314
create_request method 315
create_request_args method 314
create_ SOM_ref method 295to 296
Creating objects in client programs 72
Creating remote objects 245
CSFactoryClass environment setting 21
CSProfileTag environment setting 21
CSRegistrarClass environment setting 21
CSTransportClass environment setting 21
Customization features of SOM 222

character output 225

77t 78

class loading and unloading 223

class objects initialized/uninitialized 210
error handling 226

memory management 222

method resolution 187

objects initialized/uninitialized 195

D

Data entry 379
deactivate_impl method 293
Debugging
client programs 99
macros and global variables for 99
with SOMMTraced metaclass 365
Debugging an emitter 384
def emitter 157
Deinitialization of objects 202, 210
delete operator, use after ‘new’ operator, in C++
75, 203
delete_impldef method 38
Derived metaclasses 180
Destroying remote objects 265
Direct-call procedures 185
directinitclasses modifier 194, 196, 200
Dispatch methods 90

Dispatch-function method resolution
187

Distributed SOM (DSOM) 229
advanced topics 310
analyzing problem conditions 325
base proxy classes, customizing 322
checklist for DSOM setup 323
clients that are also servers 269
compiling clients 239
configuring applications 240
deprecated objects and methods 335
DSOM daemon (somdd) 308
Dynamic Invocation Interface
environment variables 323
error reporting 323
existing objects, finding 238
existing SOM libraries, using 238
exiting a client program 269
factories 236
factory creation, customized 302
factory proxies 238

90, 184,

311, 317

Index 433

finding an object factory 245
header files 270, 304
identifying source of a request 303
implementation registration 32, 240
implementing classes for use with 304
introductionto 3
library files 270, 304, 308
managing objects in a server 294
applicationspecific object refer 296
object references (SOMDObjects) 294
persistent object servers 298
validity checking 301
memory allocation and ownership 252
advanced options 257
default allocation responsibilities 253
differences in DSOM 2.x policy 260
functions used for 256
inout parameters 255
introduced pointers 255
management by the client 256
of dualowned parameters 259
of method parameters 257
of objectowned parameters 258
out parameters and return results 253
suppressing inout parameter freeing 260
method dispatching, customized 303
name service use 237
object creation from a factory 247
object references 244
as a CORBA concept 329
differences versus DSOM 2.x 267
duplicating or testing 266
initial 244
saving/restoring 267
peer processes 310
pregimpl utility 32
proxy classes (default base classes) 322
proxy objects 231, 236, 329
regimpl utility 32, 240
command line interface 36
interactive interface 33
registering servers and classes 31
customizing 41
relationship to Name Service 27
remote method calls 250
passing foreign data types 262

434 Programmer’s Guide for SOM and DSOM

passing objects by copying 261
remote objects
creation of 245
destruction of 265
implementation of, getting 266
method calls on 250
running applications 308
runtime scenario 241
server objects 288
server programming 286
example of 290
server programs
activation of 289
deactivation of 293
initialization steps of 291
processing requests of 293
servers 45, 298
activation policies 331
somdsvr command syntax 309
SOM object adapter (SOMOA class) 288
initializing 292
use in method dispatching 305, 332
troubleshooting hints 323
using SOM classes 304
when touse 230
DLL loading 92
_DLL_initTerm function 215
dliname modifier 93, 216
double IDL type 118
DSOM
Error codes 398
DSOM applications, configuring 240
moving servers 45
pregimpl registration utility 32
regimpl registration utility 32
command line interface 36
interactive interface 33
registering class interfaces 30
server implementation definitions 31
customizing 41
updating Implementation Repository 38
DSOM applications, running 308
DSOM classes, implementing 304
constraints 305
generic server role 304
SOM object adapter (SOMOA) role 305

SOMDServer role 305

using DLLs 308
DSOM daemon (somdd) 308
DSOM host configuration 26
DSOM method arguments

pointer types 325, 334

supported and unsupported types
Interface Repository

DSOM use of 30
-DSOM_TestOn compile option 100
dual_owned_parameters modifier 259
dual_owned_result modifier 259
duplicate method 266
Dynamic class loading 92
Dynamic dispatching 90
Dynamic Invocation Interface (DII)

331

Dynamic methods 184
Dynamically linked library (DLL)

creating 210

customizing loading 223

guidelines for 210

on OS/2 211

305to 306

311, 317, 327,

E

Emitter class (SOMTEmItC)
Emitter Framework 370
emitter class (SOMTEmItC)
entry classes
class descriptions of 376
hierarchy of 376
introduction 370to 371
entry objects 370
error handling 389
introductionto 4
object graph builder 370
structure of 370
table of section names/methods 395
template class (SOMTTemplateOutputC) 371,
375
writing an emitter
advanced topics 385
basics 381
Emitter name 372
Emitter output
designing 382

