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Abstract
This document discusses the creation of reliable multicast protocols utilizing negative-
acknowledgment (NACK) feedback. The rationale for protocol design goals and assumptions are
presented. Technical challenges for NACK-based (and in some cases general) reliable multicast
protocol operation are identified. These goals and challenges are resolved into a set of functional
"building blocks" that address different aspects of reliable multicast protocol operation. It is
anticipated that these building blocks will be useful in generating different instantiations of reliable
multicast protocols.
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1. Introduction
Reliable multicast transport is a desirable technology for efficient and reliable distribution of
data to a group on the Internet. The complexities of group communication paradigms
necessitate different protocol types and instantiations to meet the range of performance and
scalability requirements of different potential reliable multicast applications and users [3].
This document addresses the creation of reliable multicast protocols utilizing negative-
acknowledgment (NACK) feedback. While different protocol instantiations may be required
to meet specific application and network architecture demands [5], there are a number of
fundamental components that may be common to these different instantiations. This
document describes the framework and common "building block" components relevant to
multicast protocols based primarily on NACK operation for reliable transport. While this
document discusses a large set of reliable multicast components and issues relevant to
NACK-based reliable multicast protocol design, it specifically addresses in detail the
following building blocks which are not addressed in other IETF documents:
1) Multicast sender transmission strategies,
2) NACK repair process with timer-based feedback suppression, and
3) Round-trip timing for adapting NACK and other timers.

The potential relationships to other reliable multicast transport building blocks (Forward
Error Correction (FEC), congestion control) and general issues with NACK-based reliable
multicast protocols are also discussed. This document is a product of the IETF RMT WG and
follows the guidelines provided in RFC 3269 [6]. The key words "MUST", "MUST NOT",
"REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14,
RFC 2119 [1].

Statement of Intent
This memo contains descriptions of building blocks that can be applied in the design of
Reliable Multicast protocols utilizing Negative-Acknowledgemnet (NACK) feedback.
RFC3941 [4] contained a previous description of the this specification . RF3941 was
published in the "Experimental" category. It was the stated intent of the RMT working
group to re-submit this specifications as an IETF Proposed Standard in due course.

This Proposed Standard specification is thus based on RFC3941 [4] and has been updated
according to accumulated experience and growing protocol maturity since the publication of
RFC3941. Said experience applies both to this specification itself and to congestion control
strategies related to the use of this specification.

The differences between RFC3941 [4] and this document are listed in Section 5.

2. Rationale
Each potential protocol instantiation using the building blocks presented here (and in other
applicable building block documents) will have specific criteria that may influence
individual protocol design. To support the development of applicable building blocks, it is
useful to identify and summarize driving general protocol design goals and assumptions.
These are areas that each protocol instantiation will need to address in detail. Each building
block description in this document will include a discussion of the impact of these design
criteria. The categories of design criteria considered here include:
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1) Delivery Service Model,
2) Group Membership Dynamics,
3) Sender/receiver relationships,
4) Group Size Scalability,
5) Data Delivery Performance,
6) Network Environments, and
7) Router/Intermediate System Interactions.

All of these areas are at least briefly discussed. Additionally, other reliable multicast
transport building block documents such as [10] have been created to address areas outside
of the scope of this document. NACK-based reliable multicast protocol instantiations may
depend upon these other building blocks as well as the ones presented here. This document
focuses on areas that are unique to NACK-based reliable multicast but may be used in
concert with the other building block areas. In some cases, a building block may be able
address a wide range of assumptions, while in other cases there will be trade-offs required to
meet different application needs or operating environments. Where necessary, building
block features are designed to be parametric to meet different requirements. Of course, an
underlying goal will be to minimize design complexity and to at least recommend default
values for any such parameters that meet a general purpose "bulk data transfer" requirement
in a typical Internet environment.

2.1. Delivery Service Model
The implicit goal of a reliable multicast transport protocol is the reliable delivery of data
among a group of members communicating using IP multicast datagram service. However,
the specific service the application is attempting to provide can impact design decisions. A
most basic service model for reliable multicast transport is that of "bulk transfer" which is a
primary focus of this and other related RMT working group documents. However, the same
principles in protocol design may also be applied to other services models, e.g., more
interactive exchanges of small messages such as with white-boarding or text chat. Within
these different models there are issues such as the sender’s ability to cache transmitted data
(or state referencing it) for retransmission or repair. The needs for ordering and/or causality
in the sequence of transmissions and receptions among members in the group may be
different depending upon data content. The group communication paradigm differs
significantly from the point-to-point model in that, depending upon the data content type,
some receivers may complete reception of a portion of data content and be able to act upon it
before other members have received the content. This may be acceptable (or even desirable)
for some applications but not for others. These varying requirements drive the need for a
number of different protocol instantiation designs. A significant challenge in developing
generally useful building block mechanisms is accommodating even a limited range of these
capabilities without defining specific application-level details.

2.2. Group Membership Dynamics
One area where group communication can differ from point-to-point communications is that
even if the composition of the group changes, the "thread" of communication can still exist.
This contrasts with the point-to-point communication model where, if either of the two
parties leave, the communication process (exchange of data) is terminated (or at least
paused). Depending upon application goals, senders and receivers participating in a
reliable multicast transport "session" may be able to join late, leave, and/or potentially rejoin
while the ongoing group communication "thread" still remains functional and useful. Also
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note that this can impact protocol message content. If "late joiners" are supported, some
amount of additional information may be placed in message headers to accommodate this
functionality. Alternatively, the information may be sent in its own message (on demand or
intermittently) if the impact to the overhead of typical message transmissions is deemed too
great. Group dynamics can also impact other protocol mechanisms such as NACK timing,
congestion control operation, etc.

2.3. Sender/Receiver Relationships
The relationship of senders and receivers among group members requires consideration. In
some applications, there may be a single sender multicasting to a group of receivers. In
other cases, there may be more than one sender or the potential for everyone in the group to
be a sender _and_ receiver of data may exist.

2.4. Group Size Scalability
Native IP multicast [2] may scale to extremely large group sizes. It may be desirable for
some applications to scale along with the multicast infrastructure’s ability to scale. In its
simplest form, there are limits to the group size to which a NACK-based protocol can apply
without NACK implosion problems. Research suggests that NACK-based reliable multicast
group sizes on the order of tens of thousands of receivers may operate with modest feedback
to the sender using probabilistic, timer-based suppression techniques [8]. However, the
potential for router assistance and/or other NACK suppression heuristics may enable these
protocols to scale to very large group sizes. In large scale cases, it may be prohibitive for
members to maintain state on all other members (in particular, other receivers) in the group.
The impact of group size needs to be considered in the development of applicable building
blocks.

2.5. Data Delivery Performance
There is a trade-off between scalability and data delivery latency when designing NACK-
oriented protocols. If probabilistic, timer-based NACK suppression is to be used, there will
be some delays built into the NACK process to allow suppression to occur and for the
sender of data to identify appropriate content for efficient repair transmission. For example,
backoff timeouts can be used to ensure efficient NACK suppression and repair transmission,
but this comes at a cost of increased delivery latency and increased buffering requirements
for both senders and receivers. The building blocks SHOULD allow applications to establish
bounds for data delivery performance. Note that application designers must be aware of the
scalability trade-off that is made when such bounds are applied.

2.6. Network Environments
The Internet Protocol has historically assumed a role of providing service across
heterogeneous network topologies. It is desirable that a reliable multicast protocol be
capable of effectively operating across a wide range of the networks to which general
purpose IP service applies. The bandwidth available on the links between the members of a
single group today may vary between low numbers of kbit/s for wireless links and multiple
Gbit/s for high speed LAN connections, with varying degrees of contention from other
flows. Recently, a number of asymmetric network services including 56K/ADSL modems,
CATV Internet service, satellite and other wireless communication services have begun to

Adamson, et al. Expires: 30 March 2007 [Page 5]



Internet-Draft Multicast NACK Building Blocks September 2006

proliferate. Many of these are inherently broadcast media with potentially large "fan-out" to
which IP multicast service is highly applicable. Additionally, policy and/or technical issues
may result in topologies where multicast connectivity is limited to a single source multicast
(SSM) model from a specific source [9]. Receivers in the group may be restricted to unicast
feedback for NACKs and other messages. Consideration must be given, in building block
development and protocol design, to the nature of the underlying networks.

2.7. Router/Intermediate System Assistance
While intermediate assistance from devices/systems with direct knowledge of the
underlying network topology may be used to leverage the performance and scalability of
reliable multicast protocols, there will continue to be a number of instances where this is not
available or practical. Any building block components for NACK-oriented reliable multicast
SHALL be capable of operating without such assistance. However, it is RECOMMENDED
that such protocols also consider utilizing these features when available.

3. Functionality
The previous section has presented the role of protocol building blocks and some of the
criteria that may affect NACK-based reliable multicast building block identification/design.
This section describes different building block areas applicable to NACK-based reliable
multicast protocols. Some of these areas are specific to NACK-based protocols. Detailed
descriptions of such areas are provided. In other cases, the areas (e.g., node identifiers,
forward error correction (FEC), etc.) may be applicable to other forms of reliable multicast.
In those cases, the discussion below describes requirements placed on those other general
building block areas from the standpoint of NACK-based reliable multicast. Where
applicable, other building block documents are referenced for possible contribution to
NACK-based reliable multicast protocols.

For each building block, a notional "interface description" is provided to illustrate any
dependencies of one building block component upon another or upon other protocol
parameters. A building block component may require some form of "input" from another
building block component or other source to perform its function. Any "inputs" required by
a building block component and/or any resultant "output" provided will be defined and
described in each building block component’s interface description. Note that the set of
building blocks presented here do not fully satisfy each other’s "input" and "output" needs.
In some cases, "inputs" for the building blocks here must come from other building blocks
external to this document (e.g., congestion control or FEC). In other cases NACK-based
reliable multicast building block "inputs" must be satisfied by the specific protocol
instantiation or implementation (e.g., application data and control).

The following building block components relevant to NACK-based reliable multicast are
identified:

(Specific to NACK-based Reliable Multicast)
1) Multicast Sender Transmission
2) NACK Repair Process
3) Multicast Receiver Join Policies
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(General Purpose)
4) Node (member) Identification
5) Data Content Identification
6) Forward Error Correction (FEC)
7) Round-trip Timing Collection
8) Group Size Determination/Estimation
9) Congestion Control Operation
10) Router/Intermediate System Assistance
11) Ancillary Protocol Mechanisms

Figure 1 provides a pictorial overview of these building block areas and some of their
relationships. For example, the content of the data messages that a sender initially transmits
depends upon the "Node Identification", "Data Content Identification", and "FEC"
components while the rate of message transmission will generally depend upon the
"Congestion Control" component. Subsequently, the receivers’ response to these
transmissions (e.g., NACKing for repair) will depend upon the data message content and
inputs from other building block components. Finally, the sender’s processing of receiver
responses will feed back into its transmission strategy.

The components on the left side of this figure are areas that may be applicable beyond
NACK-based reliable multicast. The most significant of these components are discussed in
other building block documents such as [10]. A brief description of these areas and their role
in NACK-based reliable multicast protocols is given below. The components on the right are
seen as specific to NACK-based reliable multicast protocols, most notably the NACK repair
process. These areas are discussed in detail below. Some other components (e.g., "Security")
impact many aspects of the protocol, and others such as "Router Assistance" may be more
transparent to the core protocol processing. The sections below describe the "Multicast
Sender Transmission", "NACK Repair Process", and "RTT Collection" building blocks in
detail. The relationships to and among the other building block areas are also discussed,
focusing on issues applicable to NACK-based reliable multicast protocol design. Where
applicable, specific technical recommendations are made for mechanisms that will properly
satisfy the goals of NACK-based reliable multicast transport for the Internet.
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Application Data and Control
|
V

.---------------------. .-----------------------.
| Node Identification |----------->| Sender Transmission |<----.
‘---------------------’ _.-’ ‘-----------------------’ |
.---------------------. _.-’ .’ | .--------------. |
| Data Identification |--’ .’’ | | Join Policy | |
‘---------------------’ .’ ’ V ‘--------------’ |
.---------------------. .’ ’ .----------------------. |

.->| Congestion Control |-’ ’ | Receiver NACK | |
| ‘---------------------’ .’ | Repair Process | |
| .---------------------. .’ | .------------------. | |
| |  FEC |’. | | NACK Initiation | |  |
| ‘---------------------’‘ ‘._ | ‘------------------’ | |
| .---------------------. ‘‘. ‘-._ | .------------------. | |
‘--| RTT Collection |._‘ ‘ ‘->| | NACK Content | |  |

‘---------------------’‘ ‘‘ ‘ | ‘------------------’ | |
.---------------------. ‘ ‘‘-‘._ | .------------------. | |
| Group Size Est. |---‘-‘---‘->| | NACK Suppression | | |
‘---------------------’‘. ‘ ‘ | ‘------------------’ | |
.---------------------. ‘ ‘ ‘ ‘----------------------’ |
| Other | ‘ ‘ ‘ | +-----------------+ |
‘---------------------’ ‘ ‘ ‘  | |Router Assistance| |

‘. ‘ ‘ V +-----------------+ |
‘-‘ >.-------------------------. |

| Sender NACK Processing |___/
| and Repair Response |
‘-------------------------’

ˆ ˆ
| |

.-----------------------------.
| (Security) |
‘-----------------------------’

Fig. 1 - NACK-based Reliable Multicast Building Block Framework

3.1. Multicast Sender Transmission
Reliable multicast senders will transmit data content to the multicast session. The data
content will be application dependent. The sender will transmit data content at a rate, and
with message sizes, determined by application and/or network architecture requirements.
Any FEC encoding of sender transmissions SHOULD conform with the guidelines of [10].
When congestion control mechanisms are needed (REQUIRED for general Internet
operation), the sender transmission rate SHALL be controlled by the congestion control
mechanism. In any case, it is RECOMMENDED that all data transmissions from multicast
senders be subject to rate limitations determined by the application or congestion control
algorithm. The sender ’s transmissions SHOULD make good utilization of the available
capacity (which may be limited by the application and/or by congestion control). As a
result, it is expected there will be overlap and multiplexing of new data content transmission
with repair content. Other factors related to application operation may determine sender

Adamson, et al. Expires: 30 March 2007 [Page 8]



Internet-Draft Multicast NACK Building Blocks September 2006

transmission formats and methods. For example, some consideration needs to be given to
the sender’s behavior during intermittent idle periods when it has no data to transmit.