371to 372

371to 372

section names 382
sections of 375, 382
somtGenerateSections method 383
Emitter template 375
epilog sections 373, 382
prolog sections 373, 382
repeating sections of 373, 382
standard sections of 372
Emitter template,, see also Template" 375
Emitters
“newemitfacility’ 381
def emitter 157
exp emitter 157
for C binding files (c, h, ih) 155
for C++ binding files (xc, xh, xih) 156
imod emitter 158, 216
ir emitter 158, 337
pdl emitter 157
ENCAP_POOL_SIZE environment setting 22
Entry classes
class descriptions of 376
hierarchy of 376
introduction 370to 371
Entry objects 370
Entry type 377
Enum entry 380
enum IDL type 119
tutorial example 66
Enumerator name entry 381
Environment structure 77, 103
in DSOM 256
Environment variables
as SOM Compiler controls 159
DSOM 323
HOSTNAME environment variable 20
hostName attribute 303
-m options of SOM Compiler command, 162
SOMDDEBUG environment variable 323
SOMDDIR environment variable 240
SOMDMESSAGELOG environment variable
323
SOMIR environment variable 31, 240, 337
SOMM_TRACED environment variable 365
somutgetenv function for 46
somutgetshellenv function for 46
somutresetenv function for 46

Index 435

Epilog section of a template 373, 382
equal method 348
Error codes
DSOM 398
Externalization Service 404
Metaclass Framework 415
Naming Service 406
Object Services 410
Security Service 408
SOM Kernel 397
Special 397
Error handling 100, 389
customizing 226
Environment variable 103
exception values, setting/getting 103
exceptions 101
standard exceptions 102
Error Log Facility 107
Distributed SOM (DSOM)
errormessage form 323
Exception entry 381
exception IDL declarations 125, 128
ExceptionDef class 340
exception_free function 256
exception_id function 104
Exceptions 101
setting/getting values 103
Exceptions, freeing
in DSOM 256
exception_value function 104
execute_next_request method 293
execute_request_loop method 293
exp emitter 157
Externalization Service
Error codes 404
externalize_to_stream method 41, 261

F

Factories 236, 245
finding a SOM object factory 245
somdCreate function 236, 249
factory naming context 28
factory service 28
Filter methods 374
find_all_aliases method 39
find_all_impldefs method 39

436 Programmer’s Guide for SOM and DSOM

find_any method 238, 245
find_impldef method 38, 291
find_impldef_by alias method 39
find_impldef by class method 39
find_impldef_classes method 39
float IDL type 118
Floating point IDL types
double 118
float 118
Memory allocation/ownership in DSOM
for objectowned parameters 259
Foreign data types 262
marshaling of 262
Forward references
to interface names 150
to non-IDL classes 148
Frameworks
as SOMobijects Toolkit class libraries
Distributed SOM (DSOM) 3, 229
Emitter Framework 4
Interface Repository Framework 4
Metaclass Framework 4
free method 314, 348
free_memory method 314
function
resolve_initial_references 22
‘functionprefix’ modifier 150, 162, 193
Functions for generating output 96

G

Generating output

customization of 225

from SOM methods/functions 96
get<attribute> method 80, 129, 131
get_count method 314
get_id method 296
get_implementation method 266
get_item method 314
get_principal method 303
get_response method 316
get SOM_object method 296
Global modifier 162
Global modifiers 372
Global variables

SOMCalloc 222

SOMDeleteModule 225

3

SOMError 226
SOMFree 222
SOMLoadModule 224
SOMMalloc 222
SOMOutCharRoutine 225
SOMRealloc 222

Grammar of SOM IDL syntax 421

H

header files 13
generating 13
Header files for DSOM 270, 304
Header files for SOM classes 115, 117, 189
hostName attribute 303
HOSTNAME environment variable
for SOMDPROTOCOLS 20
hostName attribute 303
userName attribute 303

ID manipulation
somld’s 111
Identifier names
naming scope restrictions 151
#ifdef _ SOMIDL__ statement 61
imod emitter 216
impctx modifier 262
impldef_prompts modifier 41
Implementation of objects 331
Implementation Repository 31, 38, 331
differences vs DSOM 2.x 42
migrating a 2.x Implementation Reposito 44
pregimpl utility 32
regimpl utility 32, 240
Distributed SOM (DSOM)
Implementation Repository 38, 331
Implementation statement 52, 60
syntax of 132
Implementation templates 2, 115
accessing internal instance variables 191
bindings 2, 115, 155
customizing implementations 222