In addition to data content, other sender messages or commands may be employed as part
of protocol operation. These messages may occur outside of the scope of application data
transfer. In NACK-based reliable multicast protocols, reliability of such protocol messages
may be attempted by redundant transmission when positive acknowledgement is
prohibitive due to group size scalability concerns. Note that protocol design SHOULD
provide mechanisms for dealing with cases where such messages are not received by the
group. As an example, a command message might be redundantly transmitted by a sender
to indicate that it is temporarily (or permanently) halting transmission. At this time, it may
be appropriate for receivers to respond with NACKs for any outstanding repairs they
require following the rules of the NACK procedure. For efficiency, the sender should allow
sufficient time between the redundant transmissions to receive any NACK responses from
the receivers to this command.

In general, when there is any resultant NACK or other feedback operation, the timing of
redundant transmission of control messages issued by a sender and other NACK-based
reliable multicast protocol timeouts should be dependent upon the group greatest round trip
timing (GRTT) estimate and any expected resultant NACK or other feedback operation. The
sender GRTT is an estimate of the worst-case round-trip timing from a given sender to any
receivers in the group. It is assumed that the GRTT interval is a conservative estimate of the
maximum span (with respect to delay) of the multicast group across a network topology
with respect to given sender. NACK-based reliable multicast instantiations SHOULD be
able to dynamically adapt to a wide range of multicast network topologies.

Sender Transmission Interface Description
Inputs:
1) Application data and control
2) Sender node identifier
3) Data identifiers
4) Segmentation and FEC parameters
5) Transmission rate
6) Application controls
7) Receiver feedback messages (e.g., NACKs)

Outputs:
1) Controlled transmission of messages with headers uniquely identifying data or repair

content within the context of the reliable multicast session.
2) Commands indicating sender’s status or other transport control actions to be taken.

3.2. NACK Repair Process
A critical component of NACK-based reliable multicast protocols is the NACK repair
process. This includes the receiver ’s role in detecting and requesting repair needs, and the
sender ’s response to such requests. There are four primary elements of the NACK repair
process:
1) Receiver NACK process initiation,
3) NACK suppression,
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2) NACK message content,
4) Sender NACK processing and response.

3.2.1. Receiver NACK Process Initiation
The NACK process (cycle) will be initiated by receivers that detect a need for repair
transmissions from a specific sender to achieve reliable reception. When FEC is applied, a
receiver should initiate the NACK process only when it is known its repair requirements
exceed the amount of pending FEC transmission for a given coding block of data content.
This can be determined at the end of the current transmission block (if it is indicated) or
upon the start of reception of a subsequent coding block or transmission object. This implies
the sender data content is marked to identify its FEC block number and that ordinal
relationship is preserved in order of transmission.

Alternatively, if the sender’s transmission advertises the quantity of repair packets it is
already planning to send for a block, the receiver may be able to initiate the NACK processor
earlier. Allowing receivers to initiate NACK cycles at any time they detect their repair needs
have exceeded pending repair transmissions may result in slightly quicker repair cycles.
However, it may be useful to limit NACK process initiation to specific events such as at the
end-of-transmission of an FEC coding block or upon detection of subsequent coding blocks.
This can allow receivers to aggregate NACK content into a smaller number of NACK
messages and provide some implicit loose synchronization among the receiver set to help
facilitate effective probabilistic suppression of NACK feedback. The receiver MUST
maintain a history of data content received from the sender to determine its current repair
needs. When FEC is employed, it is expected that the history will correspond to a record of
pending or partially-received coding blocks.

For probabilistic, timer-base suppression of feedback, the NACK cycle should begin with
receivers observing backoff timeouts. In conjunction with initiating this backoff timeout, it is
important that the receivers record the current position in the sender’s transmission
sequence at which they initiate the NACK cycle. When the suppression backoff timeout
expires, the receivers should only consider their repair needs up to this recorded
transmission position in making the decision to transmit or suppress a NACK. Without this
restriction, suppression is greatly reduced as additional content is received from the sender
during the time a NACK message propagates across the network to the sender and other
receivers.

Receiver NACK Process Initiation Interface Description
Inputs:
1) Sender data content with sequencing identifiers from sender transmissions.
2) History of content received from sender.

Outputs:
1) NACK process initiation decision
2) Recorded sender transmission sequence position.

3.2.2. NACK Suppression
An effective feedback suppression mechanism is the use of random backoff timeouts prior to
NACK transmission by receivers requiring repairs [11]. Upon expiration of the backoff
timeout, a receiver will request repairs unless its pending repair needs have been completely
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superseded by NACK messages heard from other receivers (when receivers are multicasting
NACKs) or from some indicator from the sender. When receivers are unicasting NACK
messages, the sender may facilitate NACK suppression by forwarding a representation of
NACK content it has received to the group at large or provide some other indicator of the
repair information it will be subsequently transmitting.

For effective and scalable suppression performance, the backoff timeout periods used by
receivers should be independently, randomly picked by receivers with a truncated
exponential distribution [7]. This results in the majority of the receiver set holding off
transmission of NACK messages under the assumption that the smaller number of "early
NACKers" will supersede the repair needs of the remainder of the group. The mean of the
distribution should be determined as a function of the current estimate of sender<->group
GRTT and a group size estimate that is determined by other mechanisms within the protocol
or preset by the multicast application.

A simple algorithm can be constructed to generate random backoff timeouts with the
appropriate distribution. Additionally, the algorithm may be designed to optimize the
backoff distribution given the number of receivers (R) potentially generating feedback. This
"optimization" minimizes the number of feedback messages (e.g., NACK) in the worst-case
situation where all receivers generate a NACK. The maximum backoff timeout
(T_maxBackoff) can be set to control reliable delivery latency versus volume of feedback
traffic. A larger value of T_maxBackoff will result in a lower density of feedback traffic for
a given repair cycle. A smaller value of T_maxBackoff results in shorter latency which also
reduces the buffering requirements of senders and receivers for reliable transport.

Given the receiver group size (R), and maximum allowed backoff timeout (T_maxBackoff),
random backoff timeouts (t’) with a truncated exponential distribution can be picked with
the following algorithm:

1) Establish an optimal mean (L) for the exponential backoff based on the group size:

L = ln(R) + 1

2) Pick a random number (x) from a uniform distribution over a range of:

L L L
-------------------- to -------------------- + ----------
T_maxBackoff*(exp(L)-1) T_maxBackoff*(exp(L)-1) T_maxBackoff

3) Transform this random variate to generate the desired random backoff time (t’) with
the following equation:

t’ = T_maxBackoff/L * ln(x * (exp(L) - 1) * (T_maxBackoff/L))
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This C language function can be used to generate an appropriate random backoff time
interval:

double RandomBackoff(double maxTime, double groupSize)
{

double lambda = log(groupSize) + 1;
double x = UniformRand(lambda/maxTime) +

lambda / (maxTime*(exp(lambda)-1));
return ((maxTime/lambda) *

log(x*(exp(lambda)-1)*(maxTime/lambda)));
} // end RandomBackoff()

where UniformRand(double max) returns random numbers with a uniform distribution
from the range of 0..max. For example, based on the POSIX "rand()" function, the
following C code can be used:

double UniformRand(double max)
{

return (max * ((double)rand()/(double)RAND_MAX));
}

The number of expected NACK messages generated (N) within the first round trip time for a
single feedback event is approximately:

N = exp(1.2 * L / (2*T_maxBackoff/GRTT))

Thus the maximum backoff time can be adjusted to tradeoff worst-case NACK feedback
volume versus latency. This is derived from [7] and assumes T_maxBackoff >= GRTT,
and L is the mean of the distribution optimized for the given group size as shown in the
algorithm above. Note that other mechanisms within the protocol may work to reduce
redundant NACK generation further. It is suggested that T_maxBackoff be selected as an
integer multiple of the sender’s current advertised GRTT estimate such that:

T_maxBackoff = K * GRTT ;where K >= 1

For general Internet operation, a default value of K=4 is RECOMMENDED for operation
with multicast (to the group at large) NACK delivery and a value of K=6 for unicast NACK
delivery. Alternate values may be used to for buffer utilization, reliable delivery latency and
group size scalability tradeoffs.

Given that (K*GRTT) is the maximum backoff time used by the receivers to initiate NACK
transmission, other timeout periods related to the NACK repair process can be scaled
accordingly. One of those timeouts is the amount of time a receiver should wait after
generating a NACK message before allowing itself to initiate another NACK
backoff/transmission cycle (T_rcvrHoldoff). This delay should be sufficient for the
sender to respond to the received NACK with repair messages. An appropriate value
depends upon the amount of time for the NACK to reach the sender and the sender to
provide a repair response. This MUST include any amount of sender NACK aggregation
period during which possible multiple NACKs are accumulated to determine an efficient
repair response. These timeouts are further discussed in the section below on "Sender
NACK Processing and Repair Response".
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There are also secondary measures that can be applied to improve the performance of
feedback suppression. For example, the sender’s data content transmissions can follow an
ordinal sequence of transmission. When repairs for data content occur, the receiver can note
that the sender has "rewound" its data content transmission position by observing the data
object, FEC block number, and FEC symbol identifiers. Receivers SHOULD limit
transmission of NACKs to only when the sender’s current transmission position exceeds the
point to which the receiver has incomplete reception. This reduces premature requests for
repair of data the sender may be planning to provide in response to other receiver requests.
This mechanism can be very effective for protocol convergence in high loss conditions when
transmissions of NACKs from other receivers (or indicators from the sender) are lost.
Another mechanism (particularly applicable when FEC is used) is for the sender to embed
an indication of impending repair transmissions in current packets sent. For example, the
indication may be as simple as an advertisement of the number of FEC packets to be sent for
the current applicable coding block.

Finally, some consideration might be given to using the NACKing history of receivers to
weight their selection of NACK backoff timeout intervals. For example, if a receiver has
historically been experiencing the greatest degree of loss, it may promote itself to
statistically NACK sooner than other receivers. Note this requires there is correlation over
successive intervals of time in the loss experienced by a receiver. Such correlation MAY not
always be present in multicast networks. This adjustment of backoff timeout selection may
require the creation of an "early NACK" slot for these historical NACKers. This additional
slot in the NACK backoff window will result in a longer repair cycle process that may not be
desirable for some applications. The resolution of these trade-offs may be dependent upon
the protocol’s target application set or network.

After the random backoff timeout has expired, the receiver will make a decision on whether
to generate a NACK repair request or not (i.e., it has been suppressed). The NACK will be
suppressed when any of the following conditions has occurred:

1) The accumulated state of NACKs heard from other receivers (or forwarding of this
state by the sender) is equal to or supersedes the repair needs of the local receiver.
Note that the local receiver should consider its repair needs only up to the sender
transmission position recorded at the NACK cycle initiation (when the backoff timer
was activated).

2) The sender ’s data content transmission position "rewinds" to a point ordinally less
than that of the lowest sequence position of the local receiver ’s repair needs. (This
detection of sender "rewind" indicates the sender has already responded to other
receiver repair needs of which the local receiver may not have been aware). This
"rewind" event can occur any time between 1) when the NACK cycle was initiated
with the backoff timeout activation and 2) the current moment when the backoff
timeout has expired to suppress the NACK. Another NACK cycle must be initiated
by the receiver when the sender’s transmission sequence position exceeds the
receiver ’s lowest ordinal repair point. Note it is possible that the local receiver may
have had its repair needs satisfied as a result of the sender’s response to the repair
needs of other receivers and no further NACKing is required.

If these conditions have not occurred and the receiver still has pending repair needs, a
NACK message is generated and transmitted. The NACK should consist of an accumulation
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of repair needs from the receiver ’s lowest ordinal repair point up to the current sender
transmission sequence position. A single NACK message should be generated and the
NACK message content should be truncated if it exceeds the payload size of single protocol
message. When such NACK payload limits occur, the NACK content SHOULD contain
requests for the ordinally lowest repair content needed from the sender.

NACK Suppression Interface Description
Inputs:
1) NACK process initiation decision.
2) Recorded sender transmission sequence position.
3) Sender GRTT.
4) Sender group size estimate.
5) Application-defined bound on backoff timeout period.
6) NACKs from other receivers.
7) Pending repair indication from sender (may be forwarded NACKs).
8) Current sender transmission sequence position.

Outputs:
1) Yes/no decision to generate NACK message upon backoff timer expiration.

3.2.3. NACK Content
The content of NACK messages generated by reliable multicast receivers will include
information detailing their current repair needs. The specific information depends on the
use and type of FEC in the NACK repair process. The identification of repair needs is
dependent upon the data content identification (See Section 3.5 below). At the highest level
the NACK content will identify the sender to which the NACK is addressed and the data
transport object (or stream) within the sender’s transmission that needs repair. For the
indicated transport entity, the NACK content will then identify the specific FEC coding
blocks and/or symbols it requires to reconstruct the complete transmitted data. This content
may consist of FEC block erasure counts and/or explicit indication of missing blocks or
symbols (segments) of data and FEC content. It should also be noted that NACK-based
reliable multicast can be effectively instantiated without a requirement for reliable NACK
delivery using the techniques discussed here.

3.2.3.1. NACK and FEC Repair Strategies
Where FEC-based repair is used, the NACK message content will minimally need to identify
the coding block(s) for which repair is needed and a count of erasures (missing packets) for
the coding block. An exact count of erasures implies the FEC algorithm is capable of
repairing _any_ loss combination within the coding block. This count may need to be
adjusted for some FEC algorithms. Considering that multiple repair rounds may be
required to successfully complete repair, an erasure count also implies that the quantity of
unique FEC parity packets the server has available to transmit is essentially unlimited (i.e.,
the server will always be able to provide new, unique, previously unsent parity packets in
response to any subsequent repair requests for the same coding block). Alternatively, the
sender may "round-robin" transmit through its available set of FEC symbols for a given
coding block, and eventually affect repair. For a most efficient repair strategy, the NACK
content will need to also _explicitly_ identify which symbols (information and/or parity) the
receiver requires to successfully reconstruct the content of the coding block. This will be
particularly true of small to medium size block FEC codes (e.g., Reed Solomon) that are
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capable of provided a limited number of parity symbols per FEC coding block.

When FEC is not used as part of the repair process, or the protocol instantiation is required
to provide reliability even when the sender has transmitted all available parity for a given
coding block (or the sender’s ability to buffer transmission history is exceeded by the
delay*bandwidth*loss characteristics of the network topology), the NACK content will
need to contain _explicit_ coding block and/or segment loss information so that the sender
can provide appropriate repair packets and/or data retransmissions. Explicit loss
information in NACK content may also potentially serve other purposes. For example, it
may be useful for decorrelating loss characteristics among a group of receivers to help
differentiate candidate congestion control bottlenecks among the receiver set.