customizing the stub procedures 56, 64, 191

#define <className>_Class_Source
statement 189

#include header file 115, 117, 189

Incremental updates of implementation

template file 155, 187, 193
method procedures 56, 189
parent-method calls in 192
somSelf usage 189
somThis usage 189
syntax of SOM Compiler output 188
syntax of stub procedures for initializer
methods 64, 200
syntax of stub procedures for methods 56,
189
ImplementationDef class 31, 38, 266, 287, 328,
331
attributes of 31
userdefined attributes of 41
Implicit method parameter 77
impl_is_ready method 292
ImplRepository class 38, 331
‘in” and ‘out’ parameters 130
#include directive in implementation templates
115, 117, 189
IDL syntax of 117
Incremental updates of implementation template
file 155, 187, 193
Inheritance 174, 176
Inherited methods
overriding 60, 177
init modifier 196
tutorial example 63
Initialization
of class libraries 215
of DSOM client programs 244
of SOM run-time environment 171
Initializer methods 196
declaring new initializers 197
implementing initializers in .idl file 200
non-default initializer calls 201
somDefaultlnit method 196
tutorial example 63
use in client programs 201
install host configuration 26
Instance variable declarators
syntax of 145
Instance variables
accessing in method procedures 191
Instance variables vs attributes 52
Integral IDL types 118

Index 437

long 118
short 118
unsigned short orlong 118
Interface Definition Language 1
SOM classes defined in 115to 116
syntax of IDL specifications 116
Interface names as types 124
Interface Repository 4
accessing objects in 343
classes 340
emitter 337
files 338
memory managementin 346
objects 340
private information 340
Interface Repository Framework
environment variables 337, 339
introductionto 4
Interface Repository index 354
Distributed SOM (DSOM)
Interface Repository registration 30, 239
Interface statement
declarations in 66
defining 55
multiple interfaces defined 150
syntax of 127
Interface vs implementation 115
InterfaceDef class 328, 340
internalize_from_stream method 41, 261
Interprocess communication resources
freeing after DSOM on AIX 310
invoke method 316
Invoking methods 76
from C++ client programs 78
from other client programs 79
initializer methods 201
ir emitter 158, 337
irindex command 354
irindex examples 355
irindex return codes 354
is_constant method 296
is_nil method 266
is_proxy method 266
is_SOM_ref method 296, 298

438 Programmer’s Guide for SOM and DSOM

J

Java client configuration 25
Joe DSOM Java client 22

K
kind method 348

L
Language bindings 2, 115, 155
Language-neutral methods and functions 96
length modifier 262
Libraries
building export files 212
creating import library 95, 217
dynamically linked libraries 210
dynamically linked libraries on OS/2 211
guidelines for class libraries 210
imod emitter for 216
packaging classes in libraries 210
shared libraries on AIX 211
SOMInitModule initialization function 215
specifying initialization/termination f 215
Linking 58, 95, 195
DSOM client programs 270
DSOM servers 304
List substitution for template 375
list_initial_services method 244
Loading classes and DLLs 223
long IDL type 118
lookup_id method 343

M

Macros
<className>New_<initializerName> 201
<className>New 77
<className>_lookup_<methodName> 85
<className>_ <methodName> 77
lookup_<methodName> 85
SOM_Error 100
SOM_GetClass 91
SOM_Resolve 88
SOM_ResolveNoCheck 88
SOM_Test 100

-maddstar compiler option 160

Major and minor version numbers 91

marshal method 262

Marshaling of foreign data types 262

maybe_by value modifier 261
maybe by value_result modifier 261
Memory allocation/ownership in DSOM 252
advanced options 257
default allocation responsibilities 253
for method parameters 257
functions used for 256
inout parameters 255
introduced pointers 255
management by the client 256
out parameters and return results 253
Memory management 110
Memory management customization features 222
SOMCalloc global variable 222
SOMFree global variable 222
SOMMalloc global variable 222
SOMRealloc global variable 222
memory management policy, migration
consideration 8
Metaclass entry 379
Metaclass Framework
before/after behavior 358
Error codes 415
introductionto 4
SOMMProxyFor metaclass 366
SOMMSinglelnstance metaclass 364
SOMMTraced metaclass 365
Metaclasses 172, 180
metaclass incompatibility 180
Method call validity checking 100
Method declaration 55
Method declarations in IDL
context expression 132
in, out, inout parameters 130
initializer methods 197
oneway keyword 130
parameter list 130
raises expression 131
syntax of 130
Method entry 380
Method invocations 76
Context parameters 77t 78
dynamic dispatching 90
Environment variable 77, 103
error handling 100
exception values, setting/getting 103

exceptions 101
for client programs in C++ 78
for client programs in other languages 79
for initializer methods 201
format of 57, 76, 130
from Smalltalk 79, 88
implicit method parameters 77
method name/signature unknown at compile
time 90
obtaining method procedure pointers 88
parent method calls 192
receiving object of 77
short form vs long form 77
standard exceptions 102
va_list methods 80
validity checking 100
METHOD_MACROS for C++ bindings 192
method modifier 184
Method procedure pointers 88
obtaining with name-lookup method 89
obtaining with offset method resolution 88
Method procedures 56, 189
Method resolution
by kinds of SOM methods 184
customizing 187
dispatch-function resolution
introductionto 183
method procedure pointers 88
name-lookup resolution 84, 89, 151, 184,
186
offset resolution
Method table 185
Method tokens 79to 80, 87, 185
Method tracing 99, 365
Methods
customizing stub procedures in implementation
templates 191
direct-call procedures 185
dynamic methods 184
for generating output 96
four kinds of SOM methods 184
get<attribute> method, in Tutorial 59
getting the number of 97
inherited 60
initializer methods 196
tutorial example 63

90, 187

79, 84, 88, 185

Index 439

invoking in client programs 76
modifiers 60, 133
nonstatic methods 184
overriding 60, 197, 210
tutorial example 60, 63
procedures of 56
__set_<attribute>, in Tutorial 59, 64
somFree, in tutorial 57
static methods 184
stub procedures in implementation template
56, 189
syntax of IDL method declarations 130
Methods and functions, language-neutral 96
migimpl3 migration tool 44
migration considerations 8
Modifier statements 133, 337
class modifiers 133
baseproxyclass 322
dllname 216
method modifiers
pass_by copy 146
#pragma 133
qualified 133, 138
SOM Compiler -m modifiers 162
addprefixes 162
addstar 163
comment 163
syntax of 133
unqualified 133, 135
Modifiers, SOM IDL 370, 377
Module entry 379
Module statement
syntax of 150
ModuleDef class 340
Modules
handling 389
somtopenEmitFile function 389
target module 389
Multiple inheritance 177
tutorial example 65
Multiple interfaces in a SOM IDL file
syntax of 150
Multithreaded DSOM programs 311

N
Name bindings in DSOM 27

440 Programmer’s Guide for SOM and DSOM

name component 27
Name Service
server/class registration in 27
Name service
use in DSOM 237
NamedValue structure 312
Name-lookup method resolution 84, 89, 151,
184
naming contexts 27
Naming scopes 151
Naming Service
Error codes 406
Naming Service configuration 27
New macro (<className>New) 57
‘new’ operator in C++ client programs 74, 76,
201
“newemit' facility 369
Emitters
“newemit’ facility 369
newlink templatesections 382
NO_EXCEPTION exception 104
DSOM classes, implementing
nonSOM classes 306
Nonstatic methods 184
nonstatic modifier 184
Number of methods, getting 97
NVList class 314, 328

O

Object Adapter 304, 332

Object graph builder 370

Object pseudoclass 330

Object references in DSOM 244, 329
creating in the SOMOA 294
duplicating 266
finding initial object references 244
passing in method calls 251
releasing 257
saving and restoring 267

differences versus DSOM 2.x 267

testing if NIL 266
testing if proxy 266
working with 266

Object Request Broker (ORB) 327

Object Services
Error codes 410

Object variables
declaring in client programs 71
objecttype 71
Modifier statements
method modifiers
object_owns_parameters 258
object_owns_parameters modifier 258
Modifier statements
method modifiers
object_owns_result 258
object_owns_result modifier 258
object_to_string method 267
octet IDL type 119
Offset method resolution 79, 85, 88, 184to 185
vs name-lookup method resolution 84
OIDL files to IDL
converting 417
‘oneway’ keyword of method declarations 130
Operation declarations 130
OperationDef class 340
ORB (Object Request Broker) 327
ORB class 328, 330
ORB object creation 244
Client programming in DSOM
ORB object creation 244
Distributed SOM (DSOM)
ORB object creation 244
ORBfree method 256
‘out’ parameter 130
Output file, opening 389
Overloaded method 177
override modifier 184
tutorial example 63
Overriding of methods 177
inherited methods (tutorial example) 60
somDefaultlnit 197
tutorial example 60, 63

P

Packaging SOM classes, customizing 223
param_count method 348
Parameter entry 380
Parameter memory management
in DSOM 252
parameter method 348
ParameterDef class 340

Parent class vs metaclass 174
Parent class, getting 97
Parent method calls 192
pass_by copy modifier 146, 261
pass_by copy_result modifier 261
Passing foreign data types 262
Passing objects by copying 261
Passing parameters by copying 146
Passthru entry 379
passthru statement 147

with multiple #includes 148

for non-IDL types or classes 148

syntax of 147
pdl emitter 157
pdl program

command syntax and options 167
Peer processes in DSOM 310
Persistent object server in DSOM 298
Persistent servers 331
Pointer SOM IDL declarations 124
Porting classes to another platform 159
#pragma 133
#pragma linkage statement 215
#pragma somemittypes 164
pregimpl utility 32
Principal class 303, 329
print method 348
Printing output

customization of 225

from SOM methods/functions 96
Private methods and attributes

syntax of 149
procedure modifier 185
Prolog section of a template 373, 382
Properties 27
Proxy classes

customizing default base classes 322
Proxy objects (in DSOM) 231, 236, 329
Pseudo-objects 346