When FEC is used and NACK content is designed to contain explicit repair requests, there is
a strategy where the receivers can NACK for specific content that will help facilitate NACK
suppression and repair efficiency. The assumptions for this strategy are that sender may
potentially exhaust its supply of new, unique parity packets available for a given coding
block and be required to explicitly retransmit some data or parity symbols to complete
reliable transfer. Another assumption is that an FEC algorithm where any parity packet can
fill any erasure within the coding block (e.g., Reed Solomon) is used. The goal of this
strategy is to make maximum use of the available parity and provide the minimal amount of
data and repair transmissions during reliable transfer of data content to the group.

When systematic FEC codes are used, the sender transmits the data content of the coding
block (and optionally some quantity of parity packets) in its initial transmission. Note that a
systematic FEC coding block is considered to be logically made up of the contiguous set of
source data vectors plus parity vectors for the given FEC algorithm used. For example, a
systematic coding scheme that provides for 64 data symbols and 32 parity symbols per
coding block would contain FEC symbol identifiers in the range of 0 to 95.

Receivers then can construct NACK messages requesting sufficient content to satisfy their
repair needs. For example, if the receiver has three erasures in a given received coding
block, it will request transmission of the three lowest ordinal parity vectors in the coding
block. In our example coding scheme from the previous paragraph, the receiver would
explicitly request parity symbols 64 to 66 to fill its three erasures for the coding block. Note
that if the receiver ’s loss for the coding block exceeds the available parity quantity (i.e.,
greater than 32 missing symbols in our example), the receiver will be required to construct a
NACK requesting all (32) of the available parity symbols plus some additional portions of its
missing data symbols in order to reconstruct the block. If this is done consistently across the
receiver group, the resulting NACKs will comprise a minimal set of sender transmissions to
satisfy their repair needs.

In summary, the rule is to request the lower ordinal portion of the parity content for the FEC
coding block to satisfy the erasure repair needs on the first NACK cycle. If the available
number of parity symbols is insufficient, the receiver will also request the subset of ordinally
highest missing data symbols to cover what the parity symbols will not fill. Note this
strategy assumes FEC codes such as Reed-Solomon for which a single parity symbol can
repair any erased symbol. This strategy would need minor modification to take into account
the possibly limited repair capability of other FEC types. On subsequent NACK repair
cycles where the receiver may have received some portion of its previously requested repair
content, the receiver will use the same strategy, but only NACK for the set of parity and/or
data symbols it has not yet received. Optionally, the receivers could also provide a count of
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erasures as a convenience to the sender or intermediate systems assisting NACK operation.

Other types of FEC schemes may require alteration to the NACK and repair strategy
described here. For example, some of the large block or expandable FEC codes described in
[15] may be less deterministic with respect to defining optimal repair requests by receivers
or repair transmission strategies by senders. For these types of codes, it may be sufficient for
receivers to NACK with an estimate of the quantity of additional FEC symbols required to
complete reliable reception and for the sender to respond accordingly. This apparent
disadvantage as compared to codes such as Reed Solomon may be offset by reduced
computational requirements and/or ability to support large coding blocks for increased
repair efficiency that these codes can offer.

After receipt and accumulation of NACK messages during the aggregation period, the
sender can begin transmission of fresh (previously untransmitted) parity symbols for the
coding block based on the highest receiver erasure count _if_ it has a sufficient quantity of
parity symbols that were _not_ previously transmitted. Otherwise, the sender MUST resort
to transmitting the explicit set of repair vectors requested. With this approach, the sender
needs to maintain very little state on requests it has received from the group without need
for synchronization of repair requests from the group. Since all receivers use the same
consistent algorithm to express their explicit repair needs, NACK suppression among
receivers is simplified over the course of multiple repair cycles. The receivers can simply
compare NACKs heard from other receivers against their own calculated repair needs to
determine whether they should transmit or suppress their pending NACK messages.

3.2.3.2. NACK Content Format
The format of NACK content will depend on the protocol’s data service model and the
format of data content identification the protocol uses. This NACK format also depends
upon the type of FEC encoding (if any) used. Figure 2 illustrates a logical, hierarchical
transmission content identification scheme, denoting that the notion of objects (or streams)
and/or FEC blocking is optional at the protocol instantiation’s discretion. Note that the
identification of objects is with respect to a given sender. It is recommended that transport
data content identification is done within the context of a sender in a given session. Since the
notion of session "streams" and "blocks" is optional, the framework degenerates to that of
typical transport data segmentation and reassembly in its simplest form.

Session_
\_

Sender_
\_

[Object/Stream(s)]_
\_

[FEC Blocks]_
\_

Symbols

Fig. 2: Reliable Multicast Data Content Identification Hierarchy

The format of NACK messages should meet the following goals:
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1) Able to identify transport data unit transmissions required to repair a portion of the
received content, whether it is an entire missing object/stream (or range), entire FEC coding
block(s), or sets of symbols,

2) Be simple to process for NACK aggregation and suppression,
3) Be capable of including NACKs for multiple objects, FEC coding blocks and/or symbols in

a single message, and
4) Have a reasonably compact format.

If the reliable multicast transport object/stream is identified with an <objectId> and the FEC
symbol being transmitted is identified with an <fecPayloadId>, the concatenation of
<objectId::fecPayloadId> comprises a basic transport protocol data unit (TPDU) identifier for
symbols from a given source. NACK content can be composed of lists and/or ranges of
these TPDU identifiers to build up NACK messages to describe the receivers repair needs. If
no hierarchical object delineation or FEC blocking is used, the TPDU is a simple linear
representation of the data symbols transmitted by the sender. When the TPDU represents a
hierarchy for purposes of object/stream delineation and/or FEC blocking, the NACK
content unit may require flags to indicate which portion of the TPDU is applicable. For
example, if an entire "object" (or range of objects) is missing in the received data, the receiver
will not necessarily know the appropriate range of <sourceBlockNumbers> or
<encodingSymbolIds> for which to request repair and thus requires some mechanism to
request repair (or retransmission) of the entire unit represented by an <objectId>. The same
is true if entire FEC coding blocks represented by one or a range of <sourceBlockNumbers>
have been lost.

NACK Content Interface Description
Inputs:
1) Sender identification.
2) Sender data identification.
3) Sender FEC Object Transmission Information.
4) Recorded sender transmission sequence position.
5) Current sender transmission sequence position. History of repair needs for this

sender.
Outputs:
1) NACK message with repair requests.