Qualified modifiers 133, 138
Qualified names for a naming scope 151

R

‘raises’ expression in method declarations 131
Receiving object 77

Index 441

Distributed SOM (DSOM) Scoping in IDL 151

managing objects in a server Section names 382
ReferenceData 295 changing 387

ReferenceData type sectionname symbols 395

in DSOM 295 table of initial values and related methods 395
regimpl utility 32to 33, 36, 240 Sectionemitting methods 392, 395
Registration of classes, customizing 223 customizing 387
reintroduce modifier 184 Sectionemitting methods 374
release method 236, 257, 265 Sectionname symbols 395
Remote method calls 250 Sections of a template 375, 382
Remote objects Security Service

creation of 245 Error codes 408

destruction of 265 send method 316

implementation of, getting 266 Sequence entry 380

method calls on 250 sequence IDL type 122
remove_class_from_all method 39 Server activation (in DSOM) 289
remove_class_from_impldef method 39 Server implementation definition (in DS 287
Repeating sections of a template 373, 382 Server objects (in DSOM) 288
Repository class 343 Server programming in DSOM 286
Repository ID 343 applicationspecific object refer 296
Request class 315, 328 authentication 303
resolve method 245 compiling and linking servers 304
resolve_initial_references 22 example program 290
resolve_initial_references method 238, 244 generic server program (somdsvr) 287, 298
RESP_NO_WAIT flag 316 identifying source of a request 303
Return codes object references 294

DSOM 398 server implementation definition 287

Externalization Service 404 server objects 288

Metaclass Framework 415 server program initialization 291

Naming Service 406 servers

Object Services 410 activation 289

Security Service 408 customized factories 302

SOM Kernel 397 dispatching methods 303
running sample programs 13 initialization 291
Run-time environment 3, 92, 171 managing objects 294
S processing requests 293

termination 293
SOM object adapter (SOMOA class) 288
initializing 292
subclassing SOMDServer 298
Server-per-method servers 331
Servers 230, 286, 331
activation of 289
by somdd 308
activation policies 331
compiling and linking 304

sample output
somdchk command 23

sample programs
running 13

sc command to run SOM Compiler 56, 161
compiler options 161

sc command, -m option 372

sc command, -s option 372, 384

Scanning methods 374, 383, 392

442 Pprogrammer's Guide for SOM and DSOM

deactivation of 293 subclassing 177

example server program 290 using with DSOM 304
generic (somdsvr) 287, 304, 309, 331 SOM classes, customizing loading/unloading 223
implementation definitions 31, 287 class initialization 223
customizing 41 <classname>NewClass procedure 224
initializing the SOMOA 292 DLL
managing objects 294 loading 224
moving servers 45 unloading 225
persistent 298, 331 SOMClasslInitFuncName function 223 to 224
processing requests 293 SOMDeleteModule global variable 225
registering 31 SOMiInitModule function 224
server objects 288 SOMLoadModule global variable 224
server-per-method 331 SOM classes, implementing
shared 331 attributes vs instance variables 52
somdsvr command syntax 309 <className>New macro 57
unshared 331 commentsin 55
SERVICES_FILE_TARGET 22, 25 customizing the implementation template 56
setAlignment method 348 header files 115, 117, 189
set<attribute> method 80 implementation templates 56, 115
tutorial example 59, 64 interface definition file (.idl file) 115
SOM classes, usage in client programs Interface Definition Language (IDL) 115
__set_<attribute> method 80 interface statement 55
set_item method 314 interface vs implementation 115
Shadowing 370, 388 method declarations 55
Shared libraries on AIX method invocations 57, 130
implemented with C++ 220 method procedures 56
Shared libraries on AlX, creating 211 modifiers 60, 133
Shared servers 331 overriding an inherited method 60
short IDL type 118 parent method calls 192
size method 348 porting classes to another platform 159
Size of objects, getting 97 steps required 53
SMADDSTAR variable 14 stub method procedures 56
Smalltalk 79, 88 tutorial 53
SOM bindings 1to 2, 53 updating a template file 193
for C/C++ client programs 69 SOM classes, usage in client programs 69, 90
for SOM classes 115, 155 C/C++ usage bindings 69
SOM classes 115, 172, 177 checking the validity of method calls 100
attributes vs instance variables 52 <className>New macro 57
implementation 331 creating class objects
implementing 187 inC/C++ 91
inheritance 174, 176 in other languages 75
interface vs implementation 115 creating instances
metaclasses 172 inC 72
multiple inheritance 65, 177 inC++ 74
parent class vs metaclass 174 in other languages 75
primitive SOM class objects 171 debugging macros 99

Index 443

deleting instances, in C++ 75 SOM ID manipulation 111

Environment structure 77, 103 SOM IDL language grammar 421
Environment variable 103 SOM IDL modifiers 370, 377
error handling 100 SOM IDL syntax 116
example program 57, 70 attribute declarations 58, 129
exception values, setting/getting 103 comments 149
exceptions 101 constant declarations 118, 128
freeing instances, inC 73 exception declarations 125, 128
generating output, methods/functions for 96 forward declarations to class names 150
get<attribute> method 59 forward declarations to interfaces 150
getting information about grammar of IDL 421
a class, methods for 96 #ifdef _ SOMIDL__ statement 61
an object, methods/functions 98 implementation statement 52, 60, 132
getting the class of an object 90 #include directive 117
language-neutral methods/functions 96 initializer methods 197
manipulations using somlid’'s 111 instance variables 145
memory allocation with SOMMalloc functi 74 interface declarations 55, 127
memory management 110 keywords 117
method invocations 57, 76 method declarations 55, 130
short form vs long form 77 modifier statements 133, 337
va_list methods 80 module statement definition 150
object variables, declaring 71 multiple interfaces in .idl file 150
__set_<attribute> method 59, 64 name resolution 151
SOM header files for C/C++ 69 naming scopes 151
standard exceptions 102 OIDL files converted to IDL 417
va_list methods 80 passthru statement 147
SOM Compiler 155 private methods and attributes 149
actions of 187 scopes 151
and Interface Repository 337 staticdata variables 145
binding files generated 155 type declarations 118, 128
C binding files 155 SOM Kernel
C++ binding files 156 Error codes 397
environment variables affecting 159 SOM Object Adapter class 329
implementation template created 187 Distributed SOM (DSOM)
incremental updates of implementation managing objects in a server
template 155, 187, 193 SOM object references 296
introductionto 2 Server programming in DSOM
-m option of sc command 372 SOM object references 296
-s option of sc command 372, 384 SOM obijects, customizing initialization/
sc command and options 161 uninitialization 194 to 195
sc command to run SOM Compiler 56 <className>New macro, inC 201
somc command and options 161 <className>New_<initializerName> macro, in
structure of 369 C 201
use to debug an emitter 384 ‘new’ operator, in C++ 201
Modifier statements changing parents of a class 194
SOM Compiler -m modifiers 216 customizing class objects 210

444 programmer’s Guide for SOM and DSOM

example 203
initializer methods 196
initializing 195
new initializers declared 197
non-default initializer calls 201
somDefaultlnit method 196, 210
somDestruct method 202, 210
somFree method 203
somlnit method 195
somlnitMIClass method 210
uninitializing 202
SOM system
binary compatibility of SOM classes 1
bindings (language bindings) 1to 2, 115, 155
class libraries from 1, 210
CORBA compliance 1, 116, 327
inheritance 176
Interface Definition Language (IDL) 1
language-neutral characteristics 1, 3
method resolution 183
parent class vs metaclass 174
primitive class objects created 171
run-time environment initialization 171
run-time library of 3
SOM Compiler, introductionto 2
SOMClass metaclass 172
SOMClassMgr class 173
SOMClassMgrObject 173
SOMObject root class 172
som.ir Interface Repository file 338
Metaclasses
SOMderived 180
som_cfg command 24, 26
SOM _InterfaceRepository macro 343
SOM_JOE 22, 25
SOM_SubstituteClass macro 388
somAddDynamicMethod method 184
somApply function 90
SOM_AssertLevel global variable 99
SOMBASE 13
somc command to run SOM Compiler 161
compiler options 161
SOMCalloc function 110, 222
SOMCalloc global variable 222
SOMClass metaclass 172
somClassDispatch method 90

somClassFromld method 94
SOMClassInitFuncName function
SOMClassMgr class 173
SOMClassMgrObject 173
somClassResolve procedure 79
somcorba command 13
somcorba.h file 102
somd stanza 18
SOMD_NetBIOS stanza 22
SOMD_TCPIP stanza 22
somdchk command 23
‘somdclean’' command 310
Distributed SOM (DSOM)

“somdclean’' command 310
DSOM applications, running

‘somdclean’ command 310
SOMDClientProxy class 319, 322, 329
somdCreate function 236, 249
DSOM applications, running

“somdd' command 308
somdd DSOM daemon 308
somdd port number 21
SOMDDEBUG environment variable 323
Global variables

SOMD_DebugFlag 323
SOMD_DebugFlag global variable 323
SOMDDIR environment variable 240
somdDispatchMethod 303
somDefaultlnit method 196, 199, 201

indirect calls in programs 201

initializing class objects 210

overriding in .idl file 199

tutorial example 63

use by ‘new’ operator 74, 201

use by somNew method 75, 201
SOMDeleteModule global variable 225
SOMderived metaclasses 180
somDestruct method 202, 210

overriding 202

use after SOMMalloc function 74

use by somFree method 73, 203

use in programs 203
somdExceptionFree function 256
SOMDForeignMarshaler class 262
Global variables

SOMD_ ImplDefObject

22310 224

288, 291

Index 445

SOMD_ImplDefObject global variable 288, 291
Global variables

SOMD_ImplRepObject 38, 291
SOMD_ImplRepObject global variable 38, 291
SOMD_Init function 236, 244, 291, 323
Distributed SOM (DSOM)