3.2.4. Sender Repair Response
Upon reception of a repair request from a receiver in the group, the sender will initiate a
repair response procedure. The sender may wish to delay transmission of repair content
until it has had sufficient time to accumulate potentially multiple NACKs from the receiver
set. This allows the sender to determine the most efficient repair strategy for a given
transport stream/object or FEC coding block. Depending upon the approach used, some
protocols may find it beneficial for the sender to provide an indicator of pending repair
transmissions as part of its current transmitted message content. This can aid some NACK
suppression mechanisms. The amount of time to perform this NACK aggregation should be
sufficient to allow for the maximum receiver NACK backoff window ("T_maxBackoff"
from Section 3.2.2) and propagation of NACK messages from the receivers to the sender.
Note the maximum transmission delay of a message from a receiver to the sender may be
approximately (1*GRTT) in the case of very asymmetric network topology with respect to
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transmission delay. Thus, if the maximum receiver NACK backoff time is T_maxBackoff
= K*GRTT, the sender NACK aggregation period should be equal to at least:

T_sndrAggregate = T_maxBackoff + 1*GRTT = (K+1)*GRTT

Immediately after the sender NACK aggregation period, the sender will begin transmitting
repair content determined from the aggregate NACK state and continue with any new
transmission. Also, at this time, the sender should observe a "holdoff" period where it
constrains itself from initiating a new NACK aggregation period to allow propagation of the
new transmission sequence position due to the repair response to the receiver group. To
allow for worst case asymmetry, this "holdoff" time should be:

T_sndrHoldoff = 1*GRTT

Recall that the receivers will also employ a "holdoff" timeout after generating a NACK
message to allow time for the sender’s response. Given a sender <T_sndrAggregate>
plus <T_sndrHoldoff> time of (K+1)*GRTT, the receivers should use holdoff timeouts of:

T_rcvrHoldoff = T_sndrAggregate + T_sndrHoldoff = (K+2)*GRTT

This allows for a worst-case propagation time of the receiver ’s NACK to the sender, the
sender ’s aggregation time and propagation of the sender’s response back to the receiver.
Additionally, in the case of unicast feedback from the receiver set, it may be useful for the
sender to forward (via multicast) a representation of its aggregated NACK content to the
group to allow for NACK suppression when there is not multicast connectivity among the
receiver set.

At the expiration of the <T_sndrAggregate> timeout, the sender will begin transmitting
repair messages according to the accumulated content of NACKs received. There are some
guidelines with regards to FEC-based repair and the ordering of the repair response from the
sender that can improve reliable multicast efficiency:

1) When FEC is used, it is beneficial that the sender transmit previously untransmitted parity
content as repair messages whenever possible. This maximizes the receiving nodes’ ability
to reconstruct the entire transmitted content from their individual subsets of received
messages.

2) The transmitted object and/or stream data and repair content should be indexed with
monotonically increasing sequence numbers (within a reasonably large ordinal space). If
the sender observes the discipline of transmitting repair for the earliest content (e.g.,
ordinally lowest FEC blocks) first, the receivers can use a strategy of withholding repair
requests for later content until the sender once again returns to that point in the
object/stream transmission sequence. This can increase overall message efficiency among
the group and help work to keep repair cycles relatively synchronized without dependence
upon strict time synchronization among the sender and receivers. This also helps minimize
the buffering requirements of receivers and senders and reduces redundant transmission of
data to the group at large.
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Sender Repair Response Interface Description
Inputs:
1) Receiver NACK messages
2) Group timing information

Outputs
1) Repair messages (FEC and/or Data content retransmission)
2) Advertisement of current pending repair transmissions when unicast receiver

feedback is detected.

3.3. Multicast Receiver Join Policies and Procedures
Consideration should be given to the policies and procedures by which new receivers join a
group (perhaps where reliable transmission is already in progress) and begin requesting
repair. If receiver joins are unconstrained, the dynamics of group membership may impede
the application’s ability to meet its goals for forward progression of data transmission.
Policies limiting the opportunities when receivers begin participating in the NACK process
may be used to achieve the desired behavior. For example, it may be beneficial for receivers
to attempt reliable reception from a newly-heard sender only upon non-repair transmissions
of data in the first FEC block of an object or logical portion of a stream. The sender may also
implement policies limiting the receivers from which it will accept NACK requests, but this
may be prohibitive for scalability reasons in some situations. Alternatively, it may be
desirable to have a looser transport synchronization policy and rely upon session
management mechanisms to limit group dynamics that can cause poor performance, in
some types of bulk transfer applications (or for potential interactive reliable multicast
applications).

Group Join Policy Interface Description
Inputs:
1) Current object/stream data/repair content and sequencing identifiers from sender

transmissions.
Outputs:
1) Receiver yes/no decision to begin receiving and NACKing for reliable reception of

data

3.4. Reliable Multicast Member Identification
In a NACK-based reliable multicast protocol (or other multicast protocols) where there is the
potential for multiple sources of data, it is necessary to provide some mechanism to uniquely
identify the sources (and possibly some or all receivers in some cases) within the group.
Identity based on arriving packet source addresses is insufficient for several reasons. These
reasons include routing changes for hosts with multiple interfaces that result in different
packet source addresses for a given host over time, network address translation (NAT) or
firewall devices, or other transport/network bridging approaches. As a result, some type of
unique source identifier <sourceId> field should be present in packets transmitted by reliable
multicast session members.
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3.5. Data Content Identification
The data and repair content transmitted by a NACK-based reliable multicast sender requires
some form of identification in the protocol header fields. This identification is required to
facilitate the reliable NACK-oriented repair process. These identifiers will also be used in
NACK messages generated. This building block document assumes two very general types
of data that may comprise bulk transfer session content. One type is static, discrete objects
of finite size and the other is continuous non-finite streams. A given application may wish
to reliably multicast data content using either one or both of these paradigms. While it may
be possible for some applications to further generalize this model and provide mechanisms
to encapsulate static objects as content embedded within a stream, there are advantages in
many applications to provide distinct support for static bulk objects and messages with the
context of a reliable multicast session. These applications may include content caching
servers, file transfer, or collaborative tools with bulk content. Applications with
requirements for these static object types can then take advantage of transport layer
mechanisms (i.e., segmentation/reassembly, caching, integrated forward error correction
coding, etc.) rather than being required to provide their own mechanisms for these functions
at the application layer.

As noted, some applications may alternatively desire to transmit bulk content in the form of
one or more streams of non-finite size. Example streams include continuous quasi-real-time
message broadcasts (e.g., stock ticker) or some content types that are part of collaborative
tools or other applications. And, as indicated above, some applications may wish to
encapsulate other bulk content (e.g., files) into one or more streams within a multicast
session.

The components described within this building block document are envisioned to be
applicable to both of these models with the potential for a mix of both types within a single
multicast session. To support this requirement, the normal data content identification
should include a field to uniquely identify the object or stream <objectId> within some
reasonable temporal or ordinal interval. Note that it is _not_ expected that this data content
identification will be globally unique. It is expected that the object/stream identifier will be
unique with respect to a given sender within the reliable multicast session and during the
time that sender is supporting a specific transport instance of that object or stream.

Since the "bulk" object/stream content usually requires segmentation, some form of segment
identification must also be provided. This segment identifier will be relative to any object
or stream identifier that has been provided. Thus, in some cases, NACK-based reliable
multicast protocol instantiations may be able to receive transmissions and request repair for
multiple streams and one or more sets of static objects in parallel. For protocol instantiations
employing FEC the segment identification portion of the data content identifier may consist
of a logical concatenation of a coding block identifier <sourceBlockNumber> and an identifier
for the specific data or parity symbol <encodingSymbolId> of the code block. The FEC Basic
Schemes document [12] and descriptions of additional FEC schemes that may be
documented later provide a standard message format for identifying FEC transmission
content. NACK-based reliable multicast protocol instantiations using FEC SHOULD follow
such guidelines.