SOMD_Init function 244
somDispatch method 90

relating to va_list 80
SOMDMESSAGELOG environment variable 323
SOMD_NoORBfree function 256
SOMD_NO_WAIT flag 293
SOMDObject class 328to 330
Global variables

SOMD_ORBObject 328
SOMD_ORBObiject global variable 328
SOMDPORT environment setting 21
somdRefFromSOMODbj method 295, 298
somdReleaseResources method 259
SOMDServer class 288, 305
Servers

SOMDServer serverobject class 288, 305
Global variables

SOMD_ServerObject 292
SOMD_ServerObject global variable 292
Global variables

SOMD_SOMOAObject 292
SOMD_SOMOAONbiject global variable 292
somdSOMODbjFromRef method 295, 298
DSOM applications, running

‘'somdsvr' command 309
somdsvr program (in DSOM) 287, 298, 309
somdTargetFree method 265
SOMD_Uninit function 236, 269, 293
SOMD_WAIT flag 293
somemittypes 164
somEnvironmentNew function 92
somError function 110
SOMError global variable 100, 226
SOM_Error macro 100
somExceptionFree function 103to 104, 111
somExceptionld function 104
somExceptionValue function 104
SOMFACTORYNC environment variable 245
SOM_Fatal error code 100
somFindClass method 75, 79, 92, 220

446 Programmer’s Guide for SOM and DSOM

somFindClsin File method 92t 93
somFindMethod method 85, 89
somFindMethodOK method 85, 89
SOMFOREIGN data type 262
SOMFree function 110, 222

use after SOMMalloc function 74, 222
SOMFree global variable 222
somFree method 236, 265

called by somDestruct method 203

tutorial example 57

use after ‘new’ operator, in C++ 75

use after somNew method 75to 76, 203

use after somNewNolnit method 203

use after <className>New macro, inC 73
somFree method, migration consideration 8
SOM_GetClass macro 91
somGetClass method 90, 94
somGetlnstanceSize method

use with <className>Renew macro 73

use with somRenew method 75
somGetinterfaceRepository method 343
somGetMethodData method 90
som.h header file for C programs 69, 103
somld ID type 111
SOM_Ignore error code 100
somlnit method

use before somDefaultinit method 199
somInitCtrl data structure 196
somlnitMIClass method 210
SOMInitModule function 224

usage when creating DLLs 215, 218
SOMIR environment variable 31, 240, 337, 339
Somlink symbol 189
SOMLoadModule global variable 224
somLocateClassFile method 93
somLookupMethod method 89
sommAfterMethod method 359
SOMMalloc function 110, 222
SOMMalloc global variable 222
SOMMBeforeAfter metaclass 358
sommBeforeMethod 359
sommBeforeMethod method 359
sommGetSinglelnstance method 364
SOMMProxyFor metaclass 366
SOMMSinglelnstance metaclass 364
SOMM_TRACED environment variable 365

SOMMTraced metaclass 365
somNew method 238, 247
called by <className>New macro 201
for creating instances
notin C/C++ 75
for creating instances, not in C/C++ 201
for creating instances, with classname from
user input 76
invalid as first C method argument 77
use in C/C++ 75
somNewNolnit method 74, 201, 247
called directly using SOM APl 201
for C++ initializers with same signature 201
use by ‘new’ operator 74, 201
somnm stanza 17to 18
SOM_NoTest symbol 89
SOMOA (SOM object adapter) class 288
initializing 292
use in method dispatching 305, 332
SOMOA class 329
SOMObject class 172
SOMobijects Toolkit
frameworks of, introductionto 3
introductionto 1
release 2.1 enhancements 4

SOMOutCharRoutine global variable 96, 99, 225

somPrintSelf method 60
somras stanza 16
SOMRealloc function 110, 222
somRenew method

for creating instances in given space 75

use by <className>Renew macro 73
SOM_Resolve macro 88
somResolve procedure

without C/C++ bindings 79
somResolveByName function 80, 87, 89
SOM_ResolveNoCheck macro 88
somsec stanza 17
somSelf pointer

syntax in implementation template 189
somSetException procedure 103
somSetOutChar function 225
somstars command 13
SOMTAttributeEntryC class 379
SOMTBaseClassEntryC class 378
SOMTClassEntryC class 370, 378