Additionally, flags to determine the usage of the content identifier fields (e.g., stream vs.
object) may be applicable. Flags may also serve other purposes in data content
identification. It is expected that any flags defined will be dependent upon individual
protocol instantiations.
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In summary, the following data content identification fields may be required for NACK-
based reliable multicast protocol data content messages:
1) Source node identifier (<sourceId>)
2) Object/Stream identifier (<objectId>), if applicable.
3) FEC Block identifier (<sourceBlockNumber>), if applicable.
4) FEC Symbol identifier (<encodingSymbolId>)
5) Flags to differentiate interpretation of identifier fields or identifier structure that

implicitly indicates usage.
6) Additional FEC transmission content fields per FEC Building Block

These fields have been identified because any generated NACK messages will use these
identifiers in requesting repair or retransmission of data. NACK-based reliable multicast
protocols that use these data content fields should also be compatible with support for
intermediate system assistance to reliable multicast transport operation when available.

3.6. Forward Error Correction (FEC)
Multiple forward error correction (FEC) approaches have been identified that can provide
great performance enhancements to the repair process of NACK-oriented and other reliable
multicast protocols [13], [14], [15]. NACK-based reliable multicast protocols can reap
additional benefits since FEC-based repair does not _generally_ require explicit knowledge
of repair content within the bounds of its coding block size (in symbols). In NACK-based
reliable multicast, parity repair packets generated will generally be transmitted only in
response to NACK repair requests from receiving nodes. However, there are benefits in
some network environments for transmitting some predetermined quantity of FEC repair
packets multiplexed with the regular data symbol transmissions [16]. This can reduce the
amount of NACK traffic generated with relatively little overhead cost when group sizes are
very large or the network connectivity has a large delay*bandwidth product with some
nominal level of expected packet loss. While the application of FEC is not unique to NACK-
based reliable multicast, these sorts of requirements may dictate the types of algorithms and
protocol approaches that are applicable.

A specific issue related to the use of FEC with NACK-based reliable multicast is the
mechanism used to identify the portion(s) of transmitted data content to which specific FEC
packets are applicable. It is expected that FEC algorithms will be based on generating a set
of parity repair packets for a corresponding block of transmitted data packets. Since data
content packets are uniquely identified by the concatenation of
<sourceId::objectId::sourceBlockNumber::encodingSymbolId> during transport, it is expected that
FEC packets will be identified in a similar manner. The FEC Building Block document [10]
provides detailed recommendations concerning application of FEC and standard formats for
related reliable multicast protocol messages.

3.7. Round-trip Timing Collection
The measurement of packet propagation round-trip time (RTT) among members of the
group is required to support timer-based NACK suppression algorithms, timing of sender
commands or certain repair functions, and congestion control operation. The nature of the
round-trip information collected is dependent upon the type of interaction among the
members of the group. In the case where only "one-to-many" transmission is required, it
may be that only the sender require RTT knowledge of the greatest RTT (GRTT) among the
receiver set and/or RTT knowledge of only a portion of the group. Here, the GRTT
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information might be collected in a reasonably scalable manner. For congestion control
operation, it is possible that RTT information may be required by each receiver in the group.
In this case, an alternative RTT collection scheme may be utilized where receivers collect
individual RTT measurements with respect to the sender and advertise them to the group or
sender. Where it is likely that exchange of reliable multicast data will occur among the
group on a "many-to-many" basis, there are alternative measurement techniques that might
be employed for increased efficiency [17]. And in some cases, there might be absolute time
synchronization among hosts that may simplify RTT measurement. There are trade-offs in
multicast congestion control design that require further consideration before a universal
recommendation on RTT (or GRTT) measurement can be specified. Regardless of how the
RTT information is collected (and more specifically GRTT) with respect to congestion control
or other requirements, the sender will need to advertise its current GRTT estimate to the
group for various timeouts used by receivers.

3.7.1. One-to-Many Sender GRTT Measurement
The goal of this form of RTT measurement is for the sender to learn the GRTT among the
receivers who are actively participating in NACK-based reliable multicast operation. The set
of receivers participating in this process may be the entire group or some subset of the group
determined from another mechanism within the protocol instantiation. An approach to
collect this GRTT information follows.

The sender periodically polls the group with a message (independent or "piggy-backed"
with other transmissions) containing a <sendTime> timestamp relative to an internal clock
at the sender. Upon reception of this message, the receivers will record this <sendTime>
timestamp and the time (referenced to their own clocks) at which it was received
<recvTime>. When the receiver provides feedback to the sender (either explicitly or as part
of other feedback messages depending upon protocol instantiation specification), it will
construct a "response" using the formula:

grttResponse = sendTime + (currentTime - recvTime)

where the <sendTime> is the timestamp from the last probe message received from the
source and the (<currentTime> - <recvTime>) is the amount of time differential since
that request was received until the receiver generated the response.

The sender processes each receiver response by calculating a current RTT measurement for
the receiver from whom the response was received using the following formula:

RTT_rcvr = currentTime - grttResponse

During the each periodic GRTT probing interval, the source keeps the peak round trip
timing measurement (RTT_peak) from the set of responses it has received. A conservative
estimate of GRTT is kept to maximize the efficiency of redundant NACK suppression and
repair aggregation. The update to the source’s ongoing estimate of GRTT is done observing
the following rules:
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1) If a receiver ’s response round trip time (RTT_rcvr) is greater than the current GRTT
estimate, the GRTT is immediately updated to this new peak value:

GRTT = RTT_rcvr

2) At the end of the response collection period (i.e., the GRTT probe interval), if the
recorded "peak" response RTT_peak) is less than the current GRTT estimate, the
GRTT is updated to:

GRTT = MAX(0.9*GRTT, RTT_peak)

3) If no feedback is received, the sender GRTT estimate remains unchanged.

4) At the end of the response collection period, the peak tracking value (RTT_peak) is
reset to ZERO for subsequent peak detection.

The GRTT collection period (i.e., period of probe transmission) could be fixed at a value on
the order of that expected for group membership and/or network topology dynamics. For
robustness, more rapid probing could be used at protocol startup before settling to a less
frequent, steady-state interval. Optionally, an algorithm may be developed to adjust the
GRTT collection period dynamically in response to the current GRTT estimate (or variations
in it) and to an estimation of packet loss. The overhead of probing messages could then be
reduced when the GRTT estimate is stable and unchanging, but be adjusted to track more
dynamically during periods of variation with correspondingly shorter GRTT collection
periods. GRTT collection may also be coupled with collection of other information for
congestion control purposes.

In summary, although NACK repair cycle timeouts are based on GRTT, it should be noted
that convergent operation of the protocol does not _strictly_ depend on highly accurate
GRTT estimation. The current mechanism has proved sufficient in simulations and in the
environments where NACK-based reliable multicast protocols have been deployed to date.
The estimate provided by the algorithm tracks the peak envelope of actual GRTT (including
operating system effect as well as network delays) even in relatively high loss connectivity.
The steady-state probing/update interval may potentially be varied to accommodate
different levels of expected network dynamics in different environments.