SOMTCommonEntryC class 378
SOMTConstEntryC class 380
somTD type definition 89
SOMTDataEntryC class 379
SOMTEmMItC class 371to 372
SOMTEntryC class 377
SOMTEnumENtryC class 380
SOMTEnumNameEntryC class 381
SOM_Test macro 100
SOM_TestOn symbol 89
somtGenerateSections method 383
somThis assignment

syntax in implementation template 189
SOMTMetaClassEntryC class 379
SOMTMethodEntryC class 370, 380
SOMTModuleEntryC class 379
somtopenEmitFile function 389
SOMTParameterEntryC class 370, 380
SOMTPassthruEntryC class 379
SOM_TracelLevel global variable 99
SOMTSequenceEntryC class 380
somtSetSymbolsOnEntry method 392
SOMTStringEntryC class 380
SOMTStructEntryC class 381
SOMTTemplateOutputC class 371, 375
SOMTTypedefEntry 379
SOMTUnionEntryC class 381
SOMTUserDefinedTypeEntryC class 381
somu stanza 18
somutgetenv function 46
somutgetshellenv function 46
somutresetenv function 46
SOM_Warn error code 100
SOM_WarnLevel global variable 99
somxh command 13
som.xh header file for C++ programs 69
Standard sections of a template 372
Standard symbols 372, 390

by entry class availability 392

by section validity 390

sectionname symbols 395
stanza, in configuration file 15
Static methods 89, 184
staticdata variable declarators 145
StExcep type 102
stexcep.idl file 102

Index 447

String entry 380
string IDL type 122
string_to_object method 267
Structentry 381
struct IDL type 305
Struct member 379
Struct member declarator entry 379
Client programming in DSOM

‘stub' DLLs in 318
“stub’ DLLs in remote objects 318
Stub procedures 56, 200

for initializer methods 200
Subclass 174, 177
suppress_inout_free modifier 260
Symbol names

in emitter template 375

in emitter template,, see also Symbols" and

Standard symbols 375

sectionname symbols 395
Symbol processing

comment substitution 375

list substitution 375
Symbols 385

defining new names 385

getting values of 385

in emitter template 375
System exceptions 102
SYSTEM_EXCEPTION 8
SYSTEM_EXCEPTION exception 323

T

Tabbing in a template 375
Target class entry 378
Target class of an emitter 372
standard symbols of 372, 390
Target file of an emitter 372
Target module 372, 389
TCKind enumeration 347
Template
comment substitution in 375
for emitter output 375
list substitution in 375
tabbing in 375
Template class (SOMTTemplateOutputC) 371,
375

Template file for an emitter 375, 382

448 Programmer’s Guide for SOM and DSOM

Template object of an emitter 372
Template output 375
designing 382
epilog sections 373, 382
prolog sections 373, 382
repeating sections of 373, 382
section names 382
sections of 375, 382
somtGenerateSections method 383
standard sections of 372
Template output,, see also Template” 375
Template sections 375, 382
Template symbols (symbol names) 375
Termination function for class librarie 215
Testing
client programs 99
method call validity checking 100
with SOMMTraced metaclass 365
tk_<type> enumerator names 347
Tracing methods 365
Tutorial for implementing SOM classes 53
attribute definition 58
attributes vs instance variables 52
<className>New macro 57
client program using the class 57
compiling and linking client code 58
customizing initializer stub procedures 64
customizing the implementation template 56
enum type 66
example 1
defining a simple method 55
example 3
overriding an inherited method 60
example 4
initializing objects 63
example 5
using multiple inheritance 65
executing the client program 58
get<attribute> method 59
#ifdef _ SOMIDL__ statement 61
implementation statement 52, 60

implementation template with stub procedures
56

method invocation form 57
method procedures 56
multiple inheritance 65

__set_<attribute> method 59, 64 update_impldef method 38

somFree method 57 Updating the implementation template file 66,
Type declarations in IDL 118, 128 155, 187, 193

any 119 Usage bindings 1to 2, 69, 115, 155

array 124 Userdefined type entry 381

boolean 118 Proxy classes

char 118 usersupplied 319

constructed types 119 Distributed SOM (DSOM)

double 118 usersupplied proxies 319

enum 119 USER_EXCEPTION 8

exception 125 userName attribute 303

float 118 V

floating point types 118

) va_listtype 80
integral types 118

variable

long 118 SERVICES_FILE_TARGET 25

object types 124 Variable argument list 80

ocFet 119 defining a somva_list argument in .idl file 131
pointer 124 functions to create va_lists 80

sequence 122 methods using va_lists 80

short 118

)) using a va_list in programs 85
SOM-unique extensions 152 VARIABLE_MACROS for C++ bindings 53
string 122 verify configuration settings 23

struct 119 Version numbers 91

template types 122 getting 98

unsigned short or.Iong 118 in customizing DLL loading 224
TypeCode pseudo-objects 346

‘alignment’ modifier for 349 W

any type usage 351 Client programming in DSOM

foreign data types for 350 Workplace Shell applications 270

methods for 347 Distributed SOM (DSOM)

TypeCode constants 351 Workplace Shell applications 270
TypeDef class 340 Workplace Shell applications in DSOM 270
Typedef entry 379 Writing an emitter
Types provided by SOM advanced topics 385

somid 111 basics 381

somMethodProc 89
somTD_<className>_<methodName> 89
StExcep 102

U

Uninitialization of objects 202, 210
Union entry 381

Unloading classes and DLLs 223
Unqualified modifiers 133, 135
Unshared servers 331

unsigned short or long IDL type 118

Index 449

Printed in U.S.A.