3.7.2. One-to-Many Receiver RTT Measurement
In this approach, receivers send messages with timestamps to the sender. To control the
volume of these receiver-generated messages, a suppression mechanism similar to that
described for NACK suppression my be used. The "age" of receivers’ RTT measurement
should be kept by receivers and used as a metric in competing for feedback opportunities in
the suppression scheme. For example, receiver who have not made any RTT measurement
or whose RTT measurement has aged most should have precedence over other receivers. In
turn the sender may have limited capacity to provide an "echo" of the receiver timestamps
back to the group, and it could use this RTT "age" metric to determine which receivers get
precedence. The sender can determine the GRTT as described in 3.7.1 if it provides sender
timestamps to the group. Alternatively, receivers who note their RTT is greater than the
sender GRTT can compete in the feedback opportunity/suppression scheme to provide the
sender and group with this information.
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3.7.3. Many-to-Many RTT Measurement
For reliable multicast sessions that involve multiple senders, it may be useful to have RTT
measurements occur on a true "many-to-many" basis rather than have each sender
independently tracking RTT. Some protocol efficiency can be gained when receivers can
infer an approximation of their RTT with respect to a sender based on RTT information they
have on another sender and that other sender’s RTT with respect to the new sender of
interest. For example, for receiver "a" and sender’s "b" and "c", it is likely that:

RTT(a<->b) <= RTT(a<->c)) + RTT(b<->c)

Further refinement of this estimate can be conducted if RTT information is available to a
node concerning its own RTT to a small subset of other group members and RTT
information among those other group members it learns during protocol operation.

3.7.4. Sender GRTT Advertisement
To facilitate deterministic protocol operation, the sender should robustly advertise its current
estimation of GRTT to the receiver set. Common, robust knowledge of the sender’s current
operating GRTT estimate among the group will allow the protocol to progress in its most
efficient manner. The sender’s GRTT estimate can be robustly advertised to the group by
simply embedding the estimate into all pertinent messages transmitted by the sender. The
overhead of this can be made quite small by quantizing (compressing) the GRTT estimate to
a single byte of information. The following C-language functions allows this to be done over
a wide range (RTT_MIN through RTT_MAX) of GRTT values while maintaining a greater
range of precision for small GRTT values and less precision for large values. Values of
1.0e-06 seconds and 1000 seconds are RECOMMENDED for RTT_MIN and RTT_MAX
respectively. NACK-based reliable multicast applications may wish to place an additional,
smaller upper limit on the GRTT advertised by senders to meet application data delivery
latency constraints at the expense of greater feedback volume in some network
environments.

unsigned char QuantizeGrtt(double grtt)
{

if (grtt > RTT_MAX)
grtt = RTT_MAX;

else if (grtt < RTT_MIN)
grtt = RTT_MIN;

if (grtt < (33*RTT_MIN))
return ((unsigned char)(grtt / RTT_MIN) - 1);

else
return ((unsigned char)(ceil(255.0 -

(13.0 * log(RTT_MAX/grtt)))));
}

double UnquantizeRtt(unsigned char qrtt)
{

return ((qrtt <= 31) ?
(((double)(qrtt+1))*(double)RTT_MIN) :
(RTT_MAX/exp(((double)(255-qrtt))/(double)13.0)));

}
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Note that this function is useful for quantizing GRTT times in the range of 1 microsecond to
1000 seconds. Of course, NACK-based reliable multicast protocol implementations may
wish to further constrain advertised GRTT estimates (e.g., limit the maximum value) for
practical reasons.

3.8. Group Size Determination/Estimation
When NACK-based reliable multicast protocol operation includes mechanisms that excite
feedback from the group at large (e.g., congestion control), it may be possible to roughly
estimate the group size based on the number of feedback messages received with respect to
the distribution of the probabilistic suppression mechanism used. Note the timer-based
suppression mechanism described in this document does not require a very accurate
estimate of group size to perform adequately. Thus, a rough estimate, particularly if
conservatively managed, may suffice. Group size may also be determined administratively.
In absence of a group size determination mechanism a default group size value of 10,000 is
RECOMMENDED for reasonable management of feedback given the scalability of expected
NACK-based reliable multicast usage.

3.9. Congestion Control Operation
Congestion control that fairly shares available network capacity with other reliable
multicast and TCP instantiations is REQUIRED for general Internet operation. The TCP-
Friendly Multicast Congestion Control (TFMCC) [18] or Pragmatic General Multicast
Congestion Control (PGMCC) techniques [19] may be applied to NACK-based reliable
multicast operation to meet this requirement.

3.10. Router/Intermediate System Assistance
NACK-based multicast protocols may benefit from general purpose router assistance. In
particular, additional NACK suppression where routers or intermediate systems can
aggregate NACK content (or filter duplicate NACK content) from receivers as it is relayed
toward the sender could enhance NORM group size scalability. For NACK-based reliable
multicast protocols using FEC, it is possible that intermediate systems may be able to filter
FEC repair messages to provide an intelligent "subcast" of repair content to different legs of
the multicast topology depending on the repair needs learned from previous receiver
NACKs. Both of these types of assist functions would require router interpretation of
transport data unit content identifiers and flags.

3.11. NACK-based reliable multicast Applicability
The Multicast NACK building block applies to protocols wishing to employ negative
acknowledgement to achieve reliable data transfer. Properly designed NACK-based reliable
multicast protocols offer scalability advantages for applications and/or network topologies
where, for various reasons, it is prohibitive to construct a higher order delivery
infrastructure above the basic Layer 3 IP multicast service (e.g., unicast or hybrid
unicast/multicast data distribution trees). Additionally, the multicast scalability property of
NACK-based protocols [20], [21] is applicable where broad "fan-out" is expected for a single
network hop (e.g., cable-TV data delivery, satellite, or other broadcast communication
services). Furthermore, the simplicity of a protocol based on "flat" group-wide multicast
distribution may offer advantages for a broad range of distributed services or dynamic
networks and applications. NACK-based reliable multicast protocols can make use of
reciprocal (among senders and receivers) multicast communication under the Any-Source
Multicast (ASM) model defined in RFC 1112 [2], and are capable of scalable operation in
asymmetric topologies such as Single-Source Multicast (SSM) [9] where there may only be
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unicast routing service from the receivers to the sender(s).

NACK-based reliable multicast protocol operation is compatible with transport layer
forward error correction coding techniques as described in [15] and congestion control
mechanisms such as those described in [18] and [19]. A principal limitation of NACK-based
reliable multicast operation involves group size scalability when network capacity for
receiver feedback is very limited. NACK-based reliable multicast operation is also governed
by implementation buffering constraints. Buffering greater than that required for typical
point-to-point reliable transport (e.g., TCP) is recommended to allow for disparity in the
receiver group connectivity and to allow for the feedback delays required to attain group
size scalability.

4. Security Considerations
NACK-based reliable multicast protocols are expected to be subject to the same sort of
security vulnerabilities as other IP and IP multicast protocols. NACK-based reliable
multicast is compatible with IP security (IPsec) authentication mechanisms [22] that are
RECOMMENDED for protection against session intrusion and denial of service attacks. A
particular threat for NACK-based protocols is that of NACK replay attacks that could
prevent a multicast sender from making forward progress in transmission. Any standard
IPsec mechanisms that can provide protection against such replay attacks are
RECOMMENDED for use. Additionally, NACK-based reliable multicast protocol
instantiations SHOULD consider providing support for their own NACK replay attack
protection when network layer mechanisms are not available. The IETF Multicast Security
(msec) Working Group is also developing solutions which may be applicable to NACK-
based reliable multicast in the future. For example, to support IPSec or other security
mechanisms, the Group Secure Association Key Management Protocol, RFC 4535 [23] is
RECOMMENDED for automated group key management.

5. Changes from RFC3941
This section lists the changes between the Experimental version of this specification, [4], and
this version:
1) Change of title to avoid confusion with NORM Protocol specification, and
2) Updated references to related, updated RMT Building Block documents.
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